全等三角形
全等三角形的概念、性质与判定
1. 能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
2. 全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等。
3. 全等三角形的判定(1)三边对应相等的两个三角形全等(简记为:“边边边”或“SSS”);(2)两边和它们的夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”);(3)两角和它们的夹边对应相等的两个三角形全等(简记为“角边角”或“ASA”);(4)两个角和其中一个角的对边对应相等的两个三角形全等(简记为:“角角边”或“AAS”);(5)斜边和一条直角边对应相等的两个直角三角形全等(简记为:“斜边、直角边”或“HL”)。
4. 常见的一个三角形经过变换得到另一个全等三角形。
(1)平移(2)翻折(3)旋转5. 判定两个三角形全等所需条件:(1)需要三个条件;(2)至少有一个条件为边。
注意:“边边角”不一定成立。
反例:如图,△ABC与△ABC'中,AB=AB,AC=AC',∠ABC=∠ABC',但△ABC与△ABC'不全等。
【解题方法指导】例1. (2005年安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?并任选其中一对给予证明。
分析:由AB∥DE,可以得到∠A=∠D;由AF=DC,可以得到AC=DF;由AB=DE,由“SAS”可以得到△BAF≌△EDC,及△BAC≌△EDF由此又可以得到BF=EC,BC=EF,FC又是公共边,可证△BFC≌△EFC证明:在△BAF与△EDC中,∵AB∥DE∴∠A=∠D又AB=DE,AF=DC∴△BAF≌△EDC(SAS)评析:判断两个三角形全等,设法找齐三个条件,至少有一个条件是边,因此先找出给出的条件(如AB=DE,AF=DC);然后发展条件,继续得到有关信息(如由AB∥DE⇒∠A=∠D;由AF=DC⇒AC=DF)例2. 如图,B是AC上一点,DA⊥AC,EC⊥AC,DB=BE。
全等三角形的特征
全等三角形的特征
全等三角形是指具有相同形状和大小的三角形。
它们的特征如下:
1. 三边相等:全等三角形的三条边长度完全相等,称为等边三角形。
2. 三角形角度相等:全等三角形的三个内角也相等,每个角的度数都
是60度,称为等角三角形。
3. 三个对边分别相等:全等三角形的对边也相等,即三角形的一对边、另一对边和第三对边分别相等。
4. 面积相等:全等三角形的面积相等,因为它们的形状和大小都完全
相同。
全等三角形是几何学中非常重要的一个概念,因为它们可以帮助我们
解决各种几何问题。
如果两个三角形是全等的,那么它们的属性和关
系就完全一样,这意味着我们可以使用一个三角形的属性和关系来帮
助解决另一个三角形的问题。
全等三角形的一个重要应用是计算三角形的面积。
如果我们知道三角
形的底和高,那么可以使用公式面积=底×高÷2来计算它的面积。
但
如果我们不知道三角形的高,我们可以使用全等三角形来帮助我们求解。
通过将三角形划分为两个全等的三角形,我们可以计算出三角形的面积。
此外,全等三角形还常用于证明几何问题。
通过证明两个三角形是全等的,我们可以得出它们之间的属性和关系相同,从而解决问题。
其中一个著名的例子是勾股定理的证明,证明通过构造全等三角形来完成。
总之,全等三角形是一个重要概念,它们的特征是三边相等、三角形角度相等、三个对边分别相等和面积相等。
全等三角形有许多应用,包括计算三角形的面积和证明几何问题。
全等三角形
全等三角形【知识精读】1.全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。
互相重合的边叫对应边,互相重合的角叫对应角。
2.全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC≌△A′B′C′其中,“≌”读作“全等于”。
记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
3.全等三角形的的性质:全等三角形的对应边相等,对应角相等;4.寻找对应元素的方法根据对应顶点找:如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。
通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。
根据已知的对应元素寻找:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;通过观察,想象图形的运动变化状况,确定对应关系。
通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。
A、翻折如图,∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;B、旋转如图,∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;C、平移如图,∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。
5.判定三角形全等的方法:SSS、ASA、SAS、AAS6.注意问题:在判定两个三角形全等时,至少有一边对应相等;不能证明两个三角形全等的是:a、三个角对应相等,即AAA;b、有两边和其中一角对应相等,即SSA。
全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。
在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。
【分类解析】全等三角形知识的应用1.证明线段(或角)相等例1:如图,已知AD=AE,AB=AC.求证:BF=FC分析:由已知条件可证出ΔACD≌ΔABE,而BF和FC分别位于ΔDBF和ΔEFC中,因此先证明ΔACD≌ΔABE,再证明ΔDBF≌ΔECF,既可以得到BF=FC.2.证明线段(直线)平行例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AF=CE.求证:AB∥CD分析:要证AB∥CD,需证∠C=∠A,而要证∠C=∠A,又需证ΔABF≌ΔCDE.由已知BF⊥AC,DE⊥AC,知∠DEC=∠BFA=90°,且已知DE=BF,AF=CE.显然证明ΔABF ≌ΔCDE条件已具备,故可先证两个三角形全等,再证∠C=∠A,进一步证明AB∥CD. 3.证明线段(角度)的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段(或者两个角度)相等例3:如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE. 求证:CD=2CE分析:(ⅰ)折半法:取CD中点F,连接BF,再证ΔCEB≌ΔCFB.这里注意利用BF是ΔACD 中位线这个条件。
全等三角形(知识点讲解)
学习必备 欢迎下载全等三角形 全等三角形 知识梳理性质对应角相等 对应边相等二、基础知识梳理 一)、基本概念1、“全等 ”的理解 全等的图形必须满足: (1)形状相同的图形; (2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质( 1)全等三角形对应边相等; (2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理、知识网络全等形 全等三角形边边边SSS边角边SAS判定 角边角ASA角角边 AAS斜边、 直角边HL角平分线作图性质与判定定理应用1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1) 已知条件中有两角对应相等, 可找:①夹边相等( ASA )②任一组等角的对边相等 (AAS ) (2) 已知条件中有两边对应相等, 可找①夹角相等 (SAS ) ②第三组边也相等 (SSS ) (3) 已知条件中有一边一角对应相等, 可找①任一组角相等 (AAS 或 ASA ) ②夹等角的另一组边相等 (SAS ) 5. 经典例题透析 证明图形全等 基础版—— “ SSS ” (1)已知: AB=DC ,AD=BC ,求证:∠ A= ∠C2)如图, E 是 AD 上的一点, AB=AC ,AE=BD ,CE=BD+DE ,求证:∠ CED=∠ B+ C基础版—— “ SAS ”(3)如图, AD ∥ BC ,AD=CB , AE=CF ,求证: BE=DF4) 已知:如图,点 A 、B 、C 、D 在同一条直线上, EA AD ,FD AD , AE DF , AB DC .求证: ACE DBF .基础版——“ ASA ”与“ AAS ”(5)如图,已知: AB = AC ,点 D 在 AB 上,点 E 在 AC 上,BE 和CD 相交 于点 O ,∠B =∠ C ,求证: BD =CEDB举一反三:变式 1】如图,△ABC ≌△ DBE . 问线段 AE 和 CD 相等吗?为什么?( 6)如图,△ABC 中,∠BAC=90 ,AB =AC ,直线 MN 过点 A , 于 E ,求证: DE =BD+CE基础版 HL ”( Rt △) N(7)如图, AB AC ,AB//CD ,AC=CD ,BC=DE ,BC 与 DE 相交于点 O ,求 证: DE BC 类型一:全等三角形性质的应用 1、如图,△ ABD ≌△ ACE , AB =AC ,写出图中的对应边和对应角、如图,已知ΔABC≌ΔDEF,∠A=30°,∠ B=50°,BF=2,求∠ DFE的度数与EC举一反三:如图所示,ΔACD≌ΔECD,ΔCEF≌ΔBEF,∠ACB=90°求证:( 1)CD⊥AB;( 2) EF∥ AC.变式 1】类型二:全等三角形的证明3、如图, AC=BD,DF=CE,∠ ECB=∠ FDA,求证:△ ADF≌△BCE.举一反三:【变式 1】如图,已知 AB∥DC,AB= DC,求证:AD∥BC【变式 2】如图,已知 EB⊥ AD于 B,FC⊥ AD 于 C,且 EB= FC,AB=CD.求证 AF =DE.、类型三:综合应用4、如图,AD为ΔABC的中线。
全等三角形知识点归纳
全等三角形知识点归纳
全等三角形是指两个三角形的所有对应的边和角都相等。
以下是
关于全等三角形的一些重要知识点:
1. 全等三角形的定义:两个三角形的所有对应的边和角都相等时,这两个三角形就是全等三角形。
2. 全等三角形的性质:
a. 边-边-边(SSS)判定准则:如果两个三角形的三条边相等,那
么它们是全等的。
b. 边-角-边(SAS)判定准则:如果两个三角形的一条边和夹角的
对边的长度和角度相等,那么它们是全等的。
c. 角-边-角(ASA)判定准则:如果两个三角形的两个角和他们夹
着的边的长度相等,那么它们是全等的。
d. 角-角-角(AAA)判定准则:两个三角形的三个角度分别相等,
不能确定它们是全等的。
3. 全等三角形的性质与应用:
a. 全等三角形的对应部分相等:如果两个三角形全等,则它们的
对应边长相等,对应角度相等,对应的高、中线、中位线等也相等。
b. 全等三角形的性质可用于解决实际问题,例如测量无法直接测
量的长度或角度,或在建造、设计等领域中的应用。
4. 全等三角形的判定准则:在判定两个三角形是否全等时,根
据给定的信息应选择适合的判定准则进行判断,如SSS、SAS、ASA等。
以上是关于全等三角形的一些基本知识点和性质总结。
要确定两
个三角形全等,一般需要给出足够的边长和角度信息,利用相应的判
定准则进行判断。
全等三角形的知识点总结
全等三角形的知识点总结判定公理三角形全等的条件:1、全等三角形的对应角相等。
2、全等三角形的对应边相等3、全等三角形的对应顶点相等。
4、全等三角形的对应边上的高对应相等。
5、全等三角形的对应角平分线相等。
6、全等三角形的对应中线相等。
7、全等三角形面积相等。
8、全等三角形周长相等。
9、全等三角形可以完全重合。
三角形全等的方法:1、三边对应相等的两个三角形全等。
(SSS)2、两边和它们的夹角对应相等的两个三角形全等。
(SAS)3、两角和它们的夹边对应相等的两个三角形全等。
(ASA)4、有两角及其一角的对边对应相等的两个三角形全等(AAS)5、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)性质要验证全等三角形,不需验证所有边及所有角也对应地相同。
以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:S.S.S. (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。
S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。
A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。
A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的`话,该两个三角形就是全等。
R.H.S. / H.L. (Right Angle-Hypotenuse-Side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。
但并非运用任何三个相等的部分便能判定三角形是否全等。
以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。
全等三角形
第一部分基础知识精要一、全等形能够完全重合的两个图形叫全等形。
二、全等多边形1、定义:能够完全重合的两个多边形叫全等多边形。
2、性质:全等多边形的对应边、对应角分别相等。
三、全等三角形1、全等三角形的概念及表示方法(1)概念:能够完全重合的两个三角形叫做全等三角形。
注意:(1)两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫对应角;(2)“能够完全重合”是指在一定的叠放下,可以完全重合,不是胡摆乱放都能重合。
(2)全等三角形的符号表示、读法:△ABC与△A1B1C1全等记作△ABC≌△A1B1C1,“≌”读作“全等于”。
2、全等三角形的性质全等三角形的对应边相等,对应角相等。
3、三角形全等的识别方法(1)三边对应相等的两个三角形全等,简写成“边边边”或“SSS”;(2)两边和它们的夹角对应相等的两三角形全等,简写成“边角边”或“SAS”;(3)两角和它们的夹边对应相等的两三角形全等,简写成“角边角”或“ASA”;(4)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”;(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
注意:SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与。
非直角三角形中,如果有两边一角对应相等时,角必须是两边的夹角。
4、三角形全等的证题思路找夹角(SAS)(1)已知两边找直角(HL)找另一边(SSS)找边的对角(AAS)边为角的邻边找夹角的另一边(SAS)(2)已知一边一角找夹边的另一角(ASA)边为角的对边:找任一角(AAS)找夹边(ASA)(3)已知两角找任一边(AAS)5、全等变换一个图形与另一个图形的形状一样,大小相等,只是位置不同,我们称这个图形是另一个图形的全等变换,三种基本全等变换:(1)旋转;(2)翻转;(3)平移。
四、角平分线的性质定理及逆定理1、性质定理:角平分线上的点到角的两边距离相等。
全等三角形
第十二章全等三角形一、全等三角形1、全等形的概念:能够完全重合的两个图形叫做全等形。
注:完全能重合的图形那么固然:形状完全相同,大小固然相等,对应角也相等。
2、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。
用符号“≌”表示,读作:全等。
3、全等三角形的表示:(1)两个全等的三角形重合时:重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.(2)如图,△ABC和△A'B'C'全等,记作△ABC≌△A'B'C'.通常对应顶点字母写在对应位置上.注意:在写三角形全等的时候一定要把相对应角的顶点对应写,比如上图中写成△ABC≌△A'B'C',而不能写成△ACB≌△A'B'C',因为C对应的是C’所以这种写法是错误的。
(重点)4、全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等.(2)全等三角形的周长、面积相等.5、全等变换:只改变位置,不改变形状和大小的图形变换.平移、翻折(对称)、旋转变换都是全等变换.例1、下列命题错误的是()A.全等三角形对应边上的高相等B.全等三角形对应边上的中线相等C.全等三角形对应角的角平分线相等D.有两边和一个角对应相等的两个三角形全等例2、在AB 、AC 上各取一点E 、D ,使AE AD =,连接BD 、CE 相交于O 再连结AO 、BC ,若12∠=∠,则图中全等三角形共有哪几对?并简单说明理由.二、(重点)全等的判定【例1】如图所示,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架,求证△ABD ≌△ACD .分析:要证明△ABD ≌△ACD ,可看这两个三角形的三条边是否对应相等. 证明:∵D 是BC 的中点,∴BD=CD在△ABD 和△ACD 中21EOD C BA ,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩D CB A E ∠C=∠FBC=EF∴△ABC ≌△DEF (SAS )【例】如图所示有一池塘,要测池塘两侧A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,•使CE=CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?证明:在△ABC 和△DEC 中∴△ABC ≌△DEC (SAS )∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等)【例】如图在AB 上,E 在AC 上,AB=AC ,∠B=∠C ,求证:AD=AE .证明:在△ACD 与△ABE 中,∴△ACD ≌△ABE (ASA )∴AD=AE 4、有两角及一角的对边对应相等的两个三角形全等(AAS)12CA CD CB CE =⎧⎪∠=∠⎨⎪=⎩()A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩公共角【例】如图,AC ⊥BC ,BD ⊥AD ,AC=BD ,求证BC=AD .【思路点拨】欲证BC=•AD ,•首先应寻找和这两条线段有关的三角形,•这里有△ABD 和△BAC ,△ADO 和△BCO ,O 为DB 、AC 的交点,经过条件的分析,△ABD 和△BAC •具备全等的条件.证明:∵AC ⊥BC ,BD ⊥BD ,∴∠C 与∠D 都是直角.在Rt △ABC 和Rt △BAD 中,∴Rt △ABC ≌Rt △BAD (HL ).∴BC=AD .练习2如图,AD 与CB 交于O ,AO=OD ,CO=OB ,EF 过O 与AB 、CD •分别交于E 、F ,求证:∠AEO=∠DFO .,,AB BA AC BD =⎧⎨=⎩全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 判定三角形全等的基本思路:SAS HL SSS →⎧⎪→⎨⎪→⎩找夹角已知两边 找直角 找另一边ASA AAS SAS AAS ⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASA AAS →⎧⎨→⎩找两角的夹边已知两角 找任意一边 全等三角形的图形归纳起来有以下几种典型形式:⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型例1、两个三角形具备下列()条件,则它们一定全等.A.两边和其中一边的对角对应相等B.三个角对应相等C.两角和一组对应边相等D.两边及第三边上的高对应相等例2、下列命题错误的是()A.全等三角形对应边上的高相等B.全等三角形对应边上的中线相等C.全等三角形对应角的角平分线相等D.有两边和一个角对应相等的两个三角形全等例3、考查下列命题:①有两边及一角对应相等的两个三角形全等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中正确命题的个数有_________如右上图所示,AB CD∥,AB CD=,AD与BC交于O,∥,AC DB⊥于E,DF BC⊥于F,那么图中全等的三角形有哪几对?并简单说明理AE BC由.例4、如右上图所示,AB CD=,AD与BC交于O,AE BC⊥∥,AC DB∥,AB CD于E,DF BC⊥于F,那么图中全等的三角形有哪几对?并简单说明理由.BAFOEDC例5、如图,已知AC BD =,AD AC ⊥,BC BD ⊥,求证:AD BC =.(二)角平分线的性质角平分线上的点到角的两边的距离相等。
全等三角形的性质
全等三角形的性质全等三角形是指具有完全相等的形状和大小的三角形。
在几何学中,全等三角形具有一些独特的性质和特征。
本文将探讨全等三角形的性质,包括定义、判定条件以及相关的定理和应用。
一、定义全等三角形定义为具有完全相等的形状和大小的三角形。
换句话说,如果两个三角形的三条边分别相等,则这两个三角形就是全等三角形。
全等三角形可以通过一系列变换操作来叠加在一起,如平移、旋转和翻转。
二、判定条件为了判断两个三角形是否全等,需要满足以下条件之一:1. SSS判定法:两个三角形的三条边相互对应相等。
2. SAS判定法:两个三角形的两条边和夹角相对应相等。
3. ASA判定法:两个三角形的一边和两个夹角相互对应相等。
4. RHS判定法:两个直角三角形的斜边和一个直角边相互对应相等。
三、全等三角形的性质全等三角形具有以下性质:1. 三个内角完全相等:两个全等三角形的对应内角相等,即三个内角相互对应相等。
2. 三个内角和相等:两个全等三角形的内角和分别相等。
3. 对应的边相等:两个全等三角形的对应边分别相等。
4. 周长相等:两个全等三角形的周长相等。
5. 面积相等:两个全等三角形的面积相等。
四、全等三角形的相关定理全等三角形的性质使得它们具有一些重要的应用和相关定理,如下所示:1. 位于全等三角形相等边上的等角一定相等。
2. 位于全等三角形等角上的边上的角平分线相等。
3. 全等三角形的重心、外心和内心重合。
4. 如果两个三角形的某一边与两个相对角分别相等,则这两个三角形全等。
5. 全等三角形之间的比较定理,包括大小关系和边长比例关系。
五、应用全等三角形在几何学和实际生活中具有广泛的应用,例如:1. 测量和导航:通过观测两个全等三角形的边长和角度,可以计算出距离和方向。
2. 建筑和工程:使用全等三角形的定理来设计、计算和建造各种结构和设备。
3. 图像处理:利用全等三角形的性质来进行图像变换和形状匹配。
4. 运动轨迹:通过观察全等三角形的形状和大小变化,可以描述物体的运动轨迹。
全等三角形的定义
经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而两个三角形的三条边及三个角都对应相等。
全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等全等三角形是几何中全等之一。
根据全等转换,两个全等三角形经过平移、旋转、翻折后,仍旧全等。
性质
1.全等三角形的对应角相等.
2。
全等三角形的对应边相等
3,能够完全重合的顶点叫对应顶点。
4.全等三角形的对应边上的高对应相等
5.全等三角形的对应角的角平分线相等
6.全等三角形的对应边上的中线相等。
7.全等三角形面积和周长相等,
8.全等三角形的对应角的三角函数值相等
判定
三边对应相等的三角形是全等三角形。
Sss:
SAS: 两边及其夹角对应相等的三角形是全等三角形。
ASA: 两角及其来边对应相等的三角形全等
AAS: 两角及其一角的对边对应相等的三角形全等。
RHS(直角、斜边、边) (又称HL定理(斜边、直角边)) :在一对直角三角形中,斜边及另一条直角边相等。
下列两种方法不能验证为全等三角形:
AAA(角角角) :三角相等,不能证全等,但能证相似三角形。
SSA(边边角) : 其中一角相等,且非夹角的两边相等。
(完整版)全等三角形的性质及判定
全等三角形第 1 节全等三角形的性质和判断【知识梳理】1、全等图形:能够完整重合的两个图形就是全等图形.2、全等三角形的观点与表示:能够完整重合的两个三角形叫作全等三角形.能够互相重合的极点、边、角分别叫作对应极点、对应边、对应角.全等符号为“≌”.3、全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角均分线相等,面积相等.4、全等三角形的判断方法:(1)边角边定理 ( SAS) :两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理 ( ASA) :两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理 ( SSS) :三边对应相等的两个三角形全等.(4)角角边定理 ( AAS ) :两个角和此中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理 ( HL ) :斜边和一条直角边对应相等的两个直角三角形全等.【诊疗自测】1、假如ABC≌Δ DBC,则 AB的对应边是_____,AC的对应边是_____,∠DBC的对应角是_____,∠ DCB的对应角是_____.2、如图,已知△ABE≌△ DCE, AE=2 cm, BE=1.5 cm,∠ A=25°,∠ B=48°;那么 DE=_____cm,EC= _____cm,∠C= _____°;∠D= _____°.C 和点E,点 B 和点D 分别是对应点,则另一3、假如△ABC和△ DEF这两个三角形全等,点组对应点是,对应边是,对应角是,表示这两个三角形全等的式子是.【考点打破】种类一:全等形例 1、由同一张底片冲刷出来的两张五寸照片的图案 _____全等图案,而由同一张底片冲刷出来的五寸照片和七寸照片 ____全等图形。
(填“是”或许“不是”)种类二:全三角形的定义和性质例 2、如图,点 E,F 在线段 BC 上,△ ABF 与△ DCE 全等,点 A 与点 D ,点 B 与点 C 是对应极点, AF 与 DE 交于点 M ,则∠ DCE= ()A .∠B B.∠ A C.∠ EMF D .∠ AFB例 3、如图,△ ABE 和△ ADC 是△ ABC 分别沿着AB 、AC 边翻折 180°形成的,若∠ BAC :∠ABC :∠ BCA=28 : 5: 3,则∠α的度数为()A . 90° B. 85° C. 80° D. 75°种类三:全等三角形的判断(SSS)例 4、用直尺和圆规作一个角等于己知角的作图印迹如下图,则作图的依照是()A . SSS B. SAS C. ASA D. AAS例 5、已知:如图 2- 1,△ RPQ 中, RP= RQ, M 为 PQ 的中点.求证: RM 均分∠ PRQ.剖析:要证 RM 均分∠ PRQ,即∠ PRM= ______,只需证 ______≌ ______证明:∵M 为 PQ 的中点(已知),∴______= ______在△ ______和△ ______中,RP RQ(已知 ),PM ______,______ ______(),∴______≌ ______().∴∠ PRM = ______( ______).即 RM.例 6.已知:如图, AD =BC. AC= BD .试证明:∠ CAD =∠ DBC .种类四:全等三角形的判断(SAS)例 7. 已知:如图3-1,AB、CD订交于O点,AO=CO,OD=OB.求证:∠ D=∠ B.剖析:要证∠ D=∠ B,只需证 ______≌ ______证明:在△ AOD 与△ COB 中,AO CO ( ),______ ______( ),OD ______( ),∴△ AOD ≌△ ______ ().∴∠D=∠ B ( ______).例8、小红家有一个小口瓶(如下图),她很想知道它的内径是多少?可是尺子不可以伸在里边直接测,于是她想了想,唉!有方法了.她拿来了两根长度同样的细木条,而且把两根长木条的中点固定在一同,木条能够绕中点转动,这样只需量出AB 的长,就能够知道玻璃瓶的内径是多少,你知道这是为何吗?请说明原因.(木条的厚度不计)例 9、如图,将两个一大、一小的等腰直角三角尺拼接∠ABC= ∠ EBD=90 °),连结 AE 、 CD,试确立 AE 结论.(A 、B、D 三点共线,AB=CB ,EB=DB ,与 CD 的地点与数目关系,并证明你的种类五:全等三角形的判断(AAS和 ASA)例 10、某同学把一块三角形的玻璃打坏成了 3 块,现要到玻璃店去配一块完整同样的玻璃,同学小明知道只需带③ 去就行了,你知道此中的道理是()A . SAS B. SSA C. ASA D. HL例 11.如图,已知△ ABC的六个元素,则以下甲、乙、丙三个三角形中和△ABC 全等的图形是例 12、已知:如图,PM = PN,∠ M=∠ N.求证: AM= BN.剖析:∵ PM= PN,∴要证AM=BN,只需证PA= ______,只需证 ______≌ ______.证明:在△ ______与△ ______中,______ ______( ),______ ______( ),______ ______( ),∴△ ______≌△ ______ ().∴ PA= ______ ().∵PM=PN (),∴PM - ______= PN- ______,即 AM = ______.例 13、已知: AB ⊥ AE ,AD ⊥ AC ,∠ E=∠ B, DE=CB .求证: AD=AC ..例 14、如图,在△ ABC中,∠ ACB=90°, AC=BC,BE⊥CE于点 E. AD⊥CE于点D.求证:△ DEC≌△ CDA.种类六:全等三角形的判断(HL)例 15. 已知在△ ABC和△ DEF中 , ∠ A=∠D=90°, 则以下条件中不可以判断△ABC和△DEF全等的是 ( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠ F,BC=EF例 16、如下图,在△ ABC中,∠ C=90°, DE⊥AB 于点 D, BD=BC,若 AC=6,则AE+DE=_____BDAE C【易错优选】1、如下图,△ABC ≌△ DEC,则不可以获得的结论是()A . AB=DEB .∠ A= ∠ D C. BC=CD D .∠ ACD= ∠ BCE2、如图,梯形 ABCD中,AD∥BC,点 M是 AD的中点,且 MB=MC,若 AD=4,AB=6,BC=8,则梯形 ABCD的周长为()A.22 B.24 C.26 D. 283、如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度 DF 相等,则∠ ABC+∠ DFE=__________度【精髓提炼】判断三角形全等的基本思路:找夹角SAS已知两边 SS找直角HL找另一边SSS边为角的对边→找随意一角→AAS找这条边上的另一角→ASA已知一边一角 SA边就是角的一条边找这条边上的对角→AAS找该角的另一边→ SAS找两角的夹边ASA已知两角 AA找随意一边AAS备注:找寻对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边 ( 或最大角 ) 是对应边 ( 或对应角 ) ,一对最短边 ( 或最小角 ) 是对应边 ( 或对应角 ) .要想正确地表示两个三角形全等,找出对应的元素是重点.全等三角形的图形概括起来有以下几种典型形式:⑴ 平移全等型⑵ 对称全等型⑶ 旋转全等型【本节训练】训练【 1】如图, E 为线段 BC 上一点, AB ⊥BC,△ ABE ≌△ ECD ,判断 AE 与 DE 的关系,并证明你的结论.训练【 2】如图,点A、F、C、D在同向来线上,点 B 和点 E 分别在直线 AD的双侧,且 AB=DE,∠ A=∠ D,AF= DC.求证: BC∥EF.训练【 3】已知图中的两个三角形全等,则∠ 1 等于度.【训练 4】.如图,∠ BAC= ∠DAE ,∠ ABD= ∠ ACE ,AB=AC .求证: BD=CE .基础稳固一、选择题1、以下说法:①有两条直角边对应相等的两个直角三角形全等;②有斜边对应相等的两个等腰直角三角形全等;③有一条直角边和斜边上的高对应相等的两个直角三角形全等;④有一条边相等的两个等腰直角三角形全等.此中正确的有().A、1 个B、2 个C、3 个D、4 个DE=BC,以D、 E 为两个极点作地点不一样的三2、如图,△ABC是不等边三角形,角形,使所作三角形与△ABC全等,这样的三角形最多能够画出[ ] .A.2 个B.4 个C.6 个D.8 个3、以下说法正确的选项是()A、全等三角形是指周长和面积都同样的三角形;B、全等三角形的周长和面积都同样;C、全等三角形是指形状同样的两个三角形;D、全等三角形的边都相等4、以下两个三角形中,必定全等的是()A.两个等边三角形B.有一个角是 40°,腰相等的两个等腰三角形C.有一条边相等,有一个内角相等的两个等腰三角形D.有一个角是 100°,底相等的两个等腰三角形5、如图,△ ABC与△ BDE都是等边三角形, AB<BD,若△ ABC不动,将△ BDE绕点CD的大小关系为( )B 旋转,则在旋转过程中,AE与A.AE=CD B . AE>CD C.AE<CD D.没法确立ECA B D6、如图,已知 AB=AD,那么增添以下一个条件后,仍没法判断△ABC≌△ ADC的是()A.CB=CD B .∠ BAC=∠DAC C.∠ BCA=∠ DCA D.∠ B=∠D=90°二、填空题6、如图,在△ ABC 中,AD⊥ BC 于 D,BE⊥ AC 于 E,AD 与 BE 订交于点F,若 BF=AC,则∠ ABC=_______7、如图,等腰直角三角形ABC的直角极点 B 在直线 PQ上,AD⊥ PQ于 D,CE⊥PQ 于 E,且 AD=2cm,DB=4cm,则梯形 ADEC的面积是 _____ .8、(着手操作实验题)如下图是小明自制对顶角的“小仪器”表示图:(1)将直角三角板 ABC的 AC边延伸且使 AC固定;(2)另一个三角板 CDE?的直角极点与前一个三角板直角极点重合;(3)延伸 DC,∠PCD与∠ ACF就是一组对顶角,已知∠ 1=30°,∠ ACF为多少?三、简答题9、如图,已知AB=AC ,∠ 1=∠ 2,AD=AE ,求证:∠ C=∠ B.10、如图,在△ ABC中, AD是∠ BAC的均分线, DE、DF分别是△ ABD和△ ACD的高线,求证: AD⊥EF。
三角形的全等
三角形的全等三角形是几何学中的重要概念,全等三角形是其中一种特殊的形态。
本文将深入讨论全等三角形的定义、性质和判定方法。
一、全等三角形的定义全等三角形指的是具有相同形状和大小的三角形。
换言之,如果两个三角形的对应边长和对应角度完全相等,那么它们就是全等三角形。
通常用符号∆ABC ≌ ∆DEF 表示两个全等三角形。
二、全等三角形的性质全等三角形具有许多特点和性质,下面列举其中几个常见的:1. 对应边长相等性质(SSS)若两个三角形的对应边长分别相等,则它们是全等的。
即,如果∆ABC的边长分别等于∆DEF的对应边长,则∆ABC ≌ ∆DEF。
2. 对应角度相等性质(AAA)若两个三角形的对应角度分别相等,则它们是全等的。
即,如果∆ABC的角度分别等于∆DEF的对应角度,则∆ABC ≌ ∆DEF。
3. 两边夹角和对应边长相等性质(SAS)若两个三角形的一对对边夹角相等且对应边长相等,则它们是全等的。
即,如果∆ABC的两边夹角等于∆DEF的对应夹角,并且∆ABC的对应边长等于∆DEF的对应边长,则∆ABC ≌ ∆DEF。
三、全等三角形的判定根据全等三角形的性质,我们可以利用以下几种方法判定两个三角形是否全等:1. SSS判定法当两个三角形的三边长度分别相等时,可以判定它们是全等的。
2. SAS判定法当两个三角形的一对对边夹角相等且对应边长相等时,可以判定它们是全等的。
3. ASA判定法当两个三角形的一对对边夹角和对边夹角相等时,可以判定它们是全等的。
4. AAS判定法当两个三角形的两对角度和一对对边夹角相等时,可以判定它们是全等的。
总结起来,全等三角形的判定主要依据三边长度、两边夹角以及两个角度和对边夹角的关系。
四、全等三角形的应用全等三角形的概念在几何学中有广泛的应用。
它不仅帮助我们理解三角形之间的关系,还可以用于解决实际问题。
1. 三角形构造通过已知条件,可以利用全等性质来构造一个全等的三角形,用于解决建筑、设计等实际问题。
全等三角形的判定方法五种例题
全等三角形的判定方法五种例题三角形是初中数学学习中的重要内容之一,而全等三角形又是其中比较基础且重要的一部分。
那么,如何判断两个三角形是否全等呢?我们可以从以下5个方法入手。
第一种方法:角角角(AAA)判定法。
当两个三角形的对应角度相等时,就可以判断它们是全等的。
例如:若在两个三角形中角A、角B、角C分别对应相等,则这两个三角形就全等。
第二种方法:边角边(AAS)判定法。
当两个三角形的两边和夹角分别相等时,就可以判断它们是全等的。
例如:若在两个三角形中,两边AB、AC相等,并且夹角A的大小也相等,则这两个三角形就全等。
第三种方法:角边角(ASA)判定法。
当两个三角形的一对角和对应边相等,且另外一对角也相等时,就可以判断它们是全等的。
例如:若在两个三角形中,角A、边BC和角C分别对应相等,并且角B的大小也相等,则这两个三角形全等。
第四种方法:直角边(HL)判定法。
当两个直角三角形的一条直角边和另外一条边相等时,就可以判断它们是全等的。
例如:若在两个三角形中,直角边AB、边AC的长度分别相等,并且三角形ABC还有一个相等的直角,则这两个三角形就全等。
第五种方法:全等多边形拼凑法。
将一个三角形分割成两个或多个小三角形,然后将这些小三角形重新拼凑成另一个三角形。
如果这个三角形和另一个给定的三角形重合,则它们是全等的。
例如:将一个三角形ABC划分成两个小三角形,分别是三角形ABE和三角形AEC,然后将它们重新拼凑成三角形FDC,如果三角形FDC和另一个给定的三角形重合,则这两个三角形就全等。
在实际操作时,我们可以根据题目所给条件,选择一种或多种判定方法,来判断两个三角形是否全等。
因为不同的题目所给条件不同,因此我们要灵活掌握这些判定方法,并且要根据具体情况加以分析和判断。
只有将这些方法掌握好,才能在解题中灵活应用,提高我们的解题能力。
全等三角形概念及其性质
全等三角形概念及其性质知识精要1.全等形能够重合的两个图形叫做全等形2.全等三角形(1)两个三角形是全等形,就说它们是全等三角形。
(2)两个全等三角形,经过运动后一定能够重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角。
注:(1)全等三角形并一定是两个图形之间的关系,还可能是多个图形之间的关系。
(2)全等图形也可以看作是把图形翻折,旋转、平移等变换而得到的图形,与原图形相比,它们只是位置发生了变化,而形状、大小都没有变;反过来说,两个全等图形经过这样的变换一定能够重合。
3.确定三角形形状和大小的三个元素有四种情况(1)两角及夹边(2)两边及其夹角(3)三边(4)两角及其中一角的对边注:知道两边及其中一边的对角时,一般不能确定三角形的形状,大小。
4.全等三角形的性质1、全等三角形的对应边相等,对应角相等。
2、全等三角形的周长和面积相等【例题与应用】1、图形的三种基本运动是翻折、旋转和平移.2、根据所给图形的信息,完成下列填空:(要求对应顶点字母写在对应的位置上)∆;(1)如图(1),△ABC≌DEF∆;(2)如图(2),△ABC≌DBC∆;(3)如图(3),△AOB≌DOC3、如图,已知△ABC≌△DEF,求图中x,y,z的值.解:060x =00220202z z z y =+==4、如图,在方格中各画一个与所给三角形全等的三角形,并用全等符号表示.5、如图,已知△ABD ≌△ACE ,AD =3cm ,BD =1cm ,BC =6cm ,求△ADE 的周长. 解:ABD ∆ ≌ACE ∆ 3AD AE cm ∴==1BD EC cm ==(全等三角形,对应边相等)6114DE BC BD EC cm ∴=--=--=33410ADE C AD AE DE ∆∴=++=+==6、如图,已知△ACF ≌△DBE ,∠E =∠F ,AD =9cm ,BC =5cm ,求AB 的长. 解:ACF ∆ ≌DBE ∆AC DBAB BC DC BC∴=∴+-+即11()(95)222AB CD AD BC cm ==-=⨯-= 7、画△ABC ,使∠A =60°,∠B =40°,AB =4.5cm.解:确定三角形的形状和大小,若两个三角形形状,大小完全相等,则称为全等三角形,因此为判定三角形全等的方法。
全等三角形
王文明中学
回忆:举出现实生活中能够完全重合的 图形的例子? 同一张底片洗出的同大小照片是 能够完全重合的;
能够完全重合的两个图形叫做全等图形.
图1
图2
全等三角形
能够完全重合的两个三角形叫做全等三角形
互相重合的顶点叫做对应顶点. 互相重合的边叫做对应边. 互相重合的顶点角叫做对应角
二、全等三角形表示法
A
∵△ABC≌ △A’B’C’
∴ AB=A’B’, BC=B’C’, AC=A’C’
(全等三角形的对应边相等) ∠ A= ∠ A’, ∠ B= ∠B’ , ∠ C= ∠C’ (全等三角形的对应角相等)
B
C
A'
B'
C'
四、在找全等三角形的对应元素时一般 有什么规律?
A B C B C A D
D
有公共边的,公共边是对应边.
1、能够重合 的两个图形叫做全等形. 两个三角形重合时,互相 重合 _的顶点 叫做对应顶点.记两个全等三角形时, 相对应 通常把表示 对应 _顶点的字母写在____ A 的位置上. D 2、如图△ABC≌ △ADE 若∠D=∠B, ∠C= ∠AED, 则∠DAE= ∠BAC ; ∠DAB= ∠EAC 。 B C
五、在找全等三角形的对应元素时一般 有什么规律? 有公共边的,公共边是对应边.
有公共角的,公共角是对应角.
有对顶角的,对顶角是对应角.
一对最长的边是对应边,
一对最短的边是对应边.
一对最大的角是对应角,
一对最小的角是对应角.
问题1: 观察图中的全等三角形应怎样表示?
△ ABC ≌△ DEF
注:记全等三角形时,通常把表示对应
顶点的字母写在对应的位置上.
全等三角形的四种判定方法
全等三角形的四种判定方法
1.SSS判定法(边-边-边):
SSS判定法是通过比较两个三角形的边长来判断它们是否全等。
当三
个边的长度完全相等时,两个三角形就是全等的。
这是最直观的方法,也
是最易判定的方法之一
2.SAS判定法(边-角-边):
SAS判定法是通过比较两个三角形的边长和夹角来判断它们是否全等。
当两个三角形的一对相邻边和它们之间的夹角相等时,这两个三角形就是
全等的。
3.ASA判定法(角-边-角):
ASA判定法是通过比较两个三角形的两个角度和它们之间的夹边来判
断它们是否全等。
当两个三角形的两个角度和它们之间的夹边相等时,这
两个三角形就是全等的。
4.AAS判定法(角-角-边):
AAS判定法是通过比较两个三角形的两个角度和一个非夹角边来判断
它们是否全等。
当两个三角形的两个角度和一个非夹角边相等时,这两个
三角形就是全等的。
这些判定方法都基于三角形的重要性质:对于两个全等的三角形,它
们的对应边长相等,对应角度相等。
因此,通过比较两个三角形的边长和
角度可以判断它们是否全等。
在实际应用中,这些判定方法可以用来解决各种问题,比如计算三角形的面积、寻找相似三角形等。
此外,全等三角形的概念也是其他几何学概念的基础,比如正方形和正五边形都是全等三角形的特殊情况。
综上所述,全等三角形的判定方法有四种:SSS、SAS、ASA和AAS。
通过比较边长和角度的相等性可以确定两个三角形是否全等。
这些方法在解决几何问题中非常有用,并且为其他几何学概念的理解提供了基础。
全等三角形知识点归纳
全等三角形知识点归纳一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
二、全等三角形的性质1、全等三角形的对应边相等也就是说,如果两个三角形全等,那么它们对应的边长度是相等的。
比如,三角形 ABC 全等于三角形 DEF,那么 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等同样,如果两个三角形全等,它们对应的角的度数也是相等的。
比如,∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的周长相等因为全等三角形的对应边相等,所以它们的周长也必然相等。
4、全等三角形的面积相等由于全等三角形完全重合,所以它们所覆盖的面积是一样的。
三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
例如:在三角形 ABC 和三角形 DEF 中,AB = DE,BC = EF,AC = DF,那么三角形 ABC 全等于三角形 DEF。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
比如:在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么三角形 ABC 全等于三角形 DEF。
3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
举例:在三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC 全等于三角形 DEF。
4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
例如:在三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,那么三角形 ABC 全等于三角形 DEF。
5、 HL(斜边、直角边)对于两个直角三角形,如果它们的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。
比如:在直角三角形 ABC 和直角三角形 DEF 中,∠C =∠F =90°,AB = DE,AC = DF,那么三角形 ABC 全等于三角形 DEF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.1 全等三角形
学习目标
1.知道什么是全等形、全等三角形及全等三角形的对应元素;
2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边.
学习重点
全等三角形的性质. 学习难点
找全等三角形的对应边、对应角. 学习方法:自主学习与小组合作探究 自主学习:
一.获取概念:
阅读教材P31-32页内容,完成下列问题:
(1)能够完全重合的两个图形叫做 ,则______________________
叫做全等三角形。
(2)全等三角形的对应顶点: 、对应角: 、对应边: 。
(3)“全等”符号: 读作“全等于”
(4)全等三角形的性质:
(5)如下图:这两个三角形是完全重合的,则△ABC △ A 1B 1C 1..点A 与 A 点是
对应顶点;点B 与 点 是对应顶点;点C 与 点 是对应顶点. 对应边:
对应角: 。
C 1
1A
B
A 1
二 观察与思考:
1.将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DBC ;将△ABC 旋转180°得△AED .
甲
D
C
A
B
F
E 乙
D
C
A
B 丙
D
C
A
B
E
议一议:各图中的两个三角形全等吗?
即 ≌△DEF ,△ABC ≌ ,△ABC ≌ .(书写时对应顶点字母写在对应的位置上)
启示:一个图形经过平移、翻折、旋转后,位置变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻求全等的一种策略. 2 . 说出乙、丙图中两个全等三角形的对应元素。
三、自学检测
1、如图1,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•则这两个三角形中相等的
边 。
相等的角 。
D C
A
B
O
D
C A
B
E D
C A
B
E
O
图1 图2 图3 图4
2如图2,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,指出其它的对应角
对应边:AB AE BE
3.已知如图3,△ABC ≌△ADE ,试找出对应边 对应角 .
4.如图4,,DBE ABC ∆≅∆AB 与DB ,AC 与DE 是对应边,已知:
30,43=∠=∠A B ,求BED ∠。
解:∵∠A+∠B+∠BCA=180 ( ),
30,43=∠=∠A B ( )
∴=
∵,DBE ABC ∆≅∆( )
∴∠BED=∠BCA= ( )
5.如图,三角形△ABC ≌△DEF. A=85°,∠B=60°,AB=8,EF=5,求∠DEF 的度数与DE 的长。
四、评价反思概括总结
找两个全等三角形的对应元素常用方法有:
1.两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法。
2.根据位置元素来找:有相等元素,它们就是对应元素,•然后再依据已知的对应元素找出其余的对应元素.
3.全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.
4.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
五.作业。