七年级数学第一章练习.doc

合集下载

人教版七年级上数学第一章练习题1.1~1.2含答案

人教版七年级上数学第一章练习题1.1~1.2含答案

人教版七年级上数学第一章练习题 1.1~1.2〔时间:45 分钟满分:100 分〕一、选择题〔每小题5 分, 共35 分〕1.- 的相反数是〔 C 〕〔A〕- 〔B〕- 〔C〕〔D〕2. 下列各数中, 互为相反数的是〔 D 〕〔A〕和2 〔B〕-2 和〔C〕-2 和- 〔D〕2 和-23. 下列各式中正确的是〔A〕〔A〕|5|=|-5| 〔B〕-|5|=|-5|〔C〕|-5|=-5 〔D〕|-1.3|<04. 数a 在数轴上对应点如图所示, 则a,-a,-1 的大小关系为〔 C 〕〔A〕-a<a<-1 〔B〕-a<-1<a〔C〕a<-1<-a 〔D〕a<-a<-15. 如果a 与1 互为相反数, 则|a| 等于〔C〕〔A〕2 〔B〕-2 〔C〕1〔D〕-16. 若|1-a|=a-1, 则a 的取值范围是〔B〕〔A〕a>1 〔B〕a ≥1〔C〕a<1〔D〕a ≤17. 数轴上原点左边有一点A, 点A 对应着数a, 有如下说法:ⓛ -a 表示的数一定是一个正数 .2②若|a|=9 时, 则 a=-9.③在-a, ,a 2,a 中, 最大的数值是 a .④数 所对应的点在原点左边 .其中正确的个数是 〔 C 〕〔A 〕1 〔B 〕2 〔C 〕3 〔D 〕4二、填空题 〔 每小题 5 分, 共 35 分〕8. 如果盈利 2 萬元记作 +2 萬元, 那么亏损 3 萬元记作 -3 萬元.9. 比较大小 :-> - .10. 若 ⅹ=-5 则-[-〔-ⅹ〕]= 5 .11. 若 a,b 互为相反数 , 则 5a+5b 的值为 0 .12. 若|ⅹ-6|+|y-3|=0, 则 2ⅹ+y= 15 .13. 一个点从数轴的原点开始 , 向右移动 5 个单位长度 , 再向左移动 8个单位长度 , 到达的终点表示的数是-3 .14. 己知|a|=4,|b|=2,且 a>b,a+b 的值为 6 或 2 .三、解答题 〔 共 30 分〕15.〔10分〕 把下列各数填在相应的集合里 .-6,0.25,-,0,3.141 5,8,-0.34,-10.整数{ ,}; 负分数{, }; 3负数{ , }.解: 整数{-6,0,8,-10, }负分数{- ,-0.34, }负数{-6,- ,-0.34,-10, }16.〔10 分〕在数轴上标出表示下列各数以及它们的相反数的点:-4,0.5,3.解:-4 的相反数是4,0.5 的相反数是-0.5,3 的相反数是-3,在数轴上表示如图.17.〔10 分〕体育课上, 老师抽了8 名学生进行了一分钟跳绳测试, 以140 个为标准, 超过次数用正数来表示, 足的次数用负数来表示, 其中8 名学生成绩如下:+5,-8,-12,0,+10,-10,+6,+15.(1) 如果一分钟跳绳140 个达标, 这8 名学生的达标率为多少?(2) 这8 名学生的一分钟跳绳成绩具体是多少?解:〔1〕这8 个数中, 正数或零有 5 个.所以, 达标率为×100%=62.5%.〔2〕140+5=145,140-8=132,140-12=128,140+10=150,140-10=130,140+6=146,140+15=155.答: 这8 145,132,128,140, 名学生的一分钟跳绳成绩具体是150,130,146,155.。

人教版七年级上册数学 第一章《有理数》练习题(附答案)

人教版七年级上册数学 第一章《有理数》练习题(附答案)

1 2
,

3
48.食品店一周中的盈亏情况如下 ( 盈余为正 ) : 132 元, −12.5 元, −10.5 元,127 元, −87 元, 136.5 元,98 元. 请通过计算说明这一周食品店的盈亏情况.
49.试比较 a 与﹣a 的大小.
50.把下列各数填在相应的表示集合的大括号内:
-3,-
(2)解:原式=
1 2
×(﹣24)+
5 6
×(﹣24)﹣
7 12
×(﹣24)=﹣12﹣20+14=﹣18.
40.【答案】 解:原式=2+2-1=3
四、解答题
41.【答案】
解:正数集合:{
1 10
,2014,20%,…}
负数集合:{-7,﹣
1 3

-0.75…}
整数集合:{0,2014…}
正分数集合:{
+
1
+
2

3+2×
3 2

2
2
=
13 4

2
2
37.【答案】 解:(+7)+(﹣4)﹣(﹣3)﹣(+14)=7﹣4+3﹣14=3+3-14=6-14=﹣8
38.【答案】 解:原式 = 3 × 2 − ( − 1)
39.【答案】 (1)解:原式=6.8﹣(﹣4.2)+ ( − 1)3 =6.8+4.2﹣1=10
A. -6
B.
−5
1 3
C.
−4
1 2
D.
−3
3 4
6.计算 18 − ( − 5) 的结果等于( )

人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练1.某出租车沿某南北方向的公路上载客,约定前北为正,向南为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,﹣3,+4,﹣8,+13,﹣2,+12,+8.(1)问收工时距A地多远?(2)若每千米路程耗油0.15升,问从A地出发到收工共耗油多少升?2.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?3.出租车一天下午以家为出发地在东西方向营运,向东为正方向,向西为负方向,行车里程(单位:km)依先后载客次序记录如下:+8,﹣9,﹣7,+6,﹣3,﹣14,+5,+12(1)该出租车师傅将最后一名乘客送达到目的地,出租车离家有多远?(2)该出租车师傅下午离家最远有多少千米?(3)若汽车耗油量为0.2升/千米,这天下午接送乘客,出租车共耗油多少升?(4)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米啊1.2元,问这天下午该出租车师傅的营业额是多少元?4.哈市出租车司机李师傅某天的营运全都是在一条东西方向的大街上运行的,若规定从出发点向东方向为正,向西方向为负,他这天走的里程如下:(单位:千米)-3,+4,-12,-5,+6,-8,-7,+9,-10,+11(1)李师傅第四次运营后的位置在出发点的哪个方向?多少千米处?(2)若每千米耗油0.04升,则这天营运耗油多少升?5.某服装厂一周计划生产2800套运动服,计划平均每天生产400套,超出计划产量的记为“+”,不足计划产量的记为“-”,下表记录的是该厂某一周的生产情况:表中星期六的记录情况被墨水涂污了.(1)根据记录可知,星期六工厂生产多少套运动服?(2)产量最多的一天比产量最少的一天多生产多少套运动服?(3)该服装厂工资结算方式如下:①每人每天基本工资200元.①以每天完成400套为标准,若当天超额完成任务,超额部分每套奖励10元;若当天未完成生产任务,则少生产一套扣掉15元.该服装厂采用流水作业方式生产,当天所得奖金总额按人均分配,若该工厂这一周每天都有20名工人生产,则这一周服装厂实际需要付给该工厂每名工人多少元?6.某市股民小张上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):(1)本周三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)若小张在本周四交易,问他的盈利情况如何?(交易时的手续费忽略不计)7.据新闻报道,渝万高铁于即将通车,为了保证安全,某动车检修小组沿铁路检修,约定前进为正,后退为负,某天自甲地出发到收工时所走路线(单位:km)为+10,-3,+4,-2,-9,+13,-2,+12,+8,+5;问:(1)检修小组第几次回到甲地?(2)收工时距甲地多远?(3)若每千米耗电25度,则从甲地出发到收工共耗电多少度.8.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1.(1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?9.本市图书馆上周借书记录如下(超过100册记为正,不超过100册记为负):(1)上周星期三比星期四多借出多少册书?(2)上周平均每天借出多少册书?10.一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东为正,向西为负,行车里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)将最后一名乘客送到目的地,出租车离该商场有多远?(2)按出租车每行驶100km油耗为10L,1L汽油的售价为7.2元,计算出租车在该上午消耗汽油的金额是多少元?(3)如果不计其它成本,只计消耗的汽油费用,每千米收费3元,计算这名司机挣(或赔)了多少元?11.2020年新冠肺炎疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个.由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小王某周的生产情况(超产记为正,减产记为负).(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据可知,小王本周实际生产口罩数量为______个;(3)若该厂实行每周计件工资制,每生产一个口罩可得0.8元,若超额完成周计划工作量,则超过部分每个另外奖励0.2元;若完不成每周的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.8元.若超额完成每日计划工作量,则超过部分每个另外奖励0.2元;若完不成每天的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?12.有一批试剂,每瓶标准剂量为250毫升,现抽取8瓶样品进行检测,超过或不足标准剂量的部分分别用正、负数表示,记录结果如下(单位:毫升):+6,-2,+3,+10,-6,+5,-15,-8.(1)这8瓶样品试剂的总剂量是多少?(2)若增加或者减少每瓶试剂剂量的人工费为10元/毫升,求将这8瓶样品试剂再加工制作成标准剂量需要多少人工费?13.有6筐白菜,以每筐25千克为标准质量,超过的千克数记作正数,不足的千克数记作负数,称量后的记录如图.请回答下列问题:(1)这6筐白菜中最接近标准质量的这筐白菜为____________千克.(2)与标准质量相比,这6筐白菜总计超过或不足多少千克?14.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:(1)求n的值及这20箱樱桃的总重量;(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.15.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________斤;(2)本周实际销售总量是否达到了计划数量?试说明理由;(3)若冬枣每斤按8元出售,每斤冬枣需要小明支付的平均运费是3元,那么小明本周销售冬枣实际共得多少元?16.出租车司机小李某天下午的运营是在南北走向的大街进行的,假定向南为正,向北为负,他那天下午行驶里程(单位:km)如下:+15,-3,+14,-11,+10,+4,-26(1)小李在送第几位乘客时行驶的路程最远?(2)小李送完最后一位乘客时所处的地点,在他最初出发地的什么方向?距离出发地多远?(3)若汽车耗油量为0.1L/km,这天下午汽车一共耗油多少升?17.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前五天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况,如表所示:(1)这五天中赚钱最多的是第_____天,这天赚钱_____元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?18.某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单位:元)(1)星期三收盘时每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?19.某城市治安巡逻队员乘车沿东西方向的一条主干线进行巡逻.某天早上从A地出发,晚上最后到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣12,﹣4,+12,﹣5,﹣6(1)B地在A地何方,相距多少千米?(2)问巡逻队员在距A地最远时的最远距离是多少千米?(3)每千米耗油0.6升,每升4.5元,这天共耗油费用为多少元?20.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示);(1)这天冷库的冷冻食品的质量相比原来是增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用200元,运出每吨冷冻食品费用400元;方案二:不管运进还是运出每吨冷冻食品费用都是300元.从节约运费的角度考虑,选择哪一种方案比较合算?参考答案:1.(1)34千米(2)9升2.(1)192辆(2)25辆3.(1)在家的西方,离家有2km(2)19千米(3)12.8升(4)128元4.(1)西方,16 千米(2)3升5.(1)星期六生产了448套运动服(2)多生产56套运动服(3)需付给每名工人1435元6.(1)34.5元(2)35.5元,26元(3)盈利5000元7.(1)第五次回到了甲地(2)距离甲地36km(3)从甲地出发到收工共耗电1700度8.(1)这8箱苹果的总重量是75千克(2)苹果的零售价应定为每千克6.4元(3)该水果店在销售这批苹果过程中盈利112元9.(1)上周星期三比星期四多借出39册书(2)上周平均每天借出105册书10.(1)出租车在商场西面,距商场2km处(2)消耗汽油的金额是50.4元(3)这名司机挣了159.6元11.(1)291(2)2111(3)1691元(4)1689.85元12.(1)1993毫升;(2)550元13.(1)24.5(2)总计超过3千克14.(1)5n ,203千克;(2)1075元;(3)是盈利的,盈利466元.15.(1)29(2)达到了计划数量(3)3585元16.(1)小李在送最后一位乘客时行车里程最远;(2)在他最初出发地的正南方向,距离出发地3km;(3)这天下午汽车共耗油8.3升17.(1)4,96(2)360元18.(1)34.5元(2)35.5元;26元(3)赚889.5元19.(1)B地在A地东方,相距1千米处(2)18千米(3)197.1元20.(1)减少了,理由见解析(2)从节约运费的角度考虑,选择方案二比较合算。

北师大版七年级数学上第一章练习题.docx

北师大版七年级数学上第一章练习题.docx

初中数学试卷桑水出品山东省滕州市鲍沟中学2015-2016学年七年级上册第一章练习题第一章丰富的图形世界练习题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列图形不是立体图形的是()A.球, B.圆柱, C.圆锥, D.圆2.下列平面图形能够围成正方体的是()A .,B .,C .,D .3. 下列图形中,能通过折叠围成一个三棱柱的是()A .,B .,C .,D .4.将一个正方体沿着某些棱剪开,展成一个平面图形,至少需要剪的棱的条数是()A.5B.6C.7D.85. 如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的, B.中, C.国, D.梦6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线旋转一周得到的()7.如图是一个立体图形从三个不同方向看到的形状图,这个立体图形是由一些相同的小正方体构成,这些相同的小正方体的个数是()A.4B.5C.6D.78.如图所示的几何体中,从上面看到的图形相同的是()第8题图A.①②B.①③C.②③D.②④9.用两块完全相同的长方体搭成如图所示的几何体,这个几何体从正面看到的形状图是()第9题图10.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色二、填空题(每小题3分,共24分)11.下列表面展开图的立体图形的名称分别是:______、______、______、______.第11题图12.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去____(填序号)13.如果一个几何体从三个方向看到的图形之一是三角形,这个几何体可能是(写出3个即可).14.若几何体从正面看是圆,从左面和上面看都是长方形,则该几何体是.15.在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.第15题图16.如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是_____________.(填A或B或C或D)第16题图17.(2015·山东青岛中考)如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为___.第17题图18.下列第二行的哪种几何体的表面能展开成第一行的平面图形?请对应填空.①:_____________;②:_____________;③:_____________;④:_____________;⑤:_____________.第18题图三、解答题(共46分)19.(6分)如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?第19题图第20题图20.(6分)画出如图所示的正三棱锥从正面、上面看到的形状图.21.(6分)如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图.第21题图第22题图22.(7分)画出下列几何体从正面、左面看到的形状图.23.(7分)如图,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中阴影部分),但是由于疏忽少画了一个,请你给他补上一个,使之可以组合成正方体,你有几种画法,在图上用阴影注明.第23题图24.(7分)如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求的值.第24题图25.(7分)一只蜘蛛在一个正方体的顶点A处,一只蚊子在正方体的顶点B处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?第25题图山东省滕州市鲍沟中学2015-2016学年七年级上册第一章练习题第一章丰富的图形世界检测题参考答案一、选择题1.D 解析:立体图形是指图形的各个面不都在一个平面上,由此可判断出答案2.B 解析:由平面图形的折叠及立体图形的表面展开图的特点解题,A、不是正方体的平面展开图;B、是正方体的平面展开图;C、不是正方体的平面展开图;D、不是正方体的平面展开图3.C 解析:A、折叠后少一面,故本选项错误;B、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C、折叠后能围成三棱柱,故本选项正确;D、折叠后两侧面重叠,不能围成三棱柱,故本选项错误.4.C 解析:如果把一个正方体剪开展平的图画出来,发现最多有5条棱没剪(没剪的棱为两个正方形的公共边),正方体总共12条棱,12-5=7(条),∴至少所需剪的棱为7条.5.D 解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答6.A 解析:A可以通过旋转得到两个圆柱,故本选项正确;B可以通过旋转得到一个圆柱,一个圆筒,故本选项错误;C可以通过旋转得到一个圆柱,两个圆筒,故本选项错误;D可以通过旋转得到三个圆柱,故本选项错误.7.D8.C 解析:①从上面看到的图形是一个没圆心的圆,②③从上面看到的图形是一个带圆心的圆,④从上面看到的图形是两个不带圆心的同心圆,故答案选C.9.C 解析:从物体正面看,左边1个正方形,右边1列,上下各一个正方形,且左右正方形中间是虚线.10.B 解析:分析可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.二、填空题11.圆柱圆锥四棱锥三棱柱12.1或2或6 解析:根据有“田”字格的展开图都不是正方体的表面展开图可知,应剪去1或2或6,答案不唯一.13.圆锥,三棱柱,三棱锥等14.圆柱解析:几何体从正面看是圆,从左面和上面看都是长方形,符合这个条件的几何体只有圆柱.15.6 16 解析:易得第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.16.C 解析:该几何体从上面看是三个正方形排成一行,所以从上面看到的形状图是C.17.19,48 解析:两人所搭成的几何体拼成一个大长方体,该长方体的长、宽、高至少为3,3,4,所以它的体积为36,故它是由36个棱长为1的小正方体搭成的,那么王亮至少还需要36-17=19(个)小正方体.王亮所搭几何体上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.18.D,E,A,B,C三、解答题19.解:(1)如果1点在上面,3点在左面,那么2点在前面.(2)如果5点在下面,那么2点在上面.20.解:几何体从正面、上面看到的形状图如图所示.第20题图21.解:从正面和从左面看到的形状图如图所示:第21题图22.解:从正面、左面看到的形状图如图所示:第22题图23.解:画图如图所示,共有四种画法.第23题图24.解:由于正方体的平面展开图共有六个面,其中面“”与面“3”相对,面“”与面“-2”相对,面“”与面“10”相对,则,,,解得,,.故.25.分析:欲求从点A到点B的最短路线,在立体图形中难以解决,可以考虑把正方体展开成平面图形来考虑.如图(1)所示,我们都有这样的实际经验,在两点之间,走直线路程最短,因而沿着从点A到点B的虚线走,路程最短,然后把展开图折叠起来.第25题图(1)解:所走的最短路线是正方体平面展开图中从点A到点B的连线(如图(1)).在正方体上,像这样的最短路线一共有6条,但通过地面的有2条,这2条不符合实际意义,故符合题意的只有4条,如图(2)所示第25题图(2)。

七年级数学上册《第一章 有理数的加法》同步练习及答案-人教版

七年级数学上册《第一章 有理数的加法》同步练习及答案-人教版

七年级数学上册《第一章有理数的加法》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________基础巩固练习一、选择题1.计算-2+1的结果是( )A.1B.-1C.3D.-32.下列计算正确的是( )A.(+6)+(+13)=+7B.(-6)+(+13)=-19C.(+6)+(-13)=-7D.(-5)+(-3)=83.佳佳家冰箱冷冻室的温度为-15 ℃,求调高3 ℃后的温度,这个过程可以用下列算式表示的是( )A.-15+(-3)=-18B.15+(-3)=12C.-15+3=-12D.15+(+3)=184.有理数a、b在数轴上对应的位置如图所示,则a+b的值( )A.大于0B.小于0C.小于aD.大于b5.某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)星期一二三四五盈亏+220 -30 +215 -25 +225则这个周共盈利( )A.715元B.630元C.635元D.605元6.两个有理数的和等于零,则这两个有理数( )A.都是零B.一正一负C.有一个加数是零D.互为相反数7.下列各式的结果,符号为正的是( )A.(-3)+(-2)B.(-2)+0C.(-5)+6D.(-5)+58.在一竞赛中,老师将90分规定为标准成绩,记作0分,高出此分的分数记为正,不足此分的分数记为负,五名参赛者的成绩为+1,-2,+10,-7,0.那么( )A.最高成绩为90分B.最低成绩为88分C.平均成绩为90分D.平均成绩为90.4分二、填空题9.比﹣3大2的数是.10.已知飞机的飞行高度为10 000 m,上升3 000 m后,又上升了-5 000 m,此时飞机的高度是 m.11.在下面的计算过程后面填上运用的运算律.计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)( )=[(-2)+(-5)]+[(+3)+(+4)] ( )=(-7)+(+7)=0.12.-113的相反数与-34的和是____________.13.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为______℃.14.计算(-0.5)+314+2.75+(-512)的结果为 .三、解答题15.计算:(-23)+(+58)+(-17);16.计算:|(-7)+(-2)|+(-3);17.计算:﹣27+(﹣32)+(﹣8)+27;18.计算:(+26)+(-14)+(-16)+(+18);19.若|a|=4,|b|=2,且a<b,求a+b的值.20.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?21.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.能力提升练习一、选择题:1.如图,数轴上点A ,B 表示的有理数分别是a ,b ,则( ) A.a +b >0 B.a +b <a C.a +b <0 D.a +b >b2.若两个有理数的和为负数,则这两个有理数( )A.一定都是负数B.一正一负,且负数的绝对值大C.一个为零,另一个为负数D.至少有一个是负数3.如果a ,b 是有理数,那么下列式子成立的是( )A.如果a <0,b <0,那么a +b >0B.如果a >0,b <0,那么a +b >0C.如果a >0,b <0,那么a +b <0D.如果a <0,b >0且|a|>|b|,那么a +b <04.计算0.75+(- 114)+0.125+(-57)+(-418)的结果是( ) A.657 B.-657 C.527 D.-5275.已知|a|=5,|b|=2,且|a ﹣b|=b ﹣a ,则a +b =( )A.3或7B.﹣3或﹣7C.﹣3D.﹣76.如图,数轴上P 、Q 、S 、T 四点对应的整数分别是p 、q 、s 、t ,且有p +q +s +t =﹣2,那么,原点应是点( )A.PB.QC.SD.T二、填空题7.设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的数,则a +b +c= .8.上周五某股民小王买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):则在星期五收盘时,每股的价格是 .9.若|x﹣2|=5,|y|=4,且x>y,则x+y的值为.10.设a<0,b>0,且a+b>0,用“<”号把a、﹣a、b、﹣b连接起来为.三、解答题:11.计算:(-1.75)+1.5+(+7.3)+(-4.25)+(-6.5).12.计算:137+(-213)+247+(-123).13.计算:(-2.125)+(+315)+(+518)+(-3.2).14.计算:(-2.125)+(+315)+(+518)+(-3.2).15.某产粮专业户出售余粮10袋,每袋重量如下(单位:千克):199、201、197、203、200、195、197、199、202、196.(1)如果每袋余粮以200千克为标准,求这10袋余粮总计超过多少千克或者不足多少千克?(2)这10袋余粮一共多少千克?16.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.答案基础巩固练习1.B2.C3.C4.A.5.D6.D7.C.8.D9.答案为:﹣1.10.答案为:8000.11.答案为:加法交换律,加法结合律.12.答案为:7 1213.答案为:-114.答案为:0.15.解:原式=[(-23)+(-17)]+(+58)=-40+58=18.16.解:原式=|-9|+(-3)=9+(-3)=6.17.解:原式=﹣27+(﹣32)+(﹣8)+27=﹣27﹣32﹣8+27=﹣40;18.解:原式=[(-14)+(-16)]+(26+18)=-30+44=14.19.解:∵|a|=4,|b|=2∴a=4或﹣4,b=2或﹣2∵a<b∴a=﹣4,b=2或﹣2当a=﹣4,b=2时,a+b=﹣4+2=﹣2;当a=﹣4,b=﹣2时,a+b=﹣4﹣2=﹣6.20.解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.21.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5. 故答案为:1,﹣2.5;(2)∵A点表示1∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合∴其中点==﹣1∵点B表示﹣2.5∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.能力提升练习1.C2.D3.D;4.B.5.B.6.C.7.答案为:0.8.答案为:34元;9.答案为:11,3,﹣7.10.答案为:﹣b<a<﹣a<b.11.解:原式=[(-1.75)+(-4.25)]+[(-6.5)+1.5]+(+7.3)=-6+(-5)+7.3=-11+7.3=-3.7.12.解:原式=(137+247)+[(-213)+(-123)]=4+(-4)=0.13.原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.14.解:原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.15.解:(1)以200千克为基准,超过200千克的数记作正数,不足200千克的数记作负数则这10袋余粮对应的数分别为:-1、+1、-3、+3、0、-5、-3、-1、+2、-4. (-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)=-11.答:这10袋余粮总计不足11千克.(2)200×10+(-11)=2 000-11=1 989.答:这10袋余粮一共1 989千克.16.解:(1))∵1个最小的连续偶数相加时,S=1×(1+1)2个最小的连续偶数相加时,S=2×(2+1)3个最小的连续偶数相加时,S=3×(3+1)…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+…+400=(2+4+6+...+400)﹣(2+4+6+ (160)=200×201﹣80×81=40200﹣6480=33720.。

七年级数学第一章测试题

七年级数学第一章测试题

七年级数学第一章测试题一、选择题(每题2分,共40分)1. 一份文件的原件和副本的总页数为48页,其中原件是副本的15倍,求原件有几页。

A. 12页B. 15页C. 36页D. 45页2. 一个正方形花坛的周长是36米,求这个花坛的面积。

A. 36平方米B. 81平方米C. 144平方米D. 324平方米3. 一个长方形的长是宽的3倍,面积是72平方米,求长方形的周长。

A. 24米B. 36米C. 48米D. 72米4. 有一个12升的水罐,里面装的是菜油,家里饭店要用15升菜油,这个菜油罐原装的菜油只够一半,还需要再加多少升的菜油?A. 15升B. 18升C. 21升D. 24升5. 一个三角形的底边长为8厘米,高为5厘米,求三角形的面积。

A. 8平方厘米B. 16平方厘米C. 20平方厘米D. 40平方厘米二、填空题(每题2分,共20分)1. 75÷3=_______2. 1.8+2.4=_______3. 15.6-4.2=_______4. 3×0.4×5=_______5. 32÷4+6×2-5=_______三、解答题(共40分)1. 小明的身高是1.56米,比小红低0.12米,比小华高0.1米,他们三个人的身高总和是多少米?2. 一个长方体的长和宽的比例是2:3,宽和高的比例是3:4,已知宽为15厘米,求长方体的体积。

3. 小华为一家超市买了一件衬衣,原价是300元,现在打8折,小华使用一个100元的优惠券后,实际需要支付多少元?4. 用600元买了一箱苹果,每个苹果的单价是3元,小明吃了2个苹果后,还剩多少钱?5. 小明去售楼处看了一套房子,总价是160万,小明按揭贷款买了其中的一半,还需要支付多少钱?四、应用题(共20分)某商场正举办促销活动,购买超过100元的商品,可以打9折优惠,购买超过200元的商品,可以打8折优惠。

小明想买一件价格为120元的衬衣,他是否可以获得打折优惠?如果可以,打折后的价格是多少?解答过程:小明购买的衬衣价格为120元,超过了100元的优惠门槛,因此可以获得打9折的优惠。

七年级数学第一章测试卷

七年级数学第一章测试卷

七年级数学第一章测试卷一、选择题(每题 3 分,共30 分)1.若气温上升2℃记作+2℃,那么气温下降3℃记作()。

A. -2℃B. +2℃C. -3℃D. +3℃2.下列各数中,最小的数是()。

A. 0B. -1C. -2D. 13.数轴上表示-3 的点与表示2 的点之间的距离是()。

A. 1B. 5C. -5D. -14.一个数的绝对值是5,则这个数是()。

A. 5B. -5C. 5 或-5D. 05.下列说法正确的是()。

A.正数和负数统称为有理数B.0 是最小的整数C.正整数、负整数和0 统称为整数D.有理数包括整数、分数和06.若a、b 互为相反数,则下列式子一定成立的是()。

A. a + b = 0B. a - b = 0C. ab = 0D. a÷b = 07.若|a| = 3,|b| = 2,且a>b,则a + b 的值为()。

A. 5 或1B. -5 或-1C. 5 或-1D. -5 或18.计算:(-2)+(-2)×(-2)的结果是()。

A. -6B. -2C. 2D. 69.下列各数中,是负数的是()。

A. |-2|B. (-2)²C. -(-2)D. -2²10.若|x| = 3,|y| = 4,且xy<0,则x + y 的值为()。

A. 1 或-1B. 7 或-7C. 1 或7D. -1 或-7二、填空题(每题 3 分,共18 分)11.-5 的相反数是______。

12.比较大小:-3______-4(填“>”“<”或“=”)。

13.绝对值小于4 的所有整数的和是______。

14.若a<0,b<0,则a + b______0(填“>”“<”或“=”)。

15.数轴上与表示-1 的点距离为3 的点所表示的数是______。

16.若规定“*”的运算法则为:a*b = ab - 1,则(-2)*3 的值为______。

三、解答题(共52 分)17.(8 分)把下列各数分别填在相应的集合里。

人教版七年级数学人教版第一章有理数测试题(附答案)

人教版七年级数学人教版第一章有理数测试题(附答案)

精心整理《第1章 有理数》一、选择题1.﹣2015的相反数是( )A2A 3A 4(A C 5A .因为相反数是成对出现的,所以0没有相反数B .数轴上原点两旁的两点表示的数是互为相反数C .符号不同的两个数是互为相反数D .正数的相反数是负数,负数的相反数是正数6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与7.下列说法正确的是()A的相反数与C.是8A)9A10.﹣的相反数是(A..﹣11A.B.5 C.﹣D.﹣512.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.1516C17(((5 1819.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(20((((21A223位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.《第1章有理数》参考答案与试题解析一、选择题1.﹣2015的相反数是()A2A【分析】根据相反数的定义分别判定得出答案即可.【解答】解:A、∵3+(﹣3)=0,∴3与﹣3为互为相反数,故选项正确;B、∵﹣3+≠0,∴不是互为相反数,故选项错误;C、∵﹣3﹣≠0,∴不是互为相反数,故选项错误;D、∵3+≠0,∴不是互为相反数,故选项错误;故选:A.【点评】此题主要考查了相反数的定义,利用定义分别判断是解题关键.3A的4(A.表示数m的点距离原点较远B.表示数﹣m的点距离原点较远C.一样远D.无法比较【考点】相反数;数轴.【分析】根据数轴表示数的方法与相反数的定义得到m与﹣m的点到原点的距离相等.【解答】解:互为相反数的m与﹣m的点到原点的距离相等.故选C.5ABCDBB、数轴上原点两旁且到原点的距离的点所表示的数是互为相反数,所以B 选项错误;C、符号不同且绝对值相等的两个数是互为相反数,所以C选项错误;D、正数的相反数是负数,负数的相反数是正数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C与)与BC﹣,与互为相反数,故本选项正确;D【点评】本题考查了相反数的知识,属于基础题,解答本题的关键是掌握相反数的定义.7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数【考点】相反数.【专题】存在型.【分析】根据相反数的定义对各选项进行逐一分析即可.,B与,∴﹣,故本选项错误;CD与是只有符号不同的两个数,∴﹣的相反数是,故本选项错8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5) C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)【考点】有理数大小比较.【分析】根据同号得正,异号得负可知,A,B,C中都互为相反数,相等的一组是D.【解答】解:根据同号得正,异号得负可排除A,B,C.故选D.9A10A.5 B.C.﹣D.﹣5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.11A12A.点P B.点Q C.点M D.点N【考点】数轴;相反数.【分析】根据数轴得出N、M、Q、P表示的数,求出﹣2的相反数,根据以上结论即可得出答案.【解答】解:从数轴可以看出N表示的数是﹣2,M表示的数是﹣0.5,Q表示的数是0.5,P表示的数是2,∵﹣2的相反数是2,∴数轴上表示数﹣2的相反数是点P,13A.﹣,【点评】主要考查相反数及整数的概念.二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是2,﹣2 .【考点】相反数;数轴.【分析】先根据互为相反数的定义,可设两个数是x和﹣x(x>0),再根据数轴上两点间的距离等于较大的数减去较小的数列方程计算.【解答】解:设两个数是x和﹣x(x>0),15【解答】解:若a=13,则﹣a=﹣13;若﹣x=3,则x=﹣3;故答案为:﹣13,﹣3.【点评】本题考查了相反数的知识,解答本题的关键是掌握相反数的定义.16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为﹣5 .【考点】数轴.关;x=【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?,﹣(到(b然;(10,所以b表示的数是﹣10;(3)因为﹣b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为5,所以a表示的数是5.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.4554,﹣【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.19.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.的相反数为:((((20(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].【考点】相反数.【分析】去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.【解答】解:(1)﹣(+4)=﹣4;(((21A【解答】解:∵数轴上A点表示7,且点C到点A的距离为2,∴C点有两种可能5或9.又∵B,C两点所表示的数互为相反数,∴B点也有两种可能﹣5或﹣9.故B:﹣5,C:5或B:﹣9,C:9.【点评】本题综合考查了数轴和相反数:本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距223非常直观,且不容易遗漏,体现了数形结合的优点.23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.【考点】规律型:数字的变化类.【专题】计算题;规律型;实数.【分析】根据题意归纳总结得到一般性规律,确定出所求即可.【解答】解:第一行,数值为1个数为1个,总个数为1;第二行,数值为+2,﹣2个数为2,总数为3;。

七年级数学上册《第一章-有理数乘除混合运算》练习题附答案-人教版

七年级数学上册《第一章-有理数乘除混合运算》练习题附答案-人教版

七年级数学上册《第一章有理数乘除混合运算》练习题附答案-人教版一、选择题1.与﹣2的乘积为1的数是( )A.2B.﹣2C.12D.﹣122.下列说法错误的是( )A.一个数同0相乘,仍得0B.一个数同1相乘,仍得原数C.一个数同﹣1相乘得原数的相反数D.互为相反数的两个数的积是13.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大4.两个有理数的和为正数,积为负数,则这两个有理数是( )A.两个正数B.两个负数C.一正一负且正数的绝对值较大D.一正一负且负数的绝对值较大5.﹣4÷49×(﹣94)的值为( )A.4B.﹣4C.814D.﹣8146.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是( )[A.a+b<0B.a>|﹣2|C.b>πD.7.计算﹣6÷12×2﹣18÷(﹣6)的结果是( )A.﹣ 21B.﹣ 3C.4D.78.计算﹣4÷49×94的结果是( )A.4B.﹣ 4C.2014 D.﹣ 20149.如图,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是( )A.ab>0B.a+b<0C.(b﹣a)(a+1)>0D.(b﹣1)(a﹣1)>010.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了。

右面两个图框是用法国“小九九”计算78和89的两个示例。

若用法国“小九九”计算79,左右手依次伸出手指的个数是( )A.2,3B.3,3C.2,4D.3,411.给出下列说法:①1乘任何有理数都等于这个数本身;②0与任何有理数的积均为0;③﹣1乘任何有理数都等于这个有理数的相反数;④一个数的倒数与其本身相等的数是±1.其中正确的有( )A.1个B.2个C.3个D.4个12.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如下表:十六进制0 1 2 3 4 5 6 7十进制0 1 2 3 4 5 6 7十六进制8 9 A B C D E F十进制8 9 10 11 12 13 14 15例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A ×B=( )A.6EB.72C.5FD.B0二、填空题13.计算:﹣2×3= .14.绝对值不大于4.5的所有整数的和为__________,积为__________;15.﹣54的绝对值是,倒数是.16.一个数与﹣34的积为12,则这个数是____________17.某学生将某数乘以﹣1.25时漏了一个负号,所得结果比正确结果小0.25则正确结果应是 .18.甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.三、解答题19.计算:(114﹣56+12)×(﹣12);20.计算:15÷(﹣32+56);21.计算:|﹣2|÷(﹣12)+(﹣5)×(﹣2);22.计算:﹣112÷34×(﹣0.2)×134÷1.4×(﹣35).23.一辆出租车在一条东西走向的大街上行驶,这辆出租车连续送客20次,其中8次向东行驶,12次向西行驶,向东行驶每次的行程为10 km,向西行驶每次的行程为7 km.(1)该出租车连续20次送客后,停在何处?(2)该出租车一共行驶了多少路程?24.如图,小明有4张写着不同数的卡片,请你按照题目要求抽出卡片,完成下列问题.(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?25.用加、减、乘、除号和括号将3,6,﹣8,5这四个数(每个数都要用且只用一次)进行加减乘除四则运算使结果为24,请你写出两个算式.26.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如14524÷=,14342÷=所以14是“差一数”; 19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.27.请观察下列算式,找出规律并填空211⨯=1﹣21, 321⨯=21﹣31, 431⨯=31﹣41,541⨯=41﹣51则: (1)第10个算式是 = . (2)第n 个算式为 = . (3)根据以上规律解答下题:211⨯+321⨯+431⨯+… +202420231⨯的值.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】C6.【答案】D7.【答案】A8.【答案】C9.【答案】C.10.【答案】C11.【答案】D12.【答案】A13.【答案】﹣6.14.【答案】0,015.【答案】54﹣4516.【答案】﹣2 317.【答案】1 818.【答案】4.19.【答案】原式=114×(﹣12)+(﹣56)×(﹣12)+12×(﹣12)=﹣15+10+(﹣6)=﹣1120.【答案】原式=﹣22.5;21.【答案】原式=6;22【答案】原式=﹣3 1023.【答案】解:(1)该出租车停在出发地西面4km处;(2)该出租车一共行驶了164 km.24.【答案】解:(1)抽﹣3和﹣5,最大值为:﹣3×(﹣5)=15; (2)抽1和﹣5,最小值为:(﹣5)÷1=﹣5;25.【答案】解:答案不唯一,如(﹣8)÷(3﹣5)×6=24,6÷(3﹣5)×(﹣8)=24等. 26.【答案】解:(1)∵49594÷= 493161÷=∴49不是“差一数” ∵745144÷= 743242÷=∴74是“差一数”;(2)解法一:∵“差一数”这个数除以5余数为4 ∴“差一数”这个数的个位数字为4或9∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399 ∵“差一数”这个数除以3余数为2∴“差一数”这个数的各位数字之和被3除余2∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 解法二:∵“差一数”这个数除以5余数为4,且除以3余数为2 ∴这个数加1能被15整除∵大于300且小于400的能被15整除的数为315、330、345、360、375、390 ∴大于300且小于400的所有“差一数”为314、329、344、359、374、389. 27.【答案】解:(1)第10个算式是11110111101-=⨯; (2)第n 个算式为()11111+-=+n n n n ; (3)原式=2024120231202312022141313121211-+-++-+-+- =202411-=20242023.。

新人教版数学七年级上册第一章有理数1.5.3《近似数》课时练习.doc

新人教版数学七年级上册第一章有理数1.5.3《近似数》课时练习.doc

新人教版数学七年级上册《第一章有理数》【1.5.3 近似数】课时练习一、选择题(共15小题)1.下列各数中,是准确数的是()A、小明身高大约165cmB、天安门广场约44万平方米C、天空中有8只飞鸟D、国庆长假到北京旅游的有60万人答案:C知识点:近似数与有效数字解析:解答: A、小明身高大约165cm, 是近似数;B、天安门广场约44万平方米, 是近似数;C、天空中有8只飞鸟, 是准确数;D、国庆长假到北京旅游的有60万人, 是近似数.分析:本题主要考查学生对近似数和准确数的定义的掌握.生活中的测量数据往往是近似数,如测量的身高等.因此D选项是易错点.准确数往往是能用自然数来表示的物体的个数.2.下列各数中,是近似数的是()A、七(1)班共有65名同学B、足球比赛每方共有11名球员C、光速是300000000米/秒D、小王比小华多2元答案:C知识点:近似数与有效数字解析:解答: A、七(1)班共有65名同学, 是准确数;B、足球比赛每方共有11名球员, 是准确数;C、光速是300000000米/秒, 是近似数;D、小王比小华多2元, 是准确数.分析:本题主要考查学生对近似数和准确数的定义的掌握.准确数是真实准确的数,而近似数与准确数相近(略多或略少),通过估计得到的,因此,此题中的C属于估计得到的数,是近似数.3.用四舍五入法,分别按要求取0.06018的近似值,下列四个结果中错误的是()A、0.1(精确到0.1)B、0.06(精确到0.001)C、0.06(精确到0.01)D、0.0602(精确到0.0001)答案:B知识点:近似数与有效数字解析:解答: A、0.1(精确到0.1), 正确;B、0.06(精确到0.001), 错误, 正确答案应该是0.060;C、0.06(精确到0.01), 正确;D、0.0602(精确到0.0001), 正确.分析:一个近似数的有效数字是从左边第一个不是0的数字起,(到精确的数位止),后面的所有数字都是这个数的有效数字;精确到哪一位(应看末位在哪一位),再对它后边的一位进行四舍五入.4.下列各题中的数是准确数的是( )A.初一年级有400名同学B.月球与地球的距离约为38万千米C.毛毛身高大约158㎝D.今天气温估计30℃答案:A知识点:近似数与准确数解析:解答: A.初一年级有400名同学, 是准确数;B.月球与地球的距离约为38万千米,是近似数;C.毛毛身高大约158㎝, 是近似数;D.今天气温估计30℃, 是近似数.分析:本题主要考查学生对近似数和准确数的定义的掌握.准确数是真实准确的数,而近似数与准确数相近(略多或略少),通过估计得到的,一般会有大约,估计等关键字,因此,此题中的A 属于准确数.5.由四舍五入法得到近似数0.09330,它的有效数字的个数是( )A.3个B.4个C.5个D.6个答案:B知识点:近似数与有效数字解析:解答: 0.09330的有效数字有9,3,3,0;一共有4个.所以选择B分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面的所有数字都是这个数的有效数字.6.把0.0975取近似数,保留两个有效数字的近似值是( )A.0.10 B.0.097 C.0.098 D.0.98答案:C知识点:近似数与有效数字解析:解答: 0.0975≈0.098(保留两个有效数字).所以选择C分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面的所有数字都是这个数的有效数字,再对保留的有效数字后一位进行四舍五入.本题主要考查如何取近似值的问题.7.某种鲸的体重约为1.36×105千克.关于这个近似数,下列说法正确的是().A.精确到百分位,有3个有效数字B.精确到个位,有6个有效数字C.精确到千位,有6个有效数字D.精确到千位,有3个有效数字答案:D知识点:近似数,有效数字,科学记数法解析:解答: 1.36×105最后一位的6表示的是6千,一共有1,3,6三个有效数字.所以选择D分析:此题考查了用科学记数法表示的数的有效数字的确定方法,解此题时要注意:1.10的n次方乘号前面的最后一位数表示数位.2.用科学记数法表示的数的有效数字只与前面的a有关系,与10和n次方无关.8.对于20.55与2.055这两个近似数,下列说法中,正确的是()A.它们的有效数字与精确位数都不相同B.它们的有效数字与精确位数都相同C.它们的精确位数不相同,有效数字相同D.它们的有效数字不相同,精确位数相同答案:C知识点:近似数与有效数字解析:解答: 20.55有四个有效数字,精确到百分位.2.055有四个有效数字,精确到千分位.所以选择C分析:分别把两个数的有效数字与精确位求出来就可以了,本题主要考察对有效数字和精确位的掌握.9.下列各题中的各数是近似数的是()A.初一新生有680名B.圆周率πC.光速约是3.0×108米/秒D.排球比赛每方各有6名队员答案:C知识点:近似数与有效数字解析:解答: A.初一新生有680,, 是准确数;B.圆周率π, 是准确数;C.光速约是3.0×108米/秒, 是近似数;D.排球比赛每方各有6名队员, 是准确数.分析:本题主要考查学生对近似数和准确数的定义的掌握.准确数是真实准确的数,而近似数与准确数相近(略多或略少),通过估计得到的,因此,此题中的C属于估计得到的数,是近似数.10.-31.999精确到百分位的近似数的有效数字的个数是()A.2B.3C.4D.5答案:C知识点:近似数与有效数字解析:解答: -31.999≈-32.00,它有3,2,0,0,四个有效数字.所以选择C.分析:本题主要考查学生对近似数求法和有效数字的意义的掌握.精确位的近似数的求法要看精确位的后一位再四舍五入,关键要看清楚精确到的位数.11.如果由四舍五入得到的近似数为45,那么在下列各题中不可能是( )A .44.49B .44.51C .44.99D .45.01答案:A知识点:近似数解析:解答: 由于B.44.51, C. 44.99 , D.45.01 四舍五入的近似值都可能是45.所以选择A.分析:本题主要考查学生对近似数的掌握程度.找到所给数的十分位,不能四舍五入到5的数就是本题的答案.12.对于6.3×103与6300这两个近似数,下列说法中,正确的是( )A .它们的有效数字与精确位数都不相同B .它们的有效数字与精确位数都相同C .它们的精确位数不相同,有效数字相同D .它们的有效数字不相同,精确位数相同答案:A知识点:近似数,有效数字,科学记数法解析:解答: 6.3×103:精确到百位,有2个有效数字;6300:精确到个位,有四个有效数字.所以选择A分析:分别把两个数的有效数字与精确位求出来就可以了,本题主要考察对有效数字和精确位的掌握,科学记数法求精确位和有效数字时要注意:1.10的n 次方乘号前面的最后一位数表示数位.2.用科学记数法表示的数的有效数字只与前面的a 有关系,与10和n 次方无关.13.毕节地区水能资源丰富,理论蕴藏量达221.21万千瓦,己开发156万千瓦,把已开发水能资源用四舍五入法保留两个有效数字并且用科学记数法表示应记为( )千瓦A .51016⨯B .6106.1⨯C .610160⨯D .71016.0⨯答案:B知识点:近似数,有效数字,科学记数法解析:解答: 156万=1.56×106≈1.6×106.所以选择B分析:此题主要考查了科学记数法的表示方法以及用科学记数法表示的数的有效数字的确定方法,科学记数法的表示方法和有效数字的确定时要注意:1.科学记数法表示形式为:a×10n的形式,其中1≤a<10,n为整数,确定n的值是易错点,因为156万有7位,所以n=7-1=6.2.10的n次方乘号前面的最后一位数表示数位.3.用科学记数法表示的数的有效数字只与前面的a有关系,与10和n次方无关.14.下列说法中,正确的是()A.近似数3.76与3.760表示的意义一样B.近似数13.2亿精确到亿位C.3.0×103精确到百位,有4个有效数字D.近似数30.000有5个有效数字答案:D知识点:近似数,有效数字,科学记数法解析:解答: A.近似数3.76精确度是0.01,有效数学是3个,近似数3.760精确度为0.001,有效数字有4个;所以意义不一样,错误B.近似数13.2亿不是精确到亿位,而是精确到千万位,所以错误;C.3.0×103不是四个有效数字,而是2个,所以错误;D.近似数30.000有5个有效数字,正确.所以选择D分析:此题主要考查了近似数的精确度和有效数字的知识,有一定的综合性,但不是很难,熟练掌握这些知识是解题的关键.15.8708900精确到万位是()A.870万B.8.70×106C.871×104 D.8.71×106答案:D知识点:近似数,科学记数法解析:解答:8708900精确到万位是8.71×106.所以选择D分析:此题主要考查了用科学记数法表示的数的精确度的求法.若要求一个数近似到个位以前的数里,首先要对这个数用科学记数法表示.二、填空题(共5小题)1.下列由四舍五入法得到近似数,各精确到哪一位:⑴0.0233 ;⑵3.10 ;⑶4.50万;⑷3.04×104;答案:⑴万分位;⑵百分位;⑶百位;⑷百位。

人教版七年级数学上册《第一章有理数》练习题-附有答案

人教版七年级数学上册《第一章有理数》练习题-附有答案

人教版七年级数学上册《第一章有理数》练习题-附有答案考点1【正负数和零】1.一种巧克力的质量标识为“23±0.25千克”则下列哪种巧克力的质量是合格的.()A.23.30千克B.22.70千克C.23.55千克D.22.80千克【答案】D解:∵23+0.25=23.2523-0.25=22.75∴巧克力的重量在23.25与22.75kg之间.∴符合条件的只有D.2.若足球质量与标准质量相比超出部分记作正数不足部分记作负数则在下面4个足球中质量最接近标准的是()A.B.C.D.【答案】A-<+<+<-解:0.70.8 2.1 3.5∴质量最接近标准的是A选项的足球3.我市某天最高气温是12℃最低气温是零下3℃那么当天的日温差是_________ ℃【答案】15.12−(−3)=12+3=15(℃)4.若某次数学考试标准成绩定为85分规定高于标准记为正两位学生的成绩分别记作:+9分和﹣3分则第一位学生的实际得分为______分.5.教师节当天出租车司机小王在东西向的街道上免费接送教师规定向东为正向西为负当天出租车的行程如下(单位:千米):+5 ﹣4 ﹣8 +10 +3 ﹣6 +7 ﹣11﹣﹣1)将最后一名老师送到目的地时小王距出发地多少千米?方位如何?﹣2)若汽车耗油量为0.2升/千米则当天耗油多少升?若汽油价格为5.70元/升则小王共花费了多少元钱?解℃℃1℃+5℃4℃8+10+3℃6+7℃11=℃4℃则距出发地西边4千米;℃2)汽车的总路程是:5+4+8+10+3+6+7+11=54千米则耗油是54×0.2=10.8升花费10.8×5.70=61.56元答:当天耗油10.8升小王共花费了61.56元.考点2【有理数分类】1.在数22715π0.40.30.1010010001... 3.1415中有理数有()A.3个B.4个C.5个D.6个【答案】C数22715π0.40.30.1010010001... 3.1415中有理数有227150.40.3 3.1415共计5个2.下列说法正确的有( )(1)整数就是正整数和负整数;(2)零是整数但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数它不是整数就是分数.A.1个B.2个C.3个D.4个【答案】B℃分数包括正分数、负分数正确;℃正数、负数和0 统称为有理数故错误;℃一个有理数它不是整数就是分数正确3.在3.142π15-00.12个数中是有理数的几个()A.2B.3C.4D.5【答案】C解:有理数为3.1415-00.12共4个4.若a是最小的自然数b是最大的负整数c是绝对值最小的有理数则a-b-c的值为()A.-1B.0C.2D.1【答案】D解:由题意得:a=0b=-1c=0∴a-b-c=0-(﹣1)-0=1.5.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【答案】DA.非负有理数就是正有理数和零故A错误;B.零表示没有是自然数故B错误;C.整正数、零、负整数统称为整数故C错误;D.整数和分数统称有理数故D正确;考点3【数轴】1.在数轴上表示a﹣b两数的点如图所示则下列判断正确的是()A.a+b﹣0B.a+b﹣0C.a﹣|b|D.|a|﹣|b|【答案】B解℃℃b℃0℃a而且a℃|b|℃a+b℃0∴选项A不正确选项B正确;℃a℃|b|∴选项C不正确;℃|a|℃|b|∴选项D不正确.2.数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画出一条长2000厘米的线段AB盖住的整点的个数共有()个.A.1998或1999B.1999或2000C.2000或2001D.2001或2002【答案】C解:依题意得:①当线段AB起点在整点时覆盖2001个数;②当线段AB起点不在整点即在两个整点之间时覆盖2000个数.3.已知点A和点B在同一数轴上点A表示数﹣2又已知点B和点A相距5个单位长度则点B表示的数是()A.3B.﹣7C.3或﹣7D.3或7【答案】C分为两种情况:当B点在A点的左边时B点所表示的数是-2-5=−7;当B点在A点的右边时B点所表示的数是-2+5=3;4.a b ,是有理数 它们在数轴上的对应点的位置如图所示 把a a b b --,,,按照从小到大的顺序排列( )A .b a a b -<<-<B .a b a b -<-<<C .b a a b -<-<<D .b b a a -<<-<【答案】A观察数轴可知:b >0>a 且b 的绝对值大于a 的绝对值.在b 和-a 两个正数中 -a <b ;在a 和-b 两个负数中 绝对值大的反而小 则-b <a . 因此 -b <a <-a <b .5.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm) 刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x 则x 的值为( )A .4.2B .4.3C .4.4D .4.5【答案】C利用减法的意义 x -(-3.6)=8 x =4.4.所以选C.6.如图 数轴上四点O A B C 其中O 为原点 且2AC = OA OB = 若点C 表示的数为x 则点B 表示的数为( )A .()2x -+B .()2x --C .2x +D .2x -【答案】B解:∵AC=2 点C 表示的数为x∵OA OB =∴点B 表示的数为:-(x -2)7.点A 在数轴上距原点5个单位长度 将A 点先向左移动2个单位长度 再向右移动6个单位长度 此时A 点所表示的数是( ) A .-1 B .9C .-1或9D .1或9【答案】C解:∵点A 在数轴上距原点5个单位长度 ∴点A 表示的数是−5或5∵A 点先向左移动2个单位长度 再向右移动6个单位长度 ∴−5−2+6=−1或5−2+6=9 ∴此时点A 所表示的数是−1或9.考点4【相反数】1.若a 与1互为相反数 则a +3的值为( ) A .2 B .0C .﹣1D .1【答案】A∵a 与1互为相反数 ∴a =﹣1则a +3的值为:﹣1+3=2.2.下列各对数:()3+-与3- ()3++与+3 ()3--与()3+- ()3-+与()3+-()3-+与()3++ +3与3-中 互为相反数的有( )A .3对B .4对C .5对D .6对解:根据相反数的定义得-(-3)与+(-3)-(+3)与+(+3)+3与-3互为相反数所以有3对.3.如果a+b=0那么a b两个数一定()A.都等于0B.互为相反数C.一正一负D.a>b【答案】B由a+b=0则有=-a b所以a b两个数一定是互为相反数-的相反数是-2那么a是()4.7aA.5B.-3C.2D.1【答案】A解:∵7-a的相反数是-2∴7-a=2解得a=5.5.若a表示有理数则-a是()A.正数B.负数C.a的相反数D.a的倒数【答案】Ca表示有理数则a-表示a的相反数考点5【绝对值】1.下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有()A.0个B.1个C.2个D.3个【答案】B解:①∵互为相反数的两个数相加和为0移项后两边加上绝对值是相等的∴互为相反数的两个数绝对值相等故①正确;④∵|2|=|-2| 但2≠-2 ∴④错误2.如果一个有理数的绝对值是正数 那么这个数必定是( ) A .是正数 B .不是0C .是负数D .以上都不对【答案】B由于正数和负数的绝对值都是正数 而0的绝对值是0;所以若一个有理数的绝对值是正数 那么这个数必不为0.3.已知a>0 b<0 c<0且c >a >b 则下列结论错误的是( ) A .a+c<0 B .b -c>0C .c<-b<-aD .-b<a<-c【答案】C解:∵a>0 b<0 c<0且c >a >b在数轴上表示如下:则a+c<0 b -c>0 c<-a<-b -b<a<-c 故C 错误4.若a ab b=- 则下列结论正确的是( ) A .0a < 0b < B .0a > 0b >C .0ab >D .0ab ≤【答案】D解:a ab b=- ∴0ab≤ 即0ab ≤;A.a>0B.a≥0C.a<0D.a≤0【答案】D=-解:∵||a a∴a≤0.-表示的数是( )6.若x为有理数则x xA.正数B.非正数C.负数D.非负数【答案】D【解析】℃1)若x≥0时丨x丨-x=x-x=0℃℃2)若x℃0时丨x丨-x=-x-x=-2x℃0℃由(1℃℃2)可得丨x丨-x表示的数是非负数.考点6【有理数的加减法】1.已知|a|=7|b|=2且a<b求a+b的值.【答案】-5或-9解:∵|a|=7∴a=±7又∵|b|=2∴b=±2又∵a<b∴a=-7b=2或a=-7b=-2当a=-7b=2时a+b=-7+2=-5当a=-7b=-2时a+b=-7+(-2)=-9综上所述a+b的值为-5或-9.2.已知|a| = 3 |b| = 2 且ab < 0 求:a + b的值.解:℃|a|=3 |b|=2 ℃a=±3 b=±2; ℃ab <0 ℃ab 异号.℃当a=3时 b=-2 则a + b=3+(-2)=1; 当a=-3时 b=2 则a + b=-3+2=-1.3.已知5a = 2a b -=且a b a b -=- 求+a b 的值 【答案】8或-12 解:∵|a|=5 ∴a=±5∵2a b -=且a b a b -=- ∴0a b -> 2a b -= ∴2b a =- ∴当a=5 则b= 3 当a=-5 则b= -7 ∴a+b=8或-12;4.已知│a │=4且a<0 b 是绝对值最小的数 c 是最大的负整数 则a+b -c=____. 【答案】﹣3解:因为a =4且a <0 b 是绝对值最小的数 c 是最大的负整数所以a =﹣4 b =0 c =﹣1所以a +b -c =﹣4+0-(﹣1)=﹣4+1=﹣3.5.绝对值大于3且小于5.5的所有整数的和为______________ ;解:∵绝对值大于3而小于5.5的整数为:-4-545∴其和为:-4+(-5)+4+5=0故绝对值大于3且小于5.5的所有整数的和为0.考点7【有理数的乘除法】1.先阅读下面的材料再回答后面的问题:计算:10÷(12-13+16).解法一:原式=10÷12-10÷13+10÷16=10×2-10×3+10×6=50;解法二:原式=10÷(36-26+16)=10÷26=10×3=30;解法三:原式的倒数为(12-13+16)÷10=(12-13+16)×110=12×110-13×110+16×110=130故原式=30.(1)上面得到的结果不同肯定有错误的解法你认为解法是错误的。

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)
创新应用 ★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当 的数,使得它们折成正方体后相对面上的两个数互为相反数.
能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数

七年级数学上册《第一章 有理数的乘法》同步练习题含答案(冀教版)

七年级数学上册《第一章 有理数的乘法》同步练习题含答案(冀教版)

七年级数学上册《第一章 有理数的乘法》同步练习题含答案(冀教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算:(﹣12)×2=( ) A.﹣1 B.1 C.4 D.﹣42.下列各式中,积为负数的是( )A.(-5)×(-2)×(-3)×(-7)B.(-5)×(-2)×|-3|C.(-5)×2×0×(-7)D.(-5)×2×(-3)×(-7)3.算式3.14×(-2.5)×4=3.14×(-2.5×4)运用了( )A.乘法交换律B.乘法结合律C.乘法交换律和结合律D.乘法对加法的分配律4.两个互为相反数的有理数相乘,积为( )A.正数B.负数C.零D.负数或零5.下列计算(-55)×99+(-44)×99-99正确的是( )A.原式=99×(-55-44)=-9801B.原式=99×(-55-44+1)=-9702C.原式=99×(-55-44-1)=-9900D.原式=99×(-55-44-99)=-196026.若a +b <0,且ab <0,则必定有( )A.a >0,b <0B.a <0,b <0C.a ,b 异号且正数的绝对值较大D.a ,b 异号且负数的绝对值较大7.在计算(112-78+12)×(-48)时,可以避免通分的运算律是( ) A.加法交换律 B.乘法交换律 C.乘法分配律 D.加法结合律8.如果一对有理数a ,b 使等式a ﹣b =a •b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b),根据上述定义,下列四对有理数中不是“共生有理数对”的是( )A.(3,12)B.(2,13)C.(5,23)D.(﹣2,﹣13) 二、填空题9.计算:7×(﹣2)的相反数是10.如果□×(﹣2)=4,则“□”内应填的实数是 .11.计算:0×(-2)-7= .12.若xy >0,z <0,那么xyz________0.13.若a ,b 互为相反数,c 是最小的非负数,d 是最小的正整数,x ,y 互为倒数则代数式(a+b)•d+d ﹣c ﹣xy 的值为_______.14.用字母表示有理数乘法的符号法则.(1)若a>0,b>0,则ab____0,若a>0,b<0,则ab____0;(2)若a<0,b>0,则ab____0,若a<0,b<0,则ab____0;(3)若a>0,b=0,则ab____0.三、解答题15.计算:3×(-2)-116.计算:(-4)×5×(-0.25);17.计算:(23-12+56)×(-24);18.计算:(﹣47)×23×(﹣134)×12.19.一本书共420页,小明第一天看了13,第二天看了14,第三天看了27,问还有多少页没有看?20.对于有理数a 、b ,定义运算:“⊗”,a ⊗b=ab ﹣a ﹣b ﹣2.(1)计算:(﹣2)⊗3的值;(2)比较4⊗(﹣2)与(﹣2)⊗4的大小.21.把-15表示成两个整数的积,有多少种可能性?把它们全部写出来.22.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.参考答案1.A2.D3.B4.D5.C6.D7.C8.D9.答案为:14.10.答案为:﹣2.11.答案为:-712.答案为:<.13.答案为:0.14.答案为:(1)> < (2)< > (3)=15.解:原式=-7;16.解:原式=517.解:原式=-24.18.解:原式=47×23×74×12=(47×74)×(23×12)=1×13=13. 19.解:420×(1-13-14-27)=55页. 20.解:(1)(﹣2)⊗3=(﹣2)×3﹣(﹣2)﹣3﹣2=﹣6+2﹣3﹣2=﹣9;(2)4⊗(﹣2)=4×(﹣2)﹣4﹣(﹣2)﹣2=﹣8﹣4+2﹣2=﹣12 (﹣2)⊗4=(﹣2)×4﹣(﹣2)﹣4﹣2=﹣8+2﹣4﹣2=﹣12 所以,4⊗(﹣2)=(﹣2)⊗4.21.解:4种:1×(-15) (-1)×15 3×(-5) (-3)×522.解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1×12×6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小∴1□2□6的结果是负数即可∴1□2□6的最小值是1﹣2×6=﹣11∴1□2□6﹣9的最小值是﹣11﹣9=﹣20 ∴这个最小数是﹣20.。

七年级数学(上册)第一章各课时练习题-

七年级数学(上册)第一章各课时练习题-

第一章有理数1.1 正数和负数班级: 姓名:1、举出几对具有相反意义的量,并分别用正、负数表示.2、在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?表示:。

3 、 2001年美国的商品进出口总额比上年减少6.4%可记为,中国增长7.5%可记为.4、某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10(41112(1)有理数⎧⎧⎪⎨⎩⎪⎨⎧⎪⎨⎪⎩⎩正整数整数零正分数分数负分数(2)有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数1. 把下列各数填入相应的集合内:12,3.1416,0,2004,-85,-0.23456,10%,10.l,0.67,-89正数集合 负数集合 整数集合 分数集合2.下列正确的是( )①0是最小的正整数 ②0是最小的有理数③0不是负数 ④0既是非正数,也是非负数A.1个B.2个C.3个D.4个3.如果用字母表示一个数,那a 可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法. 。

4.观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是 .5.把下列各数填入相应的大括号内: 11( (1.答:① ② ③④ ⑤⑥ ⑦3.试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 4. 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有( )A.1个B.2个C.3个D.4个5. (1)与原点的距离为2.5个单位的点有 个,它们分别表示有理数 •和 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是.]6. 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.7. 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是()A.1998或1999 B.1999或2000C.2000或2001 D.2001或20028.在数轴上,离原点距离等于3的数是________.9.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M1、M2、M3、M4、M5表示,如图:(1)点M4和M2所表示的有理数是什么?1.2.579(1(2)正数的相反数是,负数的相反数是,的相反数是它本身.2. 下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个3. 化简下列各符号:(1)-[-(-2)] (2)+{-[-(+5)]} (3)-{-{-…-(-6)}…}(共n个负号)【提示】化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.4. 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A•的距离为2,点B和点C各对应什么数?5.如图所示,数轴上的点A所表示的是实数a,则点A到原点的距离是___________.6.判断题(1)-3是相反数()(2)-7和7是相反数()(3)-a的相反数是a,它们互为相反数()(4)符号不同的两个数互为相反数()7.分别写出下列各数的相反数,并把它们在数轴上表示出来.1,-2,0,4.5,-2.5,38.若一个数的相反数不是正数,则这个数一定是()A.正数 B.正数或0 C.负数 D.负数或09.一个数比它的相反数小,这个数是()A.正数 B.负数 C.非负数 D.非正数2(2)-4的绝对值是,绝对值等于4的数是.│3.14- |= .(3)若│x│=2,则x= ,若│-x│=2,则x= .若│-x│=3,则x=.(4)绝对值小于3的所有整数有.4.选择题(1)则│a│≥0,那么()A.a>0 B.a<0 C.a≠0 D.a为任意数(2)若│a│=│b│,则a、b的关系是()A.a=b B.a=-b C.a+b=0或a-b=0 D.a=0且b=0(3)下列说法不正确的是()A.如果a的绝对值比它本身大,则a一定是负数B.如果两个数相等,那么它们的绝对值也必不相等C.两个负有理数,绝对值大的离原点远D.两个负有理数,大的离原点近(4)若│x│+x=0,则x一定是()A.负数 B.0 C.非正数 D.非负数5.若实数a、b满足│3a-1│+│b-2│=0,求a+b的值.6.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15 -10 +30 -20 -40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?1.2.4 绝对值(第二课时)①⑤- 89-87⑥-(-14)0.025 ⑦- -3.14 ⑧-2223-2022032.解答题(1)比较-78和-67的大小,并写出比较过程.1.3.1 有理数的加法(第一课时)1. 计算(1)(-4)+(-6)= (2)(+15)+(-17)= (3)(-39)+(-21)=(4)(-6)+│-10│+(-4)= (5)(-37)+22= (6)-3+(3)=2. 某足球队在一场比赛中上半场负5球,下半场胜4球,•那么全场比赛该队净胜球.3. 绝对值小于2005的所有整数和为.4. 一个数是11,另一个数比11的相反数大2,那么这两个数的和为( )A .24B .-24C .2D .-25. 下面结论正确的有 ( )①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A .0个B .1个C .2个D .3个6. 在1,-1,-2这三个数中,任意两数之和的最大值是( )A.1B.0C.-1D.3(2(210.(1)(+9)+(-7)+(+10)+(-3)+(-9)(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)(3)(+1)+(-2)+(+3)+(-4)+…+(+2003)+(-2004)2. 某出租司机某天下午营运全是在东西走向的人民大道进行的,•如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为0.3公升/千米,这天下午汽车共耗油多少公升?3.运用加法的运算律计算(+631)+(-18)+(+432)+(-6.8)+18+(-3.2)最适当的是( )A .[(+631)+(432)+18]+[(-18)+(-6.8)+(-3.2)]B .[(+631)+(-6.8)+(432)]+[(-18)+18+(-3.2)] C .[(+631)+(-18)]+[(+432)+(-6.8)]+[18+(-3.2)] D .[(+631)+(+432)]+[(-18)+18]]+[(-3.2)+(-6.8)]4.已知│x │=4,│y │=5,则│x+y │的值为 ( )A .1B .9C .9或1D .±9或±15.有理数中,所有整数的和等于 .6.(-2)+4+(-6)+8+…+(-98)+100= .7.11这两个数的和等于 . -1631-231) 143+((-171) 970元,10(1)+(-1132)(3)(-(7-9)(1)0℃比-10℃高多少度?列算式为 ,转化为加法是 ,•运算结果为 .(2)减法法则为减去一个数,等于 这个数的 ,即把减法转为 .(3)比-18小5的数是 ,比-18小-5的数是 .(4)A 、B 两地海拔高度为100米、-20米,B 地比A 地低 米.4.下列说法正确的是( )A .正数与正数的差是正数B .负数与负数的差是正数C .正数减去负数差为正数D .0减去正数差为正数5.下列说法正确的个数是( )①减去一个数等于加上这个数;②零减去一个数,仍得这个数③两个相反数相减得零;④有理数减法中,被减数不一定比减数或差大⑤减去一个负数,差一定大于被减数;⑥减去一个正数,差不一定小于被减数A .2个B .3个C .4个D .5个6.计算题(1)(-7)-(-4)-(+5); (2)(-9)-[(-10)-(-2)](3)(-441)-(+531)-(-441); (4)-8.2-9.2-1.6-(-5) 1.4.1 有理数的乘法(第一课时)1. 判断题(1)两数相乘,若积为正数,则这两个因数都是正数.( )(2)两数相乘,若积为负数,则这两个数异号. ( )(3)两个数的积为0,则两个数都是0. ( )(4)互为相反的数之积一定是负数. ( )(1(43. (-2(3。

七年级上册数学第一章练习

七年级上册数学第一章练习

第一章 基础训练1.1 正数和负数一、选择题。

1、下列各式+2010,-3.5,21,10.68,-8,+1中,是正数的数有( ) A .2个 B .3个 C .4个 D .5个 2、下列各数中,为负数的是( ) A .0 B .32.5% C .-2 D .21 3、下列说法正确的是( )A .一个数不是正数就是负数B .0是最小的数C .正数都比0大D .负数前面的“-”号可以省略4、下面关于“0”的叙述,正确的有( )①0是正数与负数的分界 ②0比任何负数都大 ③0只表示没有 ④0常用来表示某种量的基准A .1个B .2个C .3个D .4个5、下列判断正确的个数是( )①加正号的数是正数,加负号的数是负数 ②任意一个正数,前面加上“-”量,就是一个负数③0是最小的正数 ④大于零的数是正数 ⑤字母a 即是正数,又是负数A .0B .1C .2D .36、下列意义叙述不正确的是( )A .上升3m 记为3m ,不升不降记为0mB .鱼在水中高度为-2m 的意义是鱼在水下2mC .温度上升-10℃是指下降10℃D .盈利-10元,是指赚了10元7、下列判断正确的是( )①+a 是正数 ②-a 是负数 ③a >0 ④a <0A .①②B .③④C .①②③④D .都不正确8、下列各组量中,具有相反意义的有( )①“身高增加2cm ”和“体重减少1kg ” ②水库水位“上升1.6米”与“下降1.8米” ③“盈利50万元”与“亏损160万元” ④-5与3A .1组B .2组C .3组D .4组9、在一条东西走向的跑道上,小亮先向东走8m ,又向西走10米,此时他的位置可记作( )A .+2mB .-2mC .-10mD .+18m10、向东走3m ,接着又向东走-3m ,结果是( )A .向东走6mB .向西走3mC .向西走6mD .回到原地11、一运动员某次跳水的最高点离跳台2m ,记作+2m ,则水面离跳台10m 可以记作( )A .-10mB .-12mC .+10mD .+12m12、某图纸上注明:一种零件的直径是30(+0.03,-0.02),下列尺寸合格的是( )A .30.05mmB .29.08mC .29.97mD .30.01m二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、一件工作由3人合做a 天正好完工,若增加 b 人(设所
一、填空:
程m (y+4) =y+9的解是 ___________
6、 一批运动服装按原价 85折出售,每套售价为y 元,则这 批运动服装原价为 _________________
7、 一个三位数,它的个位数字是
a,十位数字是0,百位数
6、n 是非零自然数,表示一个数被
是2的代数式,正确的是(
A 、5n
B 、5n —
2 C 、5n+ 2 D 、5n —
3 7、下列式子中,符合代数式的书写格式的是(

&某工厂今年每月平均生产机床 180台,比去年每月平均
产量的3倍多6台,求去年的月平均产量是多少台?设
去年的月平均产量 x 台,列方程为 ----------------------- ,
9、某市为了鼓励居民节约用水,对自来水用户按如下标准
收费:若每月每户用水不超过 12吨,按每吨收费 a 元;
若超过12吨,则超过部分按每吨
2a 元收费。

如果某户
居民五月份缴纳水费 20a 元,则该居民这个月实际用水
吨。

8、每千克x 元的糖果 m 千克和每千克y 元的糖果n 千克混
七年级第一章练习
有人的工作效率相同)
,则完成这项工作可提前 (
用代数式表示下列各题:
_ 2
①与2x 的差是x 的数为 -----------------------------
②三个连续偶数,最小的一个是 n,则这三个数的平均数是
2 2
2、 当x= 6, y= 5时,代数式 3x — 2xy+ y 的值 ----------------
3、 如果正方形的周长是
c,那么它的边长 a= -------------------- 面积
S = ------------------- ,当 c = 28cm 时,a — ---------------- S= --------------------------------
4、方程
的解是 -------------------
5、已知x = 1,是方程2 + (m-2x) = 2x 的解,
那么y 的方
A

B
5、 m 都有( ,由此
可推得对于任何自然数
)
B
D
字是b,这个三位数是 _________________
A 、 abm3 B
xyx3 C
炖、
5除,商不为零且余数

D 、
O
C 、
合后,要求总价额不变,那么混合后的糖果的售价定为
A、9、如图,某零件的平面图,它是一个长方形内挖去一个小长方形,尺寸如图所示,则这个零件(图中阴影部分)
的面积S计算公式是()
A、S=600—(30 — 2x)( 20- 2x)
B、S= 600-(30 -x)(20 - x)
下列各式: a,3,3x — 1 ,a + b — b + a,7 > 6,9,
xy, ,其中代数式的个数是()
A、4 B D
2、下列各式表示方|法符合代数式书写要求的是(
3y D 、A、abm5 B、mnx3 C > 1 x
2
3、代数式()
的意义是()
A、x与y的倒数的差的平方
B、x与y的倒数的平方差
G x的倒数与y的倒数的差的平方D、x的倒数y的倒数的平方差
C、S— 600 — 2xx
2x
2
D、S= 600 — x
三、题答解
1.2x +15=16.3
A 地步行
B 地。

甲每小时走 5千米,乙
当甲到达 B 地时,乙距B 地还有6千
AB 两地的距离是多少?
5、某市居民用水量 x(立方米)与应缴水费 W 之间的关系

下表:
用水量x(立方米)
水费W (元)
1 0.45+0.50
2 0.90+0.50
3 1.35+0.50 4
1.80+0.50 5
2.25+0.50
表内水费栏中的 0.5是贴总表的费用。

(1) 写出用水量x 表示水费W 的公式。

(2) 计算用水量是 35立方米时的水费。

求代数式3X
2
_X +3的值
6、甲乙二人同时由
每小时走3千米, 米。

甲走了几小时?
3、 已知 2+2ab=3,3ab +2b
2
说站的的值。

3
=5,求 a
4、 已知 x+
=3,求(x+・)2+2x+■的值。

知。

相关文档
最新文档