北京市西城区2010-2011学年度八年级第二学期抽样测试B卷2011.6

合集下载

北京市西城区-度八年级第二学期抽样测试A卷答案.6.doc

北京市西城区-度八年级第二学期抽样测试A卷答案.6.doc

北京市西城区(北区)2010 — 2011学年度第二学期抽样测试八年级数学(A 卷)参考答案及评分标准2011.6一、精心选一选(本题共30分,每小题3分)二、细心填一填(本题共16分,每小题2分)11.5-; 12.6310n S⨯=;13.4;14.2≤y ≤6;1516.1-,3-;(每空1分) 17.83;18.(1)如图1所示(答案不唯一);(2)12+(每问1分)三、认真算一算(本题共16分,第19题8分,第20题8分) 19.(1= ----------------------------------------------------------2分 = -------------------------------------------------------------3分 ---------------------------------------------------------------------------4分(2)解:)13)(13(1)52(5-+-+---------------------------------------------------------------------------2分=42-------------------------------------------------------------------------------3分 2. -------------------------------------------------------------------------------4分图120.(1)解:2470x x --=1a =,4b =-,7c =-,224(4)41(7)44b ac -=--⨯⨯-=. -----------------------------------------1分x ==42±, ----------------------------------------------2分2x =所以原方程的根为12x =,22x = --------------------------4分(2)解:因式分解,得 (1)(23)0x x -+=. ------------------------------------------1分10x -=或230x +=, ---------------------------------------------------------2分解得 11x =,232x =-. --------------------------------------------------------4分阅卷说明:两个实数根各1分.四、解答题(本题共21分,第21题6分,第22、23、24题每题5分)21.证明:(1)如图2.∵四边形ABCD 是平行四边形,∴ AB ∥CD ,AB =CD . -----------------------------1分即AB ∥DF . ∵DF =CD ,∴AB =DF .∴四边形ABDF 是平行四边形. ----------------------------------------------2分 ∵AD ,BF 交于点E , ∴AE =DE . -------------------------------------------------------------------------3分解:(2)∵四边形ABCD 是平行四边形,且AB =BC ,∴四边形ABCD 是菱形. ---------------------------------------------------------4分 ∴AC ⊥BD . -------------------------------------------------------------------------5分 ∴∠COD =90°. ∵四边形ABDF 是平行四边形, ∴AF ∥BD .∴∠CAF =∠COD =90°. ---------------------------------------------------------6分E F A D C B O图222.解:(1)8786838579845x ++++==甲, --------------------------------------------1分8785848084845x ++++==乙.--------------------------------------------2分 所以甲,乙两位球员罚球的平均命中率都为84%.(2)222222(8784)(8684)(8384)(8584)(7984)85s -+-+-+-+-==甲,------3分222222(8784)(8584)(8484)(8084)(8484) 5.25s -+-+-+-+-==乙.-----4分由x x =甲乙,22s s >甲乙可知,乙球员的罚球命中率比较稳定,建议由乙球员来罚 球更好. ------------------------------------------------------------------------------------5分23.解:设旅游车平均每小时行驶x 千米,则小轿车平均每小时行驶1.2x 千米.12612618241.260x x --=. ------------------------------------------------------------------2分 解得90x =. ------------------------------------------------------------------------------3分经检验,90x =是原方程的解,并且符合题意. ---------------------------------4分 ∴1.2108x =.答:旅游车平均每小时行驶90千米,小轿车平均每小时行驶108千米. ----5分24.证明:(1)延长DM ,CB 交于点E .(如图3)∵梯形ABCD 中,AD ∥BC ,∴∠ADM =∠BEM .∵点M 是AB 边的中点, ∴AM =BM .在△ADM 与△BEM 中,∠ADM =∠BEM , ∠AMD =∠BME , AM =BM ,∴△ADM ≌△BEM . ------------------------------------------------------------1分 ∴AD =BE =2,DM =EM . ∴CE =CB +BE =8+2=10. ∵CD =10, ∴CE =CD . ∴CM ⊥DM . ----------------------------------------------------------------------2分解:(2)分别作MN ⊥DC ,DF ⊥BC ,垂足分别为点N ,F .(如图4)E A D MB C图3∵CE =CD ,DM =EM ,∴CM 平分∠ECD .∵∠ABC = 90°,即MB ⊥BC , ∴MN =MB . --------------------------------------------------------------------------3分 ∵AD ∥BC ,∠ABC =90°, ∴∠A =90°.∵∠DFB =90°,∴四边形ABFD 为矩形.∴BF = AD =2,AB = DF . ∴FC = BC -BF =8-2=6. ∵Rt △DFC 中,∠DFC =90°, ∴222DF DC FC =-=22106-=64. ∴ DF=8. ----------------------------------------------------------------------------4分∴MN=MB =12AB =12DF =4. 即点M 到CD 边的距离为4. ---------------------------------------------------5分五、解答题(本题共17分,第25题6分,第26题5分,第27题6分) 25.解:(1)∵点B (4,2)--在反比例函数ky x=的图象上, ∴24k-=-, 8k =. ∴反比例函数的解析式为8y x=. ----------------------------------------------1分 ∵点A (4,m )在反比例函数8y x=的图象上,∴84m=, 2m =.∵点A (2,4)和点B (4,2)--在一次函数b ax y +=的图象上,∴42,24.a b a b =+⎧⎨-=-+⎩ 解得1,2.a b =⎧⎨=⎩∴一次函数的解析式为2y x =+. ---------------------------------------------2分(2)设一次函数2y x =+的图象与y 轴交于点CFN E C B M DA 图4分别作AD ⊥y 轴,BE ⊥y 轴,垂足分别为 点D ,E .(如图5)∵一次函数2y x =+,当0x =时,2y =, ∴点C 的坐标为(0,2). -------------------------3分∴AOB AOC BOC S S S ∆∆∆=+1122OC AD OC BE =⋅+⋅ 11222422=⨯⨯+⨯⨯=6.-----------------------------------------------4分 (3)40x -<<或2x >. ---------------------------------------------------------------6分阅卷说明:第(3)问两个范围各1分. 26.证明:(1)如图6,∵△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°, ∴∠EDC =90°,BA =BC . ∴∠BCA =45°. ∵点M 为EC 的中点,∴BM =12EC=MC ,DM=12EC =MC .∴BM =DM ,--------------------------------------------------------------------------1分∠MBC =∠MCB ,∠MDC =∠MCD . ∴∠BME =2∠BCM ,∠EMD =2∠DCM . ∴∠BMD =∠BME +∠EMD =2∠BCM +2∠DCM=2(∠BCM +∠DCM )= 2∠BCA =245⨯= 90°.∴△BMD 为等腰直角三角形. ------------------------------------------------2分解:(2)△BMD 为等腰直角三角形.证明:延长DM 交BC 于点N .(如图7)∵△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°, ∴BA =BC ,DE =DA ,∠EDB =90°. ∴∠EDB =∠DBC . ∴ED ∥BC . ∴∠DEC =∠BCE . ∵点M 为EC 的中点, ∴EM =CM .MAE CB 图6在△EDM 与△CNM 中,∠DEM =∠NCM ,EM =CM ,∠EMD =∠CMN,∴△EDM ≌△CNM . ------------------------------------------------------3分 ∴ED =CN ,MD =MN . ∴AD =CN .∴BA -DA =BC -NC , 即BD =BN . ∴BM=12DN= DM , -------------------------------------------------------4分 BM ⊥DN ,即∠BMD =90°.∴△BMD 为等腰直角三角形. ------------------------------------------5分27.解:(1)∵矩形OABC 中,点A ,C 的坐标分别为(6,0),(0,2), ∴点B 的坐标为(6,2).若直线b x y +-=21经过点C (0,2),则2=b ; 若直线b x y +-=21经过点A (6,0),则3=b ;若直线b x y +-=21经过点B (6,2),则5=b .①当点E 在线段OA 上时,即32≤<b 时,(如图8) ---------------------1分∵点E 在直线b x y +-=21上,当0=y 时,b x 2=,∴点E 的坐标为)0,2(b . ∴S =b b 22221=⋅⋅. --------------------------------------------------------------2分②当点E 在线段BA 上时,即53<<b 时, (如图9) ------------------3分∵点D ,E 在直线b x y +-=21上,当2=y 时,42-=b x ; 当6=x 时,3-=b y ,∴点D 的坐标为)2,42(-b ,点E 的坐标为)3,6(-b . ∴DBE OAE COD OABC S S S S S ∆∆∆---=矩形)]3(2)][42(6[216)3(212)42(2126-----⋅--⋅--⨯=b b b bb b 52+-=. -------------------------------------------------------------------4分 综上可得:2223),535).b b S b b b <≤⎧=⎨-+<<⎩ ( ((2)证明:如图10.∵四边形OABC 和四边形O′A′B′C′∴CB ∥OA , C ′B ′∥O ′A ′, 即DN ∥ME ,DM ∥NE .∴四边形DMEN 是平行四边形,且∠NDE ∵矩形OABC 关于直线DE 对称的图形为四边形O′A′B′C′,∴∠DEM =∠DEN . ∴∠NDE =∠DEN . ∴ND =NE .∴四边形DMEN 是菱形. ------------------------------------------------5分 (3)答:问题(2)中的四边形DMEN 中,ME 的长为 2. 5 . -------------6分。

北京市西城区(南区)2010-2011学年初二下学期期末检测(数学)

北京市西城区(南区)2010-2011学年初二下学期期末检测(数学)

北京市西城区(南区)2010—2011学年度第二学期期末质量检测八年级数学一、选择题(请将答案写在下列表格中,本大题共12小题,每小题3分,共36分)1. 平面直角坐标系中,点(3,-2)在( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 点P (-2,1)关于y 轴对称的点的坐标为A. (-2,-1)B. (2,1)C. (2,-1)D. (-2,1) 3. 观察下列图案,是.中心对称但不是..轴对称的图形是4. 一个多边形的内角和是外角和的2倍,则这个多边形是A. 四边形B. 五边形C. 六边形D. 八边形5. 如图所示的计算程序中,y 与z 之间的函数关系所对应的图象应为6. 某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩x 与方差s 2如表所示,如果要选择一个成绩高且发挥稳定的人参赛, 则这个人应是A. 甲B. 乙C. 丙D. 丁7. 手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是8. 如图,某小区有一块形状为等腰梯形的空地,为美化小区,居委会计划在空地上建一个四边形的水池,并使水池四个顶点恰好在梯形各边中点上,则水池的形状一定是A. 菱形B. 等腰梯形C. 矩形D. 正方形9. 如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成,则线段AC 的长为A. 3B. 6C. 33D. 3610. 已知三点),(111y x P 、)(222,y x P 、)2,1(3-P 都在反比例函数xk y =的图象上,若01<x ,02>x ,则下列式子正确的是 A. 021<<y yB. 210y y >>C. 021>>y yD. 210y y <<11. 如图,直线y=mx 与双曲线xk y =交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是A. 2B. m -2C. mD. 412. 如图是某条公共汽车线路收支差额y 与乘客量x 的函数图象(实线部分,收支差额=车票收入-支出费用)。

2011年北京西城区中考二模数学试题答案

2011年北京西城区中考二模数学试题答案

北京市西城区2011年初三二模试卷数学答案及评分标准 2011.6一、选择题(本题共32分,每小题4分)题号1 2 3 4 56 7 8 答案B A DC BC AA二、填空题(本题共16分,每小题4分)题号 9 10 1112答案()()22-+m m m2≠x32,34()20122011,11+n n三、解答题(本题共30分,每小题5分) 13.解:原式=132122---……………………………………………………………4分=3222-. ……………………………………………………………………5分14.证明: 如图1.在△ACE 和△BDE 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BD AC BED AEC DBE CAE ………………………………3分∴ △ACE ≌△BDE . ……………………………………………………………4分 ∴ AE =BE .………………………………………………………………………5分 15.解:(1)∵ 关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,∴ 16420k ∆=-⨯>. ………………………………………………………1分 解得2k <. ……………………………………………………………………2分 (2)∵2k <,∴ 符合条件的最大整数1k =,此时方程为2420x x ++=. ……………3分 ∴ 142a b c ===,,. ∴ 22444128b ac -=-⨯⨯=.………………………………………………4分 代入求根公式242b b ac x a-±-=,得422222x -±==-±.…………5分∴ 122222x x =-+=--,.16.解:原式=222222x xy y xy y ++--=22x y -.………………………………………2分 ∵ 122=+xy x ①,152=+y xy ②,∴ ①-②,得223x y -=-. ………………………………………………………4分 ∴ 原式=3-. ………………………………………………………………………5分图117.解:(1)∵ 反比例数m y x=()0≠m 的图象经过(3,1)A -,(2,)B n 两点,(如图2) ∴ 313m =-⨯=-,322m n ==-.∴ 反比例函数解析式为3y x=-.………………………1分点B 的坐标为3(2)2B -,.……………………………2分∵ 一次函数y kx b =+()0≠k 的图象经过(3,1)A -,3(2)2B -,两点,∴ 31,32.2k b k b -+=⎧⎪⎨+=-⎪⎩解得 1,21.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴ 一次函数的解析式为1122y x =--.……………………………………3分(2)设一次函数1122y x =--的图象与x 轴的交点为C ,则点C 的坐标为(1,0)C -.∴ =AOB ACO COB S S S ∆∆∆+113=11+1222⨯⨯⨯⨯5=4. …………………………5分18.解:(1)50;………………………………………………………………………………1分(2)………………………………………………………………………………3分 (3)3.………………………………………………………………………………5分四、解答题(本题共20分,每小题5分) 19.解:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆.()62402022800y x x x =+-=+.…………………………………………2分(2)依题意得x -20< x .解得x >10.……………………………………………………………………3分∵ 22800y x =+,y 随着x 的增大而增大,x 为整数,∴ 当x=11时,购车费用最省,为22×11+800=1 042(万元). …………4分 此时需购买大型客车11辆,中型客车9辆.……………………………5分答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.图220.解:(1)作DM ⊥AB 于点M ,CN ⊥AB 于点N .(如图3)∵ AB ∥D C ,DM ⊥AB ,CN ⊥AB ,∴ ∠DMN =∠CNM =∠MDC =90︒. ∴ 四边形MNCD 是矩形. ∵4C D =,∴ MN =CD = 4.∵ 在梯形ABC D 中,AB ∥D C ,5AD BC ==, ∴ ∠DAB =∠CBA ,DM=CN . ∴ △ADM ≌△BCN . 又∵10AB =,∴ AM =BN =()11(104)322AB M N -=⨯-=.∴ MB =BN +MN =7.……………………………………………………………2分∵ 在Rt △AMD 中,∠AMD =90︒,AD =5,AM =3, ∴ 224D M AD AM=-=.∴ 4tan 7D M ABD BM∠==.……………………………………………………3分(2)∵ EF AB ⊥,∴ ∠F =90︒.∵∠DMN =90︒, ∴ ∠F =∠DMN .∴ DM ∥EF .∴ △BDM ∽△BEF . ∵ DE BD =,∴12BM BD BFBE==.∴ BF =2BM =14. ……………………………………………………………4分 ∴ AF =BF -AB =14-10=4. …………………………………………………5分21.(1)证明:如图4.∵ 点A 是劣弧BC 的中点,∴ ∠ABC =∠ADB .………………………1分 又∵ ∠BAD =∠EAB ,∴ △ABE ∽△ADB .………………………2分∴ABADAE AB =.∴ 2A B A E A D =⋅.………………………………………………………3分 (2)解:∵ AE =2,ED =4,∴()22612AB AE AD AE AE ED =⋅=+=⨯=.∴23AB =(舍负).………………………………………………………4分∵ BD 为⊙O 的直径,∴ ∠A =90︒.图4ECOFAD B图3又∵ DF 是⊙O 的切线,∴ DF ⊥BD.∴ ∠BDF =90︒.在Rt △ABD 中,233tan 63A B A D B A D∠===,∴ ∠ADB =30︒.∴ ∠ABC =∠ADB =30︒. ∴∠DEF=∠AEB=60︒,903060ED F BD F AD B ∠=∠-∠=︒-︒=︒.∴ ∠F =18060D EF ED F ︒-∠-∠=︒. ∴ △DEF 是等边三角形.∴ EF = DE =4.………………………………………………………………5分22.解:(1)……………………………………………………1分(2)……………………………………………………3分(3)……………………………………………………5分23.解:(1)=,>,<.……………………………………………………………………3分(2)2c a.……………………………………………………………………………4分(3)答:当x =5m +时,代数式2ax bx c ++的值是正数.理由如下:设抛物线2y ax bx c =++(a ≠0),则由题意可知,它经过A (,0)2c a,B (2,0)两点.∵ a >0,c <0,∴ 抛物线2y ax bx c =++开口向上,且2c a<0<2,即点A 在点B 左侧.…………………………………………………………………………5分设点M 的坐标为2(,)M m am bm c ++,点N 的坐标为(5,)N m y +.∵ 代数式2am bm c ++的值小于0,∴ 点M 在抛物线2y ax bx c =++上,且点M 的纵坐标为负数. ∴ 点M 在x 轴下方的抛物线上.(如图5)∴ A M B x x x <<,即22c m a<<. ∴5572c m a+<+<,即572N c x a+<<.以下判断52c a+与B x 的大小关系:∵ 42a b c ++=0,a >b ,a >0, ∴ 66(42)(5)(5)202222B c c a c a a b a b x aaaaa+-+-+-=+-===>.∴B x ac >+52.∴ 52N B c x x a>+>.…………………………………………………………6分∵ B ,N 两点都在抛物线的对称轴的右侧,y 随x 的增大而增大, ∴B N y y >,即y >0.∴ 当x =5m +时,代数式2ax bx c ++的值是正数. ………………………7分24.解:(1)52,265.………………………………………………………………………2分(2)只有点P 在DF 边上运动时,△PDE 才能成为等腰三角形,且PD=PE .(如图6)……………………………………………………………………………3分 ∵ BF=t ,PF=2t ,DF =8, ∴ 82PD D F PF t =-=-.在Rt △PEF 中,2222436PE PF EF t =+=+=2PD.即()2228364t t -=+. 解得 78t =.…………………………………4分 ∴ t 为78时△PDE 为等腰三角形.(3)设当△DEF 和点P 运动的时间是t 时,点P 与点G 重合,此时点P 一定在DE边上,DP= DG . 由已知可得93tan 124AC B BC===,63tan 84EF D D F===.∴.D B ∠=∠∴.90︒=∠=∠BFH DGH∴ 3tan 4FH BF B t =⋅=, 384D H D F F H t =-=-, .5325354438cos +-=⨯⎪⎭⎫ ⎝⎛-=⋅=t t D DH DG ∵ 2D P D F t +=,∴ 28D P t =-.由DP=DG 得3322855t t -=-+.图5解得 7213t =. …………………………………………………………………5分检验:724613<<,此时点P 在DE 边上.∴ t 的值为7213时,点P 与点G 重合.(4)当0<t ≤4时,点P 在DF 边上运动(如图6),ta n 2PFPBF BF∠==.…………………………………………………………………………………6分 当4< t ≤6时,点P 在DE 边上运动(如图7),作PS ⊥BC 于S ,则t a n PS PBF BS∠=.可得10(28)182PE DE DP t t =-=--=-. 此时()5725821854cos cos +-=-=⋅=∠⋅=t t D PE EPS PE PS ,()5545621853sin sin +-=-=⋅=∠⋅=t t D PE EPS PE ES .524511554566-=⎪⎭⎫ ⎝⎛+--+=-+=t t t ES EF BF BS .∴ 728tan 1124PS tPBF BSt -∠==-.………………………………………………7分综上所述,2 (04),tan 728 (46).1124t PBF t t t <≤⎧⎪∠=-⎨≤≤⎪-⎩(以上时间单位均为s ,线段长度单位均为cm )25.解:(1)B 点的坐标为(23,6),………………………………………………………1分 C 点的坐标为(63,2).………………………………………………………3分 (2)当AB =4k ,(0,)A m 时,OA =m ,与(1)同理可得B 点的坐标为(23,2)B k k m +,C 点的坐标为(233,2)C k m k +.如图8,过点B 作y 轴的垂线,垂足为F ,过点C 作x 轴的垂线,垂足为G , 两条垂线的交点为H ,作DM ⊥FH 于点M ,EN ⊥OG 于点N .由三角形中位线的性质可得点D 的坐标为(3,)D k k m +,点E 的坐标为3(3,)2m E k k +.由勾股定理得2237()22m D E mm =+=.∵ DE=27,∴ m=4. ……………………………4分 ∵ D 恰为抛物线2123(21)23(2)k y x x m k k +=-++++的顶点,它的顶点横坐标为3(21)3k +,∴3(21)33k k +=.解得k=1.此时抛物线的解析式2123433y x x =-++.…………………………………5分 此时D ,E 两点的坐标分别为(3,5)D ,(33,1)E .∴ 27OD =,27OE =.∴ OD=OE=DE .∴ 此时△ODE 为等边三角形,cos ∠ODE= cos60°=12.……………………6分(3)E 1,E 3点的坐标分别为13(3,1)2m E +,E 33(33,3)2m+.设直线13E E 的解析式为y ax b =+(a ≠0).则 3(3)1,23(33) 3.2ma b m a b ⎧++=⎪⎪⎨⎪++=⎪⎩解得 3,3.2a m b ⎧=⎪⎪⎨⎪=-⎪⎩∴ 直线13E E 的解析式为332m y x =-. ……………………………………7分可得直线13E E 与y 轴正方向的夹角等于60°.∵ 直线13D D ,13E E 与y 轴正方向的夹角都等于60°, ∴ 13D D ∥13E E .∵ D 1,D 3两点的坐标分别为1(3,1)D m +,3(33,3)D m +, 由勾股定理得13D D =4,13E E =4. ∴ 1313D D E E =.∴ 四边形1331D D E E 为平行四边形.设直线13E E 与y 轴的交点为P ,作AQ ⊥13E E 于Q .(如图9) 可得点P 的坐标为.23,2,0m AP m P =⎪⎭⎫ ⎝⎛-∴.43360sin sin m AP OPQ AP AQ =︒⋅=∠⋅=∴ 133113334334D DE E m S D D AQ m =⨯=⨯=四边形.…………………………8分。

北京市西城区2010-2011学年度八年级第二学期抽样测试A卷答案2011.6

北京市西城区2010-2011学年度八年级第二学期抽样测试A卷答案2011.6

北京市西城区(北区)2010 — 2011学年度第二学期抽样测试八年级数学(A 卷)参考答案及评分标准2011.6一、精心选一选(本题共30分,每小题3分)二、细心填一填(本题共16分,每小题2分)11.5-; 12.6310n S⨯=;13.4;14.2≤y ≤6;1516.1-,3-;(每空1分) 17.83;18.(1)如图1所示(答案不唯一);(2)12+(每问1分)三、认真算一算(本题共16分,第19题8分,第20题8分) 19.(1= ----------------------------------------------------------2分 = -------------------------------------------------------------3分 ---------------------------------------------------------------------------4分(2)解:)13)(13(1)52(5-+-+=512- ---------------------------------------------------------------------------2分=42-------------------------------------------------------------------------------3分 2. -------------------------------------------------------------------------------4分20.(1)解:2470x x --=图11a =,4b =-,7c =-,224(4)41(7)44b ac -=--⨯⨯-=.-----------------------------------------1分x =, ----------------------------------------------2分2x =所以原方程的根为12x =22x = --------------------------4分(2)解:因式分解,得 (1)(23)0x x -+=. ------------------------------------------1分10x -=或230x +=, ---------------------------------------------------------2分 解得 11x =,232x =-. --------------------------------------------------------4分阅卷说明:两个实数根各1分.四、解答题(本题共21分,第21题6分,第22、23、24题每题5分)21.证明:(1)如图2.∵四边形ABCD 是平行四边形,∴ AB ∥CD ,AB =CD . -----------------------------1分即AB ∥DF . ∵DF =CD ,∴AB =DF .∴四边形ABDF 是平行四边形. ----------------------------------------------2分 ∵AD ,BF 交于点E , ∴AE =DE . -------------------------------------------------------------------------3分解:(2)∵四边形ABCD 是平行四边形,且AB =BC ,∴四边形ABCD 是菱形. ---------------------------------------------------------4分 ∴AC ⊥BD . -------------------------------------------------------------------------5分 ∴∠COD =90°. ∵四边形ABDF 是平行四边形, ∴AF ∥BD .∴∠CAF =∠COD =90°. ---------------------------------------------------------6分22.解:(1)8786838579845x ++++==甲, --------------------------------------------1分E F A D C B O图28785848084845x ++++==乙. --------------------------------------------2分所以甲,乙两位球员罚球的平均命中率都为84%.(2)222222(8784)(8684)(8384)(8584)(7984)85s -+-+-+-+-==甲,------3分222222(8784)(8584)(8484)(8084)(8484) 5.25s -+-+-+-+-==乙.-----4分由x x =甲乙,22s s >甲乙可知,乙球员的罚球命中率比较稳定,建议由乙球员来罚 球更好. ------------------------------------------------------------------------------------5分23.解:设旅游车平均每小时行驶x 千米,则小轿车平均每小时行驶1.2x 千米.12612618241.260x x --=. ------------------------------------------------------------------2分 解得90x =. ------------------------------------------------------------------------------3分经检验,90x =是原方程的解,并且符合题意. ---------------------------------4分 ∴1.2108x =.答:旅游车平均每小时行驶90千米,小轿车平均每小时行驶108千米. ----5分24.证明:(1)延长DM ,CB 交于点E .(如图3)∵梯形ABCD 中,AD ∥BC ,∴∠ADM =∠BEM .∵点M 是AB 边的中点, ∴AM =BM .在△ADM 与△BEM 中,∠ADM =∠BEM , ∠AMD =∠BME , AM =BM ,∴△ADM ≌△BEM . ------------------------------------------------------------1分 ∴AD =BE =2,DM =EM . ∴CE =CB +BE =8+2=10. ∵CD =10, ∴CE =CD . ∴CM ⊥DM . ----------------------------------------------------------------------2分解:(2)分别作MN ⊥DC ,DF ⊥BC ,垂足分别为点N ,F .(如图4)∵CE =CD ,DM =EM ,E A D MB C图3∴CM 平分∠ECD .∵∠ABC = 90°,即MB ⊥BC , ∴MN =MB . --------------------------------------------------------------------------3分 ∵AD ∥BC ,∠ABC =90°, ∴∠A =90°.∵∠DFB =90°,∴四边形ABFD 为矩形.∴BF = AD =2,AB = DF . ∴FC = BC -BF =8-2=6. ∵Rt △DFC 中,∠DFC =90°, ∴222DF DC FC =-=22106-=64. ∴ DF=8. ----------------------------------------------------------------------------4分∴MN=MB =12AB =12DF =4.即点M 到CD 边的距离为4. ---------------------------------------------------5分五、解答题(本题共17分,第25题6分,第26题5分,第27题6分) 25.解:(1)∵点B (4,2)--在反比例函数ky x=的图象上, ∴24k-=-, 8k =. ∴反比例函数的解析式为8y x=. ----------------------------------------------1分 ∵点A (4,m )在反比例函数8y x=的图象上,∴84m=, 2m =.∵点A (2,4)和点B (4,2)--在一次函数b ax y +=的图象上,∴42,24.a b a b =+⎧⎨-=-+⎩ 解得1,2.a b =⎧⎨=⎩∴一次函数的解析式为2y x =+. ---------------------------------------------2分(2)设一次函数2y x =+的图象与y 轴交于点CFN E C B M DA 图4分别作AD ⊥y 轴,BE ⊥y 轴,垂足分别为 点D ,E .(如图5)∵一次函数2y x =+,当0x =时,2y =, ∴点C 的坐标为(0,2). -------------------------3分∴AOB AOC BOC S S S ∆∆∆=+1122OC AD OC BE =⋅+⋅ 11222422=⨯⨯+⨯⨯=6.-----------------------------------------------4分 (3)40x -<<或2x >. ---------------------------------------------------------------6分阅卷说明:第(3)问两个范围各1分. 26.证明:(1)如图6,∵△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°, ∴∠EDC =90°,BA =BC . ∴∠BCA =45°. ∵点M 为EC 的中点,∴BM =12EC=MC ,DM=12EC =MC .∴BM =DM ,--------------------------------------------------------------------------1分∠MBC =∠MCB ,∠MDC =∠MCD . ∴∠BME =2∠BCM ,∠EMD =2∠DCM . ∴∠BMD =∠BME +∠EMD =2∠BCM +2∠DCM=2(∠BCM +∠DCM )= 2∠BCA =245⨯= 90°.∴△BMD 为等腰直角三角形. ------------------------------------------------2分解:(2)△BMD 为等腰直角三角形.证明:延长DM 交BC 于点N .(如图7)∵△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°, ∴BA =BC ,DE =DA ,∠EDB =90°. ∴∠EDB =∠DBC . ∴ED ∥BC . ∴∠DEC =∠BCE . ∵点M 为EC 的中点, ∴EM =CM .MAE CB 图6在△EDM 与△CNM 中,∠DEM =∠NCM ,EM =CM , ∠EMD =∠CMN ,∴△EDM ≌△CNM . ------------------------------------------------------3分 ∴ED =CN ,MD =MN . ∴AD =CN .∴BA -DA =BC -NC , 即BD =BN . ∴BM=12DN= DM , -------------------------------------------------------4分 BM ⊥DN ,即∠BMD =90°.∴△BMD 为等腰直角三角形. ------------------------------------------5分27.解:(1)∵矩形OABC 中,点A ,C 的坐标分别为(6,0),(0,2), ∴点B 的坐标为(6,2).若直线b x y +-=21经过点C (0,2),则2=b ; 若直线b x y +-=21经过点A (6,0),则3=b ;若直线b x y +-=21经过点B (6,2),则5=b .①当点E 在线段OA 上时,即32≤<b 时,(如图8) ---------------------1分∵点E 在直线b x y +-=21上,当0=y 时,b x 2=,∴点E 的坐标为)0,2(b . ∴S =b b 22221=⋅⋅. --------------------------------------------------------------2分②当点E 在线段BA 上时,即53<<b 时, (如图9) ------------------3分∵点D ,E 在直线b x y +-=21上, 当2=y 时,42-=b x ; 当6=x 时,3-=b y ,∴点D 的坐标为)2,42(-b ,点E 的坐标为)3,6(-b . ∴D BE O AE CO D O ABC S S S S S ∆∆∆---=矩形)]3(2)][42(6[216)3(212)42(2126-----⋅--⋅--⨯=b b b bb b 52+-=. -------------------------------------------------------------------4分综上可得:2223),535).b b S b b b <≤⎧=⎨-+<<⎩ ( ((2)证明:如图10.∵四边形OABC 和四边形O′A′B′C′∴CB ∥OA , C ′B ′∥O ′A ′, 即DN ∥ME ,DM ∥NE .∴四边形DMEN 是平行四边形,且∠NDE ∵矩形OABC 关于直线DE 对称的图形为四边形O′A′B′C′,∴∠DEM =∠DEN . ∴∠NDE =∠DEN . ∴ND =NE .∴四边形DMEN 是菱形. ------------------------------------------------5分 (3)答:问题(2)中的四边形DMEN 中,ME 的长为 2. 5 . -------------6分。

北京市西城区八年级英语第二学期抽样附加题 外研版

北京市西城区八年级英语第二学期抽样附加题 外研版

北京市西城区(北区)2011—2012学年度第二学期抽样测试八年级英语附加题试卷完形填空(共12分,每小题1分)阅读短文,掌握其大意,从短文后各题所给的A、B、C、D四个选项中,选择最佳选项。

This year I decided to do something to regain my good name as a kindly uncle. My nephew, today, had never forgiven me for the dictionary I bought him as a birthday present last year. His parents had no reason to be thankful to me either, because the year before, I had 1 their dear son with a pot of paste(浆糊) and some funny pictures. 2 sticking them into a book, Tony had naturally covered every wallin the house with them. This year, therefore, I decided to let him 3 for himself.We went into a big shop, but Tony was very particular about toys. Although I tried to show him toy after toy, he was not to be 4 . Then I saw he suddenly became 5 , he had discovered something he really liked: a large tin drum. I was quite happy too— 6 I thought what Tony’s mother would say when she saw it. Nobody would get any 7 for weeks! I led Tony away quickly, saying that the drum was too expensive.Tony asked for permission to go off 8 and I made the most of my chance to sit down and 9 my aching feet. Fifteen minutes passed but there was still no sign of Tony. I began to get worried and got up to look for him. I asked a young lady if she had seen a little boy in a grey suit. She looked 10 her helplessly and pointed out that there were so many small boys in grey suits. I was just going to call the police for help, when I saw a strange 11 dressed in strange orange clothes. He was wearing a false beard and had a caveman’s axe(斧子) in one hand, and a space gun in the other. It was, of course, Tony. Who informed me 12 that he was the first caveman to fly into space.1.A.presented B.bought C.made D.offered2.A.In spite of B. As well as C. As a result of D. Instead of3.A. guess B. choose C.pay D.see4. A. accepted B. amazed C.pleased D.disappointed5.A.surprised B. hopeful C. patient D. excited6.A.after B.until C.unless D. since7.A.shock B.trouble C.peace D. time8. A. on his own B. in his way C. now and then D. more or less9. A. drag B. rest C. lay D. step10. A.about B.to y D.step11.A.doll B. actor C.man D.figure12.A. on time B. just now C. at once D. once again二、阅读理解(共8分,每小题2分)阅读短文,根据短文内容,从各题所给的A、B、C、D四个选项中,选择最佳选项。

西城区 度第二学期抽样测试初二数学试卷及附加题【VIP专享】

西城区 度第二学期抽样测试初二数学试卷及附加题【VIP专享】

图2、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。

在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。

管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。

线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。

、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。

对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。

因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。

北京市西城区(北区)2011-2012学年度第二学期初二期末物理试卷及答案

北京市西城区(北区)2011-2012学年度第二学期初二期末物理试卷及答案

北京市西城区(北区)2011 —2012学年度第二学期抽样测试八年级物理试卷2012.7一、单项选择题(共24分。

每小题2分)1.下列物理量中,以科学家帕斯卡的名字作为单位的物理量是A.压力B.压强C.功D.功率2.图1所示的实例中,目的是为了增大摩擦的是3.如图2所示使用的用具中,属于省力杠杆的是4.如图3所示的实例中,目的是为了减小压强的是5.图4所示的四个过程中,人对物体做功的是6.图5所示的食物中,质量最接近500克的是7.如图6所示,一个小球用细绳系着在光滑的水平桌面上绕O点做匀速圆周运动。

若把绳子剪断,则小球会A.仍做圆周运动B.立即静止C.做曲线运动,速度越来越小D.将做匀速直线运动8.关于使用简单机械,下列说法正确的是A.使用斜面,可以省力B.使用滑轮组,可以省功C.使用等臂杠杆,可以省距离D.使用动滑轮,可以改变力的方向9.如图7所示容器底部有个(紧密接触)受力面积为S的压力感应器A,下图8中,正确表示A所受水的压力与容器中水的深度的对应关系的是10.人造地球卫星沿椭圆轨道绕地球运行,离地球最近的一点叫近地点,最远的一点叫远地点。

下列说法正确的是A.卫星在近地点的高度最大B.卫星在近地点的势能最大C.卫星在近地点的速度最大D.卫星在近地点的动能最小11.如图9所示,装有大猩猩的箱子放在大磅秤上。

坐在箱中的大猩猩用力向上推箱顶时,下列判断正确的是A.大猩猩对箱底的压力增大,磅秤示数减小B.大猩猩对箱底的压力不变,磅秤示数增大C.大猩猩对箱底的压力增大,磅秤示数不变D.大猩猩对箱底的压力增大,磅秤示数增大12.在如图10所示底面积为S的锥形瓶内,装有密度为ρ的液体。

将质量为m、体积为V 的小球放入瓶内,瓶内液体未溢出,瓶内液面上升Δh。

则A.小球所受浮力大小为ρgVB.瓶底对水平桌面的压力增加量为ρgΔhSC.锥形瓶中的液体对瓶底的压力增加量为mgD.锥形瓶中的液体对瓶底的压强增加量为ρgΔh二、多项选择题(共12分。

北京市西城区2010年抽样测试

北京市西城区2010年抽样测试

北京市西城区2010年抽样测试一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1. -4的绝对值等于 A. 4 B.41C. -41 D. -42. 据统计,今年春节期间,北京本市居民在京旅游人数为2 410 000人次,同比增长17.6%.将2 410 000用科学记数法表示应为 . 710241.0⨯ B. 61041.2⨯ C. 5101.24⨯ D. 410241⨯3.如图,AB 是⊙O 直径,弦CD ⊥AB 于点E .若CD =8,OE =3,则⊙O 的直径为 A. 5B. 6C.8D. 104.若一个正多边形的一个内角是144°,则这个多边形的边数为 A. 12B. 11C.10D. 95.0312=++-y x ,则2()xy -的值为A.-6B. 9C.6D. -9 6.对于数据:85,83,85,81,86.下列说法中正确的是( ) A .这组数据的中位数是84 B .这组数据的方差是3.2 C .这组数据的平均数是85 D .这组数据的众数是86 7.在平面直角坐标系中,对于平面内任一点P ()b a ,若规定以下两种变换:①),(),(b a b a f --=.如)2,1()2,1(--=f ②),(),(a b b a g =.如)1,3()3,1(=g 按照以上变换,那么()),(b a g f 等于 A .()a b --, B .()b a , C .()a b ,D .()b a --,8.小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10的正方体的表面(不考虑接缝),如图2所示.小明所用正方形包装纸的边长至少为A. 40B. 2230+C. 220D. 21010+二、填空题(本题共16分,每小题4分) 9.若分式142++x x 的值为零,则x 的值为 . 10.分解因式:=+-a ax ax 1682. 11.如图,在△ABC 中,D 、E 分别AB 、AC 边上的点,DE ∥BC .若AD =3,DB =5,DE =1.2,则BC = .12.在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD 中,四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD 能覆盖的单位格点正方形的个数是个;若菱形A n B n C n D n 的四个顶点坐标分别为(-2n ,0),(0, n ),(2n ,0),(0,-n )(n 为正整数),则菱形A n B n C n D n 能覆盖的单位格点正方形的个数为 (用含有n 的式子表示).三、解答题(本题共30分,每小题5分) 13.计算:01)20101999()31(2318-+----.14.解不等式组⎪⎩⎪⎨⎧<-+≤+.321),2(542x x x x 把它的解集在数轴上表示出来,并求它的整数解.CA EDB 图2图1x15.已知:如图,A 、B 、C 、D 四点在一条直线上,且AB =CD ,∠A=∠D ,∠ECD=∠FBA .求证: AE =DF .16.已知21=y x ,求y x y y x y x y xy x x -++-⋅+-2222222的值.17.列方程或方程组解应用题:“家电下乡”农民得实惠,根据“家电下乡”的有关政策:农户每购买一件家电,国家将按每件家电售价的13%补贴给农户.小明的爷爷2009年5月份购买了一台彩电和一台洗衣机, 他从乡政府领到了390元补贴款. 若彩电的售价比洗衣机的售价高1000元,问一台彩电和一台洗衣机的售价各是多少元?18.已知:如图,在梯形ABCD 中,AD ∥BC ,∠B=45°,∠BAC=105°,AD =CD =4.求BC 的长.四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分) 19.某电脑公司现有A ,B ,C 三种型号的电脑和D ,E 两种型号的打印机.某校要从其中选购一台电脑和一台打印机送给山区小学.(1) 写出所有选购方案(利用树状图或列表方法表示);(2) 已知A 、D 是甲厂生产的产品,B 、C 、E 是乙厂生产的产品.如果(1)中各种选购方案被选中的可能性相同,那么甲厂生产的产品被选中的概率是多少?C B E A FD GD A B C。

北京市西城区2010-2011学年度第一学期期末试卷八年级数学B卷(纯word版)

北京市西城区2010-2011学年度第一学期期末试卷八年级数学B卷(纯word版)

北京市西城区2010–2011学年度第一学期期末试卷(北区)八年级数学(B 卷) 2011.1一、精心选一选(本题共30分,每小题3分) 1.计算24-的结果是( ).A .8-B .18-C .116- D .116 2.下列说法中,正确的是( ).A .5是25的算术平方根B .9-的平方根是3-C .4±是64的立方根D .9的立方根是3 3.下列四个交通标志中,轴对称图形是( ).A .B .C .D .4.当0b <时,函数y x b =-+的图象不经过...( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.下列各式中,正确的是( ).A .1a b b ab b ++= B .22x y x y-++=- C . 23193x x x -=-- D .222()x y x y x y x y --=++ 6.在△ABC 和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个, 不.能.使△ABC ≌△A′B′C′一定成立的是( ). A .AC =A′C ′ B .BC=B ′C ′ C .∠B=∠B ′ D .∠C=∠C ′7.点A (11y -,)和B (22y ,)都在直线3y x =-上,则1y 与2y 的关系是( ). A .12y y < B .12y y = C .12y y > D .212y y =8.如图,在△ABC 中,D 是BC 边上一点,且AB=AD=DC ,∠BAD=40°,则∠C 为( ).A .25°B .35°C .40°D .50°9.已知一次函数y kx b =+的图象如图所示,当0x >时,y 的取值范围是( ).A .1y <B .1y >C .2y <-D .2y >-10.如图所示,长方形ABCD 中,AB=4,点E是折线段A —D —C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,能使△PCB 为等腰三角形.....的点E 的位置共有( ).A .2个B .3个C .4个D .5个二、细心填一填(本题共16分,每小题2分) 11.当x __________时,分式11x-有意义. 12.如图,△ABC 是等边三角形,D 是BC 边的中点,点 E 在AC 的延长线上,且∠CDE=30°.若则DE=_________. 13.在0.6,27,π-_______________. 14.如图,在Rt △ABC 中,∠C=90°,∠B=30°,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E .若DE=1cm , 则BC =_______ cm .15.如图,MN 是正方形ABCD 的一条对称轴,点P 是直线MN 上的一个动点,当PC+PD 最小时, ∠PCD=_________°.ABCDAB CDEPDAEBC DCBAEDAMNBCP16.已知直线(0)y kx b k =+≠与直线2y x =-平行,且经过点(1,1),则直线(0)y kx b k =+≠可以看作由直线2y x =-向_______平移_______个单位长度而得到.17.如图,在△ABC 中,AB=AC ,∠A=40°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC=_________°.18. 用长为4cm 的n 根火柴可以拼成如图1所示的x 个边长都为4cm 的平行四边形,还可以拼成如图2所示的2y 个边长都为4cm 的平行四边形,那么用含x 的代数式表示y ,得到______________________.三、耐心算一算(本题共19分,第19题6分,第20题3分,第21、22题每题5分) 19.因式分解:(1)224x y -; (2)22363a ab b ++.解: 解:20+解:图1 图2 DAMNBC ………21.先化简,再求值:22211121x x x x x -÷+--+,其中5x =. 解:22.解分式方程:21155x x x x =+++. 解:四、认真做一做(共3个小题,第23、24题各6分,第25题5分,共17分)23.已知:如图,点A 、E 、F 、C 在同一条直线上,AD=CB ,∠B=∠D ,AD ∥BC .求证: AE=CF . 证明:F D C B AE24.已知:平面直角坐标系xOy 中,直线b kx y +=(0k ≠)与直线mx y =(0m ≠)交于点A (2,4-).(1)求直线mx y =(0m ≠(2)若直线b kx y +=(0k ≠直线x y 2=交于点B ,且点B 求△ABO 的面积. 解:(1)(2)25.如图,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且PA =PB .要求:尺规..作图,并保留作图痕迹.(不要求写作法)五、仔细想一想(共3个小题,每小题6分,共18分)26.已知:2x y +=,求22222()8()x y x y --+的值.解:C BA27.王鹏和李明沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆的路程是4千米.王鹏骑自行车,李明步行.当王鹏从原路回到学校时,李明刚好到达图书馆.图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1) 王鹏在图书馆查阅资料的时间为_________分钟,王鹏返回学校的速度为___________千米/分钟;(2) 请求出李明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;(3) 当王鹏与李明迎面相遇时,他们离学校的路程是多少千米?解:(2)(3)28.已知:如图,在△ABC中,AB=AC,∠BAC=α,且60°<α<120°.P 为△ABC 内部一点,且PC=AC ,∠PCA=120°—α.(1)用含α的代数式表示∠APC ,得∠APC =_______________________; (2)求证:∠BAP=∠PCB ;(3)求∠PBC 的度数.证明:(2)解:(3)北京市西城区2010 — 2011学年度第一学期期末试卷(北区)B C PA八年级数学(B 卷)参考答案及评分标准2011.1一、精心选一选(本题共30分,每小题3分)二、细心填一填(本题共16分,每小题2分)11.1≠; 12 13.π-(答对一个给1分); 14.3; 15.45; 16.上,3(每空1分); 17.30; 18.3155y x =-.三、耐心算一算(本题共19分,第19题6分,第20题3分,第21、22题每题5分) 19.(1)解:224x y -=(2)(2)x y x y +-.----------------2分 (2)解:22363a ab b ++=223(2)a ab b ++ ----------------2分=23()a b +. ----------------4分20+----------------2分= ----------------3分 21.解:22211121xx x x x -÷+--+ =221(1)1(1)(1)x x x x x--⨯++- =211(1)x x x x --++ ----------------2分 =2(1)(1)x x x x --+=1x. ----------------4分 当5x =时,原式=1x =15. ----------------5分22.解:去分母,得 5255x x x =++. ----------------2分移项,合并得 25x =-. 系数化为1,得 52x =-. ----------------4分 经检验,52x =-是原方程的解. ----------------5分 所以,原方程的解为52x =-.四、认真做一做(本题共17分,第23、24题每题6分,第25题5分) 23.证明:如图1.∵ AD ∥BC , ∴∠A=∠C . ----------------1分 在△ADF 与△CBE 中, ∠A=∠C ,AD=CB , ∠D=∠B ,∴△ADF ≌△CBE . ----------------4分 ∴ AF=CE . ----------------5分 ∴ AF -EF=CE -EF .∴AE=CF . ----------------6分 24.解:(1)∵点A (2,4-)在直线mx y =(0m ≠)上,∴m 24-=2-=m .∴x y 2-=. ----------------2分(2)解法一:作AM ⊥y 轴于M ,BN ⊥y 轴于N ∵点B 在直线x y 2=上,且点B 的横坐标为-∴点B 的坐标为B )84(--,. FD CBA E 图1∵MN BN)AM (21S ABNM ⋅+=梯形 1(24)(48)2=⨯+⨯+36=,------------4分 MO AM 21S AOM ⋅=∆=44221=⨯⨯,NO BN 21S BON⋅=∆=168421=⨯⨯, ------------5分 ∴BO N A O M A BN M A BO S S S S ∆∆∆--=梯形16436--=16=. ------------6分解法二:设直线b kx y +=(0k ≠)与x 轴交于点C (如图3). ∵点B 在直线x y 2=上,且点B 的横坐标为-∴点B 的坐标为B )84(--,. ∵直线b kx y +=(0k ≠)经过点A (2,4-)和点B )84(--,, ∴⎩⎨⎧+-=-+-=.48,24b k b k 解得⎩⎨⎧==.16,6b k∴166+=x y . 令0=y ,可得38-=x . ∴点C 的坐标为C )038(,-. ------------5分 ∴BO C A O C A BO S S S ∆∆∆+=8382143821⨯⨯+⨯⨯=16=. ------------6分阅卷说明:其他正确解法相应给分.25.答案如图4所示.阅卷说明:(1)画出∠CAB 的平分线AD ; ------------2分 (2)画出AB 垂直平分线MN ; ------------4分 (3)标出射线AD 与直线MN 的交点P .D图3------------5分五、仔细想一想(本题共18分,每小题6分) 26.解法一:22222()8()x y x y --+)(8)()(2222y x y x y x +--+=. ------------1分∵2=+y x ,∴原式)(8)(4222y x y x +--= ------------2分 222288)2(4y x y xy x --+-=22484y xy x ---= ------------3分 2)(4y x +-= ------------5分 224⨯-=16-=. ------------6分解法二:由2=+y x ,得x y -=2. ------------1分 则原式])2([8])2([22222x x x x -+---= ------------2分 )442(8)44(22+---=x x x ------------4分 32321616321622-+-+-=x x x x16-=. ------------6分27.(1)15,154. (每空1分) ------------2分 (2)解:设线段OD 所在直线为)0(≠=k kt s . ∵点D (45,4)在此直线上, 则k 454=454=k . ∴t s 454=. ------------3分 ∴当045t ≤≤时,t s 454=. (3)解:设线段BC 所在直线为)0(11≠+=k b t k s .∵点B (30,4)和点C (45,0)在此直线上,则⎩⎨⎧+=+=.450,30411b k b k 解得⎪⎩⎪⎨⎧=-=.12,1541b k∴12154+-=t s . ------------4分 ∴当3045t ≤≤时,12154+-=t s .由(2)知线段OD 所在直线为t s 454=, 由 ⎪⎪⎩⎪⎪⎨⎧+-==.12154,454t s t s 解得⎪⎩⎪⎨⎧==.3,4135s t ------------5分∴直线OD 与BC 的交点坐标为)3,4135(. 答:当王鹏与李明迎面相遇时,他们离学校的路程是3千米.------------6分28.(1)∠APC 230α+=. ------------1分(2)证明:如图5.∵CA=CP , ∴∠1=∠2=230α+.∴∠3=∠BAC -∠1=)230(αα+-=302-α. ------------2分∵AB=AC ,∴∠ABC=∠ACB=2180α- =290α-.∴∠4=∠ACB -∠5=)120()290(αα---=302-α.∴∠3=∠4.即∠BAP=∠PCB . ------------3分(3)解法一:在CB 上截取CM 使CM=AP ,连接PM (如图6).------------4分 ∵PC=AC ,AB=AC , ∴PC=AB .在△ABP 和△CPM 中,AB=CP , ∠3=∠4, AP=CM , ∴△ABP ≌△CPM .∴∠6=∠7, BP=PM . ∴∠8=∠9. ∵∠6=∠ABC -∠8,∠7=∠9-∠4,∴∠ABC -∠8=∠9-∠4. 即(290α-)-∠8=∠9-(302-α).∴ ∠8+∠9=60. ∴2∠8=60. ∴∠8= 30.即∠PBC= 30. ------------6分解法二:作点P 关于BC 的对称点N , 连接PN 、AN 、BN 和CN (如图7). ------------4分 则△PBC 和△NBC 关于BC 所在直线对称. ∴△PBC ≌△NBC . ∴BP=BN ,CP=CN , ∠4=∠6=302-α,∠7=∠8.∴∠ACN=∠5+∠4+∠621645378CBAP4521CP AB63987图6=)302(2)120(-⨯+-αα= 60.∵PC=AC ,∴AC=NC .∴△CAN 为等边三角形. ∴AN=AC ,∠NAC=60. ∵AB=AC ,∴AN=AB .∵∠PAN=∠PAC -∠NAC=(230α+)-60=302-α,∴∠PAN=∠3.在△ABP 和△ANP 中, AB=AN , ∠3=∠PAN , AP=AP ,∴△ABP ≌△ANP .∴PB=PN .∴△PBN 为等边三角形. ∴∠PBN=60. ∴∠7=21∠PBN =306021=⨯. 即∠PBC=30. ------------6分阅卷说明:其他正确解法相应给分.。

北京市西城区(北区)2010~2011学年度第二学

北京市西城区(北区)2010~2011学年度第二学

北京市西城区(北区)2010~2011学年度第二学期抽样测试八年级语文试卷试卷满分100分考试时间:120分钟积累与运用(共27分)一、下列各题均有四个选项,其中只有一个是符合题意的。

(共10分,每小题2分)1. 下列加点字注音全都正确的一项是A. 铁铉.(xuàn)家醅.(pēi)哂.笑(xī)龙吟风哕.(huì)B. 禁锢.(gù)干涸.(hé)诘.责(jié)黑咕隆.咚(lōng)C. 狩.猎(shǒu)管束.(shù)迸.射(bèng)秫秸秆.(gān)D. 酬和.(hè)气量.(liàng)酷肖.(xiāo)一撮.灰(cuō)2. 下列词语中没有错别字的一项是A. 箫瑟沧茫广袤无垠油然而生B. 馈赠褪尽翻来覆去油光可鉴C. 真谛繁衍莫衷一是悠游自在D. 绯红熹微颤颤巍巍囊荧映雪3. 下列加点词语运用有误的一项是A. 他忽然觉得有一种不可名状....的激情涌上心头,只想放开歌喉唱起来。

B. 你跑得那么快,我只能感慨自己相形见绌....,哪里还有心思准备比赛。

C. 看见如此美丽的腊梅,我不禁即物起兴....,写出了这描画梅花的佳句。

D. 这个人看来很善于交际应酬,这么复杂难办的事,他却能左右逢源....。

4. 填入下面空缺处的三个句子,顺序最恰当的一项是:谁说宇宙是没有生命的?宇宙是一个硕大无比的、永恒的生命,那永恒的运动、那演化的过程,不正是她生命力的体现吗?_________________________你难道没有用心灵听到从那遥远的星系里传来的友好问候吗?①你难道没有听到石头里也有生命的呐喊吗?②如果宇宙没有生命,怎么会从中开出灿烂的生命之花?③这个宇宙到处都隐藏着生命,到处都有生命的萌芽,到处都有沉默的声音。

A. ①②③B. ③①②C. ①③②D. ②③①5. 下列文学常识说法有误的一项是A. 鲁迅、郭沫若、巴金、沈从文都是中国现代著名作家。

北京市西城区八年级英语第二学期抽样测试 外研版

北京市西城区八年级英语第二学期抽样测试 外研版

北京市西城区(北区)2011-2012 学年度第二学期抽样测试八年级英语试卷听力理解一、听对话,从下面各题所给的A、B、C三幅图片中选择与对话内容相符的图片。

每段对话读两遍。

(共4分,每小题1分)二、听对话,根据所听内容,从下面各题所哥的A、B、C三个选项中选择最佳选项。

每段对话读两遍。

(共7分,每小题1分)请听下面一段对话,完成第5小题5. What is the son doing now?A. Taking a pictureB. Eating at the tableC. Having an English class请听下面一段对话,完成第6小题6. What kind of vegebable will the firl get?A. TomatoesB. PotatoesC. Onions请听下面一段对话,完成7至8小题7. Why was she angry?A. Because her brother didn’t allow her to watch a video with his friends.B.Because her brother didn’t like to talk with her about the vide.C.Because her brother’s music was too loud and she couldn’t hear the video.8. What did the man advise her to do?A.To turn down the radioB. To say sorry to him.C. To join them at once.请听下面一段对话,完成9至11小题9. What is another name of New York City?A. Apple Pie.B. The Big AppleC. The Apple of Your Eye10. If we want to learn English easily, we should buy ________.A. a set of apple computerB. an iPhone or iPod TouchC. a set of program11. How many things about “apple ” have you heard?A.SixB.FiveC.Four三、听对话,根据所听内容和提示词语,记录关键信息。

北京市西城区(北区) 2010-2011学年度第二学期抽样测试

北京市西城区(北区) 2010-2011学年度第二学期抽样测试

北京市西城区(北区) 2010-2011学年度第二学期抽样测试七年级语文试卷2011. 6试卷满分100分考试时间:120分钟积累与运用(共26分)一、下列各题均有四个选项,其中只有一个是符合题意的。

请将答案写在答题表格中。

(共14分,每小题2分)1.下列词语中加点字的读音都正确的一项是A.脑髓.(suí)疮.痍(chuāng)重荷.(hã)气冲斗.牛(dǒu)B.哺.育(pǔ)亘.古(gân)默契.(qiâ)鲜.为人知(xiǎn)C.瞬.息(shùn)相宜.(yì)深邃.(suì)潜.心贯注(qiǎn)D.祈.祷(qí)澎湃.(pài)宰.割(zǎi)芸.芸众生(yún)2.下列词语中没有错别字的一项是A.博学狂谰一返既往忘乎所以B.蓦然丑陋妇儒皆知来势凶凶C.崎岖彷徨参差不齐一拍即合D.磐石羁拌惹人注目迫不急待3.下列语境中加点词语解释有误的一项是A.但竟给那走来夜谈的老和尚识破了机关..。

机关:这里是秘密的意思。

B.(安塞腰鼓)使人想起:晦暗..了又明晰、明晰了又晦暗、尔后最终永远明晰了的大彻大悟!晦暗:这里是迷惘、糊涂的意思。

C.诚然!这十多个少年,委实没有一个不会凫水的,而且两三个还是弄潮..的好手。

弄潮:这里是懂得水性,善于游水使船的人的意思。

D.他们自以为是人,然而却因承受着某种他们感觉不到的压力而沦为像蚂蚁一样的虫豸..。

虫豸:这里比喻碌碌无为的人。

4.下列句子中加点词语使用有误的一项是A.信息时代,通信发达,人与人之间的联系方式也多样化了,真是息息相通....啊。

B.邓稼先是我国家喻户晓....的人物,他为我国核武器的研制做出了巨大贡献。

C.世界上很难再找出像巴黎这样的城市,古典高雅的韵味和现代时尚的潮流完美地融为一体,既充满反差,又相得益彰....。

D.前面是万丈悬崖,后面是狩猎队,这群斑羚陷入了进退维谷....的境地。

北京市西城区中考数学二模试题

北京市西城区中考数学二模试题

北京市西城区2011年初三二模试卷数 学2011. 6一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.3-的倒数是A .3B .13- C .3- D .132.2010年,我国国内生产总值(GDP )为58 786亿美元,超过日本,成为世界第二大经济体.58 786用科学记数法表示为A .45.878610⨯B .55.878610⨯C .358.78610⨯D .50.5878610⨯3.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,若圆心距O 1O 2=2 cm ,则这两圆的位置关系是 A .内含 B .外切 C .相交 D .内切4.若一个多边形的内角和是它的外角和的2倍,则这个多边形是 A .四边形 B .五边形 C .六边形 D .八边形5.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是 A .平均数 B .众数 C .中位数 D .方差6.小明的爷爷每天坚持体育锻炼,一天他步行到离家较远的公园,打了一会儿太极拳后跑步回家.下面的四个函数图象中,能大致反映当天小明的爷爷离家的距离y 与时间x 的函数关系的是7.下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是8.在平面直角坐标系xOy 中,点P 在由直线3+-=x y ,直线4y =和直线1x =所围成的 区域内或其边界上,点Q 在x 轴上,若点R 的坐标为(2,2)R ,则QP QR +的最小值为A B .25+ C ..4二、填空题(本题共16分,每小题4分)9.分解因式 m 3– 4m = .10.函数21-=x y 中,自变量x 的取值范围是 .11.如图,两同心圆的圆心为O ,大圆的弦AB 与小圆相切,切点为P .若两圆的半径分别为2和1,则弦长AB =;若用阴影部分围成一个圆锥(OA 与OB 重合),则该圆锥的底面半径长为 . 12.对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n ,B n 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .三、解答题(本题共30分,每小题5分) 13.计算:2273181---⎪⎭⎫ ⎝⎛--- .14.已知:如图,直线AB 同侧两点C ,D 满足,,DBC CAD ∠=∠AC =BD ,BC 与AD 相交于点E . 求证:AE =BE .15.已知:关于x 的一元二次方程2420x x k ++= (1)求k 的取值范围;(2)当k 取最大整数值时,用公式法求该方程的解.16.已知 122=+xy x ,215xy y +=,求代数式()22()x y y x y +-+的值.17.如图,一次函数y kx b =+()0≠k 的图象与反比例函数 my x=()0≠m 的图象交于(3,1)A -,(2,)B n 两点. (1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积.18.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有 人; (2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树 棵.(保留整数)四、解答题(本题共20分,每小题5分)19.某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.20.如图,在梯形ABCD 中,AB ∥DC ,5AD BC ==,10AB =,4CD =,连结并延长BD 到E ,使DE BD =, 作EF AB ⊥,交BA 的延长线于点F . (1)求tan ABD ∠的值;(2)求AF 的长.21.已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连结AB .(1)求证:2AB AE AD =⋅;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F , 若AE =2,ED =4,求EF 的长.22.如图1,若将△AOB 绕点O 逆时针旋转180°得到△COD ,则△AOB ≌△COD .此时,我们称△AOB 与△COD 为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC 是锐角三角形且AC >AB ,点E 为AC 中点,F 为BC上一点且BF ≠FC (F 不与B ,C 重合),沿EF 将其剪开,得到的两块图形恰能拼成一个梯形.2中的△ABC 画出分割线及拼接后的图形.(1)在图3中将△ABC 沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;(2)在图4中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形; (3)在图5中将△ABC 沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中 的一块为钝角三角形.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.阅读下列材料:若关于x 的一元二次方程20ax bx c ++=()0≠a 的两个实数根分别为x 1,x 2,则12b x x a +=-,12cx x a⋅=.解决下列问题:已知:a ,b ,c 均为非零实数,且a >b >c ,关于x 的一元二次方程20ax bx c ++=有两个实数根,其中一根为2.(1)填空:42a b c ++ 0,a 0,c 0;(填“>”,“<”或“=”)(2)利用阅读材料中的结论直接写出方程20ax bx c ++=的另一个实数根(用含a ,c的代数式表示);(3)若实数m 使代数式2am bm c ++的值小于0,问:当x =5m +时,代数式2ax bx c++的值是否为正数?写出你的结论并说明理由.24.如图1,在Rt △ABC 中,∠C =90°,AC =9cm ,BC =12cm .在Rt △DEF 中,∠DFE =90°,EF =6cm ,DF =8cm .E ,F 两点在BC 边上,DE ,DF 两边分别与AB 边交于G ,H 两点.现固定△ABC 不动,△DEF 从点F 与点B 重合的位置出发,沿BC 以1cm/s 的速度向点C 运动,点P 从点F 出发,在折线FD —DE 上以2cm/s 的速度向点E 运动.△DEF 与点P 同时出发,当点E 到达点C 时,△DEF 和点P 同时停止运动.设运动的时间是t (单位:s ),t >0. (1)当t =2时,PH= cm ,DG = cm ; (2)t 为多少秒时△PDE 为等腰三角形?请说明理由; (3)t 为多少秒时点P 与点G 重合?写出计算过程; (4)求tan ∠PBF 的值(可用含t 的代数式表示).25.如图1,在平面直角坐标系xOy 中,以y 轴正半轴上一点(0,)A m (m 为非零常数)为端点,作与y 轴正方向夹角为60°的射线l ,在l 上取点B ,使AB =4k (k 为正整数),并在l 下方作∠ABC =120°,BC=2OA ,线段AB ,OC 的中点分别为D ,E . (1)当m =4,k =1时,直接写出B ,C 两点的坐标;(2)若抛物线212y x m k =-++的顶点恰好为D 点,且DE=求抛物线的解析式及此时cos ∠ODE 的值;(3)当k =1时,记线段AB ,OC 的中点分别为D 1,E 1,当k =3时,记线段AB ,OC 的中点分别为D 3,E 3,求直线13E E 的解析式及四边形1331D D E E 的面积(用含m 的代数式表示).北京市西城区2011年初三二模试卷 数学答案及评分标准 2011.6微13.解:原式=112-……………………………………………………………4分 =32. ……………………………………………………………………5分 14.证明: 如图1.在△ACE 和△BDE 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BD AC BED AEC DBE CAE ………………………………3分∴ △ACE ≌△BDE . ……………………………………………………………4分 ∴ AE =BE .………………………………………………………………………5分 15.解:(1)∵ 关于x 的一元二次方程2420x x k ++=有两个不相等的实数根,∴16420k ∆=-⨯>. ………………………………………………………1分 解得2k<. (2)分 (2)∵2k <,∴ 符合条件的最大整数1k =,此时方程为2420x x ++=. ……………3分∴ 142a b c ===,,. ∴ 22444128b ac -=-⨯⨯=.………………………………………………4分代入求根公式x ,得2x==-±.…………5分 ∴ 1222x x =-+=-.16.解:原式=222222x xy y xy y ++--=22x y -.………………………………………2分 ∵ 122=+xy x ①,152=+y xy ②,∴ ①-②,得223x y -=-. ………………………………………………………4分 ∴ 原式=3-. ………………………………………………………………………5分17.解:(1)∵ 反比例数my x=()0≠m 的图象经过(3,1)A -,(2,)B n 两点,(如图2) ∴ 313m =-⨯=-,322m n ==-.∴ 反比例函数解析式为3y x =-.………………………1分点B 的坐标为3(2)2B -,.……………………………2分∵ 一次函数y kx b =+()0≠k 的图象经过(3,1)A -,3(2)2B -,两点,∴ 31,32.2k b k b -+=⎧⎪⎨+=-⎪⎩解得 1,21.2k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴ 一次函数的解析式为1122y x =--.……………………………………3分(2)设一次函数1122y x =--的图象与x 轴的交点为C ,则点C 的坐标为(1,0)C -.∴ =AOB ACO COB S S S ∆∆∆+113=11+1222⨯⨯⨯⨯5=4. …………………………5分18.解:(1)50;………………………………………………………………………………1分(2)………………………………………………………………………………3分 (3)5分四、解答题(本题共20分,每小题5分) 19.解:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆. ()62402022800y x x x =+-=+.…………………………………………2分 (2)依题意得x -20< x .解得x >10.……………………………………………………………………3分∵ 22800y x =+,y 随着x 的增大而增大,x 为整数,∴ 当x=11时,购车费用最省,为22×11+800=1 042(万元). …………4分此时需购买大型客车11辆,中型客车9辆.……………………………5分答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元. 20.解:(1)作DM ⊥AB 于点M ,CN ⊥AB 于点N .(如图3)∵ AB ∥DC ,DM ⊥AB ,CN ⊥AB ,∴ ∠DMN =∠CNM =∠MDC =90︒. ∴ 四边形MNCD 是矩形. ∵4CD =,∴ MN =CD = 4.∵ 在梯形ABCD 中,AB ∥DC ,5AD BC ==, ∴ ∠DAB =∠CBA ,DM=CN . ∴ △ADM ≌△BCN . 又∵10AB =,∴ AM =BN =()11(104)322AB MN -=⨯-=. ∴ MB =BN +MN =7.……………………………………………………………2分∵ 在Rt △AMD 中,∠AMD =90︒,AD =5,AM =3, ∴4DM =.∴ 4tan 7DM ABD BM ∠==.……………………………………………………3分 (2)∵ EF AB ⊥,∴ ∠F =90︒.∵∠DMN =90︒, ∴ ∠F =∠DMN .∴ DM ∥EF .∴ △BDM ∽△BEF . ∵ DE BD =,∴12BM BD BF BE ==. ∴ BF =2BM =14. ……………………………………………………………4分∴ AF =BF -AB =14-10=4. …………………………………………………5分21.(1)证明:如图4. ∵ 点A 是劣弧BC 的中点,∴ ∠ABC =∠ADB .………………………1分 又∵ ∠BAD =∠EAB ,∴ △ABE ∽△ADB .………………………2分 ∴AB ADAE AB=. ∴ 2AB AE AD =⋅.(2)解:∵ AE =2,ED =4,∴()22612AB AE AD AE AE ED =⋅=+=⨯=.∴AB =.………………………………………………………4分∵ BD 为⊙O 的直径,∴ ∠A =90︒.又∵ DF 是⊙O 的切线,∴ DF ⊥BD.∴ ∠BDF =90︒.在Rt △ABD 中,tan AB ADB AD ∠=== ∴ ∠ADB =30︒.∴ ∠ABC =∠ADB =30︒. ∴∠DEF=∠AEB=60︒,903060EDF BDF ADB ∠=∠-∠=︒-︒=︒. ∴ ∠F =18060DEF EDF ︒-∠-∠=︒. ∴ △DEF 是等边三角形.∴ EF = DE =4.………………………………………………………………5分22.解:(1)……………………………………………………1分(2)……………………………………………………3分(3)……………………………………………………5分23.解:(13分(2)2ca.……………………………………………………………………………4分 (3)答:当x =5m +时,代数式2ax bx c ++的值是正数.理由如下:设抛物线2y ax bx c =++(a ≠0),则由题意可知,它经过A (,0)2ca,B (2,0) 两点.∵ a >0,c <0,∴ 抛物线2y ax bx c =++开口向上,且2ca<0<2,即点A 在点B 左侧. …………………………………………………………………………5分设点M 的坐标为2(,)M m am bm c ++,点N 的坐标为(5,)N m y +.∵ 代数式2am bm c ++的值小于0,∴ 点M 在抛物线2y ax bx c =++上,且点M 的纵坐标为负数. ∴ 点M 在x 轴下方的抛物线上.(如图5)∴ A M B x x x <<,即22cm a<<. ∴ 5572c m a +<+<,即572N c x a+<<.以下判断52ca+与B x 的大小关系:∵ 42a b c ++=0,a >b ,a >0,∴ 66(42)(5)(5)202222B c c a c a a b a b x a a a a a+-+-+-=+-===>. ∴B x ac>+52. ∴ 52N B cx x a>+>.…………………………………………………………6分 ∵ B ,N 两点都在抛物线的对称轴的右侧,y 随x 的增大而增大,∴B N y y >,即y >0.∴ 当x =5m +时,代数式2ax bx c ++的值是正数. ………………………7分24.解:(1)52,265.………………………………………………………………………2分 (2)只有点P 在DF 边上运动时,△PDE 才能成为等腰三角形,且PD=PE .(如图6)……………………………………………………………………………3分 ∵ BF=t ,PF=2t ,DF =8, ∴ 82PD DF PF t =-=-.在Rt △PEF 中,2222436PE PF EF t =+=+=2PD即()2228364t t -=+.解得 78t =.…………………………………4分 ∴ t 为78时△PDE 为等腰三角形.(3)设当△DEF 和点P 运动的时间是t 时,点P 与点G 边上,DP= DG .由已知可得93tan 124AC B BC ===,63tan 84EF D DF ===.∴.D B ∠=∠∴.90︒=∠=∠BFH DGH∴ 3tan 4FH BF B t =⋅=,384DH DF FH t =-=-,.5325354438cos +-=⨯⎪⎭⎫ ⎝⎛-=⋅=t t D DH DG∵ 2DP DF t +=,∴ 28DP t =-.由DP=DG 得3322855t t -=-+. 解得 7213t =. …………………………………………………………………5分 检验:724613<<,此时点P 在DE 边上. ∴ t 的值为7213时,点P 与点G 重合. (4)当0<t ≤4时,点P 在DF 边上运动(如图6),t a n 2PF PBF BF∠==. …………………………………………………………………………………6分 当4< t ≤6时,点P 在DE 边上运动(如图7),作PS ⊥BC 于S ,则ta n PS PBF BS∠=. 可得10(28)182PE DE DP t t =-=--=-.此时()5725821854cos cos +-=-=⋅=∠⋅=t t D PE EPS PE PS , ()5545621853sin sin +-=-=⋅=∠⋅=t t D PE EPS PE ES . 524511554566-=⎪⎭⎫ ⎝⎛+--+=-+=t t t ES EF BF BS . ∴ 728tan 1124PS t PBF BS t -∠==-.………………………………………………7分 综上所述, 2 (04),tan 728 (46).1124t PBF t t t <≤⎧⎪∠=-⎨≤≤⎪-⎩ (以上时间单位均为s ,线段长度单位均为cm )25.解:(1)B,………………………………………………………1分 C.………………………………………………………3分(2)当AB =4k ,(0,)A m 时,OA =m ,与(1)同理可得B点的坐标为,2)B k m +,C点的坐标为,2)C k .如图8,过点B 作y 轴的垂线,垂足为F ,过点C 作x 轴的垂线,垂足为G , 两条垂线的交点为H ,作DM ⊥FH 于点M ,EN ⊥OG 于点N .由三角形中位线的性质可得点D的坐标为,)D k m +,点E的坐标为)E k .由勾股定理得DE . ∵DE=∴ m=4. ……………………………4分∵ D恰为抛物线212y xk =-+++,∴=. 解得k=1.此时抛物线的解析式2143y x =-+. …………………………………5分 此时D ,E两点的坐标分别为D,E . ∴OD =OE =∴ OD=OE=DE .∴ 此时△ODE 为等边三角形,cos ∠ODE= cos60°=12.……………………6分 (3)E 1,E 3点的坐标分别为1E +,E3设直线13E E 的解析式为y ax b =+(a ≠0) 则 1,3.a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得 .2a m b ⎧=⎪⎪⎨⎪=-⎪⎩∴ 直线13E E 的解析式为2m y =-. 7分 可得直线13E E 与y 轴正方向的夹角等于60°. ∵ 直线13D D ,13E E 与y 轴正方向的夹角都等于60°, ∴ 13D D ∥13E E .∵ D 1,D 3两点的坐标分别为11)D m +,33)D m +, 由勾股定理得13D D =4,13E E =4.∴ 1313D D E E =.∴ 四边形1331D D E E 为平行四边形.设直线13E E 与y 轴的交点为P ,作AQ ⊥13E E 于Q .(如图9)可得点P 的坐标为.23,2,0m AP m P =⎪⎭⎫ ⎝⎛- ∴.3360sin sin m AP OPQ AP AQ =︒⋅=∠⋅= ∴ 1331134D D E E S D D AQ =⨯==四边形.…………………………8分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区(北区)2010–2011学年度第二学期抽样测试八年级数学(B 卷)试卷 2011.6一、精心选一选(本题共30分,每小题3分) 1.函数5+=x y 中,自变量x 的取值范围是( ). A . x >5- B . x ≥5- C . x ≤5- D .x ≠5-2.下列各组数中,以它们为边长的线段不能..构成直角三角形的是( ). A .6,8,10 B .8,15,17 C .1,3,2 D .2,2,32 3.下列函数中,当x >0时,y 随x 的增大而增大的是( ).A .x y 3-=B .4+-=x yC .x y 5-= D .xy 21= 4.对角线相等且互相平分的四边形一定是( ).A .等腰梯形B .矩形C .菱形D .平行四边形5.已知关于x 的方程0162=-+-m x x 有两个不相等的实数根,则m 的取值范围是( ).A .10<mB .10=mC .10>mD .10≥m 6.如图,等腰梯形ABCD 中,AD ∥BC ,BD 平分∠ABC , ∠DBC =30°,AD =5,则BC 等于( ).A .5B .7.5C .35D .107.用配方法解方程0142=+-x x ,下列变形正确的是( ).A .4)2(2=-x B .4)4(2=-x C .3)2(2=-x D .3)4(2=-x 8.右图为在某居民小区中随机调查的 10户家庭一年的月均用水量(单位:t )的条形统计图,则这10户家庭月均用水量的众数和中位数分别是( ). A .6.5,7 B .6.5,6.5 C .7,7 D .7,6.5户数月均用水量/tA BCD9.如图,反比例函数ky x=(0x >y ax b =+的图象交于点A (1,6)和点B (3当xkb ax <+时,x 的取值范围是( )A .13x << B .1<x 或3x > C .01x << D .01x <<或3x >10.如图,正方形ABCD 中,AB =4,点E ,F AD ,DC 上,且△BEF 为等边三角形,则△与△BFC 的面积比为( ).A .2:1B .3:1C .3:2D .二、细心填一填(本题共16分,每小题2分)11.若03)2(2=-++y x ,则y x -的值为___________.12.在“2011年北京郁金香文化节”中,北京国际鲜花港的6103⨯株郁金香为京城增添了亮丽的色彩.若这些郁金香平均每平方米种植的数量为n (单位:株/平方米),总种植面积为S (单位:平方米),则n 与S 的函数关系式为____________________.(不要求写出自变量S 的取值范围)13.如图,矩形ABCD 中,对角线AC ,BD 交于点O , ∠AOD =120°,BD =8,则AB 的长为___________.14.已知012=--x x ,则代数式111--x x 的值为__________.15.菱形ABCD 中,AB =2,∠ABC =60°,顺次连接菱形ABCD 各边的中点所得四边形的面积为____________.16.如图,□ABCD 中,点E 在AB 边上,将△EBC 沿 CE 所在直线折叠,使点B 落在AD 边上的点B′处, 再将折叠后的图形打开,若△AB ′E 的周长为4cm , △B ′DC 的周长为11cm ,则B ′D 的长为_________cm .17.正方形网格中,每个小正方形的边长为1.图1所示的矩形是由4个全等的直角梯形拼接而成的(图形的各顶点都在格点上;拼接时图形互不重叠,不留空隙),如果用这4个直角梯形拼接成一个等腰梯形,那么(1)仿照图1,在图2中画出一个拼接成的等腰梯形;(2)这个拼接成的等腰梯形的周长为________. A B CDOAB C D B'E18.如图,在平面直角坐标系xOy 中,1(1,0)A ,2(3,0)A ,3(6,0)A ,4(10,0)A ,……,以12A A 为对角线作第一个正方形1121AC A B ,以23A A 为对角线作第二个正方形2232A C A B ,以34A A 为对角线作第三个正方形3343A C A B ,……,顶点1B ,2B ,3B ,……都在第一象限,按照这样的规律依次进行下去,点5B 的坐标为__________;点n B 的坐标为_________________.三、认真算一算(本题共16分,第19题819.计算:(1; (2 解: 解:20.解方程:(1)237x x x -=+; (2)2(1)3(1)x x x -=-. 解: 解:四、解答题(本题共21分,第21题6分,第22、23、24题每题5分) 21.已知:如图,□ABCD 中,对角线AC ,BD 相交于点O ,延长CD 至F ,使DF =CD ,连接BF 交AD 于点E . (1)求证:AE =ED ;(2)若AB =BC ,求∠CAF 的度数.证明:(1)解:(2)22.甲,乙两人是NBA 联盟凯尔特人队的两位明星球员,两人在前五个赛季的罚球命中率如下表所示:(1(2)在某场比赛中,因对方球员技术犯规需要凯尔特人队选派一名队员进行罚球,你认为甲,乙两位球员谁来罚球更好?(请通过计算说明理由) 解:(1)(2)E F A D C B O23.为了增强员工的团队意识,某公司决定组织员工开展拓展活动.从公司到拓展活动地点的路程总长为126千米,活动的组织人员乘坐小轿车,其他员工乘坐旅游车同时从公司出发,前往拓展活动的目的地.为了在员工们到达之前做好活动的准备工作,小轿车决定改走高速公路,路程比原路线缩短了18千米,这样比按原路线行驶的旅游车提前24分钟到达目的地.已知小轿车的平均速度是旅游车的平均速度的1.2倍,求这两种车平均每小时分别行驶多少千米.解:24.已知:如图,梯形ABCD中,AD∥BC,∠B=90°,AD=a,BC=b,DC=ba+,且ab>,点M是AB边的中点.(1)求证:CM⊥DM;(2)求点M到CD边的距离.(用含a,b的式子表示)证明:(1)解:(2)五、解答题(本题共17分,第25、26题6分,第27题5分)AB CDM25.已知:如图1,直线13y x =与双曲线ky x=交于A ,B 两点,且点A 的坐标为(6,m ).(1)求双曲线ky x=的解析式; (2)点C (,4n )在双曲线ky x=上,求△AOC 的面积;(3)过原点O 作另一条直线l 与双曲线ky=交于P ,Q 两点,且点P 在第一象限.若由点A ,P ,B ,Q 所有符合条件的点P 的坐标.解:(1)(2)(3)26.已知:如图1,平面直角坐标系xOy 中,四边形OABC 是矩形,点A ,C 的坐标分别为(6,0),(0,2).点D 是线段BC 上的一个动点(点D 与点B ,C 不重合),过点D 作直线y =-12x +b 交折线O -A -B 于点E . (1)在点D 运动的过程中,若△ODE 的面积为S ,求S 与b 的函数关系式,并写出自变量的取值范围;(2)如图2,当点E 在线段OA 上时,矩形OABC 关于直线DE 对称的图形为矩形O′A′B′C′,C′B ′分别交CB ,OA 于点D ,M ,O ′A ′分别交CB ,OA 于 点N ,E .探究四边形DMEN 各边之间的数量关系,并对你的结论加以证 明;(3)问题(2)中的四边形DMEN 中,ME 的长为____________.解:(1)(2)(3)答:问题(2)中的四边形DMEN 中,ME 的长为____________.27.探究 问题1 已知:如图1,三角形ABC 中,点D 是AB 边的中点,AE ⊥BC ,BF ⊥AC ,垂足分别为点E ,F ,CAE ,BF 交于点M ,连接DE ,DF .若DE =k DF , 则k 的值为_____.拓展问题2 已知:如图2,三角形ABC 中,CB =CA ,点D 是AB 边的中点,点M 在三角形ABC 的内部,且∠MAC =∠MBC ,过点M 分别作ME ⊥BC ,MF ⊥AC , 垂足分别为点E ,F ,连接DE ,DF . 求证:DE =DF . 证明:推广问题3 如图3,若将上面问题2中的条件“CB =CA ”变为“CB ≠CA ”,其他条件不..... 变.,试探究DE 与DF 之间的数量关系,并证明你的结论. 解:图3 CE MF A DB图2 CE MFA DB北京市西城区(北区)2010 — 2011学年度第二学期抽样测试八年级数学(B 卷)参考答案及评分标准 2011.6二、细心填一填(本题共16分,每小题2分)11.5-; 12.6310n S⨯=;13.4;14.1-; 1516.3.5;17.(1)如图1所示(答案不唯一);(2)12+(每问1分)18.(18,3),2(1)1(,)22n n ++.(每空1分)三、认真算一算(本题共16分,第19题8分,第20题8分) 19.(1=----------------------------------------------------------2分=-------------------------------------------------------------3分. ---------------------------------------------------------------------------4分(2=-----------------------------------------------------------------------2分图1=84+ --------------------------------------------------------------------------------3分=2. -------------------------------------------------------------------------------4分20.(1)解:2470x x --=1a =,4b =-,7c =-,224(4)41(7)44b ac -=--⨯⨯-=. -----------------------------------------1分2b x a-±==42,----------------------------------------------2分2x =±所以原方程的根为1211x =,22x = --------------------------4分(2)解:因式分解,得 (1)(23)0x x -+=. ------------------------------------------1分10x -=或230x +=,---------------------------------------------------------2分解得11x =,232x =-. --------------------------------------------------------4分 阅卷说明:两个实数根各1分.四、解答题(本题共21分,第21题6分,第22、23、24题每题5分) 21.证明:(1)如图2.∵四边形ABCD 是平行四边形,∴ AB ∥CD ,AB =CD . -------------------------1分即AB ∥DF . E FADCBO图2∵DF =CD , ∴AB =DF . ∴四边形ABDF 是平行四边形. -----------------------------------------------2分∵AD ,BF 交于点E ,∴AE =DE . -------------------------------------------------------------------------3分解:(2)∵四边形ABCD 是平行四边形,且AB =BC ,∴四边形ABCD 是菱形. ---------------------------------------------------------4分∴AC ⊥BD . -------------------------------------------------------------------------5分∴∠COD =90°. ∵四边形ABDF 是平行四边形, ∴AF ∥BD . ∴∠CAF =∠COD =90°. ---------------------------------------------------------6分22.解:(1)8786838579845x ++++==甲,----------------------------------------------1分8785848084845x ++++==乙. ----------------------------------------------2分所以甲,乙两位球员罚球的平均命中率都为84%.(2)222222(8784)(8684)(8384)(8584)(7984)85s -+-+-+-+-==甲,-------3分222222(8784)(8584)(8484)(8084)(8484) 5.25s -+-+-+-+-==乙. -----4分由x x =甲乙,22s s >甲乙可知,乙球员的罚球命中率比较稳定,建议由乙球员来罚球更好. -------------------------------------------------------------------------------------5分23.解:设旅游车平均每小时行驶x 千米,则小轿车平均每小时行驶1.2x 千米.12612618241.260x x --=. ------------------------------------------------------------------2分解得90x =. --------------------------------------------------------------------------------3分经检验,90x =是原方程的解,并且符合题意. ---------------------------------4分∴1.2108x =. 答:旅游车平均每小时行驶90千米,小轿车平均每小时行驶108千米. ----5分24.证明:(1)延长DM ,CB 交于点E .(如图3)∵梯形ABCD 中,AD ∥BC , ∴∠ADM =∠BEM .∵点M 是AB 边的中点, ∴AM =BM .在△ADM 与△BEM 中, ∠ADM =∠BEM , ∠AMD =∠BME , AM =BM ,∴△ADM ≌△BEM . ------------------------------------------------------------1分∴AD =BE =a ,DM =EM . ∴CE =CB +BE =b a +. ∵CD =a b +, ∴CE =CD .∴CM ⊥DM . ----------------------------------------------------------------------2分 解:(2)分别作MN ⊥DC ,DF ⊥BC ,垂足分别为点N ,F .(如图4)∵CE =CD ,DM =EM ,∴CM 平分∠ECD .∵∠ABC = 90°,即MB ⊥BC ,∴MN =MB . --------------------------------------------------------------------------3分∵AD ∥BC ,∠ABC =90°,∴∠A =90°. ∵∠DFB =90°,∴四边形ABFD 为矩形.FN ECB MDA 图4E A D M BC图3∴BF = AD =a ,AB = DF .∴FC = BC -BF =b a -.∵Rt △DFC 中,∠DFC =90°, ∴222DF DC FC =-=22()()a b b a +--=4ab . ∴DF= ---------------------------------------------------------------------4分∴MN=MB =12AB =12DF即点M 到CD边的距离为-----------------------------------------------5分五、解答题(本题共17分,第25、26题6分,第27题5分) 25.解:(1)∵点A (6,)m 在直线13y x =上, ∴1623m =⨯=. --------------------------------------------------------------------1分∵点A (6,2)在双曲线ky x=上, ∴26k=, 12k =. ∴双曲线的解析式为12y x=. ---------------2(2)分别过点C ,A 作CD ⊥x 轴,AE ⊥x 轴,垂足分别为点D ,E .(如图5) ∵点C (,4)n 在双曲线12y x=上, ∴124n=,3n =,即点C 的坐标为(3,4). ---------------------------------3分∵点A ,C 都在双曲线12y x=上, ∴11262AOE COD S S ∆∆==⨯=. ∴AOC S ∆=COEA S 四边形AOE S ∆-=COEA S 四边形COD S ∆-=CDEA S 梯形,∴AOC S ∆=DE AE CD ⋅+)(21=)36()24(21-⨯+⨯=9. --------------------4分(3))3,4(P 或)34,9(P . -----------------------------------------------------------------6分阅卷说明:第(3)问两个点坐标各1分.26.解:(1)∵矩形OABC 中,点A ,C 的坐标分别为(6,0),(0,2), ∴点B 的坐标为(6,2).若直线b x y +-=21经过点C (0,2),则2=b ; 若直线b x y +-=21经过点A (6,0),则3=b ;若直线b x y +-=21经过点B (6,2),则5=b .①当点E 在线段OA 上时,即32≤<b 时,(如图6) ---------------------1分∵点E 在直线b x y +-=21上, 当0=y 时,b x 2=,∴点E 的坐标为)0,2(b . ∴S =b b 22221=⋅⋅. --------------------------------------------------------------2分 ②当点E 在线段BA 上时,即53<<b 时,(如图7) ---------------------3分∵点D ,E 在直线b x y +-=21上, 当2=y 时,42-=b x ; 当6=x 时,3-=b y ,∴点D 的坐标为)2,42(-b ,点E 的坐标为)3,6(-b . ∴D BE O AE CO D O ABC S S S S S ∆∆∆---=矩形)]3(2)][42(6[216)3(212)42(2126-----⋅--⋅--⨯=b b b bb b 52+-=. -------------------------------------------------------------------4分综上可得:2223),535).b b S b b b <≤⎧=⎨-+<<⎩ ( ((2)DM =ME =EN =ND .证明:如图8.∵四边形OABC 和四边形O′A′B′C′∴CB ∥OA , C ′B ′∥O ′A ′, 即DN ∥ME ,DM ∥NE .∴四边形DMEN 是平行四边形,且∠NDE =∠DEM . ∵矩形OABC 关于直线DE 对称的图形为矩形O′A′B′C′,∴∠DEM =∠DEN . ∴∠NDE =∠DEN . ∴ND =NE .∴四边形DMEN 是菱形.∴DM =ME =EN =ND . ------------------------------------------------------5分(3)答:问题(2)中的四边形DMEN 中,ME 的长为 2. 5 . -----------6分 27.问题1k的值为1 . ---------------------------------------------------------------------1分问题2 证明:如图9.∵CB =CA ,∴∠CAB =∠CBA . ∵∠MAC =∠MBC ,∴∠CAB -∠MAC =∠CBA -∠MBC , 即∠MAB =∠MBA . ∴MA =MB .图9CEM FADB∵ME ⊥BC ,MF ⊥AC ,垂足分别为点E ,F , ∴∠AFM =∠BEM =90°.在△AFM 与△BEM 中, ∠AFM =∠BEM , ∠MAF =∠MBE , MA =MB ,∴△AFM ≌△BEM . -------------------------------------------------------2分∴AF =BE .∵点D 是AB 边的中点, ∴BD = AD .在△BDE 与△ADF 中,BD = AD ,∠DBE =∠DAF , BE = AF ,∴△BDE ≌△ADF .∴DE =DF . ---------------------------------------------------------------------3分问题3 解:DE =DF .证明:分别取AM ,BM 的中点G ,H ,连接DG ,FG ,DH ,EH .(如图10)∵点D ,G ,H 分别是AB ,AM ,BM 的中点, ∴DG ∥BM ,DH ∥AM ,且DG =12BM ,DH =12AM . ∴四边形DHMG 是平行四边形. ∴∠DHM =∠DGM ,∵ME ⊥BC ,MF ⊥AC ,垂足分别为点E ,F , ∴∠AFM =∠BEM =90°. ∴FG =12AM = AG ,EH =12BM = BH . ∴FG = DH,DG =EH,------------------------------------------------------4分∠GAF =∠GF A ,∠HBE =∠HEB . ∴∠FGM =2∠F AM ,∠EHM =2∠EBM . ∵∠F AM =∠EBM , ∴∠FGM =∠EHM .图10GHBD A FM E C∴∠DGM+∠FGM =∠DHM+∠EHM,即∠DGF=∠DHE.在△EHD与△DGF中,EH = DG,∠EHD =∠DGF,HD = GF,∴△EHD≌△DGF.∴DE=DF.---------------------------------------------------------------------5分。

相关文档
最新文档