安徽蚌埠铁路中学高一上学期期中检测数学试卷 含答案
安徽省蚌埠铁路中学2019_2020学年高一数学上学期期中检测试题
蚌埠铁中2019-2020学年度第一学期期中检测试卷高一数学考试时间120分钟 试卷分值150分一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A 只含有一个元素a ,则有( )A .0∈AB .a ∉AC .a ∈AD .a =A2.已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z},则A ∪B = ( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3} 3.设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )= ( )A .{2,6}B .{3,6}C .{1,3,4,5}D .{1,2,4,6}4. 给定映射f :)2,2(),(y x y x y x -+→,在映射f 下(3,1)的原象为 ( )A. (1,3)B. (1,1)C. (3,1)D. (21,21)5. 下列函数中是偶函数且在(0,1)上单调递减的是 ( )A. 31x y -= B. 4x y = C. 21x y = D. 2-=xy6. 已知3.0log 2=a ,3.02=b ,2.03.0=c ,则c b a ,,三者的大小关系是 ( )A. c b a >>B. c a b >>C. a c b >>D. a b c >>7. 设函数3x y =与2)21(-=x y 的图象的交点为),(00y x ,则0x 所在的区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)8. 若函数)(x f y =是函数xa y =(0>a ,且1≠a )的反函数,其图象经过点),(a a ,则=)(x f( )A. x 2logB.x21log C.x 21 D. 2x 9. 函数210552)(x x x x f --+-=( )A. 是奇函数但不是偶函数B. 是偶函数但不是奇函数C. 既是奇函数又是偶函数D. 既不是奇函数又不是偶函数10.下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是 ( )A ,y =x B,y =lg x C,y =2xD,y x=11. 定义运算⎩⎨⎧>≤=⊗)()(b a bb a a b a ,则函数xx f 21)(⊗=的图像大致为( )AB C D12. 已知函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是 ( )A .f (1)≥25B .f (1)=25C .f (1)≤25D .f (1)>25二、填空题:本大题共4小题,每小题5分,共20分。
[精品]2014-2015年安徽省蚌埠铁路中学高一(上)数学期中试卷与答案
2014-2015学年安徽省蚌埠铁路中学高一(上)期中数学试卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合A={y|y=log2x,x>1},B={y|y=()x,x>1},则A∩B=()A.{y|0<y<}B.{y|0<y<1}C.{y|<y<1}D.∅2.(5分)设M={1,2,3},N={e,g,h},从M到N的四种对应方式如图,其中是从M到N的映射的是()A. B.C.D.3.(5分)下列函数中哪个与函数y=x相等()A.y=B.y=C.y=D.y=4.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x+1)=()A.x2+6x B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣105.(5分)已知函数y=f(x)的图象如图所示,则函数y=f(|x|)的图象为()A.B.C.D.6.(5分)设f(x)=,则f[f(2)]=()A.2 B.3 C.9 D.187.(5分)函数y=a x﹣a(a>0,a≠1)的图象可能是()A.B. C.D.8.(5分)若函数f(x)=|4x﹣x2|+a有4个零点,则实数a的取值范围是()A.[﹣4,0]B.(﹣4,0)C.[0,4]D.(0,4)9.(5分)若函数f(x)=(a2﹣2a﹣3)x2+(a﹣3)x+1的定义域和值域都为R,则a的取值范围是()A.a=﹣1或3 B.a=﹣1 C.a>3或a<﹣1 D.﹣1<a<310.(5分)若函数f(x)为定义域D上的单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数.若函数g(x)=x2+m是(﹣∞,0)上的正函数,则实数m的取值范围为()A.B.C.D.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)若a>0,且a≠1,则函数y=a x﹣1+1的图象一定过定点.12.(5分)幂函数f(x)=(m2﹣2m﹣2)在(0,+∞)是增函数,则m=.13.(5分)函数f(x)=log(x2﹣2x)的单调递减区间是.14.(5分)已知函数若方程f(x)=x+a有且只有两个不相等的实数根,则实数a的取值范围是.15.(5分)函数f(x)是定义在R上的奇函数,给出下列命题:①f(0)=0;②若f(x)在(0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0)上有最大值1;③若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数;④若x>0,f(x)=x2﹣2x;则x<0时,f(x)=﹣x2﹣2x.其中所有正确的命题序号是.三、解答题:(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)(1)已知a=,b=,求[b]2的值;(2)计算lg8+lg25+lg2•lg50+lg25的值.17.(12分)已知全集U=R,A={x|x≥3},B={x|x2﹣8x+7≤0},C={x|x≥a﹣1}(1)求A∩B;A∪(∁U B)(2)若C∪A=A,求实数a的取值范围.18.(12分)已知函数.(1)判断函数f(x)的奇偶性,并证明;(2)利用函数单调性的定义证明:f(x)是其定义域上的增函数.19.(13分)已知二次函数f(x)=ax2+bx,(a,b为常数,且a≠0)满足条件f (﹣x+5)=f(x﹣3),且方程f(x)=x有两个相等的实根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]与[3m,3n],若存在,求出m,n的值,若不存在,请说明理由.20.(13分)某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)工厂生产多少台产品时,可使盈利最多?21.(13分)如果函数f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y)(1)求f(1)的值.(2)已知f(3)=1且f(a)>f(a﹣1)+2,求a的取值范围.(3)证明:f()=f(x)﹣f(y).2014-2015学年安徽省蚌埠铁路中学高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知集合A={y|y=log2x,x>1},B={y|y=()x,x>1},则A∩B=()A.{y|0<y<}B.{y|0<y<1}C.{y|<y<1}D.∅【解答】解:∵集合A={y|y=log2x,x>1},∴A=(0,+∞)∵B={y|y=()x,x>1},∴B=(0,)∴A∩B=(0,)故选:A.2.(5分)设M={1,2,3},N={e,g,h},从M到N的四种对应方式如图,其中是从M到N的映射的是()A. B.C.D.【解答】解:对于A中的对应,由于集合M中的元素3在集合N中有2个元素g、h和它对应,故不满足映射的定义.对于B中的对应,由于集合M中的元素2在集合N中有2个元素e、h和它对应,故不满足映射的定义.对于C中的对应,由于集合M中的每一个元素在集合N中有唯一确定的一个元素和它对应,故满足映射的定义.对于D中的对应,由于集合M中的元素3在集合N中有2个元素g、h和它对应,故不满足映射的定义.故选:C.3.(5分)下列函数中哪个与函数y=x相等()A.y=B.y=C.y=D.y=【解答】解:A.y=的定义域是{x|x≥0},而函数y=x的定义域R,故不是同一函数.B.y=的定义域是{x|x≠0},而函数y=x的定义域R,故不是同一函数.C.y==|x|与y=x的对应法则、值域皆不同,故不是同一函数.D.y==x与y=x是同一函数.故选:D.4.(5分)已知f(x﹣1)=x2+4x﹣5,则f(x+1)=()A.x2+6x B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣10【解答】解:f(x﹣1)=(x﹣1)2+6(x﹣1),∴f(x)=x2+6x;∴f(x+1)=(x+1)2+6(x+1)=x2+8x+7.5.(5分)已知函数y=f(x)的图象如图所示,则函数y=f(|x|)的图象为()A.B.C.D.【解答】解:函数y=f(|x|)=,是偶函数,因此将函数y=f(x)的图象在y轴右侧的部分保持不变,利用函数y=f(|x|)是偶函数,其图象关于y轴对称,即可得到函数y=f(|x|)的图象故选:B.6.(5分)设f(x)=,则f[f(2)]=()A.2 B.3 C.9 D.18【解答】解:∵f(x)=,∴f(2)=,f[f(2)]=f(1)=2e1﹣1=2.故选:A.7.(5分)函数y=a x﹣a(a>0,a≠1)的图象可能是()A.B. C.D.【解答】解:由于当x=1时,y=0,即函数y=a x﹣a 的图象过点(1,0),故排除A、B、D.故选:C.8.(5分)若函数f(x)=|4x﹣x2|+a有4个零点,则实数a的取值范围是()A.[﹣4,0]B.(﹣4,0)C.[0,4]D.(0,4)【解答】解:∵函数f(x)=|4x﹣x2|+a有4个零点函数y=|4x﹣x2|与函数y=﹣a有4个交点,如图所示:结合图象可得0<﹣a<4,∴﹣4<a<0故选:B.9.(5分)若函数f(x)=(a2﹣2a﹣3)x2+(a﹣3)x+1的定义域和值域都为R,则a的取值范围是()A.a=﹣1或3 B.a=﹣1 C.a>3或a<﹣1 D.﹣1<a<3【解答】解:若a2﹣2a﹣3≠0,则f(x)为二次函数,定义域和值域都为R是不可能的.若a2﹣2a﹣3=0,即a=﹣1或3;当a=3时,f(x)=1不合题意;当a=﹣1时,f(x)=﹣4x+1符合题意.故选:B.10.(5分)若函数f(x)为定义域D上的单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数.若函数g(x)=x2+m是(﹣∞,0)上的正函数,则实数m的取值范围为()A.B.C.D.【解答】解:因为函数g(x)=x2+m是(﹣∞,0)上的正函数,所以a<b<0,所以当x∈[a,b]时,函数单调递减,则g(a)=b,g(b)=a,即a2+m=b,b2+m=a,两式相减得a2﹣b2=b﹣a,即b=﹣(a+1),代入a2+m=b得a2+a+m+1=0,由a<b<0,且b=﹣(a+1),∴a<﹣(a+1)<0,即,∴,解得﹣1<a<﹣.故关于a的方程a2+a+m+1=0在区间(﹣1,﹣)内有实数解,记h(a)=a2+a+m+1,则h(﹣1)>0,h(﹣)<0,即1﹣1+m+1>0且,解得m>﹣1且m<﹣.即,故选:A.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)若a>0,且a≠1,则函数y=a x﹣1+1的图象一定过定点(1,2).【解答】解:令a的幂指数x﹣1=0,可得x=1,此时求得y=2,故所求的定点坐标为(1,2),故答案为(1,2).12.(5分)幂函数f(x)=(m2﹣2m﹣2)在(0,+∞)是增函数,则m=3.【解答】解:∵f(x)=(m2﹣2m﹣2)是幂函数,且在(0,+∞)上是增函数,∴;解得m=3.故答案为:3.13.(5分)函数f(x)=log(x2﹣2x)的单调递减区间是(2,+∞).【解答】解:由题意可得函数的定义域为:(2,+∞)∪(﹣∞,0)令t=x2﹣2x,则y=因为函数y=在定义域上单调递减t=x2﹣2x在(2,+∞)单调递增,在(﹣∞,0)单调递减根据复合函数的单调性可知函数的单调递减区间为:(2,+∞)故答案为:(2,+∞)14.(5分)已知函数若方程f(x)=x+a有且只有两个不相等的实数根,则实数a的取值范围是(﹣∞,1).【解答】解:函数f(x)=的图象如图所示,当a<1时,函数y=f(x)的图象与函数y=x+a的图象有两个交点,即方程f(x)=x+a有且只有两个不相等的实数根.故答案为(﹣∞,1)15.(5分)函数f(x)是定义在R上的奇函数,给出下列命题:①f(0)=0;②若f(x)在(0,+∞)上有最小值为﹣1,则f(x)在(﹣∞,0)上有最大值1;③若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数;④若x>0,f(x)=x2﹣2x;则x<0时,f(x)=﹣x2﹣2x.其中所有正确的命题序号是①②④.【解答】解:由函数f(x)是定义在R上的奇函数,可得f(﹣0)=﹣f(0)即f(0)=0①f(0)=0;正确②若f(x)在(0,+∞)上有最小值为﹣1,则根据奇函数的图形关于原点对称可在f(x)在(﹣∞,0)上有最大值1;正确③若f(x)在[1,+∞)上为增函数,则根据奇函数在对称区间上的单调性可知f(x)在(﹣∞,﹣1]上为增函数;错误④若x>0,f(x)=x2﹣2x;则x<0时,﹣x>0,f(x)=﹣f(﹣x)=﹣[(﹣x)2﹣2(﹣x)]=﹣x2﹣2x.正确故答案为①②④三、解答题:(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)(1)已知a=,b=,求[b]2的值;(2)计算lg8+lg25+lg2•lg50+lg25的值.【解答】解:(1)====.∵,∴原式===20=1;(2)=2lg2+lg 25+lg2(1+lg5)+2lg5 =2(lg2+lg5)+lg 25+lg2+lg2•lg5 =2+lg5(lg5+lg2)+lg2 =2+lg5+lg2=3.17.(12分)已知全集U=R ,A={x |x ≥3},B={x |x 2﹣8x +7≤0},C={x |x ≥a ﹣1} (1)求A ∩B ; A ∪(∁U B )(2)若C ∪A=A ,求实数a 的取值范围.【解答】(1)B={x |1≤x ≤7}∴A ∩B={x |3≤x ≤7}A ∪(C U B )={x |x <1或x ≥3}, (2)∵C ∪A=A ,∴C ⊆A ∴a ﹣1≥3,∴a ≥4.18.(12分)已知函数.(1)判断函数f (x )的奇偶性,并证明;(2)利用函数单调性的定义证明:f (x )是其定义域上的增函数. 【解答】解:(1)f (x )为奇函数.证明如下: ∵2x +1≠0,∴f (x )的定义域为R , 又∵,∴f (x )为奇函数. (2),任取x 1、x 2∈R ,设x 1<x 2, ∵==, ∵,∴,又,∴f (x 1)﹣f (x 2)<0,∴f (x 1)<f (x 2).∴f(x)在其定义域R上是增函数.19.(13分)已知二次函数f(x)=ax2+bx,(a,b为常数,且a≠0)满足条件f (﹣x+5)=f(x﹣3),且方程f(x)=x有两个相等的实根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]与[3m,3n],若存在,求出m,n的值,若不存在,请说明理由.【解答】解:(1)∵f(﹣x+5)=f(x﹣3),∴f(x)的对称轴为x=1,即﹣=1即b=﹣2a.∵f(x)=x有两相等实根,∴ax2+bx=x,即ax2+(b﹣1)x=0有两相等实根0,∴﹣=0,∴b=1,a=﹣,∴f(x)=﹣x2+x.(2)f(x)=﹣x2+x=﹣(x﹣1)2+≤,故3n≤,故m<n≤,又函数的对称轴为x=1,故f(x)在[m,n]单调递增则有f(m)=3m,f(n)=3n,解得m=0或m=﹣4,n=0或n=﹣4,又m<n,故m=﹣4,n=0.20.(13分)某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);(2)工厂生产多少台产品时,可使盈利最多?【解答】解:(1)由题意得G(x)=2.8+x.…(2分)∵,∴f(x)=R(x)﹣G(x)=.…(7分)(2)当x>5时,∵函数f(x)递减,∴f(x)<f(5)=3.2(万元).…(10分)当0≤x≤5时,函数f(x)=﹣0.4(x﹣4)2+3.6,当x=4时,f(x)有最大值为3.6(万元).…(14分)所以当工厂生产4百台时,可使赢利最大为3.6万元.…(15分)21.(13分)如果函数f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y)(1)求f(1)的值.(2)已知f(3)=1且f(a)>f(a﹣1)+2,求a的取值范围.(3)证明:f()=f(x)﹣f(y).【解答】解:(1)∵f(xy)=f(x)+f(y)∴令x=y=1,得f(1×1)=f(1)+f(1),可得f(1)=0;(2)∵f(3)=1,∴2=1+1=f(3)+f(3)=f(3×3)=f(9),不等式f(a)>f(a﹣1)+2,可化为f(a)>f(a﹣1)+f(9)=f[9(a﹣1)]∵f(x)是定义在(0,+∞)上的增函数,∴,解之得1<a<;(3)∵x=•y,∴f(x)=f(•y)=f()+f(y),由此可得f()=f(x)﹣f(y).。
最新版高一数学上学期期中试题及答案(新人教A版 第41套)
蚌埠二中第一学期期中考试高一数学试题考试时间:120分钟 试卷分值:150分第Ι卷(选择题 共50分)一、选择题:(本大题共10小题,共50分,在给出的4个选项中,只有一个符合题目要求)1.已知集合M={x|x 2<4},N={x 2-2x-3<0},则集合M ∩N= ( )A. {x|x<-2}B.{x|x>3}C.{x|-1<x<2}D.{x|2<x<3}2.函数f(x)=(31)X 2-6X+5的单调递减区间为 ( ) A.( -∞,+∞) B.[-3, 3] C.( -∞,3] D.[3,+ ∞)3.函数y=1-11 x 的图像是( )4.设函数f(x)定义在实数集上,它的图像关于x=1对称,且当x ≥1时,f(x)=3x-1则有( ) A.f(31)<f(23)<f(32) B.f(32)<f(23)<f(31) C.f(32)<f(31)<f(32) D.f(23)<f(32)<f(31) 5.已知当x ∈(0,+ ∞)时,幂函数y=(m 2-m-1) ·x -5m-3为减函数,则实数m 的值为 ( )A.-1B.2C.-2或1D.-1或26.设f(x)=min{2x ,16-x ,x 2-8x+16}(x ≥0),其中min{a ,b ,c}表示a ,b ,c三个数中的最小值,则f (x )的最大值为 ( )A.6B.7C.8D.9a (x>1)7.f(x)= 在R 上单调递增函数,则实数a 的取值范围是 ( ) (4-2a )x+2 (x ≤1)A.(1,8)B.[4,8]C.[4,8)D.[1,8)8.设集合M={-1,1,0},N={1,2,3,4,5},映射f :M →N 使对任意的x ∈M 都有x+f (x )是奇数,这样的映射f 的个数为 ( )A.10B.11C.12D.139.若函数y=(21)|1-x|+m 的图像与x 轴有公共点,则m 的取值范围是 ( ) A.m ≤-1 B-1≤m<0 C.m ≥1 D.0<m ≤110.关于x 的方程(x 2-1)2-|x 2-1|+k=0,给出下列4个命题,其中不正确的个数是 ( )①存在实数k,使得方程恰好有2个不同的实根②存在实数k,使得方程恰好有4个不同的实根③存在实数k,使得方程恰好有5个不同的实根④存在实数k,使得方程恰好有8个不同的实根A.0B.1C.2D.3第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分)11.计算:(lg2)2+lg2·lg50+lg25= 。
安徽省蚌埠市铁路中学2018-2019学年高一上学期期中检测数学试题(解析版)
蚌埠铁中2018-2019学年度第一学期期中检测试卷高 一 数 学考试时间:120分钟 试卷分值:150分一、选择题:(本大题共12小题,每小题5分,共60分)1.设集合,则={}{}{}1,2,1,2,3,2,3,4A B C ===()A B C ÇÈA.B. C. D. {}1,2,3{}1,2,4{}2,3,4{}1,2,3,4【答案】D【解析】试题分析:因为,,故D 选项正确.{}()1,2A B Ç={}()1,2,3,4A B C ÇÈ=考点:集合交并补的简单运算.2.函数的定义域为( )()f x =A. [1,2)∪(2,+∞)B. (1,+∞)C. [1,2)D. [1,+∞)【答案】A【解析】要使函数有意义,则,即,解得且,即函数的定义域为()f x 1020x x ì-³ïí-¹ïî12x x ì³ïí¹ïî1x ³2x ¹()f x ,故选A.[)()1,22,È+¥3.式子的值为 ( )82log 9log 3A. B. C. D. 233223【答案】A【解析】试题分析:328222log 3log 92log 3log 33==考点:对数式运算4.三个数 之间的大小关系是( )20.320.3,log 0.3,2a b c ===A. .B. C. D. a c b <<a b c <<b a c <<b c a <<【答案】C【解析】试题分析:将a=0.32,c=20.3分别抽象为指数函数y=0.3x ,y=2x 之间所对应的函数值,利用它们的图象和性质比较,将b=log 20.3,抽象为对数函数y=log 2x ,利用其图象可知小于零.最后三者得到结论.解:由对数函数的性质可知:b=log 20.3<0,由指数函数的性质可知:0<a <1,c >1∴b <a <c故选C考点:指数函数单调性的应用.5.已知,则( )2,(0)(){(1),(0)x x f x x x x ³=+<(2)f -=A. 1 B. 2 C. 3 D. 4【答案】B【解析】由函数知,=2,故选B 。
安徽省蚌埠市铁路中学2018-2019学年高一上学期期中检测数学试题(精编含解析)
()
A. f (x) = - x(x +2) C. f (x) = - x(x - 2)
B. f (x) = x(x - 2) D. f (x) = x(x +2)
【答案】A 【解析】
试题分析:x<0,则-x>0,则 f(-x)= x2 +2x = - f (x)\ f (x) = - x(x +2) ,故选 A.
( ) 【详解】函数 f
x
=
ì ïïí ï ïî
ax, x æ ççè4 -
>1
a 2
ö ÷÷øx
+ 2,
x
£
1
是
R
上的增函数,
ì
ï ï
a
>1
\ ïïí 4 - a > 0 ,
ï2
ï
ï ïî
a
³
4-
a +2 2
[ ) [ ) 解得实数 a 的取取值范围是 4,8 ,故答案为 4,8 .
【点睛】本题主要考查分段函数的解析式及单调性,属于中档题.分段函数的单调性是分段函数性质中的难 点,也是高考命题热点,要正确解答这种题型,必须熟悉各段函数本身的性质,在此基础上,不但要求各 段函数的单调性一致,最主要的也是最容易遗忘的是,要使分界点处两函数的单调性与整体保持一致.
则 a2003 +b2004 = _____. 【答案】 - 1
【解析】
根据题意,
0Î
ìï í
a,
b
,1üïý 且
a
¹
0,
ïî a ïþ
可得 b = 0 ,即 b=0, a
{ } 从而{a, 0,1} = a2, a, 0 ,
安徽省蚌埠市高一数学上学期期中试题
2016-2017学年度第一学期期中试卷高一数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数 2.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A .3个B .5个C .7个D .8个4.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或05.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或26.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( ) A .21x + B .21x - C .23x - D .27x +7.已知)0(1)]([,21)(22≠-=-=x x x x g f x x g ,那么)21(f 等于( ) A .15 B .1 C .3 D .308.若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y xx 上述函数是幂函数的个数是( )A .0个B .1个C .2个D .3个9.函数y x=3与y x=--3的图象关于下列那种图形对称( ) A .x 轴 B .y 轴 C .直线y x = D .原点中心对称10.已知1335a -⎛⎫= ⎪⎝⎭,1235b -⎛⎫= ⎪⎝⎭,1243c -⎛⎫= ⎪⎝⎭,则a ,b ,c 三个数的大小关系是( ). A .c <a <b B .c <b <a C .a <b <c D .b <a <c11.已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于( ) A .2- B .4- C .6- D .10-12.已知13x x-+=,则3322x x -+值为( )A.-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.函数0y=_____________________。
安徽省蚌埠市高一上学期数学期中考试试卷
安徽省蚌埠市高一上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)设集合,集合,若,则()A .B .C .D .3. (2分) (2018高一上·海珠期末) 下列函数在其定义域内既是奇函数,又是增函数的是()A .B .C .D .4. (2分) (2019高一上·宜昌期中) 设,则的大小关系是()A .B .C .D .5. (2分)已知函数f(x)=xα ,α∈{﹣1,, 1,2,3},若f(x)是区间(﹣∞,+∞)上的增函数,则α的所有可能取值为()A . {1,3}B . {, 1,2,3}C . {1,2,3}D . {﹣1,, 1,2}6. (2分) (2016高三上·黑龙江期中) 函数f(x)= 的零点个数为()A . 1个B . 2个C . 3个D . 4个7. (2分)(2020·江西模拟) 已知函数,则()A . -1B . 0C . 1D . 28. (2分) (2018高二下·永春期末) 已知定义在上的奇函数,当时,恒有,且当时,,则()A . 0B .C .D .9. (2分) (2018高一上·宜宾月考) 已知函数,若有四个互不相等的实数根 ,且 . 则的取值范围是().A .B .C .D .10. (2分)函数的值域是()A . RB .C .D .11. (2分)函数的单调递增区间()A .B .C .D .12. (2分) (2016高一上·延安期中) 若函数y=f(x)在R上单调递减且f(2m)>f(1+m),则实数m的取值范围是()A . (﹣∞,﹣1)B . (﹣∞,1)C . (﹣1,+∞)D . (1,+∞)二、填空题 (共4题;共4分)14. (1分)若,则x等于________.15. (1分) (2016高一上·吉林期中) 定义在R上的偶函数f(x),在[0,+∞)是增函数,若f(k)>f(2),则k的取值范围是________.16. (1分)(2018·鞍山模拟) 已知函数,函数有三个零点,则实数的取值范围为________.三、解答题 (共6题;共65分)17. (10分) (2016高一上·武汉期中) 计算:① ﹣﹣(π+e)0+();②(lg2)2+lg2lg5+ .18. (10分) (2017高一上·南通开学考) 已知函数f(x)=( + )x3(a>0且a≠1).(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)>0在定义域上恒成立.19. (15分) (2016高一上·红桥期中) 已知函数f(x)= (x≠0).(1)证明函数f(x)为奇函数;(2)判断函数f(x)在[1,+∞)上的单调性,并说明理由;(3)若x∈[﹣2,﹣3],求函数的最大值和最小值.20. (10分) (2019高一上·鄞州期中) 已知函数().(1)若,求函数在上的值域;(2)若,解关于的不等式;(3)若函数在区间上单调递增,求实数的取值范围.21. (10分) (2019高一上·武功月考) 某蔬菜基地种植西红柿,由历年市场行情得出,从2 月1日起的300天内,西红柿市场售价P与上市时间t的关系可用图4的一条折线表示;西红柿的种植成本Q与上市时间t的关系可用图5的抛物线段表示.(1)写出图4表示的市场售价P与时间t的函数关系式,写出图5表示的种植成本Q与时间t的函数关系式.(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?22. (10分) (2019高二上·德惠期中) 已知函数 .(1)求函数的单调递增区间;(2)若函数在区间上的最大值12,求函数在该区间上的最小值.参考答案一、单选题 (共12题;共24分)1-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)14-1、15-1、16-1、三、解答题 (共6题;共65分) 17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、第11 页共11 页。
安徽省蚌埠市铁路中学高三数学上学期期中试卷 理(含解析)
2014-2015学年安徽省蚌埠市铁路中学高三(上)期中数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是正确的)1.若全集U=R,集合A={x||2x+3|<5},B={x|y=log3(x+2)},则∁U(A∩B)=()A. {x|x≤﹣4或x≥1} B. {x|x<﹣4或x>1} C. {x|x<﹣2或x>1} D. {x|x≤﹣2或x≥1}2.以下说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题是“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若p∧q为假命题,则p,q均为假命题D.若命题p:∃x0∈R,使得x02+x0+1<0,则﹁p:∀x∈R,都有x2+x+1≥03.已知对任意x∈R,恒有f(﹣x)=﹣f(x),g(﹣x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有()A. f′(x)>0,g′(x)>0 B. f′(x)>0,g′(x)<0 C. f′(x)<0,g′(x)>0 D. f′(x)<0,g′(x)<04.已知平面上三点A、B、C满足,,,则的值等于()A. 25 B.﹣25 C. 24 D.﹣245.函数y=sin(2x﹣)在区间的简图是()A.B.C. D.6.已知函数y=f(x)是定义在R上的奇函数,且f(2+x)=f(2﹣x),则f(4)=() A. 4 B. 2 C. 0 D.不确定7.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A. 1 B. 2 C.﹣1 D.﹣28.已知向量,满足=(2,0),.△ABC,=2+2,﹣6,D为BC边的中点,则=()A. 2 B. 4 C. 6 D. 89.△ABC中,A=,BC=3,则△ABC的周长为()A. 4sin(B+)+3 B. 4sin(B+)+3 C. 6sin(B+)+3 D. 6sin(B+)+310.设f(x)=asin2x+bcos2x,其中a>0,b>0,若f(x)≤|f()|对一切x∈R恒成立,则①f()=0;②|f()|<|f()|;③f(x)既不是奇函数也不是偶函数;④f(x)的单调递增区间是(k∈Z);⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.以上结论正确的是()A.①②④ B.①③ C.①③④ D.①②④⑤二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知向量=(sinθ,﹣2),=(1,cosθ),且,则sin2θ+cos2θ的值为.12.已知f(x)为奇函数,g(x)=f(x)+9,g(﹣2)=3,则f(2)= .13.已知p:,q:(x﹣a)(x﹣a﹣1)>0,若p是¬q的充分不必要条件,则实数a的取值范围是.14.如图,△ABC中,AB=AC=2,BC=,点D 在BC边上,∠ADC=45°,则AD的长度等于.15.已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:①f(2)=0;②x=﹣4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]单调递增;④若方程f(x)=m在[﹣6,﹣2]上的两根为x1,x2,则x1+x2=﹣8.上述命题中所有正确命题的序号为.三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.已知集合A={x∈R|log2(6x+12)≥log2(x2+3x+2)},B={x|2<4x}.求:A∩(∁R B).17.已知=(1,2),=(2,1).(1)求向量在向量方向上的投影.(2)若(m+n)⊥(﹣)(m,n∈R),求m2+n2+2m的最小值.18.已知函数f(x)=2x+k•2﹣x,k∈R.(1)若函数f(x)为奇函数,求实数k的值.(2)若对任意的x∈[0,+∞)都有f(x)>2﹣x成立,求实数k的取值范围.19.已知函数f(x)=sin2x﹣cos2x﹣,(x∈R)(1)当x∈[﹣,]时,求函数f(x)的最小值和最大值;(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=0,若向量=(1,sinA)与向量=(2,sinB)共线,求a,b的值.20.已知函数f(x)=,其中,=(cosωx﹣sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于.(Ⅰ)求ω的取值范围;(Ⅱ)在△ABC中,a,b, c分别是角A,B,C的对边,a=,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.21.已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.(1)求函数f(x)在[t,t+2](t>0)上的最小值;(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;(3)证明:对一切x∈(0,+∞),都有成立.2014-2015学年安徽省蚌埠市铁路中学高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是正确的)1.若全集U=R,集合A={x||2x+3|<5},B={x|y=log3(x+2)},则∁U(A∩B)=()A. {x|x≤﹣4或x≥1} B. {x|x<﹣4或x>1} C. {x|x<﹣2或x>1} D. {x|x≤﹣2或x≥1}考点:交、并、补集的混合运算.专题:计算题.分析:求出集合A中绝对值不等式的解集,确定出集合A,根据集合B中对数函数的真数大于0,列出关于x的不等式,求出不等式的解集,确定出集合B,找出两集合的公共解集,确定出两集合的交集,根据全集为R,求出交集的补集即可.解答:解:由集合A中的不等式|2x+3|<5变形得:﹣5<2x+3<5,可化为:,解得:﹣4<x<1,∴集合A={x|﹣4<x<1},由集合B中的函数y=log3(x+2)有意义,得到x+2>0,解得:x>﹣2,∴集合B={x|x>﹣2},∴A∩B={x|﹣2<x<1},又全集U=R,则C U(A∩B)={x|x≤﹣2或x≥1}.故选D点评:此题属于以绝对值不等式的解法及对数函数的定义域为平台,考查了交、并、补集的混合运算,是高考中常考的基本题型,学生在求补集时注意全集的范围.2.以下说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题是“若x≠1,则x2﹣3x+2≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若p∧q为假命题,则p,q均为假命题D.若命题p:∃x0∈R,使得x02+x0+1<0,则﹁p:∀x∈R,都有x2+x+1≥0考点:四种命题.专题:简易逻辑.分析:写出原命题的逆否命题,可判断A;根据充要条件的定义,可判断B;根据复合命题真假判断的真值表,可判断C;根据特称命题的否定方法,可判断D.解答:解:命题“若x2﹣3x+2=0,则x=1”的逆否命题是“若x≠1,则x2﹣3x+2≠0”,故A正确;“x=1”时,“x2﹣3x+2=0”成立,故“x=1”是“x2﹣3x+2=0”的充分条件;“x2﹣3x+2=0”时,“x=1或x=2”,即“x=1”不一定成立,故“x=1”是“x2﹣3x+2=0”的不必要条件,故B正确;若p∧q为假命题,则p,q存在至少一个假命题,不一定全为假命题,故C错误;命题p:∃x0∈R,使得x02+x0+1<0,则﹁p:∀x∈R,都有x2+x+1≥0,故D正确;故选:C点评:本题考查的知识点是四种命题,充要条件,复合命题,特称命题,是简单逻辑的综合考查,难度不大,属于基础题.3.已知对任意x∈R,恒有f(﹣x)=﹣f(x),g(﹣x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有()A. f′(x)>0,g′(x)>0 B. f′(x)>0,g′(x)<0 C. f′(x)<0,g′(x)>0 D. f′(x)<0,g′(x)<0考点:函数奇偶性的性质;导数的几何意义.专题:计算题;压轴题.分析:由已知对任意x∈R,恒有f(﹣x)=﹣f(x),g(﹣x)=g(x),知f(x)为奇函数,g(x)为偶函数,又由当x>0时,f′(x)>0,g′(x)>0,可得在区间(0,+∞)上f(x),g(x)均为增函数,然后结合奇函数、偶函数的性质不难得到答案.解答:解:由f(﹣x)=﹣f(x),g(﹣x)=g(x),知f(x)为奇函数,g(x)为偶函数.又x>0时,f′(x)>0,g′(x)>0,知在区间(0,+∞)上f(x),g(x)均为增函数由奇、偶函数的性质知,在区间(﹣∞,0)上f(x)为增函数,g(x)为减函数则当x<0时,f′(x)>0,g′(x)<0.故选B点评:奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反,这是函数奇偶性与函数单调性综合问题的一个最关键的粘合点,故要熟练掌握.4.已知平面上三点A、B、C满足,,,则的值等于()A. 25 B.﹣25 C. 24 D.﹣24考点:平面向量数量积的运算.专题:向量法.分析:通过勾股定理判断出∠B=90,利用向量垂直的充要条件求出,利用向量的运算法则及向量的运算律求出值.解答:解:∵,,∴∴∠B=90°∴===﹣=﹣25故选B点评:本题考查勾股定理、向量垂直的充要条件、向量的运算法则、向量的运算律.5.函数y=sin(2x﹣)在区间的简图是()A. B.C. D.考点:函数y=Asin(ωx+φ)的图象变换.专题:作图题.分析:将x=π代入到函数解析式中求出函数值,可排除B,D,然后将x=代入到函数解析式中求出函数值,可排除C,进而可得答案.解答:解:,排除B、D,,排除C.故选A.点评:本题主要考查三角函数的图象.对于正弦、余弦函数的图象和性质要熟练掌握,这是高考的必考点.6.已知函数y=f(x)是定义在R上的奇函数,且f(2+x)=f(2﹣x),则f(4)=() A. 4 B. 2 C. 0 D.不确定考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由于函数y=f(x)是定义在R上的奇函数,可得f(0)=0.根据f(2+x)=f(2﹣x),可得f(4)=f(0)即可得出.解答:解:∵函数y=f(x)是定义在R上的奇函数,∴f(0)=0.又∵f(2+x)=f(2﹣x),∴f(4)=f(0)=0.故选:C.点评:本题考查了函数奇偶性、对称性,属于基础题.7.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A. 1 B. 2 C.﹣1 D.﹣2考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:由y=ln(x+a),得,由直线y=x﹣1与曲线y=ln(x+a)相切,得,所以切点是(1﹣a,0),由此能求出实数a.解答:解:∵y=ln(x+a),∴,∵直线y=x﹣1与曲线y=ln(x+a)相切,∴切线斜率是1,则y'=1,∴,x=1﹣a,y=ln1=0,所以切点是(1﹣a,0),∵切点(1﹣a,0)在切线y=x+1上,所以0=1﹣a+1,解得a=2.故选B.点评:本题考查利用导数求曲线的切线方程的应用,是基础题.解题时要认真审题,仔细解答.8.已知向量,满足=(2,0),.△ABC,=2+2,﹣6,D为BC边的中点,则=()A. 2 B. 4 C. 6 D. 8考点:平面向量的坐标运算;向量的模.专题:计算题.分析:表示出,代入向量,,然后求出,即可.解答:解:因为D为BC边的中点,所以=()=2﹣2=(1,﹣)=故选A.点评:本题考查平面向量的坐标运算,向量的模,考查计算能力,是基础题.9.△ABC中,A=,BC=3,则△ABC的周长为()A. 4sin(B+)+3 B. 4sin(B+)+3 C. 6sin(B+)+3 D. 6sin(B+)+3考点:正弦定理.专题:计算题.分析:根据正弦定理分别求得AC和AB,最后三边相加整理即可得到答案.解答:解:根据正弦定理,∴AC==2sinB,AB==3cosB+sinB∴△ABC的周长为2sinB+3cosB+sinB+3=6sin(B+)+3故选D.点评:本题主要考查了正弦定理的应用.属基础题.10.设f(x)=asin2x+bcos2x,其中a>0,b>0,若f(x)≤|f()|对一切x∈R恒成立,则①f()=0;②|f()|<|f()|;③f(x)既不是奇函数也不是偶函数;④f(x)的单调递增区间是(k∈Z);⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.以上结论正确的是()A.①②④ B.①③ C.①③④ D.①②④⑤考点:三角函数中的恒等变换应用;复合三角函数的单调性.专题:计算题;三角函数的图像与性质.分析:先将f(x)=asin2x+bcos2x,a>0,b>0,变形为f(x)=sin(2x+∅),再由f(x)≤|f()|对一切x∈R恒成立得a,b之间的关系,然后顺次判断命题真假.解答:解:①f(x)=asin2x+bcos2x=sin(2x+∅),由f(x)≤|f()|对一切x∈R恒成立得|f()|==|asin+bcos|=|+|,即=|+|,两边平方整理得:a=b.∴f(x)=bsin2x+bcos2x=2bsin(2x+).①f()=2bsin(+)=0,故①正确;②|f()|=|f()|=2bsin,故②错误;③f(﹣x)≠±f(x),故③正确;④∵b>0,由2kπ﹣≤2x+≤2kπ+(k∈Z)得,kπ﹣≤x≤kπ+(k∈Z),即f(x)的单调递增区间是[kπ﹣,kπ+](k∈Z),故④错误;⑤∵a=b>0,要经过点(a,b)的直线与函数f(x)的图象不相交,则此直线与x轴平行,又f(x)的振幅为2b>b,∴直线必与函数f(x)的图象有交点,故⑤错误.综上所述,结论正确的是①③.故选B.点评:本题考查三角函数中的恒等变换应用,考查复合三角函数的单调性,求得f(x)=2bsin (2x+)是难点,也是关键,考查推理分析与运算能力,属于难题.二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知向量=(sinθ,﹣2),=(1,cosθ),且,则sin2θ+cos2θ的值为 1 .考点:数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:由题意可得tanθ=2,而sin2θ+cos2θ=,分子分母同除以cos2θ,代入tanθ=2可得答案.解答:解:由题意可得=sinθ﹣2cosθ=0,即tanθ==2,所以sin2θ+cos2θ=====1故答案为:1点评:本题考查三角函数的运算,把函数化为正切函数是解决问题的关键,属基础题.12.已知f(x)为奇函数,g(x)=f(x)+9,g(﹣2)=3,则f(2)= 6 .考点:函数奇偶性的性质.专题:计算题.分析:将等式中的x用2代替;利用奇函数的定义及g(﹣2)=3,求出f(2)的值.解答:解:∵g(﹣2)=f(﹣2)+9∵f(x)为奇函数∴f(﹣2)=﹣f(2)∴g(﹣2)=﹣f(2)+9∵g(﹣2)=3所以f(2)=6故答案为6点评:本题考查奇函数的定义:对于定义域中的任意x都有f(﹣x)=﹣f(x)13.已知p:,q:(x﹣a)(x﹣a﹣1)>0,若p是¬q的充分不必要条件,则实数a的取值范围是.考点:必要条件、充分条件与充要条件的判断;命题的否定;一元二次不等式的解法.分析:由已知可得:p:,q:x<a,或x>a+1,再由求命题否定的方法求出¬q,结合充要条件的判定方法,不难给出答案.解答:解:∵p:,q:(x﹣a)(x﹣a﹣1)>0,∴q:x<a,或x>a+1∴¬q:a≤x≤a+1又∵p是¬q的充分不必要条件,∴解得:则实数a的取值范围是故答案为:点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.14.如图,△ABC中,AB=AC=2,BC=,点D 在BC边上,∠ADC=45°,则AD的长度等于.考点:解三角形.专题:计算题;压轴题.分析:由A向BC作垂线,垂足为E,根据三角形为等腰三角形求得BE,进而再Rt△ABE 中,利用BE和AB的长求得B,则AE可求得,然后在Rt△ADE中利用AE和∠ADC求得AD.解答:解:由A向BC作垂线,垂足为E,∵AB=AC∴BE=BC=∵AB=2∴cosB==∴B=30°∴AE=BE•tan30°=1∵∠ADC=45°∴AD==故答案为:点评:本题主要考查了解三角形问题.考查了学生分析问题和解决问题的能力.15.已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:①f(2)=0;②x=﹣4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]单调递增;④若方程f(x)=m在[﹣6,﹣2]上的两根为x1,x2,则x1+x2=﹣8.上述命题中所有正确命题的序号为①②④.考点:命题的真假判断与应用;函数单调性的判断与证明;函数奇偶性的性质.专题:计算题.分析:根据f(x)是定义在R上的偶函数,及在f(x+4)=f(x)+f(2),中令x=﹣2可得f(﹣2)=f(2)=0,从而有f(x+4)=f(x),故得函数f(x)是周期为4的周期函数,再结合y=f(x)单调递减、奇偶性画出函数f(x)的简图,最后利用从图中可以得出正确的结论.解答:解:∵f(x)是定义在R上的偶函数,∴f(﹣x)=f(x),可得f(﹣2)=f(2),在f(x+4)=f(x)+f(2),中令x=﹣2得f(2)=f(﹣2)+f(2),∴f(﹣2)=f(2)=0,∴f(x+4)=f(x),∴函数f(x)是周期为4的周期函数,又当x∈[0,2]时,y=f(x)单调递减,结合函数的奇偶性画出函数f(x)的简图,如图所示.从图中可以得出:②x=﹣4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]单调递减;④若方程f(x)=m在[﹣6,﹣2]上的两根为x1,x2,则x1+x2=﹣8.故答案为:①②④.点评:本题考查函数奇偶性的性质,函数奇偶性的判断,考查学生的综合分析与转化能力,属于难题.三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.已知集合A={x∈R|log2(6x+12)≥log2(x2+3x+2)},B={x|2<4x}.求:A∩(∁R B ).考点:交、并、补集的混合运算.专题:计算题;函数的性质及应用.分析:由,得A={x|﹣1<x≤5},由B={x|}={x|﹣1<x<3}.知C R B={x|x≤﹣1,或x≥3}.由此能求出A∩C R B.解答:(本小题满分12分)解:由,得,…(3分)解得:﹣1≤x≤5.即A={x|﹣1<x≤5}.…(6分)B={x|}={x|},由,得x2﹣3<2x,解得﹣1<x<3.即B={x|﹣1<x<3}.…(9分)∴C R B={x|x≤﹣1,或x≥3}.∴A∩C R B={x|3≤x≤5}.…(12分)点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,注意对数函数和指数函数的性质的灵活运用.17.已知=(1,2),=(2,1).(1)求向量在向量方向上的投影.(2)若(m+n)⊥(﹣)(m,n∈R),求m2+n2+2m的最小值.考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:(1)求出向量a,b的数量积和向量b的模,再由投影定义,即可得到所求;(2)运用向量垂直的条件及向量的数量积和模的公式,化简得到m=n,再由二次函数的最值,即可得到.解答:解:(1)设与向量的夹角为θ,由题意知向量在向量方向上的投影为||cosθ===;(2)∵(m+n)⊥(﹣),(m+n)•(﹣)=0,即5m+4n﹣4m﹣5n=0,∴m=n.∴m2+n2+2m=2m2+2m=2(m+)2﹣≥﹣,当且仅当m=n=﹣时取等号,∴m2+n2+2m的最小值为﹣.点评:本题考查向量的数量积的坐标表示和向量的模及投影的定义,考查向量垂直的条件,同时考查二次函数的最值,属于中档题.18.已知函数f(x)=2x+k•2﹣x,k∈R.(1)若函数f(x)为奇函数,求实数k的值.(2)若对任意的x∈[0,+∞)都有f(x)>2﹣x成立,求实数k的取值范围.考点:函数恒成立问题.专题:函数的性质及应用.分析:(1)根据函数f(x)为奇函数,建立条件关系即可求实数k的值.(2)若对任意的x∈[0,+∞)都有f(x)>2﹣x成立,进行转化即可求实数k的取值范围.解答:解:(1)∵f(x)=2x+k•2﹣x是奇函数,∴f(0)=0,即1+k=0,∴k=﹣1.(2)∵x∈[0,+∞),均有f(x)>2﹣x,即2x+k•2﹣x>2﹣x成立,k>1﹣22x,∴对x≥0恒成立,∴k>[1﹣(22x)]max.∵y=1﹣(22x)在[0,+∞)上是减函数,∴[1﹣(22x)]max=1﹣1=0,∴k>0.点评:本题主要考查函数奇偶性的判断以及函数恒成立问题,利用指数函数的运算性质是解决本题的关键.19.已知函数f(x)=sin2x﹣cos2x﹣,(x∈R)(1)当x∈[﹣,]时,求函数f(x)的最小值和最大值;(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=0,若向量=(1,sinA)与向量=(2,sinB)共线,求a,b的值.考点:余弦定理;两角和与差的正弦函数;二倍角的余弦.专题:综合题;解三角形.分析:(1)利用三角函数的恒等变换化简函数f(x)的解析式,根据变量x的取值范围可求出最小值和最大值;(2)根据C的范围和f(C)=0可求出角C的值,再根据两个向量共线的性质可得sinB﹣2sinA=0,再由正弦定理可得b=2a,最后再由余弦定理得到a与b的等式,解方程组可求出a,b的值.解答:解:(1)函数f(x)=sin2x﹣cos2x﹣=sin2x﹣cos2x﹣1=sin(2x﹣)﹣1,∵x∈[﹣,]∴2x﹣∈[﹣,]则sin(2x﹣)∈[﹣,1]∴函数f(x)的最小值为﹣﹣1和最大值0;(2)∵f(C)=sin(2C﹣)﹣1=0,即 sin(2C﹣)=1,又∵0<C<π,﹣<2C﹣<,∴2C﹣=,∴C=.∵向量=(1,sinA)与=(2,sinB)共线,∴sinB﹣2sinA=0.由正弦定理,得 b=2a,①∵c=,由余弦定理得3=a2+b2﹣2abcos,②解方程组①②,得 a=1,b=2.点评:本题主要考查了两角和与差的逆用,以及余弦定理的应用,同时考查了运算求解的能力,属于中档题.20.已知函数f(x)=,其中,=(cosωx﹣sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于.(Ⅰ)求ω的取值范围;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;平面向量数量积的运算;解三角形.专题:计算题.分析:(I)利用向量的数量积的坐标表示及二倍角公式对函数整理可得,,根据周期公式可得,根据正弦函数的性质相邻两对称轴间的距离即为,从而有代入可求ω的取值范围.(Ⅱ)由(Ⅰ)可知ω的最大值为1,由f(A)=1可得,结合已知可得,由余弦定理知可得b2+c2﹣bc=3,又b+c=3联立方程可求b,c,代入面积公式可求也可用配方法求得bc=2,直接代入面积公式可求解答:解:(Ⅰ)f(x)=cosωx•sinωx=cos2ωx+sin2ωx=∵ω>0∴函数f(x)的周期T=,由题意可知,解得0<ω≤1,即ω的取值范围是{ω|0<ω≤1}(Ⅱ)由(Ⅰ)可知ω的最大值为1,∴∵f(A)=1∴而,∴2A+π∴A=由余弦定理知cosA=∴b2+c2﹣bc=3,又b+c=3联立解得∴S△ABC=(或用配方法∵∴bc=2∴.点评:本题综合考查了向量的数量积的坐标表示,由函数的部分图象的性质求解函数的解析式,正弦函数的周期公式,由三角函数值求解角,余弦定理及三角形的面积公式等知识的综合,综合的知识比较多,解法灵活,要求考生熟练掌握基础知识并能灵活运用知识进行解题.21.已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.(1)求函数f(x)在[t,t+2](t>0)上的最小值;(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;(3)证明:对一切x∈(0,+∞),都有成立.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.专题:计算题;压轴题.分析:(1)对函数求导,根据导函数与0的关系写出函数的单调性和区间,讨论所给的区间和求出的单调区间之间的关系,在不同条件下做出函数的最值.(2)根据两个函数的不等关系恒成立,先求出两个函数的最值,利用最值思想解决,主要看两个函数的最大值和最小值之间的关系,得到结果.(3)要证明不等式成立,问题等价于证明,由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是,构造新函数,得到结论.解答:解:(1)f'(x)=lnx+1,当,f'(x)<0,f(x)单调递减,当,f'(x)>0,f(x)单调递增.①,t无解;②,即时,;③,即时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt;∴.(2)2xlnx≥﹣x2+ax﹣3,则,设,则,x∈(0,1),h'(x)<0,h(x)单调递减,x∈(1,+∞),h'(x)>0,h(x)单调递增,所以h(x)min=h(1)=4因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4;(3)问题等价于证明,由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是,当且仅当时取到设,则,易得,当且仅当x=1时取到,从而对一切x∈(0,+∞),都有成立.点评:不同考查利用导数研究函数的最值,利用最值解决函数的恒成立思想,不同解题的关键是构造新函数,利用新函数的性质解决问题.。
蚌埠铁中2019-2020学年度第一学期期中检测试卷(5)
蚌埠铁中2019-2020学年度第一学期期中检测试卷高 三 数 学(理)考试时间:120分钟 试卷分值:150 分一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}(5)4A x x x =-,{}|B x x a =≤,若A B B ⋃=,则a 的值可以是( ) A. 1B. 2C. 3D. 42.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为( ) A. [1,1]- B. (1,1)- C. (,1)-∞- D. (1,)+∞3.已知1sin 123πα⎛⎫-= ⎪⎝⎭,则17cos 12πα⎛⎫+ ⎪⎝⎭的值等于( )A.13B.3 C. 13- D. 3-4.若1,01a c b ><<<,则下列不等式不正确的是( ) A. 20192019log log a b > B. log log c b a a > C. ()()cbc b a c b a ->- D. ()()cba c a a c a ->-5.在等比数列{}n a 中,“412a ,a 是方程2x 3x 10++=的两根”是“8a 1=±”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 6.已知()f x 是定义在[2,1]b b -+上的偶函数,且在[2,0]b -上为增函数,则(1)(2)f x f x -≤的解集为( )A. 2[1,]3-B. 1[1,]3-C. [1,1]-D. 1[,1]37.如图,在平行四边形ABCD 中,,M N 分别为,AB AD 上的点,且,连接,AC MN 交于P 点,若,则点N 在AD 上的位置为( )A. AD 中点B. AD 上靠近点D 的三等分点C. AD 上靠近点D 的四等分点D. AD 上靠近点D 的五等分点8.某几何体的三视图如图所示,则该几何体的体积为( )A. 5B.163C. 7D.1739.执行如图所示的程序框图,如果输出6T =,那么判断框内应填入的条件是( )A. 32k <B. 33k <C. 64k <D. 65k <10.函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到函数()y g x =的图象,并且函数()g x 在区间[,]63ππ上单调递增,在区间[,]32ππ上单调递减,则实数ω的值为( ) A.74B. 32C. 2D.5411.已知x ,y 满足约束条件20,{53120,3,x y x y y --≤--≥≤当目标函数z ax by =+(0a >,0b >)在该约束条件下取得最小值1时,则123a b+的最小值为( )A. 4+B.C. 3+D. 3+12.设函数()33xaf x e x x x⎛⎫=+-- ⎪⎝⎭,若不等式()0f x ≤有正实数解,则实数a 的最小值为( ) A. 3B. 2C. 2eD. e二.填空题(共4小题,每小题5分,合计20分)13.已知函数2cos y x =(02x π≤≤)的图象和直线2y =围成一个封闭的平面图形,则这个封闭图形的面积是__________.14.若函数()ln 2f x x ax =-的图象存在与直线20x y +=垂直的切线,则实数a 的取值范围是____.15.已知球O 是正三棱锥(底面为正三角形,顶点在底面射影为底面中心)A-BCD 的外接球,BC=3,AB =E 在线段BD 上,且BD=3BE ,过点E 作圆O 的截面,则所得截面圆面积的取值范围是__.16.在ABC △中,角A ,B ,C 的对边长分别为a ,b ,c,满足()22sin 40a a B B -++=,b =的面积为__.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知数列{}n a 是等差数列,前n 项和为n S ,且533S a =,468a a +=. (1)求n a .(2)设2nn n b a =⋅,求数列{}n b 的前n 项和n T .18. (本小题满分12分)ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知点(),a b 在直线()sin sin x A B -+sin sin y B c C =上.(1)求角C 的大小;(2)若ABC △为锐角三角形且满足11tan tan tan m C A B=+,求实数m 的最小值. 当且仅当a b =,实数m 的最小值为2.19.(本小题满分12分)“绿水青山就是金山银山”,为了保护环境,减少空气污染,某空气净化器制造厂,决定投入生产某种惠民型的空气净化器.根据以往的生产销售经验得到年生产销售的统计规律如下:①年固定生产成本为2万元;②每生产该型号空气净化器1百台,成本增加1万元;③年生产x 百台的销售收入R (x )(万元).假定生产的该型号空气净化器都能卖出(利润=销售收入﹣生产成本). (1)为使该产品的生产不亏本,年产量x 应控制在什么范围内? (2)该产品生产多少台时,可使年利润最大?20.(本小题满分12分)如图,点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为 AOC ∆的垂心 (1)求证:平面OPG ⊥平面 PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.21.(本小题满分12分)已知函数f (x )=2x+(k ﹣1)•2﹣x(x ∈R )是偶函数. (1)求实数k 的值;(2)求不等式f (x )的解集;(3)若不等式f (2x )+4<mf (x )在x ∈R 上有解,求实数m 的取值范围.22. (本小题满分12分)已知函数()()()ln f x x x ax a R =-∈.(1)若1a =,求函数()f x 的图像在点()()1,1f 处的切线方程; (2)若函数()f x 有两个极值点1x ,2x ,且12x x <,求证:()212f x >-.蚌埠铁中2019-2020学年度第一学期期中检测试卷高 三 数 学(理)答案一、选择题(本题共12小题,每小题5分,共60分)1D 2B 3A 4D 5A 6B 7B 8D 9C 10C 11C 12D 二.填空题(共4小题,每小题5分,合计20分) 134π 141,4⎛⎫-+∞ ⎪⎝⎭15[2,4]ππ 16三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)【答案】(1) ()23n a n =- (2) 2(4)216n n T n +=-⋅+【解析】(1)由题意,数列{}n a 是等差数列,所以535S a =,又533S a =,30a ∴=, 由46582a a a +==,得54a =,所以5324a a d -==,解得2d =, 所以数列的通项公式为()()3323n a a n d n =+-=-. (2)由(1)得()1232nn n n b a n +=⋅=-⋅,()()()234122120232n n T n +=-⋅+-⋅+⋅++-⋅L , ()()()()3412221242322n n n T n n ++=-⋅+-⋅++-⋅+-⋅L ,两式相减得()()2341222222232n n n n T T n ++-=⋅-++++-⋅L ,()1228128(3)2(4)21612n n n n n -++--+-⋅=-⋅+=-,即2(4)216n n T n +=-⋅+.18. (本小题满分12分) 【答案】(1)3π(2)实数m 的最小值为2. 【解析】(1)由条件可知()sin sin sin sin a A B b B c C -+=,根据正弦定理得222a b c ab +-=,又由余弦定理2221cos 22a b c C ab +-==,故角C 的大小为3π;(2)11tan tan tan m C A B ⎛⎫=+= ⎪⎝⎭sin cos cos cos sin sin C A B C A B ⎛⎫+ ⎪⎝⎭sin cos sin cos sin cos sin sin C A B B A C A B +=⨯ 222sin 2sin sin C c A B ab == ()222a b ab ab +-= 21a b b a ⎛⎫=+-≥ ⎪⎝⎭()2212⨯-=,19.(本小题满分12分)【解析】(1)由题意得,成本函数为C (x )=x +2,从而年利润函数为L (x )=R (x )﹣C (x ).要使不亏本,只要L (x )≥0,①当0≤x ≤4时,由L (x )≥0得﹣0.5x 2+3x ﹣2.5≥0,解得1≤x ≤4, ②当x >4时,由L (x )≥0得5.5﹣x ≥0,解得4<x ≤5.5. 综上1≤x ≤5.5.答:若要该厂不亏本,产量x 应控制在100台到550台之间. (2)当0≤x ≤4时,L (x )=﹣0.5(x ﹣3)2+2, 故当x =3时,L (x )max =2(万元), 当x >4时,L (x )<1.5<2.综上,当年产300台时,可使利润最大.20【答案】(1)见解析(2251. 【解析】(1)如图,延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点.因为O为AB的中点,所以//OM BC.因为AB是圆O的直径,所以BC AC⊥,所以OM AC⊥.因为PA⊥平面ABC,OM⊂平面ABC,所以PA OM⊥.又PA⊂平面PAC,AC⊂平面,PAC PA AC⋂=A,所以OM⊥平面PAC.即OG⊥平面PAC,又OG⊂平面OPG,所以平面OPG⊥平面PAC.(2)以点C为原点,CBu u u r,CAu u u r,APu u u r方向分别为x,y,z轴正方向建立空间直角坐标系C xyz-,则()0,0,0C,()0,1,0A,)3,0,0B,31,022O⎛⎫⎪⎪⎝⎭,()0,1,2P,10,,02M⎛⎫⎪⎝⎭,则3OM⎛⎫= ⎪⎪⎝⎭u u u u r,31,22OP⎛⎫= ⎪⎪⎝⎭u u u r.平面OPG即为平面OPM,设平面OPM的一个法向量为(),,n x y z=r,则30,{3120,22n OM xn OP x y z⋅==⋅=-++=u u u u rru u u rr令1z=,得()0,4,1n=-r.过点C作CH AB⊥于点H,由PA⊥平面ABC,易得CH PA⊥,又PA AB A⋂=,所以CH⊥平面PAB,即CHu u u r为平面PAO的一个法向量.在Rt ABC∆中,由2AB AC=,得30ABC∠=︒,则60HCB∠=︒,1322CH CB==.所以3cos H x CH HCB =∠=,3sin 4H y CH HCB =∠=.所以33,,04CH ⎛⎫= ⎪ ⎪⎝⎭u u u r . 设二面角A OP G --的大小为θ,则cos CH n CH nθ⋅==⋅u u u r r u u u r r 223304104425139411616⨯-⨯+⨯=+⨯+. 21.(本小题满分12分)【解析】解:(1)∵f (x )是偶函数, ∴f (﹣x )=f (x ),即2﹣x+(k ﹣1)•2x =2x +(k ﹣1)•2﹣x, 即(k ﹣2)(22x﹣1)=0恒成立, 则k ﹣2=0,得k =2; (2)∵k =2,∴f (x )=2x +2﹣x,不等式f (x )等价为2x +2﹣x,即2(2x)2﹣5(2x)+2<0, 得(2•2x﹣1)(2x﹣2)<0, 得2x<2,得﹣1<x <1,即不等式的解集为(﹣1,1);(3)不等式f (2x )+4<mf (x )等价为22x+2﹣2x+4<m (2x +2﹣x))即f 2(x )+2<mf (x ),∵f (x )=2x +2﹣x≥2,当且仅当x =0时,取等号,则m >f (x ),∵函数y =x在[2,+∞)上是增函数,则f (x )的最小值为3,即m >3,故实数m 的取值范围是(3,+∞). 22. (本小题满分12分)【答案】(1) 0x y += (2)见解析 【解析】(1)由已知条件,()()ln f x x x x =-,当1x =时,()1f x =-,()ln 12f x x x +'=-,当1x =时,()1f x '=-,所以所求切线方程为0x y +=(2)由已知条件可得()ln 12f x x ax +'=-有两个相异实根1x ,2x , 令()()'f x h x =,则()1'2h x a x=-, 1)若0a ≤,则()'0h x >,()h x 单调递增,()'f x 不可能有两根; 2)若0a >, 令()'0h x =得12x a =,可知()h x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,令1'02f a ⎛⎫>⎪⎝⎭解得102a <<, 由112e a <有120a f e e ⎛⎫=-< ⎪⎝⎭', 由2112a a >有2122ln 10f a a a ⎛⎫=-'+-< ⎪⎝⎭, 从而102a <<时函数()f x 有两个极值点, 当x 变化时,()f x ',()f x 的变化情况如下表精品文档实用文档单调递减单调递增单调递减因为()1120f a=->',所以121x x<<,()f x在区间[]21,x上单调递增,()()2112f x f a∴>=->-.另解:由已知可得()ln12f x x ax+'=-,则1ln2xax+=,令()1ln xg xx+=,则()2ln'xg xx-=,可知函数()g x在()0,1单调递增,在()1,+∞单调递减,若()'f x有两个根,则可得121x x<<,当()21,x x∈时,1ln2,xax+>()ln120f x x ax=+->',所以()f x在区间[]21,x上单调递增,所以()()2112f x f a>=->-.。
安徽蚌埠市数学高一上期中复习题(含答案解析)
一、选择题1.(0分)[ID :11826]设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)2.(0分)[ID :11811]若35225a b ==,则11a b+=( ) A .12B .14C .1D .23.(0分)[ID :11809]不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( ) A .[)2,+∞B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦4.(0分)[ID :11808]已知函数()1ln 1xf x x-=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭5.(0分)[ID :11805]三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<< B .0.320.3log 220.3<<C .20.30.30.3log 22<<D .20.30.30.32log 2<<6.(0分)[ID :11802]设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 7.(0分)[ID :11799]已知(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩是(,)-∞+∞上的减函数,那么a的取值范围是( ) A .(0,1)B .1(0,)3C .11[,)73D .1[,1)78.(0分)[ID :11776]若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭9.(0分)[ID :11757]设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 10.(0分)[ID :11771]函数2()ln(28)f x x x =--的单调递增区间是A .(,2)-∞-B .(,1)-∞C .(1,)+∞D .(4,)+∞11.(0分)[ID :11765]函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -= B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-12.(0分)[ID :11733]设0.60.3a =,0.30.6b =,0.30.3c =,则a ,b ,c 的大小关系为( ) A .b a c <<B .a c b <<C .b c a <<D .c b a <<13.(0分)[ID :11732]方程 4log 7x x += 的解所在区间是( ) A .(1,2)B .(3,4)C .(5,6)D .(6,7)14.(0分)[ID :11729]已知函数f(x)={(2a −1)x +7a −2,(x <1)a x,(x ≥1)在(-∞,+∞)上单调递减,则实数 a 的取值范围是( ) A .(0,1)B .(0,12)C .[38,12)D .[38,1) 15.(0分)[ID :11817]函数2y 34x x =--+ )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 二、填空题16.(0分)[ID :11906]1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.17.(0分)[ID :11903]若函数()y f x =的定义域是[0,2],则函数0.5()log (43)g x x =-的定义域是__________. 18.(0分)[ID :11901]函数()1x f x +=的定义域是______.19.(0分)[ID :11900]若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.20.(0分)[ID :11880]已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x-1,函数g (x )=x 2-2x +m .如果∀x 1∈[-2,2],∃x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是______________.21.(0分)[ID :11877]已知集合{}{}1,1,2,4,1,0,2,A B =-=-则AB =__________.22.(0分)[ID :11868]已知函数()log ,03,40a x x f x x x >⎧=⎨+-≤<⎩,其中0a >且1a ≠,若函数()f x 的图象上有且只有一对点关于y 轴对称,则a 的取值范围是__________.23.(0分)[ID :11859]已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. 若关于x 的方程()0f x m -=有四个不同的实数解,则实数m 的取值范围是_____.24.(0分)[ID :11846]已知312ab +=a b =__________. 25.(0分)[ID :11842]非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.三、解答题26.(0分)[ID :12016]已知二次函数()f x 满足(1)()2f x f x x +-=(x ∈R ),且(0)1f =.(1)求()f x 的解析式;(2)若函数()()2g x f x tx =-在区间[1,5]-上是单调函数,求实数t 的取值范围; (3)若关于x 的方程()f x x m =+有区间(1,2)-上有一个零点,求实数m 的取值范围. 27.(0分)[ID :12013]已知函数2()(2)3f x x a x =+--. (1)若函数()f x 在[]2,4-上是单调函数,求实数a 的取值范围;(2)当5a =,[1,1]x ∈-时,不等式()24f x m x >+-恒成立,求实数m 的范围. 28.(0分)[ID :11986]已知函数()1ln1xf x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆.(1)求实数a 的取值范围;(2)求证:函数()f x 是奇函数但不是偶函数.29.(0分)[ID :11964]已知二次函数()f x 满足(0)2f =,且(1)()23f x f x x +-=+. (1)求()f x 的解析式;(2)设函数()()2h x f x tx =-,当[1,)x ∈+∞时,求()h x 的最小值;(3)设函数12()log g x x m =+,若对任意1[1,4]x ∈,总存在2[1,4]x ∈,使得()()12f x g x >成立,求m 的取值范围.30.(0分)[ID :11936]某厂生产某产品的年固定成本为250万元,每生产x 千件,需另投入成本C(x)(万元),若年产量不足80千件,C(x)的图象是如图的抛物线,此时C(x)<0的解集为(−30,0),且C(x)的最小值是−75,若年产量不小于80千件,C(x)=51x +10000x−1450,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.A 3.C 4.D 5.A 6.D 7.C8.C9.A10.D11.B12.B13.C14.C15.C二、填空题16.2【解析】【分析】先求f(2)再根据f(2)值所在区间求f(f(2))【详解】由题意f(2)=log3(22–1)=1故f(f(2))=f(1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数17.【解析】首先要使有意义则其次∴解得综上点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为ab则复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出;(2)若已知函数f(g(x))18.【解析】【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x的取值集合得答案【详解】由得且函数的定义域为:;故答案为【点睛】本题考查了函数的定义域及其求法是基础的会考题型19.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数20.-5-2【解析】分析:求出函数的值域根据条件确定两个函数的最值之间的关系即可得到结论详解:由题意得:在-22上f(x)的值域A为g(x)的值域B的子集易得A=-33B =m-18+m从而解得-5≤m≤21.【解析】【分析】直接利用集合交集的定义求解即可【详解】因为集合两个集合的公共元素为所以故答案为【点睛】研究集合问题一定要抓住元素看元素应满足的属性研究两集合的关系时关键是将两集合的关系转化为元素间的22.【解析】将在轴左侧的图象关于轴对称到右边与在轴右侧的图象有且只有一个交点当时一定满足当时必须解得综上的取值范围是点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关23.【解析】【分析】若方程有四个不同的实数解则函数与直线有4个交点作出函数的图象由数形结合法分析即可得答案【详解】因为函数是定义在R上的偶函数且当时所以函数图象关于轴对称作出函数的图象:若方程有四个不同24.3【解析】【分析】首先化简所给的指数式然后结合题意求解其值即可【详解】由题意可得:【点睛】本题主要考查指数幂的运算法则整体数学思想等知识意在考查学生的转化能力和计算求解能力25.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.考点:集合的关系2.A解析:A 【解析】 【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b==根据指数式与对数式的转化可得35log 225,log 225a b == 由换底公式可得lg 2252lg15lg 2252lg15,lg 3lg 3lg 5lg 5a b ==== 由对数运算化简可得11lg 3lg 52lg152lg15a b +=+ lg3lg52lg15+=lg1512lg152== 故选:A 【点睛】本题考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.3.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可. 【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去; 当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C 【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.4.D解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.5.A解析:A 【解析】 【分析】利用指数函数与对数函数的单调性即可得出. 【详解】∵0<0.32<1,20.3>1,log 0.32<0, ∴20.3>0.32>log 0.32. 故选A . 【点睛】本题考查了指数函数与对数函数的单调性,属于基础题.6.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内7.C解析:C 【解析】 【分析】要使函数()f x 在(,)-∞+∞上为减函数,则要求①当1x <,()(31)4f x a x a =-+在区间(,1)-∞为减函数,②当1x ≥时,()log a f x x =在区间[1,)+∞为减函数,③当1x =时,(31)14log 1a a a -⨯+≥,综上①②③解方程即可.【详解】令()(31)4g x a x =-+,()log a h x x =.要使函数()f x 在(,)-∞+∞上为减函数,则有()(31)4g x a x =-+在区间(,1)-∞上为减函数,()log a h x x =在区间[1,)+∞上为减函数且(1)(1)g h ≥,∴31001(1)(31)14log 1(1)a a a g a a h -<⎧⎪<<⎨⎪=-⨯+≥=⎩,解得1173a ≤<. 故选:C. 【点睛】考查分段函数求参数的问题.其中一次函数y ax b =+,当0a <时,函数y ax b =+在R 上为减函数,对数函数log ,(0)a y x x =>,当01a <<时,对数函数log ay x =在区间(0,)+∞上为减函数.8.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤⎥⎝⎦.本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.9.A解析:A 【解析】 由题意{1,2,3,4}AB =,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.10.D解析:D 【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞), 令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数; x ∈(4,+∞)时,t =228x x --为增函数; y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞), 故选D.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.11.B解析:B 【解析】 【分析】根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A . 【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B 【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.12.B解析:B 【解析】 【分析】根据指数函数的单调性得出0.60.30.30.3<,而根据幂函数的单调性得出0.30.30.30.6<,从而得出a ,b ,c 的大小关系. 【详解】 解:0.3x y =在定义域上单调递减,且0.360.<,0.60.30.30.3∴<,又0.3y x∴=在定义域上单调递增,且0.360.<,0.30.30.30.6∴<, 0.60.30.30.30.30.6∴<<,a cb ∴<<故选:B . 【点睛】考查指数函数和幂函数的单调性,以及增函数和减函数的定义.13.C解析:C 【解析】 【分析】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数,根据(5)(6)0f f ⋅<,可得函数4()log 7xf x x =+-的零点所在的区间为()5,6,由此可得方程4log 7x x +=的解所在区间. 【详解】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数.∵(5)0f <,(6)0>f ∴(5)(6)0f f ⋅<∴故函数4()log 7xf x x =+-的零点所在的区间为()5,6∴方程4log 7x x +=的解所在区间是()5,6 故选C. 【点睛】零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.14.C解析:C 【解析】 【分析】由函数单调性的定义,若函数f(x)在(−∞,+∞)上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当x =1时,f 1(x)≥f 2(x),求解即可.【详解】若函数f(x)={(2a −1)x +7a −2,(x <1)a x ,(x ≥1)在(−∞,+∞)上单调递减,则{2a −1<00<a <1(2a −1)×1+7a −2≥a ,解得38≤a <12. 故选C. 【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证y 随x 的增大而减小,故解答本题的关键是f 1(x)的最小值大于等于f 2(x)的最大值.15.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C二、填空题16.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数 解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.17.【解析】首先要使有意义则其次∴解得综上点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为ab 则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))解析:3,14⎛⎫⎪⎝⎭【解析】首先要使(2)f x 有意义,则2[0,2]x ∈, 其次0.5log 430x ->,∴0220431x x ≤≤⎧⎨<-<⎩,解得01314x x ≤≤⎧⎪⎨<<⎪⎩,综上3,14x ⎛⎫∈⎪⎝⎭. 点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为[a ,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.18.【解析】【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案【详解】由得且函数的定义域为:;故答案为【点睛】本题考查了函数的定义域及其求法是基础的会考题型 解析:[)()1,00,∞-⋃+【解析】 【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案. 【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞; 故答案为[)()1,00,-⋃+∞. 【点睛】本题考查了函数的定义域及其求法,是基础的会考题型.19.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数 解析:(]1,2【解析】试题分析:由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤. 考点:对数函数的性质及函数的值域.【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于基础题,着重考查了分类讨论的思想方法的应用,本题的解答中,当2x >时,由()4f x ≥,得log 1a x ≥,即log 21a ≥,即可求解实数a 的取值范围.20.-5-2【解析】分析:求出函数的值域根据条件确定两个函数的最值之间的关系即可得到结论详解:由题意得:在-22上f(x)的值域A 为g(x)的值域B 的子集易得A =-33B =m -18+m 从而解得-5≤m≤解析:[-5,-2]. 【解析】分析:求出函数()f x 的值域,根据条件,确定两个函数的最值之间的关系即可得到结论. 详解:由题意得:在[-2,2]上f (x )的值域A 为g (x )的值域B 的子集. 易得A =[-3,3],B =[m -1,8+m ],从而解得-5≤m ≤-2.点睛:本题主要考查函数奇偶性的应用,以及函数最值之间的关系,综合性较强.21.【解析】【分析】直接利用集合交集的定义求解即可【详解】因为集合两个集合的公共元素为所以故答案为【点睛】研究集合问题一定要抓住元素看元素应满足的属性研究两集合的关系时关键是将两集合的关系转化为元素间的解析:{}12-,【解析】 【分析】直接利用集合交集的定义求解即可. 【详解】因为集合{}{}1,1,2,4,1,0,2,A B =-=- 两个集合的公共元素为1,2- 所以{}1,2AB =-.故答案为{}1,2-.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 且属于集合B 的元素的集合.22.【解析】将在轴左侧的图象关于轴对称到右边与在轴右侧的图象有且只有一个交点当时一定满足当时必须解得综上的取值范围是点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关解析:(0,1)1,4⋃() 【解析】将()f x 在y 轴左侧的图象关于y 轴对称到右边,与()f x 在y 轴右侧的图象有且只有一个交点.当01a <<时一定满足,当1a >时必须log 41a >,解得4a <.综上a 的取值范围是()0,11,4⋃().点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.23.【解析】【分析】若方程有四个不同的实数解则函数与直线有4个交点作出函数的图象由数形结合法分析即可得答案【详解】因为函数是定义在R 上的偶函数且当时所以函数图象关于轴对称作出函数的图象:若方程有四个不同 解析:(1,0)-【解析】 【分析】若方程()0f x m -=有四个不同的实数解,则函数()y f x =与直线y m =有4个交点,作出函数()f x 的图象,由数形结合法分析即可得答案. 【详解】因为函数()f x 是定义在R 上的偶函数且当0x ≥时,2()2f x x x =-,所以函数()f x 图象关于y 轴对称, 作出函数()f x 的图象:若方程()0f x m -=有四个不同的实数解,则函数()y f x =与直线y m =有4个交点, 由图象可知:10m -<<时,即有4个交点. 故m 的取值范围是(1,0)-,故答案为:(1,0)-【点睛】本题主要考查了偶函数的性质以及函数的图象,涉及方程的根与函数图象的关系,数形结合,属于中档题.24.3【解析】【分析】首先化简所给的指数式然后结合题意求解其值即可【详解】由题意可得:【点睛】本题主要考查指数幂的运算法则整体数学思想等知识意在考查学生的转化能力和计算求解能力解析:3【解析】【分析】首先化简所给的指数式,然后结合题意求解其值即可.【详解】1321223333a ba b a a b+-+====.【点睛】本题主要考查指数幂的运算法则,整体数学思想等知识,意在考查学生的转化能力和计算求解能力.25.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1},【解析】【分析】因S中有两个元素,故可利用S中的元素对乘法封闭求出这两个元素.【详解】设{}(),S a b a b=<,根据题意有22,,a ab b S∈,所以22,,a b ab必有两个相等元素.若22a b=,则=-a b,故2ab a=-,又2a a=或2a b a==-,所以0a=(舎)或1a=或1a=-,此时{}1,1S=-.若2a ab=,则0a=,此时2b b=,故1b=,此时{}0,1S=.若2b ab=,则0b=,此时2a a=,故1a=,此时{}0,1S=.综上,{}0,1S=或{}1,1S=-,填{}0,1或{}1,1-.【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.三、解答题 26.(1)2()1f x x x =-+;(2)39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(3){}0[1,4)⋃.【解析】试题分析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,列出方程,求得,,a b c 的值,即可求解函数的解析式;(2)由()g x ,根据函数()g x 在[1,5]-上是单调函数,列出不等式组,即可求解实数t 的取值范围;(3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,即要求函数()h x 在(1,2)-上有唯一的零点,分类讨论即可求解实数m 的取值范围.试题解析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,故22a ab =⎧⎨+=⎩,又由(0)1f =得1c =,解得1a =,1b =-,1c =,所以2()1f x x x =-+;(2)因为22221(21)()()2(21)1124t t g x f x tx x t x ++⎛⎫=-=-++=-+- ⎪⎝⎭, 又函数()g x 在[1,5]-上是单调函数,故2111t +≤-或2151t +≥, 解得32t ≤-或92t ≥,故实数t 的取值范围是39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,(1,2)x ∈-,即要求函数()h x 在(1,2)-上有唯一的零点, ①(1)0h -=,则4m =,代入原方程得1x =-或3,不合题意;②若(2)0h =,则1m =,代入原方程得0x =或2,满足题意,故1m =成立; ③若0∆=,则0m =,代入原方程得1x =,满足题意,故0m =成立;④若4m ≠且1m ≠且0m ≠时,由(1)40{(2)10h m h m -=->=-<得14m <<, 综上,实数m 的取值范围是{}0[1,4)⋃. 考点:函数的解析式;函数的单调性及其应用.27.(1)(,6][6,+)∞∞--;(2)3(,)4∞-. 【解析】 【分析】(1)首先求函数的对称轴22a x -=-,令242a --≥或 222a --≤-,求实数a 的取值范围;(2)不等式等价于21x x m ++>恒成立,令()21g x x x =++,转化为()min g x m >,[]1,1x ∈-恒成立,求m 的取值范围. 【详解】解:(1)函数()f x 的对称轴为22a x -=-, 又函数()f x 在[]2,4-上是单调函数,242a -∴-≥或 222a --≤-, 解得6a ≤-或6a ≥.∴实数a 的取值范围为(,6][6,)-∞-+∞;(2)当5a =,[]1,1x ∈-时,()24f x m x >+-恒成立,即21x x m ++>恒成立, 令()21g x x x =++,()min g x m >恒成立,函数()g x 的对称轴[]11,12x =-∈-,∴()min 1324g x g ⎛⎫=-= ⎪⎝⎭,即34m >, m ∴的范围为3(,)4-∞.【点睛】本题考查二次函数单调性,恒成立的的综合问题,属于基础题型.28.(1)[1,0]- ;(2)见解析. 【解析】试题分析:(1)由对数的真数大于0,可得集合A ,再由集合的包含关系,可得a 的不等式组,解不等式即可得到所求范围;(2)求得()f x 的定义域,计算()f x -与()f x 比较,即可得到所求结论. 试题解析:(1)令101xx+>-,解得11x -<<,所以()1,1A =-, 因为B A ⊆,所以111a a ≥-⎧⎨+≤⎩,解得10a -≤≤,即实数a 的取值范围是[]1,0-(2)函数()f x 的定义域()1,1A =-,定义域关于原点对称()()()1ln 1x f x x ---=+- ()1111ln ln ln 111x x x f x x x x -+--⎛⎫===-=- ⎪-++⎝⎭ 而1ln32f ⎛⎫= ⎪⎝⎭,11ln 23f ⎛⎫-= ⎪⎝⎭,所以1122f f ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭所以函数()f x 是奇函数但不是偶函数.29.(1)2()22f x x x =++;(2)min 252,2,()21, 2.t t h x t t t -⎧=⎨-++>⎩;(3)7m < 【解析】 【分析】(1) 根据二次函数()f x ,则可设2()(0)f x ax bx c a =++≠,再根据题中所给的条件列出对 应的等式对比得出所求的系数即可.(2)根据(1)中所求的()f x 求得2()2(1)2h x x t x =+-+,再分析对称轴与区间[1,)+∞的位置关系进行分类讨论求解()h x 的最小值即可.(3)根据题意可知需求()f x 与()g x 在区间上的最小值.再根据对数函数与二次函数的单调性求解最小值即可. 【详解】(1)设2()(0)f x ax bx c a =++≠. ①∵(0)2f =,∴(0)2f c ==, 又∵(1)()1f x f x x +-=+,∴22(1)(1)2223a x b x ax bx x ++++---=+,可得223ax a b x ++=+,∴21,3,a a b =⎧⎨+=⎩解得12a b =⎧⎨=⎩,,即2()22f x x x =++. (2)由题意知,2()2(1)2h x x t x =+-+,[1,)x ∈+∞,对称轴为1x t =-. ①当11t -,即2t 时,函数h (x )在[1,)+∞上单调递增, 即min ()(1)52h x h t ==-;②当11t ->,即2t >时,函数h (x )在[1,1)t -上单调递减,在[1,)t -+∞上单调递增,即2min ()(1)21h x h t t t =-=-++.综上,min252,2,()21, 2.t t h x t t t -⎧=⎨-++>⎩(3)由题意可知min min ()()f x g x >,∵函数()f x 在[1,4]上单调递增,故最小值为min ()(1)5f x f ==, 函数()g x 在[1,4]上单调递减,故最小值为min ()(4)2g x g m ==-+, ∴52m >-+,解得7m <. 【点睛】本题主要考查利用待定系数法求解二次函数解析式的方法,二次函数对称轴与区间关系求解最值的问题,以及恒成立和能成立的问题等.属于中等题型.30.(1) L(x)={−13x 2+40x −250,0<x <801200−(x +10000x ),x ≥80 ;(2) 当年产量100千件时,该厂在这一商品的生产中所获利润最大为1000万元.【解析】 【分析】(1)由题可知,利润=售价-成本,分别对年产量不足80件,以及年产量不小于80件计算,代入不同区间的解析式,化简求得L(x)={−13x 2+40x −250(0<x <80)1200−(x +10000x )(x ≥80) ; (2)分别计算年产量不足80件,以及年产量不小于80件的利润,当年产量不足80件时,由配方法解得利润的最大值为950万元,当年产量不小于80件时,由均值不等式解得利润最大值为1000万元,故年产量为100件时,利润最大为1000万元.【详解】(1)当0<x <80时,L(x)=50x −C(x)−250=50x −13x 2−10x −250=−13x 2+40x −250;当x ≥80时,L(x)=50x −C(x)−250=50x −51x −10000x +1450−250=1200−(x +10000x ),所以L(x)={−13x 2+40x −250(0<x <80)1200−(x +10000x )(x ≥80)(). (2)当0<x <80时,L(x)=−13x 2+40x −250=−13(x −60)+950此时,当x =60时,L(x)取得最大值L(60)=950万元.当x ≥80时,L(x)=1200−(x +10000x )≤1200−2√x ⋅10000x=1200−200=1000 此时,当x =10000x 时,即x =100时,L(x)取得最大值L(100)=1000万元,1000>950,所以年产量为100件时,利润最大为1000万元.考点:•配方法求最值 均值不等式。
安徽省蚌埠铁中11-12高一数学上学期期中考试【会员独享】
蚌埠铁中2011~2012学年度第一学期期中教学质量检测高一数学试卷(时间:120分钟 满分:150分)一 、选择题(本大题共10小题,每小题5分,共50分。
四个选项中,只有一项是符合题目要求的) 1.已知全集U ={0,1,2,3},集合A ={0,1,2},B ={0,2,3},则U A C B ⋂等于 ( )A .{1}B . {2,3} C. {0,1,2} D. ∅2.化简)31()3()(656131212132b a b a b a ÷-⨯的结果( )A . a 6B . a -C . a 9-D . 29a3.设1{1,1,,3}2a ∈-,则使函数y x α=的定义域为R 的所有α值为( ) A .1,3 B .-1,1 C .-1,3 D .-1,1,34.下列函数中,在(0,1)为单调递减的偶函数是 ( )A.21x y = B. 4x y = C. 2-=x y D.13y x =-5.若1,0≠>a a ,则函数y =ax -1+1的反函数的图象一定经过点( )A . (1,1) B. (1,2) C. (1,0) D. (2,1)6.函数0()(1)2f x x x =+--的定义域为 ( ) A 、[1,+∞) B 、(1,+∞) C 、[1,2) ∪(2,+∞) D 、(1,2)∪(2,+∞)7.已知函数⎩⎨⎧=x x x f 3log )(2)0()0(≤>x x ,则)]41([f f 的值是( )A . 91B . 9C . -91 D .-9 8. 若10<<<<a y x ,则有( )A .0)(log <xy a B. 1)(log 0<<xy a C. 2)(log >xy a D. 2)(log 1<<xy a 9.函数)0(21)(>++=x xxx f 的值域是:( )A. ()1,∞-B. ()+∞,1C. ⎪⎭⎫ ⎝⎛1,21D. ⎪⎭⎫ ⎝⎛21,0 10.函数()f x 是定义在R 上的奇函数,下列命题:( )①(0)0f =;②若()f x 在[0,)+∞上有最小值为-1,则()f x 在(,0]-∞上有最大值为1; ③若()f x 在[1,)+∞上为增函数,则()f x 在(,1]-∞-上为减函数; ④若0x >时,2()2f x x x =-,则0x <时,2()2f x x x =-- 其中正确命题的个数是A . 1个B .2个C . 3个D . 4个二、填空题(本大题共5小题,每小题5分,共25分) 11.二次函数f(x)=x 2-2x +3 的单调递增区间是12.三个数0.76,60.7,0.7log 6的大小关系是13.若集合2{|log ,01}A y y x x ==<≤,1{|(),0}2xB y y x ==≤,则A B ⋂=______ 14.2log (2)log log a a a M N M N -=+,则NM的值为15. 关于函数)R x ,0x (|x |1x lg)x (f 2∈≠+=有下列命题: ①函数)x (f y =的图象关于y 轴对称; ②在区间)0,(-∞上函数)x (f y =是减函数; ③函数)x (f 的最小值为2lg ; ④在区间),1(∞上函数)x (f 是增函数. 其中正确命题序号为_______________.三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或推演步骤)16.(本题12分)已知{}24,A a =,{}6,1,9B a a =-+,如果{}9A B ⋂=,求A B ⋃17.(12分)(1)27log 4374lg 25lg 327log +++ (2)︒--⨯--+⨯-)2005(82)4916(4)22()32(25.0421346318.(12分)已知二次函数f ( x )=x 2+ax +b 关于x=1对称,且其图象经过原点. (1)求这个函数的解析式; (2)求函数在(0,3]x ∈的值域.19.(12分)已知xxx f a -+=11log )( (1>a ) (1)求)(x f 的定义域。
安徽省蚌埠市高一上学期期中数学试卷
安徽省蚌埠市高一上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设全集,集合,,则()A .B .C .D .2. (2分)已知集合,则集合B等于()A .B .C .D .3. (2分) (2016高一上·南城期中) 设集合A={x|0≤x≤2},B={y|1≤y≤2},在下图中能表示从集合A到集合B的映射的是()A .B .C .D .4. (2分) (2019高一上·北京期中) 下列函数中,与函数有相同图象的一个是()A .B .C .D .5. (2分) (2016高一上·襄阳期中) 已知函数y=|log2x|的定义域为[ ,n](m,n为正整数),值域为[0,2],则满足条件的整数对(m,n)共有()A . 1个B . 7个C . 8个D . 16个6. (2分)设函数,则满足f(f(a))=2f(a)的a取值范围是()A . [,]B . [,+)C . [,+)D . [,+)7. (2分)三个数之间的大小关系为()A . a<c<bB . a<b<cC . b<a<cD . b<c<a8. (2分)函数,则该函数为()A . 单调递增函数,奇函数B . 单调递增函数,偶函数C . 单调递减函数,奇函数D . 单调递减函数,偶函数9. (2分)幂函数f(x)=xα的图象过点(2,4),那么函数f(x)的单调递增区间是()A . (﹣2,+∞)B . [﹣1,+∞)C . [0,+∞)D . (﹣∞,﹣2)10. (2分) (2017高三上·重庆期中) 已知a=(),b=(),c=log2 ,则a,b,c 的大小关系是()A . b<a<cB . c<b<aC . c<a<bD . b<c<a11. (2分)已知集合,则()A .B .C .D .12. (2分)已知函数,若对于任意的,,函数f(x)在区间(a,b)上单调递减,则实数t的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2016高一上·哈尔滨期中) 设f(x)为定义在(﹣∞,+∞)上的偶函数,且f(x)在[0,+∞)上为增函数,则f(﹣2),f(﹣π),f(3)的大小顺序是________14. (1分) (2017高一上·连云港期中) 设函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=2x+1,若f(a)<3,则实数a的取值范围为________.15. (1分) (2016高三上·连城期中) 已知函数f(x)=x2﹣|x|,若,则实数m的取值范围是________16. (1分) (2016高一上·惠城期中) 函数f(x)= 满足[f(x1)﹣f(x2)](x1﹣x2)<0对任意定义域中的x1 , x2成立,则a的取值范围是________.三、解答题 (共6题;共40分)17. (10分) (2017高一上·奉新期末) 设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≤x﹣2}.(1)求A∩(∁UB);(2)若函数f(x)=lg(2x+a)的定义域为集合C,满足A⊆C,求实数a的取值范围.18. (10分) (2016高一上·南昌期中) 计算下列各式(1);(2).19. (5分) (2017高三上·伊宁开学考) 已知函数f(x)=x2﹣4x+a+3,a∈R.(Ⅰ)若函数y=f(x)的图象与x轴无交点,求a的取值范围;(Ⅱ)若函数y=f(x)在[﹣1,1]上存在零点,求a的取值范围;(Ⅲ)设函数g(x)=bx+5﹣2b,b∈R.当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.20. (5分)求证:函数在区间(0,+∞)上是增函数.21. (5分)某种细胞分裂时,由1个分裂成2个,2个分裂成4个…依此类推,写出1个这样的细胞分裂x 次后,得到的细胞个数y与x的函数解析式.22. (5分) (2016高一上·南城期中) 若函数y= 的值域是R,且在(﹣∞,1﹣)上是减函数,求实数a的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共40分) 17-1、17-2、18-1、18-2、19-1、20-1、21-1、22-1、。
安徽省蚌埠市高一上学期数学期中考试试卷
安徽省蚌埠市高一上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2015高一下·兰考期中) 集合A={α|α=kπ+ ,k∈Z}与集合B={α|α=2kπ± ,k∈Z}的关系是()A . A=BB . A⊆BC . B⊆AD . 以上都不对2. (2分)已知集合,则下列不正确的是()A .B .C .D .3. (2分) (2016高一上·晋江期中) 下列四组函数中表示同一个函数的是()A . f(x)=|x|与B . f(x)=x0与g(x)=1C . 与D . 与4. (2分)函数的定义域是()A . (0,2]B . (1,2]C .D .5. (2分)(2019·广东模拟) 下列函数为偶函数的是()A .B .C .D .6. (2分)设集合,,则()A .B .C .D .7. (2分) (2017高一上·定州期末) 已知函数f(x)=a2﹣x(a>0且a≠1),当x>2时,f(x)>1,则f(x)在R上()A . 是增函数B . 是减函数C . 当x>2时是增函数,当x<2时是减函数D . 当x>2时是减函数,当x<2时是增函数8. (2分) (2018高三上·汕头期中) 函数的图象大致是()A .B .C .D .9. (2分)已知函数的定义域是,则实数取值范围是()A .B .C .D .10. (2分) (2018高二下·衡阳期末) 设,,,则()A .B .C .D .11. (2分) (2020高一上·石景山期末) 下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A .B .C .D .12. (2分) (2016高一上·河北期中) 定义在R上的奇函数f(x),满足f()=0,且在(0,+∞)上单调递减,则xf(x)>0的解集为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2019高二上·德惠期中) 函数在处的切线方程是,则________.14. (1分) (2017高三上·邯郸模拟) 若log2(log3x)=log3(log2y)=2,则x+y=________.15. (1分)幂函数y=(m2﹣m+1)x5m﹣3在x∈(0,+∞)时为减函数,则m的值为________16. (1分) (2019高一上·郏县期中) 设函数的最大值为,最小值为,那么 ________三、解答题 (共7题;共65分)17. (10分) (2019高一上·吴忠期中) 已知:函数是上的增函数,且过和两点,集合,关于的不等式的解集为 .(1)求集合A;(2)求使成立的实数的取值范围.18. (10分) (2019高一上·高台期中) 已知对数函数f(x)=(m2–m–1)logm+1x.(1)求m的值;(2)求f(27).19. (10分) (2016高一上·南京期中) 设集合A={x|y=log2(x﹣1)},B={y|y=﹣x2+2x﹣2,x∈R}(1)求集合A,B;(2)若集合C={x|2x+a<0},且满足B∪C=C,求实数a的取值范围.20. (15分) (2016高一上·荔湾期中) 已知二次函数(,,均为实数),满足,对于任意实数都有恒成立.(1)求 f ( 1 ) 的值.(2)求的解析式.(3)当时,讨论函数在上的最大值.21. (5分)如图,已知四边形ABCD是矩形,AB=1,BC=2,P D⊥平面ABCD,且PD=3,PB的中点E,求异面直线AE与PC所成角的大小.(用反三角表示)22. (10分) (2016高一上·南昌期中) 计算:(1) 0.027 ﹣(﹣)﹣2+256 ﹣3﹣1+(﹣1)0;(2).23. (5分)设函数y=f(x)在[﹣3,3]上是奇函数,且对任意x,y都有f(x+y)=f(x)+f(y),当x>0时,f(x)<0,f(1)=﹣2:(Ⅰ)求f(2)的值;(Ⅱ)判断f(x)的单调性,并证明你的结论;(Ⅲ)求不等式f(x﹣1)>4的解集.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、23-1、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蚌埠铁中2019-2020学年度第一学期期中检测试卷
高一数学
考试时间120分钟 试卷分值150分
一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是
符合题目要求的。
1
.
设
集
合
A 只含有一个元素a ,则有
( )
A .0∈A
B .a ∉A
C .a ∈A
D .a =A
2.已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z},则A ∪B = ( )
A .{1}
B .{1,2}
C .{0,1,2,3}
D .{-1,0,1,2,3} 3.设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )= ( )
A .{2,6}
B .{3,6}
C .{1,3,4,5}
D .{1,2,4,6}
4. 给定映射f :)2,2(),(y x y x y x -+→,在映射f 下(3,1)的原象为 ( )
A. (1,3)
B. (1,1)
C. (3,1)
D. (
2
1
,21)
5. 下列函数中是偶函数且在(0,1)上单调递减的是 ( )
A. 31
x y -= B. 4x y = C. 21
x y = D. 2-=x y
6. 已知3.0log 2=a ,3.02=b ,2.03.0=c ,
则c b a ,,三者的大小关系是 ( ) A. c b a >> B. c a b >> C. a c b >> D. a b c >>
7. 设函数3x y =与2)2
1(-=x y 的图象的交点为),(00y x ,则0x 所在的区间是
( )
A. (0,1)
B. (1,2)
C. (2,3)
D. (3,4)
8. 若函数)(x f y =是函数x a y =(0>a ,且1≠a )的反函数,其图象经过点),(a a , 则
=)(x f
( )
A. x 2log
B. x 21log
C. x 2
1
D. 2x
9. 函数
2
105
52)(x x x x f --+-=
( )
A. 是奇函数但不是偶函数
B. 是偶函数但不是奇函数
C. 既是奇函数又是偶函数
D. 既不是奇函数又不是偶函数
10.下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是 ( )
A ,y =x B,y =lg x C,y =2x D,y
=
11. 定义运算⎩⎨⎧>≤=⊗)
()(b a b
b a a b a ,则函数x x f 21)(⊗=的图像大致为
( )
A B C D
12. 已知函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是 ( )
A .f (1)≥25
B .f (1)=25
C .f (1)≤25
D .f (1)>25
二、填空题:本大题共4小题,每小题5分,共20分。
13. =--+-
--32
22
13
2)27
8()21(1627
14. 函数x y 3log 2-=的定义域是
15. 已知幂函数)(x f y =的图象过点)2
2
,2
1(,则=)2(log 2f
16. 设)(x f 是定义在R 上的奇函数,且满足)()2(x f x f -=+,则=-)2(f 三、解答题:本大题共6小题,共70分。
要求写出必要演算或推理过程。
17(本题满分12分) 已知函数f (x )=x +1x . (1)求f (x )的定义域;
(2)求f (-1),f (2)的值; (3)当a ≠-1时,求f (a +1)的值.
18.(本题满分12分)设集合A ={x 2,
2x -1,-4},B ={x -5, 1-x,9},若A ∩B ={9},求
A ∪
B .
19. (本小题满分12分)已知集合{}{}234|,52|+≤≤-=≤≤-=m x m x B x x A 。
(1)若B B A =U ,求实数m 的取值范围。
(2)若B B A =⋂,求实数m 的取值范围。
20.(本小题满分12分)已知2
()1ax b
f x x
+=+(,a b 为常数)是定义在(1,1)-上的奇函数,且14()25
f = (1)求函数()f x 的解析式;
(2)用定义证明()f x 在(1,1)-上是增函数
21. (本题满分12分)已知)(x f 是定义在),0(+∞上的增函数,且满足)()()(y f x f xy f +=,
1)2(=f 。
(1)求)8(f
(2)求不等式3)2()(>--x f x f 的解集
22.(本题满分10分)已知a ∈R ,函数()f x =21log ()a x
+. (1)当 1a =时,解不等式()f x >1;
(2)若关于x 的方程()f x +2
2log ()x =0的解集中恰有一个元素,求a 的值;
高一年级期中考试数学试卷参考答案 一选择题{每小题5分,共60分}C C ABD CBBAD AA
二填空题{每小题5分,共20分} 13. 3; 14. (]9,0; 15. 2
1
; 16 ,0; 本大题共6小题,共70分。
要求写出必要演算或推理过程。
17. (本题满分12分)12分)(1)要使函数f (x )有意义,必须使x ≠0, ∴f (x )的定义域是(-∞,0)∪(0,+∞). (2) f (-1)=-1+1-1=-2, f (2)=2+12=5
2. (3)当a ≠-1时,a +1≠0,∴f (a +1)=a +1+1
a +1.
18. (本题满分12分) 解:由9∈A ,可得x 2
=9,或2x -1=9,解得x =±3,或x =5.
当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去; 当x =-3时,A ={9,-7,-4},B ={-8,4,9},A ∩B ={9}满足题意,
故A ∪B ={-8,-7,-4,4,9};
当x =5时,A ={25,9,-4},B ={0,-4,9},此时A ∩B ={-4,9}与A ∩B ={9}矛盾,故舍去.
综上所述,A ∪B ={-8,-7,-4,4,9}.
19. (本题满分12分)解:(1)4232512A B B
A B
m m m =∴⊆-≤-⎧∴⎨
+≥⎩∴≤≤
(2)A B B
B A
=∴⊆
①B =∅时,432m m ->+,3m ∴<-适合;
②B ≠∅时43242325m m m m -≤+⎧⎪
-≥-⎨⎪+≤⎩
无解
综上可得:3m <-
20、(本题满分12分)(1)2(0)0
22()1401()2
5f a x f x b x f =⎧=⎧⎪
⇒⇒=⎨⎨=+=⎩⎪⎩
(2)证明:设任意1211x x -<<<
2
212121221121212222222
121212222()2()(1)
()()11(1)(1)(1)(1)x x x x x x x x x x x x f x f x x x x x x x -+----=-==++++++ 12120x x x x <∴-<;12121,1,10x x x x -<<∴->,22
12(1)(1)0x x ++>
1212()()0,()()f x f x f x f x ∴-<∴< ()f x ∴在(1,1)-上是增函数
21. (本题满分12分)(1)由题意得)2()22()2()4()24()8(f f f f f f +⨯=+=⨯=
)2(3)2()2()2(f f f f =++=
又∵1)2(=f ∴3)8(=f (2)不等式化为32)-f(x f(x)+>
∴3)8(=f )168()8()2()(-=+->∴x f f x f x f ∵)(x f 是),0(+∞上的增函数
∴⎩
⎨⎧->>-)2(80)2(8x x x 解得716
2<
<x
22. (本题满分10分)(1)由21log 11x ⎛⎫
+>
⎪⎝⎭
,得112x +>,解得. (2)()2221log log 0a x x ⎛⎫
++=
⎪⎝⎭
有且仅有一解, 等价于211a x x ⎛⎫
+=
⎪⎝⎭
有且仅有一解,等价于210ax x +-=有且仅有一解. 当0a =时,1x =,符合题意; 当0a ≠时,140a ∆=+=,1
4
a =-. 综上,0a =或14
-
.。