浙江省绍兴市2015年中考数学试题(详解版)

合集下载

2015年浙江省绍兴市诸暨市初三上学期期末数学试卷[解析版]

2015年浙江省绍兴市诸暨市初三上学期期末数学试卷[解析版]

2014-2015学年浙江省绍兴市诸暨市初三上学期期末数学试卷一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个符合题意的正确选项,不选、多选,错选,均不给分)1.(4分)如果x与y存在3x﹣2y=0(y≠0)的关系,那么x:y=()A.2:3B.3:2C.﹣2:3D.﹣3:22.(4分)二次函数y=(x﹣1)2﹣2的顶点坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)3.(4分)把△ABC三条边的长度都扩大2倍,则锐角A的三角函数值()A.也扩大2倍B.缩小为原来的C.都不变D.不能确定4.(4分)将抛物线y=x2沿y轴向上平移一个单位后得到的新抛物线的解析式为()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1D.y=x2﹣1 5.(4分)小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm2 6.(4分)有下列四个命题,其中正确的是()A.平分弦的直径垂直于弦B.三点确定一个圆C.三角形的内心到三角形三个顶点的距离相等D.相等的弧所对的圆心角相等7.(4分)如图是一把含30°角的三角尺,外边AB=8,内边与外边的距离都是1,那么EP的长度是()A.4B.4C.D.6﹣28.(4分)已知二次函数y=ax2+bx+c的图象过点A(1,2),B(3,2),C(5,7).若点M(﹣2,y 1),N(﹣1,y2),K(8,y3)也在二次函数y=ax2+bx+c的图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2 9.(4分)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD 于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.710.(4分)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=2,AO=3,则tan∠AOB的值为()A.B.C.D.二、填空题(本大题有6小题,每小题5分,共30分,将答案填在题中横线上)11.(5分)已知α为锐角,且sin(α﹣10°)=,则α等于度.12.(5分)如图,AB是⊙O的直径,C,D为圆上两点∠AOC=130°,则∠D等于.13.(5分)一个布袋里装有只有颜色不同的5个球,其中3个红球,2个白球.从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球,摸出的2个球都是红球的概率是.14.(5分)某新建小区要在一块形状为等边三角形的公共区域内修建一个圆形花坛.若等边三角形区域的边长为30m,则花坛面积最大可达m2.(结果保留π)15.(5分)定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b 时,min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是.16.(5分)在平面直角坐标系中,第1个正方形ABCD的位置如图所示,点A 的坐标为(2,0),点D的坐标为(0,4),延长CB交x轴于点A1,作第2个正方形A1B1C1C;延长C1B1交x轴于点A2,作第3个正方形A2B2C2C1…按这样的规律进行下去,第2个正方形的面积为;第2015个正方形的面积为.三、解答题(本大题有8小题,第17-20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)计算:+2sin30°﹣(﹣)2+(tan45°)﹣1.18.(8分)如图,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点).(1)将△ABC绕点C逆时针旋转90°,得到△CDE.写出点B对应点D和点A对应点E的坐标.(2)若以格点P、A、B为顶点的三角形与△CDE相似但不全等,请写出符合条件格点P的坐标.19.(8分)某公园中央地上有一个大理石球,小明想测量球的半径.于是找了两块厚10cm的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm,聪明的你也能算出这个大石球的半径了吗?写出你的计算过程.20.(8分)体育场下周将举办明星演唱会,小莉和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用列表的方法列出所有等可能性结果;(2)哥哥设计的游戏规则是否公平?请说明理由.21.(10分)中考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是我市一中考点,在位于A考点南偏西15°方向距离120米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F 点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对听力测试是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对听力测试的影响时间为几秒?(≈3.6,结果精确到1秒)22.(12分)如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)如果⊙O的直径为5,sinA=,求DE、BC的长.23.(12分)(1)如图1,正方形ABCD的边长为1,点E是AD边的中点,将△ABE沿BE翻折得到△FBE,延长BF交CD边于点G,则FG=DG,求出此时DG 的值;(2)如图2,矩形ABCD中,AD>AB,AB=1,点E是AD边的中点,同样将△ABE沿BE翻折得到△FBE,延长BF交CD边于点G.①证明:FG=DG;②若点G恰是CD边的中点,求AD的值;③若△ABE与△BCG相似,求AD的值.24.(14分)如图,平面直角坐标系xOy中点A的坐标为(﹣1,1),点B的坐标为(3,3),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当四边形ABNO的面积最大时,求点N的坐标并求出四边形ABNO面积的最大值;(4)在(3)的条件下,当四边形ABNO面积最大时,在抛物线上是否存在点P,使得∠PAO=∠NEO?若存在,请求出点P的坐标;若不存在,请说明理由.2014-2015学年浙江省绍兴市诸暨市初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个符合题意的正确选项,不选、多选,错选,均不给分)1.(4分)如果x与y存在3x﹣2y=0(y≠0)的关系,那么x:y=()A.2:3B.3:2C.﹣2:3D.﹣3:2【解答】解:由3x﹣2y=0得,3x=2y,所以,x:y=2:3.故选:A.2.(4分)二次函数y=(x﹣1)2﹣2的顶点坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【解答】解:因为y=(x﹣1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(1,﹣2).故选:C.3.(4分)把△ABC三条边的长度都扩大2倍,则锐角A的三角函数值()A.也扩大2倍B.缩小为原来的C.都不变D.不能确定【解答】解:∵各边的长度都扩大2倍,∴扩大后的三角形与△ABC相似,∴锐角A的各三角函数值都不变.故选:C.4.(4分)将抛物线y=x2沿y轴向上平移一个单位后得到的新抛物线的解析式为()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1D.y=x2﹣1【解答】解:将抛物线y=x2沿y轴向上平移一个单位后得到的新抛物线的解析式为y=x2+1,故选:C.5.(4分)小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm2【解答】解:圆锥的侧面积=•2π•10•24=240π(cm2),所以这张扇形纸板的面积为240πcm2.故选:B.6.(4分)有下列四个命题,其中正确的是()A.平分弦的直径垂直于弦B.三点确定一个圆C.三角形的内心到三角形三个顶点的距离相等D.相等的弧所对的圆心角相等【解答】解:A.平分弦(不是直径)的直径垂直于弦,故原命题错误;B.不在同一直线上的三点确定一个圆,故原命题错误;C.三角形的内心到三角形三边的距离相等,故原命题错误;D.相等的弧所对的圆心角相等,故原命题正确;故选:D.7.(4分)如图是一把含30°角的三角尺,外边AB=8,内边与外边的距离都是1,那么EP的长度是()A.4B.4C.D.6﹣2【解答】解:如图,∵在Rt△BAC中,∠C=90°,AB=8,∠B=30°,∠A=60°,∴AC=4,BC=AC×tan60°=4,延长EF交BC于N,延长FE交AB于M,过E作EG⊥AB于G,∵EF∥AC,∴∠BMN=∠A=60°,△BMN∽△BAC,∴=,∴=,解得:MN=4﹣,∵GE⊥AB,∴∠EGM=90°,∵∠GME=60°,GE=1,∴ME==,∴EF=MN﹣ME﹣FN=4﹣﹣1﹣=3﹣,∴EP=2EF=6﹣2.故选:D.8.(4分)已知二次函数y=ax2+bx+c的图象过点A(1,2),B(3,2),C(5,7).若点M(﹣2,y1),N(﹣1,y2),K(8,y3)也在二次函数y=ax2+bx+c的图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【解答】解:把A(1,2),B(3,2),C(5,7)代入y=ax2+bx+c得,解得.∴函数解析式为y=x2﹣x+=(x﹣2)2+.∴当x>2时,y随x的增大而增大;当x<2时,y随x的增大而减小;根据对称性,K(8,y3)的对称点是(﹣4,y3);所以y2<y1<y3.故选:B.9.(4分)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD 于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7【解答】解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∵∠ACD=∠ACD,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选:B.10.(4分)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=2,AO=3,则tan∠AOB的值为()A.B.C.D.【解答】解:在AC上截取CG=AB=2,连接OG,∵四边形BCEF是正方形,∠BAC=90°,∴OB=OC,∠BAC=∠BOC=90°,∠OBC=45°,∴B、A、O、C四点共圆,∴∠ABO=∠ACO,∠AOB=∠ACB,∠OAG=∠OBC=45°,∵在△BAO和△CGO中,,∴△BAO≌△CGO(SAS),∴OA=OG=3,∠AOB=∠COG,∵∠BOC=∠COG+∠BOG=90°,∴∠AOG=∠AOB+∠BOG=90°,即△AOG是等腰直角三角形,由勾股定理得:AG==6,即AC=6+2=8,∴tan∠AOB=tan∠ACB===;故选:C.二、填空题(本大题有6小题,每小题5分,共30分,将答案填在题中横线上)11.(5分)已知α为锐角,且sin(α﹣10°)=,则α等于70度.【解答】解:∵α为锐角,sin(α﹣10°)=,sin60°=,∴α﹣10°=60°,∴α=70°.12.(5分)如图,AB是⊙O的直径,C,D为圆上两点∠AOC=130°,则∠D等于25°.【解答】解:∵AB是⊙O的直径,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=∠BOC=×50°=25°.故答案为:25°.13.(5分)一个布袋里装有只有颜色不同的5个球,其中3个红球,2个白球.从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球,摸出的2个球都是红球的概率是.【解答】解:画树状图得:∵共有25种等可能的结果,摸出的2个球都是红球的有9种情况,∴摸出的2个球都是红球的概率是:.故答案为:.14.(5分)某新建小区要在一块形状为等边三角形的公共区域内修建一个圆形花坛.若等边三角形区域的边长为30m,则花坛面积最大可达75πm2.(结果保留π)【解答】解:要使花坛面积最大,因三角形为等边三角形,在△ABC内作一个内切圆,则此圆面积最大,点O为角平分线的交点.作OD⊥BC于D,如图所示:则Rt△BOD中,BD=BC=15m,∠OBD=30°,∴tan30°=,∴OD=B D•tan30°=15×=5,∴花坛面积为π•(5)2=75π(m2);故答案为:75π.15.(5分)定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b 时,min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是.【解答】解:联立,解得,,所以,min{﹣x2+1,﹣x}的最大值是.故答案为:.16.(5分)在平面直角坐标系中,第1个正方形ABCD的位置如图所示,点A 的坐标为(2,0),点D的坐标为(0,4),延长CB交x轴于点A1,作第2个正方形A1B1C1C;延长C1B1交x轴于点A2,作第3个正方形A2B2C2C1…按这样的规律进行下去,第2个正方形的面积为45;第2015个正方形的面积为20×2014.【解答】解:∵∠DAO+∠BAA1=90°,∠BAA1+∠BA1A=90°,OD=4,OA=2,∴∠DAO=∠AA1B,∵∠DOA=∠ABA1,∴△DOA∽△ABA1,∴,∴,同理可证:=…∴第一个正方形边长为2,第二个正方形边长为2×,第三个正方形边长为2×()2…第n个正方形边长为2×()n﹣1,∴第二个正方形边长为3,面积为45.第2015个正方形边长为2×()2014,面积为20×()2014.故答案分别为45,20×()2014.三、解答题(本大题有8小题,第17-20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)计算:+2sin30°﹣(﹣)2+(tan45°)﹣1.【解答】解:原式=3+2×﹣3+1=3﹣1.18.(8分)如图,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点).(1)将△ABC绕点C逆时针旋转90°,得到△CDE.写出点B对应点D和点A对应点E的坐标.(2)若以格点P、A、B为顶点的三角形与△CDE相似但不全等,请写出符合条件格点P的坐标.【解答】解:(1)所作图形如下:由图形可得:D(2,3),E(2,1)、(2)所作图形如下:由图形可得:P(3,4)或(1,4).19.(8分)某公园中央地上有一个大理石球,小明想测量球的半径.于是找了两块厚10cm的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm,聪明的你也能算出这个大石球的半径了吗?写出你的计算过程.【解答】解:如图所示,过圆心O作地面的垂线OC,交地面于点C,连接AB,与OC交于点D,∵AB与地面平行,∴OC⊥AB,∴D为AB的中点,即AD=BD=AB=30cm,又CD=10cm,设圆的半径为xcm,则OA=OC=xcm,∴OD=OC﹣CD=(x﹣10)cm,在Rt△AOD中,根据勾股定理得:OA2=AD2+OD2,即x2=302+(x﹣10)2,整理得:x2=900+x2﹣20x+100,即20x=1000,解得:x=50,答:这个大石球的半径是50cm.20.(8分)体育场下周将举办明星演唱会,小莉和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用列表的方法列出所有等可能性结果;(2)哥哥设计的游戏规则是否公平?请说明理由.【解答】解:(1)列表如图:和123545679678911789101289101113共有16 种等可能的结果;(2)不公平,因为和为偶数的有6种,故小莉去的概率为=.故P(哥哥去)=,P(小莉去)=,哥哥去的可能性大,所以不公平.21.(10分)中考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是我市一中考点,在位于A考点南偏西15°方向距离120米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对听力测试是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对听力测试的影响时间为几秒?(≈3.6,结果精确到1秒)【解答】解:作AB⊥CF于B,由题意得,∠ACB=60°,AC=120米,则∠CAB=30°,∴BC=AC=60米,∴AB==60米,∵60≈104<110,∴消防车的警报声对听力测试会造成影响,造成影响的路程为2×=20≈72米,60千米/小时=米/秒,72÷≈4秒.答:对听力测试的影响时间为4秒.22.(12分)如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)如果⊙O的直径为5,sinA=,求DE、BC的长.【解答】解:(1)DE是⊙O的切线.证明:连接OD,AD,如图1,∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵OD=OA,∴∠ODA=∠OAD,∵AB=AC,AD⊥BC,∴∠OAD=∠CAD,∴∠ODA=∠CAD,又∵DE⊥AC,∴∠EDA+∠CAD=90°,∴∠EDA+∠ODA=90°,即:OD⊥DE,∴DE是⊙O的切线;(2)设AC于⊙O的交点为F,连接BF,如图2,∵AB是直径,∵∠AFB=90°,∵⊙O的直径为5,sinA=,∴sinA===,∴BF=3,∴AF==4,∵AB=AC=5,∴CF=5﹣4=1,∴BC==,∵BF⊥AC,DE⊥AC,∴DE∥BF,∴=,∵DC=BD=BC,∴DE=BF=.23.(12分)(1)如图1,正方形ABCD的边长为1,点E是AD边的中点,将△ABE沿BE翻折得到△FBE,延长BF交CD边于点G,则FG=DG,求出此时DG 的值;(2)如图2,矩形ABCD中,AD>AB,AB=1,点E是AD边的中点,同样将△ABE沿BE翻折得到△FBE,延长BF交CD边于点G.①证明:FG=DG;②若点G恰是CD边的中点,求AD的值;③若△ABE与△BCG相似,求AD的值.【解答】(1)解:设DG为x,由题意得:BG=1+x,CG=1﹣x,由勾股定理得:BG2=BC2+CG2,有:(1+x)2=12+(1﹣x)2,解得:.∴DG=;(2)①证明:连接EG,∵△FBE是由△ABE翻折得到的,∴AE=FE,∠EFB=∠EAB=90°,∴∠EFG=∠EDG=90°.∵AE=DE,∴FE=DE.∵EG=EG,∴Rt△EFG≌Rt△EDG(HL).∴DG=FG;②解:若G是CD的中点,则DG=CG=,在Rt△BCG中,,∴AD=.③解:由题意AB∥CD,∴∠ABG=∠CGB.∵△FBE是由△ABE翻折得到的,∴∠ABE=∠FBE=∠ABG,∴∠ABE=∠CGB.∴若△ABE与△BCG相似,则必有∠ABE=∠CBG=30°.在Rt△ABE中,AE=ABtan∠ABE=,∴AD=2AE=.24.(14分)如图,平面直角坐标系xOy中点A的坐标为(﹣1,1),点B的坐标为(3,3),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y 轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当四边形ABNO的面积最大时,求点N的坐标并求出四边形ABNO面积的最大值;(4)在(3)的条件下,当四边形ABNO面积最大时,在抛物线上是否存在点P,使得∠PAO=∠NEO?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)设直线AB的解析式为y=mx+n,把A(﹣1,1),B(3,3)代入得,解得,所以直线AB的解析式为y=x+,当x=0时,y=x+=,所以E点坐标为(0,);(2)设抛物线解析式为y=ax2+bx+c,把A(﹣1,1),B(3,3),O(0,0)代入得,解得,所以抛物线解析式为y=x2﹣x;(3)如图1,作NG∥y轴交OB于G,如图,直线OB的解析式为y=x,设N(m,m2﹣m)(0<m<3),则G(m,m),GN=m﹣(m2﹣m)=﹣m2+m,S△AOB=S△AOE+S△BOE=×1×+××3=3,S△BON=S△ONG+S△BNG=•3•(﹣m2+m)=﹣m2+,=S△BON+S△AOB=﹣m2++3=﹣(m﹣)2+所以S四边形ABNO当m=时,四边形ABNO面积的最大值,最大值为,此时N点坐标为(,);(4)设直线NE的解析式为y=px+q,直线EN交x轴于H,直线PA交OB于Q,如图2,把E(0,),N(,)代入得,解得,所以直线NE的解析式为y=﹣x+,当y=0时,﹣x+=0,解得x=2,则H(2,0),∵A(﹣1,1),B(3,3),∴∠AOE=45°,∠BOE=45°,∴∠AOB=90°,∵∠PAO=∠NEO,∴Rt△AOQ∽Rt△EOH,∴OA:OE=OQ:OH,即:=OQ:2,解得OQ=,∴Q(,),∴直线AQ的解析式为y=x+,解方程组得或,∴P点坐标为(,).附赠模型一:手拉手模型—全等等边三角形条件:△OAB,△OCD均为等边三角形结论:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AED(易忘)等腰RT△条件:△OAB,△OCD均为等腰直角三角形结论:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AED(易忘)导角核心图形任意等腰三角形条件:△OAB,△OCD均为等腰三角形,且∠AOB=∠COD结论:①△OAC≌△OBD;②∠AEB=∠AOB;③OE平分∠AED(易忘)模型总结:核心图形如右图,核心条件如下:①OA=OB,OC=OD;②∠AOB=∠COD模型二:手拉手模型—相似条件:CD ∥AB ,将△OCD 旋转至右图位置结论:右图 △OCD ∽△OAB ⇔△OAC ∽△OBD ;且延长AC 交BD 于点E 必有∠BEC=∠BOA 非常重要的结论:必须会熟练证明手拉手相似(特殊情况)当∠AOB =90°时,除△OCD ∽△OAB ⇔△OAC ∽△OBD 之外还会隐藏OCD OAOBOC OD AC BD ∠===tan ,满足BD ⊥AC ,若连接AD 、BC ,则必有 2222CD AB BC AD +=+;BD AC S ABCD ⨯=21(对角线互相垂直四边形)。

2015年浙江省绍兴市上虞市六校联考中考数学一模试卷(解析版)

2015年浙江省绍兴市上虞市六校联考中考数学一模试卷(解析版)

2015年浙江省绍兴市上虞市六校联考中考数学模拟试卷一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合的选项,不选、多选、错选,均不给分)1.(4分)﹣2的相反数是()A.﹣ B.﹣2 C.D.22.(4分)李克强总理在2015年3月5日的《政府工作报告》中表示,2015年铁路将投资8000亿元.将8000亿元用科学记数法表示为()A.8×1011元B.80×1010元C.8000×108元D.8×103元3.(4分)下列等式一定成立的是()A.a•a2=a2B.a2÷a=2 C.2a2+a2=3a4D.(﹣a)3=﹣a34.(4分)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.(4分)肇庆市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM2.5指数的众数和中位数分别是()A.150,150 B.150,155 C.155,150 D.150,152.56.(4分)如图,DE∥BC,BD,CE相交于O,,AE=3,则EB=()A.6 B.9 C.12 D.157.(4分)如图,AB是⊙O的弦,半径OA=2,sinA=,则弦AB的长为()A.B.C.4 D.8.(4分)如图,将一个半径为2的圆等分成四段弧,再将这四段弧围成星形,则该图形的面积与原来圆的面积之比为()A.B.C.D.9.(4分)如图所示,已知Rt△ABC中,∠B=90°,AB=3,BC=4,D、F分别为AB、AC的中点,E是BC上动点,则△DEF周长的最小值为()A.2+B.2+C. D.610.(4分)如图,已知抛物线y=x2+2x﹣3,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线及直线x=2,x=﹣2所围成的阴影部分的面积为S,平移的距离为m,则下列图象中,能表示S与m的函数关系的图象大致是()A.B.C.D.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)分解因式:x2y﹣4y=.12.(5分)若关于x的一元二次方程kx2+2x+1=0有两个实数根,则k的取值范围是.13.(5分)如图,在△ABC中,G是重心,点D是BC的中点,若△ABC的面积为6cm2,则△CGD的面积为cm2.14.(5分)如图,正六边形ABCDEF的边长为2cm,点P为六边形内任一点.则点P到各边距离之和为cm.15.(5分)将△ABC绕点A按逆时针方向旋转θ度,并将各边长变为原来的n 倍得△AB′C′,即如图①,∠BAB′=θ,===n,我们将这种变换记为[θ,n].如图②,在△DEF中,∠DFE=90°,将△DEF绕点D旋转,做变换[60°,n]得△DE′F′,如果点E、F、F′恰好在同一直线上,那么n=.16.(5分)如图,点P是双曲线(x>0)上动点,在y轴上取点Q,使得以P、Q、O 为顶点的三角形是含有30°角的直角三角形,则符合条件的点Q 的坐标是.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答题写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:﹣2tan60°+(﹣1)0﹣()﹣1;(2)化简:(+)÷+1.18.(8分)如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为18°,且OA=OB=3m.(1)求此时另一端A离地面的距离(精确到0.1m);(2)跷动AB,使端点A碰到地面,请画出点A运动的路线(写出画法,并保留画图痕迹),并求出点A运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)19.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.20.(8分)甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数关系如图所示,根据图象所提供的信息解答问题:(1)他们在进行米的长跑训练,在0<x<15的时间内,速度较快的人是(填“甲”或“乙”);(2)求乙距终点的路程y(米)与跑步时间x(分)之间的函数关系式;(3)当x=15时,两人相距多少米?(4)在15<x<20的时间段内,求两人速度之差.21.(10分)如图,以O为圆心的弧度数为60°,∠BOE=45°,DA⊥OB,EB⊥OB.(1)求的值;(2)若OE与交于点M,OC平分∠BOE,连接CM.说明CM为⊙O的切线;(3)在(2)的条件下,若BC=1,求tan∠BCO的值.22.(12分)(1)如图1,直线a∥b∥c∥d,且a与b,c与d之间的距离均为1,b与c之间的距离为2,现将正方形ABCD如图放置,使其四个顶点分别在四条直线上,求正方形的边长;(2)在(1)的条件下,探究:将正方形ABCD改为菱形ABCD,如图2,当∠DCB=120°时,求菱形的边长.23.(12分)如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知两条抛物线①:y=x2+2x﹣1,②:y=﹣x2+2x+1,判断这两条抛物线是否关联,并说明理由;(2)抛物线C1:y=(x+1)2﹣2,动点P的坐标为(t,2),将抛物线C1绕点P (t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.24.(14分)在平面直角坐标系中,矩形OABC的顶点A坐标为(0,3),顶点C 坐标为(8,0).直线y=x交AB于点D,点P从O点出发,沿射线OD方向以每秒a个单位长度的速度移动,同时点Q从C点出发沿x轴向原点O方向以每秒1个单位长度的速度移动,当点Q到达O点时,点P停止移动.连结PB,PC,设运动时间为t秒.(1)求D点坐标;(2)当△PBC为等腰三角形时,求P点坐标;(3)若点P,Q在运动过程中存在某一时刻,使得以点O,P,Q为顶点的三角形与△BCQ相似,求P的运动速度a的值.2015年浙江省绍兴市上虞市六校联考中考数学模拟试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合的选项,不选、多选、错选,均不给分)1.(4分)﹣2的相反数是()A.﹣ B.﹣2 C.D.2【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.【解答】解:﹣2的相反数是2,故选:D.2.(4分)李克强总理在2015年3月5日的《政府工作报告》中表示,2015年铁路将投资8000亿元.将8000亿元用科学记数法表示为()A.8×1011元B.80×1010元C.8000×108元D.8×103元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将8000亿用科学记数法表示为8×1011.故选:A.3.(4分)下列等式一定成立的是()A.a•a2=a2B.a2÷a=2 C.2a2+a2=3a4D.(﹣a)3=﹣a3【分析】根据同底数幂的乘法,除法,合并同类项,积的乘方,即可解答.【解答】解:A.a•a2=a3,故错误;B.a2÷a=a,故错误;C.2a2+a2=3a2,故错误;D.正确;故选:D.4.(4分)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看第一层是三个正方形,第二层是左边一个正方形.故选:B.5.(4分)肇庆市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM2.5指数的众数和中位数分别是()A.150,150 B.150,155 C.155,150 D.150,152.5【分析】根据众数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:150,150,150,155,155,160,165,则众数为:150,中位数为:155.故选:B.6.(4分)如图,DE∥BC,BD,CE相交于O,,AE=3,则EB=()A.6 B.9 C.12 D.15【分析】由于DE∥BC,利用平行线分线段成比例定理的推论可得△EOD∽△COB,△AED∽△ABC,于是==,=,等量代换,代入AE的值,即可求BE.【解答】解:∵DE∥BC,∴△EOD∽△COB,△AED∽△ABC,∴==,=,又∵AE=3,∴BE=6.故选:A.7.(4分)如图,AB是⊙O的弦,半径OA=2,sinA=,则弦AB的长为()A.B.C.4 D.【分析】作OD垂直AB于D.根据垂径定理和勾股定理求解.【解答】解:作OD垂直AB于D.∵半径OA=2,sinA=,∴OD=,根据勾股定理可得,AD=,AB=.故选:D.8.(4分)如图,将一个半径为2的圆等分成四段弧,再将这四段弧围成星形,则该图形的面积与原来圆的面积之比为()A.B.C.D.【分析】如图,根据圆的面积公式得到半径为2的圆的面积;星形的面积=边长2+2=4的正方形面积﹣半径为2的圆的面积;再求出两者的比即可求解.【解答】解:2+2=4圆的面积=π×22=4π,星形的面积=4×4﹣4π=16﹣4π,该图形的面积与原来圆的面积之比为(16﹣4π):4π=.故选:A.9.(4分)如图所示,已知Rt△ABC中,∠B=90°,AB=3,BC=4,D、F分别为AB、AC的中点,E是BC上动点,则△DEF周长的最小值为()A.2+B.2+C. D.6【分析】首先由三角形的中位线定理可求得DF的长为2,然后作出点F关于BC的对称点F′,连接DF′交BC于点E,由轴对称图形的性质可知EF=EF′,从而可得到ED+EF=DF′,然后在Rt△DFF′中,由勾股定理可求得DF′的长度,从而可求得三角形DEF的周长.【解答】解:如图,作点F关于BC的对称点F′,连接DF′交BC于点E.∵点D、F分别是AB和AC的中点,∴DF=BC=2.∵点F与点F′关于BC对称,∴EF=EF′在Rt△DFF′中,DF′===△DEF的周长=DF+DE+EF=DF+DF′=2+.故选:B.10.(4分)如图,已知抛物线y=x2+2x﹣3,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线及直线x=2,x=﹣2所围成的阴影部分的面积为S,平移的距离为m,则下列图象中,能表示S与m的函数关系的图象大致是()A.B.C.D.【分析】把阴影部分的面积为S转化为规则图形即可判断.【解答】解:如图,我们把抛物线沿y轴向上平移,平移后的抛物线和原抛物线及直线x=2,x=﹣2所围成的阴影部分的面积S可以看做和矩形BB′C′C等积(图形平移后面积不变性),于是可以看出S与m是正比例函数关系,故选:B.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提取公因式y,然后再利用平方差公式进行二次分解.【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).12.(5分)若关于x的一元二次方程kx2+2x+1=0有两个实数根,则k的取值范围是k≤1且k≠0.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程kx2+2x+1=0有两个实数根,∴根的判别式△=b2﹣4ac=4﹣4k≥0,且k≠0.即k≤1且k≠0.故答案是:k≤1且k≠0.13.(5分)如图,在△ABC中,G是重心,点D是BC的中点,若△ABC的面积为6cm2,则△CGD的面积为1cm2.【分析】由于点D是BC的中点,则根据三角形面积公式得到S=S△ABC=3,△ACD再利用重心性质得到AG:GD=2:1,然后再利用三角形面积公式可计算出S△=S△ACD=1(cm2).CGD【解答】解:∵点D是BC的中点,∴BD=CD,∴S=S△ABC=×6=3,△ACD∵G是重心,∴AG:GD=2:1,∴S=S△ACD=×3=1(cm2).△CGD故答案为1.14.(5分)如图,正六边形ABCDEF的边长为2cm,点P为六边形内任一点.则点P到各边距离之和为18cm.【分析】过P作AB的垂线,交AB、DE分别为H、K,连接BD,由正六边形的性质可知AB∥DE,AF∥CD,BC∥EF,故HK⊥DE,过C作CG⊥BD,由等腰三角形的性质及正六边形的内角和定理可知,DB⊥AB⊥DE,再由锐角三角函数的定义可求出BG的长,进而可求出BD的长,由正六边形的性质可知点P到AF与CD的距离和及P到EF、BC的距离和均为BD的长,故可得出结论.【解答】解:过P作AB的垂线,交AB、DE分别为H、K,连接BD,∵六边形ABCDEF是正六边形,∴AB∥DE,AF∥CD,BC∥EF,且P到AF与CD的距离和及P到EF、BC的距离和均为HK的长,∵BC=CD,∠BCD=∠ABC=∠CDE=120°,∴∠CBD=∠BDC=30°,∴BD∥HK,且BD=HK,∵CG⊥BD,∴BD=2BG=2×BC×cos∠CBD=2×2×=6,∴点P到各边距离之和为3BD=3×6=18.故答案为:18.15.(5分)将△ABC绕点A按逆时针方向旋转θ度,并将各边长变为原来的n 倍得△AB′C′,即如图①,∠B AB′=θ,===n,我们将这种变换记为[θ,n].如图②,在△DEF中,∠DFE=90°,将△DEF绕点D旋转,做变换[60°,n]得△DE′F′,如果点E、F、F′恰好在同一直线上,那么n=2.【分析】由题意可得∠DFF′=90°,然后由θ的度数,又由含30°角的直角三角形的性质,即可求得n的值.【解答】解:∵∠DFE=90°,将△DEF绕点D旋转,做变换[60°,n]得△DE′F′,∴∠DFF′=90°,θ=∠FDF′=60°,在Rt△FDF′中,∠DFF'=90°,∠FDF′=60°,∴∠DF′F=30°,∴n==2;故答案为:2.16.(5分)如图,点P是双曲线(x>0)上动点,在y轴上取点Q,使得以P、Q、O 为顶点的三角形是含有30°角的直角三角形,则符合条件的点Q 的坐标是(0,2)、(0,2)、(0,)、(0,8).【分析】设P点坐标为(a,b),a>0,讨论:(1)若∠OQP=90°,①当∠POQ=30°,根据含30°的直角三角形三边的关系可得b=a,而点P在反比例函数图象上,则=b,得到=a,可解得a=2,则b=2,于是可确定Q点坐标;②当∠OPQ=30°,利用同样方法可求Q点坐标;若∠OPQ=90°,作PA⊥y轴于A点,①当∠POQ=30°,根据(1)可得到P点坐标为(2,2),再计算AQ的长,即可得到Q点坐标;②当∠PQO=30°,计算方法与②一样.【解答】解:设P点坐标为(a,b),a>0,(1)若∠OQP=90°,①当∠POQ=30°,则b=a,∵=b,∴=a,解得a=2,则b=2,∴Q点坐标为(0,2),②当∠OPQ=30°,则a=b,∵=b,∴=,解得a=2,则b=2,∴Q点坐标为(0,2);(2)若∠OPQ=90°,作PA⊥y轴于A点,如图,①当∠POQ=30°,则b=a,∵=b,∴=a,解得a=2,则b=2,∴P点坐标为(2,2),∵∠QPA=30°,∴AQ=AP=,∴OQ=2+=,∴Q点坐标为(0,);②当∠PQO=30°,则a=b,∵=b,∴=,解得a=2,则b=2,∴P点坐标为(2,2);∵∠PQA=30°,∴AQ=AP=6,∴OQ=6+2=8,∴Q点的坐标为(0,8).∴符合条件的点Q的坐标为(0,2)、(0,2)、(0,)、(0,8).故答案为(0,2)、(0,2)、(0,)、(0,8).三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答题写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:﹣2tan60°+(﹣1)0﹣()﹣1;(2)化简:(+)÷+1.【分析】(1)原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:(1)原式=2﹣2+1﹣3=﹣2;(2)原式=•+1=+1==.18.(8分)如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为18°,且OA=OB=3m.(1)求此时另一端A离地面的距离(精确到0.1m);(2)跷动AB,使端点A碰到地面,请画出点A运动的路线(写出画法,并保留画图痕迹),并求出点A运动路线的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【分析】(1)过点A作地面的垂线,垂足为C,在Rt△ABC中,根据正弦函数即可求得;(2)以点O为圆心,OA长为半径画弧,交地面于点D,则就是端点A运动的路线;根据弧长公式即可求得.【解答】解:(1)过点A作地面的垂线,垂足为C,在Rt△ABC中,∠ABC=18°,∴AC=AB•sin∠ABC=6•sin18°≈6×0.31≈1.9.答:另一端A离地面的距离约为1.9 m.(2)画法:以点O为圆心,OA长为半径画弧,交地面于点D,则就是端点A 运动的路线.端点A运动路线的长为=(m).答:端点A运动路线的长为m.19.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【分析】(1)根据B类有60人,所占的百分比是10%即可求解;(2)利用总人数减去其他类型的人数即可求得C类型的人数,然后根据百分比的意义求解;(3)利用360°乘以对应的百分比即可求解;(4)利用列举法即可求解.【解答】解:(1)本次参加抽样调查的居民人数是:60÷10%=600(人);(2)C类的人数是:600﹣180﹣60﹣240=120(人),C类所占的百分比是:×100%=20%,A类所占的百分比是:×100%=30%.;(3)扇形统计图中C所对圆心角的度数是:360°×20%=72°;(4)画树状图如下:则他第二个吃到的恰好是C粽的概率是:=.20.(8分)甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x(分)之间的函数关系如图所示,根据图象所提供的信息解答问题:(1)他们在进行5000米的长跑训练,在0<x<15的时间内,速度较快的人是甲(填“甲”或“乙”);(2)求乙距终点的路程y(米)与跑步时间x(分)之间的函数关系式;(3)当x=15时,两人相距多少米?(4)在15<x<20的时间段内,求两人速度之差.【分析】(1)先根据图象信息可知,他们在进行5000米的长跑训练,再根据直线倾斜程度即可知甲的速度较快;(2)设乙距终点的路程y(米)和跑步时间x(分)之间的函数关系式为y=kx+b,分两种情况进行讨论:①0<x<15;②15≤x≤20,根据图象上点的坐标利用待定系数法分别求出即可;(3)由甲运动员的图象经过(0,5000),(20,0),先运用待定系数法求出甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式,再将x=15代入,得出甲距终点的路程y,又由图象可知此时乙距终点的路程,两者相减即可;(4)先分别求出在15<x<20的时间段内,两人的速度,再将它们相减即可.【解答】解:(1)根据图象信息可知,他们在进行5000米的长跑训练,在0<x<15的时间段内,直线y甲的倾斜程度大于直线y乙的倾斜程度,所以甲的速度较快.故答案为5000,甲;(2)设乙距终点的路程y(米)和跑步时间x(分)之间的函数关系式为y=kx+b.①如果0<x<15,将(0,5000),(15,2000)代入,得,解得,所以y=﹣200x+5000;②如果15≤x≤20,将(15,2000),(20,0)代入,得,解得,所以y=﹣400x+8000;综上所述,乙距终点的路程y(米)与跑步时间x(分)之间的函数关系式为:;(3)设甲距终点的路程y(米)和跑步时间x(分)之间的函数关系式为:y=mx+n,∵直线y=mx+n经过点(0,5000),(20,0),∴,解得,∴y=﹣250x+5000,∴当x=15时,甲距终点的路程y=﹣250×15+5000=1250,∵由图象可知此时乙距终点的路程为2000,∴2000﹣1250=750.即当x=15时,两人相距750米;(4)∵当15<x<20时,甲的速度为5000÷20=250,乙的速度为2000÷5=400,又∵400﹣250=150,∴在15<x<20的时间段内,两人速度之差为150米/分.21.(10分)如图,以O为圆心的弧度数为60°,∠BOE=45°,DA⊥OB,EB⊥OB.(1)求的值;(2)若OE与交于点M,OC平分∠BOE,连接CM.说明CM为⊙O的切线;(3)在(2)的条件下,若BC=1,求tan∠BCO的值.【分析】(1)求出OB=BE,在Rt△OAD中,sin∠AOD==,代入求出即可;(2)求出∠BOC=∠MOC,证△BOC≌△MOC,推出∠CMO=∠OBC=90°,根据切线的判定推出即可;(3)求出CM=ME,MC=BC,求出BC=MC=ME=1,在Rt△MCE中,根据勾股定理求出CE=,求出OB=+1,解直角三角形得出tan∠BCO=+1,即可得出答案.【解答】解:(1)∵EB⊥OB,∠BOE=45°,∴∠E=45°,∴∠E=∠BOE,∴OB=BE,在Rt△OAD中,sin∠AOD==,∵OD=OB=BE,∴==;(2)∵OC平分∠BOE,∴∠BOC=∠MOC,在△BOC和△MOC中,∴△BOC≌△MOC(SAS),∴∠CMO=∠OBC=90°,又∵CM过半径OM的外端,∴CM为⊙O的切线;(3)由(1)(2)证明知∠E=45°,OB=BE,△BOC≌△MOC,CM⊥ME,∵CM⊥OE,∠E=45°,∴∠MCE=∠E=45°,∴CM=ME,又∵△BOC≌△MOC,∴MC=BC,∴BC=MC=ME=1,∵MC=ME=1,∴在Rt△MCE中,根据勾股定理,得CE=,∴OB=BE=+1,∵tan∠BCO=,OB=+1,BC=1,∴tan∠BCO=+1.22.(12分)(1)如图1,直线a∥b∥c∥d,且a与b,c与d之间的距离均为1,b与c之间的距离为2,现将正方形ABCD如图放置,使其四个顶点分别在四条直线上,求正方形的边长;(2)在(1)的条件下,探究:将正方形ABCD改为菱形ABCD,如图2,当∠DCB=120°时,求菱形的边长.【分析】(1)如图1,过B,D分别作直线d的垂线,垂足分别为P,Q,通过证得△CBP≌△CDQ,得出CP=DQ=1,然后根据勾股定理即可求得;(2)如图2,过B,D分别作直线d的垂线,垂足分别为M,N,作∠BPC=∠DQC=120°,P,Q在直线d上,通过证得△BPC≌△DQC证得PC=DQ,通过解直角三角形求得PM,DQ,进而求得MC,然后根据勾股定理即可求得.【解答】解:(1)如图1,过B,D分别作直线d的垂线,垂足分别为P,Q,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠BCD=90°,∴∠PCB+∠QCD=90°,∵∠PBC+∠PCB=90°,∴∠PBC=∠QCD,在△CBP和△CDQ中∴△CBP≌△CDQ(AAS),∴CP=DQ=1,∵BP=3,∴;(2)如图2,过B,D分别作直线d的垂线,垂足分别为M,N,作∠BPC=∠DQC=120°,P,Q在直线d上,∵∠DCB=120°,∴∠PCB+∠DCQ=60°,∵∠PBC+∠PCB=60°,∴∠PBC=∠DCQ,在△BPC和△CQD中∴△BPC≌△DQC,∴PC=DQ,PB=CQ,∵∠BPC=∠DQC=120°,∴∠BPM=∠DQN=60°,∴sin∠BPM=,sin∠DQN=,∵BM=3,DN=1,∴PB=2,DQ=,∴PC=DQ=,∵∠BPM=60°,∴∠PBM=30°,∵在RT△PBM中,PM=PB=,∴MC=PC+PM=,∴在RT△PBM中,BC===.23.(12分)如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知两条抛物线①:y=x2+2x﹣1,②:y=﹣x2+2x+1,判断这两条抛物线是否关联,并说明理由;(2)抛物线C1:y=(x+1)2﹣2,动点P的坐标为(t,2),将抛物线C1绕点P (t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.【分析】(1)首先求得抛物线①的顶点坐标,然后检验是否此点在抛物线②上,再求得抛物线②的顶点坐标,检验是否在抛物线①上即可求得答案;(2)首先求得抛物线C1的顶点坐标,则可得:点P在直线y=2上,则可作辅助线:作M关于P的对称点N,分别过点M、N作直线y=2的垂线,垂足为E,F,则可求得:点N的坐标,利用顶点式即可求得结果.【解答】解:(1)关联.理由:∵,又∵﹣2=﹣(﹣1﹣1)2+2,2=(1+1)2﹣2成立,∴;(2)抛物线C1:y=(x+1)2﹣2的顶点M的坐标为(﹣1,﹣2),∵动点P的坐标为(t,2),∴点P在直线y=2上,作M关于P的对称点N,分别过点M、N作直线y=2的垂线,垂足为E,F,则ME=NF=4,∴点N的纵坐标为6,当y=6时,(x+1)2﹣2=6,解得:x1=7,x2=﹣9,①设抛物C2的解析式为:y=a(x﹣7)2+6,∵点M(﹣1,﹣2)在抛物线C2上,∴﹣2=a(﹣1﹣7)2+6,∴a=﹣.∴抛物线C2的解析式为:y=﹣(x﹣7)2+6;②设抛物C2的解析式为:y=a(x+9)2+6,∵点M(﹣1,﹣2)在抛物线C2上,∴﹣2=a(﹣1+9)2+6,∴a=﹣.∴抛物线C2的解析式为:y=﹣(x+9)2+6;∴C2的解析式为:或.24.(14分)在平面直角坐标系中,矩形OABC的顶点A坐标为(0,3),顶点C 坐标为(8,0).直线y=x交AB于点D,点P从O点出发,沿射线OD方向以每秒a个单位长度的速度移动,同时点Q从C点出发沿x轴向原点O方向以每秒1个单位长度的速度移动,当点Q到达O点时,点P停止移动.连结PB,PC,设运动时间为t秒.(1)求D点坐标;(2)当△PBC为等腰三角形时,求P点坐标;(3)若点P,Q在运动过程中存在某一时刻,使得以点O,P,Q为顶点的三角形与△BCQ相似,求P的运动速度a的值.【分析】(1)由直线y=x交AB于点D,矩形OABC的顶点A坐标为(0,3),把y=4代入y=x得,解得x=4,即可求出点D的坐标(2)分两种情况①当PC=PB时,②当PB=BC时,设P(x,x)分别求解即可,(3)分两种情况:①当PQ⊥x轴,由PQ=at,PQ=(8﹣t),可得a的值,由△OPQ∽△BCQ,得出=,解得t的值,即可得出a的值,或利用=t 的值,即可解得a的值,②当PQ⊥OD,由PQ=at,PQ=(8﹣t),可得a的值,由△OPQ∽△BCQ,可得=,解得t的值,即可得出a的值,=,解得t的值,代入求得a的值.【解答】解:(1)∵直线y=x交AB于点D,矩形OABC的顶点A坐标为(0,3),∴把y=4代入y=x得,3=x,解得x=4,∴D(4,3);(2)①如图1,当PC=PB时,点P为BC的中垂线与直线y=x的交点,∴把y=代入y=x得,=x,解得x=2,∴;②如图2,当PB=BC时,设P(x,x)∵B(8,3),∴PB2=(x﹣8)2+(x﹣3)2,∴(x﹣8)2+(x﹣3)2=9,解得x1=,x2=8(舍去)∴把x1=代入y=x,得y=,∴;(3)①如图3,当PQ⊥x轴,连接BQPQ=at,PQ=(8﹣t),∴a=,∵△OPQ∽△BCQ,∴=,即=,解得t=4a==,或=即=,解得t=,把t=代入a=,解得a=,∴∠OQP=90°时,;②如图4,当PQ⊥OD,∵PQ=at,PQ=(8﹣t),∴a=,∵△OPQ∽△BCQ,∴=,即=,解得t=4,把t=4代入a==,或=,即=,解得t=,把t=,代入a==,∴∠OPQ=90°时,.。

(中考精品)浙江省绍兴市中考数学真题(解析版)

(中考精品)浙江省绍兴市中考数学真题(解析版)

2022年浙江省绍兴市中考数学真题一、选择题1. 实数-6的相反数是( ) A. 16- B. 16 C. -6 D. 6【答案】D【解析】【分析】根据只有符号不同的两个数是互为相反数求解即可.【详解】解:-6的相反数是6,故选:D .【点睛】本题考查相反数,掌握相反数的定义是解题的关键.2. 2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是( )A. 63.210⨯B. 53.210⨯C. 43.210⨯D. 43210⨯【答案】B【解析】【分析】根据科学记数法“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数数位只有一位的数,即a 大于或等于1且小于10,n 是正整数),这样的记数方法叫科学记数法”即可得.【详解】解:5320000 3.210=⨯,故选B .【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法.3. 由七个相同的小立方块搭成的几何体如图所示,则它的主视图是( )A. B. C. D.【答案】B【解析】【分析】根据题目中的图形,可以画出主视图,本题得以解决.【详解】解:由图可得,题目中图形的主视图是,故选:B .【点睛】本题考查简单组合体的三视图,解题的关键是画出相应的图形.4. 在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是( ) A. 34 B. 12 C. 13 D. 14【答案】A【解析】【分析】根据概率公式计算,即可求解. 【详解】解:根据题意得:从袋中任意摸出一个球为红球的概率是33314=+. 故选:A【点睛】本题考查了概率公式:熟练掌握随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数;P (必然事件)=1;P (不可能事件)=0是解题的关键.5. 下列计算正确的是( )A. 2()a ab a a b +÷=+B. 22a a a ⋅=C. 222()a b a b +=+D. 325()a a = 【答案】A【解析】【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A 、2()a ab a a b +÷=+,原式计算正确;B 、23a a a ⋅=,原式计算错误;C 、222()2a b a b ab +=++,原式计算错误;D 、326()a a =,原式计算错误;故选:A .【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.6. 如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A. 30°B. 45°C. 60°D. 75°【答案】C【解析】 【分析】根据三角板的角度,可得60A ∠=︒,根据平行线的性质即可求解.【详解】解: 30C ∠=︒,9060A C ∴∠=︒-∠=︒AC ∥EF ,160A ∴∠=∠=︒故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.7. 已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( )A. 0,4B. 1,5C. 1,-5D. -1,5【答案】D【解析】【分析】根据抛物线2y x mx =+的对称轴为直线2x =可求出m 的值,然后解方程即可.【详解】 抛物线2y x mx =+的对称轴为直线2x =, 221m ∴-=⨯, 解得4m =-,∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-,故选:D .【点睛】本题考查了二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.8. 如图,在平行四边形ABCD 中,22AD AB ==,60ABC ∠=︒,E ,F 是对角线BD 上的动点,且BE DF =,M ,N 分别是边AD ,边BC 上的动点.下列四种说法:①存在无数个平行四边形MENF ;②存在无数个矩形MENF ;③存在无数个菱形MENF ;④存在无数个正方形MENF .其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据题意作出合适的辅助线,然后逐一分析即可.【详解】如图,连接AC 、与BD 交于点O ,连接ME ,MF ,NF ,EN ,MN ,∵四边形ABCD 是平行四边形∴OA =OC ,OB =OD∵BE =DF∴OE =OF∵点E 、F 时BD 上的点,∴只要M ,N 过点O ,那么四边形MENF 就是平行四边形∴存在无数个平行四边形MENF ,故①正确;只要MN =EF ,MN 过点O ,则四边形MENF 是矩形,∵点E 、F 是BD 上的动点,∴存在无数个矩形MENF ,故②正确;只要MN ⊥EF ,MN 过点O ,则四边形MENF 是菱形;∵点E 、F 是BD 上的动点,∴存在无数个菱形MENF ,故③正确;只要MN =EF ,MN ⊥EF ,MN 过点O ,则四边形MENF 是正方形,而符合要求的正方形只有一个,故④错误;故选:C【点睛】本题考查正方形的判定、菱形的判定、矩形的判定、平行四边形的判定、解答本题的关键时明确题意,作出合适的辅助线.9. 已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A. 若120x x >,则130y y >B. 若130x x <,则120y y >C. 若230x x >,则130y y >D. 若230x x <,则120y y >【答案】D【解析】【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y =−2x +3∴y 随x 增大而减小,当y =0时,=1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =−2x +3上的三个点,且x 1<x 2<x 3∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意;若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意.故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.10. 将一张以AB 为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD ,其中90A ∠=︒,9AB =,7BC =,6CD =,2AD =,则剪掉的两个直角三角形的斜边长不可能是( )A. 252B. 454C. 10D. 354【答案】A【解析】【分析】根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可判断哪个选项符合题意.【详解】解:当△DFE ∽△ECB 时,如图,∴DF FE DE EC CB EB==, 设DF =x ,CE =y , ∴9672x y y x +==+,解得:274214x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴2145644DE CD CE =+=+=,故B 选项不符合题意; ∴2735244EB DF AD =+=+=,故选项D 不符合题意;如图,当△DCF ∽△FEB 时,∴DC CF DF FE EB FB==, 设FC =m ,FD =n , ∴6927m n n m ==++,解得:810m n =⎧⎨=⎩, ∴FD =10,故选项C 不符合题意;8614BF FC BC =+=+=,故选项A 符合题意;故选:A【点睛】本题考查相似三角形的性质、矩形的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.二、填空题11. 分解因式:2x x + = ______【答案】(1)x x +【解析】【分析】利用提公因式法即可分解.【详解】2(1)x x x x +=+,故答案为:(1)x x +.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.12. 关于x 的不等式32x x ->的解是______.【答案】1x >【解析】【分析】将不等式移项,系数化为1即可得.【详解】解:32x x ->32x x ->22x >1x >,故答案为:1x >.【点睛】本题考查了解一元一次不等式,解题的关键是掌握解一元一次不等式的方法. 13. 元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.” 其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是______.【答案】20【解析】【分析】设良马x 天追上劣马,根据良马追上劣马所走路程相同可得:240x =150(x +12),即可解得良马20天追上劣马.【详解】解:设良马x 天追上劣马,根据题意得:240x =150(x +12),解得x =20,答:良马20天追上劣马;故答案为:20.【点睛】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列出方程.14. 如图,在ABC 中,40ABC ∠=︒,80BAC ∠=︒,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连接CD BCD ∠的度数是______.【答案】10°或100°【解析】【分析】分两种情况画图,由作图可知得AC AD =,根据等腰三角形的性质和三角形内角和定理解答即可.【详解】解:如图,点D 即为所求;在ABC ∆中,40ABC ∠=︒,80BAC ∠=︒,180408060ACB ∴∠=︒-︒-︒=︒,由作图可知:AC AD =,1(18080)502ACD ADC ∴∠=∠=︒-︒=︒, 605010BCD ACB ACD ∴∠=∠-∠=︒-︒=︒;由作图可知:AC AD =',ACD AD C ∴∠'=∠',80ACD AD C BAC ∠'+∠'=∠=︒ ,40AD C ∴∠'=︒,1801804040100BCD ABC AD C ∴∠'=︒-∠-∠'=︒-︒-︒=︒.综上所述:BCD ∠的度数是10︒或100︒.故答案为:10︒或100︒.【点睛】本题考查了作图-复杂作图,三角形内角和定理,等腰三角形的判定与性质,解题的关键是掌握基本作图方法.15. 如图,在平面直角坐标系xOy 中,点A (0,4),B (3,4),将ABO 向右平移到CDE △位置,A 的对应点是C ,O 的对应点是E ,函数(0)k y k x=≠的图象经过点C 和DE 的中点F ,则k 的值是______.【答案】6【解析】【分析】作FG ⊥x 轴,DQ ⊥x 轴,FH ⊥y 轴,设AC=EO=BD =a ,表示出四边形ACEO 的面积,再根据三角形中位线的性质得出FG ,EG ,即可表示出四边形HFGO 的面积,然后根据k 的几何意义得出方程,求出a ,可得答案.【详解】过点F 作FG ⊥x 轴,DQ ⊥x 轴,FH ⊥y 轴,根据题意,得AC=EO=BD ,设AC=EO=BD =a ,∴四边形ACEO 的面积是4a .∵F 是DE 的中点,FG ⊥x 轴,DQ ⊥x 轴,∴FG 是△EDQ 的中位线, ∴122FG D Q ==,1322E G E Q ==, ∴四边形HFGO 的面积为32()2a +, ∴342()2k a a ==+, 解得32a =, ∴k=6.故答案为:6.【点睛】本题主要考查了反比例函数中k 的几何意义,正确的作出辅助线构造矩形是解题的关键.16. 如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或354【解析】 【分析】过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =3x ,由△ACN ≌△CDM 可得AN =CM =10+x ,CN =DM =3x ,由点C 、M 、D 、E 四点共圆可得△NME 是等腰直角三角形,于是NE =10-2x ,由勾股定理求得AC 可得CE ,在Rt △CNE 中由勾股定理建立方程求得x ,进而可得BE ;【详解】解:如图,过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =BN •tan ∠CBN =3x ,∵△CAD ,△ECD 都是等腰直角三角形,∴CA =CD ,EC =ED ,∠EDC =45°,∠CAN +∠ACN =90°,∠DCM +∠ACN =90°,则∠CAN =∠DCM ,在△ACN 和△CDM 中:∠CAN =∠DCM ,∠ANC =∠CMD =90°,AC =CD ,∴△ACN ≌△CDM (AAS ),∴AN =CM =10+x ,CN =DM =3x ,∵∠CMD =∠CED =90°,∴点C 、M 、D 、E 四点共圆,∴∠CME =∠CDE=45°,∵∠ENM =90°,∴△NME 是等腰直角三角形,∴NE =NM =CM -CN =10-2x ,Rt △ANC 中,AC =,Rt △ECD 中,CD =AC ,CE CD , Rt △CNE 中,CE 2=CN 2+NE 2,∴()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦, 2425250x x -+=,()()4550x x --=,x =5或x =54, ∵BE =BN +NE =x +10-2x =10-x ,∴BE =5或BE =354; 故答案为:5或354; 【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键.三、解答题17. 计算(1)计算:6tan30°+(π+1)0(2)解方程组242.x y x y -=⎧⎨+=⎩, 【答案】(1)1(2)20x y =⎧⎨=⎩【解析】 【分析】(1)根据特殊角的三角函数值,零指数幂,二次根式的性质化简,然后进行计算即可;(2)利用加减消元法解二元一次方程组即可.【小问1详解】解:原式611=-=+-1; 【小问2详解】242x y x y -=⎧⎨+=⎩①②, ①+②得3x =6,∴x =2,把x =2代入②,得y =0,∴原方程组的解是20x y =⎧⎨=⎩. 【点睛】本题考查了特殊角的三角函数值,零指数幂,二次根式的性质,解二元一次方程组,解决本题的关键是掌握以上知识熟练运算.18. 双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x (单位:小时)情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题..的八年级学生每日完成书面作业所需时长情况的统计表 组别 所需时长(小时) 学生人数(人)A 00.5x <≤ 15B 0.51x <≤ mC 1 1.5x <≤ nD 1.52x <≤5(1)求统计表中m ,n 的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足0.5 1.5x <≤的共有多少人.【答案】(1)m 为60,n 为20(2)640人【解析】【分析】(1)先求出被调查总人数,再根据扇形统计图求出m ,用总人数减去A 、B 、D 的人数,即可得n 的值;(2)用被调查情况估计八年级800人的情况,即可得到答案.【小问1详解】解:被调查总人数:1515%100÷=(人), 10060%60m ∴=⨯=(人),1001560520n =---=(人),答:m 为60,n 为20;【小问2详解】解: 当0.5 1.5x <…时,在被调查的100人中有602080+=(人),∴在该校八年级学生800人中,每日完成书面作业所需时长满足0.5 1.5x <…的共有80800640100⨯=(人), 答:估计共有640人.【点睛】本题考查统计图和统计表,解题的关键是掌握从图表中寻找“完整信息”从而求出被调查的总数.19. 一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米). x0 0.5 1 1.5 2 y 1 1.5 2 2.5 3为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x . 【答案】(1)y =x +1(0≤x ≤5),图见解析(2)4小时【解析】【分析】(1)观察表格数据,y 的增长量是固定的,故符合一次函数模型,建立模型待定系数法求解析式,画出函数图象即可求解;(2)根据5y =,代入解析式求得x 的值即可求解.小问1详解】(1)选择y =kx +b ,将(0,1),(1,2)代入,得12b k b =⎧⎨+=⎩,,解得11.k b =⎧⎨=⎩, ∴y =x +1(0≤x ≤5).【小问2详解】当y =5时,x +1=5,∴x =4.答:当水位高度达到5米时,进水用时x 为4小时.【点睛】本题考查了一次函数的性质,画一次函数图象,求一次函数的解析式,根据题意建立模型是解题的关键.20. 圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” )和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC 垂直圭BC ,已知该市冬至正午太阳高度角(即)ABC ∠为37︒,夏至正午太阳高度角(即)ADC ∠为84︒,圭面上冬至线与夏至线之间的距离(即DB 的【长)为4米.(1)求∠BAD 度数.(2)求表AC 的长(最后结果精确到0.1米).(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,tan84°≈192) 【答案】(1)47°(2)3.3米 【解析】【分析】(1)根据三角形的外角等于与它不相邻两个内角的和解答即可;(2)分别求出ADC ∠和ABC ∠的正切值,用AC 表示出CD 和CB ,得到一个只含有AC 的关系式,再解答即可.【小问1详解】解:84ADC ∠=︒ ,37ABC ∠=︒,47BAD ADC ABC ∴∠=∠-∠=︒,答:BAD ∠的度数是47︒.【小问2详解】解:在Rt △ABC 中,tan 37AC BC ︒=, ∴tan 37AC BC =︒. 同理,在Rt △ADC 中,有tan84AC DC =︒. ∵4BD =, ∴4tan 37tan84AC AC BC DC BD -=-==︒︒. ∴424319AC AC -≈,的∴ 3.3AC ≈(米).答:表AC 的长是3.3米.【点睛】本题主要考查了三角形外角的性质和三角函数,解题的关键是熟练掌握建模思想来解决.21. 如图,半径为6的⊙O 与Rt △ABC 的边AB 相切于点A ,交边BC 于点C ,D ,∠B=90°,连接OD ,A D .(1)若∠ACB=20°,求 AD 的长(结果保留π). (2)求证:AD 平分∠BDO .【答案】(1)43π (2)见解析【解析】【分析】(1)连接OA ,由20ACB ∠=︒,得40AOD ∠=︒,由弧长公式即得 AD 的长为43π; (2)根据AB 切O 于点A ,90B ∠=︒,可得//OA BC ,有OAD ADB ∠=∠,而OA OD =,即可得ADB ODA ∠=∠,从而AD 平分BDO ∠.【小问1详解】解:连接OA ,∵∠ACB =20°,∴∠AOD =40°,∴ 180n rAD π=,18040⨯π⨯6=43π=. 【小问2详解】证明:OA OD = ,OAD ODA ∠=∠∴,AB Q 切O 于点A ,OA AB ∴⊥,90B ∠=︒ ,//OA BC ∴,OAD ADB ∴∠=∠,ADB ODA ∴∠=∠,AD ∴平分BDO ∠.【点睛】本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质.22. 如图,在△ABC 中,∠ABC=40°, ∠ACB=90°,AE 平分∠BAC 交BC 于点E .P 是边BC 上的动点(不与B ,C 重合),连结AP ,将△APC 沿AP 翻折得△APD ,连结DC ,记∠BCD=α.(1)如图,当P 与E 重合时,求α的度数.(2)当P 与E 不重合时,记∠BAD=β,探究α与β的数量关系.【答案】(1)25° (2)①当点P 在线段BE 上时,2α-β=50°;②当点P 在线段CE 上时,2α+β=50°【解析】【分析】(1)由∠B =40°,∠ACB =90°,得∠BAC =50°,根据AE 平分∠BAC ,P 与E 重合,可得∠ACD ,从而α=∠ACB −∠ACD ;(2)分两种情况:①当点P 在线段BE 上时,可得∠ADC =∠ACD =90°−α,根据∠ADC +∠BAD =∠B +∠BCD ,即可得2α−β=50°;②当点P 在线段CE 上时,延长AD 交BC于点F,由∠ADC=∠ACD=90°−α,∠ADC=∠AFC+α=∠ABC+∠BAD+α可得90°−α=40°+α+β,即2α+β=50°.【小问1详解】解:∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,∴∠EAC=1∠BAC=25°,2∵P与E重合,∴D在AB边上,AE⊥CD,∴∠ACD=65°,∴α=∠ACB-∠ACD=25°;【小问2详解】①如图1,当点P在线段BE上时,∵∠ADC=∠ACD=90°-α,∠ADC+∠BAD=∠B+∠BCD,∴90°-α+β=40°+α,∴2α-β=50°;②如图2,当点P在线段CE上时,延长AD交BC于点F,∵∠ADC=∠ACD=90°-α,∠ADC=∠AFC+α=∠ABC+∠BAD+α=40°+α+β,∴90°-α=40°+α+β,∴2α+β=50°.【点睛】本题考查三角形综合应用,涉及轴对称变换,三角形外角等于不相邻的两个内角的和的应用,解题的关键是掌握轴对称的性质,能熟练运用三角形外角的性质. 23. 已知函数2y x bx c =-++(b ,c 为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b ,c 的值.(2)当﹣4≤x ≤0时,求y 的最大值.(3)当m ≤x ≤0时,若y 的最大值与最小值之和为2,求m 的值.【答案】(1)b =-6,c =-3(2)x =-3时,y 有最大值为6(3)m =-2或3--【解析】【分析】(1)把(0,-3),(-6,-3)代入y =2x bx c -++,即可求解;(2)先求出抛物线的顶点坐标为(-3,6),再由-4≤x ≤0,可得当x =-3时,y 有最大值,即可求解;(3)由(2)得当x >-3时,y 随x 增大而减小;当x ≤-3时,y 随x 的增大而增大,然后分两种情况:当-3<m≤0时,当m≤-3时,即可求解.【小问1详解】解:把(0,-3),(-6,-3)代入y =2x bx c -++,得∶33663c b c =-⎧⎨--+=-⎩,解得:63b c =-⎧⎨=-⎩; 【小问2详解】解:由(1)得:该函数解析式为y =263x x ---=2(3)6x -++,∴抛物线的顶点坐标为(-3,6),∵-1<0∴抛物线开口向下,又∵-4≤x ≤0,∴当x =-3时,y 有最大值为6.【小问3详解】解:由(2)得:抛物线的对称轴为直线x =-3,∴当x >-3时,y 随x 的增大而减小;当x ≤-3时,y 随x 的增大而增大,①当-3<m≤0时,当x =0时,y 有最小值为-3,当x =m 时,y 有最大值为263m m ---,∴263m m ---+(-3)=2, 的∴m =-2或m =-4(舍去).②当m≤-3时,当x =-3时,y 有最大值为6,∵y 的最大值与最小值之和为2,∴y 最小值为-4,∴2(3)6m -++=-4,∴m =3-或m =3-+(舍去).综上所述,m =-2或3--.【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用分类讨论思想解答是解题的关键.24. 如图,在矩形ABCD 中,6AB =,8BC =,动点E 从点A 出发,沿边AD ,DC 向点C 运动,A ,D 关于直线BE 的对称点分别为M ,N ,连结MN .(1)如图,当E 在边AD 上且2=时,求AEM ∠的度数.(2)当N 在BC 延长线上时,求DE 的长,并判断直线MN 与直线BD 的位置关系,说明理由.(3)当直线MN 恰好经过点C 时,求DE 的长.【答案】(1)∠AEM =90°;(2)DE =103;MN ∥BD ,证明见解析;(3)DE 的长为 【解析】 【分析】(1)由DE =2知,AE =AB =6,可知∠AEB =∠MEB =45°,从而得出答案; (2)根据对称性得,∠ENC =∠BDC ,则cos ∠ENC =2610EN =,得EN =103,利用SSS 证明△BMN ≌△DCB ,得∠DBC =∠BNM ,则MN ∥BD ;(3)当点E 在边AD 上时,若直线MN 过点C ,利用AAS 证明△BCM ≌△CED ,得DE =MC;当点E在边CD上时,证明△BMC∽△CNE,可得BM MCCN EN=,从而解决问题.【小问1详解】解:∵DE=2,∴AE=AB=6,∵四边形ABCD是矩形,∴∠A=90°,∴∠AEB=∠ABE=45°,由对称性知∠BEM=45°,∴∠AEM=∠AEB+∠BEM=90°;【小问2详解】如图1,∵AB=6,AD=8,∴由勾股定理得BD=10,∵当N落在BC延长线上时,BN=BD=10,∴CN=2.由对称性得,∠ENC=∠BDC,∴cos∠ENC=2610 EN=,∴EN=10 3,∴DE=EN=10 3;直线MN与直线BD的位置关系是MN∥BD.由对称性知BM=AB=CD,MN=AD=BC,又∵BN=BD,∴△BMN≌△DCB(SSS),∴∠DBC=∠BNM,所以MN∥BD;【小问3详解】①情况1:如图2,当E在边AD上时,直线MN过点C,∴∠BMC=90°,∴MC=.∵BM=AB=CD,∠DEC=∠BCE,∠BMC=∠EDC=90°,∴△BCM≌△CED(AAS),∴DE=MC=;②情况2:如图3,点E在边CD上时,∵BM=6,BC=8,∴MC=,CN=8-,∵∠BMC=∠CNE=∠BCD=90°,∴∠BCM+∠ECN=90°,∵∠BCM+∠MBC=90°,∴∠ECN=∠MBC,∴△BMC∽△CNE,∴BM MC CN EN=,∴ENMC CNBM⋅==∴DE=EN.综上所述,DE的长为【点睛】本题是四边形综合题,主要考查了矩形的性质,轴对称的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,根据题意画出图形,并运用分类讨论思想是解题的关键。

2023年浙江省绍兴市中考数学真题 (解析版)

2023年浙江省绍兴市中考数学真题 (解析版)

2023年浙江省绍兴市中考数学真题(解析版)卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分1.计算23-的结果是()A.1- B.3- C.1 D.3【答案】A【解析】【分析】根据有理数的减法法则进行计算即可.【详解】解:231-=-,故选:A .【点睛】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.2.据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是()A.727.410⨯ B.82.7410⨯ C.90.27410⨯ D.92.7410⨯【答案】B【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中1||10,a n ≤<为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,由此进行求解即可得到答案.【详解】解:8274000000 2.7410=⨯,故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.3.由8个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看第一层是三个小正方形,第二层左边一个小正方形,中间没有,右边1个小正方形,故选:D.【点睛】本题考查了三视图的知识,要求同学们掌握主视图是从物体的正面看得到的视图.4.下列计算正确的是()A.623a a a÷= B.()52a a-=- C.()()2111a a a+-=- D.22(1)1a a+=+【答案】C【解析】【分析】根据同底数幂相除法则判断选项A;根据幂的乘方法则判断选项B;根据平方差公式判断选项C;根据完全平方公式判断选项D即可.【详解】解:A.6243a a a a÷=≠,原计算错误,不符合题意;B.()5210a a a-=-≠-,原计算错误,不符合题意;C.()()2111a a a+-=-,原计算正确,符合题意;D.222(1)211a a a a+=++≠+,原计算错误,不符合题意;故选:C.【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键.5.在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是()A.25 B.35 C.27D.57【答案】C【解析】【分析】根据概率的意义直接计算即可.【详解】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C .【点睛】本题考查了概率的计算,解题关键是熟练运用概率公式.6.《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是()A.5352x y x y +=⎧⎨+=⎩ B.5352x y x y +=⎧⎨+=⎩ C.5352x y x y =+⎧⎨=+⎩ D.5253x y x y =+⎧⎨=+⎩【答案】B【解析】【分析】设大容器的容积为x 斛,小容器的容积为y 斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x 、y 的二元一次方程组.【详解】解:设大容器的容积为x 斛,小容器的容积为y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩.故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x 、y 的二元一次方程组是解题的关键.7.在平面直角坐标系中,将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()A.()2,1m n -- B.()2,1m n -+ C.()2,1m n +- D.()2,1m n ++【答案】D【解析】【分析】把(),m n 横坐标加2,纵坐标加1即可得出结果.【详解】解:将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()2,1m n ++.故选:D .【点睛】本题考查点的平移中坐标的变换,把(),a b 向上(或向下)平移h 个单位,对应的纵坐标加上(或减去)h ,,把(),a b 向右上(或向左)平移n 个单位,对应的横坐标加上(或减去)n .掌握平移规律是解题的关键.8.如图,在矩形ABCD 中,O 为对角线BD 的中点,60ABD ∠=︒.动点E 在线段OB 上,动点F 在线段OD 上,点,E F 同时从点O 出发,分别向终点,B D 运动,且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E ;点F 关于,BC CD 的对称点为12,F F .在整个过程中,四边形1212E E F F 形状的变化依次是()A.菱形→平行四边形→矩形→平行四边形→菱形B.菱形→正方形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→菱形→平行四边形D.平行四边形→菱形→正方形→平行四边形→菱形【答案】A【解析】【分析】根据题意,分别证明四边形1212E E F F 是菱形,平行四边形,矩形,即可求解.【详解】∵四边形ABCD 是矩形,∴AB CD ∥,90BAD ABC ∠=∠=︒,∴60BDC ABD ∠=∠=︒,906030ADB CBD ∠=∠=︒-︒=︒,∵OE OF =、OB OD =,∴DF EB=∵对称,∴21DF DF BF BF ==,,21,BE BE DE DE ==∴1221E F E F =∵对称,∴260F DC CDF ∠=∠=︒,130EDA E DA ∠=∠=︒∴160E DB ∠=︒,同理160F BD ∠=︒,∴11DE BF ∥∴1221E F E F ∥∴四边形1212E E F F 是平行四边形,如图所示,当,,E F O 三点重合时,DO BO =,∴1212DE DF AE AE ===即1212E E EF =∴四边形1212E E F F 是菱形,如图所示,当,E F 分别为,OD OB 的中点时,设4DB =,则21DF DF ==,13DE DE ==,在Rt △ABD 中,2,AB AD ==,连接AE ,AO ,∵602ABO BO AB ∠=︒==,,∴ABO 是等边三角形,∵E 为OB 中点,∴AE OB ⊥,1BE =,∴AE =,根据对称性可得1AE AE ==,∴2221112,9,3AD DE AE ===,∴22211AD AE DE =+,∴1DE A 是直角三角形,且190E ∠=︒,∴四边形1212E E F F 是矩形,当,F E 分别与,D B 重合时,11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形∴在整个过程中,四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A .【点睛】本题考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.9.已知点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,则这个函数图象可能是()A. B. C.D.【答案】B【解析】【分析】点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,可得N 、P 关于y 轴对称,当0x <时,y 随x 的增大而增大,即可得出答案.【详解】解:∵()()2,,2,N a P a -,∴得N 、P 关于y 轴对称,∴选项A 、C 错误,∵()()4,2,2,M a N a ---在同一个函数图象上,∴当0x <时,y 随x 的增大而增大,∴选项D 错误,选项B 正确.故选:B .10.如图,在ABC 中,D 是边BC 上的点(不与点,B C 重合).过点D 作DE AB ∥交AC 于点E ;过点D 作DF AC ∥交AB 于点F .N 是线段BF 上的点,2BN NF =;M 是线段DE 上的点,2DM ME =.若已知CMN 的面积,则一定能求出()A.AFE △的面积B.BDF V 的面积C.BCN △的面积D.DCE △的面积【答案】D【解析】【分析】如图所示,连接ND ,证明FBD EDC ∽,得出FB FD ED EC =,由已知得出NF BF ME DE=,则FD NF EC ME =,又NFD MEC ∠=∠,则NFD MEC ∽,进而得出MCD NDB ∠=∠,可得MC ND ∥,结合题意得出1122EMC DMC MNC S S S == ,即可求解.【详解】解:如图所示,连接ND ,∵DE AB ∥,DF AC ∥,∴,ECD FDB FBD EDC ∠=∠∠=∠,,BFD A A DEC ∠=∠∠=.∴FBD EDC ∽,NFD MEC ∠=∠.∴FB FD ED EC=.∵2DM ME =,2BN NF =,∴11,33NF BF ME DE ==,∴NF BF ME DE =.∴FD NF EC ME =.又∵NFD MEC ∠=∠,∴NFD MEC ∽.∴ECM FDN ∠=∠.∵FDB ECD∠=∠∴MCD NDB ∠=∠.∴MC ND ∥.∴MNC MDC S S = .∵2DM ME =,∴1122EMC DMC MNC S S S == .故选:D .【点睛】本题考查了相似三角形的性质与判定,证明MC ND ∥是解题的关键.卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11.因式分解:m 2﹣3m =__________.【答案】()3m m -【解析】【分析】题中二项式中各项都含有公因式m ,利用提公因式法因式分解即可得到答案.【详解】解:()233m m m m -=-,故答案为:()3m m -.【点睛】本题考查整式运算中的因式分解,熟练掌握因式分解的方法技巧是解决问题的关键.12.如图,四边形ABCD 内接于圆O ,若100D ∠=︒,则B ∠的度数是________.【答案】80︒##80度【解析】【分析】根据圆内接四边形的性质:对角互补,即可解答.【详解】解:∵四边形ABCD 内接于O ,∴180B D �邪=,∵100D ∠=︒,∴18080B D ∠︒∠︒=﹣=.故答案为:80︒.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键.13.方程3911x x x =++的解是________.【答案】3x =【解析】【分析】先去分母,左右两边同时乘以()1x +,再根据解一元一次方程的方法和步骤进行解答,最后进行检验即可.【详解】解:去分母,得:39x =,化系数为1,得:3x =.检验:当3x =时,10x +≠,∴3x =是原分式方程的解.故答案为:3x =.【点睛】本题主要考查了解分式方程,解题的关键是掌握解分式方程的方法和步骤,正确找出最简公分母,注意解分式方程要进行检验.14.如图,在菱形ABCD 中,40DAB ∠=︒,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则AEC ∠的度数是________.【答案】10︒或80︒【解析】【分析】根据题意画出图形,结合菱形的性质可得1202CAD DAB ∠=∠=︒,再进行分类讨论:当点E 在点A 上方时,当点E 在点A 下方时,即可进行解答.【详解】解:∵四边形ABCD 为菱形,40DAB ∠=︒,∴1202CAD DAB ∠=∠=︒,连接CE ,①当点E 在点A 上方时,如图1E ,∵1AC AE =,120CAE ∠=︒,∴()1118020802AE C ∠=︒-︒=︒,②当点E 在点A 下方时,如图2E ,∵1AC AE =,120CAE ∠=︒,∴211102AE C CAE ∠=∠=︒,故答案为:10︒或80︒.【点睛】本题主要考查了菱形的性质,等腰三角形的性质,三角形的内角和以及三角形的外角定理,解题的关键是掌握菱形的对角线平分内角;等腰三角形两底角相等,三角形的内角和为180︒;三角形的一个外角等于与它不相邻的两个内角之和.15.如图,在平面直角坐标系xOy 中,函数k y x=(k 为大于0的常数,0x >)图象上的两点()()1122,,,A x y B x y ,满足212x x =.ABC 的边AC x ∥轴,边∥BC y 轴,若OAB 的面积为6,则ABC 的面积是________.【答案】2【解析】【分析】过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,利用6AFO ABO BOE FABEO S S S S k =++=+ 五边形,AFOD FABEO ADEB ADEB S S S k S =+=+矩形五边形梯形梯形,得到6ADEB S =梯形,结合梯形的面积公式解得11=8x y ,再由三角形面积公式计算2112111111111()()22224ABC S AC BC x x y y x y x y =×=-×-=×=,即可解答.【详解】解:如图,过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,6AFO ABO BOE FABEO S S S S k =++=+ 五边形AFOD FABEO ADEB ADEBS S S k S =+=+矩形五边形梯形梯形6ADEB S ∴=梯形2121()()62y y x x +-∴= 212x x =2112y y ∴=11112121111()(2)()()32==6224y y x x y y x x y x +-+-∴=11=8x y ∴8k ∴=21121111111111()()82222244ABC S AC BC x x y y x y x y =×=-×-=×===故答案为:2.【点睛】本题考查反比例函数中k 的几何意义,是重要考点,掌握相关知识是解题关键.16.在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数()2(2)03y x x =-≤≤的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数()21034y x bx c x =++≤≤图象的关联矩形恰好也是矩形OABC ,则b =________.【答案】712或2512-【解析】【分析】根据题意求得点()3,0A ,()3,4B ,()0,4C,根据题意分两种情况,待定系数法求解析式即可求解.【详解】由()2(2)03y x x =-≤≤,当0x =时,4y =,∴()0,4C ,∵()3,0A ,四边形ABCO 是矩形,∴()3,4B ,①当抛物线经过O B ,时,将点()0,0,()3,4B 代入()21034y x bx c x =++≤≤,∴019344c b c =⎧⎪⎨⨯++=⎪⎩解得:712b =②当抛物线经过点,A C 时,将点()3,0A ,()0,4C 代入()21034y x bx c x =++≤≤,∴419304c b c =⎧⎪⎨⨯++=⎪⎩解得:2512b =-综上所述,712b =或2512b =-,故答案为:712或2512-.【点睛】本题考查了待定系数法求抛物线解析式,理解新定义,最小矩形的限制条件是解题的关键.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:0(1)π---.(2)解不等式:324x x ->+.【答案】(1)1;(2)3x >【解析】【分析】(1)根据零指数幂的性质、二次根式的化简、绝对值的性质依次解答;(2)先移项,再合并同类项,最后化系数为1即可解答.【详解】解:(1)原式1=-+1=.(2)移项得36x x ->,即26x >,∴3x >.∴原不等式的解是3x >.【点睛】本题考查实数的混合运算、零指数幂、二次根式的化简和解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.18.某校兴趣小组通过调查,形成了如下调查报告(不完整).建议……结合调查信息,回答下列问题:(1)本次调查共抽查了多少名学生?(2)估计该校900名初中生中最喜爱篮球项目的人数.(3)假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100(2)360(3)答案不唯一,见解析【解析】【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.【小问1详解】被抽查学生数:3030%100÷=,答:本次调查共抽查了100名学生.【小问2详解】被抽查的100人中最喜爱羽毛球的人数为:1005%5⨯=,∴被抽查的100人中最喜爱篮球的人数为:100301015540----=,∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.【小问3详解】答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.19.图1是某款篮球架,图2是其示意图,立柱OA 垂直地面OB ,支架CD 与OA 交于点A ,支架CG CD ⊥交OA 于点G ,支架DE 平行地面OB ,篮筺EF 与支架DE 在同一直线上, 2.5OA =米,0.8AD =米,32AGC ∠=︒.(1)求GAC ∠的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin 320.53,cos 320.85,tan 320.62︒≈︒≈︒≈)【答案】(1)58︒(2)该运动员能挂上篮网,理由见解析【解析】【分析】(1)根据直角三角形的两个锐角互余即可求解;(2)延长,OA ED 交于点M ,根据题意得出32ADM ∠=︒,解Rt ADM △,求得AM ,根据OM OA AM =+与3比较即可求解.【小问1详解】解:∵CG CD ⊥,∴90ACG ∠=︒,∵32AGC ∠=︒,∴903258GAC ∠=︒-︒=︒.【小问2详解】该运动员能挂上篮网,理由如下.如图,延长,OA ED 交于点M ,∵,OA OB DE OB ⊥∥,∴90DMA ∠=︒,又∵58DAM GAC ∠=∠=︒,∴32ADM ∠=︒,在Rt ADM △中,sin 320.80.530.424AM AD =︒≈⨯=,∴ 2.50.424 2.9243OM OA AM =+=+=<,∴该运动员能挂上篮网.【点睛】本题考查了解直角三角形的应用,直角三角形的两个锐角互余,熟练掌握三角函数的定义是解题的关键.20.一条笔直的路上依次有,,M P N 三地,其中,M N 两地相距1000米.甲、乙两机器人分别从,M N 两地同时出发,去目的地,N M ,匀速而行.图中,OA BC 分别表示甲、乙机器人离M 地的距离y (米)与行走时间x (分钟)的函数关系图象.(1)求OA 所在直线的表达式.(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P 地后,再经过1分钟乙机器人也到P 地,求,P M 两地间的距离.【答案】(1)200y x=(2)出发后甲机器人行走103分钟,与乙机器人相遇(3),P M 两地间的距离为600米【解析】【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求出BC 所在直线的表达式,再列方程组求出交点坐标,即可;(3)列出方程即可解决.【小问1详解】∵()()0,0,5,1000O A ,∴OA 所在直线的表达式为200y x =.【小问2详解】设BC 所在直线的表达式为y kx b =+,∵()()0,1000,10,0B C ,∴10000,010,b k b =+⎧⎨=+⎩解得100,1000k b =-⎧⎨=⎩.∴1001000y x =-+.甲、乙机器人相遇时,即2001001000x x =-+,解得103x =,∴出发后甲机器人行走103分钟,与乙机器人相遇.【小问3详解】设甲机器人行走t 分钟时到P 地,P 地与M 地距离200y t =,则乙机器人()1t +分钟后到P 地,P 地与M 地距离()10011000y t =-++,由()20010011000t t =-++,得3t =.∴600y =.答:,P M 两地间的距离为600米.【点睛】本题考查了一次函数的图象与性质,用待定系数法可求出函数表达式,要利用方程组的解,求出两个函数的交点坐标,充分应用数形结合思想是解题的关键.21.如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线CD ,交AB 的延长线于点D ,过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒,求ACD ∠的度数.(2)若2,1OB BD ==,求CE 的长.【答案】(1)115︒(2)CE =【解析】【分析】(1)根据三角形的外角的性质,ACD AEC EAC ∠=∠+∠即可求解.(2)根据CD 是O 的切线,可得90OCD ∠=︒,在Rt OCD △中,勾股定理求得CD =根据OC AE ∥,可得CD OD CE OA=,进而即可求解.【小问1详解】解:∵AE CD ⊥于点E ,∴90AEC ∠=︒,∴9025115ACD AEC EAC ∠=∠+∠=︒+︒=︒.【小问2详解】∵CD 是O 的切线,OC 是O 的半径,∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴CD =.∵90OCD AEC ∠=∠=︒,∴OC AE∥∴CD OD CE OA =,即32CE =,∴CE =.【点睛】本题考查了三角形外角的性质,切线的性质,勾股定理,平行线分线段成比例,熟练掌握以上知识是解题的关键.22.如图,在正方形ABCD 中,G 是对角线BD 上的一点(与点,B D 不重合),,,,GE CD GF BC E F ⊥⊥分别为垂足.连接,EF AG ,并延长AG 交EF 于点H .(1)求证:DAG EGH ∠=∠.(2)判断AH 与EF 是否垂直,并说明理由.【答案】(1)见解析(2)AH 与EF 垂直,理由见解析【解析】【分析】(1)由正方形的性质,得到AD CD ⊥,结合垂直于同一条直线的两条直线平行,可得AD GE ∥,再根据平行线的性质解答即可;(2)连接GC 交EF 于点O SAS 证明ADG CDG ≌,再根据全等三角形对应角相等得到DAG DCG ∠=∠,继而证明四边形FCEG 为矩形,最后根据矩形的性质解答即可.【小问1详解】解:在正方形ABCD 中,AD CD⊥GE CD⊥ ∴AD GE ∥,∴DAG EGH ∠=∠.【小问2详解】AH 与EF 垂直,理由如下.连接GC 交EF 于点O .∵BD 为正方形ABCD 的对角线,∴45ADG CDG ∠=∠=︒,又∵,DG DG AD CD ==,∴ADG CDG ≌,∴DAG DCG ∠=∠.在正方形ABCD 中,90ECF ∠=︒,又∵,GE CD GF BC ⊥⊥,∴四边形FCEG 为矩形,∴OE OC =,∴OEC OCE ∠=∠,∴DAG OEC ∠=∠.又∵DAG EGH ∠=∠,∴90EGH GEH OEC GEH GEC ∠+∠=∠+∠=∠=︒,∴90GHE ∠=°,∴AH EF ⊥.【点睛】本题考查正方形的性质、平行线的性质、全等三角形的判断与性质、矩形的判定与性质等知识,综合性较强,是重要考点,掌握相关知识是解题关键.23.已知二次函数2y x bx c =-++.(1)当4,3b c ==时,①求该函数图象的顶点坐标.②当13x -≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式.【答案】(1)①()2,7;②当13x -≤≤时,27y -≤≤(2)222y x x =-++【解析】【分析】(1)①将4,3b c ==代入解析式,化为顶点式,即可求解;②已知顶点()2,7,根据二次函数的增减性,得出当2x =时,y 有最大值7,当=1x -时取得最小值,即可求解;(2)根据题意0x ≤时,y 的最大值为2;0x >时,y 的最大值为3,得出抛物线的对称轴2b x =在y 轴的右侧,即0b >,由抛物线开口向下,0x ≤时,y 的最大值为2,可知2c =,根据顶点坐标的纵坐标为3,求出2b =,即可得解.【小问1详解】解:①当4,3b c ==时,2243(2)7y x x x =-++=--+,∴顶点坐标为()2,7.②∵顶点坐标为()2,7.抛物线开口向下,当12x -≤≤时,y 随x 增大而增大,当23x ≤≤时,y 随x 增大而减小,∴当2x =时,y 有最大值7.又()2132-->-∴当=1x -时取得最小值,最小值=2y -;∴当13x -≤≤时,27y -≤≤.【小问2详解】∵0x ≤时,y 的最大值为2;0x >时,y 的最大值为3,∴抛物线的对称轴2b x =在y 轴的右侧,∴0b >,∵抛物线开口向下,0x ≤时,y 的最大值为2,∴2c =,又∵()()241341c b ⨯-⨯-=⨯-,∴2b =±,∵0b >,∴2b =,∴二次函数的表达式为222y x x =-++.【点睛】本题考查了待定系数法求二次函数解析式,顶点式,二次函数的最值问题,熟练掌握二次函数的性质是解题的关键.24.在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列),12,10,AB AD B ==∠为锐角,且4sin 5B =.(1)如图1,求AB 边上的高CH (2)P 是边AB 上的一动点,点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''.①如图2,当点C '落在射线CA 上时,求BP 的长.②当AC D ''△是直角三角形时,求BP 的长.【答案】(1)8(2)①347BP =;②6BP =或8±【解析】【分析】(1)利用正弦的定义即可求得答案;(2)①先证明PQC CHP '△≌△,再证明AQC AHC '△∽△,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:C '为直角顶点;第二种:A 为直角顶点;第三种,D ¢为直角顶点,但此种情况不成立,故最终有两个答案.【小问1详解】在ABCD Y 中,10BC AD ==,在Rt BCH 中,4sin 1085CH BC B ==⨯=.【小问2详解】①如图1,作CH BA ⊥于点H ,由(1)得,6BH ==,则1266AH =-=,作C Q BA '⊥交BA 延长线于点Q ,则90CHP PQC ∠'=∠=︒,∴90C PQ PC Q '∠+∠='︒.∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,∴PQC CHP '△≌△.设BP x =,则8,6,4PQ CH C Q PH x QA PQ PA x ====-=-=-'.∵,C Q AB CH AB '⊥⊥,∴C Q CH '∥,∴AQC AHC '△∽△,∴C Q QA CH HA =',即6486x x --=,∴347x =,∴347BP =.②由旋转得,PCD PC D CD C D '''='△≌△,CD C D ⊥'',又因为AB CD ,所以C D AB ''⊥.情况一:当以C '为直角顶点时,如图2.∵C D AB ''⊥,∴C '落在线段BA 延长线上.∵PC PC ⊥',∴PC AB ⊥,由(1)知,8PC =,∴6BP =.情况二:当以A 为直角顶点时,如图3.设C D ''与射线BA 的交点为T ,作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,∴CPH PC T ∠=∠'.又∵90,CHP PTC PC C P ∠=∠=='︒',∴CPH PC T '△≌△,∴,8C T PH PT CH '===.设C T PH t '==,则6AP t =-,∴2AT PT PA t=-=+∵90,C AD C D AB ∠=︒''⊥'',∴ATD C TA '' ∽,∴AT C T TD TA='',∴2AT C T TD '=⋅',∴()2(2)12t t ι+=-,化简得2420t t -+=,解得2t =±∴8BP BH HP =+=±情况三:当以D ¢为直角顶点时,点P 落在BA 的延长线上,不符合题意.综上所述,6BP =或8±【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.。

浙江绍兴中考数学试题及答案.doc

浙江绍兴中考数学试题及答案.doc

2015年浙江绍兴中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

绍兴市中考数学试题及答案.docx

绍兴市中考数学试题及答案.docx

浙江省2013年初中毕业生学业考试绍兴市试卷数学试题卷满分150分1._2的相反数是 A. .2B.-2C.OD.-22. 计算3a ・2b 的结果是A. 3abB. 6aC. 6abD. 5ab4.由5个相同的立方体搭成的几何体如图所示,则它的主视图是完全相同,则从袋子屮随机摸出一个球是黄球的概率是7. 若圆锥的轴截血为等边三角形,则称此圆锥为正圆锥,则正圆锥侧血展开图的圆心角是A. 90°B. 120°C. 150°D. 180°8.如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从.壶底的小孔漏出, 壶壁内画有刻度,人们根据壶中水面的位置计时。

用无表示时间,y 表示壶底到水面的 高度,则y 与X 的函数关系的图象是-、选择题(本大题有10小题, 每小题4分,共40分)3. 地球半径约为6 400 000米, 这个数用科学计数法表示为A. 0.64 X107B.6.4X106C. 6.4X12D. 64X1055. -个不透明的袋子中有3个白球、2个黄球和1个红球, 正面 第4题这些球除颜色可以不同外其它A.B.-D.6.绍兴是著名的桥乡,如图,圆拱桥的拱顶到水面的距离CD 为8m,桥拱半径OC 为5m,则水面宽AB 为A. 4mB. 5mC. 6mD. 8mA. B. C.D .629. 小敏在作(DO 的内接正五边形时,先做了如下几个步骤:(1)作的两条互相垂直的直径,再作0A 的垂直平分线交0A 于点M,如图1; (2)以M 为圆心,BM 长为半径作圆弧,交CA 于点D,连结BD,如图2.若的半径为1,则由以上作图得到的关于正五边形边 长BD 的等式是C. BD 2= 45OD10. 教室里的饮水机接通电源就进入口动程序:开机加热时每分钟上升10°C,加热到100C后停止加热,水温开始下降,此时水温(°C)与开机后用时至水温降至30°C,饮水机关机。

浙江省绍兴市2013年中考数学试卷(解析版)

浙江省绍兴市2013年中考数学试卷(解析版)

浙江省绍兴市2013年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不得分)4.(4分)(2013•绍兴)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()B5.(4分)(2013•绍兴)一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除B..6.(4分)(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()求出==4m7.(4分)(2013•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的,则8.(4分)(2013•绍兴)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()B9.(4分)(2013•绍兴)小敏在作⊙O 的内接正五边形时,先做了如下几个步骤: (1)作⊙O 的两条互相垂直的直径,再作OA 的垂直平分线交OA 于点M ,如图1;(2)以M 为圆心,BM 长为半径作圆弧,交CA 于点D ,连结BD ,如图2.若⊙O 的半径为1,则由以上作图得到的关于正五边形边长BD 的等式是( )==ODOM=AM=OA=BM=,DM=OM=﹣==10.(4分)(2013•绍兴)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()y=得,,解得;(≤≤﹣时间段内,故×≤×≈≤﹣2=≤二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)(2013•绍兴)分解因式:x2﹣y2=(x+y)(x﹣y).12.(5分)(2013•绍兴)分式方程=3的解是x=3.13.(5分)(2013•绍兴)我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有22只,兔有11只.,14.(5分)(2013•绍兴)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA 绕点O旋转,使点A与双曲线y=上的点B重合,若点B的纵坐标是1,则点A的横坐标是2或﹣2.上的点=215.(5分)(2013•绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.16.(5分)(2013•绍兴)矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为 2.8.AP=EF=2.5AC=2.5AB ACON===0.7三、解答题(本大题共有8小题,第17--20小题每小题8分,第21小题10分,第22、23小题每小题8分,第24小题14分,共80分,解答需写出毕必要的文字说明、演算步骤或证明过程)17.(8分)(2013•绍兴)(1)化简:(a﹣1)2+2(a+1)(2)解不等式:+≤1.18.(8分)(2013•绍兴)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.,19.(8分)(2013•绍兴)如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB 的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到矩形A n B n C n D n(n>2).(1)求AB1和AB2的长.(2)若AB n的长为56,求n.20.(8分)(2013•绍兴)某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从兵乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?××21.(10分)(2013•绍兴)如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,(2)当∠BAC=104°时,求AD的长(精确到1cm).备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799.∠EAD=∠22.(12分)(2013•绍兴)若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD中,BC=2AB,则称ABCD为方形.(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结为一边作矩形,使这些矩形的边B1C1,B2C2,B3C3,B4C4的对边分别在B2C2,B3C3,B4C4,BC 上,如图2所示.①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比.====,==,==,求出B1C1=5,B2C2=10,B3C3=15,得出=MN=GN=GH=HE=h×h×h=,=,==,=,=,hMN=GN=GH=HE=×,时,=×h=.边上的高之比是或.23.(12分)(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.BE,=,BEAEH==AEBE AE=1.24.(14分)(2013•绍兴)抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B 左侧),与y轴交于点C,点D为顶点.(1)求点B及点D的坐标.(2)连结BD,CD,抛物线的对称轴与x轴交于点E.①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.,==x解方程组,,==﹣由方程组.的坐标为(,﹣)==aMG=FG=aa,﹣)==aMG=FG=a a坐标为(,﹣)或(。

2015年浙江省绍兴市中考数学试题及解析.docx

2015年浙江省绍兴市中考数学试题及解析.docx

2015 年浙江省绍兴市中考数学试卷一、选择题(本题有10 小题,每小题 4 分,共 40 分)1.( 4 分)( 2015?义乌市)计算(﹣1)×3 的结果是()A.﹣ 3 B .﹣ 2C. 2D. 32.( 4 分)( 2015?绍兴)据中国电子商务研究中心监测数据显示,2015 年第一季度中国轻纺城市场群的商品成交额达 27 800 000 000 元,将 27 800 000 000 用科学记数法表示为()A. 2.78×1010B .2.78×1011C. 27.8×1010D. 0.278×10113.( 4 分)( 2015?义乌市)有 6 个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B .C.D.4.( 4 分)( 2015?义乌市)下面是一位同学做的四道题:326623235,① 2a+3b=5ab;②( 3a)=6a;③ a ÷a =a ;④ a ?a =a其中做对的一道题的序号是()A.① B .②C.③D.④5.(4 分)( 2015?义乌市)在一个不透明的袋子中装有除颜色外其它均相同的 3 个红球和 2 个白球,从中任意摸出一个球,则摸出白球的概率是()A. B .C.D.6.( 4 分)( 2015?义乌市)化简的结果是()A. x+1 B .C. x﹣1D.7.(4 分)( 2015?义乌市)如图,小敏做了一个角平分仪ABCD ,其中 AB=AD ,BC=DC .将仪器上的点 A 与∠ PRQ 的顶点 R 重合,调整 AB 和 AD ,使它们分别落在角的两边上,过点 A ,C 画一条射线 AE ,AE 就是∠ PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ ABC ≌△ ADC ,这样就有∠ QAE= ∠ PAE.则说明这两个三角形全等的依据是()A. SAS B .A SA C. A AS D. SSS8.( 4 分)( 2015?市)如,四形ABCD 是⊙ O 的内接四形,⊙O 的半径2,∠ B=135 °,的()A. 2π B .πC.D.9.(4 分)( 2015?市)如果一种是将抛物向右平移 2 个位或向上平移 1 个位,我把种称抛物的.已知抛物两次后的一条抛物是y=x 2+1,原抛物的解析式不可能的是()2 1222A. y=x B .y=x +6x+5C. y=x +4x+4D. y=x +8x+1710.( 4 分)( 2015?市)挑游棒是一种好玩的游,游:当一根棒条没有被其它棒条着,就可以把它往上拿走.如中,按照一,第 1 次拿走⑨号棒,第 2 次拿走⑤号棒,⋯,第 6 次拿走()A.②号棒 B .⑦号棒C.⑧号棒D.⑩号棒二、填空(本有 6 小,每小 5 分,共30 分)11.(5 分)( 2015?市)分解因式:x 24=.12.( 5 分)( 2015?市)如,已知点A( 0, 1), B( 0, 1),以点 A 心, AB 半径作,交x 的正半于点 C,∠ BAC 等于度.13.( 5 分)( 2015?义乌市)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图 2,则此时A, B 两点之间的距离是cm.14.( 5 分)( 2015?义乌市)在Rt△ ABC 中,∠ C=90 °,BC=3 , AC=4 ,点 P 在以 C 为圆心, 5 为半径的圆上,连结 PA, PB.若 PB=4,则 PA 的长为.15.( 5 分)( 2015?义乌市)在平面直角坐标系的第一象限内,边长为 1 的正方形ABCD 的边均平行于坐标轴,A 点的坐标为( a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是.16.( 5 分)( 2015?绍兴)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为 1: 2: 1,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水 1 分钟,乙的水位上升cm,则开始注入分钟的水量后,甲与乙的水位高度之差是0.5cm.三、解答题(本题有8 小题,共80 分)17.( 8 分)( 2015?义乌市)(1)计算:;( 2)解不等式:3x﹣ 5≤2(x+2 )18.(8 分)( 2015?义乌市)小敏上午 8:00 从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程 y(米)和所经过的时间 x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?19.( 8 分)( 2015?义乌市)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为 A ,B , C, D 四个等级,其中相应等级的里程依次为 200 千米, 210 千米, 220 千米, 230 千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?20.( 8 分)( 2015?义乌市)如图,从地面上的点 A 看一山坡上的电线杆 PQ,测得杆顶端点 P 的仰角是 45°,向前走 6m 到达 B 点,测得杆顶端点 P 和杆底端点 Q 的仰角分别是 60°和 30°.(1)求∠ BPQ 的度数;(2)求该电线杆 PQ 的高度(结果精确到 1m).备用数据:,.221.( 10 分)( 2015?义乌市)如果抛物线y=ax +bx+c 过定点 M ( 1, 1),则称次抛物线为定点抛物线.( 1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:2y=2x +3x ﹣4,请你写出一个不同于小敏的答案;y= ﹣x 2( 2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线+2bx+c+1 ,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.22.( 12 分)( 2015?义乌市)某校规划在一块长 AD 为 18m,宽 AB 为 13m 的长方形场地 ABCD 上,设计分别与(1)如图 1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比 AM :AN=8 : 9,问通道的宽是多少?(2)为了建造花坛,要修改( 1)中的方案,如图 2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2 倍,其余四块草坪相同,且每一块草坪均有一边长为 8m,这样能在这些草坪建造花坛.如图 3,在草坪 RPCQ 中,已知 RE ⊥PQ 于点 E, CF⊥ PQ 于点 F,求花坛 RECF 的面积.23.( 12 分)( 2015?义乌市)正方形 ABCD 和正方形 AEFG 有公共顶点 A ,将正方形 AEFG 绕点 A 按顺时针方向旋转,记旋转角∠ DAG= α,其中 0°≤α≤180°,连结 DF, BF,如图.(1)若α=0°,则 DF=BF ,请加以证明;(2)试画一个图形(即反例),说明( 1)中命题的逆命题是假命题;(3)对于( 1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.24.( 14 分)( 2015?义乌市)在平面直角坐标系中,O 为原点,四边形 OABC 的顶点 A 在 x 轴的正半轴上,OA=4 , OC=2,点 P,点 Q 分别是边 BC ,边 AB 上的点,连结 AC , PQ,点 B 1是点 B 关于 PQ 的对称点.(1)若四边形 PABC 为矩形,如图 1,①求点 B 的坐标;②若 BQ : BP=1 : 2,且点 B1落在 OA 上,求点 B 1的坐标;(2)若四边形 OABC 为平行四边形,如图 2,且 OC⊥AC ,过点 B1作 B1F∥ x 轴,与对角线AC 、边 OC 分别交于点 E、点 F.若 B1E: B1F=1 :3,点 B1的横坐标为 m,求点 B 1的纵坐标,并直接写出m 的取值范围.2015 年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本题有 10 小题,每小题 4 分,共 40 分)1.( 4 分)( 2015?义乌市)计算(﹣ 1)×3 的结果是()A .﹣ 3B .﹣ 2C . 2D . 3考点 :有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解. 解答:解:(﹣ 1) ×3=﹣1×3= ﹣3.故选 A .点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.2.( 4 分)( 2015?绍兴)据中国电子商务研究中心监测数据显示, 2015 年第一季度中国轻纺城市场群的商品成 交额达 27 800 000 000 元,将 27 800 000 000 用科学记数法表示为( )A . 2.78×1010B .2.78×10 11C . 27.8×10 10D . 0.278×10 11考点 :科学记数法 —表示较大的数.n的形式,其中 1≤|a|< 10, n 为整数.确定 n 的值时,分析:科学记数法的表示形式为a ×10 要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解答:解:将 27 800 000 000 用科学记数法表示为 2.78×1010.故选: A .a ×10n的形式,其中 1≤|a|点评:此题考查科学记数法的表示方法.科学记数法的表示形式为< 10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.3.( 4 分)( 2015?义乌市)有 6 个相同的立方体搭成的几何体如图所示,则它的主视图是()A .B .C .D .考点 :简单组合体的三视图.分析:根据主视图是从正面看得到的图形,可得答案.解答:解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选: C .点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.( 4 分)( 2015?义乌市)下面是一位同学做的四道题: 3 2 6 6 2 3 2 3 5, ① 2a+3b=5ab ;②( 3a ) =6a ;③ a ÷a =a ;④ a ?a =a 其中做对的一道题的序号是( )A . ①B .②C . ③D . ④考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:① 根据合并同类项,可判断① ,② 根据积的乘方,可得答案;③ 根据同底数幂的除法,可得答案;④ 根据同底数幂的乘法,可得答案.解答:解:① 不是同类项不能合并,故① 错误;② 积的乘方等于乘方的积,故② 错误;③ 同底数幂的除法底数不变指数相减,故③ 错误;④ 同底数幂的乘法底数不变指数相加,故④ 正确;故选: D .点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.(4 分)( 2015?义乌市)在一个不透明的袋子中装有除颜色外其它均相同的 3 个红球和 2 个白球,从中任意摸出一个球,则摸出白球的概率是()A. B .C.D.考点:概率公式.分析:由在一个不透明的袋子中装有除颜色外其它均相同的 3 个红球和 2 个白球,直接利用概率公式求解即可求得答案.解答:解:∵在一个不透明的袋子中装有除颜色外其它均相同的 3 个红球和 2 个白球,∴从中任意摸出一个球,则摸出白球的概率是:=.故选 B .点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6.( 4 分)( 2015?义乌市)化简的结果是()A. x+1 B .C. x﹣1D.考点:分式的加减法.专题:计算题.分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解答:解:原式 =﹣===x+1 .故选 A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.(4 分)( 2015?义乌市)如图,小敏做了一个角平分仪ABCD ,其中 AB=AD ,BC=DC .将仪器上的点 A 与∠ PRQ 的顶点 R 重合,调整 AB 和 AD ,使它们分别落在角的两边上,过点 A ,C 画一条射线 AE ,AE 就是∠ PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ ABC ≌△ ADC ,这样就有∠ QAE= ∠ PAE.则说明这两个三角形全等的依据是()A. SAS B .A SA C. A AS D. SSS考点:全等三角形的应用.分析:在△ ADC 和△ABC 中,由于AC 为公共边, AB=AD , BC=DC ,利用 SSS 定理可判定△ ADC ≌△ ABC ,进而得到∠ DAC= ∠ BAC ,即∠ QAE= ∠ PAE.解答:解:在△ ADC 和△ ABC 中,,∴△ ADC ≌△ ABC ( SSS),∴∠ DAC= ∠BAC ,即∠ QAE= ∠ PAE.故选: D .点评:本题考查了全等三角形的应用;这种设计,用SSS 判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.8.( 4 分)( 2015?义乌市)如图,四边形 ABCD 是⊙ O 的内接四边形,⊙O 的半径为2,∠ B=135 °,则的长()A. 2π B .πC.D.考点:弧长的计算;圆周角定理;圆内接四边形的性质.分析:连接 OA 、 OC,然后根据圆周角定理求得∠AOC 的度数,最后根据弧长公式求解.解答:解:连接 OA 、 OC,∵∠ B=135 °,∴∠ D=180°﹣ 135°=45 °,∴∠ AOC=90 °,则的长 ==π.故选 B .点 :本 考 了弧 的 算以及 周角定理,解答本 的关 是掌握弧 公式L= .9.(4 分)( 2015? 市)如果一种 是将抛物 向右平移 2 个 位或向上平移1 个 位,我 把 种称 抛物 的 .已知抛物 两次 后的一条抛物 是y=x 2 +1, 原抛物 的解析式不可能的是( )A . y=x 21 222B .y=x +6x+5C . y=x +4x+4D . y=x +8x+17考点 :二次函数 象与几何 .分析:根据 象左移加,右移减, 象上移加,下移减,可得答案.22个 位可以得到2,解答:解:A 、y=x 1,先向上平移 1 个 位得到y=x ,再向上平移 1 y=x +1 故 A 正确;2 22,故 B ;B 、 y=x +6x+5= ( x+3)4,无法 两次 得到y=x +122,先向右平移 2 个 位得到 y=( x+22 2C 、 y=x +4x+4=( x+2)2) =x ,再向上平移21 个 位得到 y=x +1,故 C 正确;2222D 、y=x +8x+17=( x+4 ) +1,先向右平移 2 个 位得到 y=( x+4 2) +1=(x+2 ) +1,再向右平移 2 个 位得到 y=x 2+1,故 D 正确.故 : B .点 :本 考 了二次函数 象与几何 ,用平移 律 “左加右减,上加下减 ”直接代入函数解析式求得平移后的函数解析式,注意由目 函数 象到原函数 象方向正好相反.10.( 4 分)( 2015? 市)挑游 棒是一种好玩的游 ,游 :当一根棒条没有被其它棒条 着 ,就可以把它往上拿走.如 中,按照 一 ,第 1 次 拿走 ⑨ 号棒,第 2 次 拿走 ⑤ 号棒, ⋯, 第 6 次拿走()A . ② 号棒B .⑦ 号棒C . ⑧ 号棒D . ⑩ 号棒考点 : 律型: 形的 化 .分析:仔 察 形,找到拿走后 形下面的游 棒,从而确定正确的 . 解答:解:仔 察 形 :第 1 次 拿走 ⑨ 号棒, 第 2 次 拿走 ⑤ 号棒,第 4 次应拿走 ② 号棒, 第 5 次应拿走 ⑧ 号棒,第 6 次应拿走 ⑩ 号棒,故选 D .点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形,锻炼了同学们的识图能力.二、填空题(本题有 6 小题,每小题 5 分,共 30 分)11.(5 分)( 2015?义乌市)分解因式: x 2﹣4= ( x+2)( x ﹣ 2) .考点 :因式分解 -运用公式法.专题 :因式分解.分析:直接利用平方差公式进行因式分解即可.解答:解: x 2﹣4=( x+2)( x ﹣ 2).故答案为:( x+2)( x ﹣ 2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.12.( 5 分)( 2015?义乌市)如图,已知点 A ( 0, 1), B ( 0,﹣ 1),以点 A 为圆心, AB 为半径作圆,交 x 轴的正半轴于点 C ,则∠ BAC 等于 60 度.考点 :垂径定理;坐标与图形性质;等边三角形的判定与性质;勾股定理.分析:求出 OA 、 AC ,通过余弦函数即可得出答案. 解答:解:∵ A ( 0, 1), B ( 0,﹣ 1),∴ AB=2 ,OA=1 ,∴ AC=2 ,在 Rt △AOC 中, cos ∠ BAC== ,∴∠ BAC=60 °, 故答案为 60.点评:本题考查了垂径定理的应用,关键是求出AC 、 OA 的长.13.( 5 分)( 2015?义乌市)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢, 然后套进衣服后松开即可. 如图 1,衣架杆 OA=OB=18cm ,若衣架收拢时, ∠AOB=60 °,如图 2,则此时 A , B 两点之间的距离是 18 cm .考点:等边三角形的判定与性质.专题:应用题.分析:根据有一个角是60°的等腰三角形的等边三角形进行解答即可.解答:解:∵ OA=OB ,∠ AOB=60 °,∴△ AOB 是等边三角形,∴AB=OA=OB=18cm ,故答案为: 18点评:此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.14.( 5 分)( 2015?义乌市)在Rt△ ABC 中,∠ C=90 °,BC=3 , AC=4 ,点 P 在以 C 为圆心, 5 为半径的圆上,连结 PA, PB.若 PB=4,则 PA 的长为 3 或.考点:点与圆的位置关系;勾股定理;垂径定理.专题:分类讨论.分析:连结 CP,PB 的延长线交⊙ C 于 P′,如图,先计算出222,则根据勾股定理CB +PB =CP的逆定理得∠ CBP=90 °,再根据垂径定理得到PB=P′B=4 ,接着证明四边形 ACBP 为矩形,则 PA=BC=3 ,然后在 Rt△APP′中利用勾股定理计算出P′A=,从而得到满足条件的 PA 的长为 3 或.解答:解:连结 CP, PB 的延长线交⊙ C 于 P′,如图,∵CP=5, CB=3, PB=4 ,222,∴ CB+PB =CP∴△ CPB 为直角三角形,∠CBP=90 °,∴CB⊥ PB,∴PB=P′B=4 ,∵∠ C=90 °,∴PB∥ AC ,而 PB=AC=4 ,∴四边形 ACBP 为矩形,∴PA=BC=3 ,在Rt△APP′中,∵ PA=3, PP′=8 ,∴ P′A==,∴ PA 的长为 3 或.故答案为 3 或.点评:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了垂径定理和勾股定理.15.( 5 分)( 2015?义乌市)在平面直角坐标系的第一象限内,边长为 1 的正方形ABCD 的边均平行于坐标轴,A 点的坐标为( a, a).如图,若曲线与此正方形的边有交点,则 a 的取值范围是≤a.考点:反比例函数图象上点的坐标特征.分析:根据题意得出 C 点的坐标( a﹣ 1,a﹣ 1),然后分别把 A 、 C 的坐标代入求得 a 的值,即可求得 a 的取值范围.解答:解:∵ A 点的坐标为( a, a).根据题意C(a﹣ 1, a﹣1),当 A 在双曲线时,则 a﹣ 1=,解得 a=+1,当 C 在双曲线时,则 a=,解得 a=,∴ a 的取值范围是≤a.故答案为≤a.点评:本题考查了反比例函数图象上点的坐标特征,点的坐标适合解析式是解题的关键.16.( 5 分)( 2015?绍兴)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为 1: 2: 1,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水 1 分钟,乙的水位上升cm,则开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.考点:一元一次方程的应用.专题:分类讨论.分析:由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水 1 分钟,乙的水位上升cm,得到注水 1 分钟,丙的水位上升cm,设开始注入t 分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm 有三种情况:① 当乙的水位低于甲的水位时,② 当甲的水位低于乙的水位时,甲的水位不变时,③ 当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.解答:解:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2: 1,∵注水 1 分钟,乙的水位上升cm,∴注水 1 分钟,丙的水位上升cm,设开始注入t 分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm 有三种情况:① 当乙的水位低于甲的水位时,有1﹣ t=0.5,解得: t=分钟;② 当甲的水位低于乙的水位时,甲的水位不变时,∵t﹣ 1=0.5 ,解得: t= ,∵× =6> 5,∴此时丙容器已向甲容器溢水,∵ 5÷=分钟,=,即经过分钟边容器的水到达管子底部,乙的水位上升,∴,解得: t=;③ 当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;分钟,∴ 5﹣ 1﹣ 2×(t﹣)=0.5,解得: t=,综上所述开始注入,,,分钟的水量后,甲与乙的水位高度之差是0.5cm.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本题有8 小题,共80 分)17.( 8 分)( 2015?义乌市)(1)计算:;( 2)解不等式:3x﹣ 5≤2(x+2 )考点:实数的运算;零指数幂;负整数指数幂;解一元一次不等式;特殊角的三角函数值.专题:计算题.分析:( 1)原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算,第三项利用算术平方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果;( 2)不等式去括号,移项合并,把x 系数化为 1,即可求出解.解答:+ ;解:( 1)原式 =2× ﹣ 1+ +2=(2)去括号得:3x﹣5≤2x+4 ,移项合并得: x≤9.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8 分)( 2015?义乌市)小敏上午 8:00 从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程 y(米)和所经过的时间 x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?考点:一次函数的应用.分析:( 1)根据观察横坐标,可得去超市的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;在超市逗留的时间即路程不变化所对应的时间段;( 2)求出返回家时的函数解析式,当y=0 时,求出x 的值,即可解答.解答:解:( 1)小敏去超市途中的速度是:3000÷10=300(米 /分),在超市逗留了的时间为:40﹣ 10=30(分).(2)设返回家时, y 与 x 的函数解析式为 y=kx+b ,把( 40, 3000 ),( 45, 2000)代入得:,解得:,∴函数解析式为y= ﹣ 200x+11000 ,当y=0 时, x=55 ,∴返回到家的时间为: 8: 55.点评:本题考查了一次函数的应用,观察函数图象获取信息是解题关键.19.( 8 分)( 2015?义乌市)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为 A ,B , C, D 四个等级,其中相应等级的里程依次为 200 千米, 210 千米, 220 千米, 230 千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?考点:条形统计图;扇形统计图;加权平均数.分析:( 1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为 B 等级的有30辆电动汽车,所占的百分比为30%,用 30÷30%即可求出电动汽车的总量;分别计算出 C、 D 所占的百分比,即可得到 A 所占的百分比,即可求出 A 的电动汽车的辆数,即可补全统计图;( 2)用总里程除以汽车总辆数,即可解答.解答:解:( 1)这次被抽检的电动汽车共有:30÷30%=100(辆),C 所占的百分比为:40÷100×100%=40% ,D 所占的百分比为:20÷100×100%=20% ,A 所占的百分比为:100%﹣ 40%﹣ 20%﹣ 30%=10% ,A 等级电动汽车的辆数为:100×10%=10 (辆),补全统计图如图所示:( 2)这种电动汽车一次充电后行驶的平均里程数为:230) =217(千米),∴估计这种电动汽车一次充电后行驶的平均里程数为217 千米.点评:此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.20.( 8 分)( 2015?义乌市)如图,从地面上的点 A 看一山坡上的电线杆 PQ,测得杆顶端点 P 的仰角是 45°,向前走 6m 到达 B 点,测得杆顶端点 P 和杆底端点 Q 的仰角分别是 60°和 30°.(1)求∠ BPQ 的度数;(2)求该电线杆 PQ 的高度(结果精确到 1m).备用数据:,.考点:解直角三角形的应用-仰角俯角问题.分析:( 1)延长 PQ 交直线 AB 于点 E,根据直角三角形两锐角互余求得即可;92)设 PE=x 米,在直角△ APE 和直角△ BPE 中,根据三角函数利用x 表示出 AE 和BE,根据 AB=AE ﹣ BE 即可列出方程求得x 的值,再在直角△ BQE中利用三角函数求得 QE 的长,则 PQ 的长度即可求解.解答:解:延长 PQ 交直线 AB 于点 E,( 1)∠ BPQ=90 °﹣ 60°=30°;( 2)设 PE=x 米.在直角△ APE 中,∠ A=45 °,则AE=PE=x 米;∵∠ PBE=60 °∴∠ BPE=30 °在直角△ BPE 中, BE=PE=x 米,∵AB=AE ﹣BE=6 米,则 x﹣ x=6 ,解得: x=9+3.则 BE= ( 3+3)米.在直角△ BEQ 中, QE=BE=( 3+3) =(3+)米.∴ PQ=PE﹣ QE=9+3﹣(3+) =6+2≈9(米).答:电线杆 PQ 的高度约9 米.点评:本题考查了仰角的定义,以及三角函数,正确求得 PE 的长度是关键.221.( 10 分)( 2015?义乌市)如果抛物线 y=ax +bx+c 过定点 M ( 1, 1),则称次抛物线为定点抛物线. ( 1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:2y=2x +3x ﹣4,请你写出一个不同于小敏的答案;y= ﹣x 2( 2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线 +2bx+c+1 ,求该抛物线顶点纵坐标的 值最小时的解析式,请你解答.考点 :二次函数图象上点的坐标特征;二次函数的性质.分析:( 1)根据顶点式的表示方法,结合题意写一个符合条件的表达式则可;( 2)根据顶点纵坐标得出 b=1 ,再利用最小值得出 c=﹣ 1,进而得出抛物线的解析式.解答:解:( 1)依题意,选择点( 1, 1)作为抛物线的顶点,二次项系数是1,根据顶点式得: y=x 2﹣ 2x+2;( 2)∵定点抛物线的顶点坐标为( 2),且﹣ 1+2b+c+1=1 ,b , c+b +1 ∴ c=1﹣2b ,∵顶点纵坐标 22 2c+b +1=2 ﹣ 2b+b =( b ﹣1) +1,∴当 b=1 时, c+b 2+1 最小,抛物线顶点纵坐标的值最小,此时c=﹣ 1,∴抛物线的解析式为点评:本题考查抛物线的形状与抛物线表达式系数的关系,首先利用顶点坐标式写出来,再化为一般形式.22.( 12 分)( 2015?义乌市)某校规划在一块长 AD 为 18m ,宽 AB 为 13m 的长方形场地 ABCD 上,设计分别与 AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮.( 1)如图 1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比 AM :AN=8 : 9,问通道的宽是多少?( 2)为了建造花坛,要修改( 1)中的方案,如图 2,将三条通道改为两条通道,纵向的宽度改为横向宽度的 2 倍,其余四块草坪相同, 且每一块草坪均有一边长为8m ,这样能在这些草坪建造花坛. 如图 3,在草坪 RPCQ 中,已知 RE ⊥PQ 于点 E , CF ⊥ PQ 于点 F ,求花坛 RECF 的面积.考点 :二元一次方程组的应用;勾股定理的应用.分析:( 1)利用 AM : AN=8 :9,设通道的宽为 xm , AM=8ym ,则 AN=9y ,进而利用 AD为 18m ,宽 AB 为 13m 得出等式求出即可;( 2)根据题意得出纵向通道的宽为 2m ,横向通道的宽为 1m ,进而得出 PQ , RE 的长,即可得出 PE 、 EF 的长,进而求出花坛 RECF 的面积.解答:解:( 1)设通道的宽为 xm , AM=8ym ,∵ AM : AN=8 :9,y=﹣ x 2+2x .17解得:.答:通道的宽是1m;( 2)∵四块相同草坪中的每一块,有一条边长为8m,若 RP=8,则 AB >13,不合题意,∴ RQ=8 ,∴纵向通道的宽为2m,横向通道的宽为1m,∴ RP=6,∵ RE⊥ PQ,四边形RPCQ 是长方形,∴ PQ=10,∴ RE×PQ=PR×QR=6 ×8,∴RE=4.8 ,222,∵ RP=RE +PE∴ PE=3.6,同理可得: QF=3.6 ,∴ EF=2.8,∴S 四边形RECF=4.8×2.8=13.44,即花坛 RECF 的面积为 13.44m 2.,点评:此题主要考查了二元一次方程组的应用即四边形面积求法和三角形面积求法等知识,得出 RP 的长是解题关键.23.( 12 分)( 2015?义乌市)正方形 ABCD 和正方形 AEFG 有公共顶点 A ,将正方形 AEFG 绕点 A 按顺时针方向旋转,记旋转角∠ DAG= α,其中 0°≤α≤180°,连结 DF, BF,如图.(1)若α=0°,则 DF=BF ,请加以证明;(2)试画一个图形(即反例),说明( 1)中命题的逆命题是假命题;(3)对于( 1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.考点:正方形的性质;全等三角形的判定与性质;命题与定理;旋转的性质.分析:( 1)利用正方形的性质证明△ DGF≌△ BEF即可;(2)当α=180°时, DF=BF .(3)利用正方形的性质和△ DGF≌△ BEF 的性质即可证得是真命题.解答:( 1)证明:如图 1,∵四边形 ABCD 和四边形 AEFG 为正方形,。

2015年浙江省绍兴市嵊州市中考数学一模试卷及参考答案

2015年浙江省绍兴市嵊州市中考数学一模试卷及参考答案

2015年浙江省绍兴市嵊州市中考数学一模试卷一、选择题(本大题有10小题,每小题4分,共40分。

请选出每小题中一个最符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)﹣2015的相反数是()A.2015 B.C.﹣D.﹣20152.(4分)下列计算正确的是()A.6a﹣5a=1 B.(a2)3=a5C.a6÷a3=a2D.a2•a3=a53.(4分)钓鱼岛自古以来就是中国的固有领土,在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为4640000,这个数字用科学记数法表示为()A.464×104B.46.4×106C.4.64×106D.0.464×1074.(4分)图中几何体的左视图是()A.B.C.D.5.(4分)下列二次根式是最简二次根式的是()A.B. C.D.6.(4分)根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.7.(4分)如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED的度数为()A.30°B.45°C.50°D.60°8.(4分)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.39.(4分)如图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为何?()A.16 B.24 C.36 D.5410.(4分)已知:如图,四边形ABCD是矩形,其中点A(x1,a)、B(x2,a)分别是函数y=和y=上第一象限的点,点C、D在x轴上.在边AD从大于AB到小于AB的变化过程中,若矩形ABCD的周长始终保持不变,则(k2﹣k1)的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大二、填空题(本大题有6小题,每小题5分,共30分。

浙江省绍兴市2015年中考数学真题试题(含扫描答案)

浙江省绍兴市2015年中考数学真题试题(含扫描答案)

浙江省2015年初中毕业生学业考试绍兴市试卷数 学 试 题 卷满分150分,考试时间120分钟一、选择题(本题有10小题,每小题4分,共40分)1. 计算3)1(⨯-的结果是A. -3B. -2C. 2D. 32. 据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元,将27 800 000 000用科学计数法表示为A. 2.78×1010B. 2.78×1011C. 27.8×1010D. 0.278×10113. 有6个相同的立方体搭成的几何体如图所示,则它的主视图是4. 下面是一位同学做的四道题:①ab b a 532=+;②6236)3(a a =;③326a a a =÷;④532a a a =⋅,其中做对的一道题的序号是A. ①B. ②C. ③D. ④5. 在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是 A. 31 B. 52 C. 21 D. 53 6. 化简xx x -+-1112的结果是 A. 1+x B. 11+x C. 1-x D. 1-x x 7. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。

此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE 。

则说明这两个三角形全等的依据是A. SASB. ASAC. AASD. SSS8. 如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°,则的长 A. π2 B. π C. 2π D. 3π 9. 如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换。

2015年浙江省绍兴市中考数学试卷(word解析版)

2015年浙江省绍兴市中考数学试卷(word解析版)

2015年浙江省绍兴市中考数学试卷解析(本试卷满分150分,考试时间120分钟)江苏泰州鸣午数学工作室 编辑一、选择题(本题有10小题,每小题4分,共40分) 1.(2015年浙江绍兴4分)计算3)1(⨯-的结果是【 】A. -3B.-2C. 2D. 3 【答案】A.【考点】有理数乘法法则【分析】根据“两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0”的有理数乘法法则直接计算:(1)33-⨯=-,故选A.2.(2015年浙江绍兴4分)据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元,将27 800 000 000用科学计数法表示为【 】A. 2.78×1010B. 2.78×1011C. 27.8×1010D. 0.278×1011【答案】A.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵27 800 000 000一共11位,∴27 800 000 000= 2.78×1010. 故选A.3.(2015年浙江绍兴4分)有6个相同的立方体搭成的几何体如图所示,则它的主视图是【 】A.B. C. D.【答案】C.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可:从正面看易得有两层,上层左、右两边各有1个正方形,下层有3个正方形. 故选C.4.(2015年浙江绍兴4分)下面是一位同学做的四道题:①ab b a 532=+;②6236)3(a a =;③326a a a =÷;④532a a a =⋅,其中做对的一道题的序号是【 】【出处:21教育名师】A. ①B. ②C. ③D. ④ 【答案】D.【考点】合并同类项;幂的乘方和积的乘方;同底幂乘法和除法 .【分析】根据合并同类项,幂的乘方运算法则,同底幂乘法和除法逐一计算作出判断:A. 3a 与2b 不是同类项,不能合并,()22241122a a a a a +=+=≠,故本选项错误;B. 根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则和“积的乘方等于每一个因数乘方的积” 的积的乘方法则得3223266(3)396a aa a ⨯==≠,故本选项错误;C. 根据“同底数幂相除,底数不变,指数相减”的同底幂除法法则得:626243a a a a a -÷==≠,故本选项错误;D. 根据“同底数幂相乘,底数不变,指数相加”的同底幂乘法法则得:2323a a a +⋅=5a =,故本选项正确. 故选D.5.(2015年浙江绍兴4分) 在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是【 】A.31 B. 52 C. 21 D. 53【答案】B. 【考点】概率.【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵共有5个球,白球有些2个,∴从中任意摸出一个球,摸出白球的概率是25. 故选B.6.(2015年浙江绍兴4分)化简xx x -+-1112的结果是【 】A. 1+xB. 11+xC. 1-xD. 1-x x 【答案】A.【考点】分式的化简.【分析】通分后,约分化简:()()22111111111x x x x x x x x x +--+===+----. 故选A. 7.(2015年浙江绍兴4分)如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线. 此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE. 则说明这两个三角形全等的依据是【 】A. SASB. ASAC. AASD. SSS 【答案】D.【考点】全等三角形的判定.【分析】由已知,AB=AD ,BC=DC ,加上公共边AC=AC ,根据三边对应相等的两三角形全等的判定可得△ABC ≌△ADC ,则说明这两个三角形全等的依据是SSS. 故选D.8.(2015年浙江绍兴4分)如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°,则的长【 】A. π2B. πC. 2πD. 3π【答案】B.【考点】圆内接四边形的性质;圆周角定理;弧长的计算.【分析】如答图,连接AO ,CO ,∵四边形ABCD 是⊙O 的内接四边形,∠B=135°, ∴∠D=45°.∵∠D 和∠AOC 是同圆中同弧所对的圆周角和圆心角,∴∠AOC=90°.又∵⊙O 的半径为2,∴»902AC180ππ⋅⋅==.故选B.9. (2015年浙江绍兴4分)如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换. 已知抛物线经过两次简单变换后的一条抛物线是12+=x y ,则原抛物线的解析式不可能的是【 】A. 12-=x yB. 562++=x x y C. 442++=x x y D. 1782++=x x y 【答案】B.【考点】新定义;平移的性质;分类思想的应用.【分析】根据定义,抛物线经过两次简单变换后的一条抛物线是2y x 1=+,即将抛物线向右平移4个单位或向上平移2个单位或向右平移2个单位且向上平移1个单位,得到抛物线2y x 1=+.∵抛物线2y x 1=+向左平移4个单位得到()2241817y x x x =++=++;抛物线2y x 1=+向下平移2个单位得到22121y x x =+-=-;抛物线2y x 1=+向左平移2个单位且向下平移1个单位得到()2221144y x x x =++-=++,∴原抛物线的解析式不可能的是265y x x =++. 故选B.10.(2015年浙江绍兴4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走【 】A. ②号棒B. ⑦号棒C. ⑧号棒D. ⑩号棒 【答案】D.【考点】探索规律题(图形变化类).【分析】当一根棒条没有被其它棒条压着时,就可以把它往上拿走. 如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,故选D.二、填空题(本题有6小题,每小题5分,共30分) 11. (2015年浙江绍兴5分)因式分解:42-x = ▲ 【答案】()()22x x +-. 【考点】应用公式法因式分解.【分析】因为22242x x -=-,所以直接应用平方差公式即可:()()2224222x x x x -=-=+-.12. (2015年浙江绍兴5分)如图,已知点A (0,1),B (0,-1),以点A 为圆心,AB 为半径作圆,交x 轴的正半轴于点C ,则∠BAC 等于 ▲ 度【答案】60.【考点】点的坐标;锐角三角函数定义;特殊角的三角函数值. 【分析】∵A (0,1),B (0,-1),∴AO=1,AC=AB=2. ∴AO 1cos BAC AC 2∠==. ∴∠BAC=60°.13. (2015年浙江绍兴5分) 由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省绍兴市2015年中考数学试卷一、选择题(本题有10小题,每小题4分,共40分) 1. 计算3)1(⨯-的结果是A. -3B. -2C. 2D. 3 考点:有理数的乘法..分析:根据有理数的乘法运算法则进行计算即可得解. 解答:解:(﹣1)×3=﹣1×3=﹣3. 故选A .点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.2. 据中国电子商务研究中心监测数据显示,2015年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元,将27 800 000 000用科学计数法表示为 A. 2.78×1010 B. 2.78×1011 C. 27.8×1010 D. 0.278×1011考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:解:将27 800 000 000用科学记数法表示为2.78×1010. 故选:A .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 有6个相同的立方体搭成的几何体如图所示,则它的主视图是考点:简单组合体的三视图..分析:根据主视图是从正面看得到的图形,可得答案.解答:解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形. 故选:C .点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4. 下面是一位同学做的四道题:①ab b a 532=+;②6236)3(a a =;③326a a a =÷;④532a a a =⋅,其中做对的一道题的序号是A. ①B. ②C. ③D. ④考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.. 分析:①根据合并同类项,可判断①, ②根据积的乘方,可得答案; ③根据同底数幂的除法,可得答案; ④根据同底数幂的乘法,可得答案.解答:解:①不是同类项不能合并,故①错误; ②积的乘方等于乘方的积,故②错误;③同底数幂的除法底数不变指数相减,故③错误; ④同底数幂的乘法底数不变指数相加,故④正确; 故选:D .点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5. 在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是 A.31 B. 52 C. 21 D. 53考点:概率公式..分析:由在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,直接利用概率公式求解即可求得答案.解答:解:∵在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球, ∴从中任意摸出一个球,则摸出白球的概率是:=.故选B .点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6. 化简xx x -+-1112的结果是 A. 1+x B.11+x C. 1-x D. 1-x x考点:分式的加减法..专题:计算题.分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣===x+1.故选A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7. 如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。

此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。

则说明这两个三角形全等的依据是A. SASB. ASAC. AASD. SSS考点:全等三角形的应用..分析:在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.解答:解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.点评:本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.8. 如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B =135°,则的长A. π2B.π C.2πD.3π考点:弧长的计算;圆周角定理;圆内接四边形的性质..分析:连接OA 、OC ,然后根据圆周角定理求得∠AOC 的度数,最后根据弧长公式求解. 解答:解:连接OA 、OC , ∵∠B =135°,∴∠D =180°﹣135°=45°, ∴∠AOC =90°, 则的长==π.故选B .点评:本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式L =.9. 如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换。

已知抛物线经过两次简单变换后的一条抛物线是12+=x y ,则原抛物线的解析式不可能的是A. 12-=x y B. 562++=x x y C. 442++=x x y D. 1782++=x x y 考点:二次函数图象与几何变换..分析:根据图象左移加,右移减,图象上移加,下移减,可得答案. 解答:解:抛物线是y =x 2+1向左平移2个单位,向下平移1个单位,得 原抛物线解析式y =(x +2)2+1﹣1,化简,得y =x 2+4x +4, 故选:C .点评:本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反. 10. 挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。

如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A. ②号棒B. ⑦号棒C. ⑧号棒D. ⑩号棒考点:规律型:图形的变化类..分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项. 解答:解:仔细观察图形发现: 第1次应拿走⑨号棒, 第2次应拿走⑤号棒, 第3次应拿走⑥号棒, 第4次应拿走②号棒, 第5次应拿走⑧号棒, 第6次应拿走⑩号棒, 故选D .点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形,锻炼了同学们的识图能力.二、填空题(本题有6小题,每小题5分,共30分) 11. 因式分解:42 x = ▲ 考点:因式分解-运用公式法.. 专题:因式分解.分析:直接利用平方差公式进行因式分解即可.解答:解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).点评:本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.12. 如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于▲ 度考点:垂径定理;坐标与图形性质;等边三角形的判定与性质;勾股定理..分析:求出OA、AC,通过余弦函数即可得出答案.解答:解:∵A(0,1),B(0,﹣1),∴AB=2,OA=1,∴AC=2,在Rt△AOC中,cos∠BAC==,∴∠BAC=60°,故答案为60.点评:本题考查了垂径定理的应用,关键是求出AC、OA的长.13. 由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。

小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。

如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是▲cm考点:等边三角形的判定与性质..专题:应用题.分析:根据有一个角是60°的等腰三角形的等边三角形进行解答即可.解答:解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=18cm,故答案为:18点评:此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.14. 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB。

若PB=4,则PA的长为▲考点:点与圆的位置关系;勾股定理;垂径定理..专题:分类讨论.分析:连结CP,PB的延长线交⊙C于P′,如图,先计算出CB2+PB2=CP2,则根据勾股定理的逆定理得∠CBP=90°,再根据垂径定理得到PB=P′B=4,接着证明四边形ACBP为矩形,则PA=BC=3,然后在Rt△APP′中利用勾股定理计算出P′A=,从而得到满足条件的PA的长为3或.解答:解:连结CP,PB的延长线交⊙C于P′,如图,∵CP=5,CB=3,PB=4,∴CB2+PB2=CP2,∴△CPB为直角三角形,∠CBP=90°,∴CB⊥PB,∴PB=P′B=4,∵∠C=90°,∴PB∥AC,而PB=AC=4,∴四边形ACBP为矩形,∴PA=BC=3,在Rt△APP′中,∵PA=3,PP′=8,∴P′A==,∴PA的长为3或.故答案为3或.点评:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了垂径定理和勾股定理.15. 在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a )。

如图,若曲线)0(3>=x xy 与此正方形的边有交点,则a 的取值范围是 ▲考点:反比例函数图象上点的坐标特征..分析:根据题意得出C 点的坐标(a ﹣1,a ﹣1),然后分别把A 、C 的坐标代入求得a 的值,即可求得a 的取值范围.解答:解:∵A 点的坐标为(a ,a ). 根据题意C (a ﹣1,a ﹣1), 当A 在双曲线时,则a ﹣1=,解得a =+1,当C 在双曲线时,则a =, 解得a =,∴a 的取值范围是≤a.故答案为≤a.点评:本题考查了反比例函数图象上点的坐标特征,点的坐标适合解析式是解题的关键.16. 实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm ),现三个容器中,只有甲中有水,水位高1cm ,如图所示。

相关文档
最新文档