Power-Switching Converters_ch08

合集下载

ch08功率放大器及效果器设备教程

ch08功率放大器及效果器设备教程
得越开,混响声听起来就比较接近回声了,声音很清晰。 • 因此,对于一些延音类的声音,比如合成弦乐,可以使用较小的 diffusion ,
声音就比较漂亮清楚;对于脉冲类的声音,比如打击乐、木琴等,可以使用 较大的 diffusion ,混响就比较 圆润。有些效果器里也有 diffusion 这个参数, 但是具体的定义不太一样。在某些效果器里,diffusion 是指反射声的无规律 程度,空间的形状越不规则(例如山洞、教堂里),墙壁越不光滑,反射声 音的出现越没有规律,diffusion 越大;空间的形状越规则(例如无家具的住 宅、空的教室),墙壁越光滑,反射声的出现越有规律,diffusion 越小。
功率放大器
• 频率响应 • 频率响应反映功率放大器对音频信号各频率分量的放大能力,功率
放大器的频响范围应不低于人耳的听觉频率范围,因而在理想情况 下,主声道音频功率放大器的工作频率范围为20-20kHz。国际规定 一般音频功放的频率范围是40-16kHz±1.5dB。
• 失真 • 失真是重放音频信号的波形发生变化的现象。波形失真
说是正弦波信号)。经常把谐波失真度为1%时的平均功率称为额 定输出功率或最大有用功率、持续功率、不失真功率等。很显然规 定的失真度前提不同时,额定功率数值将不相同。 • 最大输出功率 • 当不考虑失真大小时,功放电路的输出功率可远高于额定功率,还 可输出更大数值的功率,它能输出的最大功率称为最大输出功率, 前述额定功率与最大输出功率是两种不同前提条件的输出功率
效果器设备
• 混响器参数:
• 混响密度(Reverb density) • 这个参数的意思跟 diffusion 差不多,只是是针对早反射之后
的混响部份的。很多效果器并不提供 density ,而是用 diffusion 来控制整个混响。 • 空间大小(Room size) • 设置空间大小参数。不过不同的效果器在这个上面会有不同 的算法。另外,采样混响器不会提供这个参数,因为空间大 小已经体现在 IR 中了。

operating system《操作系统》ch08-main memory

operating system《操作系统》ch08-main memory
When a process arrives, it is allocated memory from a hole large enough to accommodate it
Operating system maintains information about: a) allocated partitions b) free partitions (hole)
8.12
Dynamic Linking
Linking postponed until execution time Small piece of code, stub, used to locate the appropriate memory-resident library routine Stub replaces itself with the address of the routine, and executes the routine Operating system needed to check if routine is in processes’ memory address Dynamic linking is particularly useful for libraries System also known as shared libraries
8.16
Contiguous Allocation (Cont.)
Multiple-partition allocation
Hole – block of available memory; holes of various size are scattered throughout memory
8.6
Binding of Instructions and Data to Memory

Ch08

Ch08
Company Logo
8.2.3 改变角度的旋转动画
改变角度的旋转动画即对象随着播放时间的推移,角度逐渐变化的动画。 改变角度的旋转动画即对象随着播放时间的推移,角度逐渐变化的动画。改变角度的旋转 动画创作过程中涉及的操作包括创建关键帧动画、添加关键帧、选取对象、移动对象、 动画创作过程中涉及的操作包括创建关键帧动画、添加关键帧、选取对象、移动对象、旋 转形状和使用【补间动画】选项。改变角度的旋转动画创作的操作步骤如下。 转形状和使用【补间动画】选项。改变角度的旋转动画创作的操作步骤如下。
教学目标
了解Flash 8中补间动画的原理,了解补间动画的类型和逐帧动画的制 中补间动画的原理, 了解 中补间动画的原理 作原理及过程,能够制作补间动画和补间形状动画。 作原理及过程,能够制作补间动画和补间形状动画。
8.1Flash动画简介 8.3制作“形状补间”动画 8.5上机指导
8.2制作“动画补间”动画 8.4一般补间动画实例
Flash动画简介 8.1 Flash动画简介
8-1-1动画补间类型 动画补间类型
动画补间类型是Flash两大动画类型之一,其制作特点是:在动画开始关键帧放置一个 两大动画类型之一,其制作特点是: 动画补间类型是 两大动画类型之一 对象,然后在结束关键帧种更改该对象属性,而就是Flash将根据两者前后的差异创建 对象,然后在结束关键帧种更改该对象属性,而就是 将根据两者前后的差异创建 动画补间动画,从而达到对象变化的效果。 动画补间动画,从而达到对象变化的效果。 动画补间动画可以实现两个对象之间的大小、位置、颜色(包括亮度、色调、透明度) 动画补间动画可以实现两个对象之间的大小、位置、颜色(包括亮度、色调、透明度) 变化。这种动画可以使用元件、文字、群组和位图作为动画补间的元素, 变化。这种动画可以使用元件、文字、群组和位图作为动画补间的元素,形状对象只有 组合”后才能应用到动画补间中。 “组合”后才能应用到动画补间中。 动画补间动画创建成功后, 时间轴】面板的背景颜色变成淡紫色, 动画补间动画创建成功后,【时间轴】面板的背景颜色变成淡紫色,在起始关键帧和结 束关键帧之间连接一个长箭头。如果创建失败, 束关键帧之间连接一个长箭头。如果创建失败,则起始关键帧和结束关键帧之间连接一 段虚线。 段虚线。

pp_ch08

pp_ch08

©The McGraw-Hill Companies, 2003
Asset specificity
Investments which have a higher value within a specific relationship than outside it.
©The McGraw-Hill Companies, 2003
©The McGraw-Hill Companies, 2003
Figure 8.5: Transaction costs economics
Specificity of investments Degree of uncertainty Frequency
Opportunism Limited rationality
40 K 200-K
Surplus Sunk costs Recoverable costs
©The McGraw-Hill Companies, 2003
Suppose K = 60
Figure 8.2: Reservation prices / threatpoints before and after the fundamental transformation
yes 20 20

©The McGraw-Hill Companies, 2003
Economics and Management of Organisations:
Co-ordination, Motivation and Strategy
Chapter 8
Transaction and influence costs
George Hendrikse
©The McGraw-Hill Companies, 2003

萨福铝焊机说明书

萨福铝焊机说明书

B - 安装调试 ............................................................................................................10 1. 拆除包装 .......................................................................................................10 2. 送丝机连接...................................................................................................10 3. 主电源的电路连接 .....................................................................................10 4. 焊枪的连接...................................................................................................10
中文
目录
安全说明 .....................................................................................................................2
A - 总体介绍 ...............................................................................................................7 1. 装置简介 .........................................................................................................7 2. 焊接设备组成 ................................................................................................7 3. 前面板描述.....................................................................................................8 4. 选配件..............................................................................................................8 5. OPTIPULS i / i W技术规格 .............................................................................8 6. 尺寸和重量.....................................................................................................9 7. 冷却装置的技术规格......................................................................................9

ETAP帮助手册Ch08_工程数据库

ETAP帮助手册Ch08_工程数据库

第8章工程数据库(Engineering Libraries) ETAP 提供了众多设备的专用数据库。

包括一些典型值、标准值和制造商信息。

可以使用ETAP数据库编辑器向各数据库中添加设备。

本章中详细介绍了各个数据库以及数据库的创建和转换方法。

ETAP数据库文件的扩展名均为.lib。

ETAP 将当前数据库的名称及其路径显示在工程视图中。

8.1 数据库实用工具(Library Utility Tools)ETAP提供了一些实用工具来管理数据库打开(Open)使用该选项,您便可以将一数据库与当前的ETAP 工程进行关联。

当打开一数据库时,工程与以前的数据库之间的关联即被取消。

与以前的数据库相关联的电动机特性模型和动态链接的电缆数据库数据,由于不存在于新的数据库中,所以会被丢失。

有两种方法可用来重新找回这些丢失的数据:1) 重新选择旧的数据库文件。

2) 将旧的数据库文件合并到新的数据库文件中。

为打开某一数据库,请从数据库菜单中选择“打开”,找到其所在的目录,选择新数据库文件,然后选择“打开”。

于是该数据库便会附属给该 ETAP工程。

复制/合并(Copy/Merge)可以在以下菜单上激活复制/合并功能1. 主工具条上的数据库菜单2. 在项目窗口中右键点击数据库文件夹复制/合并功能可以将数据库中的一部分复制到另一个数据库中。

例如,将倍释放的5.0.1数据库版本的数据复制到倍释放5.0.0数据库版本中。

复制的数据库将覆盖两个数据库中所有的制造商信息。

选择复制/合并选项引入以下编辑器:复制/合并数据库文件(Library files to copy/merge)点击文件…按钮查询并选择想要复制/合并的数据库文件数据。

注意:如果项目连接到一个数据库上,首选将显示连接的数据库文件的路径。

点击文件…按钮选择一个数据库文件。

如果选中的数据库没有转换到最新的版本,ETAP将提示你是否需要转换数据库。

如果选择“是”数据库将转换到最新版本如果选择“否”选择另一个数据库释放(Release)选择一个数据库后,相应的释放编号将显示出来。

ch08_顺序图及建模

ch08_顺序图及建模

这个顺序图中有4个活动对象:Developer、Compiler、Linker和 FileSystem。Developer是系统的参与者。Compiler是Developer交互 的应用程序。Linker是一个用来链接对象文件的独立进程。 FileSystem是系统层功能的包装器,用来执行文件的输人和输出例 程。 Compile Application用例的顺序图操作: Developer请求Compiler执行编译 Compiler请求FileSystem 加载文件 Compiler通知自己执行编译 Compiler请求FileSystem 保存对象代码 Compiler请求Linker链接对象代码 Linker请求 FileSystem加载对象代码 Liker通知自己执行链接 Linker请求FileSystem保存编译的结果
消息用从一个对象到另一个对象生命线的箭头表示 箭头以时间的顺序在图中从上到下排列
箭头表示方法的调用
认识顺序图中的元素
一、对象
对象是类的实例,对象是通过类来创建的,我们可以把类
看作是创建对象的模板。
1、对象的符号(带有对象名称的矩形框) 顺序图中的每个对象显示在单独的列里。
匿名对象
2、对象的左右排列位置
第8讲 顺序图(时序图)及建模
思考题:
用例图、类图、活动图、顺序图之间是什么关系? 顺序图有什么作用?
引言:赤壁之战的顺序图
Public class 刘备 { public void 应战(); }
Public class 孔明 { public void 拟定策略(); public void 联合孙权(); private void 借东风火攻(); }
从属流还允许控制流根据条件改变,但是只允许控制流改变为相 同对象的另一条生命线分支,如下图所示。

AutoCAD2008实用教程-ch08

AutoCAD2008实用教程-ch08

中文版AutoCAD 2008实用教程
8.1.3 从面域中提取数据
面域对象除了具有一般图形对象的属性外,还具面对象的属性,其中一 个重要的属性就是质量特性。
在AutoCAD 2008中,选择“工具”|“查询”|“面域/质量特性”命令 (MASSPROP),并选择要提取数据的面域对象,然后按下Enter键,系统将自 动切换到“AutoCAD文本窗口”,并显示选择的面域对象的数据特性。
中文版AutoCAD 2008实用教程
第8章 创建面域与图案填充
面域指的是具有边界的平面区域,它是一个面对象,内部可以包含孔。 从外观来看,面域和一般的封闭线框没有区别,但实际上面域就像是一张没有 厚度的纸,除了包括边界外,还包括边界内的平面。
图案填充是一种使用指定线条图案、颜色来充满指定区域的操作,常常 用于表达剖切面和不同类型物体对象的外观纹理等,被广泛应用在绘制机械图、 建筑图及地质构造图等各类图形中。
中文版AutoCAD 2008实用教程
8.1.2 对面域进行布尔运算
布尔运算是数学上的一种逻辑运算,在AutoCAD绘图中对提高绘图效率 具有很大作用,尤其当绘制比较复杂的图形时。布尔运算的对象只包括实体和 共面的面域,对于普通的线条图形对象无法使用布尔运算。
原始面域
面域的并集运算
面域的差集运算 面域的交集运算
8.2.2 设置孤岛
单击“图案填充和渐变色”对话框右下角的按钮,将显示更多选项,如 设置孤岛和边界保留等信息。
中文版AutoCAD 2008实用教程
8.2.3 使用渐变色填充图形
使用“图案填充和渐变色”对话框的“渐变色”选项卡创建一种或两种 颜色形成的渐变色,并对图案进行填充。
中文版AutoCAD 2008实用教程

ch08-PowerBuilder9.0简介及应用-讲义

ch08-PowerBuilder9.0简介及应用-讲义

ch08-PowerBuilder9.0简介及应用
第八章PowerBuilder9.0简介及应用
学习目的与要求:
了解PB9.0的集成开发环境,了解和学会应用程序的开发步骤。

通过“学生选课系统”的实现,掌握使用PB9.0建立本地数据库的能力,以及连接数据库和建表的能力,初步掌握使用PB9.0建立数据库应用程序的方法。

了解PB9.0连接SQL Server数据库的应用实例。

考核知识点与考核要求
8.1PB9.0集成开发环境(识记)
8.2“学生选课系统”的开发过程(简单应用)
8.3PB9.0与数据库的连接(识记)
8.1PowerBuilder9.0集成开发环境
1.PB的特点
1)采用面向对象的编程方法和事件驱动的工作原理。

2)支持跨平台开发,具有开放的数据库连接系统。

3)无须记住各种语句格式即可轻松编写语句。

4)人性化设计,为用户提供方便快捷的语句块剪切板工具,大大提高了程序员的编写程序效率。

5)独特的库文件画板和层次清晰的系统资源树。

6)系统提供了11种不同“显示风格”的数据窗口,以满足不同的用户需求。

7)提供规范化的Workspase(工作空间)对象,让程序员方便地管理创建的应用对象。

2.PowerBuilder9.0开发空间有那三个层次
1)Workspace(工作空间)
2)Target(目标)
3)Library(库文件)
3.系统树、剪贴板和输出窗口
系统树窗口
剪贴板窗口
输出窗口
4.PB9.0的主要画板
书上介绍了12了重要画板(P220~221)
1 / 1。

ch08_用户定义原语(UDP)a

ch08_用户定义原语(UDP)a

第8 章用户定义原语(UDP)内容UDP基础组合逻辑的UDP时序逻辑的UDPUDP表中的缩写符号 UDP设计指南UDP基础UDP(User-Defined Primitives )Verilog 不仅提供了一套标准的内置原语,还允许用户定义自己的原语 UDP的类型有两种表示组合逻辑的UDP输出由输入信号的组合逻辑确定表示时序逻辑的UDP输出由当前输入信号和内部状态确定UDP 定义的组成主要定义规则只有一个1 bit 输出端,端口列表中的第一个如果定义的是表示时序逻辑的原语,输出端口必须声明为reg 类型使用input 声明输入端口,不支持inout 端口时序逻辑UDP 的输出可以用initial 初始化状态表中可包含的值为0、1和x ,不能有zUDP 与模块同级组合逻辑的UDP例、自定义与门——udp_and状态表中每一行的语法primitive udp_and(out, a, b);output out; //组合逻辑的输出端不能声明成 reg 类型input a, b; // 输入端口声明//定义状态表table// a b : out;0 0 : 0;0 1 : 0;1 0 : 0;1 1 : 1;endtableendprimitive所有输入组合必须在状态表中列出,否则,在状态表中找不到对应输入的项,产生输出为x例、所有可能的输入组合无关项的缩写表示无关项不影响输出值的输入项无关项可用符号“?”表示?——自动展开为0、1或x例primitive udp_or(out, a, b);output out;input a, b;table// a b : out;0 0 : 0;0 1 : 1;1 0 : 1;1 1 : 1;x 1 : 1;1 x : 1;endtableendprimitiveUDP 原语的实例引用primitive udp_or(out, a, b);output out;input a, b;table// a b : out0 0 : 0;1 ? : 1;? 1 : 1;0 x : x;x 0 : x;endtableendprimitive组合逻辑UDP 设计四选一多路器primitive mux4_to_1 ( output out,input i0, i1, i2, i3, s1, s0); table// i0 i1 i2 i3, s1 s0 : out1 ? ? ? 0 0 : 1 ;0 ? ? ? 0 0 : 0 ;? 1 ? ? 0 1 : 1 ;? 0 ? ? 0 1 : 0 ;? ? 1 ? 1 0 : 1 ;? ? 0 ? 1 0 : 0 ;? ? ? 1 1 1 : 1 ;? ? ? 0 1 1 : 0 ;? ? ? ? x ? : x ;? ? ? ? ? x : x ;endtableendprimitive四选一多路器UDP仿真测试时序逻辑的UDP特点输出必须为reg 类型 输出可用initial 初始化状态表格式两种时序逻辑UDP电平敏感对输入信号的电平敏感边沿敏感对输入信号的边沿敏感电平敏感的时序逻辑UDP带清零端的电平敏感锁存器根据输入电平改变状态功能若clear 为1,输出q 恒为0若clear 为0如果clock 为1,q = d如果clock 为0,保持q边沿敏感时序逻辑UDP根据边沿跳变与/或输入电平改变其状态例、带清零端的下降沿触发的D触发器功能若clear = 1,则q 的输出恒为0若clear = 0当clock 从1 跳变到0 时,则q = d,否则,q 保持不变当clock 保持稳定时,而d 改变值,q 不变带清零端的下降沿触发的D 触发器边沿跳变(10) ——从1 到0 负边沿跳变(1x) ——从1 到x 的跳变(0?) ——从0 到0、1或x 的跳变(??) ——从0、1和x 到0 、1和x 任意跳变状态表——每行只能输入一个跳变沿时序逻辑UDP举例使用UDP设计一个4位行波计数器 用UDP描述一个T 触发器引用T触发器// 行波计数器module counter(Q , clock, clear);output[3:0] Q;input clock, clear;T_FF tff0(Q[0], clock, clear);T_FF tff1(Q[1], Q[0], clear);T_FF tff2(Q[2], Q[1], clear);T_FF tff3(Q[3], Q[2], clear);endmoduleUDP 表中的缩写符号信号值的任意变化(??)*可能是下降沿(10), (1x) or (x0)n 可能是上升沿(01), (0x) or (x1)p 信号的下降沿(10)f 信号的上升沿(01)r 只能用于时序逻辑UDP 保持原值不变-不能用于输出部分0, 1b 不能用于输出部分0, 1, x ?解释含义缩写符UDP设计指南限制主要用于功能建模只能有唯一的输出端口输入端口的数目由仿真器决定要点应当完整地描述UDP的状态表注意电平敏感输入项的优先级高于边沿敏感的优先级。

CH08-常用无源元件及电源06071

CH08-常用无源元件及电源06071
西安科技大学电控学院 2019年4月3日 28
– ACMAG表示交流小信号源的幅度 – ACPHASE表示交流小信号源的相位
西安科技大学电控学院
2019年4月3日
29
1.6.2 线性受控源
• 1、线性电压控制电流源VCCS
– 关键字是G,函数关系是I=GV – 描述语句格式:
• • • • GXX N+ N- NC+ NC- VALUE N+ N-为受控源正负节点 NC+,NC-是受控电压支路的正负节点。 VALUE是跨导值,单位是S
西安科技大学电控学院 2019年4月3日 10
• 磁芯的模型语句格式:
– .MODEL MNAME CORE AREA=PVAL1 PATH=PVAL2 GAP=PVAL3 PACK=PVAL4 MS=PVAL5 …
西安科技大学电控学院
2019年4月3日
11
FULL-WAVE RECTIFIER CIRCUIT VI 1 0 SIN(0 220 50HZ) R1 1 2 1 L1 2 0 1.5H L2 3 0 0.015H L3 0 5 0.015H K123 L1 L2 L3 0.999 R2 0 6 1K CL 0 6 CMOD 50U D1 3 6 D1N4009 D2 5 6 D1N4009 .MODEL CMOD CAP(C=1) .model D1N4009 D(Is=544.7E-21 N=1 Rs=.1 Ikf=0 Xti=3 Eg=1.11 Cjo=4p M=.3333 + Vj=.75 Fc=.5 Isr=30.77n Nr=2 Bv=25 Ibv=100u Tt=2.885n) .TRAN 0.1M 40M 0 0.1M .STEP CAP CMOD(C) LIST 0 1 .PROBE .OPTIONS ITL5=0 .END

ch08 第八章 外部中断实习

ch08 第八章 外部中断实习

10k
12MHz30P19 NhomakorabeaX1
12 13
10k2
7414
7414
30P
20
S0
S1
1uF
圖 8-2 一個外部中斷實習電路
8
8.2 两个外部中断实习
流程圖
開 始 外部中斷0函數 外部中斷1函數 設定INT0為 高層次中斷 右移初值 j=0x80 移位次數 i=24 左移初值 j=0x01 移位次數 i=24
電路圖
+5V
40
MCS-51
VCC EA/VP RST 31 9 P10 P11 P12 P13 P14 P15 P16 P17 P32 P33 18 X2 VSS
1 2 3 4 5 6 7 8 L0 L1 L2 L3 L4 L5 L6 L7
+5V 2208
( INT0 )
10uF
( INT1)

已移至最右方 ? 是

已移至最左方 ? 是 重設L E D 初值 j 0x01 =
延遲0. 1秒
重設L E D 初值 j= 0x80
i減1
i 減1
i 0? = 是 返回主程式
否 i= 0? 是 返回主程式

9
8.2 两个外部中断实习
程式:ch8-2.c
#include "reg51.h" unsigned char LED=0; main() { void delay(unsigned int); SP=0x60; EA=1; EX0=1; EX1=1; IT0=1; IT1=1; IP=0x01; while(1) { P1=LED; delay(10000); LED^=0xff; } } void delay(unsigned int count) { int i; for(i=0;i<count;i++) ; } /* delay 延遲函數 */ /* 輸出 LED 狀態 */ /* 延遲 */ /* 反相 LED 狀態 */ /* delay 延遲函數宣告 */ /* 重設堆疊指標 */ /* 致能 EA 位元 */ /* 致能外部中斷 0 */ /* 致能外部中斷 1 */ /* 負緣觸發 */ /* 負緣觸發 */ /* 設定 INT0 為高層次中斷 */ /* 8051 接腳定義 */ /* LED 狀態 */

ch08领导

ch08领导

31
8.3 领导理论
领导权变理论
菲德勒模型(the Fiedler Model)
菲德勒根据以上研究,得出的结论是: (1)不能简单地评价哪种领导方式好或不好。必须把领 导者和下属的状况、环境、工作类型等因素综合起来考虑, 不同情况适合不同的领导方式。
(2)要提高领导效率。一方面,通过改变领导者的个性 和领导方式;另一方面改变情境,这又可以从三个方面进 行,即改变领导者与下属的关系、改变工作结构程度的高 低和改变领导者的职位权力。
13
8.2 领导理论的基础——人性假设
Y理论
员工视工作如休息、娱乐一般自然; 如果员工对某项工作作出承诺,他们会进行自我
指导和自我控制,以完成任务; 一般而言,员工不仅能承担责任,而且会主动寻 求承担责任; 绝大多数人都具备作出正确决策的能力(而不仅 仅是管理者)。
14
8.2 领导理论的基础——人性假设
管理者关于人性的观点是建立在一些假设
基础上的,而管理者又根据这些假设来塑 造他们自己对下属的行为方式。
10
8.2 领导理论的基础——人性假设
X理论
员工天生不喜欢工作,只要可能,他们就会逃 避工作; 由于员工不喜欢工作,因此必须采取强制措施 或惩罚办法,迫使他们实现组织目标; 员工只要有可能就会逃避责任,安于现状; 大多数员工喜欢安逸,没有雄心壮志。
专家Expert Power 感召Referent Power
7
个人权力
8.1 领导与领导者
领导者素质
领导 艺术
基础 素质
领导者素质
职能 素质 科学决策能力 组织协调能力 知人善任的能力 激励能力 创新能力 危机管理能力
8
政治素质 思想素质 道德素质 知识素质 心理素质

教师用书配套课件ch08_远端桌面协定

教师用书配套课件ch08_远端桌面协定
支援 file redirector filter,允許顯示特定的目 錄
提供終端服務客戶端存取使用權(TS CAL)維 護工具
在GWES中執行
8-12
大綱
簡介 終端服務連線 遠端桌面協定 .rdp檔參數設定 RDP註冊表設定 虛擬通道
– 伺服器端 – 客戶端 – 範例
– 伺服器端 – 客戶端 – 範例
8-20
RDP Registery設定
控制終端服務的所有連線
– HKEY_CURRENT_USER\Software\Microsoft\Ter minal Server Client
啟動或關閉裝置重新導向
– HKEY_CURRENT_USER\Software\Microsoft\Ter minal Server Client\<Connection Name>\EnableDriveRedirection
8-13
.rdp檔 參數設定 (1/6)
關鍵字:類型:預設值 AudioRedirectionMode:i:0 AutoReconnectionEnabled:i:1 BBarEnabled:i:1
BBarShowMinimizeBtn:i:1 BbarShowPinButton:i:0
說明
設定聲音在哪一端播放。0值表示在客戶端播放;1值表示在 遠端電腦播放;2值表示不播放聲音。
8-9
RDP 5.5 (1/3)
與Unicode相容 允許網路本地化、自動斷線與遠端設定組態 以客戶端bitmap快取或壓縮方式,提供可變的
頻寬配置 支援多個虛擬通道 提供遠端控制功能 網路負載平衡(NLB)功能 支援高彩8位元、16位元和24位元圖形

ch08 Balance-of-Payments and Exchange-Rate Determi

ch08 Balance-of-Payments and Exchange-Rate Determi
• According to this condition, the current account balance will improve if the sum of the elasticity of import demand and the elasticity of export supply exceed unity.
In the left-hand panel, the import demand curve denoted D′C is more elastic that the demand curve DC. In the right-hand panel, the foreign exchange demand curve denoted D′€ is more elastic than the foreign exchange demand curve D€.
• Hence, we would expect the nation’s exports to rise and imports to decline.
10
The Responsiveness of Imports and Exports
• The elasticities approach, therefore, considers the responsiveness of the quantity of imports and the quantity of exports to a change in the value of a nation’s currency.
11
Surpluses and Deficits
• It follows that an excess quantity supplied of the domestic currency is equivalent to a current account deficit.

CH-GC08工程管理工作策划(安全用电)

CH-GC08工程管理工作策划(安全用电)

商户安全用电管理工作策划
文件编号:WDSY/NB-CH-GC08 版本状态:B / 0
第1页 共1页
项目
工作 要点
工作标准 管理控制 责任人
工作 记录 支持 文件 装修期间安全用电 步行街商户装修安全用电
1.强电领班对步行街正在装修的店铺安全用电情况每天至少现场巡视和检查1次,并把当天检查的结果填入《商户装修安全用电日检表》并签字。

2.强电领班把检查的不合格内容,现场要求整改,对拒不整改的上报主管工程师(协助营运部督促整改)。

1.主管工程师每周查看1次检查记录,检查是否填写完整、充分、真实、准确。

2.主管工程师每周巡视检查现场1次。

3.工程经理每月至少对现场巡视检查2次。

强电领班 主管工程师 工程经理 《商户装修安全用电日检表》
《商户安全用电检查标准》
营业期间安全用电
步行街商户安全用

1.强电技工对步行街店铺的安全用电情况每周至少现场巡视和检查1次,把当天的检查结果
填入《商户安全用电周检表》并签字。

2.对于检查中不合格内容,现场要求整改,对拒不整改的上报领班及主管工程师(协助营运部督促整改)。

3.强电班组每周对商户的用电情况进行重点区
域的抽查(重点为餐饮区),巡视检查的覆盖面一个季度达到100%。

1.强电领班每周查看1次检查记录,并
对不合格内容进行现场复检。

2.主管工程师负责每15天抽查1次检
查记录及不合格内容整改情况。

3.工程经理每月至少对现场巡视检查
1次。

强电领班
主管工程师
工程经理
《商户安全用电检表》。

ch08-Java Web程序设计(第3版)-微课视频版-郭克华-清华大学出版社

ch08-Java Web程序设计(第3版)-微课视频版-郭克华-清华大学出版社
application 原理图
application 对象
问题:购物车能用 application 实现吗?
很明显,购物车是不能用 application 实现的。因 为不同客户在服务器端访问的是同一个对象,如果 使用 application 实现购物车,客户 1 向购物车中 放了一种物品,客户 2 也可以看到,那样是不允 许的
application 对象
application 对象的 API 主要有以下几个:
✓ 将内容放入 application
void application.setAttribute(String name,Object obj);
利用 session 保存登录信息
例子
假如用户登录学生管理系统,登录后用户可能要 做很多操作,访问很多页面,在访问这些页面的过 程中,各个页面如何知道用户的账号呢?
答案很简单,在登录成功后,用户的账号可以 保存在 session 中。后面的各个页面都可以访问 session 内的内容
application 对象
实际项目中,可以使session中的内容多种多 样。为了将session里面的内容很好地分门别 类,可以将这几种物品先放在一个集合中, 然后将集合放入session中,操作更加方便。
session 其他 API -session sion 有一个函数: void session.removeAttribute(String name);
如何用 session 开发购物车
一些 session 常用的 API
✓ 读取购物车中的内容
Object session.getAttribute(String name);
✓ 在该函数里面,name就是被取出的内容所对应的 标记;返回值,就是内容本身。

ch08-1-城市声环境基础知识

ch08-1-城市声环境基础知识
20 87dB 31.5 75dB 63 58dB 125 45dB 250 43dB 500 42dB 1K 40dB 2K 36dB 4K 32dB 8K 48dB
声级
•线性声级(L声级) 将各个频带的声音级叠加,得到 线性声级。
20 31.5 63 125 250 500 1K 2K 4K 8K 16K 20K L声级
• 人耳判断声源的方位主要靠双耳定位,对时 间差和强度差进行判断。
• 人耳的水平方向感要强于竖直方向感。 • 通常,频率高于1400Hz强度差起主要作用;
低于1400Hz时,时间差起主要作用。这就 是人为什么对蚊子的定位比较准而对电话铃 声的定位比较差的原因。
4.3、 哈斯(Hass)效应
• 人耳有声觉暂留现象,人对声音的感觉在声 音消失后会暂留一小段时间。
汽车噪声主要来自汽车排气噪声。若不加消声器,噪声可达100分贝以上。 其次为引擎噪声和轮胎噪声,引擎噪声在汽车正常运转时,可达90分贝 以上,而轮胎噪声在车速为90公里/时以上时,可达95分贝左右。因此, 在排气系统中加上消声器,可使汽车排气噪声降低20-30分贝。在引擎方 面,以汽油引擎代替柴油引擎,可以降低引擎噪声6-8分贝。
• 如果到达人耳的两个声音的时间间隔小于 50ms,那么就不会觉得声音是断续的。
• 直达声到达后50ms以内到达的反射声会加强 直达声。直达声到达后50ms后到达的“强” 反射声会产生“回声”——哈斯效应。
• 根据哈斯效应,人耳在多声源发声内容相同 的情况下,判断声源位置主要是根据“第一 次到达”的声音。因此,剧场演出时,多扬 声器的情况下要考虑“声象定位”的问题。
4.4、 掩蔽效应
• 人耳对一个声音的听觉灵敏度因另外一个声音 的存在而降低的现象叫掩蔽效应。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8Practical Aspects ofImplementing Closed-Loop Current Control8.1ROLE AND SCHEMATICSThe performance of power converters can be improved with the use of closed-loop control.Because the large majority of power converters start from a voltage source, closed-loop current control is very useful (Figure 8.1). Given operations at high vol-tages and with high-frequency switching,the implementation of a current control loop faces a series of specific problems.This chapter discusses these problems and attempts to provide solutions.8.2CURRENT MEASUREMENT:SYNCHRONIZATION WITHPULSE WIDTH MODULATIONThe most important module in the current closed-loop control relates to current measurement.The main requirements for the sensor and the acquisition system relate to their capability to detect in the presence of electrical noise,temperature, and electromagnetic interference(EMI)radiation in the measurement system.A series of dedicated sensors have been developed to overcome these difficulties. 8.2.1S HUNT R ESISTORThe older solution for current measurement uses a low-value resistor in the current path and measures the voltage drop across it.The shunt resistor’s resistance will likely be in the order of milliohms or microohms,so that only a modest amount of voltage will be dropped at full current.The sensing resistor’s value should be very stable with current level and temperature and should have a small equivalent inductance.For instance,a1W,15A,0.005V surface-mount resistor can have as much as5nH of package inductance.The low value of the shunt resistor is comparable to wire-connection resistance, which means voltage is measured across the shunt to avoid detecting the voltage drop across the current-carrying wire connections.Shunts are usually equipped with four connection terminals so that the voltmeter measures only the voltage dropped by the shunt resistance itself,without any stray voltages originating from wire or connection resistance.Such a measurement method,able to avoid errors219220Power-Switching ConvertersFIGURE8.1System diagram for a closed-loop current control.caused by wire resistance,is called the Kelvin or4-wire method.The measurement connection wires are insulated from the power wires at the hinge point and are in contact only at the tips where they clasp the wire or terminal of the subject being measured.Thus,current passing through the measurement circuit does not go through the power path and will not create any error-inducing voltage drop along its length.In other words,there is no common path for the measurement and power currents.Shunt resistors with Kelvin contacts have four connections.Shunt resistors are usually made of a low-temperature-coefficient metal foil on an anodized aluminum substrate and can be packaged in conventional TO-247or TO-220packages.Manganin wire,an alloy of copper,manganese,and nickel,has a low temperature coefficient within15ppm/8C from0to808C.Another commonly used low-temperature-coefficient material is nickel–chromium,or nichrome.This has a resistivity of about110mV/cm and requires less wire length than manganin’s 44mV/cm.This helps reduce the inductance for very low-value resistors.Manganin is superior to nichrome in temperature coefficient and long-term stability of resist-ance value.Another similar alloy is constantane(Eureka)with a resistivity of 49mV/cm.As future circuit-board fabrication technology will allow a wider range of substrate materials,thin-film power resistors can be integrated onto the board during layout.With appropriate circuit design,even copper traces have a compensated temperature coefficient with bipolar junction transistors.One advantage of the shunt resistor is its practically infinite bandwidth. However,isolation is usually required after the shunt resistor.The signal from a current-sensing resistor is usually processed with an operation amplifier with a high common-mode rejection,as the useful signal is usuallyfloating from ground under a large common-mode voltage.Examples in this class of instru-mentation amplifiers include Texas Instrument’s INA148or INA117with+200V input or Analog Devices’AD626.As these devices cannot accommodate a high enough DC common-mode voltage,the sensing resistor should be placed close to ground.Another solution for signal processing consists of a high-voltage integrated circuit(IC),such as the IR2175.The IR2175is a monolithic current-sensing high-voltage IC designed for servo-drive applications.It senses the current through an external shunt resistor and modulates afixed frequency train of pulse with the sensing information.These pulses are transferred to the low side.ThePractical Aspects of Implementing Closed-Loop Current Control221 output format is a discrete pulse width modulation(PWM)that eliminates the need for an A/D input interface and can be directly connected to a timer circuit within any digital signal processor(DSP)or microcontroller.8.2.2H ALL-E FFECT S ENSORSShunt resistors are less used today in high-current applications due to the inherent voltage drop.The alternative lies in the use of Hall-effect sensors.In1879,Edwin Hall,a graduate student in physics,used a magneticfield to manipulate the charge carriers in a strip of gold foil.He created in the strip a currentflowing perpendicular to thefield.As the charges that made up the current were moving perpendicular to thefield,the magneticfield exerted a force that pushed some of these charges to the top of the ter,scientists discovered the electron and,today,we say that Hall discovered that it was the motion of elec-trons that caused the current he observed.An open-loop Hall-effect current sensor is represented in Figure8.2.It has a block of semiconductor as the sensing element,supplied by a constant current source,and a programmable amplifier to raise the millivolt output to a reasonable value.A current proportional to the measured current is produced in a sensing resis-tor through the Hall-effect.Older devices used laser-trimmed,thick-film resistors to adjust the programmable amplifier to give a standard output voltage under standard conditions of a magneticfield.Newer devices use aflash memory to hold the ampli-fier gain setting.A Hall-effect current sensor provides a noise-immune signal and consumes very little power.Better performance can be achieved with closed-loop current sensors. They represent a different class of Hall-effect current sensors that include an application-specific integrated circuit(ASIC)to provide extremely low offset drift with temperature,resulting in stable,repeatable,accurate measurements.FIGURE8.2Open-loop Hall sensor.222Power-Switching Converters Hall-effect current sensors are available in hundreds of amperes and provide highly accurate measurement for a large class of power electronic applications. Their bandwidth is usually around100kHz,enough for high-power converter applications.8.2.3C URRENT-S ENSING T RANSFORMERFor a long time,current-sensing transformers have been considered the best solution for current measurement.The advent of Hall-effect sensing devices,however, reduced the market share of current transformers.They are still used,though,in a limited class of applications,including power converters with high switching-frequency.Current-sensing transformers can usually ensure a bandwidth larger than the Hall-effect sensors.8.2.4S YNCHRONIZATION WITH PWMAn analog circuit follows the sensor to adapt the range and bandwidth of the signal to the input of the digital circuit.Given the generic inductive type of load,the current will have a quasi-linear variation during each interval characterized by a pulse of voltage. The current ripple around an average value is determined by the value of inductance, the switching frequency,and the magnitude of the voltage pulse.Sampling the current at any moment during the switching interval introduces a small amount of ripple in the measurement result, leading to aliasing and offset effects (Figure 8.3).To alleviate these effects,a synchronized PWM is selected to ensure current acquisition during the zero states,when there is no variation in the current and the value already follows the average value of the current.This approach has been recently adopted in the single-phase and three-phase inverter designs,but it is well known from the control of DC/DC converters,such as the phase-shift, full-bridge,zero-voltage switching(ZVS)converter.It has been previously incor-porated in a class of Unitrode circuits.The current sampling synchronized with the PWM signal is used within the Texas Instruments’family of DSP circuits.This ensures an automatic sampling of the currents or A/D channels at preselected moments when the carrier’s triangular signal changes slopes.In the language of digital circuits,this is equivalent to sampling the analog inputs when the counter reaches the lowest or largest value.8.3CURRENT SAMPLING RATE:OVERSAMPLINGAs a large majority of modern converters are controlled by digital structures,the conversion of the analog input representing the current into a digital signal should be done at a given sampling rate.The selection of the sampling rate is the result of a compromise among many factors[2,3,4].First,the power stage switches states at a rate given by the switching frequency. As the goal of the PWM operation is to produce pulses of voltage following a refer-ence signal,sampling current at a rate higher than that of the switching frequency does not have any meaning given the bandwidth limitation at the power stage.Sampling current at the highest frequency possible,that is,the switching frequency of the power stage,may be limited by the real time required to compute the control algorithm.It is,however,a good practice to sample the current at the highest possible rate even if the control algorithm computes at a lower rate.In this case,we have more samples available than required and this is called oversampling.Oversampling is able to relax the filter requirements in the initial sampling and convert this high-rate signal to the desired sample rate using linear digital filters.We basically use the additional samples to filter the final result.The lowest sampling frequency is determined by the time constants of the electrical circuit or load that influence the performance of the control system.This constraint can also be described as the tracking effectiveness of the control system.The sampling theorem requests sampling at least twice as fast as the highest frequency contained in the signal.If the closed-loop system is required to track a signal with a given bandwidth,the sampling rate should be at least twice the highest frequency in the closed-loop system bandwidth,which can be different from the highest frequency in the plant model.However,defining the lower sampling frequency from the sampling theorem may not satisfy all requirements of the response time of the closed-loopsystem.(b)FIGURE 8.3(a)Current sampling at a random position within the switching interval.(b)Synchronized current sampling.Practical Aspects of Implementing Closed-Loop Current Control2238.4CURRENT CONTROL IN(a,b,c)COORDINATESBoth motor control and grid applications use the rotating-reference frame to control currents in the so-called d–q system of reference.The current components become quasi-DC and the control is simplified to a low requirement in bandwidth. For a conventional inductive load,the control system reduces to a simple proportional-integral(PI)controller.Variables in the rotating-reference frame must be restored in the stationary three-phase reference frame using inverse trans-formation.However,if the system is single-phase or three-phase without an isolated neutral,the control system should be able to track a sinusoidal reference.In such a case,the synchronous coordinate transformation cannot be applied.Consider a power converter and load characterized by a plant model G p(s).The control system is characterized by a transfer function G c(s).The open-loop transfer function yields:G OL(s)¼G c(s)G p(s)¼A(s)B(s)(8:1)Considering a sinusoidal referencef(t)¼I sin v t¼)F(s)¼Iss2þv2(8:2)the error of the feedback signal can be calculated as:E(s)¼F(s)1þG0(s)¼B(s)F(s)B(s)þA(s)¼B(s)B(s)þA(s)Iss2þv2(8:3)Applying the Final Value Theorem defines the constant steady-state value of a time function given its Laplace transform.This uses,the partial fraction expansion:E(s)¼a1sþv1þÁÁÁþa isþv iþb1sÀj v0þb2sþj v0(8:4)If any of the poles v1are in the right half of the s-plane,the time-domain signal will increase to an unbounded limit.We will consider these poles with a negative real part.The other pair of imaginary poles derived from the sinusoidal character of the reference would introduce in the time-domain error signal a sinusoidal wave that persists forever and makes impossible the definition of the steady-state error. To avoid this situation,the open-loop transfer function should have the same poles+j v0,so that these poles disappear from the error-transfer function,guaran-teeing the reduction of the steady-state error to zero if the signal frequency is well known.Therefore,the control system should include a term corresponding to the trans-fer function for the sinusoidal wave. Figure 8.4shows a generic example for this 224Power-Switching Converterscontroller. It will be reviewed in Chapter 11 (Figure 11.33) for the particular case of AC /DC conversion.The stability of the system is,however,dependent on the gain of the s component added to the control system.The transfer function of the open loop exhibits a large phase change around the resonant frequency where the gain is large.The phase margin of the open loop decreases with an increase in the compensation gain.However,a proper selection of the gain can ensure sufficient phase margin.The problems of tracking a sinusoidal signal can be alleviated with a proper con-troller,including a term for the effect of the sinusoidal waveform.Despite the success of this solution,current control with reference tracking is more successful in the rotating d–q reference frame.The d and q components are constrained to fix DC values that are easy to control using conventional PI regulators.Even if the system is either single-phase or three-phase with a connected neutral,the phasor theory can be employed to calculate the d–q components for each phase (independent of the existence of other phases)[1,5].8.5CURRENT TRANSFORMS (3->2):SOFTWARECALCULATION OF TRANSFORMSThe most common implementation of the current control uses the Park /Clarke set of transforms (Equation (8.5),Equation (8.6),and Equation (8.7)).I a I b I 0264375¼231À12À120ffiffi3p 2Àffiffi3p 2121212266664377775i X i Y i Z 264375(8:5)I d I q I 0264375¼cos u sin u 0Àsin u cos u 0001264375I a I b I 0264375(8:6)FIGURE 8.4Control for a current with sinusoidal variation.Practical Aspects of Implementing Closed-Loop Current Control 225The same transforms can be grouped within a single form.I d I q I 02435¼23cos u cos u À2p 3ÂÃcos u À4p 3ÂÃsin u sin u À2p 3ÂÃsin u À4p 3ÂÃ1212122666666437777775i X i Y i Z 2435(8:7)These equations are similar to (Equation 5.8through Equation 5.11)and more details are provided in Chapter 5.What concerns the software calculation of these transforms (Equation (8.5)to Equation (8.7)),dedicated routines are part of any motor control or grid control library.A look-up table of a trigonometric function,optimized for a 908sector,is used.Using closed-loop control in (d,q)coordinates often requires a careful look into the load-circuit equations.As the load may include a first-order system (inductance or capacitance),the controlled measure appears under a derivative in the load-circuit equation.The three-phase equations converted in the (d,q)components should take into account the derivative term.This produces a phase shift of 908changing a real component into an imaginary one or an imaginary one into a real one.These terms should be considered within the control system and they are called cross-coupling terms [6].8.6CURRENT CONTROL IN (d,q)MODELS:PI CALIBRATION The generic-control system in (d,q)components is shown in Figure 8.5.The PI-control system is described mathematically by:D c (s )¼k p þk pT I s (8:8)FIGURE 8.5(d,q)current control of a symmetrical three-phase system.226Power-Switching ConvertersThe time domain equivalent variation results in:u(t)¼k p e(t)þk Iðte(t)d t(8:9) Considering a linear system,the digital approximation of this equation yields:u½kT sþT s ¼k p e½kT sþT s þk IðkT s0e(t)d tþk IðkT sþT skT se(t)d t%k p e½kT sþT s þu I½kT s þk I T s2{e½kT sþT s þe½kT s }(8:10)There are several ways possible for the approximation of the last integral term. Equation(8.10)is an approximation using a trapezoidal form with the base T s. Furthermore,the calculation of the next action term is usually achieved in one of the following ways:.Accumulator method:A large register u I is used as an accumulator for the integral term and the integral component is continuously added to this register.This is the most used method,but its drawback is in the possible wind-up or overflow of the accumulator..Incremental controller:An incremental controller is used to calculate the change in the action.D u¼u(kT sþ1)Àu(kT s)¼k p e½kT sþT s Àe½kT sðÞþk I e½kT sþT s (8:11)This implementation is faster and uses a shorter code,but covers the information contained within the accumulator.In order to design the control system and to define the most appropriate gains for the PI-control system,a model of the load is defined in(d,q)components.Generally, sophisticated methods are available to develop a controller that will meet given requirements for steady-state and transient response.These methods require a precise dynamic model of the process in the form of equations in motion or a detailed frequency response over a certain range of frequencies.In practice,the operator will tune the regulator by trial and error.Tuning of the proportional-integral-derivative controllers has been the subject of continuing studies since Callender(1936)[8].Many of these solutions are based on estimates of the plant model derived from experiment and they can be found in reference textbooks such as[7].Ziegler and Nichols provided two[9,10]experimental methods for tuning the PI controller.Thefirst suggests tuning of the control parameters until a decay ratio of 25%is achieved within the step-response transient.This is equivalent to a decay of the transient response to a quarter of its value after one value of oscillation Practical Aspects of Implementing Closed-Loop Current Control227228Power-Switching Converters (overshoot).The gains of the PI controller yield k p¼0.9/RL and T I¼L/0.3,where R represents the slope of the step-up response and L represents the lag time at a step change.Another approach is called the ultimate sensitivity method[1],as it relies on the estimation of the amplitude and frequency of the system oscillations at the limit of stability.The proportional isfirst increased until the system becomes marginally stable.This can be seen in the existence of continuous oscillations limited by the saturation of the actuator.The gain K and the period T of these oscillations are called the ultimate gain and period.The PI parameters are then calculated as k p¼0.45K and T I¼T/1.2.8.7ANTIWIND-UP PROTECTION:OUTPUT LIMITATIONAND RANGE DEFINITIONThe real characteristics of the system can cause the actuator to saturate.For instance, a three-phase system has a limited range of the available output voltage,and any requirement from the control system beyond this range would translate in a satur-ation of the output and loss of controllability.If the error signal continues to be applied to the integrator input under these conditions,the accumulator will grow (wind-up)until the sign of the error changes and the integration turns around.The system behaves as an open-loop system and the accumulator becomes a source of instability in it.The solution is an integrator antiwind-up circuit,which turns off the integral action when the actuator saturates.To prevent this,an integrator antiwind-up circuit is used,which turns off the integral action when the actuator saturates.A simple solution is shown in Figure8.6.There are many digital control solutions for the implementation of an anti-wind-up control system.The system described here shows a linear dependency of the feedback during saturation,which is able to introduce afirst-order lag equivalent of an antiwind-up integrator during saturation.FIGURE8.6Antiwind-up compensation of a PI controller.Practical Aspects of Implementing Closed-Loop Current Control2298.8CONCLUSIONCurrent control within power converters is subject to noise and distortion.Special precautions need to be taken tofilter and measure current in the presence of large ripples.Digital current control is somewhat simple,as a large number of appli-cations use only conventional PI controllers.Several other particular aspects related to implementation are presented in this chapter.REFERENCES1.Dong G and Ojo O,Design Issues of Natural Reference Frame Current Regulatorswith Applications to Four-Leg Converters,IEEE PESC,Recife,Brasil,1370–1376,12–16,June,2005.2.Ogata K,Discrete Time Control Systems,Prentice-Hall,1995.3.Fukuda S and Yoda T,A novel current-tracking method for activefilters based on asinusoidal internal model,IEEE Trans.Ind.Appl.,37:888–894,2001.4. Anon., LEM Sensors, Internet Documentation, .5.Miranda UA,Rolim LGB,and Aredes M,A DQ Synchronous Reference FrameCurrent Control for Single-Phase Converters,IEEE PESC,Recife,Brasil,1377–1381,2005.6.Neacsu D,Current control with fast transient for three-phase AC/DC boost conver-ters,IEEE Trans.Ind.Electron.,51:1117–1121,2004.7.Franklin GF,Powell JD,and Emami-Naemi A,Feedback Control of DynamicSystems,Prentice-Hall,2002.8.Callender A,Hartree DR,Porter A,Time lag in a control system,Philos.Trans.R.Soc.London A,vol.235,pp.415–444,1936.9.Ziegler JG and Nichols NB,Optimum settings for automatic controllers,Trans.ASME,vol.64,pp.759–768,1942.10.Ziegler JG and Nichols NB,Process lags in automatic control circuits,Trans.ASME,vol.65(5),pp.433–444,1943.Copyright © 2006 Taylor & Francis Group, LLC。

相关文档
最新文档