高三新课标数学(理)一轮复习(讲义+课件+课时训练):第八篇 平面解析几何(必修2、选修21)(17
2022届高三数学(理)一轮总复习课时规范训练:第八章 平面解析几何 8-2 Word版含答案
课时规范训练[A 级 基础演练]1.已知直线l 1:ax +(a +1)y +1=0,l 2:x +ay +2=0,则“a =-2”是“l 1⊥l 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A.若l 1⊥l 2,则a ×1+a (a +1)=0,解得a =-2或a =0,所以“a =-2”是“l 1⊥l 2”的充分不必要条件.故选A.2.(2021·宁夏银川模拟)已知直线l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0,则l 1∥l 2的充要条件是a 等于( )A .3B .1C .-1D .3或-1解析:选C.由题意知,l 1∥l 2⇔1a -2=a 3≠62a,即a =- 1.故选C. 3.已知直线l 的倾斜角为34π,直线l 1经过点A (3,2)和B (a ,-1),且l 1与l 垂直,直线l 2的方程为2x +by +1=0,且直线l 2与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2解析:选B.∵直线l 的斜率为-1,∴直线l 1的斜率为1,∴k AB =2-(-1)3-a =1,解得a =0.∵l 1∥l 2,∴-2b=1,解得b =-2,∴a +b =-2.4.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ) A .2x +3y -18=0 B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0解析:选D.设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, ∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.5.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A .x +2y -4=0B .2x +y -1=0C .x +6y -16=0D .6x +y -8=0解析:选A.由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式可得A 正确.6.过点A (1,2)且与原点距离最大的直线方程是 . 解析:由题意知,所求直线与OA 垂直, 因k OA =2,则所求直线的斜率k =-12.所以直线的方程是y -2=-12(x -1),即x +2y -5=0.答案:x +2y -5=07.(2021·合肥调研)斜率为2,且与直线2x +y -4=0的交点恰好在x 轴上的直线方程是 . 解析:∵2x +y -4=0与x 轴的交点坐标为(2,0). ∴所求直线的方程为y =2(x -2)即2x -y -4=0. 答案:2x -y -4=08.点(2,3)关于直线x +y +1=0的对称点是 .解析:设对称点为(a ,b ),则⎩⎪⎨⎪⎧b -3a -2=1,a +22+b +32+1=0,解得⎩⎪⎨⎪⎧a =-4,b =-3.答案:(-4,-3)9.光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在直线的方程.解:作出草图,如图所示.设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.10.已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0相互平行,且l 1,l 2之间的距离为5,求直线l 1的方程.解:∵l 1∥l 2,∴m 2=8m ≠n-1,∴⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2. ①当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0,∴|n +2|16+64=5,解得n =-22或n =18.所以,所求直线的方程为2x +4y -11=0或2x +4y +9=0.②当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为4x -8y -2=0,∴|-n +2|16+64=5,解得n=-18或n =22.所以,所求直线的方程为2x -4y +9=0或2x -4y -11=0.[B 级 力量突破]1.若曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722B .922C.1122D .91010解析:选A.由题意得切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1·,整理得x +y +2=0.由点到直线的距离公式,得点P (3,2)到直线l 的距离为|3+2+2|12+12=722. 2.若三条直线l 1:4x +y =4,l 2:mx +y =0,l 3:2x -3my =4不能围成三角形,则实数m 的取值最多有( )A .2个B .3个C .4个D .6个解析:选C.三条直线不能围成三角形,则至少有两条直线平行或三条直线相交于同一点.若l 1∥l 2,则m =4;若l 1∥l 3,则m =-16;若l 2∥l 3,则m 的值不存在;若三条直线相交于同一点,则m =-1或23,故实数m 的取值最多有4个.3.(2021·浙江台州中学质检)已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0相互垂直,则ab 的最小值为( )A .1B .2C .2 2D .2 3解析:选B.由已知两直线垂直得(b 2+1)-ab 2=0,即ab 2=b 2+1.两边同除以b ,得ab =b 2+1b =b +1b.由基本不等式,得b +1b≥2b ·1b=2当且仅当b =1时等号成立,故选B. 4.(2021·郑州一中月考)点P 为x 轴上的一点,A (1,1),B (3,4),则|PA |+|PB |的最小值是 . 解析:点A (1,1)关于x 轴的对称点A ′(1,-1),则|PA |+|PB |的最小值是线段A ′B 的长=52+22=29.答案:295.若直线l 过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点,且|AB |=5,求直线l 的方程. 解:过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0.求得B 点坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1).得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行). 则B 点坐标为⎝⎛⎭⎪⎫k +7k +2,4k -2k +2.由已知⎝ ⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52, 解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.。
高考数学(理)一轮复习教师用书: 第八章 平面解析几何 Word版含解析
第1课时直线及其方程1.直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°.(2)范围:直线l倾斜角的范围是0,π).2.直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k=tan_θ.(2)计算公式:若由A(x1,y1),B(x2,y2)确定的直线不垂直于x轴,则k=y2-y1 x2-x1.3.直线方程的五种形式4.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)坐标平面内的任何一条直线均有倾斜角与斜率.(×)(2)过点M(a,b),N(b,a)(a≠b)的直线的倾斜角是45°.(×)(3)倾斜角越大,斜率越大.(×)(4)经过点P(x0,y0)的直线都可以用方程y-y0=k·(x-x0)表示.(×)(5)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.(√)(6)直线的截距即是直线与坐标轴的交点到原点的距离.(×)(7)若直线在x 轴,y 轴上的截距分别为m ,n ,则方程可记为x m +yn =1.(×)(8)直线Ax +By +C =0表示斜率为-A B ,在y 轴上的截距为-CB 的直线.(×) (9)直线y =kx +3表示过定点(0,3)的所有直线.(×) (10)直线y =3x +b 表示斜率为3的所有直线.(√)考点一 直线的倾斜角与斜率例1] (1)若直线l PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13B .-13 C .-32D.23解析:设P (x,1),Q (7,y ),则x +72=1,y +12=-1,∴x =-5,y =-3,即P (-5,1),Q (7,-3),故直线l 的斜率k =-3-17+5=-13.答案:B(2)直线x +(a 2+1)y +1=0(a ∈R )的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πD.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π 第八章 平面解析几何大一轮复习 数学(理)解析:由直线x +(a 2+1)y +1=0, 得直线的斜率k =-1a 2+1∈-1,0),设直线的倾斜角为θ,则-1≤tan θ<0. 因此3π4≤θ<π.答案:B(3)已知点A(2,-3),B(-3,-2),直线l过点P(1,1)且与线段AB有交点,则直线l的斜率k的取值范围为________.解析:如图,k P A=1+31-2=-4,k PB=1+21+3=34.要使直线l与线段AB有交点,则有k≥34或k≤-4.答案:k≤-4或k≥3 4方法引航] 1.求倾斜角α的取值范围的一般步骤(1)求出斜率k=tan α的取值范围;(2)利用正切函数的单调性,借助图象,数形结合,确定倾斜角α的取值范围.2.求斜率的常用方法(1)已知直线上两点时,由斜率公式k=y2-y1x2-x1(x1≠x2)来求斜率.(2)已知倾斜角α或α的三角函数值时,由k=tan α(α≠90°)来求斜率.(3)方程为Ax+By+C=0(B≠0)的直线的斜率为k=-A B.1.若将本例(1)改为:直线y=1,x=7与坐标轴的交点分别为P、Q,求直线PQ 的斜率.解:由题意可知P(0,1),Q(7,0),∴k PQ=1-00-7=-17.2.若将本例(2)的直线改为(a2+1)x+y+1=0,其倾斜角的范围如何?解:因直线的斜率k=-a2-1≤-1设直线的倾斜角为α,∴tan α≤-1,α∈(0,π), ∴α∈⎝ ⎛⎦⎥⎤π2,34π.3.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为( ) A.3B .- 3 C .0 D .1+ 3解析:直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所以直线的倾斜角为60°,tan 60°= 3. 答案:A考点二 求直线方程例2] 求适合下列条件的直线方程.(1)经过点A (3,4),且在两坐标轴上截距相等的直线方程是________. 解析:设直线在x ,y 轴上的截距均为a . ①若a =0,即直线过点(0,0)及(3,4), ∴直线的方程为y =43x ,即4x -3y =0. ②若a ≠0,则设所求直线的方程为x a +ya =1, 又点(3,4)在直线上, ∴3a +4a =1,∴a =7, ∴直线的方程为x +y -7=0. 答案:4x -3y =0或x +y -7=0(2)一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是________. 解析:∵直线y =13x 的倾斜角α=30°,所以所求直线的倾斜角为60°, 斜率k =tan 60°= 3. 又该直线过点A (2,-3),故所求直线为y -(-3)=3(x -2), 即3x -y -33=0. 答案:3x -y -33=0(3)过点(-3,4),且在两坐标轴上的截距之和为12的直线方程为________. 解析:由题设知截距不为0,设直线方程为x a +y 12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. 答案:4x -y +16=0或x +3y -9=0(4)一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解:设直线的斜率为k (k ≠0), 则直线方程为y -2=k (x +2), 由x =0知y =2k +2. 由y =0知x =-2k -2k . 由12|2k +2|⎪⎪⎪⎪⎪⎪-2k -2k =1. 解得k =-12或k =-2.故直线方程为x +2y -2=0或2x +y +2=0. 答案:x +2y -2=0或2x +y +2=0 方法引航] 求直线方程的两种方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论.(2)待定系数法,具体步骤为:①设所求直线方程的某种形式;②由条件建立所求参数方程(组);③解这个方程(组)求出参数;④把参数的值代入所设直线方程.1.将本例(1)改为:求经过点A(-5,2),且在x轴上的截距等于在y轴上截距的2倍的直线方程.解:当直线不过原点时,设所求直线方程为x2a+ya=1,将(-5,2)代入所设方程,解得a=-1 2,此时,直线方程为x+2y+1=0.当直线过原点时,斜率k=-2 5,直线方程为y=-25x,即2x+5y=0.故所求直线方程为x+2y+1=0或2x+5y=0.2.将本例(2)改为:经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.求该直线方程.解:由已知:设直线y=3x的倾斜角为α,则所求直线的倾斜角为2α.∵tan α=3,∴tan 2α=2tan α1-tan2α=-34.又直线经过点(-1,-3),∴直线方程为y+3=-34(x+1),即3x+4y+15=0.3.将本例(4)改为:直线l 的斜率为16,且与两坐标轴围成的三角形面积为3.求l 的方程.解:设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.考点三 直线方程的应用例3] (1)已知曲线y =x 4-3ln x 的一条切线的斜率为-12,则切点的横坐标为( ) A .3 B .2 C .1 D.12解析:设切点坐标为(x 0,y 0),且x 0>0, ∵y ′=12x -3x ,∴k =12x 0-3x 0=-12,∴x 0=2.答案:B(2)若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________. 解析:根据A (a,0)、B (0,b )确定直线的方程为x a +yb =1,又C (-2,-2)在该直线上,故-2a +-2b =1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16. 答案:16(3)为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△EF A 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解:如图所示,建立平面直角坐标系, 则E (30,0)、F (0,20),∴直线EF 的方程为x 30+y20=1(0≤x ≤30).易知当矩形草坪的一个顶点在EF 上时,可取最大值, 在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q , PR ⊥CD 于点R ,设矩形PQCR 的面积为S , 则S =|PQ |·|PR | =(100-m )(80-n ). 又m 30+n20=1(0≤m ≤30), ∴n =20-23m .∴S =(100-m )⎝ ⎛⎭⎪⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30). ∴当m =5时,S 有最大值,这时|EP ||PF |=5∶1.所以当草坪矩形的两边在BC、CD上,一个顶点在线段EF上,且这个顶点分有向线段EF成5∶1时,草坪面积最大.方法引航]在求直线方程的过程中,若有以直线为载体的面积、距离的最值等问题,一般要结合函数、不等式或利用对称来加以解决.1.已知函数f(x)=x-4ln x,则曲线y=f(x)在点(1,f(1))处的切线方程为________.解析:由f′(x)=1-4x,则k=f′(1)=-3,又f(1)=1,故切线方程为y-1=-3(x-1),即3x+y-4=0.答案:3x+y-4=02.直线3x-4y+k=0在两坐标轴上的截距之和为2,则实数k=________.解析:令x=0,得y=k4;令y=0,得x=-k3.则有k4-k3=2,所以k=-24.答案:-24易错警示]直线的委屈——被遗忘的特殊情况典例](2017·浙江杭州调研)已知直线l过点P(2,-1),在x轴和y轴上的截距分别为a,b,且满足a=3b.则直线l的方程为________.正解]①若a=3b=0,则直线过原点(0,0),此时直线斜率k=-12,直线方程为x+2y=0.②若a=3b≠0,设直线方程为xa+yb=1,即x3b+yb=1.由于点P(2,-1)在直线上,所以b=-1 3.从而直线方程为-x-3y=1,即x+3y+1=0.综上所述,所求直线方程为x+2y=0或x+3y+1=0.答案] x +2y =0或x +3y +1=0易误] 本题容易忽视直线过原点时的情况.警示] 求直线方程时,要注意斜率是否存在,注意截距是否为0;注意区分截距与距离.高考真题体验]1.(2012·高考湖北卷)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( ) A .x +y -2=0 B .y -1=0 C .x -y =0 D .x +3y -4=0解析:选A.两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点P (1,1)的直径所在直线的斜率为1,所以所求直线的斜率为-1,方程为x +y -2=0.2.(2016·高考北京卷)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( ) A .-1 B .3 C .7 D .8解析:选C.依题意得k AB =5-12-4=-2,∴线段l AB :y -1=-2(x -4),x ∈2,4],即y=-2x +9,x ∈2,4],故2x -y =2x -(-2x +9)=4x -9,x ∈2,4].设h (x )=4x -9,易知h (x )=4x -9在2,4]上单调递增,故当x =4时,h (x )max =4×4-9=7.3.(2015·高考广东卷)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( )A .2x +y +5=0或2x +y -5=0B .2x +y +5=0或2x +y -5=0C .2x -y +5=0或2x -y -5=0D .2x -y +5=0或2x -y -5=0解析:选A.设所求直线的方程为2x +y +c =0(c ≠1),则|c |22+12=5,所以c =±5,故所求直线的方程为2x +y +5=0或2x +y -5=0.4.(2014·高考安徽卷)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,π6B.⎝ ⎛⎦⎥⎤0,π3 C.⎣⎢⎡⎦⎥⎤0,π6D.⎣⎢⎡⎦⎥⎤0,π3 解析:选D.法一:设直线l 的倾斜角为θ,数形结合(图略)可知: θmin =0,θmax =2×π6=π3.法二:因为直线l 与x 2+y 2=1有公共点,所以设l :y +1=k (x +3),即l :kx -y +3k -1=0,则圆心(0,0)到直线l 的距离|3k -1|1+k 2≤1,得k 2-3k ≤0,即0≤k ≤3,故直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.课时规范训练 A 组 基础演练1.直线x +3y +m =0(m ∈k )的倾斜角为( ) A .30° B .60° C .150° D .120°解析:选C.∵直线的斜率k =-33,∴tan α=-33. 又0≤α<180°,∴α=150°.2.如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:选D.直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.3.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1C .-2或-1D .-2或1解析:选D.由题意得a +2=a +2a ,∴a =-2或a =1.4.过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( ) A .x =2 B .y =1 C .x =1 D .y =2解析:选A.∵直线y =-x -1的斜率为-1,则倾斜角为34π.依题意,所求直线的倾斜角为3π4-π4=π2,斜率不存在,∴过点(2,1)的所求直线方程为x =2.5.两条直线l 1:x a -y b =1和l 2:x b -ya =1在同一直角坐标系中的图象可以是( )解析:选A.把直线方程化为截距式l 1:x a +y -b =1,l 2:x b +y-a =1.假定l 1,判断a ,b ,确定l 2的位置,知A 项符合.6.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =________. 解析:因为k AB =7-54-3=2,k AC =x -5-1-3=-x -54.A ,B ,C 三点共线,所以k AB =k AC 即-x -54=2, 解得x =-3.答案:-37.直线l 经过A (2,1),B (1,m 2)(m ∈R )两点.则直线l 的倾斜角的取值范围为________. 解析:直线l 的斜率k =m 2-11-2=1-m 2≤1.若l 的倾斜角为α,则tan α≤1. 答案:⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π8.已知直线l 的倾斜角α满足3sin α=cos α,且它在x 轴上的截距为2,则直线l 的方程是________.解析:∵k l =tan α=sin αcos α=13,且过点(2,0), ∴直线方程为y =13(x -2) 即x -3y -2=0. 答案:x -3y -2=09.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围. 解:(1)当直线过原点时,在x 轴和y 轴上的截距为零. ∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.因此直线l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2, ∴⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0. ∴a ≤-1.综上可知a 的取值范围是a ≤-1.10.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解:由题意设直线方程为x a +y b =1(a >0,b >0),∴3a +2b =1. 由基本不等式知3a +2b ≥26ab ,即ab ≥24(当且仅当3a =2b ,即a =6,b =4时等号成立). 又S =12a ·b ≥12×24=12,此时直线方程为x 6+y4=1,即2x +3y -12=0.∴△ABO 面积的最小值为12,此时直线方程为2x +3y -12=0.B 组 能力突破1.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么l 的斜率为( ) A .-13B .-3 C.13D .3解析:选A.设直线l :Ax +By +C =0,由题意,平移后方程为A (x -3)+B (y +1)+C =0,即Ax +By +C +B -3A =0,它与直线l 重合,∴B -3A =0,∴-A B =-13,即直线l 的斜率为-13,故选A.2.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:选D.因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线AB 的点斜式方程为:y -3=-3(x -1).3.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( ) A .ab >0,bc <0 B .ab >0,bc >0 C .ab <0,bc >0 D .ab <0,bc <0解析:选A.由于直线ax +by +c =0经过第一、二、四象限,所以直线存在斜率,将方程变形为y =-a b x -c b .易知-a b <0且-cb >0,故ab >0,bc <0.4.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 解析:当a =-1时,直线l 的倾斜角为90°,符合要求; 当a ≠-1时,直线l 的斜率为-a a +1,只要-a a +1>1或者-a a +1<0即可,解得-1<a <-12或者a <-1或者a >0. 综上可知,实数a 的取值范围是 ⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞). 答案:⎝ ⎛⎭⎪⎫-∞,-12∪(0,+∞)5.已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解:(1)设A (a,0),B (0,b )(a >0,b >0). 设直线l 的方程为x a +y b =1,则1a +1b =1,所以|OA |+|OB |=a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a ≥2+2a b ·ba =4,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.(2)设直线l 的斜率为k ,则k <0,直线l 的方程为y -1=k (x -1),则A ⎝ ⎛⎭⎪⎫1-1k ,0,B (0,1-k ),所以|MA |2+|MB |2=⎝ ⎛⎭⎪⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k 2≥2+2k 2·1k 2=4,当且仅当k 2=1k2,即k =-1时,|MA |2+|MB |2取得最小值4,此时直线l 的方程为x +y -2=0.第2课时 两直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2; ②当不重合的两条直线l 1,l 2的斜率都不存在时,l 1与l 2的关系为平行. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则l 1⊥l 2⇔k 1k 2=-1;②如果l 1,l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2的关系为垂直. 2.两条直线的交点设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,将这两条直线的方程联立,得方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0.(1)若方程组有唯一解,则l 1与l 2相交,此解就是l 1、l 2交点的坐标; (2)若方程组无解,则l 1与l 2无交点,此时l 1∥l 2; (3)若方程组有无数组解,则l 1与l 2重合. 3.三种距离4.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.(×)(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(4)l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,当k 1≠k 2时,l 1与l 2相交.(√)(5)过l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ).(×) (6)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(×) (7)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√) (8)直线l 关于点P 对称的直线l ′,则l ∥l ′.(×) (9)A 、B 两点到直线l 的距离相等,则AB ∥l .(×) (10)直线x +(m +1)y +2=0恒过定点(-2,0).(√)考点一 两条直线的平行与垂直例1] (1)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( ) A .平行 B .重合 C .垂直 D .相交但不垂直解析:由正弦定理a sin A =bsin B ,得b sin A -a sin B =0. ∴两直线垂直. 答案:C(2)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0解析:设所求直线方程为x-2y+m=0,由1+m=0得m=-1,所以直线方程为x -2y-1=0.答案:A(3)已知直线l1:(a+2)x+(1-a)y-3=0与直线l2:(a-1)x+(2a+3)y+2=0,则“a =1”是“l1⊥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:l1⊥l2的充要条件是(a+2)(a-1)+(1-a)·(2a+3)=0,即a2-1=0,故有(a-1)(a+1)=0,解得a=±1.显然“a=1”是“a=±1”的充分不必要条件,故“a=1”是“l1⊥l2”的充分不必要条件.故选A.答案:A(4)已知两直线l1:x+y sin α-1=0和l2:2x·sin α+y+1=0,求α的值,使得:①l1∥l2;②l1⊥l2.解:①法一:当sin α=0时,直线l1的斜率不存在,l2的斜率为0,显然l1不平行于l2.当sin α≠0时,k1=-1sin α,k2=-2sin α.要使l1∥l2,需-1sin α=-2sin α,即sin α=±2 2.所以α=kπ±π4,k∈Z,此时两直线的斜率相等.故当α=kπ±π4,k∈Z时,l1∥l2.法二:由A1B2-A2B1=0,得2sin2α-1=0,所以sin α=±2 2.又B 1C 2-B 2C 1≠0,所以1+sin α≠0,即sin α≠-1. 所以α=k π±π4,k ∈Z . 故当α=k π±π4,k ∈Z 时,l 1∥l 2.②因为A 1A 2+B 1B 2=0是l 1⊥l 2的充要条件,所以2sin α+sin α=0,即sin α=0,所以α=k π,k ∈Z . 故当α=k π,k ∈Z 时,l 1⊥l 2.方法引航] 两直线垂直时,一般先将直线方程化成一般式,l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,然后利用A 1A 2+B 1B 2=0求解,这样避免出现漏解.如果利用斜截式方程,则需要根据其斜率是否存在分情况讨论,往往容易忽视斜率不存在的情况,导致漏解.对l 1∥l 2,用A 1A 2=B 1B 2≠C 1C 2时,有可能漏解.1.将本例(1)的两直线改为:l 1:bx +ay +c =0,l 2:x sin B +y sin A -sin C =0,其位置关系如何? 解:由b sin B =asin A ≠c-sin C ,∴l 1∥l 2.2.将本例(2)改为过点(1,0)与x -2y -2=0垂直,其直线方程怎样. 解:∵x -2y -2=0的斜率为12, ∴所求直线的斜率为-2,∴直线方程为y =-2(x -1),即2x +y -2=0.3.将本例(3)变为“a =-1”是“直线ax +y +1=0与直线x +ay +2=0平行”的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件解析:选A.由直线ax +y +1=0与直线x +ay +2=0平行,得a =-1或1,所以“a =-1”是“直线ax +y +1=0与直线x +ay +2=0平行”的充分不必要条件. 4.将本例(4)变为l 1:ax -by +4=0,l 2:(a -1)x +y +b =0,若l 1⊥l 2且l 1过点(-3,-1),求a ,b 的值.解:法一:由题意得⎩⎪⎨⎪⎧ a (a -1)-b ×1=0-3a +b +4=0,即⎩⎪⎨⎪⎧a 2-a -b =0-b =-3a +4,解得⎩⎪⎨⎪⎧a =2,b =2.法二:由已知可得l 2的斜率存在,∴k 2=1-a . 若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1必不存在,即b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾). ∴此种情况不存在,∴k 2≠0.即k 1,k 2都存在,∵k 2=1-a ,k 1=ab ,l 1⊥l 2, ∴k 1k 2=-1,即ab (1-a )=-1.①又∵l 1过点(-3,-1),∴-3a +b +4=0.② 由①②联立,解得a =2,b =2.考点二 两条直线的交点和距离例2] (1)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.解:法一:由方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1、l 2的交点坐标为(-1,2),∵l 3的斜率为35,∴l 的斜率为-53,则直线的点斜式方程l :y -2=-53(x +1), 即5x +3y -1=0.法二:设直线l 的方程为:3x +2y -1+λ(5x +2y +1)=0, 将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0, 其斜率-3+5λ2+2λ=-53,解得λ=15,代入直线系方程即得l 的方程为5x +3y -1=0.(2)求过点P (2,-1)且与原点距离为2的直线l 的方程. 解:若l 的斜率不存在,则直线x =2满足条件. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(3)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c +2a 的值为________.解析:由题意得,63=a -2≠c-1,∴a =-4,c ≠-2.则6x +ay +c =0可化为3x -2y +c2=0. ∴21313=⎪⎪⎪⎪⎪⎪⎪⎪c 2+113,∴解得c =2或c =-6.∴c +2a =1或c +2a =-1. 答案:±1方法引航] (1)符合特定条件的某些直线构成一个直线系,常见的直线系有: ①与Ax +By +C =0平行的直线系:Ax +By +m =0(m ≠C ); ②与Ax +By +C =0垂直的直线系:Bx -Ay +m =0;③过A 1x +B 1y +C 1=0和A 2x +B 2y +C 2=0交点的直线系:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0. (2)y =kx +b .①当b 为定值,k 变为参数时,表示过定点(0,b )的直线系(除x =0外); ②当k 为定值,b 为参数时,表示斜率为k 的平行直线系.1.已知经过点P (2,2)的直线l 与直线ax -y +1=0垂直,若点M (1,0)到直线l 的距离等于5,则a 的值是( ) A .-12B .1C .2 D.12解析:选C.依题意,设直线l 的方程为x +ay +c =0, ∵点P (2,2)在l 上,且点M (1,0)到l 的距离等于 5. ∴⎩⎪⎨⎪⎧2+2a +c =0,|1+c |1+a2= 5.消去c ,得a =2.2.过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程为________.解析:由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.∴l 1与l 2交点为(1,2),设所求直线y -2=k (x -1),即kx -y +2-k =0, ∵P (0,4)到所求直线的距离为2, ∴2=|-2-k |1+k 2,解得k =0或k =43.∴直线方程为y =2或4x -3y +2=0. 答案:y =2或4x -3y +2=03.l 1,l 2是分别经过点A (1,1),B (0,-1)的两条平行直线,当l 1与l 2间的距离最大时,直线l 1的方程是________.解析:当AB ⊥l 1时,两直线l 1与l 2间的距离最大, 由k AB =-1-10-1=2,知l 1的斜率k =-12.∴直线l 1的方程为y -1=-12(x -1), 即x +2y -3=0. 答案:x +2y -3=0考点三 对称问题例3] (1)(2017·江西南昌二中月考)过点M (0,1)作直线,使它被两条直线l 1:x -3y +10=0,l 2:2x +y -8=0所截得的线段恰好被M 所平分,则此直线方程为________. 解析:法一:过点M 且与x 轴垂直的直线是x =0,它和直线l 1,l 2的交点分别是⎝ ⎛⎭⎪⎫0,103,(0,8),显然不符合题意,故可设所求直线方程为y =kx +1,其图象与直线l 1,l 2分别交于A ,B 两点,则有①⎩⎪⎨⎪⎧ y A =kx A +1,x A -3y A +10=0,②⎩⎪⎨⎪⎧y B =kx B +1,2x B +y B -8=0. 由①解得x A =73k -1,由②解得x B =7k +2.因为点M 平分线段AB ,所以x A +x B =2x M , 即73k -1+7k +2=0,解得k =-14.故所求的直线方程为y =-14x +1,即x +4y -4=0. 法二:设所求直线与l 1交于A (x 1,y 1)与l 2交于B (x 2,y 2) 且x 1+x 2=0,∴x 2=-x 1. y 1+y 2=2,y 2=2-y 1∴⎩⎪⎨⎪⎧ x 1-3y 1+10=0-2x 1+2-y 1-8=0,解得⎩⎪⎨⎪⎧x 1=-4y 1=2.即A (-4,2) 故过M 和A 的方程为x +4y -4=0. 答案:x +4y -4=0(2)A (-1,-2)关于直线l :2x -3y +1=0的对称点A ′的坐标为________.解析:设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0解得⎩⎪⎨⎪⎧x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413.答案:A ′⎝ ⎛⎭⎪⎫-3313,413(3)直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程为________.解析:由⎩⎪⎨⎪⎧y =2x +3,y =x +1解得直线l 1与l 的交点坐标为(-2,-1),∴可设直线l 2的方程为y +1=k (x +2),即 kx -y +2k -1=0.在直线l 上任取一点(1,2),由题设知点(1,2)到直线l 1,l 2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),∴直线l 2的方程为x -2y =0. 答案:x -2y =0方法引航](1)点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .(2)解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直., 3)若直线l 1、l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.(4)解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解:法一:由⎩⎨⎧x -2y +5=0,3x -2y +7=0,得⎩⎨⎧x =-1,y =2. ∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0),由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,Q 点在l 上,∴3·x 0-52-2·y 02+7=0. 由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0. 法二:设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x=-23, 又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0, 由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0.可得P 点的横、纵坐标分别为x 0=-5x +12y -4213,y 0=12x +5y +2813, 代入方程x -2y +5=0中,化简得29x -2y +33=0,∴所求反射光线所在的直线方程为29x -2y +33=0.方法探究]有关点与直线的最值问题典例] (2017·福建泉州模拟)若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3关系探究] 一、从m 2+n 2表示的几何意义分析,得出原点到直线的距离.二、从函数角度分析:题意隐含了m 与n 的约束关系,从而m 2+n 2可转化为关于m (n )的函数求最值.解析] 法一:数形结合法(1)m 2+n 2=(m -0)2+(n -0)2表示点(m ,n )与(0,0)距离的平方,∴m 2+n 2表示点(m ,n )与(0,0)的距离,其最小值为原点到直线的距离.当过原点的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离的最小值为d =|-10|42+32=2,∴m 2+n 2的最小值为4.(2)由题意知点(m ,n )为直线上到原点最近的点, 直线与两坐标轴交于A ⎝ ⎛⎭⎪⎫52,0,B ⎝ ⎛⎭⎪⎫0,103,在直角三角形OAB 中,OA =52,OB =103,斜边AB =⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫1032=256,斜边上的高h 即为所求m 2+n 2的算术平方根, ∴S △OAB =12·OA ·OB =12AB ·h , ∴h =OA ·OB AB =52×103256=2,∴m 2+n 2的最小值为h 2=4. 法二:函数法因点(m ,n )在直线4x +3y -10=0上, ∴4m +3n -10=0,∴m =10-3n4,∴m 2+n 2=⎝ ⎛⎭⎪⎫10-3n42+n 2=100-60n +25n 216=2516⎝ ⎛⎭⎪⎫n -652+4. 当n =65时,m 2+n 2的最小值为4. 答案] C回顾反思] 有关点与直线的最值问题,一般有两种方法:一是利用几何意义,采用数形结合法.如(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )间距离的平方.|Ax 0+By 0+C |A 2+B 2表示点P (x 0,y 0)到直线Ax +By +C =0的距离;再者利用函数求最值.高考真题体验]1.(2012·高考浙江卷)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +2y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.由a =1可得l 1∥l 2,反之,由l 1∥l 2可得a =1,故选C.2.(2014·高考福建卷)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A .x +y -2=0 B .x -y +2=0 C .x +y -3=0 D .x -y +3=0解析:选D.依题意,得直线l 过点(0,3),斜率为1,所以直线l 的方程为y -3=x -0,即x -y +3=0.故选D.3.(2014·高考四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,不难验证P A ⊥PB ,所以|P A |2+|PB |2=|AB |2=10,所以|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |=5时,等号成立),当P 与A 或B 重合时,|P A |·|PB |=0,故|P A |·|PB |的最大值是5. 答案:5课时规范训练 A 组 基础演练1.直线l 过点(-1,2),且与直线2x -3y +4=0垂直,则l 的方程是( ) A .3x +2y -1=0 B .3x +2y +7=0 C .2x -3y +5=0 D .2x -3y +8=0解析:选A.由题意可得直线l 的斜率k =-32, ∴l :y -2=-32(x +1),即3x +2y -1=0.2.已知直线l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0,则l 1∥l 2的充要条件是a 等于( ) A .3 B .1 C .-1 D .3或-1解析:选C.由题意知,l 1∥l 2⇔1a -2=a 3≠62a ,即a =-1.故选C.3.已知直线l 的倾斜角为34π,直线l 1经过点A (3,2)和B (a ,-1),且l 1与l 垂直,直线l 2的方程为2x +by +1=0,且直线l 2与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2解析:选B.∵直线l 的斜率为-1,∴直线l 1的斜率为1,∴k AB =2-(-1)3-a=1,解得a =0.∵l 1∥l 2,∴-2b =1,解得b =-2,∴a +b =-2.4.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ) A .2x +3y -18=0 B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0解析:选D.设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.5.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A .x +2y -4=0B .2x +y -1=0C .x +6y -16=0D .6x +y -8=0解析:选A.由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式可得A 正确. 6.过点A (1,2)且与原点距离最大的直线方程是________. 解析:由题意知,所求直线与OA 垂直, 因k OA =2,则所求直线的斜率k =-12.所以直线的方程是y -2=-12(x -1),即x +2y -5=0. 答案:x +2y -5=07.过点(3,1),且过直线y =2x 与直线x +y =3交点的直线方程为________. 解析:法一:由⎩⎨⎧ y =2x x +y =3,得⎩⎨⎧x =1y =2,即两直线交点为(1,2),依题意,由两点式方程得y -12-1=x -31-3,即x +2y -5=0.法二:设所求直线方程为x +y -3+λ(2x -y )=0. 把点(3,1)代入得λ=-15,故所求直线方程为 x +y -3-15(2x -y )=0,即x +2y -5=0. 答案:x +2y -5=08.△ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),则边BC 的垂直平分线DE 的方程为________.解析:设BC 中点D 的坐标为(x ,y ),则x =2-22=0,y =1+32=2.BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2,由斜截式得直线DE 的方程为y =2x +2.答案:y =2x +29.光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在直线的方程.解:作出草图,如图所示.设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.10.已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0互相平行,且l 1,l 2之间的距离为5,求直线l 1的方程. 解:∵l 1∥l 2,∴m 2=8m ≠n-1,∴⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.①当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0,∴|n +2|16+64=5,解得n =-22或n =18.所以,所求直线的方程为2x +4y -11=0或2x +4y +9=0.②当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为4x -8y -2=0,∴|-n +2|16+64=5,解得n =-18或n =22.所以,所求直线的方程为2x -4y +9=0或2x -4y -11=0.B 组1.若三条直线l 1:4x +y =4,l 2:mx +y =0,l 3:2x -3my =4不能围成三角形,则实数m 的取值最多有( ) A .2个 B .3个 C .4个 D .6个解析:选C.三条直线不能围成三角形,则至少有两条直线平行或三条直线相交于同一点.若l 1∥l 2,则m =4;若l 1∥l 3,则m =-16;若l 2∥l 3,则m 的值不存在;若三条直线相交于同一点,则m =-1或23,故实数m 的取值最多有4个.2.若曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( )A.722B.922C.1122D.91010解析:选A.由题意得切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1·x -(-1)],整理得x +y +2=0.由点到直线的距离公式,得点P (3,2)到直线l 的距离为|3+2+2|12+12=722.3.已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0互相垂直,则ab 的最小值为( ) A .1 B .2 C .22D .2 3解析:选B.由已知两直线垂直得(b 2+1)-ab 2=0,即ab 2=b 2+1.两边同除以b ,得ab =b 2+1b =b +1b .由基本不等式,得b +1b ≥2b ·1b =2当且仅当b =1时等号成立,故选B.4.直线y =2x 是△ABC 的一个内角平分线所在的直线,若点A (-4,2),B (3,1),则点C 的坐标为________.解析:把A ,B 两点的坐标分别代入y =2x ,可知A ,B 不在直线y =2x 上,因此y =2x 为∠ACB 的平分线所在的直线,设点A (-4,2)关于直线y =2x 的对称点为A ′(a ,b ),则k AA ′=b -2a +4,线段AA ′的中点坐标为⎝ ⎛⎭⎪⎫a -42,b +22, 由⎩⎪⎨⎪⎧b -2a +4·2=-1,b +22=2·a -42,解得⎩⎪⎨⎪⎧a =4,b =-2,∴A ′(4,-2).∵y =2x 是∠ACB 的平分线所在的直线, ∴点A ′在直线BC 上,∴直线BC 的方程为y +21+2=x -43-4,即3x +y -10=0,由⎩⎪⎨⎪⎧ y =2x ,3x +y -10=0解得⎩⎪⎨⎪⎧x =2,y =4,∴C (2,4). 答案:(2,4)5.若直线l 过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点,且|AB |=5,求直线l 的方程.解:过点A (1,-1)与y 轴平行的直线为x =1. 解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0.求得B 点坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1), 解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1).得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行). 则B 点坐标为⎝ ⎛⎭⎪⎪⎫k +7k +2,4k -2k +2. 由已知⎝ ⎛⎭⎪⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎪⎫4k -2k +2+12=52, 解得k =-34,∴y +1=-34(x -1), 即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.第3课时 圆的方程1.圆的定义及方程2.点与圆的位置关系(1)理论依据:点与圆心的距离与半径的大小关系. (2)三种情况圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0), ①(x 0-a )2+(y 0-b )2=r 2⇔点在圆上; ②(x 0-a )2+(y 0-b )2>r 2⇔点在圆外; ③(x 0-a )2+(y 0-b )2<r 2⇔点在圆内.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)确定圆的几何要素是圆心与半径.(√)(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.(√)(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4F >0.(×)(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.(√)(5)已知圆的方程为x 2+y 2-2y =0,过点A (1,2)作该圆的切线只有一条.(×) (6)方程(x +a )2+(y +b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆.(×) (7)方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆心为⎝ ⎛⎭⎪⎫-a 2,-a ,半径为12-3a 2-4a +4的圆.(×)(8)过不共线的三点一定有唯一的一个圆.(√)(9)方程x 2+y 2+2x -2y +2=0表示圆心为(-1,1)的圆.(×) (10)圆x 2-4x +y 2+2y +1=0上的点到(2,1)的最长距离为4.(√)考点一 求圆的方程例1] 根据下列条件,求圆的方程:(1)经过点A (5,2),B (3,-2),且圆心在直线2x -y -3=0上; (2)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6; (3)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2). 解:(1)法一:由题意知k AB =2,AB 的中点为(4,0),设圆心为C (a ,b ),则 AB 的垂直平分线为y =-12(x -4)由⎩⎨⎧ y =-12(x -4)2x -y -3=0得⎩⎪⎨⎪⎧x =2y =1即C (2,1)为圆心. ∴r =|CA |=(5-2)2+(2-1)2=10,∴所求圆的方程为(x -2)2+(y -1)2=10. 法二:设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧2a -b -3=0,(5-a )2+(2-b )2=r 2,(3-a )2+(-2-b )2=r 2,解得⎩⎪⎨⎪⎧a =2,b =1,r =10,故圆的方程为(x -2)2+(y -1)2=10.法三:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则⎩⎪⎨⎪⎧25+4+5D +2E +F =0,9+4+3D -2E +F =0,2×⎝ ⎛⎭⎪⎫-D 2+E 2-3=0,解得⎩⎪⎨⎪⎧D =-4,E =-2,F =-5,∴所求圆的方程为x 2+y 2-4x -2y -5=0.(2)设圆的方程为x 2+y 2+Dx +Ey +F =0, 将P 、Q 两点的坐标分别代入得 ⎩⎪⎨⎪⎧2D -4E -F =20, ①3D -E +F =-10. ② 又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6有D 2-4F =36,④ 由①、②、④解得D =-2,E =-4, F =-8,或D =-6,E =-8,F =0.故所求圆的方程为x 2+y 2-2x -4y -8=0,或x 2+y 2-6x -8y =0.(3)法一:如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22,故圆的方程为(x -1)2+(y +4)2=8.。
高考数学一轮复习第8章平面解析几何8.1直线的倾斜角斜率与直线的方程课件理
冲关针对训练 已知直线 l 过点 M(1,1),且与 x 轴,y 轴的正半轴分别 相交于 A,B 两点,O 为坐标原点.求: (1)当|OA|+|OB|取得最小值时,直线 l 的方程; (2)当|MA|2+|MB|2 取得最小值时,直线 l 的方程.
第三十四页,共46页。
解 (1)设 A(a,0),B(0,b)(a>0,b>0).
第四页,共46页。
2.直线方程的五种形式
第五页,共46页。
第六页,共46页。
[诊断自测] 1.概念思辨 (1)直线的斜率为 tanα,则其倾斜角为 α.( × ) (2)斜率相等的两直线的倾斜角不一定相等.( × ) (3)经过点 P(x0,y0)的直线都可以用方程 y-y0=k(x-x0) 表示.( × ) (4)经过任意两个不同的点 P1(x1,y1),P2(x2,y2)的直线 都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( √ )
设直线 l 的方程为ax+by=1,则1a+1b=1,
所以
|OA|+|OB|=a+
b
=
(a
+b)1a+1b=2
+
a b
+ba≥2+
2 ab·ba=4, 当且仅当“a=b=2”时取等号,此时直线 l 的方程为 x
+y-2=0.
第三十五页,共46页。
(2)设直线 l 的斜率为 k,则 k<0, 直线 l 的方程为 y-1=k(x-1), 则 A1-1k,0,B(0,1-k), 所以|MA|2+|MB|2=1-1+1k2+12+12+(1-1+k)2=2 +k2+k12≥2+2 k2·k12=4. 当且仅当 k2=k12,即 k=-1 时取等号,此时直线 l 的 方程为 y-1=-(x-1),即 x+y-2=0.
高考数学(理)一轮复习课件:第8章 平面解析几何8-8
第十二章
选考部分
小题快做 1.思考辨析 (1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.( √ ) (2)方程x2+xy=x的曲线是一个点和一条直线.( × ) (3)到两条互相垂直的直线距离相等的点的轨迹方程是x2=y2.( × ) (4)方程y= x与x=y2表示同一曲线.( × )
栏目 导引
第十二章
选考部分
16 2 9 2 x + y =1 5 2 2 25 25 . 3.[教材改编]已知方程ax +by =2的曲线经过点A0,3和B(1,1),则曲线方程为____________
52 · b= 2 5 解析 代入A0,3,B(1,1)两点坐标得3 a+b=2
2 x 故点F的轨迹方程为y2- =1(y≤-1). 48
栏目 导引
第十二章
选考部分
求点的轨迹方程是高考考查的重要内容.该部分内容大多以解答题的形式出现,考查求轨迹方程的方 法、曲线与方程的定义、运算等且主要有以下几个命题角度. 命题角度1 直接法求轨迹方程 典例1 轨迹C的方程. [2013· 陕西高考选编]已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.试求动圆圆心的
栏目 导引
第十二章
选考部分
考点多维探究
栏目 导引
第十二章
选考部分
考点 轨迹方程
回扣教材 1.曲线与方程 一般地,在平面直角坐标系中,如果某曲线 C(看作点的集合或适合某种条件的点的轨迹)上点的坐标与 一个二元方程 f(x,y)=0 的实数解满足如下关系: 这个方程的解. (1)曲线上点的坐标都是__________________
第十二章
选考部分
高考数学(新课标人教版)一轮总复习课件:第八章 平面解析几何4
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
⑤正确.等轴双曲线:x2-y2=a2(a>0)的渐近线方程为 x2 -y2=0,即 y=± x,显然两直线互相垂直,其实轴、虚轴长均 为 2a,所以 c= 2a, 2a c 所以 e=a= a = 2.
[ 解析]
) 6 B. 2 D.1
c 2 2 因为 c =a +3,所以 e=a=
a2+3 2 2 =2,得 a a
=1,所以 a=1.故选 D.
[ 答案] D
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
x2 y2 4 . (2015· 天津模拟 ) 双曲线 9 - 16 = 1 的渐近线方程为 ________.
[ 解析] [ 答案]
)
B.3 D.3 或 7
因为||PF1|-|PF2||=2,所以|PF2|=7 或 3. 故选 D. D
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
x2 y2 3.(2014· 新课标高考全国卷Ⅰ) 已知双曲线a2- 3 =1(a> 0)的离心率为 2,则 a=( A.2 5 C. 2
第八章 平面解析几何
考点自主回扣
考向互动探究
考能感悟提升
课时作业
x2 y2 ④双曲线方程m2-n2=1(m>0,n>0,λ≠0)的渐近线方程 x2 y2 x y 是m2-n2=0,即m± n=0. ⑤等轴双曲线的渐近线互相垂直,离心率等于 2. 其中正确的是________.( 写出所有正确命题的序号 )
[ 解析]
x2 y2 因为双曲线方程为 9 -16=1,所以其渐近线方程
新教材高考数学一轮复习第8章平面解析几何第5节椭圆课件新人教B版
2.(2021·八省联考)椭圆m2x+2 1+my22=1(m>0)的焦点为 F1,F2,上
顶点为 A.若∠F1AF2=π3,则 m=(
Hale Waihona Puke )A.1B. 2
C. 3
D.2
C 解析:在椭圆m2x+2 1+my22=1(m>0)中,a= m2+1,b=m,c= a2-b2=1,
距离为 1,所以 y=±1,把 y=±1 代入x52+y42=1,得 x=± 215.
又 x>0,所以 x=
215,所以点
P
坐标为
215,1或
215,-1.
1234 5
02
关键能力·研析考点强“四翼”
考点1 椭圆的定义及应用——基础性 考点2 椭圆的标准方程——综合性 考点3 椭圆的几何性质——综合性
考点1 椭圆的定义及应用——基础性
(1)(2020·东莞4月模拟)已知F1,F2分别为椭圆C:
x2 a2
+
y2 b2
=
1(a>b>0)的左、右焦点,过F1且垂直于x轴的直线l交椭圆C于A,B两
点.若△AF2B是边长为4的等边三角形,则椭圆C的方程为( )
A.x42+y32=1
B.x92+y62=1
3c.
令 y=
3x-b=0,则
M
b3,0,
即 M(c,0),
所以 M 为椭圆的右焦点,所以|FM|=2c.
由椭圆的定义可知,|NF|+|NM|=2a,因为△FMN 的周长为 6,所 以 2a+2c=6,
因为ba= 23,b= 3c,所以 a=2c, 所以 c=1,a=2,b= 3,
所以
S△FAN=12·|FM|·35b--b=c·85b=8
高考数学一轮复习第8章平面解析几何8.5椭圆课件理
典例1 (2018·湖南岳阳模拟)在平面直角坐标系 xOy
中,椭圆 C 的中心为坐标原点,F1、F2 为它的两个焦点,
离心率为 22,过 F1 的直线 l ABF2 的周长为 16,那么椭圆
交椭圆 C 于 A,B 两点,且△ C 的方程为_1x_62+__y8_2=__1_或__x8_2+__1y_62_=_1.
即 有 △ F1PF2
的面积
S
=
1 2
|PF1|·|PF2|sin
∠
F1PF2
=
b2·1+sincoθsθ=b2tanθ2=tan2θ.
第二十五页,共69页。
方法技巧 椭圆定义的应用技巧
1.椭圆定义的应用主要有两个方面:一是判定平面内 动点与两定点的轨迹是否为椭圆;二是利用定义求焦点三角 形的周长、面积、椭圆的弦长及最值和离心率等.
第三十页,共69页。
典例2
(2017·江西模拟)椭圆ax22+by22=1(a>b>0),F1,
F2 为椭圆的左、右焦点,且焦距为 2 3,O 为坐标原点,点
P 为椭圆上一点,|OP|= 42a,且|PF1|,|F1F2|,|PF2|成等比
数列,求椭圆的方程.
用待定系数法,根据已知列出方程组.
第三十一页,共69页。
为 2a+2c(其中 a 为椭圆的长半轴长,c 为椭圆的半焦
距).( √ )
(4)
x2 a2
+
y2 b2
=
1(a>b>0)
与
y2 a2
+
x2 b2
=
1(a>b>0)
的
焦
距
相
同.( √ )
第十二页,共69页。
数学(理)一轮复习 第八章 平面解析几何 第讲 双曲线
第6讲 双曲线1.双曲线的定义 条件 结论1 结论2 平面内的动点M与平面内的两个定点F 1,F 2M 点的 轨迹为 双曲线 F 1、F 2为双曲线的焦点 ||MF 1|-|MF 2||=2a|F 1F 2|为双曲线的焦距 2a <|F 1F 2|2.双曲线的标准方程和几何性质 标准方程 错误!-错误!=1 (a >0,b >0) 错误!-错误!=1 (a >0,b >0)图形性质 范围x ≥a 或x ≤-a ,y ∈R y ≤-a 或y ≥a ,x ∈R 对称性 对称轴:坐标轴,对称中心:原点顶点 A 1(-a ,0),A 2(a ,0) A 1(0,-a ),A 2(0,a )渐近线y=±ba xy=±错误!x离心率e=错误!,e∈(1,+∞)实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关系c2=a2+b2(c>a>0,c>b>0)1.辨明三个易误点(1)双曲线的定义中易忽视2a<|F1F2|这一条件.若2a=|F1F2|,则轨迹是以F1,F2为端点的两条射线,若2a>|F1F2|,则轨迹不存在.(2)区分双曲线中a,b,c的关系与椭圆中a,b,c的关系,在椭圆中a2=b2+c2,而在双曲线中c2=a2+b2。
(3)双曲线的离心率e∈(1,+∞),而椭圆的离心率e∈(0,1).2.求双曲线标准方程的两种方法(1)定义法根据题目的条件,判断是否满足双曲线的定义,若满足,求出相应的a,b,c,即可求得方程.(2)待定系数法①与双曲线错误!-错误!=1共渐近线的可设为错误!-错误!=λ(λ≠0);②若渐近线方程为y =±b ax ,则可设为错误!-错误!=λ(λ≠0); ③若过两个已知点,则可设为错误!+错误!=1(mn <0).3.双曲线几何性质的三个关注点(1)“六点”:两焦点、两顶点、两虚轴端点;(2)“四线”:两对称轴(实、虚轴)、两渐近线;(3)“两形”:中心、顶点、虚轴端点构成的三角形;双曲线上的一点(不包括顶点)与两焦点构成的三角形.1。
高考数学(理)一轮复习课件:第8章 平面解析几何8-5
栏目 导引
第十二章
选考部分
2 2 x y 1 + =1. 2.[教材改编]已知椭圆的一个焦点为 F(1,0),离心率为 ,则椭圆的标准方程为________ 4 3 2
x2 y2 解析 设椭圆标准方程为 2+ 2=1, a b
c=1 a= 2 a 2 由已知可得c=1, ⇒b= 3 2 2 2 c=1 a =b +c
2 2 2 a = b + c 椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中 a 为斜边长,_______________.
栏目 导引
第十二章
选考部分
小题快做 1.思考辨析 (1)椭圆既是轴对称图形,又是中心对称图形.( √ ) (2)平面内与两个定点 F1、F2 的距离之和等于常数的点的轨迹是椭圆.( × ) (3)方程 mx2+ny2=1(m>0,n>0 是 m≠n)表示的曲线是椭圆.( √ )
选考部分
典例1
x2 y2 (1)[2013· 课标全国卷Ⅰ]已知椭圆 E: 2+ 2=1(a>b>0)的右焦点为 F(3,0),过点 F 的直线交 a b ) x2 y2 B. + =1 36 27 x2 y2 D. + =1 18 9
E 于 A,B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为( x2 y2 A. + =1 45 36 x2 y2 C. + =1 27 18
焦距. 两定点叫做椭圆的焦点,两焦点间的距离叫做______ 2a ,且 2a______|F > (2)集合语言:P={M||MF1|+|MF2|=______ 1F2|},|F1F2|=2c,其中 a>c>0,且 a,c 为常
数. 注意:当 2a>|F1F2|时,轨迹为椭圆;当 2a=|F1F2|时,轨迹为线段 F1F2;当 2a<|F1F2|时,轨迹不存在.
高考数学一轮复习第8章平面解析几何课件
[五年考情]
考点
2016 年 2015 年 2014 年
2013 年
2012 年
直线的倾斜角 与斜率、直线的 方程、距离
17,4 分(文) 15,4 分(理)
3,位置关 系、圆与圆的位 10,6 分(文)
14,4 分(理) 14,4 分(文)
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/7/12
最新中小学教学课件
5
谢谢欣赏!
2019/7/12
最新中小学教学课件
6
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
19,15 分 (理)
19,15 分 (文)
19,15 分 (理)
19,15 分 (文)
21,15 分 (理)
22,7 分(文)
22(2),9 分(理) 22,14 分(文)
21(2),8 分(理) 22,15 分(文)
[重点关注] 综合近 5 年浙江卷高考试题,我们发现高考主要考查直线的方程、圆的方 程、直线与圆、圆与圆的位置关系、圆锥曲线(椭圆、双曲线、抛物线)的定义、 标准方程及性质、直线与圆锥曲线的位置关系及综合应用,突出对数形结合思 想、函数与方程思想、转化与化归思想的考查.
【人教版】数学(理)一轮复习:第8章《平面解析几何》(第9节)ppt课件
直线与圆锥曲线的位置关系 [典题导入]
(2014·长春三校调研)在直角坐标系 xOy 中,点 M2,-21, 点 F 为抛物线 C:y=mx2(m>0)的焦点,线段 MF 恰被抛物线 C 平分. (1)求 m 的值; (2)过点 M 作直线 l 交抛物线 C 于 A、B 两点,设直线 FA、FM、 FB 的斜率分别为 k1、k2、k3,问 k1、k2、k3 能否成公差不为零的 等差数列?若能,求直线 l 的方程;若不能,请说明理由.
若a=0且b≠0,则直线与圆锥曲线相交,且有 一个交点.
二、圆锥曲线的弦长问题
设直线 l 与圆锥曲线 C 相交于 A、B 两点,A(x1,y1),B(x2,y2),
则弦长|AB|= 1+k2|x1-x2| 或
1+k12|y1-y2| .
[基础自测自评] 1.(教材习题改编)与椭圆1x22 +1y62 =1 焦点相同,离心率互为倒数
则
S=21|AB|·d=
3 6·
(m-4)2(12-m2).
其中 m∈(-2 3,0)∪(0,2 3).
令 u(m)=(12-m2)(m-4)2,m∈[-2 3,2 3 ], u′(m)=-4(m-4)(m2-2m-6)
=-4(m-4)(m-1- 7)(m-1+ 7).
所以当且仅当 m=1- 7时,u(m)取到最大值. 故当且仅当 m=1- 7时,S 取到最大值. 综上,所求直线 l 的方程为 3x+2y+2 7-2=0.
所以|MN|= (x2-x1)2+(y2-y1)2
= (1+k2)[(x1+x2)2-4x1x2]
=2
(1+k2)(4+6k2)
1+2k2
.
又因为点 A(2,0)到直线 y=k(x-1)的距离 d= 1|+k| k2, 所以△AMN 的面积为 S=12|MN|· d=|k|1+4+2k62k2. 由|k|1+4+2k62k2= 310, 解得 k=±1.
2017高考理科数学(新课标)一轮复习课件:第8章 平面解析几何 第4讲
则2
2
2
2+|a-22|
2
=
22,所以
a=0
或
4,故选
D.
第八页,编辑于星期六:二十二点 十一分。
3.圆 Q:x2+y2-4x=0 在点 P(1, 3)处的切线方程为( D )
A.x+ 3y-2=0
B.x+ 3y-4=0
C.x- 3y+4=0
D.x- 3y+2=0
解析:因点 P 在圆上,且圆心 Q 的坐标为(2,0),
由勾股定理得弦长的一半为 4-2= 2,
所以所求弦长为 2 2.
第十一页,编辑于星期六:二十二点 十一分。
考点一 直线与圆的位置关系
(1)已知点 M(a,b)在圆 O:x2+y2=1 外, 则直线
ax+by=1 与圆 O 的位置关系是( B )
A.相切
B.相交
C.相离
D.不确定
(2)(2016·大连模拟)圆 x2+y2=1与直线 y=kx+2没有公共点 的充要条件是 k∈__(_-____3_,___3_)_______.
第八章 平面解析几何
第4讲 直线与圆、圆与圆的位置关系
第一页,编辑于星期六:二十二点 十一分。
1.直线与圆的位置关系 设直线 l:Ax+By+C=0(A2+B2≠0), 圆:(x-a)2+(y-b)2=r2(r>0), d 为圆心(a,b)到直线 l 的 距离,联立直线和圆的方程,消 元后得到的一元二次方程的判别式为 Δ.
第十页,编辑于星期六:二十二点 十一分。
5.(必修2 P133习题4.2 A组T9改编)圆x2+y2-4=0与圆x2+y2-4x +4y-12=0的公共弦长为________. 2 2
解析:由xx22+ +
高三数学(理)一轮复习(课件)第八章 平面解析几何8-9-2
又因为△MOF1 的面积为34,即12×
3×y=34,得 y=
23,所以 M
1,
23,
代入椭圆方程,得a12+43b2=-1②。 由①②解得 a2=4,b2=1。 故椭圆 C 的标准方程为x42+y2=1。 (2)假设存在过点 A(2,0)的直线 l 符合题意,则结合图形(图略)易知直线 l 的斜率必存在,于是可设直线 l 的方程为 y=k(x-2),
由QM=λQO,QN=μQO得 λ=1-yM,μ=1-yN。 所以1λ+1μ=1-1yM+1-1 yN =kx-1-11x1+kx-2-11x2 =k-1 1·2x1x2-x1xx21+x2 =k-1 1·k22+21kk-2 4=2。
k2
所以1λ+1μ为定值。
求解圆锥曲线中定值问题的基本思路 1.从特殊元素入手,求出定值,再证明这个值与变量无关。 2.直接推理、计算,并在计算推理的过程中消去变量,从而得到定值。
【变式训练】 (2019·贵阳摸底)过抛物线 C:y2=4x 的焦点 F 且斜率为 k 的直线 l 交抛物线 C 于 A,B 两点,且|AB|=8。
(1)求 l 的方程; (2)若 A 关于 x 轴的对称点为 D,求证:直线 BD 过定点,并求出该点的 坐标。
解 (1)易知点 F 的坐标为(1,0),则直线 l 的方程为 y=k(x-1),代入抛物 线方程 y2=4x 得 k2x2-(2k2+4)x+k2=0,由题意知 k≠0,且[-(2k2+4)]2- 4k2·k2=16(k2+1)>0,
则 y1+y2=m,y1y2=-m-3, 所以 k1k2=yx11- -11·yx22- -11 =m2y1y2+my1ym2-+2y1+y1+y2y+2+1 m+22 =-12。 所以 k1k2 为定值。
高考数学(理)一轮复习课件:第8章 平面解析几何8-3
选考部分
(-1,1) 4.若圆 x2+(y-1)2=5 内有一点为(2a,a+1),则 a 的取值为________.
解析 把(2a,a+1)代入方程得 (2a)2+(a+1-1)2<5 得-1<a<1.
栏目 导引
第十二章
选考部分
小题快做 1.思考辨析 (1)确定圆的几何要素是圆心与半径.( √ ) (2)方程(x-a)2+(y-b)2=t2(t∈R)表示圆心为(a,b),半径为 t 的一个圆.( × ) (3)方程 x2+y2+4mx-2y=0 不一定表示圆.( × )
2 (4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x2 0+y0+Dx0+Ey0+F>0.( √ )
解 (1)圆 C 的方程为 x2+(y-4)2=16, → → 圆心为(0,4),半径 r=4.设 M(x,y),则CM=(x,y-4),MP=(2-x,2-y). → → 由题设可知CM· MP=0,即: x(2-x)+(y-4)(2-y)=0 即(x-1)2+(y-3)2=2,由于点 P 在圆 C 的内部,所以 M 的方程为 (x-1)2+(y-3)2=2.
栏目 导引
第十二章
选考部分
2.圆 x2+y2-4x+6y=0 的圆心坐标是( A.(2,3) C.(-2,-3) B.(-2,3) D.(2,-3)
)
D E 解析 根据圆的一般方程可求- 2 ,-2 .
栏目 导引
第十二章
选考部分
6 ,-2) ,半径是________ 3.[教材改编]圆的方程为 x2+y2-2x+4y-1=0,圆心坐标是(1 ________ .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)已知双曲线 x2 - y 2 =1(a>0,b>0)和椭圆 x2 + y 2 =1 有相同的焦点,且双
a2 b2
16 9
曲线的离心率是椭圆离心率的两倍,则双曲线的方程为
.
解析:(1)设双曲线方程为 x2-y2=a2(a>0),
由抛物线的准线方程为 x=-4, 代入上式得 y2=16-a2. ∴16-a2=12,∴a2=4,a=2, 故双曲线的实轴长为 2a=4.故选 C.
夯基固本
考点突破
规范答题
夯基固本
知识梳理
抓主干 固双基
1.直线和圆锥曲线的位置关系 已知直线 l:ax+by+c=0,圆锥曲线 M:f(x,y)=0.
联立方程组
ax
f
(
x,
by y)
c 0,
0,
消去
y,整理得
Ax2+Bx+C=0.
(1)若 A=0 且 B≠0,则直线 l 和圆锥曲线 M 只有一个公共点.
a
a
a4
所以 a=2,b2=c2-a2=3,故双曲线的方程为 x2 - y 2 =1. 43
答案:(1)C (2) x2 - y 2 =1 43
反思归纳 圆锥曲线间的综合问题,涉及两种及以上的曲线的方程 和性质的相关运算,准确记忆方程中各参数的几何意义,彼此之间 的关系和相关几何性质是解决此类问题的关键.尤其是区分椭圆和 双曲线标准方程中a、b、c三者的关系.
【即时训练】已知抛物线 C:y2=2px(p>0)过点 A(1,-2).
(1)求抛物线 C 的方程,并求其准线方程. (2)是否存在平行于 OA(O 为坐标原点)的直线 l,使得直线 l 与抛物线 C 有
公共点,且直线 OA 与 l 的距离等于 5 ?若存在,求出直线 l 的方程;若不存 5
在,说明理由.
【例 3】 如图,已知抛物线 C:y2=2px(p>0)和☉M:(x-4)2+y2=1,过抛物线 C 上 一点 H(x0,y0)(y0≥1)作两条直线与☉M 相切于 A、B 两点,分别交抛物线于 E、 F 两点,圆心 M 到抛物线准线的距离为 17 .
4 (1)求抛物线 C 的方程; (2)当∠AHB 的平分线垂直于 x 轴时,求直线 EF 的斜率; (3)若直线 AB 在 y 轴上的截距为 t,求 t 的最小值.
则|AB|= (x1 x2 )2 ( y1 y2 )2
= (1 k 2 )[(x1 x2 )2 4x1x2 ]
=
(1
1 k2
)[( y1
y2 )2
4 y1 y2 ]
(k
为直线斜率)
3.直线与圆锥曲线相交时的常见问题的处理方法 (1)涉及弦长问题,常用“根与系数的关系”,采用设而不求,利用 弦长公式计算弦长. (2)涉及弦中点的问题,常用“点差法”设而不求,将动点的坐标, 弦中点坐标和弦所在直线的斜率联系起来,相互转化. (3)特别注意利用公式求弦长时,是在方程有解的情况下进行的, 不要忽略判别式,判别式 大于零 是检验所求参数的值是否有意 义的依据.
第6节 圆锥曲线的综合问题
最新考纲 1.了解圆锥曲线的简单 应用.
2.理解数形结合的思想. 3.掌握解决直线与圆锥曲线位置关系的 方法.
编写意图 直线和圆锥曲线的位置关系是历年高考命题的重点和热 点,通常作为解答题中的压轴题出现,试题有一定的难度;多种圆锥 曲线的综合,多以选择题或填空题进行考查,属中等难度.本节围绕 高考命题的重点设置了圆锥曲线的综合问题、直线和圆锥曲线、圆 与圆锥曲线等三个考点,精心选编例题和练习题,并根据该部分命题 的热点设置了规范答题栏目,起到解题示范作用,并归纳了相应的解 题步骤,让学生可以按部就班地解决相关问题,突破难点.
所以Δ=4+8t≥0,解得 t≥- 1 . 2
另一方面,由直线 OA 与 l 的距离 d= 5 可得 t = 1 ,
5
55
解得 t=±1.
因为-1
1,+ 2
,1∈
1,+ 2
,所以
t=1,
故符合题意的直线 l 存在,其方程为 2x+y-1=0.
考点三 圆与圆锥曲线的综合问题
y kx,
∴CO:y=-
1 k
x.由
x
2
4
y2
1
得(1+4k2)x2=4,|AB|=2|OA|=2 x2 y2 =4 k 2 1 , 4k 2 1
同理可得|OC|=2 k2 1 , k2 4
S = △ABC 1 |AB|·|CO|=4 2
(k 2 1)2
=
答案:(1)B (2)y2=8x
考点二 直线与圆锥曲线
【例 2】 (2015 哈师大附中月考)如图,已知圆 E:(x+ 3 )2+y2=16,点 F( 3 ,0),P 是圆 E 上任意一点.线段 PF 的垂直平分线和半径 PE 相交于 Q.
(1)求动点 Q 的轨迹Γ 的方程; (2)已知 A,B,C 是轨迹Γ 上的三个动点,点 A 在第一象限,B 与 A 关于原点对 称,且|CA|=|CB|,问△ABC 的面积是否存在最小值?若存在,求出此最小值及 相应直线 AB 的方程;若不存在,请说明理由.
线的准线方程为
.
解析:(1)由双曲线的方程知 m>0,
故双曲线的渐近线为 y=±
1
x,由
y
1 x, m
m
y2 mx,
解得 A(m2,m m ),B(m2,-m m ). 所以|AB|=2m m ,点 O 到直线 AB 的距离 d=m2.
故 S = △OAB 1 |AB|×d= 1 ×2m m ×m2=m3 m =27 3 .解得 m=3.
解:(1)Q 在线段 PF 的垂直平分线上, 所以|QP|=|QF|, 得|QE|+|QF|=|QE|+|QP|=|PE|=4. 又 EF=2 3 <4, 得 Q 的轨迹是以 E,F 为焦点,长轴长为 4 的椭圆,
故动点 Q 的轨迹Γ的方程为 x2 +y2=1. (2)由点 A 在第一象限,B 与 A 4关于原点对称, 设 AB:y=kx(k>0), |CA|=|CB|, ∴C 在 AB 的垂直平分线上,
解:(1)∵点 M 到抛物线准线的距离为 4+ p = 17 , 24
∴p= 1 ,∴抛物线 C 的方程为 y2=x. 2
(2)∵当∠AHB 的平分线垂直于 x 轴时,点 H(4,2), ∴kHE=-kHF, 设 E(x1,y1),F(x2,y2),
∴ yH y1 =- yH y2 , xH x1 xH x2
质疑探究:若直线和圆锥曲线只有一个公共点,则直线和圆锥曲线 相切吗?
(提示:不一定相切,如图(1)、(2)所示. 即与双曲线渐近线平行的直线与双曲线只 有一个公共点;与抛物线对称轴平行的直 线与抛物线只有一个公共点,但此时它们 的位置关系是相交而不是相切)
2.直线被圆锥曲线截得的弦长公式 设直线与圆锥曲线的交点坐标为 A(x1,y1),B(x2,y2),
(2)椭圆 x2 + y 2 =1 的焦点坐标为 F1(- 7 ,0),F2( 7 ,0),离心率为 e= 7 .
16 9
4
由于双曲线 x2 - y 2 =1 与椭圆 x2 + y 2 =1 有相同的焦点,
a2 b2
16 9
因此 a2+b2=7.
又双曲线的离心率 e= a2 b2 = 7 ,所以 7 = 2 7 ,
基础自测
1.直线 y=kx-k+1 与椭圆 x2 + y 2 =1 的位置关系是( A )
94 (A)相交 (B)相切 (C)相离 (D)不确定
解析:y=kx-k+1=k(x-1)+1, 显然直线恒过点A(1,1),而点A在椭圆内, 故直线和椭圆总相交.
2.(2014 湖北孝感模拟)已知抛物线 y2=4x 的准线过双曲线 x2 - y 2 =1(a>0,b>0)的左顶点,且此双曲线的一条渐近线方程为 y=2x,则 a2 b2
.
解析:∵圆的一条切线为 x=1,直线 AB 恰好经过椭圆的右焦点和上顶点, ∴椭圆的右焦点为(1,0),即 c=1,
设点 P(1, 1 ),连接 OP,则 OP⊥AB.∵kOP= 1 ,∴kAB=-2,
2
2
又∵直线 AB 过点(1,0), ∴直线 AB 的方程为 2x+y-2=0. ∵点(0,b)在直线 AB 上,∴b=2.
①当曲线为双曲线时,直线 l 与双曲线的渐近线平行; ②当曲线为抛物线时,直线 l 与抛物线的对称轴平行.
(2)若A≠0,则Δ =B2-4AC ①当Δ >0时,直线和圆锥曲线M有两个不同的公共点; ②当Δ =0时,直线和圆锥曲线M相切,只有 一个公共点; ③当Δ <0时,直线和圆锥曲线M 没有 公共点.
又∵c=1,∴a2=5,∴椭圆的方程为 x2 + y 2 =1.
答案: x2 + y 2 =1
54
54
考点突破
剖典例 找规律
考点一 圆锥曲线间的综合问题
【例 1】 (1)等轴双曲线 C 的中心在原点,焦点在 x 轴上,C 与抛物线 y2=16x
的准线交于 A,B 两点,|AB|=4 3 ,则 C 的实轴长为( ) (A) 2 (B)2 2 (C)4 (D)8
2
2
所以双曲线方程为 y2- x2 =1. 3
故 a=1,c=2,所以 e= c =2.故选 B. a
(2)椭圆 x2 + y 2 =1 的半焦距 c= 9 5 =2, 95