2020高考数学课时跟踪检测(五十六) 统计

合集下载

2020版高考数学(理)新创新一轮复习通用版课时跟踪检测(一)集合

2020版高考数学(理)新创新一轮复习通用版课时跟踪检测(一)集合

课时跟踪检测(一) 集合1 •已知集合M = {x|x2+ x—2 = 0}, N = {0,1},贝V M U N =( )A• {—2,0,1} B. {1}C • {0} D• ?解析:选A 集合M = {x|x2+ x —2 = 0} = {x|x =—2 或x= 1} = { —2,1}, N = {0,1},则M U N = { —2,0,1}.故选A.2. (2018 浙江高考)已知全集U = {1,2,3,4,5} , A = {1,3},则?u A=( )A. ?B. {1,3}C • {2,4,5} D. {1,2,3,4,5}解析:选 C ••• U= {1,2,3,4,5} , A= {1,3},二?u A= {2,4,5} •3.(2019 衡水模拟)已知集合A={x|y= x2—2x}, B= {y|y= x2+ 1},贝V An B =( )A • [1 ,+s ) B. [2 ,+s )C. ( — s, 0] U [2,+^ )D. [0,+s )解析:选B 由于集合A= {x|y= x2—2x}表示的是函数y= x2—2x的定义域,所以由x2—2x > 0可知集合A = {x|x< 0或x> 2}.集合B= {y|y= x2+ 1}表示的是函数y= x2+1的值域,因此B= {y|y> 1}.••• A n B= [2, + s).故选B.4. (2019河北五个一名校联考)若集合A= {x|3 + 2x —x2>0},集合B = {x|2x<2},则A n B 等于()A. (1,3)B. ( — s, —1)C • (—1,1)D • (—3,1)解析:选C 依题意,可求得 A = (—1,3), B= (—s, 1),• A n B= (—1,1).5. (2019 浙江五校联考)设全集U = R,集合A = {x|x> 3}, B = {x|0< x<5},则(?U A) n B =( )A. {x|0<x<3}B. {x|0< x w 3}C. {x|0<x w 3}D. {x|0< x<3}解析:选 D 由题意得?U A = {x|x<3},所以(?U A) n B= {x|0w x<3},故选 D.6. (2019 长沙模拟)已知集合A= {1,2,3} , B= {x|x2—3x + a = 0, a€ A},若A n B M ?, 则a的值为()A. 1B. 2C . 3D . 1 或2解析:选B 当a= 1时,x2—3x+ 1 = 0,无整数解,贝U An B= ?;当a= 2时,B = {1,2}, . n . U. n . UA nB = {1,2}工?;当 a = 3时,B = ?, A A B = ?.因此实数 a = 2.7.(2019 资阳模拟)设全集 U = R ,集合 A = {x|x 2— 2x — 3<0} , B = {x|x - 1> 0},则图中阴 影部分所表示的集合为()A. {x|x <— 1 或 x > 3}B. {x|x<1 或 x > 3}C. {x|x < 1}D. {x|x <— 1}解析:选D 图中阴影部分表示集合 U B = {x|x> — 1},二?U (A U B)= {x|x < — 1},故选 D.8. (2019石家庄重点高中毕业班摸底则 M A N =() A . ?C . [ — 2,2] 解析:选D 因为集合 M = {x|— 3< x w 3}, N = R ,所以M A N = [ — 3,3],故选D.9.设集合 A = {x|y = Ig(— x 2+ x + 2)} , B = {x|x — a>0},若 A ? B ,则实数 a 的取值范围 是()A . ( — rn,— 1)B . ( — m, — 1]C . ( — m,— 2)D . ( — m,— 2]解析:选 B 因为集合 A = {x|y = Ig(— x 2+ x + 2)} = {x|— 1<x<2}, B = {x|x>a},因为 A ? B ,所以 a < — 1.10.已知全集 U = {x|— 1<x<9} , A = {x|1<xva} , A 是U 的子集,若 A M ?,贝U a 的取值 范围是( )A . {a|a<9}B . {a|a w 9}C . {a|a > 9}D . {a|1<a w 9} 解析:选D 由题意知,集合 A M ?,所以a>1,又因为A 是U 的子集,故需a w 9,所 以a 的取值范围是{a|1<a w 9}.U (A U B),又 A = {x|— 1vx<3} , B = {x|x > 1}A2 2 r 、)已知集合 M = { x 氏 + \ = 1 },N 1j , B . {(3,0), (0,2)} D . [ — 3,3]11. 定义集合M与N的新运算:M ® N = {x|x € M或x€ N且x?M A N},则(M ® N) ® N =( ) . n . UC. MD. N解析:选C 按定义,M ® N表示图中的阴影部分,两圆内部的公共部分表示M A N.(M ® N)® N 应表示x€ M ® N 或x € N 且x? (M ® N)nN的所有x的集合,(M ® N)n N表示N上的阴影部分,因此(M ® N)® N = M.12. 某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这两项运动都不喜欢,则喜欢篮球运动但不喜欢乒乓球运动的人数为()A. 17B. 18C. 19D. 20解析:选B 记全集U为该班全体同学,喜欢篮球运动的记作集合A,喜欢乒乓球运动的记作集合B,则喜欢篮球但不喜欢乒乓球运动的记作A n ?U B(如图),故有18人.13. 设A= {1,4,2x}, B= {1, x },若B? A,贝U x= _________ .解析:由B? A,贝U x2= 4 或x2= 2x.得x= d2或x= 0,当x=- 2 时,A= {1,4, - 4}, B= {1,4},符合题意;当x= 2时,贝V 2x = 4,与集合的互异性相矛盾,故舍去;当x= 0时, A= {1,4,0} , B= {1,0},符合题意.综上所述,x=-2 或x= 0.答案:—2或014. 设集合A = {x|x + m>0}, B= {x| —2<x<4},全集U= R,且(?u A)n B= ?,则实数m的取值范围为__________ .解析:由已知A= {x|x> —m},「. ?U A= {x|x<—m}. v B = {x|—2<x<4} , (?u A)n B= ?, •••—m W—2, 即卩m> 2.「. m 的取值范围为{m|m> 2}.答案:{m|m> 2}15. ______________________________________________ 对于任意两集合A, B,定义A—B = {x|x € A且x?B}, A* B= (A—B) U但—A),记A= {y|y>0}, B = {x|—3< x W 3},贝U A*B = ___________________________________________________________ .解析:由题意知A—B= {x|x>3} , B— A = {x|—3W x<0},所以A*B= [ —3,0)U (3, + ).答案:[—3,0)U (3,+s )16. 设[x]表示不大于x的最大整数,集合A = {x|x2—2[x] = 3}, B=1 xgv2x<8 :则A n BAw解析:1因为不等式8<2x<8的解为一3<x<3 ,所以B = ( —3,3).若x € A n B ,则所以[x]只可能取值一3, —2, —1,0,1,2.若[x] W —2,则x2= 3 + 2[x]<0,没x2—2[x] = 3,—3<x<3,有实数解;若[x]=—1,贝U x2= 1,得x=—1;若[x] = 0,贝U x2= 3,没有符合条件的解;若[x] = 1,则x2= 5,没有符合条件的解;若[x] = 2,则x2= 7,有一个符合条件的解,x = 7.因此,A n B= {- 1, 7}.答案:{-1, .7}17. (2019 南阳模拟)若集合A= {(x, y)|x2+ mx-y+ 2= 0, x€ R}, B={(x, y)|x—y+ 1 =0,0W x w 2},当A n B M ?时,求实数m的取值范围.解:•••集合A = {(x, y)|x2+ mx—y+ 2 = 0, x€ R} = {(x, y)|y= x2+ mx + 2, x€ R} , B ={(x, y)|x—y+ 1= 0,0< x< 2} = {(x, y)|y= x + 1,0< x w 2},l y= x2+ mx+ 2,2••• A n B M ?等价于方程组在X € [0,2]上有解,即x2+ mx+ 2= x + 1ly= x +1在[0,2]上有解,即x2+ (m—1)x+ 1 = 0在[0,2]上有解,显然x= 0不是该方程的解,1从而问题等价于—(m—1) = x + -在(0,2]上有解.又•••当x€ (0,2]时,1+ x>2(当且仅当丄=x,即x= 1 时取“ =”),•一(m —1)>2, • m w —1,即m的取值范围为(一g,—1].18. 已知集合A= {x|x2—3x+ 2= 0}, B = {x|x2+ 2(a+ 1)x+ a2—5= 0}.(1) 若A n B= {2},求实数a的值;(2) 若A U B= A,求实数a的取值范围.解:(1) •/ A = {x|x2—3x+ 2= 0} = {1,2}, A n B = {2},•2€ B,2 是方程x2+ 2(a+ 1)x+ a2—5= 0 的根,•a2+ 4a + 3= 0, a=—1 或a=—3.经检验a的取值符合题意,故 a =— 1 或a=— 3.(2) •/ A U B= A, • B? A.当B= ?时,由△= 4(a+ 1)2—4(a2—5)<0 ,解得a<—3;当B M ?时,由B= {1}或B = {1,2},可解得a€ ?;由B= {2},可解得a = — 3.综上可知,a的取值范围是(―^ ,—3].。

新课改瘦专用2020版高考数学一轮复习课时跟踪检测五十八排列与组合

新课改瘦专用2020版高考数学一轮复习课时跟踪检测五十八排列与组合

课时跟踪检测(五十八)排列与组合一、题点全面练1.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为( )A.16 B.18C.24 D.32解析:选C 将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6(种)方法,再将捆绑在一起的4个车位插入4个空当中,有4种方法,故共有4×6=24(种)方法.2.(2019·惠州调研)旅游体验师小明受某网站邀请,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则小李可选的旅游路线数为( )A.24 B.18C.16 D.10解析:选D 分两种情况,第一种:最后体验甲景区,则有A33种可选的路线;第二种:不在最后体验甲景区,则有C12·A22种可选的路线.所以小李可选的旅游路线数为A33+C12·A22=10.3.(2019·开封模拟)某地实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科.学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为( ) A.6 B.12C.18 D.19解析:选D 从六科中选考三科的选法有C36种,其中不选物理、政治、历史中任意一科的选法有1种,因此学生甲的选考方法共有C36-1=19种.4.(2019·沈阳教学质量监测)若4个人按原来站的位置重新站成一排,恰有1个人站在自己原来的位置,则不同的站法共有( )A.4种B.8种C.12种 D.24种解析:选B 将4个人重排,恰有1个人站在自己原来的位置,有C14种站法,剩下3人不站原来位置有2种站法,所以共有C14×2=8种站法.5.从5名学生中选出4名分别参加数学、物理、化学、生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A.48 B.72C.90 D.96解析:选D 由于甲不参加生物竞赛,则安排甲参加另外3场竞赛或甲不参加任何竞赛.①当甲参加另外3场竞赛时,共有C13A34=72种选择方案;②当甲学生不参加任何竞赛时,共有A44=24种选择方案.综上所述,所有参赛方案有72+24=96(种).6.某班上午有五节课,分别安排语文、数学、英语、物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课方案的种数是( ) A.16 B.24C.8 D.12解析:选A 根据题意,分三步进行分析,①要求语文与化学相邻,将语文和化学看成一个整体,考虑其顺序,有A22=2种情况;②将这个整体与英语全排列,有A22=2种情况,排好后,有3个空位;③数学课不排第一节,有2个空位可选,在剩下的2个空位中任选1个,安排物理,有2种情况,则数学、物理的安排方法有2×2=4种,则不同排课方案的种数是2×2×4=16.7.(2019·洛阳第一次统考)某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法有________种.(用数字作答) 解析:第一步,选2名同学报名某个社团,有C23C14=12种报法;第二步,从剩余的3个社团里选一个社团安排另一名同学,有C13C11=3种报法.由分步乘法计数原理得共有12×3=36种报法.答案:368.(2018·莆田期中)某学校需从3名男生和2名女生中选出4人,分派到甲、乙、丙三地参加义工活动,其中甲地需要选派2人且至少有1名女生,乙地和丙地各需要选派1人,则不同的选派方法有________种.(用数字作答)解析:由题设可分两类:一是甲地只选派1名女生,先考虑甲地有C12C13种情形,后考虑乙、丙两地,有A23种情形,共有C12C13A23=36种情形;二是甲地选派2名女生,则甲地有C22种情形,乙、丙两地有A23种情形,共有C22A23=6种情形.由分类加法计数原理可知共有36+6=42种情形.答案:42二、专项培优练易错专练——不丢怨枉分1.已知I={1,2,3},A,B是集合I的两个非空子集,且A中所有元素的和大于B中所有元素的和,则集合A,B共有( )A.12对B.15对C.18对 D.20对解析:选D 依题意,当A,B中均有一个元素时,有3对;当B中有一个元素,A中有两个元素时,有C13+C13+C12=8(对);当B中有一个元素,A中有三个元素时,有3对;当B中有两个元素,A中有三个元素时,有3对;当A,B中均有两个元素时,有3对.所以共有3+8+3+3+3=20(对),选D.2.(2018·甘肃二诊)某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有( )A.18种B.24种C.36种 D.48种解析:选C 若甲、乙抢的是一个6元和一个8元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22A23=12种;若甲、乙抢的是一个6元和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22A23=12种;若甲、乙抢的是一个8和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22C23=6种;若甲、乙抢的是两个6元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A23=6种,根据分类加法计数原理可得,共有12+12+6+6=36种情况.A2,A3,A4,ON上有三点B1,3.如图,∠MON的边OM上有四点AB2,B3,则以O,A1,A2,A3,A4,B1,B2,B3为顶点的三角形个数为________.解析:用间接法.先从这8个点中任取3个点,最多构成三角形C38个,再减去三点共线的情形即可.共有C38-C35-C34=42(个).答案:424.将7个相同的小球放入4个不同的盒子中.(1)不出现空盒时的放入方式共有多少种?(2)可出现空盒时的放入方式共有多少种?解:(1)将7个相同的小球排成一排,在中间形成的6个空当中插入无区别的3个“隔板”将球分成4份,每一种插入隔板的方式对应一种球的放入方式,则共有C36=20种不同的放入方式.(2)每种放入方式相当于将7个相同的小球与3个相同的“隔板”进行一次排列,即从10个位置中选3个位置安排隔板,故共有C310=120种不同的放入方式.。

2020版高考数学一轮复习课时跟踪检测五函数及其表示含解析

2020版高考数学一轮复习课时跟踪检测五函数及其表示含解析

课时跟踪检测(五) 函数及其表示.(·重庆调研)函数=(-)+的定义域是( ).() .(,+∞).(,+∞) .()∪(,+∞)解析:选由题意,得(\\(->,-≠,))解得>且≠,所以函数=(-)+的定义域为()∪(,+∞),故选..(·合肥质量检测)已知函数()=(\\(+(-),>,+,≤,))则(())=( ).-...解析:选∵()=+=,∴(())=()=+=.故选..已知函数()=,()=-(∈).若(())=,则=( )....-解析:选由已知条件可知(())=(-)=-=,∴-=,得=.故选..(·荆州联考)若函数()的定义域是[ ],则函数()=的定义域是( ).[ ] .[)∪( ].( ] .[-)∪( ]解析:选由题知,≤+≤ ,解得≤≤ ,又≠,所以函数()=的定义域是[)∪(, ]..已知=-,且()=,则等于( ).-.-解析:选令=-,则=+,()=(+)-=-,故()=-,则()=-=,解得=..(·石家庄模拟)已知()=(\\(,>,+,≤))(<<),且(-)=,(-)=,则((-))=( ).-...-解析:选由题意得,(-)=-+=,①(-)=-+=,②联立①②,结合<<,得=,=,所以()=错误!则(-)=-+=,((-))=()==..(·福州二模)已知函数()=(\\(+,>,--,≤.))若()=,则(-)=( ) .-..-或.-或解析:选当>时,若()=,则+=,解得=(满足>);当≤时,若()=,则--=,解得=,不满足≤,舍去.于是,可得=.故(-)=()=--=-.故选..(·合肥质检)已知函数()满足()=(),且当≤<时,()=,则()=( ).解析:选∵()=(),且当≤<时,()=,∴()==×=..(·合肥模拟)已知()的定义域为{≠},且()+=+,则函数()的解析式为.解析:用代替()+=+中的,得+()=+,∴错误!①×-②×得()=-+(≠).答案:()=-+(≠).设函数()=(\\(-,<,,-,>,))若()>(-),则实数的取值范围是.解析:函数()=(\\(-,<,,-,>,))当>时,()>(-),即- > ,即 <,解得<<;当<时,()>(-),即(-)>-(-),即(-)>,解得<-.综上可得,<-或<<.答案:(-∞,-)∪()二、专项培优练(一)易错专练——不丢怨枉分.若函数=(+)的值域为[-],则函数=(+)的值域为( ).[-].[-].[].[]解析:选函数=(+)的值域为[-],由于函数中的自变量取定义域内的任意数时,函数的值域都为[-],故函数=(+)的值域为[-].故选..(·山西名校联考)设函数()=(-),则函数[()]的定义域为( ).(-).(-,+∞).[-,+∞).[-)解析:选[()]=[(-)]=[-(-)],其定义域为(\\(->,--))的解集,解得-<<,所以[()]的定义域为(-).故选..(·安阳三校联考)若函数()=的定义域为一切实数,则实数的取值范围是( ).().[).[].[,+∞)解析:选由题意可得++≥恒成立.当=时,≥恒成立;当≠时,则(\\(>,-≤,))解得<≤.综上可得,≤≤..(·珠海质检)已知函数()=(\\(-+,<,,≥))的值域为,则实数的取值范围是( ).(-∞,-]解析:选由题意知=(≥)的值域为[,+∞),故要使()的值域为,则必有=(-)+为增函数,且-+≥,所以->,且≥-,解得-≤<..(·合肥质检)已知函数()=的值域是[,+∞),则实数的取值范围是.解析:当=时,函数()=的值域是[,+∞),显然成立;当>时,Δ=(-)-≥,解得<≤或≥.显然<时不合题意.综上可知,实数的取值范围是[]∪[,+∞).答案:[]∪[,+∞)(二)技法专练——活用快得分.[排除法]设∈,定义符号函数=(\\(,>,,=,,-,<,))则( ).=.=.=.=解析:选当<时,=-,=,=,=(-)·(-)=,排除、、,故选..[特殊值法]函数=(>,≠)的定义域和值域都是[],则+=( )....解析:选当=时,=,则函数=在[]上为减函数,故>.∴当=时,=,则=,∴=.∴+===..[数形结合法]设函数()=(\\(+,≤,,>,))则满足()+(-)>的的取值范围是.解析:画出函数()的大致图象如图,易知函数()在(-∞,+∞)上单调递增.又因为>-,且-(-)=,()=,所以要使()+(-)>成立,则结合函数()的图象知只需->-,解得>.故所求的取值范围是(,+∞).答案:(,+∞)(三)素养专练——学会更学通.[逻辑推理]具有性质=-()的函数,我们称为满足“倒负”变换的函数,给出下列函数:①()=-;②()=+;③()=(\\(,<<,,=,,-(),>.))其中满足“倒负”变换的函数是( ).②③.①③.①②.①②③解析:选对于①,=-=-(),满足题意;对于②,=+=(),不满足题意;对于③,=(\\((),<()<,,()=,,-,()>,))即=(\\((),>,,=,,-,<<,))故=-(),满足题意.综上可知,满足“倒负”变换的函数是①③.故选..[数学运算]已知函数()=(\\(-,≤,-,>,))()=-,则(())=,(())的值域为.解析:()=-=,∴(())=()=.易得()的值域为(-,+∞),∴若-<()≤,(())=[()]-∈[-);若()>,(())=()-∈(-,+∞),∴(())的值域是[-,+∞).答案:[-,+∞).[数学抽象]设函数:→,满足()=,且对任意,∈都有(+)=()()-()-+,则( )=.解析:令==,则()=()·()-()-+=×--+=.令=,则()=()()-()-+,将()=,()=代入,可得()=+,所以( )= .答案:。

江苏专版2020版高考数学一轮复习课时跟踪检测五十六

江苏专版2020版高考数学一轮复习课时跟踪检测五十六

课时跟踪检测(五十六) 数学归纳法一保高考,全练题型做到高考达标1.用数学归纳法证明等式“1+2+3+…+(n +3)=n +n +2(n ∈N *) ”,当n =1时,等式应为___________________.答案:1+2+3+4=++22.利用数学归纳法证明“(n +1)(n +2) …(n +n )=2n×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是________.解析:当n =k (k ∈N *)时,左式为(k +1)(k +2) ·…·(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1),则左边应增乘的式子是k +k +k +1=2(2k +1).答案:2(2k +1)3.(2018·海门实验中学检测)数列{a n }中,已知a 1=1,当n ≥2时,a n -a n -1=2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是________.解析:计算出a 2=4,a 3=9,a 4=16.可猜想a n =n 2. 答案:a n =n 24.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为________. 解析:1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n n +2=n 2+n +22个区域.答案:f (n )=n 2+n +225.用数学归纳法证明不等式1+12+14+…+12n -1>12764成立,起始值应取为n =________.解析:不等式的左边=1-12n1-12=2-12n -1,当n <8时,不等式不成立,故起始值应取n =8.答案:86.平面内n (n ∈N *)个圆中,每两个圆都相交,每三个圆都不交于一点,若该n 个圆把平面分成f (n )个区域,则f (n )=________.解析:因为f (1)=2,f (n )-f (n -1)=2(n -1),则f (2)-f (1)=2×1,f (3)-f (2)=2×2,f (4)-f (3)=2×3,……,f (n )-f (n -1)=2(n -1),所以f (n )-f (1)=n (n -1),即f (n )=n 2-n +2.答案:n 2-n +27.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值.(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. 解:(1)由题意,S n =b n+r , 当n ≥2时,S n -1=bn -1+r . 所以a n =S n -S n -1=bn -1(b -1).由于b >0且b ≠1,所以当n ≥2时,{a n }是以b 为公比的等比数列. 又a 1=b +r ,a 2=b (b -1), 因为a 2a 1=b ,所以b b -b +r=b ,解得r =-1.(2)证明:当b =2时,由(1)知a n =2n -1,因此b n =2n (n ∈N *),故所证不等式为2+12·4+14·…·2n +12n >n +1.用数学归纳法证明如下:①当n =1时,左式=32,右式=2,左式>右式,所以不等式成立.②假设n =k (k ≥1,k ∈N *)时不等式成立, 即2+12·4+14·…·2k +12k>k +1, 则当n =k +1时,2+12·4+14·…·2k +12k ·2k +3k +>k +1·2k +3k +=2k +32k +1, 要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2,即证2k +32≥k +k +,由基本不等式, 得2k +32=k ++k +2≥k +k +,故2k +32k +1≥k +2成立,所以当n =k +1时,结论成立. 由①②可知,对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. 8.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n1-4a 2n(n ∈N *),且点P 1的坐标为 (1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. 解:(1)由题意得a 1=1,b 1=-1,b 2=-11-4×1=13,a 2=1×13=13,所以P 2⎝ ⎛⎭⎪⎫13,13. 所以直线l 的方程为y +113+1=x -113-1,即2x +y =1.(2)证明:①当n =1时,2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ≥1且k ∈N *)时,2a k +b k =1成立. 则2a k +1+b k +1=2a k ·b k +1+b k +1 =b k1-4a 2k ·(2a k +1)=b k 1-2a k =1-2a k1-2a k=1, 所以当n =k +1时,2a k +1+b k +1=1也成立.由①②知,对于n ∈N *,都有2a n +b n =1,即点P n 在直线l 上.9.已知数列{}a n ,当n ≥2时,a n <-1,又a 1=0,a 2n +1+a n +1-1=a 2n ,求证:当n ∈N*时,a n +1<a n .证明:(1)当n =1时,因为a 2是a 22+a 2-1=0的负根, 所以a 1>a 2.(2)假设当n =k (k ∈N *)时,a k +1<a k ,因为a 2k +1-a 2k =(a 2k +2+a k +2-1)-(a 2k +1+a k +1-1)=(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0,所以a 2k +1-a 2k >0,又因为a k+2+a k+1+1<-1+(-1)+1=-1,所以a k+2-a k+1<0,所以a k+2<a k+1,即当n=k+1时,命题成立.由(1)(2)可知,当n∈N*时,a n+1<a n.10.(2019·南京模拟)把圆分成n(n≥3)个扇形,设用4种颜色给这些扇形染色,每个扇形恰染一种颜色,并且要求相邻扇形的颜色互不相同,设共有f(n)种方法.(1)写出f(3),f(4)的值;(2)猜想f(n)(n≥3),并用数学归纳法证明.解:(1)当n=3时,第一个有4种方法,第二个有3种方法,第3个有2种方法,可得f(3)=24;当n=4时,第一个有4种方法,第二个有3种方法,第三个与第一个相同有1种方法,第四个有3种方法,或第一个有4种方法,第二个有3种方法,第三个与第一个不相同有2种方法,第四个有2种方法,可得f(4)=36+48=84.(2)证明:当n≥4时,首先,对于第1个扇形a1,有4种不同的染法,由于第2个扇形a2的颜色与a1的颜色不同,所以,对于a2有3种不同的染法,类似地,对扇形a3,…,a n-1均有3种染法.对于扇形a n,用与a n-1不同的3种颜色染色,但是,这样也包括了它与扇形a1颜色相同的情况,而扇形a1与扇形a n颜色相同的不同染色方法数就是f(n-1),于是可得f(n)=4×3n-1-f(n-1).猜想f(n)=3n+(-1)n·3(n≥3).①当n=3时,左边f(3)=24,右边33+(-1)3·3=24,所以等式成立.②假设当n=k(k≥3)时,f(k)=3k+(-1)k·3,则当n=k+1时,f(k+1)=4×3k-f(k)=4×3k-[3k+(-1)k·3]=3k+1+(-1)k+1·3,即当n=k+1时,等式也成立.综上,f(n)=3n+(-1)n·3(n≥3).二上台阶,自主选做志在冲刺名校1.(2019·无锡中学检测)将正整数排成如图所示的三角形数阵,记第n行的n个数之和为a n.(1)设S n=a1+a3+a5+…+a2n-1(n∈N*),计算S2,S3,S4的值,并猜想S n的表达式;(2)用数学归纳法证明(1)的猜想.解:(1)S 1=a 1=1,S 2=a 1+a 3=1+4+5+6=16,S 3=S 2+a 5=16+11+12+13+14+15=81, S 4=S 3+a 7=81+22+23+…+28=256,猜想S n =n 4.(2)证明:①当n =1时,猜想成立. ②假设当n =k (k ∈N *)时成立,即S k =k 4, 由题意可得,a n =⎣⎢⎡⎦⎥⎤n n -2+1+⎣⎢⎡⎦⎥⎤n n -2+2+…+⎣⎢⎡⎦⎥⎤n n -2+n=n ·n n -2+n n +2=n n 2+2,∴a 2k +1=k +k +2+1]2=(2k +1)(2k 2+2k +1)=4k 3+6k 2+4k +1,∴S k +1=S k +a 2k +1=k 4+4k 3+6k 2+4k +1=(k +1)4, 即当n =k +1时猜想成立,由①②可知,猜想对任意n ∈N *都成立.2.已知数列{a n }满足:a 1=1,a n +1=14a 2n -34na n +9n 2(n ∈N *).(1)计算a 2,a 3,a 4的值,猜想数列{a n }的通项公式,并给出证明; (2)当n ≥2时,试比较1a n +1a n +1+1a n +2+…+1a 2n与13的大小关系.解:(1)a 2=4,a 3=7,a 4=10, 猜想:a n =3n -2. 用数学归纳法证明:①当n =1时,a 1=1,结论成立.②假设当n =k (k ≥1,k ∈N *)时,结论成立,即a k =3k -2, 当n =k +1时,a k +1=14a 2k -34ka k +92k =14(3k -2)2-34k (3k -2)+92k =14(9k 2-12k +4)-94k 2+32k +92k =3k+1,所以当n =k +1时,结论也成立.由①②得数列{a n }的通项公式为a n =3n -2(n ∈N *). (2)由(1)知a n =3n -2,当n =2时,1a 2+1a 3+1a 4=14+17+110=69140>13,当n =3时,1a 3+1a 4+1a 5+…+1a 9=17+110+113+116+119+122+125 =17+⎝ ⎛⎭⎪⎫110+113+116+⎝ ⎛⎭⎪⎫119+122+125 >18+⎝ ⎛⎭⎪⎫116+116+116+⎝ ⎛⎭⎪⎫132+132+132 =18+316+332>18+316+116>13. 猜测:当n ≥2,n ∈N *时,1a n +1a n +1+1a n +2+…+1a 2n>13.用数学归纳法证明: ①当n =3时,结论成立,②假设当n =k (k ≥3,k ∈N *)时,1a k +1a k +1+1a k +2+…+1a 2k>13,则当n =k +1时,1a k +1+1ak ++1+1ak ++2+…+1a 2(1)k +=⎝⎛⎭⎪⎫1a k +1a k +1+1a k ++1+1ak ++2+…+1a 2k +⎝ ⎛⎭⎪⎫1a 21k ++1a 22k ++…+1a 2(1)k +-1a k >13+⎝ ⎛⎭⎪⎫1a 21k ++1a 22k ++…+1a 2(1)k +-1a k >13+2k +1k +2-2-13k -2=13+k +k --k +2-2]k +2-k -=13+3k 2-7k -3k +2-k -.由k ≥3,可知3k 2-7k -3>0, 所以3k 2-7k -3k +2-k ->0, 即1ak ++1ak ++1+1ak ++2+…+1a 2(1)k +>13.故当n =k +1时,不等式也成立,由①②可知,当n≥2时,1a n +1a n+1+1a n+2+…+1a2n>13.。

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

2020版高考数学一轮复习课时跟踪检测一集合含解析

2020版高考数学一轮复习课时跟踪检测一集合含解析

课时跟踪检测(一) 集合一、题点全面练1.已知集合M={x|x2+x-2=0},N={0,1},则M∪N=( )A.{-2,0,1} B.{1}C.{0} D.∅解析:选A 集合M={x|x2+x-2=0}={x|x=-2或x=1}={-2,1},N={0,1},则M∪N={-2,0,1}.故选A.2.设集合A={x|x2-x-2<0},集合B={x|-1<x≤1},则A∩B=( )A.[-1,1] B.(-1,1]C.(-1,2) D.[1,2)解析:选B ∵A={x|x2-x-2<0}={x|-1<x<2},B={x|-1<x≤1},∴A∩B={x|-1<x≤1}.故选B.3.设集合M={x|x=2k+1,k∈Z},N={x|x=k+2,k∈Z},则( )A.M=N B.M⊆NC.N⊆M D.M∩N=∅解析:选B ∵集合M={x|x=2k+1,k∈Z}={奇数},N={x|x=k+2,k∈Z}={整数},∴M⊆N.故选B.4.设集合U={1,2,3,4,5},A={2,4},B={1,2,3},则图中阴影部分所表示的集合是( )A.{4} B.{2,4}C.{4,5} D.{1,3,4}解析:选A 图中阴影部分表示在集合A中但不在集合B中的元素构成的集合,故图中阴影部分所表示的集合是A∩(∁U B)={4},故选A.5.(2018·湖北天门等三地3月联考)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )A.3 B.4C.5 D.6解析:选B a∈{1,2,3},b∈{4,5},则M={5,6,7,8},即M中元素的个数为4,故选B.二、专项培优练(一)易错专练——不丢怨枉分1.已知集合M ={x |y =lg(2-x )},N ={y |y =1-x +x -1},则( ) A .M ⊆N B .N ⊆M C .M =ND .N ∈M解析:选B ∵集合M ={x |y =lg(2-x )}=(-∞,2),N ={y |y =1-x +x -1}={0},∴N ⊆M .故选B.2.(2019·皖南八校联考)已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集个数为( )A .1B .3C .5D .7解析:选B 由⎩⎪⎨⎪⎧x 2=4y ,y =x 得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =4,y =4,即A ∩B ={(0,0),(4,4)}, ∴A ∩B 的真子集个数为22-1=3.3.已知集合P ={y |y 2-y -2>0},Q ={x |x 2+ax +b ≤0}.若P ∪Q =R ,且P ∩Q =(2,3],则a +b =( )A .-5B .5C .-1D .1解析:选A 因为P ={y |y 2-y -2>0}={y |y >2或y <-1}.由P ∪Q =R 及P ∩Q =(2,3],得Q =[-1,3],所以-a =-1+3,b =-1×3,即a =-2,b =-3,a +b =-5,故选A.4.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π4+π4,k ∈Z ,集合N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π8-π4,k ∈Z ,则( )A .M ∩N =∅B .M ⊆NC .N ⊆MD .M ∪N =M解析:选B由题意可知,M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k +π8-π4,k ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2n π8-π4,n ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2k π8-π4或x =k -π8-π4,k ∈Z ,所以M ⊆N ,故选B.5.(2018·安庆二模)已知集合A ={1,3,a },B ={1,a 2-a +1},若B ⊆A ,则实数a =( )A .-1B .2C .-1或2D .1或-1或2解析:选C 因为B ⊆A ,所以必有a 2-a +1=3或a 2-a +1=a . ①若a 2-a +1=3,则a 2-a -2=0,解得a =-1或a =2.当a =-1时,A ={1,3,-1},B ={1,3},满足条件; 当a =2时,A ={1,3,2},B ={1,3},满足条件. ②若a 2-a +1=a ,则a 2-2a +1=0,解得a =1,此时集合A ={1,3,1},不满足集合中元素的互异性,所以a =1应舍去. 综上,a =-1或2.故选C.6.(2018·合肥二模)已知A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R| 12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B.⎣⎢⎡⎦⎥⎤12,1C .⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)解析:选A 因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1.(二)难点专练——适情自主选7.(2018·日照联考)已知集合M =⎩⎨⎧⎭⎬⎫x| x 216+y 29=1,N =⎩⎨⎧⎭⎬⎫y | x 4+y 3=1,则M ∩N =( )A .∅B .{(4,0),(3,0)}C .[-3,3]D .[-4,4]解析:选D 由题意可得M ={x |-4≤x ≤4},N ={y |y ∈R},所以M ∩N =[-4,4].故选D.8.(2019·河南八市质检)在实数集R 上定义运算*:x *y =x ·(1-y ).若关于x 的不等式x *(x -a )>0的解集是集合{x |-1≤x ≤1}的子集,则实数a 的取值范围是( )A .[0,2]B .[-2,-1)∪(-1,0]C .[0,1)∪(1,2]D .[-2,0]解析:选D 依题意可得x (1-x +a )>0.因为其解集为{x |-1≤x ≤1}的子集,所以当a ≠-1时,0<1+a ≤1或-1≤1+a <0,即-1<a ≤0或-2≤a <-1.当a =-1时,x (1-x +a )>0的解集为空集,符合题意.所以-2≤a ≤0.9.已知集合A ={x |3≤3x≤27},B ={x |log 2x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 解:(1)∵3≤3x≤27,即31≤3x ≤33, ∴1≤x ≤3,∴A ={x |1≤x ≤3}.∵log2x>1,即log2x>log22,∴x>2,∴B={x|x>2}.∴A∩B={x|2<x≤3}.∴∁R B={x|x≤2},∴(∁R B)∪A={x|x≤3}.(2)由(1)知A={x|1≤x≤3},C⊆A.当C为空集时,满足C⊆A,a≤1;当C为非空集合时,可得1<a≤3.综上所述,实数a的取值范围是(-∞,3].。

2020版高考数学一轮复习课时跟踪检测十指数与指数函数含解析

2020版高考数学一轮复习课时跟踪检测十指数与指数函数含解析

课时跟踪检测(十)指数与指数函数、题点全面练=3 •20 = 3.0.故选D.法二:由图可知0v a v 1, f (x )的图象可由函数y = a x 的图象向左平移得到,故一 b > 0,则b v 0.故选D.1. 6 12的化简结果为(3 A. 2 B.C. 4 D .解析:1 原式=32•1-12 61 1• 4 6 ・3 61 1 -一+ — 3 32.函数f (x ) =a x —b 的图象如图所示,其中中正确的是(A. a >1, b v 0B. a >1, b > 0C. 0v a v 1,0 v b v 1D .0v a v 1, b v 0 解析:选D 法一:由题图可知 0v a v 1,当 x = 0 时,b € (0,1),故—b >0,得 b v3. 2化简4a 32 C aJ 23 b 3的结果为()A.2a 3bB .8a TC.D .6ab解析:选C6ab —1豊故选C.bB. 0v a v b v 1D. 1 v a v ba ,b 为常数,则下列结论4.设x> 0,且1 v b x v a x,则()A. 0v b v a v 1C. 1 v b v a解析:选C因为1v b x,所以b0v b x,因为X>0,所以b> 1,因为b x v a x,所以J x> 1,因为x> 0,所以a> 1,所以a> b,所以1 v b v a.故选C.b4 2 15. 已知a= (i⑵3, b= 25, c= 93,贝U a, b, c的大小关系是()A. b v a v cB. a v b v cC. b v c v aD. c v a v b4 1 ^4 2 2 1 2解析:选 A a= ( 2) 3= 22X3= 2空,b= 25, c = 9可=3了,2由函数y = x3在(0 ,+s)上为增函数,得a v c,由函数y = 2x在R上为增函数,得a>b,综上得c>a>b.故选A.6. 函数f (x) = a x+ b- 1(其中0v a v 1,且0v b v 1)的图象一定不经过()A. 第一象限B.第二象限C.第三象限D.第四象限解析:选C由0v a v 1可得函数y = a x的图象单调递减,且过第一、二象限,因为0 v b v 1,所以一1 v b- 1v 0,所以0v 1- b v 1,y= a x的图象向下平移1-b个单位即可得到y= a x+ b- 1的图象,所以y= a x+ b- 1的图象一定在第一、二、四象限,一定不经过第三象限.故选 C.■x1 —2-, x>0,7. 已知函数f(x)=< x 则函数f (x)是()|2 —1, x v 0,A. 偶函数,在[0,+^)单调递增B. 偶函数,在[0,+^)单调递减C. 奇函数,且单调递增D. 奇函数,且单调递减解析:选C 易知f(0) = 0,当x>0 时,f(x) = 1-2-x, -f(x) = 2-x- 1,此时一x v 0, 则f( —x) = 2-x- 1 = -f (x);当x v 0 时,f (x) = 2x- 1,- f (x) = 1- 2x,此时一x >0,则f( - x) = 1-2-( - x)= 1-2x=- f(x).即函数f (x)是奇函数,且单调递增,故选 C.2、x&二次函数y=—x - 4x(x>- 2)与指数函数y=- 的交点有()A. 3个C. 1个B. 2个D. 0个. _ 2 2解析:选 C 因为二次函数 y =— x -4x =— (x — 2) + 4(x >- 2),=—1 时,y =- x 2- 4x = 3,在坐标系中画出y =— x 2-4x ( x >- 2)与y = 2 %的大致图象, ◎ 由图可得,两个函数图象的交点个数是 1.故选C. 结合指数函数的图象及选项可知 A 正确.故选A.99.已知函数 f (x ) = x - 4+ x —- , x € (0,4) x — I,当x = a 时,f (x )取得最小值 b ,则函数g (x ) =a |x +b|的图象为()解析:选A 因为x € (0,4),所以x + 1 > 1,9 9所以 f (x )=x -4+不=x +1+石-5> 2当且仅当x =2时取等号,此时函数有最小值 所以 a = 2, b = 1,此时 g (x ) = 2lx +112x —1, x >- 1,曲)—1, X V - 1,此函数图象可以看作由函数 y = 空,x >0,E), X V 0 的图象向左平移1个单位得到.1,— J x —- 5 = 1,10•函数f(x) = £ j』+2x+1的单调递减区间为 ______________ .解析:设U=-x2+ 2x + 1,V y= 1 u在R上为减函数,•••函数f(x) = 1 —x2+2x+1的单调递减区间即为函数u=-x2+ 2x + 1的单调递增区间.2又u= —x + 2X+ 1的单调递增区间为(—g, 1], 「•f(x)的单调递减区间为(一g, 1].答案:(—g, 1]11.不等式12x2+axV 12x+a-2恒成立,则a的取值范围是2解析:由指数函数的性质知y= 1 x是减函数, 因为2宀“ V 22x+a-2恒成立, 所以x2+ ax> 2x + a—2恒成立,所以x2+ (a—2)x—a+ 2>0 恒成立, 所以△= (a—2)2—4( —a+ 2) V0,即(a —2)( a—2+ 4) V 0,即(a —2)( a+ 2) V0,故有一2 V a v 2,即a的取值范围是(一2,2). 答案:(一2,2)12.已知函数f(x)=(1)讨论f(x)的奇偶性;⑵求a的取值范围,使f(x) >0在定义域上恒成立. 解:(1)由于a —1工0,贝U a丰1,得X M0, 函数f (x)的定义域为{x| x M0}. 对于定义域内任意x,有1 1 3 =尸+2 x= f(x),•函数f(x)是偶函数.(2)由(1)知f(x)为偶函数,•••只需讨论x>0时的情况,当x>0时,要使f (x) >0, (1 1、3 则尸+1x> 0,a>0,且a^ 1). f( —x)=1 1(又••• x > 0,「. a > 1. •••当 a € (1 ,+s )时,f (x ) >0.二、专项培优练(一)易错专练一一不丢怨枉分1 .设y = f (x )在(—g, 1]上有定义,对于给定的实数K ,定义f K (X )= f x , f x W K ,x +1x…给出函数f (x ) = 2 — 4,若对于任意x € ( —g, 1],恒有f«x )K f x > K.=f (x ),则()A. K 的最大值为0B. K 的最小值为0C. K 的最大值为1D. K 的最小值为1解析:选D 根据题意可知,对于任意x € ( —g, 1],恒有f«x ) = f (x ),贝U f (x ) w K在x wi 上恒成立,即f (x )的最大值小于或等于 K 即可.令 2x = t ,则 t € (0,2] , f (t ) = — t 2+ 2t =— (t — 1)2+ 1,可得 f (t )的最大值为 1 , • K > 1,故选 D.j,得 b v 4.由 2a v b , 得 b >2a >2, a v 号v 2,故 1 v a v 2,2 v b v 4.对于选项A 、B,由于b 2— 4( b — a ) = (b — 2)2+ 4(a — 1) >0恒成立,故 A 错误,B 正确; 对于选项C, D, a — (b — a ) = a + 2 1 — b + ,由于1 v a v 2,2 v b v 4,故该式的符号不确 定,故C 、D 错误.故选B.3.设a >0,且a z 1,函数y = a 2x + 2a x — 1在[—1,1]上的最大值是14,求实数a 的值.解:令 t = a x ( a >0,且 a z 1),则原函数化为 y = f (t ) = (t + 1)2— 2(t >0).①当 0v a v 1, x € [ — 1,1]时,t = a x € |a , £ ,> 0,则 a x > 1.2.已知实数a ,b 满足》2a >b>j ,则()A. b v 2 b — aC. 解析:选B 由2> B. b >2 b — aD. a > b — a:得 a >1,由 2 a > bb> 4,得2,得>,故2a v b ,此时f(t)在a,1上为增函数.-a」所以f(t)max= f - = '+ 1 2— 2= 14.&丿'a丿所以「+ 1| = 16,解得a=—匸(舍去)或a=云.a 5 3②当a> 1 时,x€ [ —1,1] , t = a x€ I,a L」a」此时f(t)在1,a上是增函数.所以f(t)max= f(a) = (a+ 1)2—2= 14, 解得a= 3或a=—5(舍去).1 综上得a= 3或3.(二)交汇专练——融会巧迁移4.[与基本不等式交汇]设f (x) = e x,0 v a v b,若p= f ( ab) , q= ff b ,则下列关系式中正确的是(f aA. q= r v pB. p= r v qC. q= r > pD. p= r > qa +b —x解析:选 C ■/ 0v a v b, •••—厂 > ,ab,又f(x) = e 在(0 , +^)上为增函数,二f>f ( ab),即q> p.又r = f a f b =a —b5.[与一元二次函数交汇]函数2 x+ 1在区间[—3,2]上的值域是解析:令t = 2 x,因为x€ [—3,2],所以故y = t2—t + 1 =1 3当t = 2时,y min= 4;当t = 8 时,y max= 57.故所求函数的值域为3,57答案:I3, 574',r =6.[与函数性质、不等式恒成立交汇 ]已知定义域为 R 的函数f (x ) =—21[b 是奇函数.2+ a(1)求a , b 的值;2 2⑵若对任意的t € R,不等式f (t — 2t ) + f (2t — k ) v 0恒成立,求k 的取值范围.解:(1)因为f (x )是R 上的奇函数,—2 + 1从而有f (x ) = 2^—2 + 1又由 f (1) =— f ( — 1)知t+a (2)由(1)知 f (x ) = 2++^ — 2 + 2+1,由上式易知f (x )在R 上为减函数,又因为f (x )是奇函数,从而不等式f (t 2— 2t ) + f (2 t 2 —k ) v 0 等价于 f (t 2—2t ) v — f (2t 2— k ) = f ( — 2t 2+ k ).21从而△= 4 + 12k v 0,解得 k v — 3. 故k 的取值范围为所以f (0) = 0,即0,解得b = 1.1 —一+ 12 +因为f (x )是R 上的减函数,由上式推得 t 2— 2t >— 2t 2 + k .即对一切 t € R 有 3t 2— 2t — k > 0,。

(江苏专版)2020版高考数学(理)一轮复习:课时跟踪检测(12套,含答案)

(江苏专版)2020版高考数学(理)一轮复习:课时跟踪检测(12套,含答案)

( )5 25
25
则 g(t)max=g 2 = 8 ,所以 a≥ 8 ;
( ) 1 5 1 5 25 t+ 记 h(t)=2t2+2t=2 2 2- 8 ,
则 h(t)min=h(2)=7,所以 a≤7, 25
综上所述, 8 ≤a≤7.
[ ] 25 ,7 所以实数 a 的取值范围是 8 .
三上台阶,自主选做志在冲刺名校
3 k+α=2.
3 答案:2
2.(2019·连云港调研)若函数 f(x)=-x2+2(a-1)x+2 在(-∞,4)上为增函数,
则 a 的取值范围是________.
解析:∵f(x)=-x2+2(a-1)x+2 的对称轴为 x=a-1,
f(x)=-x2+2(a-1)x+2 在(-∞,4)上为增函数,
=2x+b 的“关联区间”是[-3,0],则 b 的取值范围是________.
1 解析:由题意设 m(x)=f(x)-g(x)=3x3-x2-3x-b, 则 m′(x)=x2-2x-3,
由 m′(x)=0,得 m=-1 或 m=3.
∵f(x)与 g(x)在[-3,0]上是“关联函数”,
∴x=-1 是函数 m(x)在[-3,0]上的极大值,同时也是最大值.
________.
解析:不等式 x2-4x-2-a>0 在区间(1,4)内有解等价于 a<(x2-4x-2)max, 令 f(x)=x2-4x-2,x∈(1,4),
所以 f(x)<f(4)=-2,所以 a<-2.
答案:(-∞,-2)
4.(2018·泰州中学调研)已知 f(x)是定义在 R 上的奇函数,当 x<0 时,f(x)
1.(2019·金陵中学期中)设 f(x)与 g(x)是定义在同一区间[a,b]上的两个函数,若

浙江专版2020版高考数学一轮复习课时跟踪检测一集合含解析

浙江专版2020版高考数学一轮复习课时跟踪检测一集合含解析

课时跟踪检测(一)集合一抓基础,多练小题做到眼疾手快.(·浙江考前热身联考)已知集合={=},={-<<},则∪=( ).[) .(-).(-] .(-∞,]∪(,+∞)解析:选法一:易知={≤≤},又={-<<},所以∪=(-].故选.法二:取=,则∈,所以∈∪,排除、;取=,则∉∉,所以∉∪,排除,故选..(·浙江三地联考)已知集合={<},={-≤≤},则∩=( ).[-) .(-).(-] .[-]解析:选由<,可得-<<,所以={-<<},所以∩=[-)..(·嘉兴期末测试)已知集合={<},={>},则( ).⊆.⊆.⊆∁.∁⊆解析:选由已知可得∁=[,+∞),所以∁⊆.故选..(·浙江吴越联盟第二次联考)已知集合={},={},=∩,则的子集有个.解析:集合={},={},=∩={},则的子集有∅,{},{},{},共个.答案:.已知集合={≥},={≥},且∪=,则实数的取值范围是.解析:因为集合={≥},={≥},且∪=,所以⊆,如图所示,所以≥.答案:[,+∞)二保高考,全练题型做到高考达标.(·杭州七校联考)已知集合={>},={(-)(-)=},则集合∩中的元素个数为( ) ....解析:选={<-或>},={-,-},∩={-},故选..(·浙江六校联考)已知集合={=},={=},={=-}则∩(∁)=( ).∅..{>} .{}解析:选由题意得,=,={>},因为=-<,所以={<},所以∁={≥},故∩(∁)={>}.故选..(·永康模拟)设集合={--≥},={-<<},则( ).⊆.⊆.∪=.∩=∅解析:选由--≥,解得≥或≤-,所以={≤-或≥},所以∪=..(·宁波六校联考)已知集合={-<},={,},且∩有个子集,则实数的取值范围是( ).() .()∪().() .(-∞,)∪(,+∞)解析:选∵∩有个子集,∴∩中有个不同的元素,∴∈,∴-<,解得<<且≠,即实数的取值范围是()∪(),故选..(·镇海中学期中)若集合=,={<},则∪=( ).() .().(-∞,) .(,+∞)解析:选集合=={<<},={<}.∪={<}=(-∞,).故选..设集合={--≤},={<,且∈},则∩=.解析:依题意得={(+)(-)≤}={-≤≤},因此∩={-≤<,∈}={-}.答案:{-}.(·嘉兴二模)已知集合={-≤≤},={-≤},则∪=,∩(∁)=.解析:因为={-≤}={≤≤},所以∪={-≤≤};因为∁={<或>},所以∩(∁)={-≤<}.答案:{-≤≤}{-≤<}.设集合={(,)≥-,≥},={(,)≤-+},∩≠∅.()的取值范围是;()若(,)∈∩,且+的最大值为,则的值是.解析:由图可知,当=-往右移动到阴影区域时,才满足条件,所以≥;要使=+取得最大值,则过点(,),有+=⇒=.答案:()[,+∞)().已知集合={≤≤},=[,],若⊆,则实数-的取值范围是.解析:集合={≤≤}={≤≤}={≤≤}=[],因为⊆,所以≤,≥,所以-≤-=-,即实数-的取值范围是(-∞,-].答案:(-∞,-].已知集合={(+)(-+)<},其中∈,集合=.()若⊆,求实数的取值范围;()若∩=∅,求实数的取值范围.解:()集合=={-<<}.当=∅时,=,不符合题意.当≠∅时,≠.①当-<-,即>时,={-<<-},又因为⊆,所以(\\(>(),,-≤-,-≥,))即(\\(>(),≥,≥,))所以≥.②当->-,即<时,={-<<-},又因为⊆,所以(\\(<(),,-≥,-≤-,))即(\\(<(),≤-(),≤,))所以≤-.综上所述,实数的取值范围为∪[,+∞).()由()知,={-<<}.当=∅时,=,符合题意.当≠∅时,≠.①当-<-,即>时,={-<<-},又因为∩=∅,所以-≥或者-≤-,即≤-或者≤,所以<≤.②当->-,即<时,={-<<-},又因为∩=∅,所以-≥或者-≤-,即≥或者≥,所以≤<.综上所述,实数的取值范围为[].三上台阶,自主选做志在冲刺名校.对于复数,,,,若集合={,,,}具有性质“对任意,∈,必有∈”,则当(\\(=,=,=))时,++等于( )..-..解析:选∵={,,,},由集合中元素的互异性可知当=时,=-,=-,∴=±,由“对任意,∈,必有∈”知±∈,∴=,=-或=-,=,∴++=(-)+=-..对于集合,,定义-={∈,且∉},⊕=(-)∪(-),设=,={<,∈},则⊕=( )∪[,+∞) ∪(,+∞)解析:选依题意得-={≥,∈},-=错误!,故⊕=错误!∪[,+∞).故选..已知函数()=-的定义域为集合,且={∈<<},={∈<或>+}.()求:和(∁)∩;()若∪=,求实数的取值范围.解:()要使函数()=-,应满足-≥,且->,解得≤<,则={≤<},得到∁={<或≥},而={∈<<}={},所以(∁)∩={}.()={∈<或>+},要使∪=,则有≥,且+<,解得≤<.故实数的取值范围为[).。

2020届高考数学一轮总复习课时跟踪练(五十六)椭圆的概念及其性质(基础课)理(含解析)新人教A版

2020届高考数学一轮总复习课时跟踪练(五十六)椭圆的概念及其性质(基础课)理(含解析)新人教A版

课时跟踪练(五十六)A 组 基础巩固1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A .4B .3C .2D .5解析:由题意知,在△PF 1F 2中,|OM |=12|PF 2|=3,所以|PF 2|=6,所以|PF 1|=2a -|PF 2|=10-6=4. 答案:A2.(2019·凉山州模拟)以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点,则该椭圆的离心率是( )A.13B.33C.34D.223解析:不妨令椭圆方程为x 2a 2+y 2b2=1(a >b >0).因为以椭圆短轴为直径的圆经过此椭圆的长轴的两个三等分点, 所以2b =2a3,即a =3b ,则c =a 2-b 2=22b , 则该椭圆的离心率e =c a =223.故选D.答案:D3.(2019·武汉模拟)曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等解析:曲线x 225+y 29=1表示焦点在x 轴上的椭圆,其长轴长为10,短轴长为6,焦距为8,离心率为45.曲线x 225-k +y29-k =1(k <9)表示焦点在x 轴上的椭圆,其长轴长为225-k ,短轴长为29-k ,焦距为8,离心率为425-k .对照选项,知D 正确.故选D. 答案:D4.(2019·德阳模拟)设P 为椭圆C :x 249+y 224=1上一点,F 1、F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( )A .24B .12C .8D .6解析:因为P 为椭圆C :x 249+y 224=1上一点,|PF 1|∶|PF 2|=3∶4,|PF 1|+|PF 2|=2a =14, 所以|PF 1|=6,|PF 2|=8,又因为|F 1F 2|=2c =249-24=10,所以易知△PF 1F 2是直角三角形,S △PF 1F 2=12|PF 1|·|PF 2|=24,因为△PF 1F 2的重心为点G ,所以S △PF 1F 2=3S △GPF 1, 所以△GPF 1的面积为8,故选C. 答案:C5.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,若P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8解析:由题意知,O (0,0),F (-1,0),设P (x ,y ),则OP →=(x ,y ),FP →=(x +1,y ),所以OP →·FP →=x (x +1)+y 2=x 2+y 2+x .又因为x 24+y 23=1,所以y 2=3-34x 2,所以OP →·FP →=14x 2+x +3=14(x +2)2+2.因为-2≤x ≤2,所以当x =2时,OP →·FP →有最大值6. 答案:C6.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P (-5,4),则椭圆的标准方程为________.解析:由题意设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由离心率e =55可得a 2=5c 2,所以b 2=4c 2,故椭圆的方程为x 25c 2+y 24c 2=1,将P (-5,4)代入可得c 2=9,故椭圆的方程为x 245+y 236=1.答案:x 245+y 236=17.如图,椭圆x 2a 2+y 22=1的左、右焦点分别为F 1、F 2,点P 在椭圆上,若|PF 1|=4,∠F 1PF 2=120°,则a 的值为________.解析:由题意知|F 1F 2|=2a 2-2,因为|PF 1|=4,|PF 1|+|PF 2|=2a ,所以|PF 2|=2a -4,在△F 1PF 2中,由余弦定理得cos 120°=42+(2a -4)2-(2a 2-2)22×4×(2a -4)=-12,化简得8a =24,即a =3.答案:38.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.解析:满足MF →1·MF →2=0的点M 的轨迹是以F 1F 2为直径的圆,若点M 总在椭圆内部,则有c <b ,即c 2<b 2,又b 2=a 2-c 2,所以c 2<a 2-c 2,即2c 2<a 2,所以e 2<12,又因为0<e <1,所以0<e <22. 答案:⎝ ⎛⎭⎪⎫0,22 9.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0). (1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.解:(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),依题意得⎩⎪⎨⎪⎧2a =10,c =3,a 2=b 2+c 2,因此a =5,b =4,所以椭圆的标准方程为x 225+y 216=1.(2)易知|y P |=4,又c =3,所以S △F 1PF 2=12|y P |×2c =12×4×6=12.10.已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率; (2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形, 所以有|OA |=|OF 2|,即b =c . 所以a =2c ,e =c a =22. (2)由题知A (0,b ),F 1(-c ,0),F 2(c ,0),其中c =a 2-b 2, 设B (x ,y ). 由AF 2→=2F 2B →,得(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b 2,即B ⎝ ⎛⎭⎪⎫3c 2,-b 2.将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1,解得a 2=3c 2.①又由AF 1→·AB →=(-c ,-b )·⎝ ⎛⎭⎪⎫3c2,-3b 2=32,得b 2-c 2=1,即有a 2-2c 2=1.② 由①②解得c 2=1,a 2=3,从而有b 2=2. 所以椭圆的方程为x 23+y 22=1.B 组 素养提升11.(2019·衡水中学二调)设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( )A .8B .10C .12D .15解析:由椭圆方程x 216+y 212=1,可得c 2=4,所以|F 1F 2|=2c =4,而F 1F 2→=PF 2→-PF 1→,所以|F 1F 2→|=|PF 2→-PF 1→|,两边同时平方,得|F 1F 2→|2=|PF 1→|2-2PF 1→·PF 2→+|PF 2→|2,所以|PF 1→|2+|PF 2→|2=|F 1F 2→|2+2PF 1→·PF 2→=16+18=34,根据椭圆定义,得|PF 1|+|PF 2|=2a =8,(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=64,所以34+2|PF 1|·|PF 2|=64,所以|PF 1|·|PF 2|=15.故选D.答案:D12.(2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)解析:当0<m <3时,椭圆C 的长轴在x 轴上, 如图(1),A (-3,0),B (3,0),M (0,m ).图(1)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB ≥120°,则|MO |≤1,即0<m ≤1;当m >3时,椭圆C 的长轴在y 轴上,如图(2),A (0,m ),B (0,-m ),M (3,0).图(2)当点M 运动到短轴的端点时,∠AMB 取最大值,此时∠AMB ≥120°,则|OA |≥3,即m ≥3,即m ≥9.综上,m ∈(0,1]∪[9,+∞),故选A. 答案:A13.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F 2,若13<k <12,则椭圆的离心率的取值范围是________.解析:如图所示,|AF 2|=a +c ,|BF 2|=a 2-c 2a,所以k =tan ∠BAF 2=|BF 2||AF 2|=a 2-c 2a a +c =a -ca=1-e .又因为13<k <12,所以13<1-e <12,解得12<e <23.答案:⎝ ⎛⎭⎪⎫12,23 14.如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且AF →·FB →=1,|OF →|=1.(1)求椭圆的标准方程;(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM 的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则c =1.因为AF →·FB →=1,即(a +c )(a -c )=1=a 2-c 2, 所以a 2=2,故椭圆方程为x 22+y 2=1.(2)假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,则设P (x 1,y 1),Q (x 2,y 2),因为M (0,1),F (1,0),故k PQ =1,于是可设直线l 的方程为y =x +m .联立⎩⎪⎨⎪⎧y =x +m ,x 2+2y 2=2,得3x 2+4mx +2m 2-2=0, 则x 1+x 2=-4m 3,x 1x 2=2m 2-23.因为MP →·FQ →=0=x 1(x 2-1)+y 2(y 1-1), 又y i =x i +m (i =1,2),得x 1(x 2-1)+(x 2+m )(x 1+m -1)=0, 即2x 1x 2+(x 1+x 2)(m -1)+m 2-m =0, 所以2·2m 2-23-4m 3(m -1)+m 2-m =0,解得m =-43或m =1(舍去).经检验m =-43符合条件,所以直线l 的方程为y =x -43.故存在直线l ,使得点F 恰为△PQM 的垂心,此时l 的方程为y =x -43.。

新课改专用2020版高考数学一轮复习课时跟踪检测五十二直线与圆锥曲线含解析

新课改专用2020版高考数学一轮复习课时跟踪检测五十二直线与圆锥曲线含解析

课时跟踪检测(五十二)直线与圆锥曲线1.过抛物线y 2= 2x 的焦点作一条直线与抛物线交于 A , B 两点,它们的横坐标之和等 于2,则这样的直线( )A.有且只有一条 B .有且只有两条C.有且只有三条D .有且只有四条p解析:选 B 设该抛物线焦点为 F , A (X A , y A ) , B (X B , y B ),则 | AB = I AF + I FB = X A + 2 + X B + p = X A + X B + 1 = 3 >2p = 2.所以符合条件的直线有且只有两条.2. (2019 •张掖高三诊断)过抛物线y 2= 4x 的焦点F 的直线I 与抛物线交于 A, B 两点,10若A, B 两点的横坐标之和为 y ,则| AB =()16D.716 3.3. (2018 •聊城二模)已知直线I 与抛物线C: y 2= 4x 相交于A , B 两点,若线段 AB 的 中点为(2,1),则直线I 的方程为()B . y =— 2x + 5D . y = 2x — 3解析:选 D 设 A (X 1, y 1) ,B(X 2,y 2),则有卩2—仪,② ①—②得 y 2— y 2= 4(X 1 — X 2), y 2= 4X 2,②2x — y — 3 = 0.故选 D.2 24.(2oi9 •厦门模拟)过双曲线c :x —中=i 的左焦点作倾斜角为nn 的直线I ,则直线i 与双曲线C 的交点情况是()A. 没有交点B. 只有一个交点C. 有两个交点且都在左支上1314B.TC. 5解析:选D 过抛物线的焦点的弦长公式为10| AE | = p + X 1 + X 2. T p = 2, • | AB = 2+ —=3A. y = x — 1C. y = — x + 3 V i由题可知 X i M X 2. — X i —X 22,即卩k AB = 2,.・.直线l 的万程为y — 1 = 2( X — 2),即D. 有两个交点分别在左、右两支上2 2X Vx + 13),代入 C :N —"9 = 1,整理得 23X 2- 8 .13X - 160 = 0, △= ( — 8 13) 2+ 4X 23 X 160> 0,所以直线I 与双曲线C 有两个交点,由一元 二次方程根与系数的关系得两个交点横坐标符号不同,故两个交点分别在左、右两支上.5. 已知抛物线 y = — X +3上存在关于直线 x + y = 0对称的相异两点 A, B,则| AB =( )A .3 B .4 C .3 2D .4 2、, ______2 2解析:选C 由题意可设I AB 为y = x + b ,代入y =— X + 3得X + x + b — 3 = 0,设A (X 1, V 1) , B (X 2,y 2),贝U X 1 + X 2=— 1, X 1X 2= b — 3, y 1+ y 2= X 1+ b + X 2+ b =— 1 + 2b .所以 AB 中点一 f 1 1 「 1 f 1 、坐标为 j — 2, — 2 + b ,该点在 x + y = 0 上,即一 + I — 2 + b = 0,得 b = 1,所以 | AB = 1 + 12 • 一 X 1 + X 2 2— 4X 1X 2= 3 2.6. (2019 •青岛模拟)已知点A 是抛物线C : X 2= 2py (p >0)的对称轴与准线的交点,过 点A 作抛物线C 的两条切线,切点分别为P , Q,若A AF Q 的面积为4,贝U p 的值为()1 A.2 B . 13C ・2D . 22—2pkx + p = 0,由△= 4k 2p 2 — 4p 2= 0,可得 k =± 1, 则 Qp , pj, P [-p ,1•••△ AP Q 的面积为 X2pX p = 4,••• p = 2.故选 D.2 2X y7.已知双曲线 C:二—2= 1(a > 0, b >0),过点P (3,6)的直线l 与C 相交于A , B 两点,a b且AB 的中点为N (12,15),则双曲线C 的离心率为( )解析:选D 直线I 的方程为解析:选 y = kx —2,D 设过点A 与抛物线相切的直线方程为 y = kx —2.由$山2= 2py得X 23A. 2B. -2解析:选 B 设 A (x i , y i ) , B (X 2, y 2),由 AB 的中点为 N (12 , 15),得 X i + X 2= 24,屮+ y 2= 30,2 2 X i y ia 2—b 2 =1,X 2 y 2a 2 -b 2=i , 两式相减得:X i + X 2X i —Xy i + y 2 y i — y 2y i — y 2 X i —X b 2 X i + X 2 4b 2 a ~~y i+ y 2 ■=盲. 由直线AB 的斜率k == i ,、 c b 2 3 曲线的离心率 e = a = i + &2= 2-& (20i9 •福州模拟)已知抛物线E: y 2= 2px (p > 0)的焦点为F ,过F 且斜率为i 的直 线交E 于A B 两点,线段 AB 的中点为 M 线段AB 的垂直平分线交 X 轴于点C, MN L y 轴于 点N,若四边形CMN 的面积等于7,则E 的方程为( A2 A. y = x 2B . y = 2x2 …C. y = 4xD . y 2= 8x解析:选C F$, 0 j,直线AB 的方程为y = x — 2.__ 2y = 2px ,联立得方程组py =x —222p可得 x — 3px + : = 0,设 A (x i, y i ) , B (X 2, y 2),则 X i + X 2= 3p , 则 y i + y 2 = x i + X 2— p = 2p ,••• M§p , p ,••• N O , p ),直线 MC 的方程为 y =— x + 乎. ,0,•四边形CMNI 的面积为S 梯形 OCM — S A ONF = 又p >0, • p = 2,即抛物线E 的方程为y 2= 4x .故选C.2 2x y9. (20i8 •湖北十堰二模)如图,F i , F 2是双曲线 C : - — 2= i (a > a b 0 , b >0)的左、右焦点,过 F i 的直线I 与C 的两个分支分别交于点A ,B 若厶ABF 为等边三角形,则双曲线的离心率为( )A. 4B. ,7解析:选B •••△ABF为等边三角形,•••原点到直线的距离0=咼1,2 2 y = kx + m• m = 1 + k,由f 2 2 得(1|x —y = 1—k2) x2—2mkx- ( m+1) = 0,『1 —k2M 0,'A = 4mF+4 i- k2m+i 11+m X1X2= 2- v 0, i k —1=4 m+1 —k2• k2v 1,2•/ 0< k v 1,•••当k2= 0时,X2—X1取最小值2 2.故选A.11. (2019 •安庆模拟)设抛物线x2= 4y的焦点为F,点A, B在抛物线上,且满足刁F =_ 3 入_B,若| _F| = 2,贝y入的值为 ______ .解析:设A(X1, y1), B(X2, y2),由抛物线x2= 4y得焦点F的坐标为(0,1),•••I A B = |AF2| =|BF2|,/ F1AF = 60°.由双曲线的定义可得| AF| —| AF2| = 2a,•| BF| = 2a.又| BF2| —| BF| = 2a,「. | BF| = 4a.•••|AF = 4a, |AF| = 6a.在厶AFR中,由余弦定理可得|F i F2|2=|A冋2+ |A冋2—2| AR|AF|cos 60 ° ,•(2C)2= (6 a)2+ (4a)2—2X4 a x6a x1,即c2= 7a2,10. (2019 •贵阳模拟)已知双曲线X2—y2= 1的左、右顶点分别为A, A,动直线l : y =kx + m 与圆x2+ y2= 1相切,且与双曲线左、右两支的交点分别为P(X1, y" , F2(X2 , y2), 则X2 —X1的最小值为()A. 2 2C. 4解析:选A ■/ l与圆相切,a=<7.故选B .c e=一a由于刘+X2= 1—k>,• X2 —X1 = V X1 + X2准线方程为y =— 1,•••| ^AF | = 3,•••屮+ 1 = I ,解得 y = 2, ••• X 1 = ± , 2,由抛物线的对称性取 X 1= 2,—述x + 1,,1,•直线AF 的方程为y =4y =-¥x +1,由*:x2=解得$x^/2,;1y= 2或 $ = — 2"y=2,•- B ( -2 2, 2)| "F B | = 2 + 1 = 3,-- > ------ > ------ > -------- > ••• AF =入 FB , • | AF | =入 | FB | , •3入,解得入=2 x 212.(2019 •武汉调研)已知直线MN 过椭圆2 + y = 1的左焦点F ,与椭圆交于 M N 两点.直 线P Q 过原点0且与直线MN 平行,直线P Q 与椭圆交于P, Q 两点,则普MN解析:法一:由题意知,直线 MN 的斜率不为0,设直线MN 的方程为x = m 什1,则直线fx = my+ 1,F Q 的方程为 x = my 设 Mx 1, yj , N (X 2, y ?), F (x 3 , y 3), Q(X 4, y 4). f x 2 212 + y = 122m1+ 2)y + 2my-1 = 0?w + y 2= — m ^2,中屮一 ^^2.m 1•“MN = ,1 + m | y 1 — y 2| = 2#2 •吊十? x = my x 2 2 ?(m + 2) y 2— 2 = 0? y 3 + y 4= 0 ,月割A2+y =12 m + 2.•••|P Q|=1 + 吊|『3— y 4| =2 2m +1 m + 2.法二:取特殊位置,当直线 MN 垂直于x 轴时,易得|MN = 2b = ,2, |F Q| = 2b = 2,则 a答案:2 213. (2019 •石家庄重中高中摸底 )已知抛物线 C : y 2= 2px (p > 0),直线l : y = 3(x —答案:214. (2018 •深圳二模)设过抛物线y 2= 2px (p > 0)上任意一点R 异于原点O 的直线与抛 物线y 2 =8px ( p > 0)交于代B 两点,直线 OP 与抛物线y 2= 8px ( p > 0)的另一个交点为 Q 则 & ABQ ABO 解析:设直线 OP 的方程为y = kx (k z 0),y = kx , 联立得彳2 l y = 2px ,y= kx ,联立得t 2l y = 8px , •••I OP =答案:3215. 已知抛物线E : y = 2px ( p >0)的焦点F , E 上一点(3 , m )到焦点的距离为4.(1) 求抛物线E 的方程;(2) 过F 作直线l ,交抛物线E 于A , B 两点,若直线 AB 中点的纵坐标为—1,求直线l 的方程. 1),l 与C 交于A , B 两点,若| AB =罟,则.2y = 2px ,解析:由 $=申 x —1 , 2消去 y ,得 3x — (2p + 6)x + 3= 0,设 A (x i , y i ) , B (X 2,y 2),由根与系数的关系,得 x i + X 2 = 2p + 63X i X 2= 1,所以 | AB = 2 X i + X 2 2— 4x i X 2= 2164=专,所以p = 2.p+69S^AB2| P Q|& ABO | OP解:(1)抛物线E:y2= 2px(p>0)的准线方程为x = —2,由抛物线的定义可知 3 —[ 2) = 4, 解得p = 2,二抛物线E 的方程为y 2 = 4x .⑵法一:由⑴得抛物线E 的方程为y = 4x ,焦点F (1,O), 设A , B 两点的坐标分别为 A (x i , y i ) , 0X 2, y 2), 则两式相减,整理得y —y = 4—(x i X 2).X 2 — X i y 2+ y i•••线段AB 中点的纵坐标为一i ,•直线 I 的方程为 y — 0=— 2(x — i),即 2x + y — 2 = 0. 法二:由⑴ 得抛物线E 的方程为y 2= 4x ,焦点F (i,0), 设直线I 的方程为x = my^ i ,设A B 两点的坐标分别为 A (x i , y i ), B (X 2, y 2),•••线段AB 中点的纵坐标为一i , y i + y 2~2•直线I 的方程为x = — i y + i ,即2x + y — 2 = 0.i6. (20i9 •佛山模拟)已知直线I 过点F (2,0)且与抛物线 E y 2= 4x 相交于A , B 两点, 与y 轴交于点C,其中点A 在第四象限,O 为坐标原点.(i)当A 是PC 中点时,求直线I 的方程;⑵ 以AB 为直径的圆交直线 OB 于点D,求| OB •丨OD 的值.解:(1) ••• A 是PC 的中点,P (2,0) , C 在y 轴上,• A 点的横坐标为1,又A 在第四象限,• A (i , — 2).•直线I 的方程为y = 2x — 4.(2)显然直线I 的斜率不为0,x = my^ 2, 设I 的方程为x = my+ 2, A (x i , y i ) , B (X 2, y 2),联立得方程组2 消去xl y = 4x , 得 y 2 — 4my- 8= 0,y 2 = 4x i , y 2 = 4X 2,•••直线l 的斜率由 y 2 =4X ,x = my+ i 2消去 x ,得 y — 4my- 4 = 0.4 y 2+ y i2“ y i • • y i y 2=— 8,故 X i X 2 =— 设 OD =入 OB =(入 X 2,入 y 2),则 A D = "OD - _O A =(入 X 2 - x i ,入 y 2— y i ),—> —>二 AD • OD =(入 X 2 — x i )入 X 2+ (入 y 2 — y i )入 y 2= 0,2 2 2 2即入X 2— 4入+入y 2 + 8入=0,易知入工0,入(x 2+ y 2) =— 4.• | OB •丨 OD = x 2 + y 2 •入 2x 2+ 入 2y 2=| 入 |( x 2 + y 2) = 4.17. (2019 •广州调研)如图,在直角坐标系xOy 中,椭圆C:X i/孑=i(a >b >0)的上焦点为F i ,椭圆C 的离心率为 刁且过点i ,⑴求椭圆C 的方程; ⑵设过椭圆C 的上顶点A 的直线I 与椭圆C 交于点政B 不在y 轴上),垂直于I 的直线 与I 交于点M 与x 轴交于点H,若F i B • F i H = 0,且|M(p = | MA ,求直线I 的方程.i解:(i )因为椭圆C 的离心率为,c i所以:=了,即a = 2c . a 2又 a 2= b 2 + c 2, 所以 b 2 = 3c 2, 即卩 b 2 = 3a 2, 42 2所以椭圆C 的方程为占+产=i. a 3 24a把点[i ,型6代入椭圆C 的方程中,解得 a 2 = 4.、一3丿 2 2 所以椭圆C 的方程为春+ X 3 = i. (2)由⑴ 知,A (0,2),设直线I 的斜率为k (k z 0),则直线I 的方程为y = kx + 2, •/ D 在以AB 为直径的圆上,—> —>'1,霜y =kx +2,2 2 x y _+「=i , [34 ,2 2得(3 k + 4)x + i2kx = 0.一12k设B(X B, y B),得X B=录£4,「- 6k2+ 8所以y B=贡工了,2—12k - 6k + 8\ 3k2+4,3k2+ 4 .设M XM, y M),因为| MO = I MA,所以点M在线段OA的垂直平分线上,1所以y M= 1,因为y心kX M+ 2,所以x心一匚,k设H(X H,0),又直线HM垂直于直线I ,1 1所以k MH=-「,即k 1—厂一X Hk所以X H= k-k,即Hk-k,—> 又F i(0,1),所以F i B =212k 4 - 9k \3k2+ 4,3k2+ 4,RH= 'k- k,-1 .-- > 因为F i B •> —12kF1H=O,所以市1 4- 9k2k 一3k T4 =0,解得k=±2.63 '所以直线I的方程为y =±+ 2.所以B。

浙江专版2020版高考数学一轮复习课时跟踪检测一集合含解析

浙江专版2020版高考数学一轮复习课时跟踪检测一集合含解析

课时跟踪检测(一)集合一抓基础,多练小题做到眼疾手快1.(2019·浙江考前热身联考)已知集合M={x|y=2x-x2},N={x|-1<x<1},则M∪N=( )A.[0,1) B.(-1,2)C.(-1,2] D.(-∞,0]∪(1,+∞)解析:选C 法一:易知M={x|0≤x≤2},又N={x|-1<x<1},所以M∪N=(-1,2].故选C.法二:取x=2,则2∈M,所以2∈M∪N,排除A、B;取x=3,则3∉M,3∉N,所以3∉M∪N,排除D,故选C.2.(2019·浙江三地联考)已知集合P={x|||x<2},Q={x|-1≤x≤3},则P∩Q=( )A.[-1,2) B.(-2,2)C.(-2,3] D.[-1,3]解析:选A 由|x|<2,可得-2<x<2,所以P={x|-2<x<2},所以P∩Q=[-1,2).3.(2018·嘉兴期末测试)已知集合P={x|x<1},Q={x|x>0},则( )A.P⊆Q B.Q⊆PC.P⊆∁R Q D.∁R P⊆Q解析:选D 由已知可得∁R P=[1,+∞),所以∁R P⊆Q.故选D.4.(2018·浙江吴越联盟第二次联考)已知集合M={0,1,2,3,4},N={2,4,6},P=M∩N,则P的子集有________个.解析:集合M={0,1,2,3,4},N={2,4,6},P=M∩N={2,4},则P的子集有∅,{2},{4},{2,4},共4个.答案:45.已知集合A={x|x≥3},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.解析:因为集合A={x|x≥3},B={x|x≥m},且A∪B=A,所以B⊆A,如图所示,所以m≥3.答案:[3,+∞)二保高考,全练题型做到高考达标1.(2019·杭州七校联考)已知集合A={x|x2>1},B={x|(x2-1)(x2-4)=0},则集合A∩B中的元素个数为( )A.1 B.2C.3 D.4解析:选B A={x|x<-1或x>1},B={-2,-1,1,2},A∩B={-2,2},故选B.2.(2019·浙江六校联考)已知集合U={x|y=3x},A={x|y=log9x},B={y|y=-2x}则A∩(∁U B)=( )A.∅ B.RC.{x|x>0} D.{0}解析:选C 由题意得,U=R,A={x|x>0},因为y=-2x<0,所以B={y|y<0},所以∁U B={x|x≥0},故A∩(∁UB )={x |x >0}.故选C.3.(2019·永康模拟)设集合M ={x |x 2-2x -3≥0},N ={x |-3<x <3},则( ) A .M ⊆N B .N ⊆M C .M ∪N =RD .M ∩N =∅解析:选C 由x 2-2x -3≥0,解得x ≥3或x ≤-1,所以M ={x |x ≤-1或x ≥3},所以M ∪N =R.4.(2019·宁波六校联考)已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( )A .(0,3)B .(0,1)∪(1,3)C .(0,1)D .(-∞,1)∪(3,+∞)解析:选B ∵A ∩B 有4个子集,∴A ∩B 中有2个不同的元素,∴a ∈A ,∴a 2-3a <0,解得0<a <3且a ≠1,即实数a 的取值范围是(0,1)∪(1,3),故选B.5.(2018·镇海中学期中)若集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪y =lg2-xx ,N ={x |x <1},则M ∪N =( ) A .(0,1) B .(0,2) C .(-∞,2)D .(0,+∞)解析:选C 集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪y =lg2-xx ={x |0<x <2},N ={x |x <1}.M ∪N ={x |x <2}=(-∞,2).故选C. 6.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z},则A ∩B =________.解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z}={-1,0}. 答案:{-1,0}7.(2018·嘉兴二模)已知集合A ={x |-1≤x ≤2},B ={x |x 2-4x ≤0},则A ∪B =________,A ∩(∁R B )=________. 解析:因为B ={x |x 2-4x ≤0}={x |0≤x ≤4},所以A ∪B ={x |-1≤x ≤4};因为∁R B ={x |x <0或x >4},所以A ∩(∁RB )={x |-1≤x <0}.答案:{x |-1≤x ≤4} {x |-1≤x <0}8.设集合A ={(x ,y )|y ≥|x -2|,x ≥0},B ={(x ,y )|y ≤-x +b },A ∩B ≠∅. (1)b 的取值范围是________;(2)若(x ,y )∈A ∩B ,且x +2y 的最大值为9,则b 的值是________. 解析:由图可知,当y =-x 往右移动到阴影区域时,才满足条件,所以b ≥2;要使z =x +2y 取得最大值,则过点(0,b ),有0+2b =9⇒b =92.答案:(1)[2,+∞) (2)929.已知集合A ={x |4≤2x≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________.解析:集合A ={x |4≤2x≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]10.已知集合A ={x |(x +2m )(x -m +4)<0},其中m ∈R ,集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-xx +2>0. (1)若B ⊆A ,求实数m 的取值范围; (2)若A ∩B =∅,求实数m 的取值范围.解:(1)集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-x x +2>0={x |-2<x <1}. 当A =∅时,m =43,不符合题意.当A ≠∅时,m ≠43.①当-2m <m -4,即m >43时,A ={x |-2m <x <m -4},又因为B ⊆A ,所以⎩⎪⎨⎪⎧ m >43,-2m ≤-2,m -4≥1,即⎩⎪⎨⎪⎧m >43,m ≥1,m ≥5,所以m ≥5.②当-2m >m -4,即m <43时,A ={x |m -4<x <-2m },又因为B ⊆A ,所以⎩⎪⎨⎪⎧m <43,-2m ≥1,m -4≤-2,即⎩⎪⎨⎪⎧m <43,m ≤-12,m ≤2,所以m ≤-12.综上所述,实数m 的取值范围为⎝ ⎛⎦⎥⎤-∞,-12∪[5,+∞). (2)由(1)知,B ={x |-2<x <1}. 当A =∅时,m =43,符合题意.当A ≠∅时,m ≠43.①当-2m <m -4,即m >43时,A ={x |-2m <x <m -4},又因为A ∩B =∅,所以-2m ≥1或者m -4≤-2, 即m ≤-12或者m ≤2,所以43<m ≤2.②当-2m >m -4,即m <43时,A ={x |m -4<x <-2m },又因为A ∩B =∅,所以m -4≥1或者-2m ≤-2, 即m ≥5或者m ≥1,所以1≤m <43.综上所述,实数m 的取值范围为[1,2]. 三上台阶,自主选做志在冲刺名校1.对于复数a ,b ,c ,d ,若集合S ={a ,b ,c ,d }具有性质“对任意x ,y ∈S ,必有xy ∈S ”,则当⎩⎪⎨⎪⎧a =1,b 2=1,c 2=b时,b +c +d 等于( )A .1B .-1C .0D .i解析:选B ∵S ={a ,b ,c ,d },由集合中元素的互异性可知当a =1时,b =-1,c 2=-1,∴c =±i,由“对任意x ,y ∈S ,必有xy ∈S ”知±i∈S ,∴c =i ,d =-i 或c =-i ,d =i ,∴b +c +d =(-1)+0=-1.2.对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥-94,x ∈R ,B ={x |x <0,x ∈R},则A ⊕B =( )A.⎝ ⎛⎭⎪⎫-94,0B.⎣⎢⎡⎭⎪⎫-94,0C.⎝⎛⎭⎪⎫-∞,-94∪[0,+∞) D.⎝⎛⎦⎥⎤-∞,-94∪(0,+∞) 解析:选C 依题意得A -B ={x |x ≥0,x ∈R},B -A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-94,x ∈R ,故A ⊕B =⎝⎛⎭⎪⎫-∞,-94∪[0,+∞).故选C.3.已知函数f (x )=x -3-17-x 的定义域为集合A ,且B ={x ∈Z|2<x <10},C ={x ∈R|x <a 或x >a +1}. (1)求:A 和(∁R A )∩B ;(2)若A ∪C =R ,求实数a 的取值范围. 解:(1)要使函数f (x )=x -3-17-x ,应满足x -3≥0,且7-x >0,解得3≤x <7, 则A ={x |3≤x <7}, 得到∁R A ={x |x <3或x ≥7},而B ={x ∈Z|2<x <10}={3,4,5,6,7,8,9}, 所以(∁R A )∩B ={7,8,9}.(2)C={x∈R|x<a或x>a+1},要使A∪C=R,则有a≥3,且a+1<7,解得3≤a<6.故实数a的取值范围为[3,6).。

2020届高考数学(文科)总复习课时跟踪练(五十九)用样本估计总体

2020届高考数学(文科)总复习课时跟踪练(五十九)用样本估计总体

课时跟踪练(五十九)A组基础巩固1.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是()A.45B.50C.55D.60解析:由频率分布直方图,知低于60分的频率为(0.010+0.005)×20=0.3.所以该班学生人数n=150.3=50.★答案★:B2.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳解析:观察2014年的折线图,发现从8月至9月,以及10月开始的三个月接待游客量都是减少的,故A选项是错误的.★答案★:A3.(2019·肇庆检测)右面茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.5,8 B.4,9C.6,7 D.3,10解析:由题意根据甲组数据的中位数为15,可得x=5;乙组数据的平均数为16.8,则9+15+18+24+10+y5=16.8,求得y=8.★答案★:A4.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为()A.8 B.15C.16 D.32解析:已知样本数据x1,x2,…,x10的标准差为s=8,则s2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16.★答案★:C5.(2019·西宁检测)某班一次测试成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息可确定被抽测的人数及分数在[90,100]内的人数分别为( )A .20,2B .24,4C .25,2D .25,4解析:由频率分布直方图可得分数在[50,60)内的频率是0.008×10=0.08,又由茎叶图可得分数在[50,60)内的频数是2,则被抽测的人数为20.08=25.又由频率分布直方图可得分数在[90,100]内的频率与分数在[50,60)内的频率相同,则频数也相同,都是2,故选C.★答案★:C6.(2019·陕西质检)已知一组正数x 1,x 2,x 3,x 4的方差s 2=14(x 21+x 22+x 23+x 24-16),则数据x 1+2,x 2+2,x 3+2,x 4+2的平均数为________.解析:因为一组正数x 1,x 2,x 3,x 4的方差s 2=14(x 21+x 22+x 23+x 24-4x -2),所以4x -2=16,得x -=2(负舍),所以x 1+2,x 2+2,x 3+2,x 4+2的平均数为x 1+2+x 2+2+x 3+2+x 4+24=x -+2=4.★答案★:47.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.解析:底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm 的株数为(0.15+0.25)×60=24.★答案★:248.抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如图:运动员 第一次 第二次 第三次 第四次 第五次 甲 87 91 90 89 93 乙8990918892为________.解析:易知x -甲=90,x -乙=90. 则s 2甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4.s 2乙=15[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.★答案★:29.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示,已知两组技工在单位时间内加工的合格零件的平均数都为10.(1)求出m ,n 的值;(2)求出甲、乙两组技工在单位时间内加工的合格零件的方差s 2甲和s 2乙,并由此分析两组技工的加工水平.解:(1)根据题意,x -甲=15(7+8+10+12+10+m )=10,x -乙=15(9+n +10+11+12)=10. 所以m =3,n =8.(2)s 2甲=15[(7-10)2+(8-10)2+(10-10)2+(12-10)2+(13-10)2]=5.2,s 2乙=15[(8-10)2+(9-10)2+(10-10)2+(11-10)2+(12-10)2]=2,因为x-甲=x-乙,s2甲>s2乙,所以甲、乙两组的整体水平相当,乙组更稳定一些.10.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a×0.5,解得a=0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.B组素养提升11.(2019·信阳三中月考)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为( ) A .①③B .①④C .②③D .②④解析:甲地5天的气温为26,28,29,31,31, 其平均数为x -甲=26+28+29+31+315=29;方差为s 2甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6;标准差为s 甲= 3.6.乙地5天的气温为28,29,30,31,32, 其平均数为x -乙=28+29+30+31+325=30;方差为s 2乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2;标准差为s 乙=2,所以x -甲<x -乙,s 甲>s 乙. ★答案★:B12.一组数据共有7个数,记得其中有10,2,5,2,4,2,还有一个数没记清,但知道这组数的平均值、中位数、众数依次成等差数列,这个数的所有可能值的和为( )A .-11B .3C .9D .17解析:设没记清的数为x ,对x 进行讨论.若x ≤2,则这列数为x ,2,2,2,4,5,10,平均数为25+x7,中位数为2,众数为2,所以2×2=25+x7+2,解得x =-11.若2<x ≤4,则这列数为2,2,2,x ,4,5,10,平均数为25+x 7,中位数为x ,众数为2,所以2x =25+x7+2,解得x =3.若x >4,则这列数为2,2,2,4,x ,5,10,或2,2,2,4,5,x ,10,或2,2,2,4,5,10,x ,平均数为25+x7,中位数为4,众数为2,所以2×4=25+x7+2,解得x =17,所以-11+3+17=9.故选C.★答案★:C13.某电子商务公司对10 000名网络购物者2017年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.解析:(1)由0.1×1.5+0.1×2.5+0.1a +0.1×2.0+0.1×0.8+0.1×0.2=1,解得a =3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.★答案★:(1)3(2)6 00014.(2019·周口抽测调研)甲、乙两人在相同条件下各射击10次,每次中靶环数情况如图所示:(1)请填写下表(写出计算过程):分类平均数方差命中9环及9环以上的次数甲乙①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);③从折线图上两人射击命中环数的走势看(分析谁更有潜力).解:由题图,知甲射击10次中靶环数分别为9,5,7,8,7,6,8,6,7,7.将它们由小到大排列为5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为2,4,6,8,7,7,8,9,9,10. 将它们由小到大排列为2,4,6,7,7,8,8,9,9,10.(1)x—甲=110×(5+6×2+7×4+8×2+9)=7(环),x—乙=110×(2+4+6+7×2+8×2+9×2+10)=7(环),s2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=110×(25+9+1+0+2+8+9)=5.4.填表如下:(2)①平均数相同,s2甲<s2乙,所以甲成绩比乙稳定.②因为平均数相同,命中9环及9环以上的次数甲比乙少,所以乙成绩比甲好些.③甲成绩在平均数上下波动;而乙处于上升势头,从第三次以后就没有比甲少的情况发生,乙更有潜力.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。

2020届高考数学(理科)总复习课时跟踪练(六十九)排列与组合

2020届高考数学(理科)总复习课时跟踪练(六十九)排列与组合

课时跟踪练(六十九)A 组 基础巩固1.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A .24B .48C .60D .72解析:第一步,先排个位,有C 13种选择;第二步,排前4位,有A 44种选择.由分步乘法计数原理知有C 13·A 44=72(个). ★答案★:D2.把6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24解析:先把三把椅子隔开摆好,它们之间和两端有4个位置,再把三人带椅子插放在四个位置,共有A 34=24种坐法.★答案★:D3.(2019·广州综合测试)从1,2,3,4,5这5个数字中任取3个数字组成没有重复数字的三位数,则这个三位数是偶数的概率为( )A.15B.25C.12D.35解析:从这5个数字中任取3个数字组成没有重复数字的三位数共有A 35=60(个),其中是偶数的有C 12A 24=24(个),所以所求概率P =2460=25,故选B. ★答案★:B4.(2019·东北三省四市模拟)哈市某公司有五个不同部门,现有4名在校大学生来该公司实习.要求安排到该公司的两个部门,且每部门安排两名,则不同的安排方案种数为( )A .40B .60C .120D .240解析:从五个不同部门选取两个部门有C 25种选法,将4名大学生分别安排在这两个部门有C 24C 22种方法,所以不同的安排方案有C 25C 24C 22=60(种),故选B.★答案★:B5.(2019·珠海模拟)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有( )A .480种B .360种C .240种D .120种解析:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C 25=10种分法;②将分好的4组全排列,放入4个盒子,有A 44=24种情况,则不同放法有10×24=240(种).故选C.★答案★:C6.(2019·武汉模拟)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有( )A.34种B.48种C.96种D.144种解析:特殊元素优先安排,先让甲从头、尾中选取一个位置,有C12种选法,乙、丙相邻,捆绑在一起看作一个元素,与其余三个元素全排列,最后乙、丙可以换位,故共有C12·A44·A22=96(种).★答案★:C7.(2019·青岛模拟)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种解析:1个路口3人,其余路口各1人的分配方法有C13C22A33种.1个路口1人,2个路口各2人的分配方法有C23C22A33种,所以由分类加法计数原理知,甲、乙在同一路口的分配方案为C13C22A33+C23C22A33=36(种).★答案★:C8.(2019·豫北名校联考)2019年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有() A.18种B.24种C.48种D.36种解析:由题意,有两类:第一类,(1)班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个,有C 23=3(种),然后分别从选择的班级中再选择一个学生,有C 12C 12=4(种),故有3×4=12(种).第二类,(1)班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,有C 13=3(种),然后再从剩下的两个班级中分别选择一人,有C 12C 12=4(种),这时共有3×4=12(种),根据分类加法计数原理得,共有12+12=24种不同的乘车方式,故选B.★答案★:B 9.已知1C m 5-1C m 6=710C m 7,则m =________. 解析:由已知得m 的取值范围为{m |0≤m ≤5,m ∈Z},m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,整理可得m 2-23m +42=0,解得m =21(舍去)或m =2.★答案★:210.(2017·浙江卷)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法(用数字作答).解析:从8人中选出4人,且至少有1名女学生的选法种数为C 48-C 46=55.从4人中选出队长1人,副队长1人,普通队员2人的选法为A 24=12(种).故总共有55×12=660种选法. ★答案★:66011.(2019·开封模拟)某班主任准备请2019届毕业生做报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少一人参加,若甲、乙同时参加,则他们发言中间需恰隔一人,那么不同的发言顺序共有________种(用数字作答).解析:若甲、乙同时参加,有C 22C 26C 12A 22A 22=120(种),若甲、乙有一人参与,有C 12C 36A 44=960(种),从而总共的发言顺序有120+960=1 080(种).★答案★:1 08012.某宾馆安排A ,B ,C ,D ,E 五人入住3个房间,每个房间至少住1人,且A ,B 不能住同一房间,则共有________种不同的安排方法(用数字作答).解析: 5个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C 35·A 33=60(种),A ,B 住同一房间有C 13·A 33=18(种),故有60-18=42(种);当为(2,2,1)时,有C 25·C 23A 22·A 33=90(种),A ,B 住同一房间有C 23·A 33=18(种),故有90-18=72(种),根据分类加法计数原理可知,共有42+72=114(种). ★答案★:114B组素养提升13.(2019·合肥质检)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为()A.120 B.240 C.360 D.480解析:前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种,故共有C14C13(A25+C15A22)=360(种),故选C.★答案★:C14.(2019·佛山质检)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60 B.90C.120 D.130解析:因为x i∈{-1,0,1},i=1,2,3,4,5,且1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3,所以x i中至少两个为0,至多四个为0.(1)x i(i=1,2,3,4,5)中有4个0,1个-1或1,A有2C15=10个元素.(2)x i中有3个0,2个-1或1,A有C25×2×2=40个元素.(3)x i中有2个0,3个-1或1,A有C35×2×2×2=80个元素.从而,集合A中共有10+40+80=130个元素.★答案★:D15.(2019·江西八所重点中学联合模拟)摄像师要对已坐定一排照相的5位小朋友的座位顺序进行调整,要求其中恰有2人座位不调整,则不同的调整方案的种数为____________(用数字作答).解析:从5人中任选3人有C35种,将3人位置全部进行调整,有C12·C11·C11种.故有N=C35·C12·C11·C11=20种调整方案.★答案★:2016.[一题多解]某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有________种.解析:法一(直接法)若3个不同的项目投资到4个城市中的3个,每个城市一项,共A34种方法;若3个不同的项目投资到4个城市中的2个,一个城市一项、一个城市两项共C23A24种方法.由分类加法计数原理知共有A34+C23A24=60种方法.法二(间接法)先任意安排3个项目,每个项目各有4种安排方法,共43=64种排法,其中3个项目落入同一城市的排法不符合要求,共4种,所以总投资方案共43-4=64-4=60(种).★答案★:60感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。

2020版高考数学一轮复习课时跟踪检测六函数的单调性与最值含解析

2020版高考数学一轮复习课时跟踪检测六函数的单调性与最值含解析

课时跟踪检测(六) 函数的单调性与最值一、题点全面练1.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x解析:选D 函数y =2-x=⎝ ⎛⎭⎪⎫12x 在(-1,1)上为减函数.2.(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)解析:选D 由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).3.若函数f (x )=x 2-2x +m 在[3,+∞)上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1D .1解析:选B 因为f (x )=(x -1)2+m -1在[3,+∞)上为增函数,且f (x )在[3,+∞)上的最小值为1,所以f (3)=1,即22+m -1=1,m =-2.故选B. 4.函数f (x )=x1-x的单调递增区间是( ) A .(-∞,1)B .(1,+∞)C .(-∞,1),(1,+∞)D .(-∞,-1),(1,+∞)解析:选C 因为f (x )=--x +11-x =-1+11-x,所以f (x )的图象是由y =-1x的图象沿x 轴向右平移1个单位,然后沿y 轴向下平移一个单位得到,而y =-1x的单调递增区间为(-∞,0),(0,+∞);所以f (x )的单调递增区间是(-∞,1),(1,+∞).故选C. 5.(2019·赣州模拟)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是( )A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]解析:选B 由题知,g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1,可得函数g (x )的单调递减区间为[0,1).6.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-113,-3B .[-6,-4] C.[]-3,-22D.[]-4,-3解析:选B 由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知函数f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a2∈[2,3],即a ∈[-6,-4].7.函数y =2-xx +1,x ∈(m ,n ]的最小值为0,则m 的取值范围是( )A .(1,2)B .(-1,2)C .[1,2)D .[-1,2)解析:选D 函数y =2-x x +1=3-x -1x +1=3x +1-1,且在x ∈(-1,+∞)时单调递减,在x =2时,y =0; 根据题意x ∈(m ,n ]时y 的最小值为0, 所以-1≤m <2.8.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f xx在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:选D 由题意知a <1,又函数g (x )=x +a x-2a 在[|a |,+∞)上为增函数,故选D.9.(2019·湖南四校联考)若函数f (x )=x 2+a |x -2|在(0,+∞)上单调递增,则实数a 的取值范围是________.解析:∵f (x )=x 2+a |x -2|,∴f (x )=⎩⎪⎨⎪⎧x 2+ax -2a ,x ≥2,x 2-ax +2a ,x <2.又∵f (x )在(0,+∞)上单调递增,∴⎩⎪⎨⎪⎧-a2≤2,a 2≤0,∴-4≤a ≤0,∴实数a 的取值范围是[-4,0]. 答案:[-4,0]10.已知函数f (x )的值域为⎣⎢⎡⎦⎥⎤38,49,则函数g (x )=f (x )+1-2f x的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f x ≤12.令t =1-2f x , 则f (x )=12(1-t 2)⎝ ⎛⎭⎪⎫13≤t ≤12,令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎝ ⎛⎭⎪⎫13≤t ≤12.∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎢⎡⎦⎥⎤79,78.答案:⎣⎢⎡⎦⎥⎤79,78 二、专项培优练(一)易错专练——不丢怨枉分1.(2019·西安模拟)已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是( )A .(0,1]B .[1,2]C .[1,+∞)D .[2,+∞)解析:选C 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.故选C.2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫14,12B.⎣⎢⎡⎦⎥⎤14,12C.⎝ ⎛⎦⎥⎤0,12 D.⎣⎢⎡⎭⎪⎫12,1 解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,则二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧ 0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎢⎡⎦⎥⎤14,12.3.已知函数f (x )是定义在(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3,所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞) (二)技法专练——活用快得分4.[构造法]已知减函数f (x )的定义域是实数集R ,m ,n 都是实数.如果不等式f (m )-f (n )>f (-m )-f (-n )成立,那么下列不等式成立的是( )A .m -n <0B .m -n >0C .m +n <0D .m +n >0解析:选A 设F (x )=f (x )-f (-x ), 由于f (x )是R 上的减函数,∴f (-x )是R 上的增函数,-f (-x )是R 上的减函数, ∴F (x )是R 上的减函数,∴当m <n 时,有F (m )>F (n ), 即f (m )-f (-m )>f (n )-f (-n )成立.因此,当f (m )-f (n )>f (-m )-f (-n )成立时,不等式m -n <0一定成立,故选A.5.[数形结合法]设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是________.解析:因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m=0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的大致图象如图所示,观察图象可知,当纵坐标在[0,+∞)上时,横坐标在(-∞,-1]∪[0,+∞)上变化. 而f (x )的值域为(-1,+∞),f (g (x ))的值域为[0,+∞),因为g (x )是二次函数, 所以g (x )的值域是[0,+∞). 答案:[0,+∞)(三)素养专练——学会更学通6.[数学抽象]已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).7.[数学运算]已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数; (2)若f (x )在12,2上的值域是12,2,求a 的值.解:(1)证明:设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,因为f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,所以f (x 2)>f (x 1),所以f (x )在(0,+∞)上是增函数. (2)因为f (x )在12,2上的值域是12,2,又由(1)得f (x )在12,2上是单调增函数,所以f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,解得a =25.8.[数学运算]已知函数f (x )=lg ⎝⎛⎭⎪⎫x +ax-2,其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解:(1)由x +a x-2>0,得x 2-2x +a x>0,当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞); 当a =1时,定义域为{x |x >0且x ≠1};当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x -2,当a ∈(1,4),x ∈[2,+∞)时,g ′(x )=1-a x 2=x 2-ax2>0恒成立,所以g (x )=x +a x-2在[2,+∞)上是增函数.所以f (x )=lg ⎝⎛⎭⎪⎫x +ax -2在[2,+∞)上是增函数.所以f (x )=lg ⎝ ⎛⎭⎪⎫x +ax -2在[2,+∞)上的最小值为f (2)=lg a2.(3)对任意x ∈[2,+∞)恒有f (x )>0, 即x +a x-2>1对任意x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝ ⎛⎭⎪⎫x -322+94在[2,+∞)上是减函数,所以h (x )max =h (2)=2,所以a >2.即a 的取值范围为(2,+∞).。

2020版高考数学一轮复习课时跟踪检测五十二直线与圆锥曲线含解析

2020版高考数学一轮复习课时跟踪检测五十二直线与圆锥曲线含解析

课时跟踪检测(五十二) 直线与圆锥曲线1.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,A (x A ,y A ),B (x B ,y B ),则|AB |=|AF |+|FB |=x A +p 2+x B +p2=x A +x B+1=3>2p =2.所以符合条件的直线有且只有两条.2.(2019·张掖高三诊断)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若A ,B 两点的横坐标之和为103,则|AB |=( )A.133B.143 C .5D.163解析:选D 过抛物线的焦点的弦长公式为|AB |=p +x 1+x 2.∵p =2,∴|AB |=2+103=163.3.(2018·聊城二模)已知直线l 与抛物线C :y 2=4x 相交于A ,B 两点,若线段AB 的中点为(2,1),则直线l 的方程为( )A .y =x -1B .y =-2x +5C .y =-x +3D .y =2x -3解析:选D 设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ②①-②得y 21-y 22=4(x 1-x 2),由题可知x 1≠x 2.∴y 1-y 2x 1-x 2=4y 1+y 2=42=2,即k AB =2,∴直线l 的方程为y -1=2(x -2),即2x -y -3=0.故选D. 4.(2019·厦门模拟)过双曲线C :x 24-y 29=1的左焦点作倾斜角为π6的直线l ,则直线l 与双曲线C 的交点情况是( )A .没有交点B .只有一个交点C .有两个交点且都在左支上D .有两个交点分别在左、右两支上解析:选D 直线l 的方程为y =33()x +13,代入C :x 24-y 29=1,整理得23x 2-813x -160=0,Δ=(-813)2+4×23×160>0,所以直线l 与双曲线C 有两个交点,由一元二次方程根与系数的关系得两个交点横坐标符号不同,故两个交点分别在左、右两支上.5.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A ,B ,则|AB |=( )A .3B .4C .3 2D .4 2解析:选C 由题意可设l AB 为y =x +b ,代入y =-x 2+3得x 2+x +b -3=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-1,x 1x 2=b -3,y 1+y 2=x 1+b +x 2+b =-1+2b .所以AB 中点坐标为⎝ ⎛⎭⎪⎫-12,-12+b ,该点在x+y =0上,即-12+⎝ ⎛⎭⎪⎫-12+b =0,得b =1,所以|AB |=1+12·x 1+x 22-4x 1x 2=3 2.6.(2019·青岛模拟)已知点A 是抛物线C :x 2=2py (p >0)的对称轴与准线的交点,过点A 作抛物线C 的两条切线,切点分别为P ,Q ,若△AP Q 的面积为4,则p 的值为( )A.12 B .1 C.32D .2解析:选D 设过点A 与抛物线相切的直线方程为y =kx -p2.由⎩⎪⎨⎪⎧y =kx -p 2,x 2=2py得x 2-2pkx +p 2=0,由Δ=4k 2p 2-4p 2=0,可得k =±1, 则Q ⎝ ⎛⎭⎪⎫p ,p 2,P ⎝⎛⎭⎪⎫-p ,p 2,∴△AP Q 的面积为12×2p ×p =4,∴p =2.故选D.7.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2 B.32 C.355D.52解析:选 B 设A (x 1,y 1),B (x 2,y 2),由AB 的中点为N (12,15),得x 1+x 2=24,y 1+y 2=30,由⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,两式相减得:x 1+x 2x 1-x 2a2=y 1+y 2y 1-y 2b2,则y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=4b 25a 2.由直线AB 的斜率k =15-612-3=1,∴4b 25a 2=1,则b 2a 2=54,∴双曲线的离心率e =c a =1+b 2a 2=32.8.(2019·福州模拟)已知抛物线E :y 2=2px (p >0)的焦点为F ,过F 且斜率为1的直线交E 于A ,B 两点,线段AB 的中点为M ,线段AB 的垂直平分线交x 轴于点C ,MN ⊥y 轴于点N ,若四边形CMNF 的面积等于7,则E 的方程为( )A .y 2=x B .y 2=2x C .y 2=4xD .y 2=8x解析:选C F ⎝ ⎛⎭⎪⎫p 2,0,直线AB 的方程为y =x -p2.联立得方程组⎩⎪⎨⎪⎧y 2=2px ,y =x -p2,可得x 2-3px +p 24=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=3p , 则y 1+y 2=x 1+x 2-p =2p ,∴M ⎝ ⎛⎭⎪⎫3p 2,p ,∴N (0,p ),直线MC 的方程为y =-x +5p 2. ∴C ⎝ ⎛⎭⎪⎫5p 2,0,∴四边形CMNF 的面积为S 梯形OCMN -S △ONF =⎝ ⎛⎭⎪⎫3p 2+5p 2·p2-12·p 2·p =7p24=7, 又p >0,∴p =2,即抛物线E 的方程为y 2=4x .故选C.9.(2018·湖北十堰二模)如图,F1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与C 的两个分支分别交于点A ,B .若△ABF 2为等边三角形,则双曲线的离心率为( )A .4 B.7 C.233D. 3解析:选B ∵△ABF 2为等边三角形, ∴|AB |=|AF 2|=|BF 2|,∠F 1AF 2=60°. 由双曲线的定义可得|AF 1|-|AF 2|=2a , ∴|BF 1|=2a .又|BF 2|-|BF 1|=2a ,∴|BF 2|=4a . ∴|AF 2|=4a ,|AF 1|=6a .在△AF 1F 2中,由余弦定理可得|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 2|·|AF 1|cos 60°, ∴(2c )2=(6a )2+(4a )2-2×4a ×6a ×12,即c 2=7a 2,∴e =c a =c 2a 2=7.故选B. 10.(2019·贵阳模拟)已知双曲线x 2-y 2=1的左、右顶点分别为A 1,A 2,动直线l :y =kx +m 与圆x 2+y 2=1相切,且与双曲线左、右两支的交点分别为P 1(x 1,y 1),P 2(x 2,y 2),则x 2-x 1的最小值为( )A .2 2B .2C .4D .3 2解析:选A ∵l 与圆相切, ∴原点到直线的距离d =|m |1+k2=1,∴m 2=1+k 2,由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 2=1得(1-k 2)x 2-2mkx -(m 2+1)=0,∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4m 2k 2+-k2m 2+=m 2+1-k 2=8>0,x 1x 2=1+m 2k 2-1<0,∴k 2<1,∴-1<k <1,由于x 1+x 2=2mk 1-k 2,∴x 2-x 1=x 1+x 22-4x 1x 2=22|1-k 2|=221-k2,∵0≤k 2<1,∴当k 2=0时,x 2-x 1取最小值2 2.故选A.11.(2019·安庆模拟)设抛物线x 2=4y 的焦点为F ,点A ,B 在抛物线上,且满足AF ―→=λFB ―→,若|AF ―→|=32,则λ的值为________. 解析:设A (x 1,y 1),B (x 2,y 2),由抛物线x 2=4y 得焦点F 的坐标为(0,1), 准线方程为y =-1,∵|AF ―→|=32,∴y 1+1=32,解得y 1=12,∴x 1=±2,由抛物线的对称性取x 1=2, ∴A ⎝⎛⎭⎪⎫2,12,∴直线AF 的方程为y =-24x +1, 由⎩⎪⎨⎪⎧y =-24x +1,x 2=4y .解得⎩⎪⎨⎪⎧x =2,y =12或⎩⎨⎧x =-22,y =2,∴B (-22,2),∴|FB ―→|=2+1=3,∵AF ―→=λFB ―→,∴|AF ―→|=λ|FB ―→|,∴32=3λ,解得λ=12.答案:1212.(2019·武汉调研)已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点.直线P Q 过原点O 且与直线MN 平行,直线P Q 与椭圆交于P ,Q 两点,则|P Q|2|MN |=________.解析:法一:由题意知,直线MN 的斜率不为0,设直线MN 的方程为x =my +1,则直线P Q 的方程为x=my .设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q(x 4,y 4).⎩⎪⎨⎪⎧x =my +1,x 22+y 2=1⇒(m 2+2)y 2+2my -1=0⇒y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2. ∴|MN |=1+m 2|y 1-y 2|=22·m 2+1m 2+2.⎩⎪⎨⎪⎧x =my ,x 22+y 2=1⇒(m 2+2)y 2-2=0⇒y 3+y 4=0,y 3y 4=-2m 2+2. ∴|P Q|=1+m 2|y 3-y 4|=2 2 m 2+1m 2+2. 故|P Q|2|MN |=2 2. 法二:取特殊位置,当直线MN 垂直于x 轴时,易得|MN |=2b 2a =2,|P Q|=2b =2,则|P Q|2|MN |=2 2.答案:2 213.(2019·石家庄重中高中摸底)已知抛物线C :y 2=2px (p >0),直线l :y =3(x -1),l 与C 交于A ,B 两点,若|AB |=163,则p =________.解析:由⎩⎨⎧y 2=2px ,y =3x -,消去y ,得3x 2-(2p +6)x +3=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=2p +63,x 1x 2=1,所以|AB |=2x 1+x 22-4x 1x 2=2p +29-4=163,所以p =2.答案:214.(2018·深圳二模)设过抛物线y 2=2px (p >0)上任意一点P (异于原点O )的直线与抛物线y 2=8px (p >0)交于A ,B 两点,直线OP 与抛物线y 2=8px (p >0)的另一个交点为Q ,则S △AB QS △ABO=________. 解析:设直线OP 的方程为y =kx (k ≠0),联立得⎩⎪⎨⎪⎧y =kx ,y 2=2px ,解得P ⎝ ⎛⎭⎪⎫2p k 2,2p k ,联立得⎩⎪⎨⎪⎧y =kx ,y 2=8px ,解得Q ⎝ ⎛⎭⎪⎫8p k2,8p k ,∴|OP |= 4p2k4+4p 2k 2=2p 1+k2k 2, |P Q|= 36p2k 4+36p 2k2=6p 1+k2k2, ∴S △AB Q S △ABO =|P Q||OP |=3. 答案:315.已知抛物线E :y 2=2px (p >0)的焦点F ,E 上一点(3,m )到焦点的距离为4. (1)求抛物线E 的方程;(2)过F 作直线l ,交抛物线E 于A ,B 两点,若直线AB 中点的纵坐标为-1,求直线l 的方程. 解:(1)抛物线E :y 2=2px (p >0)的准线方程为x =-p2,由抛物线的定义可知3-⎝ ⎛⎭⎪⎫-p 2 =4,解得p =2,∴抛物线E 的方程为y 2=4x .(2)法一:由(1)得抛物线E 的方程为y 2=4x ,焦点F (1,0), 设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减,整理得y 2-y 1x 2-x 1 =4y 2+y 1(x 1≠x 2). ∵线段AB 中点的纵坐标为-1, ∴直线l 的斜率k AB =4y 2+y 1=4-=-2,∴直线l 的方程为y -0=-2(x -1),即2x +y -2=0. 法二:由(1)得抛物线E 的方程为y 2=4x ,焦点F (1,0), 设直线l 的方程为x =my +1,由⎩⎪⎨⎪⎧y 2=4x ,x =my +1消去x ,得y 2-4my -4=0.设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2), ∵线段AB 中点的纵坐标为-1, ∴y 1+y 22 =4m2=-1,解得m =-12,∴直线l 的方程为x =-12y +1,即2x +y -2=0.16.(2019·佛山模拟)已知直线l 过点P (2,0)且与抛物线E :y 2=4x 相交于A ,B 两点,与y 轴交于点C ,其中点A 在第四象限,O 为坐标原点.(1)当A 是PC 中点时,求直线l 的方程;(2)以AB 为直径的圆交直线OB 于点D ,求|OB |·|OD |的值. 解:(1)∵A 是PC 的中点,P (2,0),C 在y 轴上, ∴A 点的横坐标为1,又A 在第四象限,∴A (1,-2). ∴直线l 的方程为y =2x -4. (2)显然直线l 的斜率不为0,设l 的方程为x =my +2,A (x 1,y 1),B (x 2,y 2),联立得方程组⎩⎪⎨⎪⎧x =my +2,y 2=4x ,消去x 得y 2-4my -8=0,∴y 1y 2=-8,故x 1x 2=y 214·y 224=4,∵D 在以AB 为直径的圆上,且在直线OB 上,∴AD ―→⊥OD ―→, 设OD ―→=λOB ―→=(λx 2,λy 2),则AD ―→=OD ―→-OA ―→=(λx 2-x 1,λy 2-y 1), ∴AD ―→·OD ―→=(λx 2-x 1)λx 2+(λy 2-y 1)λy 2=0, 即λ2x 22-4λ+λ2y 22+8λ=0,易知λ≠0, ∴λ(x 22+y 22)=-4.∴|OB |·|OD |=x 22+y 22·λ2x 22+λ2y 22 =|λ|(x 22+y 22)=4.17.(2019·广州调研)如图,在直角坐标系xOy 中,椭圆C :y 2a2+x 2b 2=1(a >b >0)的上焦点为F 1,椭圆C 的离心率为12,且过点⎝⎛⎭⎪⎫1,263.(1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B (B 不在y 轴上),垂直于l 的直线与l 交于点M ,与x 轴交于点H ,若F 1B ―→·F 1H ―→=0,且|MO |=|MA |,求直线l 的方程.解:(1)因为椭圆C 的离心率为12,所以c a =12,即a =2c .又a 2=b 2+c 2,所以b 2=3c 2,即b 2=34a 2,所以椭圆C 的方程为y 2a 2+x 234a2=1.把点⎝⎛⎭⎪⎫1,263代入椭圆C 的方程中,解得a 2=4.所以椭圆C 的方程为y 24+x 23=1.(2)由(1)知,A (0,2),设直线l 的斜率为k (k ≠0),则直线l 的方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 23+y24=1,得(3k 2+4)x 2+12kx =0.设B (x B ,y B ),得x B =-12k3k 2+4, 所以y B =-6k 2+83k 2+4,所以B ⎝ ⎛⎭⎪⎫-12k 3k 2+4,-6k 2+83k 2+4. 设M (x M ,y M ),因为|MO |=|MA |,所以点M 在线段OA 的垂直平分线上, 所以y M =1,因为y M =kx M +2,所以x M =-1k,即M ⎝ ⎛⎭⎪⎫-1k,1.设H (x H,0),又直线HM 垂直于直线l , 所以k MH =-1k,即1-1k-x H=-1k . 所以x H =k -1k,即H ⎝⎛⎭⎪⎫k -1k,0.又F 1(0,1),所以F 1B ―→=⎝ ⎛⎭⎪⎫-12k 3k 2+4,4-9k 23k 2+4,F 1H ―→=⎝ ⎛⎭⎪⎫k -1k ,-1.因为F 1B ―→·F 1H ―→=0,所以-12k 3k 2+4·⎝⎛⎭⎪⎫k -1k -4-9k 23k 2+4=0,解得k =±263.所以直线l 的方程为y =±263x +2.。

2020版高考新创新一轮温习数学新课改省份专用课时跟踪检测五十八排列与组合

2020版高考新创新一轮温习数学新课改省份专用课时跟踪检测五十八排列与组合

课时跟踪检测(五十八)排列与组合[A级基础题——基稳才能楼高]1.将3张不同的奥运会门票分给10名同窗中的3人,每人1张,那么不同分法的种数是( )A.2 160 B.720C.240 D.120解析:选B 分步来完成此事.第1张有10种分法;第2张有9种分法;第3张有8种分法,那么共有10×9×8=720种分法.2.已知两条异面直线a,b上别离有5个点和8个点,那么这13个点能够确信不同的平面个数为( ) A.40 B.16C.13 D.10解析:选C 分两类情形讨论:第1类,直线a别离与直线b上的8个点能够确信8个不同的平面;第2类,直线b别离与直线a上的5个点能够确信5个不同的平面.依照分类加法计数原理知,共能够确信8+5=13个不同的平面.3.(2019·安徽调研)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,如此的四位数有( ) A.250个B.249个C.48个D.24个解析:选C ①当千位上的数字为4时,知足条件的四位数有A34=24(个);②当千位上的数字为3时,知足条件的四位数有A34=24(个).由分类加法计数原理得所有知足条件的四位数共有24+24=48(个),应选C.4.(2019·漳州八校联考)假设无重复数字的三位数知足条件:①个位数字与十位数字之和为奇数,②所有数位上的数字和为偶数,那么如此的三位数的个数是( )A.540 B.480C.360 D.200解析:选D 由个位数字与十位数字之和为奇数知个位数字、十位数字1奇1偶,有C15C15A22=50种排法;所有数位上的数字和为偶数,那么百位数字是奇数,有C14=4种知足题意的选法,故知足题意的三位数共有50×4=200(个).5.(2019·福州高三质检)福州西湖公园花展期间,安排6位志愿者到4个展区提供效劳,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有( )A.90种B.180种C.270种D.360种解析:选B 可分两步:第一步,甲、乙两个展区各安排一个人,有A26种不同的安排方案;第二步,剩下两个展区各两个人,有C24C22种不同的安排方案,依照分步乘法计数原理,不同的安排方案的种数为A26C24C22=180.应选B.6.(2019·北京朝阳区一模)某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,天天有且只有1人值班,每人至少安排一天且甲持续两天值班,那么不同的安排方式种数为( )A.18 B.24C.48 D.96解析:选B 甲持续两天值班,共有(周一,周二),(周二,周三),(周三,周四),(周四,周五)四种情形,剩下三个人进行全排列,有A33=6种排法,因此共有4×6=24种排法,应选B.[B级保分题——准做快做达标]1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,如此的等比数列的个数为( ) A.3 B.4C.6 D.8解析:选D 先考虑递增数列,以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.同理可取得4个递减数列,∴所求的数列的个数为2(2+1+1)=8.2.(2019·芜湖一模)某校高一开设4门选修课,有4名同窗选修,每人只选1门,恰有2门课程没有同窗选修,那么不同的选课方案有( )A.96种B.84种C.78种D.16种解析:选B 先确信选的两门,选法种数为C24=6,再确信学生选的情形,选法种数为24-2=14,因此不同的选课方案有6×14=84(种),应选B.3.(2019·东莞质检)将甲、乙、丙、丁4名学生分派到三个不同的班,每一个班至少1名,那么不同分派方式的种数为( )A.18 B.24C.36 D.72解析:选C 先将4人分成三组,有C24=6种方式,再将三组同窗分派到三个班级有A33=6种分派方式,依据分步乘法计数原理可得不同分派方式有6×6=36(种),应选C.4.(2019·东北三省四市一模)6本不同的书在书架上摆成一排,要求甲、乙两本书必需摆放在两头,丙、丁两本书必需相邻,那么不同的摆放方式有( )A.24种B.36种C.48种D.60种解析:选A 由题意知将甲、乙两本书放在两头有A22种放法,将丙、丁两本书捆绑,与剩余的两本书排列,有A33种放法,将相邻的丙、丁两本书排列,有A22种放法,因此不同的摆放方式有A22×A33×A22=24(种),应选A.5.(2019·河南三门峡联考)5名大人带2个小孩排队上山,小孩不排在一路也不排在头尾,那么不同的排法种数有( )A.A55A24种B.A55A25种C.A55A26种D.(A77-4A66)种解析:选A 第一5名大人先排队,共有A55种排法,然后把2个小孩插进中间的4个空中,共有A24种排法,依照分步乘法计数原理,共有A55A24种排法,应选A.6.(2019·沈阳东北育才学校月考)已知A,B,C,D四个家庭各有2名小孩,四个家庭预备乘甲、乙两辆汽车出去游玩,每车限坐4名小孩(乘同一辆车的4名小孩不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,那么乘坐甲车的4名小孩中恰有2名来自同一个家庭的乘坐方式共有( )A.18种B.24种C.36种D.48种解析:选B 假设A家庭的孪生姐妹乘坐甲车,那么甲车中另外2名小孩来自不同的家庭,有C23C12C12=12种乘坐方式,假设A家庭的孪生姐妹乘坐乙车,那么甲车中来自同一个家庭的2名小孩来自B,C,D家庭中的一个,有C13C12C12=12种乘坐方式,因此共有12+12=24种乘坐方式,应选B.7.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,那么在直角坐标系中,第一、二象限不同点的个数为________.解析:分两类:一是以集合M中的元素为横坐标,以集合N中的元素为纵坐标有3×2=6个不同的点;二是以集合N中的元素为横坐标,以集合M中的元素为纵坐标有4×2=8个不同的点,故由分类加法计数原理得共有6+8=14个不同的点.答案:148.(2019·洛阳高三统考)某校有4个社团向高一学生招收新成员,现有3名同窗,每人只选报1个社团,恰有2个社团没有同窗选报的报法有________种(用数字作答).解析:法一:第一步,选2名同窗报名某个社团,有C23·C14=12种报法;第二步,从剩余的3个社团里选一个社团安排另一名同窗,有C13·C11=3种报法.由分步乘法计数原理得共有12×3=36种报法.法二:第一步,将3名同窗分成两组,一组1人,一组2人,共C23种方式;第二步,从4个社团里选取2个社团让两组同窗别离报名,共A24种方式.由分步乘法计数原理得共有C23·A24=36(种).答案:369.(2018·全国卷Ⅰ)从2位女生,4位男生当选3人参加科技竞赛,且至少有1位女生入选,那么不同的选法共有________种.(用数字填写答案)解析:法一:(直接法)按参加的女生人数可分两类:只有1位女生参加有C12C24种,有2位女生参加有C22C14种.故共有C12C24+C22C14=2×6+4=16(种).法二:(间接法)从2位女生,4位男生当选3人,共有C36种情形,没有女生参加的情形有C34种,故共有C36-C34=20-4=16(种).答案:1610.(2019·江西师大附中月考)用数字1,2,3组成的五位数中,数字1,2,3均显现的五位数共有________个(用数字作答).解析:利用间接法,第一计算全数的情形数量,共3×3×3×3×3=243(个),其中包括数字全数相同(即只有1个数字)的有3个,还有只含有2个数字的有C23·(2×2×2×2×2-2)=90(个).故1,2,3均显现(即含有3个数字)的五位数有243-3-90=150(个).答案:15011.从4名男同窗当选出2人,6名女同窗当选出3人,并将选出的5人排成一排.(1)共有多少种不同的排法?(2)假设选出的2名男同窗不相邻,共有多少种不同的排法?(用数字表示)解:(1)从4名男生当选出2人,有C24种选法,从6名女生当选出3人,有C36种选法,依照分步乘法计数原理知选出5人,再把这5个人进行排列共有C24C36A55=14 400(种).(2)在选出的5个人中,假设2名男生不相邻,那么第一步先排3名女生,第二步再让男生插空,依照分步乘法计数原理知共有C24C36A33A24=8 640(种).12.用0,1,2,3,4这五个数字,能够组成多少个知足以下条件的没有重复数字的五位数?(1)比21 034大的偶数;(2)左起第二、四位是奇数的偶数.解:(1)可分五类,当末位数字是0,而首位数字是2时,有6个五位数;当末位数字是0,而首位数字是3或4时,有C12A33=12个五位数;当末位数字是2,而首位数字是3或4时,有C12A33=12个五位数;当末位数字是4,而首位数字是2时,有3个五位数;当末位数字是4,而首位数字是3时,有A33=6个五位数.故共有6+12+12+3+6=39个知足条件的五位数.(2)可分为两类:末位数是0,个数有A22·A22=4;末位数是2或4,个数有A22·C12=4.故共有4+4=8个知足条件的五位数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(五十六) 统计1.(2019·福州质检)下面抽样方法是简单随机抽样的是( )A .从平面直角坐标系中抽取5个点作为样本B .可口可乐公司从仓库中的1 000箱可乐中一次性抽取20箱进行质量检查C .某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D .从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编号) 解析:选D 平面直角坐标系中有无数个点,这与简单随机抽样中要求总体中的个体数有限不相符,故A 错误;一次性抽取不符合简单随机抽样逐个抽取的特点,故B 错误;50名战士是最优秀的,不符合简单随机抽样的等可能性,故C 错误.故选D.2.(2019·北大附中期末)某学院A ,B ,C 三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本,已知该学院的A 专业有380名学生,B 专业有420名学生,则应在该学院的C 专业抽取的学生人数为( )A .30B .40C .50D .60解析:选B C 专业的学生有 1 200-380-420=400名,由分层抽样知应抽取120×4001 200=40名.故选B. 3.从2 015名学生中选取50名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样方法从2 015人中剔除15人,剩下的2 000人再按系统抽样的方法抽取,则每人入选的概率( )A .不全相等B .均不相等C .都相等,且为502 015D .都相等,且为140解析:选C 因为简单随机抽样和系统抽样都是等可能抽样,从N 个个体中抽取M 个个体,则每个个体被抽到的概率都等于M N,故从2 015名学生中选取50名学生参加全国数学联赛,每人入选的概率都相等,且为502 015.故选C. 4.(2019·广西南宁毕业班摸底)已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A.100,20 B.200,20C.200,10 D.100,10解析:选B由题图甲可知学生总人数是10 000,样本容量为10 000×2%=200,抽取的高中生人数是2 000×2%=40,由题图乙可知高中生的近视率为50%,所以高中生的近视人数为40×50%=20,故选B.5.(2019·福州质检)某学校共有师生4 000人,现用分层抽样的方法从所有师生中抽取一个容量为200的样本,调查师生对学校食堂餐饮问题的建议,已知从学生中抽取的人数为190,那么该校的教师人数为()A.100 B.150C.200 D.250解析:选C设教师人数为x,由题意知:2004 000=200-190x,解得x=200,故选C.6.(2019·南昌模拟)我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%),现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过()A.6 B.7C.8 D.9解析:选B由题意得,n235×100%≤3%,解得n≤7.05,所以若这批米合格,则n不超过7.故选B.7.某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是()A.该校初三学生1分钟仰卧起坐的次数的中位数为25B.该校初三学生1分钟仰卧起坐的次数的众数为24C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为8解析:选C第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,∴x=1.25,∴中位数为26.25,故A错误.第三组数据所在的矩形最高,第三组数据的中间值为27.5,∴众数为27.5,故B错误.1分钟仰卧起坐的次数超过30的频率为0.04×5=0.2,∴超过30次的人数为400×0.2=80,故C正确.1分钟仰卧起坐的次数少于20的频率为0.02×5=0.1,∴1分钟仰卧起坐的次数少于20的人数为400×0.1=40,故D错误.故选C.8.(2019·黄陵中学期末)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄在17~18岁的男生体重(kg),将他们的体重按[54.5,56.5),[56.5,58.5),…,[74.5,76.5]分组,得到的频率分布直方图如图所示.由图可知这100名学生中体重在[56.5,64.5)的学生人数是()A.20 B.30C.40 D.50解析:选C由频率分布直方图可得体重在[56.5,64.5)的学生的频率为(0.03+0.05+0.05+0.07)×2=0.4,则这100名学生中体重在[56.5,64.5)的学生人数为100×0.4=40.故选C.9.(2019·广西五市联考)如图是2018年第一季度五省GDP情况图,则下列陈述正确的是()①2018年第一季度GDP总量和增速均居同一位的省只有1个;②与去年同期相比,2018年第一季度五个省的GDP总量均实现了增长;③去年同期的GDP总量前三位是D省、B省、A省;④2017年同期A省的GDP总量也是第三位.A.①②B.②③④C.②④D.①③④解析:选B①2018年第一季度GDP总量和增速均居同一位的省有2个,B省和C 省的GDP总量和增速分别居第一位和第四位,故①错误;由图知②正确;由图计算2017年同期五省的GDP总量,可知前三位为D省、B省、A省,故③正确;由③知2017年同期A省的GDP总量是第三位,故④正确.故选B.10.如图是一容量为100的样本重量的频率分布直方图,则由图可估计样本重量的平均数与中位数分别为( )A .13,12B .12,12C .11,11D .12,11解析:选B 平均重量为7.5×5×0.06+12.5×5×0.1+17.5×(1-5×0.06-5×0.1)=12,设中位数为x ,则(x -10)×0.1=0.5-5×0.06,解得x =12.故选B.11.(2019·榆林二中模拟)某学校为了调查学生在学科教辅书方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出的钱数在[30,40)的同学比支出的钱数在[10,20)的同学多26人,则n 的值为________.解析:由频率分布直方图可得支出的钱数在[30,40)的同学有0.038×10n =0.38n 个,支出的钱数在[10,20)的同学有0.012×10n =0.12n 个,又支出的钱数在[30,40)的同学比支出的钱数在[10,20)的同学多26人,所以0.38n -0.12n =0.26n =26,解得n =100.答案:10012.(2019·河南高三联考)某班学生A ,B 在高三8次月考的化学成绩用茎叶图表示如图,其中学生A 的平均成绩与学生B 的成绩的众数相等,则m =________.解析:由题意,得73+79+82+85+(80+m )+83+92+938=84,解得m =5. 答案:513.(2019·沈阳期末联考)为了了解2 000名学生的学习情况,计划采用系统抽样的方法从全体学生中抽取容量为100的样本,若第一组抽出的号码为11,则第五组抽出的号码为________.解析:采用系统抽样的方法从2 000名学生中抽取容量为100的样本,则先分成100组,每组20人,即号码间隔为20,若第一组抽出的号码为11,则第五组抽出的号码为11+20×(5-1)=91.答案:9114.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.解析:设5个数据分别为x 1,x 2,x 3,x 4,x 5.∵平均数为7,∴x 1+x 2+x 3+x 4+x 55=7.又∵样本方差为4,∴4=15[(x 1-7)2+(x 2-7)2+…+(x 5-7)2],∴20=x 21+x 22+x 23+x 24+x 25-2×7×(x 1+x 2+x 3+x 4+x 5)+72×5,∴x 21+x 22+x 23+x 24+x 25=265.又∵42+62+72+82+102=265,∴样本数据中的最大值为10.答案:1015.(2019·湖南长郡中学选拔考试)据了解,大学英语四级改革的一项重要内容就是总分改为710分,每个考生会有一个成绩,不再颁发“合格证”,这也意味着,不再有“及格”一说.大学英语四级考试成绩在425分及以上的考生可以报考大学英语六级考试,英语四级成绩在550分及以上的考生可以报考口语考试.如图是从某大学数学专业40人的英语四级成绩中随机抽取8人的成绩的茎叶图.(1)通过这8人的英语四级成绩估计该大学数学专业英语四级考试成绩的平均数和中位数;(2)在这8人中,从可以报考大学英语六级考试的学生中任取2人,求这2人都可以报考口语考试的概率.解:(1)这8人的英语四级成绩的平均数为(386+410+450+485+520+564+575+610)÷8=500(分),这8人的英语四级成绩的中位数为(485+520)÷2=502.5(分),由此可估计该大学数学专业英语四级考试成绩的平均数为500分,中位数为502.5分.(2)设可以报考大学英语六级考试但不能报考口语的3人为A 1,A 2,A 3,可以报考口语的3人为B 1,B 2,B 3,从这6人中任取2人,全部情况为(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共15种.这2人都可以报考口语考试的情况为(B 1,B 2),(B 1,B 3),(B 2,B 3),共3种,则这2人都可以报考口语考试的概率P =315=15. 16.(2019·新乡一模)为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,从两厂各随机选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;(2)若轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个的轮胎相对更好.解:(1)甲厂10个轮胎宽度的平均值:x甲=110×(195+194+196+193+194+197+196+195+193+197)=195(mm),乙厂10个轮胎宽度的平均值:x乙=110×(195+196+193+192+195+194+195+192+195+193)=194(mm).(2)甲厂10个轮胎中宽度在[194,196]内的数据为195,194,196,194,196,195,平均数:x1=16×(195+194+196+194+196+195)=195,方差:s21=16×[(195-195)2+(194-195)2+(196-195)2+(194-195)2+(196-195)2+(195-195)2]=23,乙厂10个轮胎中宽度在[194,196]内的数据为195,196,195,194,195,195,平均数:x2=16×(195+196+195+194+195+195)=195,方差:s22=16×[(195-195)2+(196-195)2+(195-195)2+(194-195)2+(195-195)2+(195-195)2]=13,∵两厂标准轮胎宽度的平均数相等,但乙厂的方差更小,∴乙厂的轮胎相对更好.。

相关文档
最新文档