2014 Adaptive total variation-based spectral deconvolution with the split Bregman method
基于工业机器视觉板材表面缺陷检测技术研究及应用
科学技术创新2021.06基于工业机器视觉板材表面缺陷检测技术研究及应用黄远民易铭杨伟杭杨曼(佛山职业技术学院机电工程学院,广东佛山528137)1概述目前,我国木质板材市场还是比较大,板材的质量和外观受到板材表面缺陷的直接影响,所以,板材表面缺陷是影响板材产品分等级的重要因素之一[1]。
当前,我国大部分板材企业对板材表面检测主要依靠生产线人工经验和视觉来判断板材表面的缺陷,存在一些误判,导致产品质量得不到保障,经常受到客户的投诉,这个问题一直困扰一些板材加工企业。
生产线一线工人通过自己的经验和依据板材表面的颜色、色泽和纹理等来评价板材的等级[2]。
目前我国板材表面检测常用的方法包括普通的人工、机械、射线检测以及近几年发展的机器视觉图像技术检测等[3]。
其中,人工检测质量不高,精度很难真正达到客户的要求,同时也存在检测效率很低、劳动强度非常大、可靠性偏低、其主观因素影响很大等缺点;机械检测存在效率较低的缺点;射线检测虽然实现检测高分辨率,但其检测结构复杂和检测成本很高,从而无形增加了产品的生产成本,导致失去了市场竞争优势。
综合上述各种因素,急需对板材表面缺陷检测开展基于工业机器视觉(H al con )图像检测技术在线无损检测技术的研究,采用本文的方法来对板材表面缺陷进行自动检测,减少产品检测过程的人为干扰因素,实现板材生产自动化,大大降低了板材生产成本,产生了很好的经济和社会效益[4]。
2本检测系统图像采集机构设计本文检测系统图像采集部分主要包括以下5个部分:(1)板材传动部分;(2)编码器;(3)图像采集光源部分;(4)工业CCD ;(5)图像采集卡组成。
其中,滚轴、传送带、电机组成了该检测系统的板材传动,通过一个编码器来实现定位的功能。
该检测系统可以根据不同企业板材的品牌类型和尺寸规则来进行动态检测,采用新的算法来处理图像,同时设计一个横、竖、撇、捺分类器。
在检测完成后同时把产品相关信息发送到公司产品归档服务器上。
压缩感知的重构算法
压缩感知的重构算法算法的重构是压缩感知中重要的一步,是压缩感知的关键之处。
因为重构算法关系着信号能否精确重建,国内外的研究学者致力于压缩感知的信号重建,并且取得了很大的进展,提出了很多的重构算法,每种算法都各有自己的优缺点,使用者可以根据自己的情况,选择适合自己的重构算法,大大增加了使用的灵活性,也为我们以后的研究提供了很大的方便。
压缩感知的重构算法主要分为三大类:1.组合算法2.贪婪算法3.凸松弛算法每种算法之中又包含几种算法,下面就把三类重构算法列举出来。
组合算法:先是对信号进行结构采样,然后再通过对采样的数据进行分组测试,最后完成信号的重构。
(1) 傅里叶采样(Fourier Representaion)(2) 链式追踪算法(Chaining Pursuit)(3) HHS追踪算法(Heavy Hitters On Steroids)贪婪算法:通过贪婪迭代的方式逐步逼近信号。
(1) 匹配追踪算法(Matching Pursuit MP)(2) 正交匹配追踪算法(Orthogonal Matching Pursuit OMP)(3) 分段正交匹配追踪算法(Stagewise Orthogonal Matching Pursuit StOMP)(4) 正则化正交匹配追踪算法(Regularized Orthogonal Matching Pursuit ROMP)(5) 稀疏自适应匹配追踪算法(Sparisty Adaptive Matching Pursuit SAMP)凸松弛算法:(1) 基追踪算法(Basis Pursuit BP)(2) 最小全变差算法(Total Variation TV)(3) 内点法(Interior-point Method)(4) 梯度投影算法(Gradient Projection)(5) 凸集交替投影算法(Projections Onto Convex Sets POCS)算法较多,但是并不是每一种算法都能够得到很好的应用,三类算法各有优缺点,组合算法需要观测的样本数目比较多但运算的效率最高,凸松弛算法计算量大但是需要观测的数量少重构的时候精度高,贪婪迭代算法对计算量和精度的要求居中,也是三种重构算法中应用最大的一种。
结合加权核范数与全变分的图像二级去噪
结合加权核范数与全变分的图像二级去噪朱豪;路锦正【摘要】为提升图像去噪后的视觉感受,提出一种加权核范数最小化(WNNM)结合全变分(TV)的二级图像降噪方法.首先对含噪图像进行TV基础去噪,其次用噪声图像与基础去噪结果图做差分运算,并对差分后的结果自适应维纳滤波,然后将滤波后图像与基础TV降噪图像叠加,利用块匹配做相似补丁收集,最后运用加权核范数最小化进行二次去噪,得到最终降噪图像.通过与原WNNM、三维块匹配去噪(BM3D)、漏斗自相似非局部去噪(FNLM)方法对比,该方法不仅对平滑区域有较优的降噪效果,同时处理了漏斗自相似非局部去噪与BM3D在高噪声情况下带来花斑与假条纹状况,并且使结构纹理信息最大化相似.%In order to enhance the visual perception of image denoising, this paper proposes a method named two image denoising method combining Total Variation(TV)with Weighted kernel Norm Minimization(WNNM). The noisy image is denoised with TV, then the noisy image and the based denoised one are expected to be made a differential operation. Af-ter that the result will be filtered with the adaptive Wiener filter. Having been filtered, the image will be overlain with the TV based denoising image, and be made the similar patches collected by using block matching. The final denoised image will be formed after the twice denoising with WNNM. Compared with the original WNNM, Block Matching 3-D (BM3D)and Foveated NL-Means(FNLM), this method can make a better denoising effect on smooth areas;meanwhile, it also can reduce the spots and false fringe status which are caused by FNLM andBM3D under the high noise. The struc-ture and texture information can be furthest similar as well.【期刊名称】《计算机工程与应用》【年(卷),期】2017(053)023【总页数】7页(P177-183)【关键词】加权核范数;全变分;图像残差;二次去噪【作者】朱豪;路锦正【作者单位】西南科技大学信息工程学院,四川绵阳 621010;特殊环境机器人技术四川省重点实验室,四川绵阳 621010;西南科技大学信息工程学院,四川绵阳621010;特殊环境机器人技术四川省重点实验室,四川绵阳 621010【正文语种】中文【中图分类】TP391.4图像信息在获取、传输和存储的过程中,不可避免地会受到噪声的干扰,造成图像质量严重下降,使得大量的图像边缘与细节特征被淹没,给图像的分析和后续处理带来了很大的困难。
art%3A10.1007%2Fs00521-014-1623-z[4]
ORIGINAL ARTICLEArtificial neural network for predicting creep of concreteLyes Bal •Franc ¸ois Buyle-BodinReceived:20December 2013/Accepted:15May 2014/Published online:31May 2014ÓSpringer-Verlag London 2014Abstract The concrete is today the building material by excellence.Drying accompanies the hardening of concrete and leads to significant dimensional changes that appear as cracks.These cracks influence the durability of the con-crete works.Deforming a concrete element subjected to long-term loading is the sum of said instantaneous and delayed deformation due to creep deformation.Concrete creep is the continuous process of deformation of an ele-ment,which exerts a constant or variable load.It depends in particular on the characteristics of concrete,age during loading,the thickness of the element of the environmental humidity,and time.Creep is a complex phenomenon,recognized but poorly understood.It is related to the effects of migration of water into the pores and capillaries of the matrix and to a process of reorganization of the structure of hydrated binder crystals.Applying a nonparametric approach called artificial neural network (ANN)to effec-tively predict the dimensional changes due to creep drying is the subject of this ing this approach allows to develop models for predicting creep.These models use a multilayer backpropagation.They depend on a very large database of experimental results issued from the literature (RILEM Data Bank)and on appropriate choice of archi-tectures and learning processes.These models take into account the different parameters of concrete preservation and making,which affect drying creep of concrete as rel-ative humidity,cure period,water-to-cement ratio (W /C ),volume-to-surface area ratio (V /S ),and fine aggregate-to-total aggregate ratio,or fine aggregate-to-total aggregate ratio.To validate these models,they are compared with parametric models as B3,ACI 209,CEB,and GL2000.In these comparisons,it appears that ANN approach describes correctly the evolution with time of drying creep.A para-metric study is also conducted to quantify the degree of influence of some of the different parameters used in the developed neural network model.Keywords Concrete ÁDrying creep ÁModeling ÁPrediction ÁArtificial neural network1IntroductionSince the early work on prestressed concrete conducted by Freyssinet in 1908,engineers have seen the importance of the effect of creep on the behavior of structures,particu-larly on sustainability and service status.The application of stress increases the magnitude of the delayed deformation is commonly called creep.It is defined as an increase in deformation under a constant stress over time.Deforming a concrete element subjected to long-term loading is the sum of said instantaneous and delayed deformation due to creep deformation.Concrete creep is the continuous process of deformation of an element,which exerts a constant or variable load.It depends in particular on the characteristics of concrete,age during loading,the thickness of the element of the envi-ronmental humidity,and time.Creep is a complex phe-nomenon,recognized but poorly understood.It is related to the effects of migration of water into the pores and capillaries of the matrix and to a process of reorganization of the structure of hydrated binder crystals.L.Bal (&)Institute of Architecture and Urbanism,University Saad Dahlab of Blida,Blida,Algeria e-mail:lyesbal@L.Bal ÁF.Buyle-BodinUniversity Lille-North of France,Lille,FranceNeural Comput &Applic (2014)25:1359–1367DOI 10.1007/s00521-014-1623-zThis excess strain was raised primarily by Pickett in 1942,hence the name given to this effect‘‘Pickett effect.’’Before discovering the interaction between creep and water changes,one might expect a reduction in creep due to drying.Thus,the deformation measured on a specimen drying depends directly on the drying stress,where the definition of creep due to drying of free water starts.Fur-thermore,the amplitude of the drying creep is related to the amount of free water evaporated.The evaporable water is of great importance for the drying creep,the more water evaporates more creep is important.Its prediction is of great importance regarding the apti-tude for long-term operation of concrete structures.It depends on several parameters related to the composition of the concrete,the quality of its components,the sample size,and the external conditions of conservation.The present paper focuses on the drying creep.During the last years50,various parametric equations of creep were proposed by American Concrete Institute209 (ACI209)[1],Comite´Europe´en du Beton(CEB)selected for Eurocode2,B3by Bazant and Baweja[2],Bazant[3], Atlanta by Gardner and Zhao[4],and GL2000by Gardner and Lockman[5].The results of these equations will be compared to those given by nonparametric models using artificial neural net-work(ANN)technique.The ANN technique presents the advantage to use an unlimited number of characteristic parameters of the phe-nomenon,to the difference in the statistical methods.This technique is of an increasing use in civil engineering,and we try to show its power in the setting of our work.It is henceforth possible when increasing the number of char-acteristic parameters to spread the model to all types of concrete,with additions,or new concretes.You can add other parameters affecting creep while keep the same efficiency model and the computation time.2General features of neural networksNeural network(NN)is a functional abstraction of the biological neural structure of the central nervous system. ANN consists of an interconnected group of artificial neurons and transfers information using a connectionist approach.In most cases,ANN is an adaptive system that changes its structure based on external or internal infor-mation thatflows through the network during the learning phase,usually used to model complex relationships between inputs and outputs.The ANN elements(formal neurons)are strongly con-nected to each other by weights of connections,which treat data input to produce the desired exits.The most basic system presents three layers,thefirst layer with input neurons sending via synapses data to the second layer of neurons and then via other synapses to the third layer of output neurons.Knowledge is acquired by the network through a learning process.Connections between neurons (synaptic weights)are used to store knowledge[6].The more used ANN is the multilayer perceptron(MLP) with backpropagation for minimizing error[7–19].The network includes input layer,one or more hidden layers, and output layer.The optimization is conducted using the minimization of the mean-squared error(the MSE mea-sures the average of the squares of the errors).The back-propagation algorithm is used for learning process.The input data are divided into three parts such as70% for the learning process,15%for test phase,and15%for validation phase.The test phase consists of checking the network issued from the learning process on data not yet used.The validation phase is carried out on the last part of the data.Figure1presents the methodology for the development of the ANN.3DatabaseData sets from creep tests carried out in various laborato-ries,including47tests,supplemented of186tests extracted from the RILEM(International Union of Laboratories and Experts in Construction Materials)database are used. Different concretes made with various types of cement are considered.The parameters selected on the basis of their influence on the creep,these parameters after experimental results conducted in different laboratories and are together in our database.These parameters:the mix proportions,the relative humidity,the ratio of the volume of the sample on its drying surface,cement type[1,20],the age at the end of the wet cure,the average compressive strength at28days and the elasticity modulus at28days.To conduct the ANN approach,a database management system(DBMS)struc-tured database is developed by Bal[21]in order to develop a program that collected and organized data on existing concrete delayed strains(shrinkage and creep).Further-more,experimental data to be produced or recovered in the future must also be integrated.This program was devel-oped using a relational DB model.We incorporate as a structure for table proceed to bring new database and how to search this database.The program offers research opportunities based on the information about the bibliog-raphy,the components and mixtures of concrete used,and the desired properties.Although the primary users are motivated researchers,it is conceivable that this program can be used by other researchers and engineers who are not experts in managing BD.This database can be considered a platform and used for future modeling.This should lead to improved modeling and experimental techniques facilitat-ing the comparison between model prediction and experi-mental measurements(exists in the literature a database developed by Bazant and Li[22]).4Application of ANN method in concrete creep predictionIn afirst stage,the matrix of inputs and outputs is stan-dardized.Secondly,the learning process is engaged by the initialization of the correlation coefficients used for the three phases(learning,test,and validation),then of the number of neurons per hidden layer,testingfirst one hidden layer,then two hidden layers by creating a loop which is incremented from1to20for thefirst neurons hidden layer, and similarly for the second layer.The construction of the NN passes by the use of a transfer function for each layer and of a learning algorithm.After several tests,the tech-nique of Levenberg–Marquardt backpropagation technique is the most effective overlooked these results and their performance and reliability.Table1presents the parameters and their range of variation.The number of hidden layers and of neurons per hidden layer is determined by digital simulations with various network architectures.The software MATLAB7.5.0 (R2007b)[23]is chosen among different programming languages.This software is commonly used for this effi-cient andflexible environment to develop ANN.We test a large number of networks(different archi-tecture and ANN algorithm and combining the transfer functions of learning).The end,we chose the best network performance desired[24].The performance of the network NN12-8-8-1is the best.This network is selected for predicting the model ofTable1Used parameters—variation rangeParameterstypeDescription Variation rangeInput V/S:volume/surfaceexposed toair17.5mm B V/S B200mmRH:Relativehumidity20%B RH B100%t c:Age at startof dryingt c C1dayt o:Age at startof loadingt o C t ct:Age of onsetof creepmeasurementt C t c dayCement type I,II and IIIC:Cementcontent289kg/m3B C B564kg/m3W:Watercontent129kg/m3B W B251kg/m3Ta:Totalquantity ofaggregates1,661kg/m3B Ta B2,110kg/m3Fa/Ta:Fineaggregate/totalaggregate0.322B Fa/Ta B0.77f cm28:Averagecompressivestrength at28days17.2MPa B f cm28B119MPaE cm28:Modulus ofelasticity at28days12,537MPa B E cm28B53,200MPaE cmt0:Modulusof elasticityat loading10,554MPa B E cmt0B47,619MPaOutput Drying creep(Cr)Creep(l m/m/MPa)drying creep.The architecture of this network is presented in Fig.2.Later,this model will be called as NN model for the prediction of creep (NNMPC).Table 2presents architecture and parameters of NNMPC.Table 3presents the quality of the model for the three phases.Figure 3presents the comparison between experimental and calculated output for the three phases.5Comparison between the prediction givenby NNMPC model and parametric formulations The results given by the selected ANN model are compared with those given by the different reference parametric formulations.Table 4presents the characteristics of correlation between experimental values and those provided by thedifferent models and formulations:NNMPC,B3,GL 2000,CEB,ATLANTA,SB3,and ACI.The NNMPC ANN model gives the best correlation,followed by B3,GL2000,and CEB.Figure 4presents the graphs of experimental results versus calculated values.These graphs clearly show the good concordance for values issued from NNMPC model.However,a light dif-ference can be observed at very young age,or older ages.Moreover,NNMPC model requires a low computation time than parametric formulations.The sensitivity of the NNMPC model must be now tested by a parametric study.6Parametric studyThe quality of a model prediction of drying is a function of the effect of each parameter on this phe-nomenon.Remember that some of them are related to the formulation of concrete,others to environment and maturation conditions.The parametric study aims to quantify the effect of one parameter when all the others are fixed.The NNMPC which is assessed by comparison with the literature data is not generally confirmed.6.1Influence of V /SFigure 5focuses the effect of the V /S ratio on the creep calculated for different ages of concrete.More V /S ratioV/S RHt c tType C C WTa Fa/Taf cm28CrInput LayerFirst Hidden LayerSecond Hidden LayerOutput LayerE cmt0t 0Fig.2Selected architecture for prediction of drying creep Table 2Architecture and parameters of NNMPC ParametersArchitecture of NNMPC Parameters of NNMPC Data set N.PIN.PO N.HL N.N.EHL N.I g E 2Input Output NNMPC (12-8-8-1)12128-81,0000.010.001V/S ;HR t c ;t o ;t Type C C ;W ;Ta Fa/Ta;f cm28E cmt0CrN.PI number of parameters input,N.PO number of parameters output,N.HL number of hidden layers,N.N.EHL number of neurons in each hidden layer,N.I number of iterations,g learning rate,E 2maximum squared errorTable 3Performance of NNMPC model (12-8-8-1)ANN modelLearning Test Validation MSER 2MSE R 2MSE R 2NNMPC (12-8-8-1)0.96210.00190.96310.00390.96420.0033increases,more creep decreases.Setting age,we see that the creep decreases with increasing V /S ratio.The effect of the scale can be expressed in terms of volume-to-surface area ratio (V /S )of a concrete element.The sample size influences the magnitude of creep.Bryant and Vadhanavikkit [25]showed that over the cross section increases,there is less creep.A large depth of concrete can take years to reach moisture equilibrium.As against,a small depth of the concrete balances after a few months.It was noted that the creep of large samples is lower than for small.This would be due to the migration of water from the inside outwards,which decreases when the road ahead is longer.Table 4Correlation coefficients between experimental data and calculated creep according to various models ModelsCorrelation coefficients RR 2NNMPC model 0.98010.9607ACI model 0.87380.7636CEB model 0.88410.7817GL2000model 0.89130.7944B3model 0.84620.7161ATLANTA model 0.85540.7317S.B3model0.83610.69916.2Influence of RHRelative humidity is one of the most important parameters influencing thefinal creep of the concrete.Figure6shows that,for\60%RH,there was a decrease in creep for different ages.By cons,for more than 60%RH,there is a small increase followed by a decrease in creep for different ages.The relative humidity of the environment plays an important role in the magnitude of thefinal creep of the cement paste and therefore concrete.Creep of concrete increases if the water loss increases(i.e.,migration of water from the cement paste to the outside).The relative humidity of the environment is the external parameter that has the greatest influence on creep.For a given concrete creep,it is especially important that the relative humidity is low[26].6.3Influence of the cureFigure7shows the effect of the cure on the creep. Increasing the duration of cure leads to a decrease in the creep.The cure fresh concrete protects against rapid evapora-tion of water and therefore promotes the hydration of cement and the development of concrete strength over time (creep of concrete increases when the ripening period decreases),which generates a high strength concrete.Ngab et al.[27,28]found that the creep and total deformation of concrete decrease if the compressive strength increases.This conclusion has been confirmed by several researchers such as Russell and Corley[29].6.4Influence of W/C ratioFigure8shows the effect of the W/C ratio on the creep. Increasing of W/C ratio induces an increase in the creep especially W/C ratio was0.55higher.More the water content(evaporate)is important,more deformation of creep in compressive as in tensile will grow.This amplitude also depends on the quality of the cement and the effective amount of the concrete paste.At W/C ratio constant,for example,there was a slight decrease in strain with a higher dosage of cement.Conversely,atequivalent amount of water but lower dosages cement, creep deformations increase[30].6.5Influence of Fa/Ta ratioFigure9shows the influence offine aggregate/total aggregate ratio(Fa/Ta).When Fa/Ta ratio increases,the creep increases,since aggregate content interferes with the deformation.You should know that this is essentially the hydrated cement paste undergoing creep.Increasing the size of the material increases the stiffness(modulus of elasticity)by reducing the ability of deformation[31],by blocking the binding of the deformation,crack initiation, and the rate of drying.For example,concrete sand(Fa) develops creep deformations about twice as large as the concrete aggregate[32].When the ratio Fa/Ta increases the creep increases and this is due either to an increase in the Fa,or a decrease in Ta.6.6Influence of age at start of loading t0Figure10shows the effect of the age at start of loading t0 on the creep.More the age at start of loading t0increases, more creep decreases.It is now proved that NNMPC model takes correctly into account the influence of the different parameters conduct-ing the creep(V/S,RH,W/C,etc.),in accordance with the literature.So it must be possible to consider different ANN models while isolating one parameter.The number of data mobi-lized for modeling decreases,but not the accuracy of the model.This allows to consider new applications of ANN model to new concrete using new components,new formulations …It should be possible to predict creep with a minimal number of tests.7ConclusionsIt results in the present article the same conclusion than in ‘‘ANN for predicting drying shrinkage of concrete’’[24].Our work has for origin the importance of the sponta-neous and delayed dimensional variations on concrete works.Prediction of the creep of concrete by using ANN has proved a practical and effective method.This study opens various perspectives:•It is henceforth possible while increasing the number of characteristic parameters to spread the model to all types of concretes,with additions,or new concretes,or environmental concrete.One could also add supple-mentary parameters,and all one keeps the same efficiency of the model and a weak calculation time.•That brings in the future to minimize the number of tests in laboratory and to save time and money.It is also reasonable to consider a generalization of the database which we developed.It should lead to a simultaneous improvement of the descriptions of tests and the modes of use of the experimental data in the models.•Parameters influencing the creep are varied.Some concern the formulation of the concrete,others the environment and maturation conditions.A parametricstudy could allow to quantify the effect of some of these parameters by using the NN model.The gener-alization of the NNMPC model allows to take correctly into account the influence of the various parameters influencing the creep(V/S,RH,W/C,etc.),in accor-dance with the literature.References1.ACI Committee209(2008)Guide for modeling and calculatingshrinkage and creep in hardened concrete(ACI209.2R-08).American Concrete Institute,USA,p442.Bazant ZP,Baweja S(2000)Creep and shrinkage predictionmodel for analysis and design of concrete structures:model B3.In:Al-Manaseer A(ed)ACI international SP-194-1,SP-194, Farmington Hills,MI,pp1–833.Bazant ZP(1998)Criteria for rational prediction of creep andshrinkage of concrete.Structural engineering report98-7/B675c.Northwestern University,Evanston,p254.Gardner NJ,Zhao JW(1993)Creep and shrinkage revisited.ACIMater J90(M26):236–2465.Gardner NJ,Lockman MJ(2001)Design provisions for dryingshrinkage and creep of normal strength concrete.ACI Mater J 98(2):159–1676.Dreyfus G,Martinez JM,Samuelides M,Gordon MB,Badran F,Thiria S,He´rault L(2002)In:Re´seaux de Neurones:Me´thodol-ogie et Application.Eyrolles,Paris,France,p3867.Yaprak H,Karaci A,Demir I(2013)Prediction of the effect ofvarying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks.Neural Comput Appl 22:133–1418.Basyigit C,Akkurt I,Kilincarslan S,Beycioglu A(2010)Pre-diction of compressive strength of heavy weight concrete by ANN and FL models.Neural Comput Appl19:507–5139.Basheer IA,Hajmeer MN(1997)Artificial neural network:fun-damentals,computing design,and application.J Microbiol Methods34:3–3110.Najjar Y,Zhang X(2000)Characterizing the3D stress–strainbehavior of sandy soils:a neuro-mechanistic approach.In:Filz G, Griffiths D(eds)Numerical methods in geotechnical engineering.American society of civil engineers,Proceedings GeoDenver 2000,vol96.ASCE Geotechnical Special Publication,Denver, CO,USA,pp43–5711.Dias WPS,Pooliyada SP(2001)Neural networks for predictingproperties of concretes with admixtures.Constr Build Mater 15(26):371–37912.Senthil Kumar,AR,Sudheer KP,Jain SK,Agarwal PK(2004)Rainfall–runoff modelling using artificial neural networks:com-parison of network types.Hydrol Process9(6):1277–129113.Parka KB,Noguchib T,Plawskya J(2005)Modelling of hydra-tion reactions using neural networks to predict the average properties of cement paste.Cem Concr Res35(9):1676–168414.Yeh I-C(2006)Exploring concrete slump model using artificialneural networks.J Comput Civ Eng20(3):217–22115.Tao J,Tingwei L,Xujian LA(2006)Concrete mix proportiondesign algorithm based on artificial neural networks.Cem Concr Res36(7):1399–140816.Murat P,Ozbay E,Oztas A,Yuce MI(2007)Appraisal of long-term effects offly ash and silica fume on compressive strength of concrete by neural networks.Constr Build Mater21(2):384–394 17.Saini B,Sehgal VK,Gambhir ML(2007)Least-cost design ofsingly and doubly reinforced concrete beam using genetic algo-rithm optimized artificial neural network based on Levenberg–Marquardt and quasi-Newton backpropagation learning tech-niques.Struct Multidiscip Optim34(3):243–26018.Junita MS,Brian SH(2008)Improved neural network perfor-mance using principal component Analysis on MATLAB.Int J Comput Internet Manag16(2):1–819.Bilgehan M,Turgut P(2010)The use of neural networks inconcrete compressive strength put Concr 7(3):271–28320.Gardner NJ(2004)Comparison of prediction provisions fordrying shrinkage and creep of normal strength concretes.Can J Civ Eng31(5):767–77521.Bal L(2009)Modeling of shrinkage and creep of concrete byneural networks.PhD thesis,University of Lille1(Sciences and Technologies),France22.Bazant ZP,Li GH(2008)Comprehensive database on concretecreep and shrinkage.ACI Mater J105(M72):635–63723.MATLAB R2007b(2007)Neural networks toolbox user’s guide.Version7.5.0(R2007b).Math Works,Prentice Hall24.Bal L,Buyle-Bodin F(2013)Artificial neural network for pre-dicting drying shrinkage of concrete.Constr Build Mater 38(1):248–25425.Bryant AH,Vadhanavikkit C(1987)Creep,shrinkage and age atloading.ACI Mater J84(2):117–12326.Troxell GE,Raphael JE,Davis RW(1958)Long-time creep andshrinkage tests of plain and reinforced concrete.Proc ASTM 58:1101–112027.Ngab AS,Nilson AH,Slate FO(1980)Behavior of high strengthconcrete under sustained compressive stress,vol80.Cornell University,Ithaca28.Ngab AS,Nilson AH,Slate FO(1981)Shrinkage and creep ofhigh strength concrete.ACI J Proc78(4):255–26129.Russell HG,Corley WG(1987)Time dependent behavior ofcolumns in water tower place.ACI J Semin Course Man(SCM) 15:8730.L’Hermite RG(1978)Quelques comple´ments a`l’e´tude expe´ri-mentale dufluage du be´ton en compression simple.Annales de l’Institut Technique du Baˆtiment Travaux Publics,Se´rie be´ton 179(373):17–2031.Harsh S,Shen Z,Darwin D(1990)Strain-rate sensitive behaviourof cement paste and mortar in compression.ACI Mater J 87(5):508–51632.Benaissa A,Morlier P,Viguier C(1993)Fluage et retrait dube´ton de sable.Mate´riaux et Structure/Mater Struct26:333–339。
基于无迹卡尔曼滤波的汽车状态参数估计
基于无迹卡尔曼滤波的汽车状态参数估计赵万忠;张寒;王春燕【摘要】由于部分汽车状态参数无法直接通过传感器获得,为了提高这些参数的估计精度以准确判断汽车行驶过程中的状态变化,增强控制系统的鲁棒性,文中提出了基于无迹卡尔曼滤波的汽车状态参数估计方法。
该方法在传统卡尔曼滤波算法的基础上,采用无迹卡尔曼滤波算法对汽车质心侧偏角、横摆角速度、路面附着系数等状态参数进行估计,并运用Simulink与Carsim进行联合仿真。
结果表明,无迹卡尔曼滤波算法响应快,估计精度较扩展卡尔曼滤波高,能满足车辆高级动力学控制系统的控制需要。
%In order to improve the estimation accuracy of some vehicle state parameters that can not be obtained by sensors directly and thus to estimate the state variation of running vehicles accurately,a method on the basis of un-scented Kalman filtering (UKF)isproposed,which helps enhance the robustness of vehicle control system.In this method,an UKF algorithm on the basis of traditional Kalman filtering is developed to estimate such vehicle state parameters as side slip angle,yaw rate and road adhesion coefficient,and a simulation by using both Simulink and Carsim software is carried out.The results indicate that the proposed UKF is superior to the extended Kalman filte-ring for its short response time and high estimation accuracy.Thus,it can meet the requirements of advanced dy-namic control system of vehicles.【期刊名称】《华南理工大学学报(自然科学版)》【年(卷),期】2016(044)003【总页数】6页(P76-80,88)【关键词】无迹卡尔曼滤波;参数估计;质心侧偏角;横摆角速度;路面附着系数【作者】赵万忠;张寒;王春燕【作者单位】南京航空航天大学能源与动力学院,江苏南京210016; 上海交通大学机械系统与振动国家重点实验室,上海200240;南京航空航天大学能源与动力学院,江苏南京210016;南京航空航天大学能源与动力学院,江苏南京210016【正文语种】中文【中图分类】U461.6车辆高级动力学控制系统的广泛应用为汽车提供了良好的操控性能,大大提高了行驶过程的安全性[1-2].出于对汽车施加更加简单、精确并且智能操控的目的,控制单元应能够采集到更多并且更加精确的参数.使用有限的传感器和有效的动力学模型,通过参数估计方法获得尽可能多的、精度符合要求的状态参数,既能准确地判断汽车行驶过程中的状态变化,又能提高控制系统的鲁棒性[3- 4],减少生产成本,是一种经济有效的方法.现有的参数估计方法[5-7]有状态观测器法[8]、模糊逻辑估计法[9-10]、神经网络法[11]、系统辨识法以及卡尔曼滤波估计法[12]等.但神经网络法需要大量的训练样本,模糊逻辑估计法[13]的加权系数的确定强烈依靠工程师的经验,因而应用最广泛的是卡尔曼滤波估计法.卡尔曼滤波中又大多采用扩展卡尔曼滤波估计法(EKF),但由于汽车是一个强非线性的系统,EKF通过一阶泰勒展开引入了截断误差,当汽车行驶在非线性工况时,估计结果难以达到很高的精度,甚至导致结果发散.无迹卡尔曼滤波(UKF)由于不需要计算非线性函数的Jacobi矩阵,可以处理不可导的非线性函数,估计精度较EKF高,因而更适用于非线性系统参数的估计.为此,文中采用UKF估计方法对汽车的质心侧偏角、横摆角速度、路面附着系数等状态参数进行估计,使用Matlab/Simulink与Carsim进行联合仿真,将估计结果与Carsim 系统的实际输出值进行对比分析,并与扩展卡尔曼滤波估计结果进行对比,以验证估计结果的精确度.1.1 整车动力学模型文中主要研究汽车在平整路面上行驶的运动特性,在线性二自由度模型的基础上加入纵向运动自由度,使该模型拥有侧向、横摆、纵向3个自由度.其运动方程如下: (1)式中,vy为侧向车速,vx为纵向车速,γ为横摆角速度, d1为质心到前轴的距离,d2为质心到后轴的距离,m为整车质量,δ为前轮转角,k1和k2分别为前、后轮的侧偏刚度总和,β为质心侧偏角,ax为纵向加速度,ay为侧向加速度,Iz为绕z轴的转动惯量.1.2 轮胎模型为了简化计算,提高计算效率,文中在准确刻画轮胎在不同路面附着系数及侧偏角条件下的轮胎力的前提下,使用了参数较少的Dugoff轮胎模型[14].单个车轮的纵向、侧向轮胎力Fx及Fy的数学表达式如下:式中:Fz为轮胎垂向载荷;μ0为路面附着系数;为轮胎滑移率; Cx、Cy分别为轮胎的纵滑刚度和侧偏刚度;α为轮胎的侧偏角;L为边界值,用来表述轮胎的非线性特性;ε为速度影响因子,修正了轮胎滑移速度对轮胎力的影响.Dugoff轮胎模型的数学表达式可以简化为以下归一化形式:式中,分别为纵向、侧向归一化轮胎力,与路面附着系数无关.4个车轮的垂直载荷数学表达式为式中,h为汽车质心高度,df为前轮间距,dr为后轮间距,l为前后轴间距,l=d1+d2.1.3 四轮车辆动力学模型为了得到关于路面附着系数的状态模型,文中在Dugoff轮胎模型的基础上建立四轮车辆动力学模型,用于对汽车行驶过程中的路面附着系数进行实时估计.动力学方程如下:式中,μfl、μfr、μrl、μrr分别为汽车四轮的路面附着系数,分别为汽车四轮的归一化纵向力与横向力.卡尔曼滤波[15]是一种最优状态估计算法,它可以应用于各类受随机干扰的动态系统.卡尔曼滤波给出了一种十分高效的递推算法,该算法通过实时获得的、受噪声污染的一系列离散观测数据来对原有系统进行线性、无偏及最小误差方差的最优估计. 无迹卡尔曼滤波[16]是一类新的非线性滤波算法,该算法不是逼近非线性函数,而是用样本加权求和直接逼近随机分布,并且测量更新部分采用卡尔曼滤波的更新原理.对于如下非线性离散系统:样本点构造方法如下:各点权值为式中,n为待估计的状态向量维数.假设在上一时刻的状态估计值和方差阵分别为(k-1)和Px(k-1),则对非线性系统(8)采用UKF进行滤波的具体步骤如下:(1)设定初值(2)更新时间当k>1时,按式(9)构造2n+1个样本点,即χ(i=1,2,…,n)然后计算预测样本点,即χ最后计算预测样本点的均值和方差,即(3)更新测量当获得新的测量值z(k)后,对状态均值和方差进行更新,即为了准确估计汽车行驶过程中的状态变化,文中以横摆角速度、质心侧偏角以及纵向车速为状态变量,即;以前轮转角δ和纵向加速度ax为系统输入控制变量,即;以侧向加速度ay为输出变量,即y=ay.综合动力学方程(1),利用Simulink与Carsim软件进行联合仿真的结构图如图1所示,并将估计结果与Carsim输出值进行对比.仿真参数由Carsim软件获得,具体数值如下: k1=-143 583 N/rad,k2=-111 200N/rad,Iz=460 7.47 kg·m2,m=152 9.98 kg,方向盘转角到前轮转角的传动比为17,d1=1.14 m,d2=1.64 m,df=dr=1.55 m,h=0.518 m.工况1 Carsim仿真速度设为65 km/h,即初始状态,方向盘模拟角阶跃输入,幅值为1 rad,仿真结果如图2所示.由图2可知,在对方向盘施加角阶跃输入时,汽车的行驶状态发生改变,在初始时刻的估计结果与实际值有一定的偏差,随着时间的推移,汽车状态估计值逐渐与实际值保持良好的跟随性,稳定误差在2%左右.工况2 车速保持65 km/h不变,初始状态不变,方向盘输入改为正弦输入,输入工况为转向正弦扫频输入(Sine sweep steer),估计结果如图3所示.由图3可知,在方向盘正弦输入工况下,汽车行驶状态时刻发生改变,估计结果能对实际值保持良好的跟随性,估计误差很小,估计精度符合要求,可用于下一步的路面附着系数估计.为了估计路面附着系数,考虑到各变量均便于使用传感器测得或间接估计得到,综合四轮车辆动力学模型,文中选取式(7)作为量测方程,此时系统的状态变量为四轮的路面附着系数,即x=[μfl,μfr,μrl,μrr],输入控制变量u=δ,输出].量测方程中归一化轮胎力由Dugoff轮胎模型获得.需要的参数除了垂向载荷外,还有滑移率和轮胎侧偏角α,可由式(17)计算得到:式中,ij、vij、αij、ωij(ij=fl,fr,rl,rr)分别为四轮的滑移率、速度、侧偏角、车轮转速,vcog为汽车质心速度.此时轮胎模型的输入为:前轮转角δ(可由方向盘转角与传动比获得)、4个车轮转速(ωfl、ωfr、ωrl、ωrr,可由转速传感器获得)、纵向及侧向加速度(ax、ay,可由加速度传感器获得)、质心侧偏角β、横摆角速度γ、纵向车速vx(由上一步估计得到). 综合汽车状态估计结果与Dugoff轮胎模型,运用Simulink与Carsim进行联合仿真的结构图如图4所示.在高路面附着系数仿真工况下,路面附着系数设为0.85,Carsim模拟方向盘角阶跃输入,估计结果如图5所示.由图5可知,使用UKF进行路面附着系数估计的结果和实际值吻合较好.经计算,4个轮胎的路面附着系数估计总误差均值为0.007 0,误差在0.8%左右,精度较高,可用于实车估计中.在低路面附着系数条件下,车辆在转向时容易发生滑移,为了验证该算法在低路面附着系数转向时的精确性,将方向盘转角设为正弦输入,路面附着系数设为0.3.同时,为了对比无迹卡尔曼滤波与扩展卡尔曼滤波的估计精度,采用这两种算法分别进行估计,结果如图6所示.由图6可知,在低路面附着系数条件下,UKF与EKF的估计结果都能保持对实际值的跟随性,并且UKF的结果明显优于EKF.经计算,EKF估计的误差均值为0.001 5,标准差为0.015 9,而UKF估计的误差均值为0.000 3,标准差为0.005 9,精度提高了3%左右.文中基于无迹卡尔曼滤波算法对汽车质心侧偏角、横摆角速度、路面附着系数等状态及参数进行估计,结果表明:无迹卡尔曼滤波可通过简单有效的模型估计得到汽车的实时状态与参数变化,充分验证了无迹卡尔曼滤波在汽车操纵稳定性状态及参数估计中应用的高效性和精确性;与扩展卡尔曼滤波估计相比,无迹卡尔曼滤波的估计精度更高.因此,使用文中估计方法对车辆的驱动或制动力矩进行控制,能有效地改善车辆在行驶过程中的打滑和制动过程中的抱死状况,保证汽车的行驶安全性.【相关文献】[1] KURISHIGE M,WADA S,KIFUKU T,et al.A new EPS control strategy to improve steering wheel returnability [R].Warrendale:SAE International,2000.[2] JIANG F,GAO Z,JIANG F.An adaptive nonlinear filter approach to the vehicle velocity estimation for ABS [C]∥Proceedings of IEEE International Conference on Control Applications.Anchorage:IEEE,2000:490- 495.[3] LI L,WANG F Y,ZHOU Q Z.A robust observer designed for vehicle lateral motion estimation [C]∥Proceedings of IEEE Intelligent Vehicle sVegas:IEEE,2005:417- 422.[4] 刘伟.车辆电子稳定性控制系统质心侧偏角非线性状态估计的研究 [D].长春:吉林大学,2009.[5] 林棻,赵又群.汽车侧偏角估计方法比较 [J].南京理工大学学报(自然科学版),2009,33(1):122-126.LIN Fen,ZHAO parison of methods for estimating vehicle sideslip angle [J].Journal of Nanjing University of Science and Technology(Natural Science),2009,33(1):122-126.[6] JIN X,YIN G,LIN Y.Interacting multiple model filter-based estimation of lateral tire-road forces for electric vehicles [R].Warrendale:SAE International,2014.[7] BIAN M,CHEN L,LUO Y,et al.A dynamic model for tire/road friction estimation under combined longitudinal/lateral slip situation [R].Warrendale:SAE International,2014.[8] IMSLAND L,JOHANSEN T A,FOSSEN T I,et al.Vehicle velocity estimation using nonlinear observers [J]. Automatica,2006,42(12):2091-2103.[9] DAISSA A,KIENCKE U.Estimation of vehicle speed fuzzy-estimation in comparision with Kalman-filtering [C]∥Proceedings of the 4th IEEE Conference on Control Applications.Albany:IEEE,2002:281-284.[10] 施树明,HENK L,PAUL B,等.基于模糊逻辑的车辆侧偏角估计方法 [J].汽车工程,2005,27(4):426- 470.SHI Shu-ming,HENK L,PAUL B,etal.Estimation of vehicle side slip angle based on fuzzy logic [J].Automotive Engineering,2005,27(4):426- 470.[11] SASAKI H,NISHIMAKI T.A side-slip angle estimation using neural network for a wheeled vehicle [R].Warrendale:SAE International,2000.[12] LI L,SONG J,LI H Z.A variable structure adaptive extended Kalman filter for vehicle slip angle estimation [J].International Journal of Vehicle Design,2011,56 (1/2/3/4):161-185.[13] 李刚,宗长富,张强,等.基于模糊路面识别的4WID电动车驱动防滑控制 [J].华南理工学报(自然科学版),2012,40(12):99-106.LI Gang,ZONG Chang-fu,ZHANG Qiang,et al.Anti slip control of 4WID electric vehicle based on fussy road identification [J].Journal of South China University of Technology(Natural Science Edition),2012,40(12):99-106.[14] 周磊,张向文.基于Dugoff轮胎模型的爆胎车辆运动学仿真 [J].计算机仿真,2012,29(6):308-385.ZHOU Lei,ZHANG Xiang-wen.Simulation of vehicle dynamics in tire blow-out process based on Dugoff tire model [J].Computer Simulation,2012,29(6):308-385.[15] WENZEL T A,BURNHAMK J,BLUNDELLM V,et al.Dual extended Kalman filter for vehicle state and para-meter estimation [J].Vehicle System Dynamics,2006,44(2):153-171.[16] 刘胜.最优估计理论 [M].北京:高等教育出版社,2009.。
一种分步的融合 时空信息的背景建模
图1
Fig. 1
融合时空信息的背景模型算法框图
Flowchart of background subtraction by fusion spatio-temporal information
4期
储珺等: 一种分步的融合时空信息的背景建模
第 40 卷 第 4 期
2014 年 4 月
自 动 化 学 报
ACTA AUTOMATICA SINICA
Vol. 40, No. 4 April, 2014
一梅 1 汪凌峰 2
摘 要 自然场景中的光照突变和树枝、水面等不规则运动是背景建模的主要困难. 针对该问题, 提出一种分步的融合时域 信息和空域信息的背景建模方法. 在时域, 采用具有光照不变性的颜色空间表征时域信息, 并提出对噪声和光照突变具有较好 适应性的码字聚类准则和自适应背景更新策略, 构造了对噪声和光照突变具有较好适应性的时域信息背景模型. 在空域, 通过 采样将测试序列图像分成两幅子图, 而后利用时域模型检测其中一幅子图, 并将检测结果作为另一幅子图的先验信息, 同时采 用马尔科夫随机场 (Markov random field, MRF) 对其加以约束, 最终检测其状态. 在多个测试视频序列上的实验结果表明, 本文背景模型对于自然场景中的光照突变和不规则运动具有较好的适应性. 关键词 引用格式
CHU Jun1 YANG Fan1 ZHANG Gui-Mei1 WANG Ling-Feng2 Abstract In a natural scene, it is difficult to create a background model for the presence of illumination variation and irregular motions including waving trees, rippling water, etc. This paper proposes a new stepwise algorithm by fusing spatio-temporal information. In the time domain, we characterize the temporal information in the color space which is invariant to photometric changing. On this basis, we propose a clustering criterion of codeword which is adaptive to noise and illumination variation, and present a novel adaptive background updating strategy. Then a temporal information background model which has a better adaptability to noise and photometric invariants is constructed. In the spatial domain, we first divide the test frame into two sub-images by sampling and then utilize temporal information to detect one of them. Furthermore, we regard the detection results as priori information of the other sub-image and adopt Markov random field to restrict it simultaneously, then detect its state. Extensive experiments are conducted on several test video sequences. Compared with the mixture of Gaussians (MOG), standard codebook model (SCBM), and improved codebook model (ICBM), the results show that out algorithm has better adaptability to the illumination variation and irregular movement in natural scenes. Key words Spatio-temporal background model, foreground detection, Markov random field (MRF), codebook Citation Chu Jun, Yang Fan, Zhang Gui-Mei, Wang Ling-Feng. A stepwise background subtraction by fusion spatiotemporal information. Acta Automatica Sinica, 2014, 40(4): 731−743
负泊松比蜂窝芯非线性,等效弹性模量研究
值信噪比相对稳定,且同B a n d e l e t稀疏的重构结果差别不大,而在观测值M'≤80时重构出现不稳定状态,不能有效重构,而在M'=96时,小波稀疏偶尔会出现重构不稳定现象㊂表4 不同观测值下不同环境纹理图像s y m8小波稀疏重构图像峰值信噪比观测值M图6中左图图6中中图图6中右图14421.489124.026622.475212820.955123.139022.143211220.429322.716121.684196偶尔不稳不稳定偶尔不稳80不稳定不稳定不稳定64不稳定不稳定不稳定4 结束语在J P E G压缩编码环境纹理图像的基础上,进行了基于B a n d e l e t稀疏和OM P重构恢复算法的压缩传感和恢复重构研究,并与传统的基于小波稀疏的环境纹理图像压缩重构效果进行了比较,结果表明:对于256像素×256像素环境纹理图像,在观测值M'>96时,B a n d e l e t与s y m8小波稀疏重构效果的峰值信噪比差别不大,在M'≤80时,小波稀疏环境图像重构出现不稳定状态,而B a n d e l e t稀疏相对稳定,在M'=96时,小波稀疏偶尔会出现重构不稳定现象㊂在一定观测值下,B a n d e l e t的细节分辨能力优于小波稀疏的细节分辨能力,并在观测值较小的高稀疏压缩比下,B a n d e l e t稀疏重构较易获得好的稳定的环境图像重构效果,为移动机器人环境视觉不同要求的海量数据存储传输重构提供了技术支撑,为环境纹理图像不同基的结合重构以及高压缩比㊁细节保留与重构稳定性提供了应用参考㊂参考文献:[1] 马如远,金明亮,刘继忠,等.移动机器人环境视觉小波稀疏压缩传感和识别[J].传感技术学报,2012,25(4):519‐523.M a R u y u a n,J i n M i n g l i a n g,L i u J i z h o n g,e ta l.W a v e l e tS p a r s i t y B a s e d C o m p r e s s i v e S e n s i n g a n dD i r e c tR e c o g n i t i o n f o rM o b i l eR o b o tE n v i r o n m e n t a lV i s i o n[J].C h i n e s eJ o u r n a lo fS e n s o r sa n d A c t u a-t o r s,2012,25(4):519‐523.[2] 赵士彬,姚素英,徐江涛.基于压缩感知的低功耗高效率C MO S图像传感器设计[J].传感技术学报,2011,24(8):1151‐1157.Z h a oS h i b i n,Y a oS u y i n g,X u J i a n g t a o.L o wP o w e rH i g hC MO SI m a g eS e n s o rD e s i g nB a s e do nC o m-p r e s s e dS e n s i n g[J].C h i n e s e J o u r n a l o f S e n s o r s a n dA c t u a t o r s,2011,24(8):1151‐1157.[3] W a n g Y,B e r m a k A,B o u s s a i d F.F P G AI m p l e-m e n t a t i o n o f C o m p r e s s i v e S a m p l i n g f o r S e n s o rN e t w o r kA p p l i c a t i o n s[C]//P r o c e e d i n g so f t h e2n dA s i aS y m p o s i u mo nQ u a l i t y E l e c t r o n i cD e s i g n.P e-n a n g,M a l a y s i a,2010:5‐8.[4] 王向阳,杨红颖.一种基于小波包变换的纹理图像压缩算法[J].测绘学报,2004,33(3):239‐243.W a n g X i a n g y a n g,Y a n g H o n g y i n g.A N e w W a v e l e tP a c k e tC o d i n g A l g o r i t h m f o rT e x t u r e‐r i c hI m a g e s[J].A c t aG e o d a e t i c a e tC a r t o g r a p h i c aS i n i c a,2004, 33(3):239‐243.[5] 韩培友,张雯,郝重阳,等.一种基于混合编码的图像纹理压缩方法[J].微电子学与计算机,2006,23(11):178‐180,184.H a nP e i y o u,Z h a n g W e n,H a oC h o n g y a n g,e t a l.AT e x t u r eC o m p r e s s i o n A l g o r i t h m B a s e do n H y b r i dC o d i n g[J].M i c r o e l e c t r o n i c s&C o m p u t e r,2006,23(11):178‐180,184.[6] 王超,叶凤琴,叶中付.基于结构纹理分解的改进图像压缩算法[J].中国科学技术大学学报,2007,37(12):1449‐1454.W a n g C h a o,Y e F e n g q i n,Y e Z h o n g f u.A nI m-p r o v e d I m a g eC o m p r e s s i o n M e t h o dU s i n g C a r t o o n‐t e x t u r eD e c o m p o s i t i o n[J].J o u r n a l o fU n i v e r s i t y o f S c i e n c ea n d T e c h n o l o g y o fC h i n a,2007,37(12): 1449‐1454.[7] 潘志刚,高鑫.针对纹理图像压缩的改进S P I H T算法[J].中国科学院研究生院学报,2010,27(2): 222‐227.P a nZ h i g a n g,G a oX i n.A n I m p r o v e dS P I H T A l g o-r i t h mf o rT e x t u r eI m a g eC o m p r e s s i o n[J].J o u r n a l o fG r a d u a t eS c h o o l o f t h eC h i n e s eA c a d e m y o fS c i-e n c e s,2010,27(2):222‐227.[8] 张军,成礼智,杨海滨,等.基于纹理的自适应提升小波变换图像压缩[J].计算机学报,2010,33(1): 184‐192.Z h a n g J u n,C h e n g L i z h i,Y a n g H a i b i n,e t a l.A d a p t i v e L i f t i n g W a v e l e t T r a n s f o r m a n d I m a g eC o m p r e s s i o nv i a T e x t u r e[J].C h i n e s eJ o u r n a lo fC o m p u t e r s,2010,33(1):184‐192.[9] H a r i H a r aS a n t o s h D,D a s a r iP,K i r a n N L S,e t a l.F R C T B a s e d Ef f i c i e n tI m ag e C o m p r e s s i o nf o rT e x t u r eI m ag e s[C]//2012I n t e r n a t i o n a lC o n-f e r e n c e o nC o m p u t i n g,C o mm u n i c a t i o na n d A p p l i-c a t i o n s.D i nd i g u l,2012:1‐6.[10] 朱梅,李章维.基于B a n d e l e t s域的自适应图像压缩[J].计算机工程,2011,37(7):241‐242,252.Z h u M e i,L i Z h a n g w e i.A d a p t i v e I m a g eC o m p r e s-s i o nB a s e do n B a n d e l e t s D o m a i i n[J].C o m p u t e rE n g i n e e r i n g,2011,37(7):241‐242,252.㊃9351㊃基于B a n d e l e t稀疏的移动机器人环境视觉纹理图像的压缩传感与重构 马如远 刘继忠 金明亮等Copyright©博看网. All Rights Reserved.[11] 田润澜,肖卫华,齐兴龙.几种图像变换算法性能比较[J ].吉林大学大学报:信息科学版,2010,28(5):439‐444.T i a n R u n l a n ,X i a o W e i h u a ,Q iX i n g l o n g .C o m -p a r i o no f S e v e r a l I m a geT r a n s f o r m [J ].J o u r n a l o f J i l i n U n i v e r s i t y (I n f o r m a t i o n S c i e n c e E d i t i o n ),2010,28(5):439‐444.[12] 金坚,谷源涛,梅顺良.压缩采样技术及其应用[J ].电子与信息学报,2010,32(2):470‐475.J i nJ a n ,G u Y u a n t a o ,M e iS h u n l i a n g .A nI n t r o -d u c t i o n t oC o m p r e s s i v eS a m p l i n g a n d I t sA p p l i c a -t i o n s [J ].J o u r n a lo f E l e c t r o n i c s &I n f o r m a t i o n T e c h n o l o g y,2010,32(2):470‐475.[13] I q b a lM ,C h e nJ .C o m p r e s s i v eS a m p l i n g o fN a t u -r a l I m a g e sU s i n g B a n d e l e t B a s i s [C ]//20114t h I n -t e r n a t i o n a lC o n f e r e n c eo nI m a g ea n d S i g n a lP r o -c e s s i n g .S h a n gh a i ,2011:958‐962.[14] D o n o h oDL ,H u oX M.U n c e r t a i n t y P r i n c i pl e s a n d I d e a lA t o m i c D e c o m p o s i t i o n [J ].I E E E T r a n s a c -t i o n so nI n f o r m a t i o n T h e o r y,2001,47:2845‐2862.[15] D o n o h oDL ,T s a i g Y.E x t e n s i o n so fC o m pr e s s e d S e n s i n g [J ].S i g n a lP r o c e s s i n g,2006,47:549‐571.(编辑 袁兴玲)作者简介:马如远,女,1973年生㊂浙江工业大学机械工程学院博士研究生,嘉兴学院数理与信息工程学院讲师㊂主要研究方向为机器人视觉与模式识别㊂刘继忠(通信作者),男,1974年生㊂南昌大学机器人研究所副教授㊁博士㊂金明亮,男,1988年生㊂南昌大学机器人研究所硕士研究生㊂柴国钟,男,1957年生㊂浙江工业大学机械工程学院教授㊂王光辉,男,1968年生㊂南昌大学机器人研究所教授㊂负泊松比蜂窝芯非线性等效弹性模量研究鲁 超 李永新 吴金玺 刘 明 李天齐中国科学技术大学,合肥,230027摘要:设计并加工了一种负泊松比蜂窝结构,采用柔性悬臂梁模型,对蜂窝壁板大变形条件下的弯曲变形进行分析,给出了蜂窝芯面内等效弹性模量理论计算公式㊂通过有限元仿真和力学实验的对比分析,验证了非线性理论计算公式的正确性㊂得出了等效弹性模量的非线性特性及相同方向和不同方向弹性模量的变化特性㊂研究结果为柔性蜂窝芯层的工程实用化提供了参考㊂关键词:蜂窝芯;负泊松比;非线性;等效弹性模量中图分类号:T B 383 D O I :10.3969/j.i s s n .1004-132X.2014.11.022R e s e a r c ho nN o n ‐l i n e a rE q u i v a l e n tE l a s t i cM o d u l u s o fN e ga t i v e P o i s s o n ’sR a t i oH o n e y c o m bC o r e ‐l a ye r L uC h a o L iY o n g x i n W u J i n x i L i u M i n g L iT i a n qi U n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y ofC h i n a ,H e f e i ,230027A b s t r a c t :An e g a t i v eP o i s s o n ’s r a t i oh o n e y c o m bs t r u c t u r ew a sd e s i gn e da n d f a b r i c a t e dh e r e i n ,a f l e x i b l e c a n t i l e v e rm o d e lw a su s e d t oa n a l y z e t h eb e n d i n g d e f o r m a t i o no f t h eh o n e yc o m b p a n e l u nde r t h e s i t u a t i o nof l a rg e d e f o r m a t i o n ,th e nd e d u c e d a t h e o r e ti c a l f o r m u l au s e d t o c a l c u l a t e t h e e qu i v a l e n t e l a s t i cm o d u l u s .T h r o u g ht h ee x p e r i m e n t a l c o m pa r i s o no f f i n i t ee l e m e n ts i m u l a t i o na n d m e c h a n i c a l a n a l y s i s ,t h e p a p e r v e r i f i e d t h e c o r r e c t n e s s o f t h e n o n ‐l i n e a r t h e o r y f o r m u l a ,ob t a i n e dn o n l i n e a rc h a r -a c t e r i s t i c so f t h e e q u i v a l e n t e l a s t i cm o d u l u s a n d t h e v a r i a t i o n c h a r a c t e r i s t i c o f t h em o d u l u s o f e l a s t i c i t y o f t h e s a m e d i r e c t i o n a n d i n d i f f e r e n t d i r e c t i o n s .I t p r o v i d e s r e f e r e n c e f o r f l e x ib l e h o n e yc o m b c o r e ‐l a y e r s t r u c t u r e o f t h e e n g i n e e r i n gpr a c t i c e s .K e y wo r d s :h o n e y c o m bc o r e ‐l a y e r ;n e g a t i v eP o i s s o n ’sr a t i o ;n o n ‐l i n e a r i t y ;e q u i v a l e n te l a s t i c m o d u l u s0 引言如何设计既能大幅度连续光滑变形,又有足收稿日期:2013 01 10基金项目:国家自然科学基金资助项目(51075380);国家自然科学基金资助重点项目(90816026)够刚度和强度的轻质可变形蒙皮[1‐2]结构已成为智能变形飞行器的关键技术之一[3‐5]㊂目前,对于弹性蒙皮[1]的研究主要集中在以下两个方面:一种是波纹板式复合材料弹性蒙皮[5],该蒙皮利用波纹扩张或收缩产生的变形累积效应实现沿波纹方向的大变形,但是该蒙皮表面并不连续平滑,同㊃0451㊃中国机械工程第25卷第11期2014年6月上半月Copyright ©博看网. All Rights Reserved.时垂直于波纹方向的纵向承载能力很弱;另一种是采用柔性较大的橡胶类材料制作的蒙皮,这种蒙皮虽能满足机翼变形和气密性的要求,但驱动方式和变形控制很复杂,而且机翼的整体承载能力不高[6]㊂本文提出了基于柔性蜂窝结构的超弹性蒙皮结构设计理念,以期得到变形柔度㊁承载刚度㊁轻质三方面性能俱佳的可变形蒙皮结构㊂蜂窝芯柔性大变形问题的研究是柔性蜂窝芯超弹性蒙皮研制的基础㊂在单一规则蜂窝结构的研究中,宏观上将其视为匀质连续材料,选取其中的一个单元进行宏观结构上的等效力学和变形分析,进而得到结构的等效弹性模量㊂G i b s o n等[7]运用E u l e r梁模型,对蜂窝结构的力学行为进行分析研究,得出了蜂窝结构弹性模量的经典计算公式(G i b s o n公式)㊂富明慧等[8]在考虑蜂窝壁板伸缩变形的情况下,对G i b s o n公式进行了修正㊂W a r-r e n等[9]依据蜂窝结构中单元周期性重复排列的特点,取其代表单元进行分析,建立了宏观的弹性本构方程,得出了W‐K公式㊂王飞等[10]根据均匀化理论,并结合有限元方法得出了不同相对密度下蜂窝结构的等效弹性参数㊂以上研究多以小变形性为前提假设,但小变形性难以满足超弹性蒙皮的大变形要求[7,11]㊂柯映林等[12]将蜂窝壁板的变形归属于薄板大挠度变形问题,得出了具有非线性响应的蜂窝芯材料等效面内弹性模量㊂H u等[13]通过分析蜂窝壁板的扭转变形,发现弹性模量随应变的变化已经不再是常数㊂祝涛等[14]考虑蜂窝壁板面内荷重对壁板弯曲的影响,对G i b s o n公式进行了修正,提出了一种蜂窝芯层的非线性等效拉伸弹性模量的拟合方法㊂目前,对蜂窝结构非线性大变形问题的研究尚无成熟的理论体系形成,实验研究则更为有限㊂本文设计并加工了内六角形负泊松比蜂窝结构,通过理论建模㊁有限元仿真和力学实验3种方式对这种蜂窝结构大变形下的面内弹性模量进行了分析,建立了弹性模量的理论计算公式,得出了等效弹性模量的非线性特性及相同方向和不同方向弹性模量的变化特性㊂1 蜂窝结构变形力学建模1.1 Y方向单向压缩变形图1为超弹性柔性蜂窝芯蒙皮结构原理示意图和蜂窝单元图㊂其中,a为横壁板长,b为斜壁板长,t为斜壁板厚度,w为横壁板厚度,θ为斜壁板与横壁板的夹角㊂假设横壁板为刚性(w≥2t),蜂窝结构的变(a)超弹性柔性蜂窝芯蒙皮结构原理示意图(b)蜂窝单元图图1 超弹性柔性蜂窝芯蒙皮结构原理示意图和蜂窝单元图形由斜壁板的弹性变形引起㊂选取斜壁板O C B 为研究对象,将其视为一端固支(O点),一端限制其转角(B点)的细长杆(t/b≤0.015),其受力变形图见图2a㊂由于整个壁板的受力变形成反对称性,故取其一半建立柔性悬臂梁模型进行分析(图2b)㊂图2b中γ为任意截面的转角,s*为斜壁板变形后的弧长,α为载荷P(与Y轴平行)与X*轴的夹角㊂(a)斜壁板受力变形图(b)半壁板受力变形图图2 斜壁板受Y方向单向压力变形图悬臂梁的挠曲线方程为E s I d2γd s*2=-P s i n(α+γ)(1)式中,E s为材料本身的弹性模量;I为斜壁板的惯性矩㊂引入ξ=P/P c r,s=s*/b(P c r=π2E s I/b2, 0≤s≤0.5),并代入边界条件(C点的弯矩为零)可得dγd s=2πξs i n2(α2+γ12)-s i n2(α2+γ2)(2)令s i nη=s i n(α/2+γ/2)s i n(α/2+γ1/2),γ1为壁板的最大转角(即C点处的转角),则d s=dγ2πξs i n(α/2+γ1/2)c o sη=dηπξc o s(α/2+γ/2)(3)对s进行积分和坐标转换,可得其在X㊁Y方向上的投影为XéëêêùûúúY=4ξπp c o s m[E(p)-E(m,p)]-12[F(p)-F(m,péëêêêùûúúú)](4)㊃1451㊃负泊松比蜂窝芯非线性等效弹性模量研究 鲁 超 李永新 吴金玺等Copyright©博看网. All Rights Reserved.p =si n α+γ12m =a r c s i n s i n (α/2)s i n (α/2+γ1/2[])F (m ,p )=∫m011-p 2s i n 2ηd ηF (p )=∫π/211-p 2s i n 2ηd ηE (m ,p )=∫m01-p 2s i n 2ηd ηE (p )=∫π/21-p 2si n 2ηd η1.2 Y 方向单向拉伸变形Y 方向单向拉伸时,斜壁板受力变形如图3所示㊂(a)斜壁板受力变形图(b)半壁板受力变形图图3 斜壁板受Y 方向单向拉力变形图悬臂梁的挠曲线方程为E s I d 2γd s*2=-P s i n (α-γ)(5)采用上一节同样的方法进行推导可得量纲一杆长s 在X ㊁Y 方向上的投影为X éëêêùûúúY =4ξπp c o s m 12[F (p )-F (m ,p )]-[E (p )-E (m ,p éëêêêùûúúú)](6)p =co s α-γ12m =π-a r c s i nc o s (α/2)c o s (α/2-γ1/2[])对于斜壁板X 方向的受力变形情况,可依照斜壁板Y 方向受力分析的方法进行分析㊂2 蜂窝芯等效弹性模量利用上节的结论,可求得相应大变形的格林应变,进而求得等效弹性模量㊂分别用上标1㊁2表示蜂窝材料单向压缩和拉伸的受力状态,下标x ㊁y 表示受力方向分别为X ㊁Y 向,则等效弹性模量公式为E (1)xE (2)x E (1)y E (2)éëêêêêêùûúúúúúy=π2ξ2E s 12(t b )3㊃1s i n θ[X (1)x -c o s θa /b -c o s θ+12(X (1)x -c o s θa /b -c o s θ)2]1s i n θ[X (2)x -c o s θa/b -c o s θ+12(X (2)x -c o s θa /b -c o s θ)2]1(a /b -c o s θ)[Y (1)y -s i n θs i n θ+12(Y (1)y -s i n θs i n θ)2]1(a /b -c o s θ)[Y (2)y -s i n θs i n θ+12(Y (2)y -s i n θs i n θ)2éëêêêêêêêêêêêêêêùûúúúúúúúúúúúúúú](7)3 理论计算㊁A N S Y S 仿真㊁模型实验结果分析采用65M n 弹簧钢加工出单个单元实验模型,在弹性变形范围内进行了X 方向和Y 方向的拉伸㊁压缩实验,模型受力变形如图4所示㊂通过测量载荷力和位移计算出应力和应变,进而求得等效弹性模量㊂选择满足超弹性大挠度和大应变能力的S o i l d 187单元对蜂窝结构进行有限元仿真分析㊂根据实验模型的材料㊁尺寸参数和载荷,设定有限元模型的材料㊁尺寸参数和载荷量级,通过数值模拟计算出应变,进而求得等效弹性模量㊂模型的参数为:E s =196.2G P a ㊁a =55mm ㊁b =43mm ㊁t =0.4mm ㊁h =18.5mm (蜂窝芯层的厚度)㊁θ=70°㊂并将理论计算(式(7)计算结果)㊁A N S Y S 有限元仿真㊁模型实验㊁线性计算的结果[7,15]进行比较分析,给出应力应变㊁等效弹性模量应变关系,如图5~图8所示㊂线性计算公式为E x =E s (t b )3(a /b -c o sθ)s i n 3θE y =E s (t b )3s i n 2θc o s θ(c o s θ-a /b üþýïïïï)(8) (a )X 方向单向拉伸(b )Y 方向单向压缩图4 模型实验受力变形图由图5~图8可得如下结论:①图5~图8表明,理论㊁仿真㊁实验三条曲线吻合程度良好,证明了等效弹性模量计算公式的正确性和有效性;②从图5㊁图6可以看出,Y 方向的等效弹性模量非㊃2451㊃中国机械工程第25卷第11期2014年6月上半月Copyright ©博看网. All Rights Reserved.(a )应力应变关系图(b)等效弹性模量应变关系图图5 Y 方向单向压缩加载应力应变和等效弹性模量应变图(a )应力应变关系图(b)等效弹性模量应变关系图图6 Y 方向单向拉伸加载应力应变和等效弹性模量应变图线性特征明显㊂单向压缩㊁拉伸应变趋于零时等效弹性模量趋于线性计算的固定值;③从图7㊁图8可以看出,X 方向等效弹性模量近似于线性变化,应变趋于零时等效弹性模量趋于线性计算的(a)应力应变关系图(b)等效弹性模量应变关系图图7 X 方向单向压缩加载应力应变和等效弹性模量应变图(a)应力应变关系图(b)等效弹性模量应变关系图图8 X 方向单向拉伸加载应力应变和等效弹性模量应变图固定值,随应变的增大等效弹性模量和线性计算值的差值增大,因此,大变形条件下柔性蜂窝芯X 方向等效弹性模量的计算应选用更为精确的非线性计算公式;④图5~图8表明,同一方向单向拉㊃3451㊃负泊松比蜂窝芯非线性等效弹性模量研究鲁 超 李永新 吴金玺等Copyright ©博看网. All Rights Reserved.。
基于先验信息的全变分图像复原算法
基于先验信息的全变分图像复原算法张俊峰;罗立民;舒华忠;伍家松【摘要】In order to improve the performance of image restoration of the total variation (TV)mod-el,an improved TV image restoration algorithm based on prior information is proposed.First,the nonlocal means(NLM)filtering algorithm,which can effectively protect the structural information of the filtered image,is employed to reduce the noise withinthe image to restore.Thus,the filtered prior image information is obtained.Then,an improved total variation restoration model based on the obtained prior information is established.The proposed model can notonly maintain the TV model' advantage of protecting the boundary information of restorated image,but also maintain the NLM model' advantage of protecting the structure information.Finally,the proposed model is opti-mized by the split Bregman alternating direction multiplier iteration algorithm and the restored image is obtained.The experimental results show that compared with other algorithms,the proposed algo-rithm achieves better restoration effect in terms of the subjective visual effect and the objective quan-titative indices such as peak signal to noise ratio (PSNR)and structural similarity (SSIM).%为了提高全变分模型的图像复原效果,提出一种基于先验信息的全变分图像复原算法。
改进的曲波变换及全变差联合去噪技术
㊀第38卷第1期物㊀探㊀与㊀化㊀探Vol.38,No.1㊀㊀2014年2月GEOPHYSICAL&GEOCHEMICALEXPLORATIONFeb.,2014㊀DOI:10.11720/j.issn.1000-8918.2014.1.14改进的曲波变换及全变差联合去噪技术薛永安,王勇,李红彩,陆树勤(中国石油化工股份有限公司江苏油田分公司物探技术研究院,江苏南京㊀210046)摘要:运用常规的基于曲波变换和全变差的联合去噪技术,可以有效地衰减随机噪声,较好地克服使用曲波变换带来的强能量团以及在同相轴边缘产生的不光滑现象,但是这种常规的联合去噪方法对有效信号有一定的损害㊂笔者采用一种多尺度多方向改进的Donoho阈值去噪思想,较好地克服了常规的联合去噪方法的缺陷,保护了有效信号㊂该方法在应用曲波变换去噪时,对每一个尺度的每一个方向都选取一个合适的阈值因子,而不是常规的方法对整个曲波系数矩阵只选取一个固定比例的阈值因子㊂理论模型与实际资料的处理结果表明,该技术最大限度地保留了地震数据的有效信号,在地震资料处理中具有较好的应用前景㊂关键词:曲波变换;全变差;随机噪声;多尺度中图分类号:P631.4㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1000-8918(2014)01-0081-06㊀㊀在地震勘探中,常规的随机噪声衰减方法对有效信号的损害比较大㊂为了较好地去除随机噪声,Neelamani等人在2008年引入了一种多尺度的变换方法 曲波变换来衰减随机噪声,取得了较好的效果[1]㊂但是曲波变换不可避免地会产生伪影现象,同时在同相轴边缘产生不光滑现象,为了克服曲波变换的这个缺点,2010年,清华大学的唐刚在其博士论文中详细介绍了基于曲波变换和全变差的联合去噪技术,在压制随机噪声的同时,较好地保护了有效信号,同时该方法较好地压制了单独使用曲波变换去噪时产生的伪影现象[2]㊂此前,2008年卢成武㊁2009年倪雪,都相继介绍过基于曲波变换和全变差的联合去噪技术[3-4]㊂曲波变换最先由Candès和Donoho等人于1999年在Ridgelet变换的基础上提出[5],随后几年,Candès等人对第一代Curvelet变换作了比较大的改进[6]㊂2004年,HerrmannF等最先将Curvelet变换应用到地震数据处理领域,成功地将Curvelet变换应用到多次波的衰减中[7-8]㊂虽然运用的联合去噪技术较好地克服了单独使用曲波变换去噪带来的强能量团以及在同相轴边缘产生的不光滑现象,同时较好地保护了有效信号,但是这种联合去噪方法对有效信号有一定损害[9],笔者对该方法进行了一定的改进,通过模型数据和实际数据的测试表明,该技术较好地衰减了随机噪声,同时最大限度地保留了地震数据的有效信号,是一种值得推广的随机噪声压制方法㊂1㊀第二代曲波变换及全变差技术简介1.1㊀第二代曲波变换简介连续曲波变换属于稀疏理论的范畴,可以采用基函数与信号的内积形式实现信号的稀疏表示,因此曲波变换可以表示为c(j,l,k)= f,φj,l,k⓪=ʏR2f(x)φj,l,k(x)dx,(1)式中:φj,l,k表示曲波函数,j,l,k分别表示尺度㊁方向㊁位置参数㊂因为数字曲波变换是在频域进行的,根据Plancherel定理,可以将这种内积形式表示成频域的积分形式c(j,l,k)=1(2π)2ʏ^f(ω)φj,l,k(ω)dω=1(2π)2ʏ^f(ω)Uj(Rθlω)ej x(j,l)k,ω⓪dω,(2)经过变换后得到C{j}{l}(k1,k2)结构的系数,j表示尺度,l表示方向,(k1,k2)表示尺度层上的矩阵坐标[6]㊂1.2㊀全变差技术简介全变差最小化技术最先由Rudin等人于1992年提出(通常称ROF模型),经过全变差的定义及化简,得数据f的全变差收稿日期:2012-12-25物㊀探㊀与㊀化㊀探37卷㊀TV(f)=ʏΩ|∇f|dx,(3)其中:Ω为图像f的支撑区间,xɪΩ为图像的坐标向量㊂基于全变差的去噪方法可归结为最小化问题E(f)=ʏΩ|f-f0|2dx+λTV(f),(4)其中:第一项为逼近项,使去噪后的图像依然能够较好地逼近原始图像;第二项是全变差正则化项;λ是拉格朗日常数,在逼近项和正则化项之间起着重要的平衡作用㊂上述目标函数E(f)是f的凸函数,其存在极值的充分必要条件是∇E(f)=0,由此可以得到其对应的Euler⁃Largrange方程为-∇∇f|∇f|æèçöø÷+λ(f-f0)=0㊂(5)该方程为非线性方程,假设方程满足Neumann边界条件,通过梯度下降法对数据进行反复迭代得到一个稳定解,从而得到去噪后的数据,其迭代公式fn+1=fn-tn[gTV(fn)]㊂(6)其中:令初始值f1=f0,tnȡ0表示迭代步长,gTV(f)=-∇∇f|∇f|æèçöø÷表示全变差函数在f处的次梯度[10]㊂2㊀改进的联合去噪策略常规的联合去噪技术通常在曲波变换后对每一个尺度都选取一个相同比例的阈值,该选取方法不能够充分利用曲波变换的优点,会造成某些区域有效信号损害相对较大,而某些区域,去噪效果不理想的情况,传统的联合去噪流程见图1㊂通常地震数据经过曲波变换后,被划分成多个尺度层,最内层,也就是第一层称为Coarse尺度层,是由低频系数组成的;最外层,称为Fine尺度层,是由高频系数组成;中间的尺度层称为Detail尺度层,是由中高频系数组成的㊂在不同的尺度层,有效信号和随机噪声的系数分布是不一样的,在Coarse尺度层它们之间的系数没有较明显分界,同时随机噪声在这个尺度层占的比重不大,因此,在这个尺度层可以多保留一些系数,同时在Detail尺度层和Fine尺度层选择合适的阈值㊂通过该方法的的处理,能够更好地保留有效信号,达到高保真处理的目的,改进的联合去噪流程见图2㊂对于多尺度阈值的选取,主要是在Do⁃noho阈值处理的基础上进行一定的改进,尽管Do⁃noho阈值法一开始主要是用于小波阈值的求取,但是对Curvelet变换的阈值求取也有一定的借鉴意义,Donoho提出的阈值求取方法如Tthreshold=σ2logN(7)所示㊂其中:σ=Median(Ci,j)/0.6745,N为地震数据的长度㊂在Donoho阈值处理的基础上,在Cuevelet变换的每一个尺度和方向上选取一个合适的阈值(即对Donoho阈值进行一定的调整,针对不同的尺度特点,为更好地去噪,0.6745可以改为更大或更小),能够在消除随机噪声的同时,较好地保留有效信号㊂图1㊀传统的联合去噪流程图2㊀改进的联合去噪流程㊃28㊃㊀6期薛永安等:改进的曲波变换及全变差联合去噪技术3㊀模型及实际数据测试选取两个模型数据和一块江苏油田工区的实际数据进行测试㊂首先选取一个双曲模型进行测试(胡天乐提供),该模型为512道,2048个采样点,1ms采样㊂图3a为原始不含噪声数据,图3b是加入随机噪声以后的数据得到的信噪比为0.28的含噪剖面,这里的信噪比用信号振幅的平方和与噪声振幅的平方和的比值来表示㊂图3c是传统的联合去噪方法去噪后的结果,信噪比为2㊂图4a和图4b为Donoho阈值法及改进的Donoho阈值去噪后的结果,信噪比分别达到3.85和4.2,图4c和4d分别为这两种方法去噪后的结果与不含噪数据的误差剖面,从图中可以看到,改进Donoho阈值法要优于前两种方法,同时保护了有效信号㊂a 原始不含噪数据;b 加入随机噪声后的数据;c 传统的联合去噪方法去噪后图3㊀原始模型数据(一)a Donoho阈值去噪后结果;b 改进Donoho阈值去噪后结果;c Donoho阈值去噪后的误差剖面;d 改进Donoho阈值去噪后的误差剖面图4㊀Donoho阈值去噪及改进后的Donoho阈值去噪㊀㊀第二个模型数据为64道,501个采样点,时间采样间隔为1ms,不含噪声的数据见图5a,加入随机噪声,得到信噪比为0.3的含噪数据(图5b)㊂经过传统的联合去噪方法压制后,地震资料的信噪比得到了较大的提高,信噪比为1.82,随机噪声得到了有效的压制,同时曲波变换的伪影现象也得到了有效克服(图6a)㊂但是,从图6b中的误差数据可以看到,运用常规的联合去噪方法对有效信号有一定损害,特别是对近偏移距数据和弯曲同相轴损害较大㊂运用笔者提出的改进方法,去噪结果见图7a,误差结果见图7b,信噪比达到1.95㊂从图中可以看到,运用改进的方法,有效信号得到了很好的保真,特别是近偏移距附近的同相轴得到了很好的保留,因此改进的方法是一种有效的高保真的处理方法㊂㊃38㊃物㊀探㊀与㊀化㊀探37卷㊀a 原始不含噪声数据;b 加入噪声后的数据图5㊀原始模型数据(二)及原始含噪数据a 常规联合去噪方法去噪后的数据;b 误差数据图6㊀模型数据处理结果a 本文方法去噪后的数据;b 误差数据图7㊀模型数据处理结果㊃48㊃㊀6期薛永安等:改进的曲波变换及全变差联合去噪技术㊀㊀研究中,选取江苏油田某工区的偏移数据作为测试对象(图8a),本数据有200道,451个采样点,采样间隔为1ms,运用笔者提出的改进的联合去噪方法和常规的联合去噪方法进行对比,图8b和图8c分别为常规的联合去噪方法去噪后的结果及误差剖面㊂从图中可以看到本地区资料断层发育,由于随机噪声的存在,影响了资料的品质㊂经过联合去噪以后,原始剖面中的随机噪声得到了很好的压制,剖面的信噪比得到了明显的提高,同时剖面的断点得到了很好的保留㊂但是在构造复杂区,有效信号受到一定的损害,在误差剖面中可以明显看到有效信号的存在,同时在深部弱信号区域,对有效信号的保真比较差㊂图9显示的是用笔者提出的方法处理的结果,从去噪剖面和误差剖面中可以看到,随机噪声不但得到了很好的压制,在构造复杂区的有效信号也得到了很好的保留,深部弱信号也得到了很好的保留㊂a 实际原始数据;b 常规方法去噪后的结果;c 误差剖面图8㊀实际数据常规处理结果a 本文方法去噪后的结果;b 误差数据图9㊀实际数据改进的方法处理结果4㊀结论改进的联合去噪技术,经过模型数据和实际数据的测试表明,该方法可以有效的压制地震数据中的随机噪声,对于复杂构造区的资料,在去噪的同时,更好地保留了有效信号,使反射波同相轴更加清晰㊁连续性更好,同时较好地保留了断点㊁断面的信息,是一种值得推广的随机噪声压制技术㊂㊃58㊃物㊀探㊀与㊀化㊀探37卷㊀参考文献:[1]㊀NeelamaniR,BaumsteinAI,GillardD,etal.Coherentandrandomnoiseattenuationusingthecurvelettransform[J].TheLeadingEdge,2008:240-248.[2]㊀唐刚.基于压缩感知和稀疏表示的地震数据重建和去噪[D].北京:清华大学,2010.[3]㊀卢成武,宋国乡.带曲波域约束的全变差正则化抑噪方法[J].电子学报,2008,36(4):646-649.[4]㊀倪雪,李庆武,孟凡,等.基于Curvelet变换和全变差的图像去噪方法[J].光学学报,2009,29(9):2390-2394.[5]㊀CandèsEJ,DonohoDL.Curvelets:Asurprisinglyeffectivenon⁃adaptiverepresentationforobjectswithedges[M].NashvilleTN:VanderbiltUniversityPress,2000:105-120.[6]㊀CandèsEJ,DemanetL,DonohoD,etal.Fastdiscretecurvelettransforms[C]//AppliedandComputationalMathematics,Califor⁃niaInstituteofTechnology,2005:1-43.[7]㊀HerrmannFJ,VerschuurE.Curveletdomainmultipleeliminationwithsparsenessconstraints[J].SocietyofExplorationGeophysi⁃cists,ExpandedAbstracts,2004:1333-1336.[8]㊀HerrmannFJ,VerschuurE.Separationofprimariesandmultiplesbynon⁃linearestimationinthecurveletdomain[C]//EAGE66thConferrence&ExhibitionProceedings,2004.[9]㊀俞华,薛永安,王勇,等.曲波变换及全变差最小化技术联合去噪[J].石油物探,2012,51(4):350-355.[10]RudinLI,OsherS,FatemiE.Nonlineartotalvariationbasednoiseremovalalgorithms[J].PhysicaD.,1992,62(1):63-67.ANIMPROVEDRANDOMATTENUATIONMETHODBASEDONCURVELETTRANSFORMANDTOTALVARIATIONXUEYong⁃an,WANGYong,LIHong⁃cai,LUShu⁃qin(GeophysicalProspectingTechnologyResearchInstitute,JiangsuOilFiledBranchofSinopec,Nanjing㊀210046,China)Abstract:Randomnoisecanbeeffectivelyattenuatedbasedonconventionalcombinationofcurvelettransformandtotalvariationtech⁃nology.Thiscombinationtechnologycanreducethepseudo⁃gibbseffectsandthealiasedcurvesresultingfromusingcurvelettransform,butthismethodisnotconducivetothefidelityofseismicdataprocessing.Inthispaper,arandomnoiseattenuationmethodisputfor⁃wardbasedonmulti⁃scaleandmulti⁃directionimprovedDonohothresholds,Thisimprovedcombinationtechnologycanveryeffectivelyovercomethedisadvantagesofconventionalcombinationtechnologyandbetterpreservethesignalofseismicdata.Whenthismethodisusedtoattenuaterandomnoise,wemustchooseappropriatethresholdfactorsateveryscaleandineverydirection,anditisunlikecon⁃ventionaltechnologywhichonlychoosesonefixedproportionthresholdfactorsofallcurveletcoefficients.Theoreticalmodelandrealdataprocessingresultsshowthatthistechnologycanmaximallypreservethesignalofseismicdata,soithasagoodprospectintheseismicdataprocessing.Keywords:curvelettransform;totalvariation;randomnoise;multi⁃scale作者简介:薛永安(1984-),男,工程师,2010年硕士毕业于中国石油大学(北京),现在江苏油田物探技术研究院从事采集㊁处理以及方法方面的研究工作㊂㊃68㊃。
基于时间和空间方向差分稀疏约束的叠前AVO反演
基于时间和空间方向差分稀疏约束的叠前AVO反演马彦彦;周辉;张洪礼【摘要】在叠前AVO反演中,常规的吉洪诺夫正则化方法不能突出异常体在纵向上的边界,并且忽略了地层的横向联系,导致反演结果产生边缘模糊现象.为了解决这一问题,这里基于Zeoppritz方程的Fatti近似公式和贝叶斯理论框架,以模型参数柯西分布作为先验约束,通过引入时间和空间方向的差分稀疏约束保护地层边界,并最终采用迭代重加权最小二乘算法实现纵、横波阻抗的同时多道反演.模型反演结果具有明显的地层边界和分层特征,表明该方法能够解决边缘模糊问题、保护不连续体的横向边界,大大提高了油气预测的准确度.【期刊名称】《物探化探计算技术》【年(卷),期】2015(037)005【总页数】6页(P616-621)【关键词】叠前AVO反演;差分稀疏约束;边界;同时多道反演【作者】马彦彦;周辉;张洪礼【作者单位】中国石油大学(北京) 油气资源与探测国家重点实验室,北京 102249;中国石油大学(北京) 油气资源与探测国家重点实验室,北京 102249;中国石油大学(北京) 油气资源与探测国家重点实验室,北京 102249【正文语种】中文【中图分类】P631.4地震叠前AVO反演方法能够利用不同入射角度叠加数据和测井数据,得到直接反映储层岩性、物性参数的多种弹性参数,提高预测精度,日渐成为储层预测的主流方法之一。
然而由于地震数据频带的限制,以及噪声、正演近似等因素的影响,导致该反演方法高度不适定[1]。
许多学者通过在目标函数中引入先验信息作为正则化约束,例如吉洪诺夫正则化方法,以提高反演问题的稳定性。
但是这种正则化方法常常会模糊地层岩性发生变化的位置和地质构造的边界等。
随着石油勘探开发逐渐向隐蔽油气藏,特别是向砂岩油气藏方向转变,迫切需要准确刻画砂体的空间分布特征。
因此研究基于边缘保护的反演方法能够更好地识别岩性,描述砂体分布。
边缘保护的思想最早起源于图像处理领域,主要采用全变分作为正则化约束项[2-3]。
质量英语词汇大全(中英对照)
品质名词〔中英对照〕AABC analysis ABC 阐发Abnormality 不正常性Abscissa 横坐标Absolute deviation 绝对离差Absolute dispersion 绝对离势Absolute error 绝对误差Absolute frequency 绝对次数Absolute number 绝对数Absolute reliability 绝对可靠度Absolute term 绝对项Absolute value 绝对值Absolute variation 绝对变异Abstract number 抽象数Abstract unit 抽象单元Accelerated factor 加速系数,加速因子Accelerated life test 加速寿命试验Accelerated test 加速试验Acceleration 加速度Acceptable limit 允收边界Acceptable process 允收制程程度Acceptable quality 允收品质Acceptable quality level (AQL) 允收质量程度Acceptable reliability level (ARL) 允收可靠度程度Acceptability 允收性Acceptability criterion 允收尺度Acceptance 允收,验收Acceptance, probability of 允收机率Acceptance, region of 允收区域Acceptance and rejection criteria 允收与拒收准那么Acceptance boundary 允收边界Acceptance coefficient 允收系数Acceptance control chart 验收管制图Acceptance cost 验收费用Acceptance criteria 允收准那么Acceptance error 允收误差Acceptance inspection 验收查验Acceptance limit 允收边界Acceptance line 允收线Acceptance number 允收〔不良品〕数Acceptance plan 验收方案Acceptance procedure 验收程序Acceptance/rectification scheme 允收/精选方案Acceptance sampling, attribute 计数值验收抽样Acceptance sampling, variable 计量值验收抽样Acceptance sampling plan 验收抽样方案Acceptance sampling scheme 验收抽样方案Acceptance test 验收试验Acceptance value 允收值Acceptance zone 允收区域Acceptance product 允收品Accepting lot 允收批Access time 接近时间,故障诊断时间Accessibility 可接近性Accident rate 不测率Accidental error 偶误,偶然误差Accidental fluctuation 偶然波动Accidental movement 不测移动Accounting test 验算〔决算〕试验Accumulated operating time 累积操作时间Accuracy 准确度Accuracy of data 数据准确度Accuracy of estimation 估计准确度Accuracy of the mean 平均数准确度Achieved availability 实际可用度Action 步履,办法Action, corrective 矫正步履〔办法〕Action control chart 步履管制图Action limit 步履边界Active line 步履线Active maintenance time 实际维护时间Active parallel redundancy 主动并复联〔置〕Active preventive maintenance 现行预防维护时间Active redundancy 主动复联〔置〕Active repair time 实际修复时间Active standby 主动备用Active time 运用时间Actual frequency 实际次数Actual limit 实际边界Actual range 实际全距Actual value 实际值Adaptability 可适应性Adaptive control 点窜管制Addition theorem 加法定理Additivity 加法性,可加性Adjusted average 修正平均数Adjusted value 修正值Adjustment factor 调整系数Administration time for a repair 修复之办理时间Administrative time 办理时间Adopted value 采用值Advisory Group on Reliability of Electronic Equipment (AGREE) 电子装备可靠度参谋团Aeronautical Radio, Incorporated (ARINC) 航空无线电公司After-sales service 售后效劳Age 年限Age at death 死亡年限Age at failure 掉效年限Age-based maintenance 年限基准维护Aggregative method 综合法Aging 老化Agreement of quality assurance 质量包管之协议Agreement on verification method 验〔查〕证方法之协议Alarm signals 警告〔报〕讯号Alert time 待命时间Algebraic sum 代数和Algorism (Algorithm) 阿拉伯数字计数法Alias 假名Alienation 余相关Alignment chart 列线图Allocation 配当Allocation of reliability 可靠度配当Allowable percent defective (Acceptable quality level, AQL) 允收不良率〔允收质量程度〕Allowance 允差,裕度Alternative hypothesis 对立假设American Management Association (AMA) 美国办理协会American National Standards Institute (ANSI) 美国尺度协会American Society for Quality Control (ASQC) 美国质量办理学会American Society for Mechanical Engineers (ASME) 美国机械工程师学会American Society for Testing and Materials (ASTM) 美国材料试验学会American Standard Association (ASA) 美国尺度协会American Statistical Association (ASA) 美国统计协会American War Standards (AWS) 美国战时尺度Ambient condition 周遭条件Analysis, sequential 逐次阐发Analysis by accumulated frequency 累积法,累积次数阐发Analysis by non-accumulated frequency 次数法,非累积次数阐发Analysis of correlation 相关阐发Analysis of covariance 共变异数阐发Analysis of means (AVON) 平均数阐发Analysis of problem 问题之阐发Analysis of variance (ANOVA) 变异数阐发Analysis sample 阐发样本Analytical error 阐发误差Angular transformation 角度转〔变〕换Anti-logarithm 逆对数Anti-mode 逆众数AOQL Sampling Table 平均出厂质量边界抽样数Applicability 应用性Applied statistics 应用统计学Apportionment of reliability 可靠度配当Apportionment techniques 配当技术Appraisal cost 鉴定成本,评估成本Appraisal system 评估制度Appraisal of quality 质量评估Approach to sequential testing 逐次试验法Approval of processes and equipment 核准制程与设备Approximate mode 近似众数Approximate number 近似数值Approximation 近似法,概算AQL (Acceptable quality level) 允收〔质量〕程度Arbitrary average (Assumed average,Arbitrary mean) 假定平均数Arbitrary origin 假定原点Arbitrary scale 假定标度Area bar chart 面积条图Area chart (diagram, graph) 面积图Area sampling 地域抽样Arithmetic average 算术平均数Arithmetic cross 算术交叉Arithmetic graph 算术图Arithmetic line chart 算术线图Arithmetic mean 算术平均数Arithmetic paper 算术纸Arithmetic probability paper 算术机率纸Arithmetic progression (Arithmetic series) 算术级数,等差级数Arithmetic scale 算术标度,等差标度Arithmetic series 算术级数,等差级数Army Ordnance Table 陆军兵工署〔抽样〕表Army Service Forces Table 陆军〔抽样〕表序列Array 序列Array distribution 序列分配〔布〕Array of data 数据序列Assemble 装配〔组立〕Assembled product 装配品Assembly 装配件Assembly inspection 装配查验Assembly quality analysis report 装配质量阐发陈述Assessed failure rate 评估掉效率Assessed mean active -maintenance time 评估时间现行维护时间Assessed mean life 评估平均寿命Assessed mean time between failures 评估平均掉效间格时间Assessed mean time to failure 评估平均掉效前时间Assessed reliability 评估可靠度Assessed value 评估值Assessment of subcontractor 分包商之评鉴Assignable cause (Special cause) 非机遇原因〔特殊原因〕Assignable variation 非机遇变异Associated dependent variable 相联因变数Associated variate 相联变量Association coefficient 相联系数Association of attribute 品性相联Association table 相联表,联合表Assumed mean (Assumed average,Arbitrary average) 假定平均数Assumed median 假定中位数Assumed origin 假定原点Assurance quality 包管质量Assurance function 包管功能Asymmetrical distribution 不合错误称分配〔布〕Asymmetry 不合错误称Asymptotic distribution 趋近分配〔布)At random 随机Attribute 计数值,属性Attribute classification 品性分类Attribute data 计数数据Attribute inspection 计数值查验Attribute sampling 计数值抽样Attribute sampling plan 计数值抽样方案Attribute testing (Go no-go testing) 计数值试验〔通过与不通过试验〕Attribute value 计数值Audit 稽核Audit for reliability 可靠度稽核Audit of decision 稽核决策Audit plan 稽核方案Audit report 稽核陈述Auditing report 稽核陈述Auto-correlation 自动相关Automatic switch-over redundancy 自动切换复联〔置〕Automatic test equipment (Am) 自动试验装备Auto-regression 自动回归Availability 可用性,可用度Average (Mean) 平均数,平均值Average, grand 总平均Average, moving 移动平均数Average, sample 样本平均数Average, standard error of 尺度误平均数Average, universe 群体平均数Average, weighted 加权平均数Average amount of inspection 平均查验数Average and range chart 平均数及全距〔管制〕图Average availability 平均可用度Average deviation (A.D.) (Mean deviation) 平均差Average error (Mean error) 平均误差Average number of defects 平均错误谬误数Average of ratios 比例平均数Average outgoing quality (AOQ) 平均出厂质量Average outgoing quality curve 平均出厂质量曲线Average outgoing quality level 平均出厂质量程度Average outgoing quality limit (AOQL) 平均出厂程度Average quality level 平均出厂质量边界Average quality level line 质量平均线Average quality protection 平均质量庇护Average range 平均全距Average run length (ARL) 平均连串长度Average sample number (ASN) 平均样品数Average range 平均全距Average run length (ARL) 平均连串长度Average sample number(ASN) 平均样本数Average sample number curve 平均样本曲线Average sample size (ASS) 平均样本大小Average sample size curve 平均样本大小曲线Average sample 平均抽样Average total inspection (ATI) 平均总查验〔件〕数Average total inspection curve 平均总查验数曲线Average value 平均值Avoidable cause 可防止之原因Avoidable quality cost 可防止之质量成本Axiom 公理Axis 轴Axis of abscissa 横轴Axis of ordinate 纵轴BBad lot 坏批Balance frequency 平衡次数Balanced complete type 平衡完备型Balanced design 平衡设计Balanced experiment 平衡尝试Balanced incomplete type 平衡不完备型Balanced sample 平衡样本Band chart 带形图Band curve chart 带形曲线图Bank of reliability data 可靠度数据库Bar chart (diagram) 条〔形〕图Bartlett's test 巴特莱特试验Base line 基线Base number 基数Base period 基期Base point 基点Basic reliability 底子可靠度Batch (Lot) 批Batch of material 材料批Batch process 分批制造方法Batch size 批量Batch testing 批试验Bathtub curve 浴缸曲线Bathtub failure curve 浴缸掉效曲线Bayes' estimator 贝式估计式Bayes' theorem 贝式定理Bayesian approach 贝式法Bayesian approcah to design 贝式设计法Bayesian estimation 贝式估计Bead map 标珠图Bell-shaped curve 钟形曲线Bell-shaped distribution 钟形分配〔布〕Bell-shaped failure pattern 钟形掉效型态JBell System 贝尔系统Bell Telephone Laboratories 贝尔尝试室Bell Telephone Laboratories Sampling Table 贝尔〔尝试室〕抽样表Benign failure 无危险的掉效Bernoulli distribution 白努利分配〔布〕Best fit 最适配合Best fitting line 最适线Best fitting curve 最适曲线Best linear invariant estimator 最正确线型不变估计式Best linear unbiased estimator 最正确线型不偏估计式Beta coefficient β系数Beta distribution β分配〔布〕Beta function β函数Between-class variance 组间变异数Between-column variance 组间变异Between-column variation 行间变异Between-row variation 列间变异Between sample variation 样本间变异Bias 偏差Bias, downward 向下偏差Bias, downward type 向下型偏差Bias, upward 向上偏差Bias, upward type 向上型偏差Biased error 偏误Biased estimate 偏差估计Biased sample 偏差样本Biased test 偏差试验Bilateral 双边Bill of material (BOM) 物料清单Bimodal 双峰Bimodal curve 双峰曲线Bimodal distribution 双峰分配〔布〕Bimodal redundancy 双峰型复联〔置〕Bimodality 双峰性Binary system 二元制Binomial, skewed 偏态二项Binomial coefficient 二项系数Binomial curve 二项曲线Binomial distribution 二项分配〔布〕Binomial equation 二项方程式Binomial expansion 二项展开式Binomial population 二项群体Binomial probability distribution 二项机率分配〔布〕Binomial probability paper(BIPP) 二项机率纸Binomial series 二项级数Binomial theorem 二项定理Bi-serial 双数列Biserial correlation 双数列相关Biserial coefficient of correlation 双数列相关系数Biserial ratio of correlation 双数列相关比Bivariate 双变量Bivariate distribution 双变量分配〔布〕Bivariate frequency distribution 双变量次数分配〔布〕Bivariate normal distribution 双变量常态分配〔布〕Blend 混,混合Block 量块,〔尝试〕区,方块Block design 尝试区设计Block diagram 方块图Block factor 地域因素Block in series 串联方块Boundary 界Boundary, cell 组界Bowker-Goode variables plan Bowker-Goode 记量值〔抽样〕方案Bowl drawing 碗珠抽样Bowl experiment 碗珠尝试Bowl test 碗珠试验Bowley's coefficient of skewness Bowley偏态系数Bowley's formula Bowley公式Bureau of Ordnance, U.S. Navy 美国海军兵工署Break-even chart 损益平衡图Break-even point (BEP) 损益平衡点Breakthrough 冲破British Standards Institution 英国尺度协会Broken curve 中断曲线Broken series 中断数列Broken trend 中断趋势Built-in test (BIT) 内含测试,自测Bureau of Commodity Inspection and Quarantine (BCIQ) 商品查验局Bulk sampling Burn-in 大宗抽样Business Process Management (BPM) 业务流程办理Buyer 买方,客户CC chart C〔管制〕图Calculated value (Computed value) 计算值Calculation chart 计算图Calendar time 日历时间Calibration 校正Calibration record 校正记录Camp-Meidell inequality Camp-Meidell不等式Capability 能力Capability, machine 机器能力Capability, process 制程能力Capability ratio 能力比Capacity 能量,容量Caption 纵标目Carrying out the audit 实施稽核Cartogram 统计图Case method 个案法Catastrophic failure 俄然故障,崩坏掉效,致命掉效Category 类别Cauchy distribution Cauchy 分配〔布〕Causality 因果律Cause 原因Cause, assignable 非机遇原因Cause, avoidable 可防止原因Cause, chance 机遇原因Cause, common 共同原因Cause, findable 可寻找原因Cause, random 随机原因Cause, special 特殊原因Cause, substantial 本质原因Cause, unavoidable 不成防止原因Cause and effect 因果Cause and effect diagram 特性要因图Cell 组Cell boundary 组界Cell deviation (d) 组离差Cell frequency (f) 组次数Cell interval (i,h) 组距Cell limit 组限Cell method 分组法Cell mid-point (Xm) 组中点Cell value 组值Censored sample 检剔样本Censored test 检剔试验Censorship 检剔Census 普查Center line 中线Central inspection station 中央查验站Central limit theory 趋中理论,中央极限理论Central limit theorem 趋中理论,中央极限理论Central line (CL.) 中心线Central moment 中心动差Central ordinate 中纵坐标Central tendency 集中趋势Central value 中值,中心值Certainty 确定性Certified chart 验证图Certified equipment 合格设备Certified quality engineer (CQE) 合格质量工程师Certified quality technician (CQT) 合格质量技术师Certified reliability engineer (CRE) 合格可靠度工程师Certification 验证Chain model 炼结模型Chain reliability 炼结可靠度Chain sampling plan (CHSP) 炼结抽样方案Chance 机遇Chance cause 机遇原因Chance error (Probable error) 机遇误差,机误Chance factor 机遇因素Chance failure 机遇故障,机遇掉效Chance failure period 机遇掉效期Chance fluctuation 机遇波动Chance variable 机遇变数Chance variation 机遇变异Change control 改变〔变动〕办理Chaotic variation 混乱变异Characteristic 〔质量〕特性Characteristic, qualitative 质的特性Characteristic, quantitative 量的特性Characteristic curve, operating (OC curve) 操作特性曲线,OC曲线Characteristic diagram 特性要因图Characteristic function 特性函数Characteristic life 特性寿命Characteristic operating curve (OC curve) 特性操作曲线〔OC曲线〕Characteristic value 特性值Chargeable failure 可计列掉效,故障Charlier check Charlier 覆检法Chart 图,〔管制〕图Chart, acceptance control 验收管制图Chart, average and range 平均数及全距〔管制〕图Chart, average number of defects 平均错误谬误数〔管制〕图Chart, control 管制图Chart, cumulative sum 累积和〔管制〕图Chart, defects per unit 每单元内错误谬误数〔管制〕图Chart, fraction defective 不良率〔管制〕图Chart, group 多项〔管制)图Chart, individual 个别值〔管制〕图Chart, median 中位数〔管制〕图Chart, moving and range 移动平均数及全距〔管制〕图Chart, moving range 移动全距〔管制〕图Chart, modified control limits 修正管制边界〔管制〕图Chart, multi-variation 变异值〔管制〕图Chart, multiple 复式〔管制〕图Chart, number defectives 不良〔品〕数〔管制〕图Chart, number of defects 错误谬误数〔管制〕图Chart, percent defective 不良率管制图Chart, range 全距〔管制〕图Chart, run 操作〔记录〕图Chart, shop 工厂〔管制〕图Chart, Shewhart control Shewhart 管制图Chart, two-way control 双向管制图Chebyshev's inequality Chebyshev 不等式Check inspection 复核查验Check sampling 复核查验员Check inspector 复核抽样Chi-square ,卡方Chi-square distribution 分配〔布〕,卡方分配〔布〕Chi-square test 检定,卡方检定Chi-squared distribution 分配〔布〕,卡方分配(布〕Chip 小圆片Chronic defect 慢性错误谬误Chronological chart 时序图Chronological series 时序数列Class 组Class boundaries (True class limits)组界〔真实组限〕Class form 组形Class frequency (f) 组次数Class interval (i,h) 组距Class limit 组限Class mark 组标,中值Class mean 组平均数Class mid-point(Xm) 组中点Class mid-value 组中值Class of median 组中位数Class value 组值Classes, number of 组数Classification chart 分组,分类Classification frequency 分组次数Classification frequency series 分组次数数列Classification of defectives 不良品分类Classification of defects 错误谬误分类Classfication of failure 掉效分类,故障分类Classification process 分组〔方〕法Clearance 间隙,余隙Cluster 集团Cluster sampling 集团抽样Cochran's test Cochran 检定Code 简化,代号Code letter 代字Coded unit 简化单元Coded value 简化值Coding 简化Coding rule 简化规那么Coefficient 系数Coefficient, correlation 相关系数Coefficient of alienation 余相关系数Coefficient of association 相关系数Coefficient of binomial distribution 二项分配〔布〕系数Coefficient of colligation 束联系数Coefficient of contingency 列联系数Coefficient of correlation 相关系数Coefficient of determination (r2) 定限系数Coefficient of dispersion 离势系数Coefficient of kurtosis 峰度系数Coefficient of multiple correlation 复相关系数Coefficient of net correlation 净相关系数Coefficient of net regression 净回归系数Coefficient of non-determination 不定限系数Coefficient of part correlation 部份相关系数Coefficient of partial correlation 部份相关系数Coefficient of rank correlation 等级相关系数Coefficient of reliability 可靠度系数Coefficient of regression 回归系数Coefficient of skewness 偏态系数,偏斜系数Coefficient of variation (CV) 变异系数Cold standby 冷置系数Collective quality 集体品质Columbia sampling table Columbia 抽样方案Column (Column/Row) 行,纵行〔行/列〕Column head 标目Column diagram 直行图Combination 组合Combinational model 复合模型Combined environmental reliability test (CERT) 复合环境可靠度试验Combined failure 复合掉效,复合故障Combined stress life test 复合应力寿命试验Commissioning 委制Commodity 商品Common cause (Chance cause) 共同原因〔机遇原因〕Company standard 公司尺度Companys need 公司需要Company-wide quality control (CWQC) 全公司质量办理Comparability 可比性Comparable measure 可比量数Compensating error 抵偿误差Compensating fluctuation 抵偿波动Competing product 竞争产物Complete association 全相联Complete block design 完全区集法Complete confounding 完全交络Complete dissociation 全不相联Complete failure 完全故障,完全掉效Completely randomized design 完全随机法Complaint 抱怨Complaint index 抱怨指标Completed product verification 成品验证Component 组件,组件Component bar chart 成份条图Component distiibution 组成份分配〔布〕Component part diagram 成份图Component ratio 成份比Component reliability 组件可靠度Component variance 成份变异数Components of variance 变异数成份Composite curve 复合曲线Composite design 复合法Composite hypothesis 复合假设,组合假设Composite unit 复合单元Compound distribution 复合分配〔布〕Compound event 复合事件Compound probability 复合机率Compounding technique 复合法Compressed limit 压缩边界Compressed limit gauging 压缩边界规那么Computed value 计算值Concentric circle diagram 同心圆图Conception of limit 极限概念Conceptual design 概念设计Conceptual design review 概念设计审查Concession 特采,特认Concomitant factor 共变因素Concomitant variable 共变数Concomitant variation 共变异Concurrency 并行Condition maintenance 状态维护Condition monitoring 状态监督Condition-based maintenance 状态基准维护Conditional probability 条件机率Conditions of use 使用条件Confidence 信任,信赖Confidence coefficient 信任系数,信赖系数Confidence interval 信任区间,信赖区间Confidence in test results 试验成果的信赖度Confidence level 信任程度,信赖程度Confidence limit 信任边界,信赖边界Confidence range 信任全距,信赖全距Configuration control 型态管制Configuration items 型态件Configuration management 型态办理Confirmation 确认Conformance to the requirement 符合要求Conformation 一致Conforming article 合格品Conformity 符合Confounding 交络Confounding, complete 完全交络Confounding, partial 部份交络Connector 连接器Consignment 委托,寄售Consistency 一致性Constancy 长久性Constancy of great numbers 大数长久性Constant 常数Constant cause system 恒常原因系统Constant error 恒常误差Constant failure period 恒常掉效期Constant failure rate dustribution 恒常掉效率分配〔布〕Constant weight (Fixed weight) 固定权数Constraint 束缚Consultant 办理参谋师Consumer 消费者Consumer acceptance specification 消费者允收规格Consumerism 消费者主义Consumer's risk (CR) 消费者冒险率Consumer test panel 消费者试验小组Consumer preference 消费者偏好Consumer sensitivity test 消费者感官试验Contingency 列联Contingency coefficient 列联系数Contingency table 列联表Contingency theorem 列联理论Continuity correction 持续校正Continuous change 持续变动Continuous data 持续数据Continuous distribution 持续分配〔布〕Continuous production 持续出产Continuous sampling 持续抽样Continuous sampling plan (CSP) 持续抽样方案Continuous series 持续数列Continuous variable 持续变量Contract 合约Contract preparation 拟定合约Contract review 合约检讨Contract requirements 合约需求Contract requirements analysis 合约需求阐发Contractors 合约商Contrast analysis 对照阐发Control, in 在管制〔状态〕下Control, lack of 缺乏管制Control, out of 超出管制Control, state of 管制状态Control, under 在管制〔状态〕下Control chart 管制图Control chart, cumulative sum 累积和管制图Control chart, defects per unit 每单元内错误谬误数管制图Control chart, two-way 双向管制图Control chart factor 管制图系数Control chart for attribute 计数值管制图Control chart for variable (measurement) 计量值管制图Control chart method 管制图法Control chart pattern 管制图类型Control factor 管制因素Control gaging (gauging) 管制规测Control level 管制程度Control limit 管制边界Control limit, lower 管制下限Control limit, modified 修正管制边界Control limit, upper 管制上限Control limit factor 管制边界因子Control line 管制线Control of measuring and test equipment 量测与试验设备之管制Control of nonconforming material 不合格物料之管制Control of nonconforming product 不合格产物之管制Control of production 出产管制Control of reliability 可靠度管制Control of verification status 验证状况之管制Control plan 管制方案Control point 管制点Control station 管制站Control system 管制系统Controllability 可管制性Controlled process 管制制程Controlled state 管制状态Controlled variability 管制变异性Controlled variable 管制变数Controlling item 管制工程Convenience lot 合宜的批Convergence 收敛Cooked distribution 中断分配〔布〕Coordinate 坐标Coordinate axis 坐标轴Coordinate line 坐标线Coordination 协调Coordination for reliability 可靠度协调Correction 校正,修正Correction, Sheppard Sheppard 校正数Correction factor 修正因子Correction for continuity 持续校正Correction for mean 平均数校正Correction term 校正项Corrective action 矫正步履,改正办法Corrective maintenance 矫正维护,改正维护Corrective maintenance time 矫正维护时间,改正维护时间Corrective sorting 修正选别Correlated measure 相关量数Correlated samples 相关样本Correlation 相关Correlation, coefficient of 相关系数Correlation, direct 直接相关Correlation, index of 相关指数Correlation, inverse 反相关Correlation, multiple 复相关Correlation, negative 负相关Correlation, net 净相关Correlation, nonlinear 非线性相关Correlation, nonsense 无意义相关Correlation, part 部份相关,偏相关Correlation, partial 部份相关,偏相关Correlation, perfect 完全相关Correlation, rank 等级相关Correlation, serial 数序相关Correlation, simple 简相关Correlation, zero 零相关Correlation analysis 相关阐发Correlation chart 相关图Correlation, coefficient 相关系数Correlation coefficient, rank 等级相关系数Correlation matrix 相关矩阵Correlation of attributes 品性相关Correlation ratio 相关比Correlation of x on y x与y的相关比Correlation ratio of y on x y与x的相关比Correlation scatter chart 相关散布图Correlation surface 相关面Correlation table 相关表Correlation theory 相关理论Correlogram 相关图Corrosive atmosphere 腐蚀性空气Cost 成本,费用Cost, acquisition 取得成本Cost, appraisal 评估〔鉴定〕成本Cost, external failure 外部掉败成本Cost, internal failure 内部掉败成本Cost, life cycle 寿命周期成本Cost, logistic 后续成本Cost, prevention 预防成本Cost, quality 质量成本Cost, quality control 质量办理成本Cost, rework 重加工成本Cost effectiveness 成本效益Cost function 成本机能Cost model for reliability optimization 可靠度最正确化成本模式Cost reduction 成本减低Count (Countable) data 点计数据Counter variation 反行变异Co-variation 共变异Covariance 共变异数,共变数Covariance analysis 共变异数阐发Covariance matrix 共变异矩阵Craps, game of 掷骰游戏Credibility 信用Creep failure 潜变掉效,潜变故障Crest 峰Criteria for workmanship 工作技艺准那么Criterion 准那么,尺度Criterion, acceptance 验收准那么〔尺度〕Critical component control 重要组件管制Critical defect 严重错误谬误Critical defective 严重不良品Critical design review 关键设计审查Critical failure 关键故障,严重掉效Critical items 关键品目,重要件Critical path 要径Critical path analysis 要径阐发法Critical region 临界区域,弃却区域,判定区Critical value 临界值,判定值Criticality 严重性,关键性Cross 交叉Cross check 互校Cross classification 交叉分类Cross correlation 交叉相关Cross formula 交互公式Cross-hatch 交叉线Cross-hatched map 交叉图Cross-over design 交叉方案Crossed design 交叉法Crude mode 概括众数Crude moment 概括动差Cubic chart (diagram) 立方图Culled 检选Cumulant 累积数Cumulation, downward 向下累积Cumulation, total 全部累积Cumulation, upward 向上累积Cumulation average chart 累积平均数〔管制〕图Cumulative curve 累积曲线Cumulative curve chart 累积曲线图Cumulative damage 累积损坏Cumulative distribution (Ogive) 累积分配〔布〕Cumulative distribution function 累积分配〔布〕函数Cumulative error 累积误差Cumulative failure frequency 累积故障次数,累积掉效次数Cumulative frequency 累积次数Cumulative frequency arrangement 累积次数摆列Cumulative frequency curve 累积次数曲线Cumulative frequency 累积次数曲线图Cumulative frequency distribution 累积次数分配〔布〕Cumulative frequency polygon 累积〔次数〕多边形Cumulative frequency (probability) function 累积次数〔机率〕函数Cumulative frequency table 累积次数表Cumulative function 累积函数Cumulative graph 累积图Cumulative hazard function 累积冒险函数Cumulative mean 累积平均数Cumulative normal distribution 累积常态分配Cumulative number of failures 累积掉效数,累积故障数Cumulative percentage of failures 累积掉效百分率,累积故障百分率Cumulative probability distribution 累积机率分配〔布〕Cumulative sum 累积和Cumulative sum chart 累积和〔管制〕图Cumulative sum control chart 累积和管制图Cumulative terms 累积项Curtailed (Truncated) inspection 截略查验Curtailed (Truncated) sample inspection截略样品查验Curtailed sampling 截略抽样Curtailed sampling inspection 截略抽样查验Curtaijed sampling plan 截略抽样方案Curtailment of sampling plan 抽样方案之截略Curve 曲线Curve, frequency 次数曲线Curve, normal 常态曲线Curve chart (diagram) 曲线图Curve fitting 曲线配合Curve of error 误差曲线Curve of means 平均数曲线Curve of probability 机率曲线Curve type criterion 曲线型准那么Curve shape 曲线形状Curvilinear correlation 曲线相关Curvilinear regression 曲线回归Curvilinear trend 曲线趋势Curvilinearity 曲线性Customer 客户,顾客Customer complaint 顾客抱怨Customer feedback information 顾客回馈信息Customer incurred cost 顾客引发成本Customer operation cost 顾客作业成本Customer repair cost 顾客补缀成本Customer requirement 顾客要求Customer satisfaction 顾客对劲度Customer's need 顾客需要Cusum chart 累积和〔管制〕图Cycles 周期Cycles between failures 掉效间隔周期,故障间隔周期Cycle of operation 操作周期Cyclic curve 周期〔循环〕曲线Cyclic damage 周期性损坏Cyclic load 周期性负荷Cyclical deviation 周期〔循环〕离差Cyclical fluctuation 周期波动Cyclical trend 周期趋势Cyclical movement 周期移动Cyclical variation 周期变异Cycling failure rate 周期性掉效率,周期性故障率DD chart d管制图Data 数据Data analysis 数据阐发Data bank 资料室〔库〕Data exchange program 数据交换方案Data, inspection 查验数据Data item 数据项,文件工程Data processing 数据措置Death rate 死亡率Debug (debugging) 除错Decile 十分位数Decimal fraction 小数Decision function 决策函数Decision line 决定线Decision making 决策Decision variable 决策变数Decreasing failure rate distribution 递减掉效率分配(布〕Decrement 减量Decrement rate 减率Defect 疵病,错误谬误Defect, chronic 慢性错误谬误Defect, critical 严重错误谬误Defect, incidental 偶发错误谬误Defect, major 主要错误谬误Defect, minor 次要错误谬误Defect, sporadic 突发错误谬误Defect and failure analysis 错误谬误与掉效阐发Defect chart 错误谬误数〔管制〕图Defect Free 零错误谬误Defect prevention 错误谬误预防Defects, number of 错误谬误数Defects classification 错误谬误分类Defects per hundred units (dphu) 百件错误谬误数Defects per unit chart 每单元〔内〕错误谬误数〔管制〕图Defects per unit plan 每单元〔内〕错误谬误数〔管制〕方案Defective 不良品Defective, fraction 不良率Defective chart 不良品数〔管制〕图Defective material 不良材料Defective number 不良品数Defective part 不良零件Defective parts, percentage of 不良零件百分率Defective prevention 不良品预防Defective unit 不良品〔单元〕Defectives, number of 不良〔品〕数Defectives classification 不良品分类Definition(s) 定义Deflated series 调节数列Deflated value 调节值Deflating index 调节指数Degradation 劣化Degradation failure 劣化故障,劣化掉效Degree of accuracy 准确度Degree of approximation 近似度Degree of association 相联度Degree of confidence 信任〔赖〕度Degree of contribution 奉献度Degree of freedom (DF) 自由度Degree of reliability 可靠度Delivery 交货,出厂Delivery inspection 出厂查验Delivery qulaity 出厂品质Delivery time 运送时间Demerit 减点Demerit chart 减点〔数〕〔管制〕图Demerit rating 减点评比Demerits per unit 每单元〔内〕减点数Demonstration 示范,验证,展现Demonstration test 验证试验,展现试验Density function 密度函数Dependability 可恃性,相依性,依赖性Dependent factor 因变因子Dependent failure 相依掉效,相依故障Dependent variable 因变数Derating 降等,额降,减额定Derivation 导出Derived table 导出表Descriptive item 说明项Descriptive statistics 记述统计〔学〕Design 设计Design baseline 设计准那么Design change 设计变动Design considerations 设计考虑Design control 设计管制Design change control 设计变动管制Design control, new 新设计管制Design criterion 设计准那么Design disclosure package 设计启导文件Design effect cost 设计效应成本Design freeze 设计冻结Design in 设计进去Design input 设计输入Design matrix 设计矩阵Design output 设计输出Design of experiment 尝试方案Design planning 设计规画Design profile 设计轮廓Design proving 设计承认Design qualification 设计之合格性Design release 设计发布Design requalification 设计合格之再认定Design review 设计审查Design specification 设计规格Design validation 设计确认Design verification 设计验证,查证Design verification test 设计验证试验。
非极大值一致 nms的工作流程英语
非极大值一致 nms的工作流程英语Non-Maximum Suppression (NMS)。
Non-maximum suppression (NMS) is a technique used in object detection to remove redundant bounding boxes that overlap with each other. It aims to retain only the most confident bounding boxes that are likely to contain the object of interest.Workflow of Non-Maximum Suppression.The workflow of NMS involves the following steps:1. Input: NMS takes as input a set of bounding boxes and their corresponding confidence scores.2. Sort Confidence Scores: The bounding boxes are sorted in descending order of their confidence scores.3. Iterate Over Bounding Boxes: The algorithm iteratesover the bounding boxes in descending order of their confidence scores.4. Select Best Bounding Box: The bounding box with the highest confidence score is selected as the best bounding box.5. Calculate Overlap: For each subsequent bounding box in the iteration, the algorithm calculates the overlap between it and the best bounding box.6. Suppress Overlapping Boxes: If the overlap between a subsequent bounding box and the best bounding box exceeds a predefined threshold, the subsequent bounding box is suppressed and removed from the list of bounding boxes.7. Repeat Until No Overlap: Steps 5 and 6 are repeated until there are no more overlapping bounding boxes.8. Output: The output of NMS is a set of non-overlapping bounding boxes that represent the most confident object detections.Threshold Selection.The threshold used for overlap calculation is crucialfor the effectiveness of NMS. A low threshold can result in excessive suppression, while a high threshold may lead to missed detections. The optimal threshold value depends on the specific object detection task and the size of the bounding boxes.Variations of Non-Maximum Suppression.There are several variations of the basic NMS algorithm, including:Soft NMS: This variation allows for partialsuppression of overlapping bounding boxes, preserving bounding boxes with lower confidence scores but higher overlap.Adaptive NMS: This variation adjusts the suppression threshold based on the size of the bounding boxes toaccommodate scale variations.Weighted NMS: This variation assigns weights to the bounding boxes based on their confidence scores and spatial locations to prioritize suppression of less important bounding boxes.Applications of Non-Maximum Suppression.NMS is widely used in object detection and computer vision applications, such as:Object localization.Image classification.Facial detection.Pedestrian detection.Vehicle detection.Scene understanding.Additional Notes:NMS is a greedy algorithm, meaning it makes locally optimal decisions at each step without considering thelong-term impact on the result.NMS can be computationally expensive for large sets of bounding boxes.Alternative approaches to NMS for removing redundant bounding boxes include grouping and clustering techniques.。
西门子数字工业软件 - 自动驾驶汽车开发辅助功能验证与验证说明书
Nico Nagl –Portfolio Development Autonomous DrivingValidation & VerificationADAS-Fahrfunktionen effizient validieren und verifizierenWhere today meets tomorrow.Nico Nagl –Portfolio DevelopmentConnectivityAutonomous VehiclesShared MobilityVehicle ElectrificationDisruptive InnovationKey to sustained businessEngineering the NEXT product not just the best product for the futureAddressing challenges for autonomous driving vehicle developmentFROM ADAS TO AUTONOMOUS DRIVING“+25% CAGR (through 2030) for Sensors”Roland Berger , on “Autonomous Driving”, 2014…“14.2 billion kilometers of testing is needed”Akio Toyoda, CEO of ToyotaParis Auto Show 2016“Design validation will be a major –if not thelargest –cost component”Roland Berger“Autonomous Driving” 2014Engineering implications of the AV development challengeIncreasing software and hardware complexityMassive validation and verification cyclesGrowing number and variety of sensorsComplex interactions between systems Rethinkthe vehicle development processesWhile balancing safety, comfort and efficiency performancesGrowing number and variety of sensorsMassive validation and verification cycles Reconciling agility with better traceabilityIncreased hardware and software complexityADAS/AV systems virtual V&V Automotive industry needsVirtual validation(MiL, SiL)Semi virtual validation(HiL, DiL, VehiL)Real validationvehicle testing(proving ground, public road)~106test cases~103test cases~102test cases~102test cases~102test cases~102test casesSAE level 1 to 5SAE level 1 to 5SAE level 1 to 5Need for efficient and automated simulation orchestrationFAILING IN SIMULATION DOES NOT KILL PEOPLEDo Things Right-Doing the Right ThingsEfficiency and EffectivenessADAS/AV systems virtual V&VAutomotive industry needs•Take not ideal world into account•Need for realistic and non-idealenvironments•Need for more vehicle physics than before •Simulation of appropriate scenarios is essentialDesign, Validation & Verification framework for ADAS and AVMiL / SiL / ClusterHiL / DiL / ViLProving ground /field testV&V environmentsDigital Twin “World”Digital Twin “Vehicle”Design adaptations(HW/SW)1M –10M scenariosRequirementsMultiple variantsCertification -HomologationSimulation definitionRequirements & system architectures Real worldVehicle under developmentMassive Verification and Validation of ADAS and AVsRequirementsCertification -HomologationSimulation definitionRequirements & system architectures Real worldVehicle under developmentDigital Twin “World”Digital Twin “Vehicle”Multiple variants1M –10M scenariosMiL / SiL / ClusterV&V environmentsHiL / DiL / ViLProving ground /field testChallenge:From thousands of scenarios (or millions of miles) to the relevant critical representationClosed loop automated process for generating critical scenariosOrchestration of virtual test scenarios“Falsification”Identify critical scenariosDigital Twin of the World1000’s of scenarios(weather, light, road types, …)(sensors, controls,powertrain, chassis)…Data Mining, AnalyticsOptimize vehicleonly againstrelevant criticalscenariosDigital Twin of theTest VehicleSimcenter Prescan Virtual testing of autonomous driving functions Complete sensor models library:Camera, Radar, LIDAR, Ultrasone, Infrared, V2X, GPS Scenario 1 -Adaptive Cruise Control ACC Scenario 2 –Advanced Emergency Braking SystemAEBSSimcenter Prescan: camera simulation Ground truth: depth camera exampleWorld modelling solutionsScenario import Scripted scenario generation Ready to use scenariosGUIWorld modelling: non-ideal environmentRealistic bumped asphalt Faded, dirty lane markersNon-perfect lane markers Lane markers with snow Mud, water puddles on the roadSimcenter Prescan–Scenario generation From real data to simulationSimcenterPrescan World modelling: custom data source importKITTI DatasetEgoGPS DataTarget GPS Data Ego state Prescan APIRoadnetwork TargetstatesTarget typesWorld modelling: DataModel APIExplore critical scenarios Prepare for certification •Prescan DataModel API→programmatic creation of scenarios→Repeatability•All important assets can be created viascripting:•Roads•Actors•Traffic signs•Nature elements•Trajectories•Environmental conditions •Etc.Parameter variationV 2X &U l t r a s o n i c R a d a r & L i d a r C a m e r a Ready to use sensor modelsSensor simulationV2N V2VV2P V2ISensors models: the right fidelity level for scaled-up simulationBalancing accuracy andcomputation time ofsensor simulationsLidar (spinning and solid-state)Physics-based Radar simulationExample: during night-time driving Example: Realistic lighting conditionsSimcenter Prescan Physics Based Camera (PBC) simulationRadar simulation exampleDevelopment with model validation in mindTwo projects for radar models validation performed in close collaboration withmajor Dutch Tier2 and Japanese Tier1From a lab… To a test track… To the real world…Radar SimulationValidating simulation results against measured dataReal World Testing•Vehicle with radar•Range-doppler measurementsSimulation Testing•Simulated vehicle using thephysics-based radar model•Range-doppler data generatedbased on the simulated scenarioWhen higher fidelity vehicle dynamics makes the difference!For AEBS,ESC pump dynamics is critical.For level 4-5,redundancy will be ensured by the ESC,the EPB and the eBooster.When level 4-5,we will probably work with steer by wire and motor redundancy.Powertrain and braking systemsmodels for ACC casesPick the relevant fidelity level fromSimcenter Amesim scalable modeling offerFull vehicle dynamics models forAEB safety casesWhen higher fidelity vehicle dynamics makes the difference!45 Libraries / 4,000 Multi-physics Models •Validated and maintained•Supporting multiple levels of complexity •No need for details physics expertise•Hydraulic, hydraulic component design •Hydraulic resistance, filling•Pneumatic, pneumatic component design •Gas Mixture, moist airFluids•Signal and control•Engine signal generator •Real time, MIL –SIL –HILControl•1D –2D –3D mechanical,•Transmission, cam and followers •Finite-elements import •Vehicle dynamicsMechanics•IFP drive, IFP engine •IFP exhaust •CFD-1DIC Engine•Electrical basics, electromechanical •Electrical motors and drives •Electrical static conversion•Automotive electrics, electrochemicalElectrics•Fuel cell •Battery•Power generationEnergy•Thermal, thermal hydraulics•Thermal-hydraulic component design •Cooling, air-conditioning •Two-phase flowThermalSimcenter Prescan360Scenario authoringModels integration environment Sensors and environment simulationSimcenter PrescanProcess automation Simulation plan orchestrator Results analysis and reportingHEEDSThird partyVehicle dynamicsOff-the-shelf validation scenarios, metrics anddashboardsVehicle dynamicsSimcenter AmesimORSimulation production: overall workflow and AEBS exampleNumerous results analysisReportingSimulation plan definitionSimulation plan executionScenariosEgo modelsAzureKubernetesScripted scenario generation automates the process of creating scenarios at scale Test Automation /Design Optimization ToolOrchestration •HEEDS•Prescan APIs •3rd party toolingScenario Change •Parametric sweeping •Design of Experiments •OptimizationHow to run •Single machine •Distributed•Cloud and clusterResults•Local•Cluster•Test automation InterfaceCreate wide variability with on cloud and clusterDo not simulate any scenario.Simulate critical scenarios related toyour application!BUTHow do we identify critical scenarios?Should this scenario be simulated?Simcenter Prescan360 BenefitsPlan Execute Report •Process Automation: avoidance of manual errors•No manual creation of scenarios saves time•Multiple scenario testing for algorithms•Identify critical scenarios for each individual application •Deep insight in highly complex correlations•Realistic simulations•Verification traceability: ready for regulations •SAFE TIME•REDUCE COSTS •ENSURE HIGHEST QUALITY •BE INNOVATIVESpeed Up the Development of Autonomous Vehicles with Simcenter Prescan360Nico Nagl -E-Mail:*********************Where today meets tomorrow.。
基于自适应薄板样条全变分的肺CTPET图像配准
1.Department of Medical Imaging, Suzhou Institute of Biomedical Engineering Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
2.College of Materials Science and Opto- Electronic Technology, University of Chinese Academy of Sciences, Beijing 101400, China
3.Huashan Hospital, Fudan University, Shanghai 200040, China 4.School of Science, Nanjing University of Science and Technology, Nanjing 210000, China
Abstract:The discontinuities displacement field at the boundaries is preserved through Total Variation(TV)regularization when registering organ images with sliding motion. But TV assumes a global regularization which will lead poor correspondences at local areas of images. This paper creates adaptive Thin Plate Spline-based Total Variation(TPS-TV)regularization combining Thin Plate Spline(TPS)and TV operator according to the distance of pixels to boundaries. Then this paper chooses Correlation Ratio- based Mutual Information(CRMI)similarity measure function and Limited- memory Broyden Fletcher Goldfarb Shanno(L-BFGS)optimization to establish a non-rigid registration frame. Compared with TV and TPS regularization on the public DIR-Lab dataset and clinical CT/PET dataset, the proposed method has been demonstrated a more dependable displacement field and higher registration accuracy. Key words:adaptive Thin Plate Spline-based Total Variation(TPS-TV); sliding motion; non-rigid registration; lung
基于EIGA-PKPLS的电解铝制造系统特征提取方法
doi: 10.11857/j.issn.1674-5124.2020080098基于EIGA-PKPLS 的电解铝制造系统特征提取方法王业丰1, 姚立忠2, 龙 伟1, 丁 伟1, 孙先武2(1. 四川大学机械工程学院,四川 成都 610065; 2. 重庆科技学院电气工程学院,重庆 401331)摘 要: 针对电解铝工艺制造系统中影响参数多、特征冗余的问题,该文提出一种结合精英免疫遗传算法与聚合核偏最小二乘法(elite immune genetic algorithm-polymerize kernels partial least squares ,EIGA-PKPLS) 的电解铝制造系统特征提取方法。
该算法首先提出聚合核函数策略,采用聚合多个独立单核函数形成聚合核,并融合偏最小二乘法进行特征提取,提高算法对非线性数据特征提取能力;接着提出精英判别策略并加入免疫遗传算法,用于寻找核参数和核权重的最优解;最终,利用EIGA-PKPLS 开展电解铝工艺制造系统中系列参数的特征提取,并通过建立能耗预测模型与相关算法进行对比验证。
实验表明,EIGA-PKPLS 可提高电解铝制造系统中相关变量的特征提取能力,输入数据从16维降到4维,模型精度评价的RMSE 值至少缩小为其他模型的1/10。
因此,该文算法在电解铝制造系统特征提取方面有着实用性和可行性。
关键词: 电解铝; 特征提取; 精英判别策略; 聚合核函数中图分类号: TP181文献标志码: A文章编号: 1674–5124(2021)05–0082–08Feature extraction method based on EIGA-PKPLS for electrolyticaluminum manufacturing systemWANG Yefeng 1, YAO Lizhong 2, LONG Wei 1, DING Wei 1, SUN Xianwu 2(1. College of Mechanical Engineering, Sichuan University, Chengdu 610065, China; 2. School of ElectricalEngineering, Chongqing University of Science & Technology, Chongqing 401331, China)Abstract : To solve the problem of multiple influential parameters and feature redundancy in electrolytic aluminum manufacturing system, this paper proposed a feature extraction method for this system by combining elite immune genetic algorithms with polymerize kernels partial least squares (EIGA-PKPLS). Firstly, the algorithm proposes the theory of the aggregation kernel function. It forms the aggregation kernel by aggregating several independent single kernel functions and fuses the partial least square method for feature extraction. The capability of the algorithm for feature extraction of nonlinear data is improved. Secondly, the elite discriminant strategy is added to the immune genetic algorithm to find the optimal solution of the kernel parameters and the kernel weight. Finally, EIGA-PKPLS is used to perform the feature extraction of serial parameters in the electrolytic aluminum process manufacturing system. The model of energy consumption收稿日期: 2020-08-25;收到修改稿日期: 2020-10-24基金项目: 国家自然科学基金资助项目(51805059);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0350)作者简介: 王业丰(1993-),男,江苏丰县人,硕士研究生,专业方向为制造系统特征提取与建模。
改进全变分的图像去噪
改进全变分的图像去噪何坤;郑秀清;琚生根;张永来【摘要】为了弥补各向同性扩散去噪的非保边性、异性扩散的耗时性,分析了各向同性和异性扩散的机理,根据噪声对像素变化的影响,设计了新的扩散函数,理论上分析了该函数的扩散性能:对平滑区各向同性扩散,边缘区实现各向异性扩散。
在传统全变分去噪的基础上,提出了改进全变分的图像去噪模型,运用固定点代算法设计了相应的离散迭代函数。
实验结果表明,该算法在图像平滑区进行各向同性扩散,继承了各向同性的优点,降低了传统全变分的运行时间;在边缘区实现了各向异性扩散保护了图像边缘,提高了图像的峰值信噪比和视觉效果。
%By analyzing the mechanism of isotropic and anisotropic diffusion in image denoising, a new diffusion function based on the effect of noise on the image pixel variation is designed in this paper. The diffusion performanceof this function is isotropic diffusion in the smoothing sub-region and anisotropic diffusion on the edge. Then, an improved total variation denoising model is proposed based on the traditional total variation (TV), and the corresponding discrete iterative function is designed by using the fixed point iteration algorithm. The algorithm uses isotropic diffusion on the smooth region, inheriting the advantages of the isotropic diffusion, reducing the running time of the traditional TV, and protecting the edgeby using anisotropic diffusion. Experimental results show that this algorithm can improve image peak signal to noise ratio (PSNR) and visual effects.【期刊名称】《电子科技大学学报》【年(卷),期】2016(045)003【总页数】6页(P463-468)【关键词】各向异性;扩散函数;图像去噪;各向同性;全变分【作者】何坤;郑秀清;琚生根;张永来【作者单位】四川大学计算机学院成都 610065;四川师范大学信息技术学院成都618300;四川大学计算机学院成都 610065;四川师范大学信息技术学院成都618300【正文语种】中文【中图分类】TP394.1人眼对图像简化、提取其结构信息,实现对图像的认知和理解。
PCB图像的自适应全变分去噪算法
PCB图像的自适应全变分去噪算法余丽红;曹蕾;柳贵东;杨新盛;黄东升【摘要】为了提高印刷电路板(PCB)图像的去噪效果,提出了一种基于先验信息的PCB图像自适应去噪算法.首先,采用非局部均值滤波算法对模糊的PCB图像进行滤波以减少图像噪声,并提取去噪后的图像先验信息.其次,在全变分算法的基础上,设计基于先验信息的自适应正则化参数.最后,利用迭代正则化算法快速得到最优的去噪图像.实验结果和数据分析证实了所提算法的有效性.与原有算法相比,所提算法能够得到视觉效果更好的去噪图像,信噪比也比原有方法提高至少0.5dB,结构相似度指标也有相应的提升.【期刊名称】《红外技术》【年(卷),期】2018(040)009【总页数】6页(P875-880)【关键词】图像去噪;全变分;非局部均值滤波;自适应去噪【作者】余丽红;曹蕾;柳贵东;杨新盛;黄东升【作者单位】广东白云学院电气与信息工程学院,广州广东510450;广东白云学院电气与信息工程学院,广州广东510450;广东白云学院电气与信息工程学院,广州广东510450;广东白云学院电气与信息工程学院,广州广东510450;广东白云学院电气与信息工程学院,广州广东510450【正文语种】中文【中图分类】TP751.1印刷电路板(Printed Circuit Board,PCB)检测在PCB生产过程中起到至关重要的作用[1]。
在基于自动光学检测(Automatic Optic Inspection,AOI)的PCB检测系统中,机器通过摄像头自动扫描采集PCB图像。
由于受外界环境和采集设备等因素影响,所采集的PCB图像难免会出现噪声与模糊现象[2],会给图像观测、特征提取和分析带来干扰。
在对PCB图像进行边缘检测、分割、特征提取与识别前,必须先对图像进行去噪、以提高PCB检测的有效性。
1992年,Rudin、Osher和Fatemi[3]首次提出全变分(Total Variation,TV)去噪算法,该算法在图像去噪领域得到了广泛的关注。
基于先验知识和Kullback-Leibler距离的超分辨率图像重建
基于先验知识和Kullback-Leibler距离的超分辨率图像重建刘婉军;王宏志【摘要】由给定观测模型和先验模型组合得到潜在高分辨率图像后验分布逼近值,将其作为先验知识进行迭代获得更多的后验逼近值。
根据高分辨率图像分布情况得到一特定逼近值以最大程度减小后验分布与K ullback‐L eibler距离之差。
同时也进行了文中算法与其它超分辨率重建方法的对比研究,实验表明,本算法重建效果较好。
%An observation model and the priori model are combined to get the posterior distribution approximation values of the potential high resolution images .The posterior knowledge is iterated to obtain more posterior approximations in w hich a fixed one is chosen is used to reduce the distance between posterior di stribution and Kullback‐Leibler . The algorithm is compared with other reconstruction methods insimulation ,and results show that it is with good reconstruction quality .【期刊名称】《长春工业大学学报(自然科学版)》【年(卷),期】2014(000)006【总页数】5页(P645-649)【关键词】超分辨率;先验信息;贝叶斯模型;Kullback-Leibler距离【作者】刘婉军;王宏志【作者单位】长春工业大学计算机科学与工程学院,吉林长春 130012;长春工业大学计算机科学与工程学院,吉林长春 130012【正文语种】中文【中图分类】TP317.4超分辨率(SR)图像重建就是从一系列超分辨率图像中重建一个高分辨率图像(HR)的过程。
梯度双边滤波的图像去噪
梯度双边滤波的图像去噪蒋辉;汪辉;张家树【摘要】为了改善双边滤波的去噪性能,引入图像的局部模式,提出了梯度双边滤波算法.采用相邻像素亮度值的梯度距离来构造梯度相似度核,通过几何邻近度核函数和梯度相似度核函数来对图像邻域像素进行加权平均,从而实现滤波;为了获得最佳的滤波参数,通过经验学习的方法对滤波参数进行选择,最终得到通用的参数配置.实验结果表明,新方法能很好地保持图像的边缘,且与传统去噪模型相比,其去噪性能也是最好的.【期刊名称】《计算机工程与应用》【年(卷),期】2016(052)005【总页数】5页(P231-235)【关键词】双边滤波;局部模式;梯度双边滤波;梯度相似度核;参数配置【作者】蒋辉;汪辉;张家树【作者单位】西南交通大学信号与信息处理四川省重点实验室,成都610031;西南交通大学信号与信息处理四川省重点实验室,成都610031;西南交通大学信号与信息处理四川省重点实验室,成都610031【正文语种】中文【中图分类】TP391图像去噪是图像处理领域中非常基础但又十分关键的技术,一直是数字图像处理领域中的难题。
然而图像在获取、传输和存储的过程中总是不可避免地受到各种噪声的干扰。
为了能够从图像中获取更加准确的信息,图像去噪预处理算法的好坏成为后续处理的关键。
常用的去噪模型有:高斯滤波[1]、各项异性扩散滤波[2]、双边滤波[3]、全变分模型[4]、小波阈值[5-6]、非局部平均滤波[7-8]、稀疏域滤波[9-10]等。
图像去噪通常不仅要求消除噪声,而且还能保持图像边缘等细节信息。
然而这两个要求在一定程度上是相互矛盾的。
由于图像去噪意味着去除图像的高频部分,而图像的边缘同样是高频部分,所以在去除噪声的同时,常常会模糊图像的边缘。
如何解决好这一对矛盾是评价图像去噪模型好坏的一个重要标准。
双边滤波正是为了解决边缘模糊而提出的,它不仅考虑空间的邻近性也考虑亮度的相似性,只有邻域内亮度相似的才被一起平均。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Adaptive total variation-based spectral deconvolution with the split Bregman methodHai Liu,Sanya Liu,Zhaoli Zhang,*Jianwen Sun,and Jiangbo ShuNational Engineering Research Center for E-Learning,Central China Normal University,Wuhan430079,China*Corresponding author:zl.zhang@Received3July2014;revised17September2014;accepted18September2014;posted4November2014(Doc.ID216309);published3December2014Spectroscopic data often suffer from common problems of band overlap and noise.This paper presents amaximum a posteriori(MAP)-based algorithm for the band overlap problem.In the MAP framework,thelikelihood probability density function(PDF)is constructed with Gaussian noise assumed,and the priorPDF is constructed with adaptive total variation(ATV)regularization.The split Bregman iteration al-gorithm is employed to optimize the ATV spectral deconvolution model and accelerate the speed of thespectral deconvolution.The main advantage of this algorithm is that it can obtain peak structure infor-mation as well as suppress noise simultaneity.Simulated and real spectra experiments manifest thatthis algorithm can satisfactorily recover the overlap peaks as well as suppress noise and are robust to theregularization parameter.©2014Optical Society of AmericaOCIS codes:(140.3510)Lasers,fiber;(300.6450)Spectroscopy,Raman;(100.3190)Inverse problems;(040.2235)Far infrared or terahertz./10.1364/AO.53.0082401.IntroductionIn recent years,spectroscopic data acquisition and processing has led to significant developments,due to the high demand for its application in target detec-tion,rapid identification of chemicals,and analytical techniques[1].However,it often suffers from the common problems of band overlap and noise[2]. These disadvantages limit the development of spec-troscopy in industrial and commercial applications. During the past two decades,various approaches for spectral decomposition have been proposed. The existing algorithms can be generally classified into three major categories:source separation method[3],curve-fitting method[4,5],and spectral deconvolution methods[6–10].Source separation at-tempts to recover overlap spectra from their linear mixtures[11].The curve-fitting method[4]considers that the measured spectra are combined by the Gaussian and Lorentzian functions.In other words, the measured spectra can be fitted by those functions.However,the drawback is that the optimi-zation of this method is not straightforward.Decon-volution is a mathematical technique that removes the broadening effect of the instrumental response function.The deconvolution method recovers the degraded spectrum with different regularizations, such as homomorphic filtering[12],high-order sta-tistics(HOS)[6],Tikhonov regularization[8],Burg entropy[9],Huber deconvolution[13],and the reversible jump Markov chain Monte Carlo method (RJMCMC)[14].These methods have achieved great success for specific spectral decomposition.In recent years,total variation regularization, because of its edge-preserving property by not over-penalizing discontinuities while imposing smooth-ness[15],has enjoyed increasing popularity.It has been central to the solution of ill-posed inverse problems in a wide range of applications,such as1559-128X/14/358240-09$15.00/0©2014Optical Society of America8240APPLIED OPTICS/Vol.53,No.35/10December2014image denoising and deblurring.,Inspired by these,an attempt was made to use total variation for spec-tral deconvolution.As shown in Fig.1,the spectroscopic data include an all-frequency component.The spectral data can be decomposed into flat,noise,and steep regions.The noise includes all-frequencies noise,as indicated by the arrows in Fig.1.The points of the steep region are often next to the impulse peaks.The intensity of the steep points changes dramatically and has the discontinuity property .TV regularization imple-mented through shrinkage would be sufficient to sta-bilize this;thus,an adaptive term is constructed.To accomplish these results,the proposed method has two main contributions.First,a new adaptive operator is introduced to stably create total variation regularization.The ATV can preserve the peak detail information and suppress noise simultaneity .Second,the split Bregman method is introduced to optimize the proposed model.To our knowledge,ATV is introduced to spectroscopic data deconvolution for the first time.2.Proposed ModelMost spectroscopic data measured by spectropho-tometer can be mathematically modeled as a convo-lution of the true spectrum with an instrument response function (IRF).In this paper,the degrada-tion process is described asg Hf n;(1)where f and g denote the actual spectrum and mea-sured spectrum,and H represents the IRF (also called the blur kernel),which collects the intrinsic line-shape and the instrumental broadening.The corresponding symbols are discriminated asgg 1;g 2; g N T;H 2666664h 11h 12 h 1Nh 21h 21h 2N .........h N 1h N 1 h NN 3777775N ×N;ff 1;f 2; f N T ;n n 1;n 2; n N T ;where N is the length of the spectrum.MAP estima-tor is a commonly used approach to estimate the original spectrum f ,given the degraded spectrumg .If H is known in advance,the latent spectrum ˆfcan be resolved by the Wiener filtering method [16].MAP estimator maximizes the conditional probability of actual spectrum f ,given the degraded spectrum g .That is,ˆfarg max fP f j g :(2)Applying Bayes ’formula P f j g ∝P g j f P f ,and using the monotonic logarithm function,Eq.(2)can be expressed asˆfarg min ff −log P g j f −log P f g :(3)It can be seen that two probability density func-tions need to be constructed.Considering the caseswhere the data are contaminated by Gaussian noise,2004006008000.20.40.60.81wavenumber (1/cm)R a m a n I n t e n s i t y Fig.1.Raman spectrum characteristics analysis.Raman data include an all-frequency component.For the spectral data,it can be decomposed into flat,noise,and steep regions.For the noise,it includes all-frequency noise.0.010.020.030.040.010.020.030.0400.010.020.030.040.0050.0100.015T V a n d A T V v a l u eSpectral dynamical value D f i Spectral dynamical value D f iFig.2.Effect of the adaptive operator.(a)Difference between TV and ATV .(b)ATV regularization with K 0.01and 0.025for different noise levels.10December 2014/Vol.53,No.35/APPLIED OPTICS8241the intensity of each pixel g i in the observed spec-trum is a random variable that follows an indepen-dent Gaussian distribution.Hence,the likelihood can be written asP g j fY Ni 112πpσiexp− Hf−g 2i2σ2i;(4)whereσand N denote the noise standard deviation and spectral length.Thus,Eq.(4)can be rewritten as P g j f ∝exp −‖Hf−g‖22 ;(5) where the symbol‖·‖is the Euclidean norm.For the prior probability P f in Eq.(3),TV prior is selected as the prior probability.And the expression P f can be written asP f ∝exp −λ‖Df‖1 ;(6) where Df i f i 1−f i ∕2,called the spectral differ-ence.Submit Eqs.(5)and(6)to Eq.(3)and the MAP estimation is then equivalent to minimizing the func-tional E f −log p f j g ,i.e.,to minimizeE f 1‖Hf−g‖22 λ‖Df‖1 l f≥0;(7)where the first term‖Hf−g‖22is the data term,λis the regularization parameter,‖Df‖1acts as the regularization term,the role of l f≥0is to impose the non-negative constraint on the estimation spec-trum f,and the matrix D is the difference matrix of spectrum.TV regularization is effective for piecewise-constant reconstruction and allows the abrupt and intense bands in the recovered spectrum.But for the noisy spectrum,the noise will be amplified with the bands and produce incorrect spectral peaks.For better noise suppression and detail preservation,an adaptive operator should be added to control the TV regularization.The choice of the regularization term depends on the dynamics of the spectral data and of the noise.The operator should be a non-negative, monotonically decreasing function.Only such an operator,combined with TV regularization,can suppress all noise in all frequencies and preserve the spectral structure.Thus,the adaptive operator takes the formw Df 14;(8)where K is a constant.Figure2(a)shows the differ-ence between TV and ATV.It can be seen that ATV has the strongest constraint for the noise region.The setting of parameter K will be discussed in Section4. Substituting the TV term in Eq.(7)with ATV in Eq.(8),we introduce the cost functional:E f12‖Hf−g‖22 λw Df ‖Df‖1 l f≥0:(9)We call the model Eq.(7)spectral deconvolution with total variation(SDTV)and model Eq.(9)spec-tral deconvolution with adaptive total variation (SDATV).Summarizing,three good features of ATV can be drawn in Fig.2(a):(i)for the flat region points be-cause Df i is close to zero and w Df i is close to1, which means a small ATV regularization strength is enforced at these points;(ii)for the steep region because Df i is very large and w Df i is small and nearly zero,and this weakens the TV regularization strength enforced to these points,so the steep points will be well preserved;and(iii)for the noise region, the large ATV regularization strength,and then the noise will be well suppressed.Figure2clearly illus-trates the difference between TV and ATV.That is, SDATV can adjust the regularization adaptively.3.OptimizationRecently,a well-performing optimization method called the split Bregman algorithm was developed by Goldstein and Osher to solve the L1norm-based regularization[17].In this paper,the split Bregman method is used to optimize the SDATV model in Eq.(9).The basic idea of this optimization algorithm can be stated as follows.First,two auxiliary variables,d1,d2,are intro-duced into the optimization process and then added to Eq.(9)in the following way:E f;d1;d2 min1‖Hf−g‖22 λw‖d1‖1 l d2≥0d2 subject to∶d1 Df;d2 f:(10) The constrained problem in Eq.(10)can be changed into an unconstrained problem with the Bregman iteration as follows:E f;d1;d2 min1‖Hf−g‖22 λw‖d1‖1 l d2≥0d212α‖d1−Df−b1‖22 ‖d2−f−b2‖22 ;(11)whereαis the penalty parameter.The minimization of Eq.(11)can be performed alternately with the fol-lowing three subproblems:ˆf arg min12f‖Hf−g‖221‖d1−Df−b1‖22 ‖d2−f−b2‖22 ;(12)ˆd1arg mind1λw‖d1‖11‖d1− Df −b1‖22;(13)8242APPLIED OPTICS/Vol.53,No.35/10December2014andˆd 2 arg mind2l d2≥0d212α‖d2−f−b2‖22:(14)In the aforementioned equations,to solve the f subproblem,the following equation must be solved: f k 1 αH T H D T D I −1 αH T g D T d k1−b k1d k2−b k2 :(15)For the linear function in Eq.(15),because the sys-tem is strictly diagonal,the most natural choice is the Gauss–Seidel method.The d subproblem equation in Eqs.(13)and(14) can be solved using a shrinkage operator as follows:d k 1 1 max fj Df k 1 b k1j−λw kα;0gDf k 1 b k1j Df k 1 b k1j;(16)d k 12max f f k 1 b k2;0g;(17)where the d1,d2are solved by the soft thresholding formulation proposed in[18].Finally,the Bregman variables b1and b2are updated as follows:b k 1 1 b k1Df k 1−d k 11;(18)b k 1 2 b k2f k 1−d k 12:(19)From the earlier introduction,it can be seen that the split Bregman iteration optimization method mainly composites the solution of the two subpro-blems:the f and d subproblems.The advantage of the split Bregman method is that the difficult optimi-zation problem in Eq.(9)is split into the aforemen-tioned three subproblems,which are very easy to optimize.According to the aforementioned analysis, the corresponding split Bregman algorithm is given as follows:Algorithm I.SDATV Method1.Initialization:The measured spectrum g is normalized to[0,1], compute noise level,and set K value.Set f0 g,d01 d02 0,b01 b02 0.2.While( j f k 1−f k j∕f k >ε1)repeati)fix d,solve f using the Gauss–Seidel iteration;ii)fix f,solve d1,d2using the soft threshold formulation;iii)Update b k 11 b k1Df k 1−d k 11b k 12b k2f k 1−d k 12;Iteration number k k 1.End3.Output:the latent Raman spectrum f.Here,ε1is a small positive constant between10−9 and10−7.4.Experimental ResultsTo verify the performance of the proposed SDATV model,the HOS[6]and spectral deconvolution with Tikhonov regularization(SDTR)[19]method are compared.Two parameters in the split Bregman iter-ation are these settingλ 0.04,α 10∕λ.For the parameter K setting,the formula of Median Absolute Differences(MAD)[20]is employed.This formula can estimate the noise levelδ,which is de-fined asδ 1.4826∕2pmedian fj g i−g i−1j;i 2;…;n g. Because the spectrum intensities are normalized to the range[0,1],theδvalue can reflect the noise level at the same scale.The stronger the intensity of the spectral noise,the larger the noise levelδ.The value of K is set as K 10δ.In Fig.2(b),two cases of the ATV regularization for different noise levels are shown.The normalized mean square error(NMSE)‖f−ˆf‖2∕‖f‖2and weighted correlation coefficient (WCC)[21]are used to evaluate the similarity between the ground-truth spectrum f and the recov-ered spectrumˆf.A.Simulation ExperimentsUsing a computer,we simulated degraded spectra based on the experimental infrared(IR)spectrum. Figure3shows the IR spectrum of Malononitrile (C3H2N2)from400to4000cm−1.We convolved it with a Gaussian IRF with a widthσof13cm−1(top-right corner in Fig.3(c)),to generate the degraded spectrum(Fig.3(c)).The degraded spectrum becomes much smoother and less resolved,with the bands becoming wider and lower.For example,it is hard to distinguish the peak2931.8cm−1from2966.3cm−1. Afterward,for an investigation of the robustness to noise of the proposed methods,Gaussian noise was added to the degraded spectrum with different noise levels(SNR 200,100).The case noise level equal to 200is shown in Fig.3(d).To measure the peak posi-tion at a finer resolution,the Gaussian function(dis-credited as a finer grid0.1cm−1)is used to fit the spectral bands.For example,the peak at1394cm−1 in the original spectrum is finely measured at 1394.1cm−1.The recovered spectral band positions are also detected in this format.parison with Other MethodsFigure4shows the deconvolution results for the noise-free degraded spectrum in Fig.3(c).All of the deconvoluted spectra are clearly resolved.Visual analysis of the deconvolution spectrum clearly shows that the SDATV method splits the overlap peaks very well.In Fig.4(d),the peak at2960.4cm−1is dis-tinctly separated to2931and2966.5cm−1,respec-tively.While in Fig.4(a)–4(c),the overlapping bands are split slightly.Thus,the SDATV produces a much narrower spectrum with more details than the compared methods.Furthermore,the band distortions were investi-gated for the spectra deconvoluted using the HOS and SDTR methods.In the ground-truth spectrum (Fig.3(a)),the four peaks at1394.1,2273.4,2931.8, and2966.3cm−1are taken as the references.Table1 lists the position and height distortions of these10December2014/Vol.53,No.35/APPLIED OPTICS8243peaks between the recovered (Fig.4)and ground-truth spectra (Fig.3(a)).The root of mean square error (RMSE)of the distortions is calculated.It shows that the proposed SDATV method achieves the smallest RMSE value.C.Effect of ATV TermFig.5presents the deconvoluted results with noise level equal to 200.The results shown in Figs.5(a)–5(d)are SDTR,HOS,SDTV,and SDATV ,respectively.Compared with Figs.5(c)and 5(d),they seem to have the same noise suppression effect in the noise region.But for the steep regions,the Fig.5(d)produces more details.Furthermore,in Fig.5(c),the spectral struc-tures are also smoothed although the noise has been suppressed.We suggest that the SDATV method can suppress noise well in the flat region and preserve details in the steep region.For the SDTV and SDATV methods,the NMSE of the restored spectra versus varying regularization10002000300000.20.40.60.8(a)1394.12273.42931.82966.310002000300000.20.40.60.8(c)1392.82273.12960.4(b)IRF 10002000300000.20.40.60.8(d))m c /1(r e b m u n e v a w )m c /1(r e b m u n e v a w i n t e n s i t y (a .u .)i n t e n s i t y (a .u .)13601380140014200.20.40.60.8Spectral Band Gauss curveFig.3.Simulated degraded spectrum.(a)Ground-truth IR spectrum (Malononitrile C 3H 2N 2,resolution:1cm −1).(b)Curve fitting the spectral band (1394.1)with Gauss curve (resolution:0.1cm −1).(c)Convolute (a)with the IRF (top-right corner:Gaussian function σ 13cm −1).(d)Gaussian noise (SNR 200)added.10002000300000.20.40.60.8(a)10002000300000.20.40.60.8(c)10002000300000.20.40.60.8(d)1000200030002468x 10−3(b))m c /1(r e b m u n e v a w )m c /1(r e b m u n e v a w i n t e n s i t y (a .u .)i n t e n s i t y (a .u .)Fig.4.Noise-free degraded spectrum restored by (a)SDTR,(b)HOS [6],(c)SDTV ,and (d)SDATV .8244APPLIED OPTICS /Vol.53,No.35/10December 2014parameter λin Fig.3(d)is plotted in Fig.6.The SDATV method appears more robust with the change of the regularization parameter at a wide range from 0.005to 0.17.However,the change of the regu-larization parameter λhas a very large effect on the performance of SDTV.In particular,the NMSE valueincreases abruptly when the regularization param-eter becomes large.The NMSE versus the iteration number of the four methods on the SNR 200spec-tra is plotted in Fig.7,where the convergence of SDATV is also highlighted.Table 1.Band Distortions in Deconvoluted Spectra by HOS,SDTR,SDTV,and SDATV in Fig.4Band Position a 1394.12273.42931.82966.3RMSE b PositionSDTR −1.3 1.1 1.2 2.1 1.455HOS 1.5−2.4 1.4 2.9 2.272SDTV 0.3−2.2−1.1 1.2 1.502SDATV 0.1−0.9−0.8 0.20.580HeightSDTR −0.249−0.089−0.171−0.1720.065HOS —————SDTV −0.199−0.073−0.124−0.1190.052SDATV−0.103−0.034−0.107−0.0950.034a In cm −1,obtained from the band maximum.bRoot mean square error in the determination of the position.1000200030000.20.40.60.8(a)100020003000510x 10−3(b)10002000300000.20.40.60.8(c)10002000300000.20.40.60.8(d))m c /1(r e b m u n e v a w )m c /1(r e b m u n e v a w i n t e n s i t y (a .u .)i n t e n s i t y (a .u .)parison results with noise level equal to 200.(a)SDTR.(b)HOS [6].(c)SDTV .(d)SDATV .0.050.10.150.0150.0200.0250.0300.0350.040 SDATV SDTVN M S EλFig.6.NMSE versus regularization parameter λof SDTV and SDATV .10203040500.0150.0200.0250.030HOS SDTR SDTV SDATVNumber of iterationsN M S EFig.7.NMSE versus the iteration number of the four methods for the simulated spectrum.10December 2014/Vol.53,No.35/APPLIED OPTICS8245Table 2shows the values of NMSE and WCC for each method on simulated data with different SNRs.It is clear that SDATV is superior to HOS and SDTR in all SNR conditions.The best restored spectrum is selected to be the one with the lowest NMSE when the regularization parameter changes.It can be seen that the SDATV method has achieved the smallest NMSE among the four methods.The NMSE of the SDATV methods is considerably smaller than that of the degraded spectrum for different noise levels.Therefore,we may conclude that the proposed SDATV method recovers more spectral details andsuppresses more noise than the HOS and SDTR methods.Moreover,to investigate the algorithm speed between our method and the compared methods,we test three more simulated IR spectra,which are all from 400to 4000cm −1at 1cm −1resolution.The total CPU time (unit:second)is provided in Table 3.The SDATV took much less time than SDTR and HOS be-cause the SDATV is accelerated using split Bregman.D.Real ExperimentsMoreover,two real Raman spectra are tested in our experiments.Gaussian function is often chosen as the IRF [10].Because the existing noise has a signifi-cant impact on the extraction of the spectral features (peak position,peak area,FWHM,etc.),the noisy spectra need to be denoised.The experiments are set with the same parameter setting λ 0.04,δ 0.0021,and K 0.02.Fig.8(a)shows 600cm −1length Raman spectral data of D(+)-Glucopyranose (C 6H 12O 6)[22]from 2600to 3200cm −1at 1cm −1resolution.These spec-tral data suffer from heavy overlap,especially from 2850to 2900cm −1.Figure 8presents the results of the HOS (Fig.8(b)),SDTR method (Fig.8(c))and SDATV (Fig.8(d)).They all perform well at the slightly over-lapped peaks 2946cm −1.However,for the heavily overlapping peak at 2892cm −1,only two peaks can be split by the compared methods.Three peaks can be split by SDATV ,such as 2879.2,2892.5,and 2903.3cm −1(shown in Fig.8(d)).It seems that the val-leys in Fig.8(d)are deeper than those in Figs.8(b)and 8(c).Compared with the other two methods,the SDATV method obtains the most resolved peaks.Figure 9(a)shows almost 1000-length Raman spectral data of 6-O-(N-heptylcarbamoyl)-a-D-glucopyranoside (C 15H 29NO 7)[23]from 20toTable 2.Figures of Merit for the Performance of the HOS,SDTR,andSDATV Methods at Different Noise Levels aMethodsMerits Noise Level (SNR)SDTR [19]HOS [6]SDATV NMSENoise-free0.01950.02160.01052000.02030.02240.01241000.03580.04070.0159WCCNoise-free0.99940.99920.99962000.99890.99850.99911000.99770.99780.9984aThe larger the value of WCC,the higher the spectral quality .The lowest NMSE indicates the best spectral quality .Table 3.Comparison of the Computing Time between the SDTR,HOS,and SDATV MethodsIR Spectra SDTR [19](s)HOS [6](s)SDATV (s)Malononitrile 23.12520.156 1.945Cyclohexanol 20.36517.524 1.726Propyl acetate 22.34519.972 1.885Mesityl oxide21.86118.5641.8040.20.40.6(a)28922946270028002900300031000.20.40.6(c)2878.82892.12946.62961.1510x 10−42942.1(b)2873.12887.92958.427002800290030003100)m c /1(r e b m u n e v a w )m c /1(r e b m u n e v a w R a m a n I n t e n s i t yR a m a n I n t e n s i t ypared results for real Raman spectrum.(a)Observed spectrum of D(+)-Glucopyranose (C 6H 12O 6).(b)HOS.(c)SDTR [19].(d)Proposed method.8246APPLIED OPTICS /Vol.53,No.35/10December 20141000cm −1at 1cm −1.The real spectrum suffers from heavy noise from 20to 200cm −1,caused by the spec-trometer.The noise level is estimated as δ 0.0028,and K 0.03.The noise from 20to 200cm −1is sup-pressed well in Figs.9(c)and 9(d);on the contrary,the noise is enhanced in Fig.9(b).Moreover,the peak at 511cm −1cannot be split in Fig.9(c),but it can be split into two peaks at 511and 527cm −1in Fig.9(b)and Fig.9(d),respectively .Fig.9(d)can split more peaks than Fig.9(c),such as the peak at 527cm −1.The introduced method also has some intrinsic limitations.It is hard to assume the IRF width is accurate for the real Raman spectrum because differ-ent interferometers may produce different degraded Raman spectra,which need different-width IRFs.In this paper,the problem that we discuss and study is “what prior knowledge (adaptive total variation)is more suitable for spectral noise suppression and overlap band recovery.”In the future,we plan to re-search accurate IRF estimation and computation.5.ConclusionIn this paper,we proposed a MAP-based method to restore the degraded Raman spectrum,which can ob-tain peak structure information as well as suppress noise simultaneity.In this method,the likelihood probability P g ∕f is constructed with Gaussian noise assumed,and prior probability P f is con-structed as an ATV function.ATV regularization can make total variation regularization stable and distinguish the flat,noisy ,and steep regions.To re-duce the high computation load,the split Bregman iteration algorithm is employed to optimize the pro-posed model.Simulated and real experimental re-sults manifest that the proposed method can satisfactorily produce a deconvolution result with noise well suppressed.The recovered Raman spectraare easily utilized for extracting the spectral feature and interpreting the unknown chemical mixture.The authors thank the anonymous reviewers for their valuable comments.This research was partially funded by the Project of the Program for New Cen-tury Excellent Talents in University (NCET-11-0654),the National Key Technology Research and Development Program (2013BAH72B01),the Na-tional Key Technology Research and Development Program (2013BAH18F02),the Scientific R &D Project of State Education Ministry and China Mo-bile (MCM20121061),the National Social Science Fund of China (14BGL131),and the New Ph.D.Researcher Award from the Chinese Ministry of Education.The authors thank Prof.Jinghe Yuan for providing the HOS MATLAB source code.References1.A.L.Gallego,A.R.Guesalaga,E.Bordeu,and A.S.González,“Rapid measurement of phenolics compounds in red wine using Raman spectroscopy ,”IEEE Trans.Instrum.Meas.60,507–512(2011).2.P . A.Jansson,Deconvolution of Images and Spectra (Academic,1996).3.Y.Sun,C.Ridge,F .del Rio,A.J.Shaka,and J.Xin,“Postpro-cessing and sparse blind source separation of positive and par-tially overlapped data,”Signal Processing 91,1838–1851(2011).4.V .A.Lórenz-Fonfría and E.Padrós,“Curve-fitting overlapped bands:quantification and improvement of curve-fitting robustness in the presence of errors in the model and in the data,”Analyst 129,1243–1250(2004).5.F .Alsmeyer and W .Marquardt,“Automatic generation of peak-shaped models,”Appl.Spectrosc.58,986–994(2004).6.J.Yuan,“Blind deconvolution of x-ray diffraction profiles by using high-order statistics,”Opt.Eng.48,076501(2009).7.J.Yuan and Z.Hu,“High-order statistical blind deconvolution of spectroscopic data with a Gauss –Newton algorithm,”Appl.Spectrosc.60,692–697(2006).00.20.40.60.8(a)51186220040060080000.20.40.60.8(c)511.7862.5835.3848.4−10123x 10−4527.3(b)511.2862.6836.2846.5200400600800)m c /1(r e b m u n e v a w )m c /1(r e b m u n e v a w R a m a n I n t e n s i t yR a m a n I n t e n s i t ypared results for real Raman spectrum.(a)Raman spectrum of 6-O-(N-heptylcarbamoyl)-a-D-glucopyranoside (C 15H 29NO 7).(b)HOS [6].(c)SDTR [19].(d)Proposed method.10December 2014/Vol.53,No.35/APPLIED OPTICS82478.J.Ottaway,J.H.Kalivas,and E.Andries,“Spectral multivari-ate calibration with wavelength selection using variants of Tikhonov regularization,”Appl.Spectrosc.64,1388–1395 (2010).9.V. A.Lórenz-Fonfría and E.Padrós,“Maximum entropydeconvolution of infrared spectra:use of a novel entropy expression without sign restriction,”Appl.Spectrosc.59, 474–486(2005).10.Q.Wang,D.D.Allred,and L.V.Knight,“Deconvolution of theRaman spectrum of amorphous carbon,”J.Raman Spectrosc.26,1039–1043(1995).11.N.Dobigeon,S.Moussaoui,J.-Y.Tourneret,and C.Carteret,“Bayesian separation of spectral sources under non-negativity and full additivity constraints,”Signal Process.89,2657–2669 (2009).12.Y.Senga,K.Minami,S.Kawata,and S.Minami,“Estimationof spectral slit width and blind deconvolution of spectroscopic data by homomorphic filtering,”Appl.Opt.23,1601–1608 (1984).13.H.Liu,T.Zhang,L.Yan,H.Fang,and Y.Chang,“A MAP-based algorithm for spectroscopic semi-blind deconvolution,”Analyst137,3862–3873(2012).14.S.Gulam Razul,W.J.Fitzgerald,and C.Andrieu,“Bayesianmodel selection and parameter estimation of nuclear emissionspectra using RJMCMC,”Nucl.Instrum.Methods Phys.Res.Sect.A497,492–510(2003).15.L.I.Rudin,S.Osher,and E.Fatemi,“Nonlinear total varia-tion based noise removal algorithms,”Physica D60,259–268 (1992).16.C.W.Helstrom,“Image restoration by the method of leastsquares,”J.Opt.Soc.Am.57,297–303(1967).17.T.Goldstein and S.Osher,“The split Bregman method for L1-regularized problems,”SIAM J.Imaging Sci.2,323–343(2009).18.D.L.Donoho,“De-noising by soft-thresholding,”IEEE Trans.Inf.Theory41,613–627(1995).19.L.J.Meng and D.Ramsden,“An inter-comparison of threespectral-deconvolution algorithms for gamma-ray spectros-copy,”IEEE Trans.Nucl.Sci.47,1329–1336(2000).20.A.A.Urbas and S.J.Choquette,“Automated spectral smooth-ing with spatially adaptive penalized least squares,”Appl.Spectrosc.65,665–677(2011).21.P.R.Griffiths and L.Shao,“Self-weighted correlation coeffi-cients and their application to measure spectral similarity,”Appl.Spectrosc.63,916–919(2009).22.S. B.Engelson,“Raman spectral of(D+)-Glucopyranose,”http://www.models.life.ku.dk/specarb.23.S.B.Engelson,“Raman spectral of6-O-(N-heptylcarbamoyl)-a-D-glucopyranoside,”http://www.models.life.ku.dk/specarb.8248APPLIED OPTICS/Vol.53,No.35/10December2014。