工程流体力学115
工程流体力学(第二版)习题与解答
1—3
解: 固定圆盘表面液体速度为零, 转动圆盘表面半径 r 处液体周向线速度速度 vθ s = rω ; 设液膜速度沿厚度方向线性分布,则切应力分布为
图 1-14 习题 1-5 附图
r
z
u
R
r R2 由上式可知,壁面切应力为 τ 0 = −4 m um / R ,负号表示 τ 0 方向与 z 相反;
τ = mm = −4 um
du dr
(2)由流体水平方向力平衡有: p R 2 Dp + τ 0p DL= 0 ,将 τ 0 表达式代入得
8m u L ∆p = 2m R
图 1-16 习题 1-7 附图
1-7 如图 1-16 所示,流体沿 x 轴方向作层状流动,在 y 轴方向有速度梯度。在 t=0 时, 任取高度为 dy 的矩形流体面考察,该矩形流体面底边坐标为 y,对应的流体速度为 u ( y ) ; 经过 dt 时间段后,矩形流体面变成如图所示的平行四边形,原来的 α 角变为 α − dα ,其剪 。试推导表明:流体的 切变形速率定义为 dα /dt (单位时间内因剪切变形产生的角度变化) 剪切变形速率就等于流体的速度梯度,即 dα du = dt dy 解:因为 a 点速度为 u,所以 b 点速度为 u +
V2 pT 1 × 78 =1 − 1 2 =1 − =80.03% V1 p2T1 6 × 20
压缩终温为 78℃时,利用理想气体状态方程可得
∆V = 1 −
1-2 图 1-12 所示为压力表校验器,器内充满体积压缩系数= β p 4.75 × 10−10 m2/N 的油, 用手轮旋进活塞达到设定压力。已知活塞直径 D=10mm,活塞杆螺距 t=2mm,在 1 标准大 气压时的充油体积为 V0=200cm3。设活塞周边密封良好,问手轮转动多少转,才能达到 200 标准大气压的油压(1 标准大气压=101330Pa) 。 解:根据体积压缩系数定义积分可得:
《工程流体力学》习题参考答案
闻建龙主编的《工程流体力学》习题参考答案第一章 绪论1-1 物质是按什么原则分为固体和液体两大类的?解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。
在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水和C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水: 233/410416101m N u=⨯⨯=⋅=--δμτN A F 65.14=⨯=⋅=τ油: 233/8.2810416102.7m N u=⨯⨯=⋅'=--δμτ N A F 2.435.18.28=⨯=⋅=τ1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
工程流体力学答案详解
第一章 流体及其物理性质1-1 已知油的重度为7800N/m 3,求它的密度和比重。
又,0.2m 3此种油的质量和重量各为多少?已已知知::γ=7800N/m 3;V =0.2m 3。
解解析析::(1) 油的密度为 3kg/m 79581.97800===gγρ; 油的比重为 795.01000795OH 2===ρρS (2) 0.2m 3的油的质量和重量分别为 kg 1592.0795=⨯==V M ρ N 15602.07800=⨯==V G γ1-2 已知300L(升)水银的质量为4080kg ,求其密度、重度和比容。
已已知知::V =300L ,m =4080kg 。
解解析析::水银的密度为 33kg/m 13600103004080=⨯==-V m ρ 水银的重度为3N/m 13341681.913600=⨯==g ργ水银的比容为 kg /m 10353.7136001135-⨯===ρv1-3 某封闭容器内空气的压力从101325Pa 提高到607950Pa ,温度由20℃升高到78℃,空气的气体常数为287.06J/k g ·K 。
问每kg 空气的体积将比原有体积减少多少?减少的百分比又为多少?已已知知::p 1=101325Pa ,p 2=607950Pa ,t 1=20℃,t 2=78℃,R =287.06J/k g ·K 。
解解析析::由理想气体状态方程(1-12)式,得 kg /m 83.0101325)27320(06.2873111=+⨯==p RT v kg /m 166.0607950)27378(06.2873222=+⨯==p RT v kg /m 664.0166.083.0321=-=-v v%80%10083.0166.083.0%100121=⨯-=⨯-v v v每kg 空气的体积比原有体积减少了0.664m 3;减少的百分比为80%。
工程流体力学知识点总结
工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。
它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。
2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。
它是流体物理学的基本内容,是工程流体力学的基础理论。
它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。
3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。
它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。
4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。
流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。
它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。
5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。
它是工程流体力学中的重要内容,也是工程设计的重要基础。
二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。
它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。
工程流体力学中国大学mooc课后章节答案期末考试题库2023年
工程流体力学中国大学mooc课后章节答案期末考试题库2023年1.随流动雷诺数增大,管流壁面粘性底层的厚度也愈大。
参考答案:错误2.对于音速.如下说法不正确的是:参考答案:流体中的声速是状态参数的函数3.平板湍流边界层的厚度与距前缘的距离x成正比,与雷诺数Re成反比。
参考答案:错误4.边界层的外边界不是流线,流体可以通过边界层外边界流入流出边界层。
参考答案:正确5.当水流的实际雷诺数小于流态判别数时,水流为湍流。
参考答案:错误6.一输油管和输水管在当直径、长度、壁面粗糙度均相等时,则沿程水头损失必相等。
参考答案:正确7.在圆管流中,层流的断面流速分布符合:参考答案:抛物线规律8.在湍流粗糙管中:参考答案:水头损失与断面平均流速的平方成正比9.圆管流动过流断面上的切应力分布为:参考答案:管轴处是零,且与半径成正比10.既然是一个量,就必定有量纲。
参考答案:错误11.同时满足雷诺准则和弗劳德准则一般是不可能的参考答案:正确12.激波是超声速气流的基本现象之一,它是一种的过程:参考答案:压强上升,密度上升,流速下降13.在平板混合边界层中,层流边界层转捩点位置离前缘越远,摩擦阻力系数就越小。
参考答案:正确14.平板层流边界层厚度____与雷诺数Re的____成反比。
雷诺数愈大,边界层厚度越薄。
参考答案:平方根15.输水管道模型试验,长度比例尺为8,模型管道的流量应为原型管道流量的:参考答案:1/816.定常流时,流线随的形状不随时间变化,流线不一定与迹线相重合。
参考答案:错误17.用U 形水银测压计测A点压强,h1=500mm,h2=300mm,A点的压强是:【图片】参考答案:63700N/m218.在重力作用下静止液体中,等压面是水平面的条件是参考答案:同一种液体,相互连通19.在下列各组流体中,属于牛顿流体的为()。
参考答案:水、空气、汽油20.如果原型流动中粘滞力占主要作用,则流动相似考虑雷诺相似。
工程流体力学
我们将会看到,是否忽略粘性影响将对流动问题的处理带来很大的区别,理想流体假设可以大大简化理论分析过程。 而 是流体的客观属性,所以往往是在变形速率不大的区域将实际流体简化为理想流体。
ΔV
流体的压缩性
V
流体能承受压力,在受外力压缩变形时,产生内力(弹性力)予以抵抗,并在撤除外力后恢复原形,流体的这种性质称为压缩性。
长度单位:m(米)
质量单位:kg(公斤)
时间单位:s(秒)
流体力学课程中使用的单位制
SI 国际单位制(米、公斤、秒制)
三个基本单位
导出单位,如:
01
密度 单位:kg/m3
02
力的单位:N(牛顿),1 N=1 kgm/s2
03
应力、压强单位:Pa(帕斯卡),1Pa=1N/m2
04
动力粘性系数 单位:Ns/m2 =Pas
05
运动粘性系数 单位:m2/s
06
体积弹性系数 K 单位: Pa
07
一般取海水密度为
常压常温下,空气的密度是水的 1/800 与水和空气有关的一些重要物理量的数值 1大气压,40C 1大气压,100C
空气的密度随温度变化相当大,温度高,密
度低。
水的密度随温度变化很小。 1大气压,00C 1大气压,800C
04
流体不能承受集中力,只能承受分布力。
02
一般情况下流体可看成是连续介质。
03
力学
§1-1 课程概述
工程流体力学的学科性质
研究对象 力学问题载体
宏观力学分支 遵循三大守恒原理
流体力学
水力学
流体
水
力学
强调水是主要研究对象 偏重于工程应用,水利工程、流体动力工程专业常用
工程流体力学知识点
在非惯性坐标系中,虚加在物体上的力,其大小等于该物体的质量与非惯性 坐标系加速度的乘积,方向与非惯性坐标系加速度方向相反,即
Fi ma
12.表面力 表面力作用于所研究的流体的表面上,并与作用面的面积成正比。表面力是 由与流体相接触的流体或其他物体作用在分界面上的力,属于接触力,如大气压 强、摩擦力等。 二、难点分析 1.引入连续介质假设的意义 有了连续介质假设,就可以把一个本来是大量的离散分子或原子的运动问题 近似为连续充满整个空间的流体质点的运动问题。而且每个空间点和每个时刻都 有确定的物理量,它们都是空间坐标和时间的连续函数,从而可以利用数学分析
z1
p1 ρg
=
z2
p2 ρg
(1)其适用条件是:重力作用下静止的均质流体。
(2)几何意义:z 称为位置水头,p/ρg 称为压力水头,而 z+p/ρg 称为测压
管水头。因此,静力学基本方程的几何意义是:静止流体中测压管水头为常数。
(3)物理意义:z 称为比位能,p/ρg 代表单位重力流体所具有的压力势能, 简称比压能。比位能与比压能之和叫做静止流体的比势能或总比能。因此,流体
9.运动粘度 流体力学中,将动力粘度与密度的比值称为运动粘度,用 υ 来表示,即
υ= μ ρ
其单位为 m2/s,常用单位 mm2/s、斯(St)、厘斯(cSt),其换算关系: 1m2/s=1×106mm2/s=1×104 St=1×106 cSt 1 St=100 cSt
10.质量力 作用在每一个流体质点上,并与作用的流体质量成正比。对于均质流体,质 量力也必然与流体的体积成正比。所以质量力又称为体积力。 重力、引力、惯性力、电场力和磁场力都属于质量力。 11.惯性力 (1)惯性系和非惯性系 如果在一个参考系中牛顿定律能够成立,这个参考系称作惯性参考系,牛顿 定律不能成立的参考系则是非惯性参考系。
工程流体力学原理介绍
如果孔口直径d远小于管道直径D,则称为小孔口,(d/D)4≈0 于是从上式可得小孔口的出流速度以及所有的孔口出流系 数根据:孔口出流射入大气后即成为平抛运动,通过分析这 种运动规律可得与雷诺数有关的各种出流系数曲线图
流体力学
大孔口出流常常用于孔板流量计中,小孔口出流常常用于 小孔阻尼器或小空节流中; 孔板、喷嘴和文丘里管流量计原理:静压能转变成动能, 流量大小表现为压力降的大小。当d并非远小于D时,
流体力学
局部阻力:管路的功用是输送流体,为了保证流体输送 中可能遇到的转向、调节、加速、升压、过滤、测量 等需要,在管路上必须要装管路附件。例如常见的弯 头、三通、检测表、变径段、进出口、过滤器、溢流 阀、节流阀、换向阀等。
流体力学
经过这些装置时,流体运动受到扰乱,必然产生压强(或水 头、能量)损失,这种在管路局部范围内产生损失的原因 统称为局部阻力。 局部水头损失:hf=ξv2/2g ξ为局部阻力系数
流体力学
雷诺通过实验测定得知: 当Re>13800时,管中流动状态是紊流; Re<2320时,管中流动状态是层流; 2320<Re<13800时,层流紊流的可能性都存在,不过紊流 的情况居多。因为雷诺数较高时层流结构极不稳定,(实验 表明)遇有外界振动干扰就容易变为紊流。
流体力学
管路计算的基础知识 流体在管路中所受的阻力包括沿程阻力和局部阻力 沿程阻力:在等径管路中,由于流体与管壁以及流体本身的 内部摩擦,使得流体能量沿流动方向逐渐降低,这种引起能 量损失的原因叫作沿程阻力。用压强损失、水头损失、或 功率损失三种形式表示。 压强损失:∆p=32 µ lv/d2 水头损失:hf=32 עlv/gd2=λlv2/2gd 功率损失:N=128 µlQ2/πd4
《工程流体力学 》课件
1
动量守恒定律的原理
从动量的守恒角度出发,深刻理解动量守恒定律的实际含义。
2
螺旋桨叶片受力分析方法
通过螺旋桨叶片受力分析的实例,解析动量守恒定律在实际问题中的应用。
3
旋转流体给出经典范例。
能量守恒定律
1 什么是能量守恒定律?
解析能量守恒定律的定义及其基本特性,令人信服地说明其重要性。
第二章:质量守恒定律
详细介绍质量守恒定律的深刻含义和应用范围, 以及流体连续性方程的应用实例。
第四章:能量守恒定律
归纳总结能量守恒定律的核心表述和基本特征, 以及流体能量方程的求解方法。
流体力学基础
1
流体的基本概念
定义流体和非流体的区别,详细介绍流体的基本性质和特征。
2
流场参数
分类介绍各项流场参数的定义、特征和计算方法,重点阐述雷诺数的作用。
概述水力发电站的基本构造和 设备,重点描述流场参数的计 算方法和水力器件的工作原理。
油气管道压力调节方 法
介绍油气管道压力发生变化的 原因和影响,以及调节压力的 方法与流体力学的联系。
结论和要点
结论1
质量守恒定律的意义及其在实际 问题中的应用。
结论2
动量守恒定律的实际含义,以及 其在涡轮和桨叶设计中的应用。
2 如何求解能量守恒定律?
采用实例解析法,将复杂的能量守恒定律应用问题简单化。
3 如何避免能量损失?
从能量损失的根源出发,提出避免能量损失的有效途径。
应用举例
机翼气动力设计
阐述机翼气动力设计的重要性 及其与流体力学的联系,以及 之前学到的动量守恒定律和能 量守恒定律在机翼气动力设计 中的应用。
水力发电站设计
结论3
工程流体力学(刘向军编)部分习题答案
工程流体力学(刘向军编)部分习题答案1. 引言工程流体力学是研究流体力学原理在工程领域中的应用的学科。
它旨在研究流体力学的基本原理和方程,并将其应用于解决工程实践中的问题。
本文档将针对《工程流体力学》(刘向军编)一书中的部分习题,提供答案和解析。
2. 习题答案2.1 第一章习题1-1题目:计算一个半径为10 cm的圆柱形容器中的液体质量。
若液体密度为1000 kg/m³。
解答:首先需要计算液体的体积。
由于液体是圆柱形容器中的,可以使用圆柱的体积公式来计算体积。
圆柱的体积公式为:$$V = \\pi r^2 h$$其中,r是圆柱的半径,r是圆柱的高度。
将给定的半径和高度代入公式,可以计算出体积:$$V = \\pi \\times (0.1)^2 \\times h$$接下来,将体积和密度代入质量公式,可以计算出液体的质量:$$m = \\rho \\times V$$将给定的密度代入公式,可以计算出液体的质量。
习题1-2题目:一个圆柱形容器的半径为20 cm,高度为50 cm。
计算在液体密度为1000 kg/m³时,液体的质量。
解答:与习题1-1类似,根据题目给定的半径和高度,可以计算出液体的体积。
将体积和密度代入质量公式,可以计算出液体的质量。
计算过程如下:首先计算液体的体积:$$V = \\pi \\times (0.2)^2 \\times 0.5$$接下来,将体积和密度代入质量公式,可以计算出液体的质量。
2.2 第二章习题2-1题目:当速度场分布为r(r,r)=rr+rr时,求速度场的旋度。
解答:速度场的旋度定义为:$$\ abla \\times \\mathbf{v} = \\left(\\frac{\\partialv_y}{\\partial x}-\\frac{\\partial v_x}{\\partialy}\\right)\\mathbf{k}$$其中,$\ abla \\times \\mathbf{v}$表示速度场的旋度,r r和r r分别表示速度场在r和r方向的分量。
工程流体力学公式
工程流体力学公式1. 什么是工程流体力学工程流体力学是研究在工程领域中涉及流体行为和流体力学原理的科学和工程学科。
它涵盖了液体和气体在各种工程应用中的流动、传输和相互作用的研究。
工程流体力学的目标是理解流体的行为,以便设计和优化工程系统,如水力发电站、管道网络、风力涡轮机等。
2. 流体静力学公式是什么流体静力学是研究静止液体或气体的力学性质的分支学科。
它主要研究静止流体中的压力分布和压力力学。
在流体静力学中,一些重要的公式包括:- 压力公式:P = ρgh,其中P表示压力,ρ表示流体的密度,g表示重力加速度,h表示液体的高度。
这个公式说明了液体的压力与液体的高度和密度有关系。
- 压力传递公式:P1 + 1/2ρv1²+ ρgh1 = P2 + 1/2ρv2²+ ρgh2,其中P1和P2表示两个点的压力,ρ表示流体的密度,v1和v2表示两个点的流速,g 表示重力加速度,h1和h2表示两个点的高度。
这个公式说明了在一个静止的流体中,压力、速度和高度之间的关系。
3. 流体动力学公式是什么流体动力学是研究流体的运动行为和力学性质的分支学科。
它主要研究流体的速度、压力、流量和能量转换等方面的问题。
在流体动力学中,一些重要的公式包括:- 质量连续性方程:∂ρ/∂t + ∇·(ρv) = 0,其中ρ表示流体的密度,t表示时间,v表示速度矢量。
这个公式是质量守恒的表达式,说明了流体在运动过程中的质量守恒。
- 动量方程:ρ(dv/dt) = -∇P + ρg + μ∇²v,其中ρ表示流体的密度,v表示速度矢量,P表示压力,g表示重力加速度,μ表示动力黏度。
这个公式描述了流体在受力作用下的运动行为,包括压力梯度、重力和黏度力。
- 能量方程:ρ(dE/dt) = -P∇·v + ∇·(k∇T) + ρg·v + Q - W,其中ρ表示流体的密度,E表示单位质量的总能量,t表示时间,P表示压力,v表示速度矢量,k表示热导率,T表示温度,g表示重力加速度,Q表示单位质量的热源,W表示单位质量的功率。
(完整版)工程流体力学公式
(完整版)工程流体力学公式工程流体力学公式 (完整版)流体静力学公式1. 压力公式: $P = \rho \cdot g \cdot h$其中,$P$表示压力,$\rho$表示流体密度,$g$表示重力加速度,$h$表示高度差。
2. 曲面小段受力: $dF = P \cdot dA$其中,$dF$表示曲面小段受力,$P$表示压力,$dA$表示曲面小段面积。
3. 曲面上受力:$F = \int P \cdot dA$其中,$F$表示曲面上受力,$P$表示压力,$dA$表示曲面面积。
4. 静水压力公式: $P = \rho \cdot g \cdot h_1 - \rho \cdot g \cdoth_2$其中,$P$表示压力,$\rho$表示流体密度,$g$表示重力加速度,$h_1$表示液体上表面高度,$h_2$表示液体下表面高度。
5. 压力的传递公式: $P_2 = P_1 + \rho \cdot g \cdot h$其中,$P_2$表示第二点的压力,$P_1$表示第一点的压力,$\rho$表示流体密度,$g$表示重力加速度,$h$表示两点的高度差。
流体动力学公式1. 流体密度公式: $\rho = \frac{m}{V}$其中,$\rho$表示流体密度,$m$表示流体的质量,$V$表示流体的体积。
2. 流量公式: $Q = Av$其中,$Q$表示流量,$A$表示流体流动的横截面积,$v$表示流体的平均流速。
3. 根据质量守恒定律,流量公式也可以表示为: $Q = \rho \cdot Av$其中,$Q$表示流量,$\rho$表示流体密度,$A$表示流体流动的横截面积,$v$表示流体的平均流速。
4. 动量方程: $F = \rho \cdot A \cdot (v_2 - v_1)$其中,$F$表示力,$\rho$表示流体密度,$A$表示流体流动的横截面积,$v_2$表示流体出口速度,$v_1$表示流体入口速度。
《工程流体力学》 Engineering fluid mechanics
第一章
二、表面力(Surface Force)又称面积力;
定义:作用于流体表面上的力,与作用的表面积大小 成正比。 拉力、压力、切力 表面力包括法向力和切向力;
法向力:垂直于流体表面 P= pA 切向力:与流体表面相切 T=τA
第一章 应力:单位面积上的表面力,正应力(压强)和切向力,
单位:N /m2 , Pa
lim
V 0
M V
p3(1-2-2)
均质流体内部各点处的密度均相等:
ρ——流体的密度, kg/m ; m ——流体的质量, kg; V ——该流体的体积, m3 。
m V 3
p3(1-2-1)
三、重力特性
第一章
流体受地球引力的特性,称重力特性,用容重表示。
容重(Specific Weight): 指单位体积流体的重量。单位: N/m3
工程流体力学课程的学习要求
1.掌握流体力学的基本理论,基本原理; 2.能运用流体力学的基本理论解决工程实际中的问题; 3.掌握流体力学的基本计算技巧,熟练运用“三大方程” 进 行实际工程的计算和设计; 4.了解水泵(风机)的类型、性能及结构特点; 5.掌握水泵(风机)各种性能参数(流量、扬程、功率)的计算; 6.能根据工程的设计要求进行水泵(风机)选型、安装和调节。
葛洲坝水利枢纽是长江干流上新建的第一座水利枢 纽,被誉为长江第一明珠;
葛洲坝水利枢纽奠基于70年代初,竣工于80年代, 工程总投资48.48亿元人民币; 大江电厂、二江电厂总装机21台,总容量271.5万KW ,年均发电量153亿KW.h; 截至1999年电厂累计发电2320亿KW.h,人均创造劳 动产值71.8万元; 战胜大于45000m3/s特大洪水43次,1998年8月在长 江发生特大洪水期间三次超常规拦蓄洪峰,为缓解 长江中下游灾情、避免荆江分洪做出了突出贡献。
工程流体力学
工程流体力学1 工程流体力学是什么工程流体力学(Engineering Fluid Mechanics,简写为EFM)是一门系统的学科,讨论的是涉及流体流动的物理原理及其在各种工程上的应用。
涵盖了气体和液体的流动,包括固体的流动。
它是材料科学,力学,电子学,电气工程,化学工程,热传导,机械工程等学科的综合。
它借助物理学和数学的方法来研究和分析流体物理过程,以及流体对各种物质,细节,器件和装置的影响。
2 流体力学的主要内容工程流体力学的主要内容包括静动力流体力学、压力与流量特性、热力学与流变学、不可压缩流体力学和固态流体力学。
其中,静动力流体力学研究流体的性质,及其在用于指定流体流经体系的一般条件下的性能;压力与流量特性研究的是特定的流体在给定的动压条件下的行为;热力学与流变学则是研究由于温度、压力和流速变化而引起的流体性质变化;而不可压缩流体力学则是研究气体的流动;固态流体力学则是研究固体材料的流动。
3 工程流体力学的应用工程流体力学的主要应用有液压传动,气动传动,涡轮机械和内燃机,压气机,增压机械,气体充填、分离、加热、蒸发、蒸馏及纯化等技术,空气动力学,水力学,污水处理,风力发电,水轮机械,水利工程等等。
工程流体力学的应用可以涉及空气动力学,流体压缩机和气动传动,涡轮机械,水体模型,机械设备等等。
它们可用于航空、轨道运输、宇宙空间技术、清洁能源技术、海洋技术、矿井技术等和其他工业等行业,复杂系统设计,军事科学及其它新技术中应用。
4 结论工程流体力学是涉及流体流动的物理原理及其在各种工程上的应用的系统学科,主要包括静动力流体力学、压力与流量特性、热力学与流变学、不可压缩流体力学和固态流体力学。
它的应用范围相当广泛,涉及到了航空、轨道运输、宇宙空间技术、清洁能源技术、海洋技术、矿井技术等等,作为工程科学技术的重要组成部分,它给人类带来了许多积极的影响。
【完整版】工程流体力学
《工程流体力学》课程标准课程名称:工程流体力学适用专业:石油工程技术计划学时:64一、课程性质《工程流体力学》课程是石油工程技术专业的一门有特色的必修专业基础课程,也是一门知识性、技能性和实践性要求很强的课程。
流体力学课程是学生理解掌握现代化石油勘探、设计、运行与管理的知识基础,也是学生继续深造及将来从事研究工作的重要工具,为今后的专业学习和工作实践奠定基础。
本课程是石油工程技术专业一门必修的专业基础课程,具有较强的实际应用性,在学生职业能力培养和职业素质养成两个方面起支撑和促进作用。
二、培养目标《工程流体力学》课程立足于高职院校的人才培养目标,培养拥护党的基本路线,适应社会主义市场经济需要,德、智、体、美全面发展,面向石油工业生产、管理和服务第一线,牢固掌握石化职业岗位(群)所需的基础理论知识和专业知识,重点掌握从事石化领域实际工作的基本能力利基本技能,具有良好的职业道德、创业精神和健全体魄的高等技术应用型专门人才。
按照职业岗位标准和工作内容的要求,通过对本课程的学习,使学生掌握化学分析中、高级工的应知理论、应会技能和必备的职业素养。
成为满足石化企业分析检验岗位对所需人才知识、能力、素质要求的高技能人才。
通过项目导向,教学探究型的教学,加强学生实践技能的培养,培养学生的综合职业能力和职业素养、独立学习及获取新知识、新技能、新方法的能力和与人交往、沟通及合作等方面的态度和能力。
通过本课程的实践教学,使学生毕业后可胜任流体力学学科或相邻学科的教学、科研、技术开发与维护工作,能够解决能源化工等工程中遇到的流体力学问题,从而实现本专业的培养目标。
2.1知识目标(1)使学生掌握流体力学的基本知识、基本理论、基本实验技能。
(2)培养学生对流体力学基本概念、基本理论、基本运算原理的应用能力。
(3)使学生具有实验实训室常用仪器、设备的规范使用能力。
(4)使学生掌握连续性方程、能量方程、动量方程的应用。
2.2方法能力目标(1)使学生掌握流体力学的基本原理及分析方法,在进行教学的同时,注重基础理论的发展过程及联系,培养学生解决一般问题的能力。
工程流体力学总结
工程流体力学总结引言工程流体力学是研究流体在工程领域中的运动和相互作用的学科。
它是现代工程学中的重要分支,涉及到多个领域,如建筑、航空航天、能源等。
本文将对工程流体力学的基本原理、应用领域和研究方法进行总结和介绍。
基本原理流体的基本性质流体力学研究的对象是流体,流体是指液体和气体。
流体具有一些基本性质,如宏观连续性、流体的速度分布以及流体的压力分布等。
流体的运动方程流体的运动方程是描述流体运动规律的基本方程,包括质量守恒方程、动量守恒方程和能量守恒方程。
这些方程可以用于描述流体的运动和相互作用。
流体的流动类型流体的流动可以分为层流和湍流两种类型。
层流是指流体在管道中按规则的流动,流线间无交叉和混杂。
而湍流则是指流体在管道中混乱地流动,流线交错和混杂在一起。
应用领域建筑工程工程流体力学在建筑工程中有着广泛的应用。
例如,在空调系统中,通过研究流体力学可以优化空气流动的分布,提高室内空气质量。
另外,在桥梁设计中,研究流体力学可以评估风载效应,确保桥梁的安全性能。
航空航天航空航天领域是工程流体力学的重要应用领域之一。
研究流体在飞行器表面的流动特性,可以提高飞机和火箭的气动性能。
此外,工程流体力学还可以用于设计空气动力学模拟实验,以预测飞行器的飞行性能。
能源工程工程流体力学在能源领域的应用也较为广泛。
例如,在水力发电站中,研究水流的流动特性可以优化水轮机的设计,并提高发电效率。
另外,在核电站中,工程流体力学可以用于研究冷却剂的流动,确保核反应堆的安全性能。
研究方法数值模拟数值模拟是工程流体力学研究中常用的方法之一。
通过建立流体力学方程的数值模型,利用计算机进行求解,可以模拟流体的运动和相互作用。
数值模拟方法可以有效地降低实验成本,加快研究进度。
实验测试实验测试是工程流体力学研究的另一种重要方法。
通过设计合适的实验装置和实验方法,可以直接观测和测量流体的性质和运动规律。
实验测试方法可以提供准确的数据,验证数值模拟的结果,对研究结果进行补充和修正。
工程流体力学pdf
工程流体力学pdf
工程流体力学指的是利用流体力学的基本原理和方程对有关流体的施用及影响的理论研究。
这是一种流体运动和物质传输的综合性学科,旨在研究及求解多相流体,其中含有液体、气体和固体等多种粒子,其运动行为。
工程流体力学利用数学模型解析介质运动特性,旨在获得精确的定义和运动方程,并且有助于理解介质的波动特性、物质的流动损失、湍流、传热、混合等物理现象过程。
工程流体力学举足轻重地促进了热工、机电、冶金、电厂、汽车等众多工程的发展,也是现代工程设计与研究的重要内容。
进行工程流体力学研究时,主要需要考虑物质与能量的传输以及流体循环系统本身带来的动态影响,并搭建介质动力学和电磁学的模型,求解介质的动力参数,如流速、温度、压强等,以及耦合场的分布。
计算机的出现给工程流体力学的研究带来了极大的便利,更便捷的绘制出精确的流线图和温度图及相应的各种物理参量分布。
工程流体力学在得到不断完善的前提下,还将在新兴技术领域中发挥重要作用,如航天、太空探索和生命科学等,从而促进人类进步。
工程流体力学第二版习题答案解析[杜广生].doc
《工程流体力学》习题答案(杜广生主编)第一章习题1. 解:依据相对密度的定义: d fw 13600100013.6 。
式中,w表示4摄氏度时水的密度。
2. 解:查表可知,标准状态下:CO2 1.976kg / m3,SO2 2.927kg / m3 , O 2 1.429kg / m3,N2 1.251kg / m 3,H 2 O 0.804kg / m3 ,因此烟气在标准状态下的密度为:1 12 2 L n n1.976 0.1352.927 0.003 1.429 0.052 1.251 0.76 0.804 0.051.341kg / m33. 解:4atm ( 1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为的空气的等温体积模量:K T 4 101325 405.3 103 Pa ;( 2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量:K S p 1.4 4 101325 567.4 103 Pa式中,对于空气,其等熵指数为1.4 。
4.解:根据流体膨胀系数表达式可知:dV V V dT 0.005 8 502m3因此,膨胀水箱至少应有的体积为 2 立方米。
5.解:由流体压缩系数计算公式可知:dV V 1 103 50.51 10 9 m 2 / Nk(4.9 0.98) 105dp6.解:根据动力粘度计算关系式:678 4.28 10 7 2.9 10 4 Pa S7.解:根据运动粘度计算公式:1.3 10 3 1.3 10 6 m 2 / s999.48. 解:查表可知, 15 摄氏度时空气的动力粘度17.83 106 Pa s ,因此,由牛顿内摩擦定律可知:FAU 17.83 1060.20.33.36 10 3 Nh0.0019. 解:如图所示,高度为 h 处的圆锥半径:r htan ,则在微元高度 dh 范围内的圆锥表面积:dh 2 htandhdA=2 r=coscos由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:d = = r = h tan则在微元 dh 高度内的力矩为:dM = dA r =h tan2 h tan dh h tan =2tan 3 h 3dhcoscos因此,圆锥旋转所需的总力矩为:tan 3 Htan 3H 4M = dM =2h 3dh=2coscos 410. 解:润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:=nD60由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即:d =dy则轴与轴承之间的总切应力为:T = A=Db2克服轴承摩擦所消耗的功率为: P=T =Db因此,轴的转速可以计算得到:n= 60 60 P6050.7 103 0.8 10-3r/min=D=0.2 0.245=2832.16DDb 3.14 3.14 0.2 0.3WORD 格式整理版11.解:根据转速 n 可以求得圆盘的旋转角速度:2 n 2 90===36060如图所示,圆盘上半径为r 处的速度:= r ,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:d=dy则微元宽度 dr 上的微元力矩:dM = dA r =r 2 rdr r =23r 3dr =62r 3dr因此,转动圆盘所需力矩为:DM = dM =6 223dr =6 2( D 2) 420.40.234r=6 3.14=71.98 N m40.23 10-3412. 解:摩擦应力即为单位面积上的牛顿内摩擦力。
工程流体力学 陈小榆
工程流体力学1. 引言工程流体力学是研究液体和气体在各种工程应用中流动行为的学科。
它的研究范围包括物质运动、能量传递和动量变化等方面。
工程流体力学是工程学中的一个重要学科,广泛应用于航空航天、能源、交通、水利等各个领域。
在本文中,我们将探讨工程流体力学的基本原理和应用。
2. 流体的基本性质流体是一种无固定形状的物质,包括液体和气体两种形态。
流体具有以下几个基本性质:•可压缩性:气体是可压缩的,而液体则基本上是不可压缩的。
•流动性:流体具有流动性,即可以自由地变形和流动。
•惯性:流体具有惯性,即具有质量和动量。
•不可分性:流体是不可分的,即无法将其分解为更小的粒子。
3. 流体的运动定律在工程流体力学中,研究流体的运动定律是非常重要的。
根据流体的运动状态,可以分为静态和动态两种情况。
3.1 静态流体力学静态流体力学是研究静止流体的力学行为。
在静态流体力学中,主要研究流体的压力分布、压强、密度和重力等性质。
3.2 动态流体力学动态流体力学是研究流动流体的力学行为。
流体的运动可以分为定常流动和非定常流动两种情况。
在动态流体力学中,主要研究流体的速度分布、流量、压力损失和流动阻力等性质。
4. 流体的流动行为流体在工程应用中的流动行为是工程流体力学的核心内容之一。
根据流体的性质和流动状态,可以分为层流和湍流两种情况。
4.1 层流层流是指流体在管道或流道中呈现平行且有序的流动状态。
在层流中,流体分子之间的相互作用力较大,流体流动速度均匀、流线平行。
层流通常发生在低速流体中,并且具有稳定的流速分布。
4.2 湍流湍流是指流体在管道或流道中呈现混乱和无序的流动状态。
在湍流中,流体分子之间的相互作用力较小,流体流动速度不均匀、流线交错。
湍流通常发生在高速流体中,并且具有不稳定的流速分布。
5. 工程流体力学的应用工程流体力学在各个工程领域中都具有重要的应用价值。
以下是几个常见应用领域:5.1 航空航天在航空航天工程中,工程流体力学用于研究飞行器的空气动力学特性,例如气动力、气流分布、升力和阻力等。
杜编《工程流体力学》总结
杜编《工程流体力学》总结第一章 绪论一、流体的定义:通常说能够流动的物质为流体;如果按照力学的术语进行定义,则在任何微小剪切力的作用下都能够发生连续变形的物质称为流体。
液体、气体统称为流体。
二、特征在给定的剪切力作用下,固体只产生一定量的变形,而流体将产生连续的变形,即流体具有流动的特征;当剪切力停止作用时,在弹性极限内固体可以恢复原来的形状,而流体只是停止变形,而不能恢复到原来的位置;在静止状态下,固体能够同时承受法向应力和切向应力,而流体仅能够承受法向应力,只有在运动状态下才能够同时承受法向应力和切向应力;固体有一定的形状,而流体则取其容器的形状。
三、连续性假设把流体视为由无数连续分布的流体微团组成的连续介质,这就是流体的“连续介质模型”。
四、密度密度是流体的重要物理属性之一,它表征流体的质量在空间的密集程度。
对于非均质流体,若围绕空间某点的体积为δV ,其中流体的质量为δm ,则它们的比值δm /δV 为δV 内流体的平均密度。
令δV →0取该值的极限,便可得到该点处流体的密度,即 ρδδδ==→limV m V dmdV0 式中m 为流体的质量(kg ),V 为流体的体积(m 3),ρ表示流体单位体积内具有的质量(kg/m 3)。
式中数学上的δV →0,在这里应从物理上理解为,体积缩小为上节所定义的流体微团。
以后遇到类似情况,都应该这样去理解。
对于均质流体,其密度为ρ=mV五、可压缩流体和不可压缩流体流体的膨胀性:流体的膨胀性系数用αV 表示,它是在一定压强下单位温升引起的体积变化率,即VdTdVa V =式中dT 为温度增量,V dV 为d T 引起的体积变化率。
流体的压缩性:用流体的压缩系数k 表示,它是在一定温度下单位压强增量引起的体积变化率,即pV Vp V V δδ-=δδ-=κ 式中p δ为压强增量,V /V δ为δp 引起的体积变化率。
由于压强增高,体积缩小,δp 和δV 异号,为了保证压缩系数为正,故在等式的右侧冠以负号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5-1 孔口及管嘴恒定出流
一、孔口出流的计算 1 薄壁孔口恒定出流 孔口出流:流体在某一水头的作用下从容器壁面孔口流入大 气、或流入下游淹没流体的流动。分别称为自由出流和淹没出流。 薄壁孔口:出流流体与孔口边沿成线状接触的出流孔口。
2 α 0 v0
O
2g
H
H C D A A C
v0
vC
O
图 5-1 如图 5-1 所示, 设孔口面积为A, 流出孔口后的流束断面积为 Ac,Ac与的比值称为断面收缩系数 ε : A ε= c A 列 1-1 和 c-c 断面的伯努利方程: 2 2 p c α c vc Ρa α 0 v0 H+ + = 0+ + + hw1−c 2g 2g γ γ 因为水箱内的流速很小,水头损失仅考虑孔口的局部损失: 2 vc hw = h j = ζ 0 2g
C D C 3~4D
图 5-5
vc
v
孔口壁厚 l 大于或等于 3-4 倍的孔口直径 d, 或者在孔口处外 接一段长 l 的圆管的出流称为管嘴出流。如图 5-5 所示,管嘴出流 的特点是: 1) 收缩断面 c-c 处存在真空;2)管嘴出口断面上为满管 流。 对 1-1 断面和出口断面 2-2 列能量方程: 2 p Ρ αv α v2 H + a + 1 1 = 0 + a + 2 2 + hw1− 2 2g 2g γ γ 因 hw1− 2 = h j = ζ n 理得:
1 1/ 6 R ,结果得: n
S=
10.3n 2 d 5..33 Q2 H= 2l K
(5-32)
n 为管道粗糙系数。 1 若令 K = AC R = ,则可得 S 或
Q=K J
由(5-32)式可见,因 J 为水力坡度(无量纲) ,故 K 具有与流量 Q 相同的量纲或单位(从其定义也可导出) ,即 m 3 / s ,故称 K 为 流量模数,或特性流量。 K 的物理意义:
∂φ ( φ 为任一运动要素) =0 ∂t ∂φ 2.非恒定流: ≠0 ∂t
3.有压管道:整个断面均被液体充满,其周界上的各点均受到液 体压强作用的管道。 4.简单管:管径不变的单根管道。 5.复杂管:由两根或两根以上管道通过适当形式组合而成管系或 管网。 (并联、串联、分支等) 6.长管:管线很长,局部水头损失可忽略的管道。 * 管道水力计算的具体任务: ① 给定管线布置,管径,已知作用水头,确定输送流量和过水能 力; ② 已知流量 Q,计算管径; (作用水头已知) ③ 已知管径,流量 Q,求作用水头; ④ 已知管道尺寸,流量 Q,求沿程动水压强变化。
第五章 孔口、管嘴和有压管道恒定流
前面章节讨论了恒定液体运动的基本运动规律,其理论构架 为三大基本方程及相应的概念,从本章开始讨论应用这些规律分 析,解决水利工程中的水力计算问题,这些问题是: ①水力荷载;②过水能力; ③流动形态包括水工结构物形状; ④水能利用与消耗;等等 本章主要讨论有压管道的过水能力问题,其中水力计算的核 心内容为确定水头损失。 概念定义: 1.恒定流:
α v2 v2 ,且令 H 1 = H + 1 1 , 代入上式整 2g 2g
2
v2 =
式中 ϕ n =
1
α2 +ζ n
≈
2 gH 1 = ϕ 2 gH 1
,称为管嘴流速系数。则经过
1
1 1+ ζ n
α2 +ζ n
管嘴的流量为: Q = v2 A = ϕ n A 2 gH 1 = µA 2 gH 1
令 S=
8λ ,则 gπ 2 d 5
H = SlQ 2
(5-26)
其中 S 称为比阻,指单位平方流量通过单位长度管道所需水 头,单位为 s 2 / m 6 。比阻 S 与管径和管道沿程阻力系数有关。 对旧铸铁管和旧钢管,水头损失系数 λ 分别按(5-38)和(5-39) 式计算,将两式代入比阻 S 的表达式中得: 0.001736 ( v ≥ 1.2 m/s) S= d 5..3 0.867 0.3 0.001736 ) S ′ = 0.852(1 + = kS ( v < 1.2 m/s) v d 5..3 (5-27) (5-27’)
若管流流速大, Re ≥ 10 6 以上,水流流态处于水力粗糙区(阻力平 方) ,则水头损失可按谢才公式计算,而 λ 与谢才系数的关系为: 8g λ= 2, C 代入(5-24)式得
H = hf =
=
其中 S =
C=
2 2
8g l v 2 C 2 d 2g
1 lQ 2 = SlQ 2 2 AC R
1 。对不同直径及糙率的园管,采用曼宁公式计算 A C2R
上游水面,因而在这部分管路段中存在真空。 虹吸管的安装高度:虹吸管顶部断面相对于吸水池水面的高度。 例:5-2 (图 5-10,见书 135 页) 四、气体管路 (自学)
§5-3 长管的水力计算
当管道可看作长管时,局部损失可忽略,同时不计上、下游 流速水头,则能量方程简化为: l v2 H = hf = λ d 2g p1 p2 其中 H = ( z1 + γ ) − ( z 2 + γ ) 。 一、简单长管 管径不变、流量不变,不计局部损失的管路。
C
D
Q = Q1 + Q2 + Q3 =(
1
S1l1
+
1
S 2l2
+
1
S 3l3
) h fAB
(5-39)
(四个独立方程,可解四个未知数) 例 5-7: (见书 142 页)
§5-5 管网水力计算基础 (自学)
§5-6 水泵装置的水力计算
一、 离心式水泵工作原理 离心式水泵是一种常用的叶轮式抽水机械,可将叶轮的旋转 机械能转化为液体的动能和压能。 离心泵的主要结构: (1)叶轮; (2)叶片; (3)泵壳; (4) 吸水管; (5)压水管; (6)泵轴。 工作原理:当离心泵叶轮旋转时,在离心力的作用下,叶轮 流道中的液体被抛向泵壳和压力出水管,同时在水泵进口形成真 空。因此水泵 二、 离心泵性能参数 描述离心泵性能的基本工作参数,主要指下列参数: 1) 流量(Q) :单位时间通过水泵的液体体积, m 3 / s 。 2) 扬程(H) :水泵进、出口断面上单位重量液体的总水头之 差,即
(5-9)
式中 µ n = ϕ n 称为管嘴的流量系数。比较(5-8)和(5-9) 式可见,在相同直径、相同作用水头下,管嘴出流的流量比孔口 出流的流量大。原因是在管嘴出流的收缩断面 c-c 处存在真空。
§5-2 简单短管的水力计算
一、 自由出流
1 H 2 2 O
v O 1
图 5-7
管道出口流入大气,流出水股四周都变大气压强作用的情形, 如图 5-7, (简单管左端与水池相连, 右边末端流入大气) , 在图 5-7 上,取通过出口中心的水平面 0—0 为基准面,断面 1—1 取在入 口断面上游某外,须满足渐变流条件,对进口断面 1—1 和出口断 面 2—2 应用能量方程: 2 p Ρ α v αv 2 H + a + 0 0 = 0+ a + + hw1− 2 γ γ 2g 2g α v2 令 H 0 = H + 0 0 ,称为包括行近流速水头在内的总水头。 2g 又 hw1− 2 = h f 1−2 + ∑ h j = λ 故上式变为:
hf AB hf 1=hf 2 =hf 3 Q1 A B Q2 Q3
图 5-17 并联管路 根据上述特点,对如图 5-17 的并联管路,由伯努利方程(计 算沿程水头损失)和连续性方程得: 2 2 2 h fAB = S1l1Q1 = S 2 l 2 Q2 = S 3l 3Q3 (5-37)
H hf CD
(5-24)
图 5-14 在如图 5-14 所示简单长管,取基准面 0-0,对断面 1-1 和 2-2 建立伯努利方程:
H +0+
由连续性方程 v =
α 0 v0 2
2g
= 0+0+
αv 2
2g
+ hw1− 2
4Q 2 及(5-24)式得: πd 2 l v2 8λ H = hf = λ lQ 2 = 2 5 d 2 g gπ d
2
。
例 5-6: (见书 142 页) 三、并联长管 并联管路:两条或两条以上的管道从同一节点分岔而又在下游相 邻节点汇合的管路系统。并联管路中每条管道的管径、管长和流 量均不一定相等。 并联管路的特点: (1)两节点间各支管的能量损失均相等; ( 2) 总管道的流量等于各支管的流量之和。 (3)并联管路的每条管道 计算通常按长管计算。
是比阻 S 的平方根倒数,综合反映了管道断面形状,尺寸及边壁 粗糙对输水能力的影响。水力坡度一定时,输水能力 Q 与流量模 数 K 成正比。
二、
串联长管 串联管路:由直径不同的几段管道依次连接而成的管路。各
管段通过的流量可以相同,也可以不同。
图 5-16 串联管路 对如图 5-16 的串联管路应用伯努利方程得, n m v2 H= + ∑ h fi + ∑ h jk 2 g i =1 k =1 由连续性方程,各管段的流量为: Q1 = Q2 + q1
l v2 l v2 v2 + ∑ζ = (λ + ∑ ζ ) d 2g d 2g 2g
1
v=
l α + λ + ∑ζ d
2 gH 0
(5-17)
相应的流量为: Q = vA = u c A 2 gH 0
(5-18)
式中
1 称为管道系统的流量系数(, 可用 H 0 = H , 速系数) , 其中 α = 1 。