2020高考数学复习-参数方程和极坐标方程含答案
2020年高考数学(文)二轮专项复习专题13 坐标系与参数方程含答案
专题13 坐标系与参数方程【知识要点】1.极坐标系的概念,极坐标系中点的表示.在平面内取一个定点O ,O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.O 称为极点,Ox 称为极轴.设M 是平面内任意一点,极点O 与点M 的距离|OM |叫做点M 的极径,记作ρ ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记作θ ,有序数对(ρ ,θ )叫做点M 的极坐标.一般情况下,约定ρ ≥0.2.极坐标系与直角坐标系的互化.直角坐标化极坐标:x =ρ cos θ ,y =ρ sin θ ; 极坐标化直角坐标:, 3.参数方程的概念设在平面上取定一个直角坐标系xOy ,把坐标x ,y 表示为第三个变量t 的函数……①,如果对于t 的每一个值(a ≤t ≤b ),①式所确定的点M (x ,y )都在一条曲线上;而这条曲线上任意一点M (x ,y ),都可由t 的某个值通过①式得到,则称①式为该曲线的参数方程,其中t 称为参数.4.参数方程与普通方程的互化把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法.常见的消参方法有:代入消元法;加减消参法;平方和(差)消参法;乘法消参法等.把曲线C 的普通方程F (x ,y )=0化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.要注意方程中的参数的变化范围. 5.直线、圆、椭圆的参数方程.(1)经过一定点P 0(x 0,y 0),倾斜角为α 的直线l 的参数方程为(t 为参数);(2)直线参数方程的一般形式为(t 为参数);222y x +=ρ).0(tan =/=x xyθ⎩⎨⎧==)()(t g y t f x b t a ≤≤⎩⎨⎧+=+=ααsin ,cos 00t y y t x x ⎩⎨⎧+=+=bt y y at x x 00,(3)圆的参数方程为(θ 为参数);(4)椭圆的参数方程为(θ 为参数).【复习要求】1.理解坐标系的作用.2.能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.3.了解参数方程.4.能选择适当的参数写出直线、圆和圆锥曲线的参数方程,并会简单的应用. 【例题分析】例1 (1)判断点是否在曲线上. (2)点P 的直角坐标为,则点P 的极坐标为______.(限定0<θ ≤2π)(3)点P 的极坐标为,则点P 的直角坐标为______.解:(1)因为,所以点是在曲线上. (2)根据ρ 2=x 2+y 2,, 得ρ =2,,又点P 在第四象限,,所以,所以点P 的极坐标为 (3)根据x =ρ cos θ ,y =ρ sin θ ,得, 所以点P 的直角坐标为 例2 (1)圆ρ =2(cos θ +sin θ )的半径为______.⎩⎨⎧+=+=θθsin ,cos 00r y y r x x )0(12222>>=+b a b y a x ⎩⎨⎧==θθsin ,cos b y a x )35π,23(-2cos θρ=)3,1(-)4π,3(-2365πcos2cos-==θ)35π,23(-2cos θρ=)0(tan =/=x xy θ3tan -=θ2π23π≤<θ35π=θ).3π5,2(223,223-==y x ).223,223(-(2)直线与圆ρ =2sin θ 交与A ,B 两点,则|AB |=______. 解:(1)由ρ =2(cos θ +sin θ ),得ρ 2=2ρ (cos θ +sin θ ), 所以,x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2, 所以圆ρ =2(cos θ +sin θ )的半径为. (2)将直线与圆ρ =2sin θ 化为直角坐标方程,得 由得,即, 由ρ =2sin θ ,变形为ρ 2=2ρ sin θ ,得x 2+y 2=2y ,即x 2+(y -1)2=1, 因为圆的半径为1,圆心到直线的距离为, 所以评述:(1)应熟练运用直角坐标与极坐标互化的方法解决有关极坐标的问题;(2)由直角坐标化极坐标时要注意点位于哪一个象限才能确定θ 的大小,如例1(2),否则,极坐标不唯一; (3)例2也可以用极坐标有关知识直接解决.这需要知道一些直线与圆的极坐标方程的知识.如: ①过极点,倾斜角为α 的直线:θ =α (ρ ∈R )或写成θ =α 及θ =α +π. ②过A (a ,α)垂直于极轴的直线:ρ cos θ =a cos α . ③以极点O 为圆心,a 为半径的圆(a >0):ρ =a .④若O (0,0),A (2a ,0),以OA 为直径的圆:ρ =2a cos θ . ⑤若O (0,0),A (2a ,),以OA 为直径的圆:ρ =2a sin θ . 对于例2(2),可以利用结论①⑤,作出直线与圆,通过解三角形的方法求|AB |,当然也可以用极坐标方程直接解ρ ,根据ρ 的几何意义求|AB |.例3 圆O 1和圆O 2的极坐标方程分别为ρ =4cos θ ,ρ =-4sin θ . (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过圆O 1和圆O 2交点的直线的直角坐标方程.)(3πR ∈=ρθ2)(3πR ∈=ρθ3π=θxy=3πtan x y 3=21311=+=d .3)21(12||2=-=AB 2π解:(1)由ρ =4cos θ 得ρ 2=4ρ cos θ ,根据x =ρ cos θ ,y =ρ sin θ ,所以x 2+y 2=4x . 即x 2+y 2-4x =0为圆O 1的直角坐标方程,同理x 2+y 2+4y =0为圆O 2的直角坐标方程.(2)由解得 即圆O 1和圆O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y =-x .例4(1)曲线的参数方程是(t 为参数,t ≠0),它的普通方程是________. (2)在平面直角坐标系xOy 中,直线l 的参数方程为 (参数t ∈R ),圆C 的参数方程为(参数θ ∈[0,2π]),则圆C 的圆心坐标为______,圆心到直线l 的距离为______. 解:(1)由得,带入y =1-t 2,得 注意到,所以已知参数的普通方程为 (2)直线l 的普通方程为x +y -6=0,圆C 的普通方程为x 2+(y -2)2=4, 所以圆心坐标为(0,2),圆心到直线l 的距离评述:(1)应熟练运用将参数方程化为普通方程的方法解决有关参数方程的问题;(2)在将参数方程化为普通方程的过程中应注意消参带来的范围变化问题.如例4(1),若参数方程为(t 为参数,t >0),则其普通方程为 例5 求椭圆的内接矩形的最大面积.解:设内接矩形在第一象限内的顶点为P (a cos θ ,b sin θ ),P 点在两轴上的投影分别为A 、B ,则有S 内接矩形=4S 矩形OAPB =4·a cos θ ·b sin θ =2ab sin2θ . 因为,所以2θ ∈(0,π),S 内接矩形的最大值为2ab . ⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x ⎩⎨⎧==;0,011y x ⎩⎨⎧-==.2,222y x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=21,11t y t x ⎩⎨⎧-=+=t y t x 3,3⎩⎨⎧+==2sin 2,cos 2θθy x t x 11-=x t -=11,)1()2()11(122--=--=x x x x y 111=/-=t x ⋅--=2)1()2(x x x y .222|620|=-+=d ⎪⎪⎩⎪⎪⎨⎧-=-=21,11t y t x ).1()1()2(2<--=x x x x y 12222=+by a x )2π,0(∈θ评述:圆锥曲线参数方程主要应用于利用参数方程设圆锥曲线上的点,从而讨论最值等有关问题.椭圆的参数方程为 (θ 为参数).抛物线y 2=2px (p >0)的参数方程为.例6 圆M 的参数方程为x 2+y 2-4Rx cos α -4Ry sin α +3R 2=0(R >0). (1)求该圆的圆心坐标以及圆M 的半径;(2)当R 固定,α 变化时,求圆心M 的轨迹,并证明此时不论α 取什么值,所有的圆M 都外切于一个定圆. 解:(1)依题意得圆M 的方程为(x -2R cos α )2+(y -2R sin α )2=R 2, 故圆心的坐标为M (2R cos α ,2R sin α ),半径为R .(2)当α 变化时,圆心M 的轨迹方程为 (α 为参数),两式平方相加得x 2+y 2=4R 2,所以圆心M 的轨迹是圆心在原点,半径为2R 的圆.由于所以所有的圆M 都和定圆x 2+y 2=R 2外切,和定圆x 2+y 2=9R 2内切.例7 过P (5,-3),倾斜角为α ,且的直线交圆x 2+y 2=25于P 1、P 2两点.(1)求|PP 1|·|PP 2|的值;(2)求弦P 1P 2的中点M 的坐标.解:(1)由已知得所以已知直线的参数方程为…………………①(t 为参数)代入圆的方程化简,得…………………② ②的两个解t 1、t 2就是P 1、P 2对应的参数,由参数的几何意义及韦达定理知)0,0(12222>>=+b a b y a x ⎩⎨⎧==θθtan sec b y a x ⎩⎨⎧==pty ptx 222⎩⎨⎧==,sin 2,cos 2ααR y R x ,32)sin 2()cos 2(22R R R R R -==+αα,2)sin 2()cos 2(22R R R R R +==+αα53cos -=α53cos -=α,54sin =α⎪⎪⎩⎪⎪⎨⎧+-=-=,543,535t y t x .095542=+-t t|PP 1|·|PP 2|=|t 1|·|t 2|=9.(2)设M (x ,y )为P 1P 2的中点,则点M 对应的参数,代入参数方程, 得 所以 评述:根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点t 1+t 2=0;③设弦M 1M 2的中点为M ,则点M 对应的参数值,(由此可求得|M 2M |及中点坐标). 习题13一、选择题 1.极坐标的直角坐标为 (A)(1,)(B)(-,-1)(C)(-1,-)(D)(-1,)2.椭圆(θ 为参数)的焦距等于( )(A) (B)2 (C) (D)3.已知某条曲线的参数方程为(0≤t ≤5),则该曲线是( )(A)线段 (B)圆弧 (C)双曲线的一支 (D)射线4.若是极坐标系中的一点,则四点中与P 重合的点有( )(A)1个(B)2个(C)3个(D)4个527221=+=t t t ,2533,2544==y x M PP PP ,9||||21=⋅).2533,2544(⇒221t t t M +=)34π(2,3333⎩⎨⎧==θθsin 5,cos 2y x 212129292⎪⎩⎪⎨⎧-=+=1,2322t y t x )3π,2(--P 、、、)3π5,2()3π8,2()3π2,2(-M R Q )3π5π2,2(-k N )(Z ∈k5.在极坐标系中,若等边△ABC 的两个顶点是,那么顶点C 的坐标可能是( ) (A) (B) (C)(D)(3,π)二、选择题6.过极点,倾斜角是的直线的极坐标方程为____________. 7.点M 的直角坐标(3,-3)化为极坐标是____________. 8.直线(t 为参数)过定点____________.9.曲线(t 为参数)与y 轴的交点坐标是____________.10.参数方程(θ 为参数)表示的曲线的普通方程是____________.三、解答题11.求过点,并且和极轴垂直的直线的极坐标方程.12.在椭圆上求一点,使点M 到直线的距离最小,并求出最小距离.13.设圆C 是以C (4,0)为圆心,半径等于4的圆.(1)求圆C 的极坐标方程;(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程.)4π5,2()4π,2(B A 、)4π3,4()43π,32()π,32(6π⎩⎨⎧+-=+=t y at x 41,3⎩⎨⎧=+-=t y t x ,12⎩⎨⎧+==θθθcos sin ,2sin y x )4π,3(14922=+y x 021032=-+y x14.已知点M (2,1)和双曲线,求以M 为中点的双曲线右支的弦AB 所在直线l 的方程.专题13 坐标系与参数方程参考答案习题13一、选择题1.C 2.B 3.A 4.C 5.B 二、填空题 6.; 7.; 8.(3,-1); 9.(0,1),(0,-1); 三、解答题 11. 12.解:由题设知椭圆参数方程为(θ 为参数).设M 的坐标(3cos θ ,2sin θ )由点到直线距离 即d 的最小值为,此时.所以M 的坐标为13.解:(1)设P (ρ ,θ )为圆C 上任意一点,圆C 交极轴于另一点A .由已知|OA |=8,在Rt △ABC 中,|OP |=|OA |cos θ ,即ρ =8cos θ ,这就是圆C 的方程.1222=-y x )(6πR ∈=ρθ)47π,23(⋅=223cos θρ⎩⎨⎧==θθsin 2,cos 3y x ,13|210)4πsin(26|13|210sin 6cos 6|-+=-+=θθθd 261344π=θ).2,223((2)连结CM ,因为M 是ON 的中点,所以CM ⊥ON ,故M 在以OC 为直径的圆上. 由r =|OC |=4,得动点M 的轨迹方程是ρ =4cos θ .14.解:设AB 的方程为(t 为参数),代入双曲线方程,得(2cos 2α -sin 2α )t 2+(8cos α -2sin α )t +5=0,由于M 为AB 的中点,则t 1+t 2=0,则tan α =4,从而AB 的方程为:4x -y -7=0.⎩⎨⎧+=+=ααsin 1,cos 2t y t x。
2020年高考数学复习——参数方程选讲(三)
2020年高考数学复习——参数方程选讲(三)46.已知在直角坐标系xOy 中,曲线C 1的参数方程为⎪⎪⎩⎪⎪⎨⎧+==t y t x 22422(t 为参数),在极坐标系(以坐标原点O 为极点,x 轴的正半轴为极轴)中,曲线C 2的方程为ρsin 2θ=2ρcos θ(ρ>0),曲线C 1、C 2交于A 、B 两点.(Ⅰ)若ρ=2且定点P (0,﹣4),求|P A |+|PB |的值; (Ⅱ)若|P A |,|AB |,|PB |成等比数列,求ρ的值.47.已知圆C 的参数方程为⎩⎨⎧+=+=θθsin 23cos 21y x (θ为参数),若P 是圆C 与x 轴的交点,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设过点P 的圆C 的切线为l. (Ⅰ)求直线l 的极坐标方程(Ⅱ)求圆C 上到直线ρ(cos θ+3sin θ)+6=0的距离最大的点的直角坐标.48.极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 23212(t 为参数),曲线C 的极坐标方程为ρsin 2θ=8cos θ.(I )求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于A ,B 两点,求弦长|AB |.49.在直角坐标系xOy 中,曲线C 1的参数方程为 ⎪⎩⎪⎨⎧α+=α+=sin t 3y cos t 2x (t 是参数),以原点O为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=8cos (θ﹣3π). (1)求曲线C 2的直角坐标方程,并指出其表示何种曲线;(2)若曲线C 1与曲线C 2交于A ,B 两点,求|AB|的最大值和最小值.50.已知曲线C 的参数方程为⎪⎩⎪⎨⎧+=+=ααsin 51cos 53y x (α为参数),以直角坐标系原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程; (2)若直线的极坐标方程为ρθθ1cos sin =-,求直线被曲线C 截得的弦长.51.在直角坐标系xoy 中,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 225223(t 为参数),在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C的方程为.(Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P的坐标为,求|PA|+|PB|.52.极坐标系中,已知圆⎪⎭⎫⎝⎛-=θπρ3cos 10. (1)求圆的直角坐标方程.(2)设P 是圆上任一点,求点P到直线距离的最大值.53.在极坐标系中,曲线C :ρ=2acosθ(a >0),l :ρcos (θ﹣3π)=23,C 与l 有且仅有一个公共点. (Ⅰ)求a ;(Ⅱ)O 为极点,A ,B 为C 上的两点,且∠AOB=3π,求|OA|+|OB|的最大值.54.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立坐标系.已知曲线C :ρsin 2θ=2acosθ(a >0),过点P (﹣2,﹣4)的直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧-=-=422222t y t x (t 为参数),直线l 与曲线C 分别交于M 、N 两点. (1)写出曲线C 和直线l 的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a 的值.55.在平面直角坐标系xOy 中,曲线C的参数方程为(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(Ⅰ)求C 的普通方程和l 的倾斜角;(Ⅱ)设点P (0,2),l 和C 交于A ,B 两点,求|PA|+|PB|.56.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C 1的极坐标方程为ρ2=,直线l 的极坐标方程为ρ=.(Ⅰ)写出曲线C 1与直线l 的直角坐标方程;(Ⅱ)设Q 为曲线C 1上一动点,求Q 点到直线l 距离的最小值.57.在平面直角坐标系xOy中,直线l的参数方程为:(t为参数),它与曲线C:(y﹣2)2﹣x2=1交于A,B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.58.已知直线l:x﹣y﹣1=0,以原点O为极点,x轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρsinθ=5.(Ⅰ)将直线l写成参数方程(t为参数,α∈[0,π))的形式,并求曲线C的直角坐标方程;(Ⅱ)设直线l与曲线C交于点A,B(点A在第一象限)两点,若点M的直角坐标为(1,0),求△OMA的面积.59.已知平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1方程为ρ=2sinθ;C2的参数方程为(t为参数).(Ⅰ)写出曲线C1的直角坐标方程和C2的普通方程;(Ⅱ)设点P为曲线C1上的任意一点,求点P 到曲线C2距离的取值范围.60.已知曲线C的极坐标方程为2ρsinθ+ρcosθ=10,以极点为直角坐标系原点,极轴所在直线为x轴建立直角坐标系,曲线C1的参数方程为(α为参数),.(Ⅰ)求曲线C的直角坐标方程和曲线C1的普通方程;(Ⅱ)若点M在曲线C1上运动,试求出M到曲线C的距离的最小值及该点坐标.61.已知在直角坐标系xoy中,直线l过点P(1,﹣5),且倾斜角为,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,半径为4的圆C的圆心的极坐标为.(Ⅰ)写出直线l的参数方程和圆C的极坐标方程;(Ⅱ)试判定直线l和圆C的位置关系.62.已知C1在直角坐标系下的参数方程为,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,有曲线C2:ρ=2cosθ﹣4sinθ.(Ⅰ)将C1的方程化为普通方程,并求出C2的直角坐标方程;(Ⅱ)求曲线C1和C2两交点之间的距离.63.在直角坐标xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x ﹣2)2+y 2=4.(Ⅰ)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示); (Ⅱ)求圆C 1与C 2的公共弦的参数方程.64.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知曲线C 1的参数方程为,(α为参数,且α∈[0,π)),曲线C 2的极坐标方程为ρ=﹣2sinθ. (1)求C 1的极坐标方程与C 2的直角坐标方程;(2))若P 是C 1上任意一点,过点P 的直线l 交C 2于点M ,N ,求|PM|•|PN|的取值范围.65.在直角坐标系xoy 中,设倾斜角为α的直线l 的参数方程为3cos sin x t y t αα=+⎧⎨=⎩(t 为参数)与曲线1:cos tan x C y θθ⎧=⎪⎨⎪=⎩(θ为参数)相交于不同的两点A 、B .(I )若3πα=,求线段AB 的中点的直角坐标;(II )若直线l 的斜率为2,且过已知点(3,0)P ,求||||PA PB ⋅的值.66.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(II)直线l的参数方程为(t为参数),α为直线l的倾斜角,l与C交于A,B两点,且|AB|=,求l的斜率.67.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2sin(θ﹣),直线l的参数方程为,直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点(1)求圆C的直角坐标方程;(2)求△PAB面积的最大值.参考答案46.解:(Ⅰ)∵曲线C2的方程为ρsin2θ=2pcosθ(p>0),即为ρ2sin2θ=2pρcosθ(p>0),∴曲线C2的直角坐标方程为y2=2px,p>2.又已知p=2,∴曲线C2的直角坐标方程为y2=4x.将曲线C1的参数方程(t为参数)与y2=4x联立得: t+32=0,由于△=﹣4×32>0,设方程两根为t1,t2,∴t1+t2=12,t1•t2=32,∴|PA|+|PB|=|t1|+|t2|=|t1+t2|=12.(Ⅱ)将曲线C1的参数方程(t为参数)与y2=2px联立得:t2﹣2(4+p)t+32=0,由于△=﹣4×32=8(p2+8p)>0,∴t1+t2=2(4+p),t1•t2=32,又|PA|,|AB|,|PB|成等比数列,∴|AB|2=|PA||PB,∴=|t1||t2|,∴=5t1t2,∴=5×32,∴p2+8p﹣4=0,解得:p=﹣4,又p>0,∴p=﹣4+2,∴当|PA|,|AB|,|PB|成等比数列时,p的值为﹣4+2.47.解:(Ⅰ)∵圆C的参数方程为(θ为参数),∴圆C的参数方程消去参数θ,得圆C的普通方程为(x﹣1)2+(y﹣)2=4,∵P是圆C与x轴的交点,以原点O为极点,x轴的正半轴为极轴建立极坐标系,设过点P 的圆C的切线为l由题设知,圆心C(1,),P(2,0),∠CPO=60°,故过P点的切线的倾斜角为30°,设M(ρ,θ)是过P点的圆C的切线上的任一点,则在△PMO中,∠MOP=θ,∠OMP=30°﹣θ,∠OPM=150°,由正弦定理得,∴,∴直线l的极坐标方程为ρcos(θ+60°)=1.(Ⅱ)∵直线ρ(cosθ+s inθ)+6=0,∴直线的直角坐标方程为x+y+6=0,设圆上的点M(1+2cosθ,),点M到直线的距离:d==,∴当θ=时,点M到直线的距离取最大值.此时M(2,2),∴圆C上到直线ρ(cosθ+sinθ)+6=0的距离最大的点的直角坐标为(2,2).48.解:(I)由曲线C的极坐标方程为ρsin2θ=8cosθ,即ρ2sin2θ=8ρcosθ,化为y2=8x.(II)把直线l的参数方程为(t为参数)代入y2=8x化为3t2﹣16t﹣64=0.解得t1=8,t2=.∴弦长|AB|=|t1﹣t2|==.49.解:(1)对于曲线C2有,即,因此曲线C2的直角坐标方程为,其表示一个圆.(2)联立曲线C1与曲线C2的方程可得:,∴t1+t2=2sinα,t1t2=﹣13,因此sinα=0,|AB|的最小值为,sinα=±1,最大值为8.50.解:(1)∵曲线C的参数方程为(α为参数),∴曲线C的普通方程为(x﹣3)2+(y﹣1)2=5,曲线C表示以(3,1)为圆心,为半径的圆,将代入并化简:ρ2﹣6ρcosθ﹣2ρsinθ+5=0.(2)直角坐标方程为y﹣x=1,∴圆心C到直线的距离为,∴弦长为.51.解:(Ⅰ)∵圆C的方程为.∴,即圆C的直角坐标方程:.(Ⅱ),即,由于,故可设t1,t2是上述方程的两实根,所以,故|PA|+|PB|=|t1|+|t2|=t1+t2=52.解(1)圆ρ=10cos化简可得:ρ=10cos cosθ+10sin sinθρ2=5ρcosθ+5ρsinθ∴.故得圆的直角坐标方程为:.(2)由(1)可知圆的圆心为(,),半径r=5,题意:点P到直线距离的最大值为:圆心到直线的距离+半径,即d+r.d=∴最大距离为:1+5=6.53.解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacosθ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.54.解:(1)曲线C:ρsin2θ=2acosθ(a>0),转化成直角坐标方程为:y2=2ax线l的参数方程为(t为参数),转化成直角坐标方程为:x﹣y﹣2=0.(2)将直线的参数方程(t为参数),代入y2=2ax得到:,所以:,t1t2=32+8a,①则:|PM|=t1,|PN|=t2,|MN|=|t1﹣t2||PM|,|MN|,|PN|成等比数列,所以:,②由①②得:a=1.55.解法一:(Ⅰ)由消去参数α,得,即C的普通方程为.由,得ρsinθ﹣ρcosθ=2,…(*)将代入(*),化简得y=x+2,所以直线l的倾斜角为.(Ⅱ)由(Ⅰ)知,点P(0,2)在直线l上,可设直线l的参数方程为(t 为参数),即(t为参数),代入并化简,得..设A,B两点对应的参数分别为t1,t2,则,所以t1<0,t2<0,所以.解法二:(Ⅰ)同解法一.(Ⅱ)直线l的普通方程为y=x+2.由消去y得10x2+36x+27=0,于是△=362﹣4×10×27=216>0.设A(x1,y1),B(x2,y2),则,,所以x1<0,x2<0,故.56.(Ⅰ)以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C1的极坐标方程为ρ2=,直线l的极坐标方程为ρ=,根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ,则C1的直角坐标方程为x2+2y2=2,直线l的直角坐标方程为.(Ⅱ)设Q,则点Q到直线l的距离为=,当且仅当,即(k∈Z)时取等号.∴Q点到直线l距离的最小值为.57.解:(1)把直线的参数方程对应的坐标代入曲线方程并化简得7t 2+60t ﹣125=0设A ,B 对应的参数分别为t 1,t 2,则.∴.(2)由P 的极坐标为,可得x p ==﹣2,=2.∴点P 在平面直角坐标系下的坐标为(﹣2,2),根据中点坐标的性质可得AB 中点M 对应的参数为.∴由t 的几何意义可得点P 到M 的距离为.58.解:(Ⅰ)∵直线l :x ﹣y ﹣1=0的倾斜角为,∴将直线l 写成参数方程为,∵曲线C 的极坐标方程为ρ2﹣4ρsinθ=5, ∴x 2+y 2﹣4y=5,即x 2+(y ﹣2)2=9. ∴曲线C 的直角坐标方程为x 2+(y ﹣2)2=9. (Ⅱ)将直线l 的参数方程代入圆C 的直角坐标方程,得t 2﹣﹣4=0,设t 1,t 2是方程的两根,解得,,又点A 在第一象限,故点A 对应,代入到y=tsin,得到点A 纵坐标y A =2,因此△OMA 的面积S △OMA =|OM|•|y A |==1.59.解:(I)曲线C1方程为ρ=2sinθ,可得ρ2=2ρsinθ,可得x2+y2=2y,∴C1的直角坐标方程:x2+(y﹣1)2=1,C2的参数方程为,消去参数t可得:C2的普通方程:.…(II)由(I)知,C1为以(0,1)为圆心,r=1为半径的圆,C1的圆心(0,1)到C2的距离为,则C1与C2相交,P到曲线C2距离最小值为0,最大值为,则点P到曲线C2距离的取值范围为.…60.解:(1)由2ρsinθ+ρcosθ=10,得x+2y﹣10=0,∴曲线C的普通方程是:x+2y﹣10=0.由,得,代入cos2α+sin2α=1,得,∴曲线C1的普通方程为;(2)曲线C的普通方程是:x+2y﹣10=0,设点M(3cosα,2sinα),由点到直线的距离公式得:,其中,∴α﹣φ=0时,,此时.61.解:(Ⅰ)∵直线l过点P(1,﹣5),且倾斜角为,∴直线l的参数方程为(t为参数)∵半径为4的圆C的圆心的极坐标为,∴圆心坐标为(0,4),圆的直角坐标方程为x2+(y﹣4)2=16∵,∴圆的极坐标方程为ρ=8sinθ;(Ⅱ)直线l的普通方程为,∴圆心到直线的距离为∴直线l和圆C相离.62.解:(Ⅰ)C1在直角坐标系下的参数方程为,消参后得C1为y﹣2x+1=0.由ρ=2cosθ﹣4sinθ得ρ2=2ρcosθ﹣4ρsinθ.∴x2+y2=2x﹣4y,∴C2的直角坐标方程为(x﹣1)2+(y+2)2=5..…(Ⅱ)∵圆心(1,﹣2)到直线的距离.∴.…63.解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C 1,C 2的公共弦的参数方程为 (或圆C 1,C 2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C 1,C 2的公共弦的参数方程为.64.解:(1)消去参数可得x 2+y 2=1,因为α∈[0,π),所以﹣1≤x≤1,0≤y≤1,所以曲线C 1是x 2+y 2=1在x 轴上方的部分,所以曲线C 1的极坐标方程为ρ=1(0≤θ≤π).…曲线C 2的直角坐标方程为x 2+(y+1)2=1…(2)设P (x 0,y 0),则0≤y 0≤1,直线l 的倾斜角为α, 则直线l的参数方程为:(t 为参数).…代入C 2的直角坐标方程得(x 0+tcosα)2+(y 0+tsinα+1)2=1,由直线参数方程中t 的几何意义可知|PM|•|PN|=|1+2y 0|, 因为0≤y 0≤1,所以|PM|•|PN|=∈[1,3]…65.解:(I )由曲线1:cos tan x C y θθ⎧=⎪⎨⎪=⎩(θ为参数),可得C 的普通方程是221x y -=. …………………………2分当3πα=时,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入曲线C 的普通方程,得26160t t --=, ……………………………3分 得126t t +=,则线段AB 的中点对应的1232t t t +==,故线段AB 的中点的直角坐标为9(2. ……………………………5分(II )将直线l 的参数方程代入曲线C 的普通方程,化简得222(cos sin )6cos 80t t ααα-++=, …………………………………7分 则21222288(1tan )||||||||||cos sin 1tan PA PB t t αααα+⋅===--,…………………9分由已知得tan 2α=,故40||||3PA PB ⋅=. ……………………………10分66.解:(Ⅰ)∵在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25, ∴x 2+y 2+12x+11=0,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系, x=ρcosθ,y=ρsinθ,ρ2=x 2+y 2, ∴C 的极坐标方程为ρ2+ρcosθ+11=0.(Ⅱ)∵直线l 的参数方程为(t 为参数),α为直线l 的倾斜角,∴直线l 的直角坐标方程为=0,∵l 与C 交于A ,B 两点,且|AB|=,∴圆心(﹣6,0)到直线l 的距离d==,解得cosα=,当cosα=时,l 的斜率k=tanα=2;当cosα=﹣时,l 的斜率k=tanα=﹣2.67.解:(1)圆C 的极坐标方程为ρ=2sin (θ﹣),即ρ2=ρ×(sinθ﹣cosθ),利用互化公式可得直角坐标方程:x 2+y 2+2x ﹣2y=0,即(x+1)2+(y ﹣1)2=2.(2)圆C 的圆心C (﹣1,1),半径r=.直线l的参数方程为,可得普通方程:3x+4y+4=0.∴圆心C到直线AB的距离d==1.∴圆C上的点到直线AB的最大距离=1+,|AB|=2=2.∴△PAB面积的最大值=×(d+r)==1+.。
高考数学 极坐标与参数方程
2.(2020 春•江西月考)在直角坐标系 xOy 中,曲线 C 的参数方程为
⺁ ܿ (α为参数)直 ⺁ݏ
线 l 过点(﹣1,0),且斜率为 ,以原点为极点,x 轴正半轴为轴建立极坐标系,直线 OM,ON 的极
坐标方程分别为θ
∈ 䱘,
(ρ∈R).
(1)求曲线 C 和直线的极坐标方程; th
(2)已知直线 OM 与直线 l 的交点为 P,直线 ON 与由线 C 的交点为 O,Q,求 t 的值.
15.(2020•邯郸模拟)在平面直角坐标系中,点 P 是曲线 C:
ܿ ⺁
ݏ,(t 为参数)上的动点,以
坐标原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点 O 为中心,将线段 OP 顺时针旋转
90°得到 OQ,设点 Q 的轨迹为曲线 C2.
(1)求曲线 C1,C2 的极坐标方程;
(2)当 t< t< 时,若射线 l 与曲线 C1 和圆 C2 分别交于异于点 O 的 M、N 两点,且|ON|=2|OM|,
求△MC2N 的面积.
8.(2020•丹东二模)在平面直角坐标系 xOy 中,曲线 C1 的参数方程为
(t 为参数).以 O ⺁
为极点,以 x 轴正半轴为极轴,建立极坐标系,曲线 C2 的极坐标方程ρ2(1+sin2θ)=2.
点 O 为极点,x 轴的正半轴为极轴,建立极坐标系,直线 l 的极坐标方程为 ⺁ ݏ䱘
.
(1)求曲线 C 的极坐标方程和直线 l 的普通方程;
(2)设直线
∈ 䱘与直线 l 交于点 M,与曲线 C 交于 P,Q 两点,求|OM|•|OP|•|OQ|的值.
18.(2020•鼓楼区校级模拟)在平面直角坐标系 xOy 中,曲线 C1 的参数方程为
极坐标与参数方程-习题及答案
金材教育 极坐标与参数方程未命名1.在直角坐标系xOy 中,曲线C 1的参数方程为{x =cosαy =1+sinα (α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2√2.(1(写出C 1的普通方程和C 2的直角坐标方程((2)直线y =x 与C 1交于异于原点的A ,与C 2交于点B ,求线段AB 的长. 【答案】(1)x 2+(y −1)2=1;C 2:x +y =4. (2)|AB |=√2.【解析】分析:(1)利用sin 2α+cos 2α=1,将曲线C 1的参数方程化为普通方程,由{x =ρcosθy =ρsinθ 求出C 2的直角坐标方程;(2)由直线的参数方程的意义,求出线段AB 的长。
详解:(1)C 1:{x =cosαy =1+sinα (α为参数)的普通方程是x 2+(y −1)2=1.∵ρsin (θ+π4)=2√2,整理得√22ρsinθ+√22ρcosθ=2√2,∴C 2的直角坐标方程为x +y =4; 故C 1:x 2+(y −1)2=1;C 2:x +y =4.(2)直线y =x 的极坐标方程为θ=π4,C 1的极坐标方程为ρ=2sinθ, ∴点A (√2,π4),B (2√2,π4),即ρA =√2,ρB =2√2, 于是|AB |=ρB −ρA =√2.点睛:本题主要考查曲线的普通方程、直角坐标方程的求法等,属于基础题。
考查了推理论证能力,运算求解能力。
2.(本题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的普通方程与曲线的直角坐标方程;(2)设点,曲线与曲线交于,求的值.【答案】(1);(2)85。
【解析】试题分析:(1)根据曲线的参数方程,两式相加消去参数,即可得到普通方程;由曲线的极坐标方程得ρ2=41+3sin2θ⇒ρ2+3ρ2sin2θ=4,可化为直角坐标方程;(2)将,代入直角坐标方程,整理后,利用=t1t2即可求解.试题解析:(1)两式相加消去参数t可得曲线的普通方程,由曲线的极坐标方程得ρ2=41+3sin2θ⇒ρ2+3ρ2sin2θ=4,整理可得曲线的直角坐标方程.(2)将代人直角坐标方程得利用韦达定理可得,所以|MA||MB|=考点:简单曲线的极坐标方程;直线的参数方程.3.选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为:{x=√55ty=9+2√55t(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=8sinθ.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)若曲线C 1与C 2交于A ,B 两点,点P 的坐标为(0,9),求1|PA |+1|PB |. 【答案】(1)x 2+(y −4)2=16;2x −y +9=0. (2)4√59. 【解析】分析:(1)消元法解出直线C 1的普通方程,利用直角坐标和极坐标的互化公式解出圆C 2的直角坐标方程(2)将直线C 1的参数方程为代入圆C 2的直角坐标方程并化简整理关于t 的一元二次方程。
高考极坐标与参数方程大题题型汇总(附详细答案)
高考极坐标与参数方程大题题型汇总1.在直角坐标系xoy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是(sin 3cos )33ρθθ+=,射线:3OM πθ=与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)圆C 的普通方程是22(1)1x y -+=,又cos ,sin x y ρθρθ==; 所以圆C 的极坐标方程是2cos ρθ=. ---5分(2)设11(,)ρθ为点P 的极坐标,则有1112cos 3ρθπθ=⎧⎪⎨=⎪⎩解得1113ρπθ=⎧⎪⎨=⎪⎩. 设22(,)ρθ为点Q 的极坐标,则有2222(sin 3cos )333ρθθπθ⎧+=⎪⎨=⎪⎩解得2233ρπθ=⎧⎪⎨=⎪⎩ 由于12θθ=,所以122PQ ρρ=-=,所以线段PQ 的长为2.2.已知直线l 的参数方程为431x t a y t =-+⎧⎨=-⎩(t 为参数),在直角坐标系xOy 中,以O 点为极点,x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为26sin 8ρρθ-=-.(1)求圆M 的直角坐标方程;(2)若直线l 截圆M 3a 的值.解:(1)∵2222268(36si )n 81x y y x y ρρθ+--=-⇒=-⇒+-=, ∴圆M 的直角坐标方程为22(3)1x y +-=;(5分)(2)把直线l 的参数方程431x t ay t =-+⎧⎨=-⎩(t 为参数)化为普通方程得:34340x y a +-+=,∵直线l 截圆M 所得弦长为,且圆M 的圆心(0,3)M 到直线l 的距离|163|19522a d a -===⇒=或376a =,∴376a =或92a =.(10分) 3.已知曲线C 的参数方程为⎪⎩⎪⎨⎧+=+=ααsin 51cos 52y x (α为参数),以直角坐标系原点为极点,Ox 轴正半轴为极轴建立极坐标系。
参数方程-高考题答案
11 【考点】本题主要考查参数方程、极坐标方程、普通方程的互化。
【解析】(1)将45cos ,55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25, 即C 1:x 2+y 2-8x -10y +16=0.将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫⎪⎝⎭.2 (1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数)直线l 的普通方程为260x y +-=(2)曲线C 上任意一点(2cos ,3sin )P θθ到l 的距离为|4cos 3sin 6|d θθ=+- 则2|||5sin()6|sin 305dPA θα==+-,其中α为锐角,且4tan 3α=当sin()1θα+=-时,||PA 取得最大值,最大值为5当sin()1θα+=时,||PA 取得最小值,最小值为5…………………………………10分3解:(Ⅰ)将x=ρcos θ,y=ρsin θ代入可得C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρ cos θ-4ρ sin θ+4 =0. …5分(Ⅱ)将π4θ=代入C 2极坐标方程可得23240ρρ-+= 解得ρ=22或 ρ=2,|MN |=2,因为圆C 2的半径为1,所以ΔC 2MN 的面积1121sin 4522⨯︒=. …10分4 ⑴ cos 1sin x a t y a t =⎧⎨=+⎩(t 均为参数) ∴()2221x y a +-= ① ∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==, ∴222sin 10a ρρθ-+-=即为1C 的极坐标方程 ⑵ 24cos C ρθ=:两边同乘ρ得22224cos cos x y x ρρθρρθ==+=, 224x y x ∴+= 即()2224x y -+= ②3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C∴210a -= ∴1a =5 解:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩. 从而C 与l 的交点坐标为(3,0),2124(,)2525-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为 17d =. 当4a ≥-时,d 的最大值为17.由题设得1717=,所以8a =; 当4a <-时,d 的最大值为17.由题设得1717=,所以16a =-. 综上,8a =或16a =-.、6 【分析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.(2)利用直线在坐标系中的位置,再利用点到直线的距离公式的应用求出结果.【解答】解:(1)曲线C 2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x 2+y 2+2x ﹣3=0,转换为标准式为:(x +1)2+y 2=4.(2)由于曲线C 1的方程为y=k |x |+2,则:该直线关于y 轴对称,且恒过定点(0,2). 由于该直线与曲线C 2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx +2的距离等于半径2.故:, 解得:k=或0,(0舍去)故C 1的方程为:.7 (1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-. l 的直角坐标方程为23110x y +=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l2020年真题22.[选修4-4:坐标系与参数方程](10分) 在直角坐标系xOy 中,曲线1C 的参数方程为cos sin k k x t y t ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=,(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.x + y - 4 = 0.。
参数方程与极坐标方程及应用(解析版)
参数方程与极坐标方程及应用一.极坐标1.(1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.③极坐标:有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ).一般不作特殊说明时,我们认为ρ≥0,θ可取任意实数.2.极坐标与直角坐标的互化:设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:x =ρcos θ,y =ρsin θ;ρ2=x 2+y 2,tan θ=yx (x ≠0). 3.简单曲线的极坐标方程题型一:平面直角坐标系中的伸缩变换 1.求椭圆x 24+y 2=1经过伸缩变换x ′=12x ,y ′=y后的曲线方程.[解] 由x ′=12x ,y ′=y ,得到x =2x ′,y =y ′. ①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1. 因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.2.将圆x 2+y 2=1变换为椭圆x 29+y 24=1的一个伸缩变换公式为φ:X =ax (a >0),Y =by (b >0),求a ,b 的值.[解] 由X =ax ,Y =by得x =1a X ,y =1b Y ,代入x 2+y 2=1中得X 2a 2+Y 2b2=1,所以a 2=9,b 2=4,即a =3,b =2.[规律方法] 伸缩变换后方程的求法,平面上的曲线y =f (x )在变换φ:的作用下的变换方程的求法是将代入y =f (x ),得,整理之后得到y ′=h (x ′),即为所求变换之后的方程.易错警示:应用伸缩变换时,要分清变换前的点的坐标(x ,y )与变换后的点的坐标(x ′,y ′). 题型二:极坐标系与直角坐标系的互化【例1】 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos θ-π3=1(0≤θ<2π),M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.[解] (1)由ρcos θ-π3=1得ρ12cos θ+32sin θ=1.从而曲线C 的直角坐标方程为12x +32y =1,即x +3y -2=0. 当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N233,π2.(2)M 点的直角坐标为(2,0),N 点的直角坐标为0,233.所以P 点的直角坐标为 1,33, 则P 点的极坐标为233,π6.所以直线OP 的极坐标方程为θ=π6(ρ∈R ). [规律方法] 极坐标方程与直角坐标方程的互化方法(1)直角坐标方程化为极坐标方程:将公式x =ρcos θ及y =ρsin θ直接代入直角坐标方程并化简即可.(2)极坐标方程化为直角坐标方程:通过变形,构造出形如ρcos θ,ρsin θ,ρ2的形式,再应用公式进行代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形技巧.[题型训练]已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρ·cosθ-π4=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.[解] (1)由ρ=2知ρ2=4,所以圆O 1的直角坐标方程为x 2+y 2=4.因为ρ2-22ρcosθ-π4=2, 所以ρ2-22ρcos θcos π4+sin θsin π4=2,所以圆O 2的直角坐标方程为x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin θ+π4=22. 题型三:极坐标方程的应用【例2】 在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.[解] (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.[规律方法] 在用方程解决直线、圆和圆锥曲线的有关问题时,将极坐标方程化为直角坐标方程,有助于增加对方程所表示的曲线的认识,从而达到化陌生为熟悉的目的,这是转化与化归思想的应用. [题型训练] 在极坐标系中,求直线ρsinθ+π4=2被圆ρ=4截得的弦长. [解] 由ρsin θ+π4=2,得22ρsin θ+ρcos θ)=2,可化为x +y -22=0.圆ρ=4可化为x 2+y 2=16, 圆心(0,0)到直线x +y -22=0的距离d =|-22|2=2,由圆中的弦长公式,得弦长l =2r 2-d 2=242-22=4 3.故所求弦长为4 3. 课后练习1.(2018·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.[解] (1)由x =ρcos θ,y =ρsin θ得C 2的直角坐标方程为(x +1)2+y 2=4.(2)由(1)知C 2是圆心为A (-1,0),半径为2的圆.由题设知,C 1是过点B (0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2.由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,点A 到l 1所在直线的距离为2,所以|-k +2|k 2+1=2,故k =-43或k =0.经检验,当k =0时,l 1与C 2没有公共点;当k =-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点.当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为2,所以|k +2|k 2+1=2,故k =0或k =43.经检验,当k =0时,l 1与C 2没有公共点;当k =43时,l 2与C 2没有公共点.综上,所求C 1的方程为y =-43|x |+2.2.(2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程; (2)设点A 的极坐标为2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. [解] (1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0).由题设知|OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16得C 2的极坐标方程为ρ=4cos θ(ρ>0).因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0).由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积 S =12|OA |·ρB ·sin ∠AOB =4cos α· sin α-π3=2sin 2α-π3-32≤2+3. 当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.3.(2016·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为x =a cos t ,y =1+a sin t ,(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . [解] (1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上.所以a =1. 二:参数方程1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数x =f (t ),y =g (t )并且对于t的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.2.常见曲线的参数方程和普通方程根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. (1)弦长l =|t 1-t 2|;(2)弦M 1M 2的中点⇒t 1+t 2=0;(3)|M 0M 1||M 0M 2|=|t 1t 2|. 题型一:参数方程与普通方程的互化 1.将下列参数方程化为普通方程.(1)x =1t,y =1tt 2-1(t 为参数);(2)x =2+sin 2θ,y =-1+cos 2θ(θ为参数).[解] (1)∵ 1t 2+ 1tt 2-12=1,∴x 2+y 2=1.∵t 2-1≥0,∴t ≥1或t ≤-1.又x =1t,∴x ≠0.当t ≥1时,0<x ≤1;当t ≤-1时,-1≤x <0,∴所求普通方程为x 2+y 2=1,其中0<x ≤1,0≤y ≤1或-1≤x <0,-1<y ≤0.(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2,∴y =-2x +4,∴2x +y -4=0.∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的普通方程为2x +y -4=0(2≤x ≤3). 2.如图所示,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.[解] 圆的半径为12,记圆心为C 12,0,连接CP ,则∠PCx =2θ,故x P =12+12c os 2θ=cos 2θ, y P =12s in 2θ=sin θcos θ(θ为参数).所以圆的参数方程为x =cos 2θ,y =sin θcos θ(θ为参数). [规律方法] 消去参数的方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数. (2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.易错警示:将参数方程化为普通方程时,要注意两种方程的等价性,不要增解,如例1. 题型二:参数方程的应用【例1】在平面直角坐标系xOy 中,圆C 的参数方程为x =4cos θ,y =4sin θ(θ为参数),直线l 经过点P (1,2),倾斜角α=π6. (1)写出圆C 的普通方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|P A |·|PB |的值.[解] (1)由x =4cos θ,y =4sin θ,消去θ,得圆C 的普通方程为x 2+y 2=16.又直线l 过点P (1,2)且倾斜角α=π6,所以l 的参数方程为 x =1+t cos π6,y =2+t sin π6,即x =1+32t ,y =2+12t (t 为参数).(2)把直线l 的参数方程x =1+32t ,y =2+12t 代入x 2+y 2=16,得1+32t 2+ 2+12t 2=16,t 2+(3+2)t -11=0,所以t 1t 2=-11,由参数方程的几何意义,|P A |·|PB |=|t 1t 2|=11.[规律方法] 1.解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决.2.对于形如(t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.[题型训练] 在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为x =3+t cos α,y =t sin α(t 为参数),直线l 与曲线C :x =1cos θ,y =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|P A |·|PB |的值.[解] (1)由曲线C :x =1cos θ,y =tan θ(θ为参数),可得曲线C 的普通方程是x 2-y 2=1.当α=π3时,直线l 的参数方程为x =3+12t ,y =32t(t 为参数),代入曲线C 的普通方程,得t 2-6t -16=0,得t 1+t 2=6,所以线段AB 的中点对应的t =t 1+t 22=3,故线段AB 的中点的直角坐标为92,332. (2)将直线l 的参数方程代入曲线C 的普通方程,化简得(cos 2α-sin 2α)t 2+6cos αt +8=0,则|P A |·|PB |=|t 1t 2|= 8cos 2α-sin 2α=8(1+tan 2α)1-tan 2α,由已知得tan α=2,故|P A |·|PB |=403. 题型三:极坐标、参数方程的综合应用【例2】 在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.[解] (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)法一:由直线l 的参数方程x =t cos α,y =t sin α(t 为参数),消去参数得y =x ·tan α.设直线l 的斜率为k ,则直线l的方程为kx -y =0.由圆C 的方程(x +6)2+y 2=25知,圆心坐标为(-6,0),半径为5.又|AB |=10,由垂径定理及点到直线的距离公式得|-6k |1+k2=25- 1022,即36k 21+k 2=904,整理得k 2=53,解得k =±153,即l 的斜率为±153. 法二:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0, 于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.[规律方法] 处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[题型训练] (2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为x =2+t ,y =kt (t 为参数),直线l 2的参数方程为x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.[解] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2);消去参数m 得l 2的普通方程l 2:y =1k(x +2).设P (x ,y ),由题设得y =k (x -2),y =1k (x +2),消去k 得x 2-y 2=4(y ≠0),所以C 的普通方程为x 2-y 2=4(y ≠0). (2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π),联立ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0得 cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5,所以交点M 的极径为 5. 课后练习1.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为x =1+t cos α,y =2+t sin α(t 为参数). (1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. [解] (1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α,当cos α=0时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.① 因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.2.(2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.[解] (1)⊙O 的直角坐标方程为x 2+y 2=1.当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点当且仅当21+k 2<1,解得k <-1或k >1,即α∈ π4,π2或α∈ π2,3π4.综上,α的取值范围是π4,3π4. (2)l 的参数方程为x =t cos α,y =-2+t sin α(t 为参数,π4<α<3π4). 设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0. 于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足x =t P cos α,y =-2+t P sin α, 所以点P 的轨迹的参数方程是x =22sin 2α,y =-22-22cos 2αα为参数,π4<α<3π4.最新两年高考题选做1.(2021年高考全国甲卷理科)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρθ=. (1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为()1,0,M 为C 上的动点,点P 满足AP =,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.【答案】(1)(222x y −+=;(2)P 的轨迹1C 的参数方程为32cos 2sin x y θθ+ = (θ为参数),C 与1C 没有公共点.解析:(1)由曲线C 的极坐标方程ρθ=可得2cos ρθ=,将cos ,sin xy ρθρθ=代入可得22x y +,即(222x y +=,即曲线C 的直角坐标方程为(222x y +=;(2)设(),P x y ,设)Mθθ AP =,())()1,22cos 2sin x y θθθθ∴−=+−=+−,则122cos 2sin x y θθ−=+−= 32cos 2sin x y θθ= ,故P 的轨迹1C 的参数方程为32cos 2sin x y θθ= (θ为参数)曲线C 的圆心为),曲线1C 的圆心为()3,半径为2,则圆心距为3−,32−< ,∴两圆内含,故曲线C 与1C 没有公共点. 2.(2021年高考全国乙卷理科)在直角坐标系xOy 中,C 的圆心为()2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点()4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.【答案】(1)2cos 1sin x y αα=+ =+,(α为参数);(2)2cos()43πρθ+=−2cos()43πρθ−=+ 解析:(1)由题意,C 的普通方程为22(2)(1)1x y −+−=, 所以C 的参数方程为2cos 1sin x y αα=+ =+,(α为参数)(2)由题意,切线的斜率一定存在,设切线方程为1(4)y k x −=−,即140kx y k −+−=,由圆心到直线的距离等于11=,解得k =330y −+−=330y +−−=, 将cos x ρθ=,sin y ρθ=代入化简得2cos()43πρθ+=−2cos()43πρθ−=3.(2020年高考数学课标Ⅰ卷理科)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t= = (t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ−+=.(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【答案】(1)曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)11(,)44. 【解析】(1)当1k =时,曲线1C 的参数方程为cos (sin x tt y t ==为参数),两式平方相加得221x y +=,所以曲线1C 表示以坐标原点为圆心,半径为1的圆;(2)当4k =时,曲线1C 的参数方程为44cos (sin x tt y t= = 为参数), 所以0,0x y ≥≥,曲线1C的参数方程化为22cos (sin tt t==为参数), 两式相加得曲线1C1+=1−,平方得1,01,01y x x y =−+≤≤≤≤,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ−+=, 曲线2C 直角坐标方程为41630x y −+=,联立12,C C方程141630y x x y =− −+=,整理得12130x −+=12=136=(舍去), 11,44x y ∴==,12,C C ∴公共点的直角坐标为11(,)44.4.(2020年高考数学课标Ⅱ卷理科)已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ = = ,(θ为参数),C 2:1,1x t ty t t=+ =−(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y +=;222:4C x y −=;(2)17cos 5ρθ=. 解析:(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=;由11x t ty t t=+ =−得:2222221212x t t y t t =++ =+− ,两式作差可得2C 的普通方程为:224x y −=.(2)由2244x y x y += −= 得:5232x y= =,即53,22P ;设所求圆圆心的直角坐标为(),0a ,其中0a >, 则22253022a a −+−=,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y −+= ,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=. 5.(2020年高考数学课标Ⅲ卷理科)在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t =−− =−+(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120ρθρθ−+=解析:(1)令0x =,则220t t +−=,解得2t =−或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t −+=,解得2t =或1t =(舍),则2244x =−−=−,即(4,0)B −.AB ∴==;(2)由(1)可知12030(4)AB k −==−−, 则直线AB 的方程为3(4)y x =+,即3120x y −+=. 由cos ,sin xy ρθρθ=可得,直线AB 的极坐标方程为3cos sin 120ρθρθ−+=. 【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.。
高三数学专题复习--极坐标与参数方程
五、考点练习:
1
在极坐标系中,已知
A2,π6
,B2,-π6
,求
A,B
两点
间的距离.
2.将参数方程xy==1-+24+co4ssitn,t(t 为参数,0≤t≤π )化为普通方程,并
说明方程表示的曲线.
3
将方程x=
t+1, (t 为参数)化为普通方程.
y=1-2 t
2、高考出现的题型:
(1)、求曲线的极坐标方程、参数方程; (2)、极坐标方程、参数方程与普通方程间的相互转化; (3)、解决与极坐标方程、参数方程研究有关的距离、 最值、交点等问题。
三、(1)
x y
= =
x0 y0
+ t cos + t sin
a a
, (t
为参数
)
类似地 过原点倾斜角为a的直线l的参数方程为:
解:(1)曲线C化为直角坐标方程为
x1 2 +(y
2
3) =1
,
它表示圆心为C(1, 3 ),半径r=1的圆。
∵ d = co 1(+
3) 2 = 2 >1,
∴点O在圆的外部,
当动点与O、C三点在同一直线上时,动点到原点O的距离最小。
d ∴
= d r =2-1=1,
m in
即圆心C上动点到原点O的距离最小值为1。
链接高考2014
以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系
中取相同单位的长度. 已知直线L的方程为
,
曲线C的参数方程为
,点M是曲线C上的一动点.
(Ⅰ)求线段OM的中点P的轨迹方程;
(Ⅱ) 求曲线C上的点到直线L的距离的最小值.
2020届成都市高三文科数学复习—极坐标参数方程与空间几何
2020届成都市高三文科数学复习—解答题专练重点:极坐标与参数方程 空间几何 三角函数 数列 概率统计1、在直角坐标系xOy中,过点32P ⎫⎪⎪⎭作倾斜角为α的直线l 与曲线22:1C x y +=相交于不同的两点,M N 。
(1)写出直线l 的参数方程;(2)求11PM PN+的取值范围。
2.在平面直角坐标系xOy 中,倾斜角为2παα⎛⎫≠⎪⎝⎭的直线l的参数方程为2cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数)与曲线C :2cos sin x y θθ=⎧⎨=⎩(θ为参数)相交于不同的两点A,B.(1)若3πα=,求线段AB 的中点M 的坐标;(2)已知点(P .若2PA PB PO ⋅=,求直线l 的斜率.3. 在平面直角坐标系xOy 中曲线221:1C x y +=经伸缩变换222x xy y⎧=⎨=⎩后得到曲线2C ,在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线3C 的极坐标方程为86sin ρρθ-=-.(1)求曲线2C 的参数方程和3C 的直角坐标方程;(2)设M 为曲线2C 上的一点,又M 向曲线3C 引切线,切点为N ,求||MN 的最大值.4. 以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为()2213sin 4ρθ+=.(1)求曲线C 的参数方程;(2)若曲线与x 轴的正半轴及y 轴的正半轴分别交于点A ,B ,在曲线C 上任取一点P ,且点P 在第一象限,求四边形OAPB 面积的最大值.5. 已知直线l的参数方程为3 2.x y t ⎧=+⎪⎨=-+⎪⎩(t 为参数,t ∈R ),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin ,[0,2)ρθθ=∈π.(Ⅰ)求直线l 与曲线C 的直角坐标方程;(Ⅱ)在曲线C 上求一点D ,使得它到直线l 的距离最短.6.已知曲线C的参数方程为21x y αα⎧=+⎪⎨=⎪⎩(α为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)设12::63l l ππθθ==,,若l 1 、l 2与曲线C 相交于异于原点的两点 A 、B ,求△AOB 的面积.7.在直角坐标坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴,建立极坐标系, 圆C 的极坐标方程为cos 4ρθ=.(Ⅰ)M 为曲线C16OP ⋅=,求点P 的轨迹方程C 1;(2)设点A 的极坐标为2,3π⎛⎫⎪⎝⎭,点B 在曲线C 1上,求三角形OAB 面积的最大值;8.在平面直角坐标系xOy 中,已知直线l 的参数方程为2cos 324sin3x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是4ρ=。
高考文科数学复习专题-极坐标与参数方程
1.曲线的极坐标方程.(1)极坐标系:一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O 称为极点,射线Ox称为极轴.(2)极坐标(ρ,θ)的含义:设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.明显,每一个有序实数对(ρ,θ),确定一个点的位置.其中ρ称为点M的极径,θ称为点M的极角.极坐标系和直角坐标系的最大区分在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,对于给定的有序数对(ρ,θ),可以确定平面上的一点,但是平面内的一点的极坐标却不是唯一的.(3)曲线的极坐标方程:一般地,在极坐标系中,假如平面曲线C上的随意一点的极坐标满意方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.直线的极坐标方程.(1)过极点且与极轴成φ0角的直线方程是θ=φ0和θ=π-φ0,如下图所示.(2)与极轴垂直且与极轴交于点(a,0)的直线的极坐标方程是ρcos θ=a,如下图所示.(3)与极轴平行且在x轴的上方,与x轴的距离为a的直线的极坐标方程为ρsin θ=a,如下图所示.3.圆的极坐标方程.(1)以极点为圆心,半径为r的圆的方程为ρ=r,如图1所示.(2)圆心在极轴上且过极点,半径为r的圆的方程为ρ=2rcos_θ,如图2所示.(3)圆心在过极点且与极轴成π2的射线上,过极点且半径为r的圆的方程为ρ2rsin_θ,如图3所示.4.极坐标与直角坐标的互化.若极点在原点且极轴为x 轴的正半轴,则平面内随意一点M 的极坐标M(ρ,θ)化为平面直角坐标M(x ,y)的公式如下:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或者ρ=x 2+y 2,tan θ=y x ,其中要结合点所在的象限确定角θ的值.1.曲线的参数方程的定义.在平面直角坐标系中,假如曲线上随意一点的坐标x ,y 都是某个变数t 的函数,即⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组所确定的点M(x ,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x ,y 之间关系的变数t 叫做参变数,简称参数.2.常见曲线的参数方程.(1)过定点P(x 0,y 0),倾斜角为α的直线:⎩⎪⎨⎪⎧x =x 0+tcos α,y =y 0+tsin α(t 为参数), 其中参数t 是以定点P(x 0,y 0)为起点,点M(x ,y)为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.依据t 的几何意义,有以下结论:①设A ,B 是直线上随意两点,它们对应的参数分别为t A 和t B ,则|AB|=|t B -t A |=(t B +t A )2-4t A ·t B ;②线段AB 的中点所对应的参数值等于t A +t B2.(2)中心在P(x 0,y 0),半径等于r 的圆:⎩⎪⎨⎪⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数) (3)中心在原点,焦点在x 轴(或y 轴)上的椭圆:⎩⎪⎨⎪⎧x =acos θ,y =bsin θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =bcos θ,y =asin θ. 中心在点P(x 0,y 0),焦点在平行于x 轴的直线上的椭圆的参数方程为⎩⎪⎨⎪⎧x =x 0+acos α,y =y 0+bsin α(α为参数).(4)中心在原点,焦点在x 轴(或y 轴)上的双曲线:⎩⎪⎨⎪⎧x =asec θ,y =btan θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =btan θ,y =asec θ. (5)顶点在原点,焦点在x 轴的正半轴上的抛物线:⎩⎪⎨⎪⎧x =2p ,y =2p(t 为参数,p>0). 注:sec θ=1cos θ.3.参数方程化为一般方程.由参数方程化为一般方程就是要消去参数,消参数时经常采纳代入消元法、加减消元法、乘除消元法、三角代换法,消参数时要留意参数的取值范围对x ,y 的限制.1.已知点A 的极坐标为⎝⎛⎭⎪⎫4,5π3,则点A 的直角坐标是(2,-23).2.把点P 的直角坐标(6,-2)化为极坐标,结果为⎝ ⎛⎭⎪⎫22,-π6.3.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+(y -2)2=4.4.以极坐标系中的点⎝ ⎛⎭⎪⎫1,π6为圆心、1为半径的圆的极坐标方程是ρ=2cos ⎝⎛⎭⎪⎫θ-π6.5.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数)的右顶点,则常数a 的值为3.解析:由直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,得y =x -a.由椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ,得x 29=y24=1.所以椭圆C 的右顶点为(3,0).因为直线l 过椭圆的右顶点,所以0=3-a ,即a =3.一、选择题1.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是(C )A.⎝ ⎛⎭⎪⎫1,-π3B.⎝ ⎛⎭⎪⎫2,4π3C.⎝ ⎛⎭⎪⎫2,-π3D.⎝⎛⎭⎪⎫2,-4π3 2.若圆的方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),直线的方程为⎩⎪⎨⎪⎧x =t +1,y =t -1(t 为参数),则直线与圆的位置关系是(B )A .相离B .相交C .相切D .不能确定3.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cosθ,则直线l 被圆C 截得的弦长为(D )A.14 B .214 C. 2 D .2 2解析:由题意可得直线和圆的方程分别为x -y -4=0,x 2+y 2=4x ,所以圆心C(2,0),半径r =2,圆心(2,0)到直线l 的距离d =2,由半径,圆心距,半弦长构成直角三角形,解得弦长为2 2.4.已知动直线l 平分圆C :(x -2)2+(y -1)2=1,则直线l 与圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数)的位置关系是(A )A .相交B .相切C .相离D .过圆心解析:动直线l 平分圆C :(x -2)2+(y -1)2=1,即圆心(2,1)在直线l 上,又圆O :⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ的一般方程为x 2+y 2=9且22+12<9,故点(2,1)在圆O 内,则直线l 与圆O 的位置关系是相交.二、填空题5.在平面直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎪⎨⎪⎧y =sin θ-2,x =cos θ(θ是参数),若以O 为极点,x 轴的正半轴为极轴,则曲线C 的极坐标方程可写为ρ2+4ρsin_θ+3=0.解析:在平面直角坐标系xOy 中,⎩⎪⎨⎪⎧y =sin θ-2,x =cos θ(θ是参数),∴⎩⎪⎨⎪⎧y +2=sin θ,x =cos θ.依据sin 2θ+cos 2θ=1,可得x 2+(y +2)2=1,即x 2+y 2+4y +3=0.∴曲线C 的极坐标方程为ρ2+4ρsin θ+3=0.6.在平面直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,则圆C 的圆心的极坐标为⎝⎛⎭⎪⎫2,π2.三、解答题7.求极点到直线2ρ=1sin ⎝⎛⎭⎪⎫θ+π4(ρ∈R)的距离.解析:由2ρ=1sin ⎝ ⎛⎭⎪⎫θ+π4⇒ρsin θ+ρcos θ=1⇒x +y =1,故d =|0+0-1|12+12=22. 8.极坐标系中,A 为曲线ρ2+2ρcos θ-3=0上的动点,B 为直线ρcos θ+ρsin θ-7=0上的动点,求|AB|的最小值.9.(2015·大连模拟)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),将曲线C 1上全部点的横坐标伸长为原来的2倍,纵坐标伸长为原来的3倍,得到曲线C 2.以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :ρ(cos θ-2sin θ)=6.(1)求曲线C 2和直线l 的一般方程;(2)P 为曲线C 2上随意一点,求点P 到直线l 的距离的最值.解析:(1)由题意可得C 2的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),即C 2:x 24+y23=1,直线l :ρ(cos θ-2sin θ)=6化为直角坐标方程为x -2y -6=0.(2)设点P(2cos θ,3sin θ),由点到直线的距离公式得点P 到直线l 的距离为 d =|2cos θ-23sin θ-6|5=⎪⎪⎪⎪⎪⎪6+4⎝ ⎛⎭⎪⎫32sin θ-12cos θ5=⎪⎪⎪⎪⎪⎪6+4sin ⎝⎛⎭⎪⎫θ-π65=55⎣⎢⎡⎦⎥⎤6+4sin ⎝⎛⎭⎪⎫θ-π6. 所以255≤d ≤25,故点P 到直线l 的距离的最大值为25,最小值为255.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l经过定点P(3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程.(2)设直线l 与曲线C 相交于A ,B 两点,求|PA|·|PB|的值.解析:(1)由曲线C 的参数方程⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),得一般方程为(x -1)2+(y -2)2=16,即x 2+y 2-2x -4y =11=0.直线l 经过定点P(3,5),倾斜角为π3,直线的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 是参数).(2)将直线的参数方程代入x 2+y 2-2x -4y -11=0,整理,得t 2+(2+33)t -3=0,设方程的两根分别为t 1,t 2,则t 1t 2=-3,因为直线l 与曲线C 相交于A ,B 两点,所以|PA|·|PB|=|t 1t 2|=3.。
高三数学参数方程试题答案及解析
高三数学参数方程试题答案及解析1.在平面直角坐标系中,曲线(为参数)的普通方程为___________.【答案】【解析】联立消可得,故填.【考点】参数方程2.直线与直线为参数)的交点到原点O的距离是()A.1B.C.2D.2【答案】C【解析】将直线化普通方程为.解得两直线交点为,此交点到原点的距离为.故C正确.【考点】1参数方程和普通方程间的互化;2两点间的距离公式.3.在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。
【答案】【解析】由参数方程知: 曲线C1与C2的普通方程分别为,,所以解方程组可得交点坐标为.【考点】本题考查直线与圆的参数方程与普通方程的互化,以及它们交点坐标的求解.4.在平面直角坐标系中,直线经过点P(0,1),曲线的方程为,若直线与曲线相交于,两点,求的值.【答案】1【解析】利用直线的参数方程的几何意义,可简便解决有关线段乘积问题. 设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得.所以.【解】设直线的参数方程为(为参数,为倾斜角)设,两点对应的参数值分别为,.将代入,整理可得. 5分(只要代入即可,没有整理成一般形式也可以)所以. 10分【考点】直线的参数方程5.如图,以过原点的直线的倾斜角为参数,则圆的参数方程为 .【答案】(为参数)【解析】x2+y2-x=0圆的半径为,圆心为C(,0).连接CP,则∠PCx=2所以P点的坐标为:(为参数)6.在极坐标系中,圆上的点到直线的距离的最小值为________.【答案】1【解析】圆的直角坐标方程为,直线的直角坐标方程为,圆心到直线的距离,圆上的点到直线的距离的最小值为.【考点】直角坐标与极坐标、距离公式.7.已知曲线的参数方程为(为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线.(1)求曲线的普通方程;(2)若点在曲线上,点,当点在曲线上运动时,求中点的轨迹方程.【答案】(1);(2).【解析】本题主要考查参数方程与普通方程的互化、中点坐标公式等基础知识,考查学生的转化能力、分析能力、计算能力.第一问,将曲线C的坐标直接代入中,得到曲线的参数方程,再利用参数方程与普通方程的互化公式,将其转化为普通方程;第二问,设出P、A点坐标,利用中点坐标公式,得出,由于点A在曲线上,所以将得到的代入到曲线中,得到的关系,即为中点的轨迹方程.试题解析:(1)将代入,得的参数方程为∴曲线的普通方程为. 5分(2)设,,又,且中点为所以有:又点在曲线上,∴代入的普通方程得∴动点的轨迹方程为. 10分【考点】参数方程与普通方程的互化、中点坐标公式.8.若直线的参数方程为,(t为参数),求直线的斜率.【答案】-【解析】k=.∴直线的斜率为-.9.将参数方程化为普通方程,并说明它表示的图形.【答案】y=1-2x2,抛物线的一部分.【解析】由可得即+x2=1,化简得y=1-2x2.又-1≤x2=sin2θ≤1,则-1≤x≤1,则普通方程为y=1-2x2,在时此函数图象为抛物线的一部分.10.已知点P(x,y)是圆x2+y2=2y上的动点.(1)求2x+y的取值范围;(2)若x+y+a≥0恒成立,求实数a的取值范围.【答案】(1)-+1≤2x+y≤+1.(2)a≥-1【解析】(1)设圆的参数方程为2x+y=2cosθ+sinθ+1=sin(θ+φ)+1,∴-+1≤2x+y≤+1.(2)x+y+a=cosθ+sinθ+1+a≥0,∴a≥-(cosθ+sinθ)-1=-sin-1,∴a≥-1.11.在椭圆=1上找一点,使这一点到直线x-2y-12=0的距离最小.【答案】(2,-3)【解析】设椭圆的参数方程为,d=,当cos=1时,dmin=,此时所求点为(2,-3)12.在平面直角坐标系xOy中,若直线l1: (s为参数)和直线l2: (t为参数)平行,则常数a的值为________.【答案】a=4【解析】由消去参数s,得x=2y+1. 由消去参数t,得2x=ay+a.∵l1∥l2,∴=,∴a=4.13.已知点P是曲线为参数,上一点,O为原点.若直线OP的倾斜角为,则点的直角坐标为.【答案】【解析】不妨设点(),则由两点斜率的计算公式得,由题知(),则,故填【考点】参数方程倾斜角14.在平面直角坐标系xOy中,动点P到直线l:x=2的距离是到点F(1,0)的距离的倍.(1)求动点P的轨迹方程;(2)设直线FP与(1)中曲线交于点Q,与l交于点A,分别过点P和Q作l的垂线,垂足为M,N,问:是否存在点P使得△APM的面积是△AQN面积的9倍?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)x2+2y2=2(2)存在点P为(0,±1)【解析】(1)设点P的坐标为(x,y).由题意知=|2-x|,化简,得x2+2y2=2,所以动点P的轨迹方程为x2+2y2=2.(2)设直线FP的方程为x=ty+1,点P(x1,y1),Q(x2,y2),因为△AQN∽△APM,所以有PM=3QN,由已知得PF=3QF,所以有y1=-3y2,①由得(t2+2)y2+2ty-1=0,Δ=4t2+4(t2+2)=8>0y 1+y2=-②,y1·y2=-③,由①②③得t=-1,y1=1,y2=-或t=1,y1=-1,y2=,所以存在点P为(0,±1).15.过点M(3,4),倾斜角为的直线与圆C:(为参数)相交于A、B两点,试确定的值.【答案】15【解析】将过点M(3,4),倾斜角为的直线写成参数方程.再将圆的参数方程写成一般方程,联立后求得含t的一元二次方程.将的值转化为韦达定理的根的乘积关系.即可得结论.本小题主要就是考查直线的参数方程中t的几何意义.试题解析:直线l的参数方程为.代入C:.方程得到:.设为方程两根,则.【考点】1.直线的参数方程.2.圆的参数方程.16.将参数方程(为参数,)化成普通方程为 ______ .【答案】【解析】由已知得,将两式平方相加有,,所以普通方程为.【考点】参数方程与普通方程的互化.17.已知直线l过点P(2,0),斜率为直线l和抛物线y2=2x相交于A、B两点,设线段AB的中点为M,求:(1)|PM|; (2)|AB|.【答案】(1);(2)【解析】(1)写出过点P(2,0)的直线方程的参数方程,联立抛物线的方程得到一个含参数t 二次方程.通过韦达定理即定点到中点的距离可得故填.(2)弦长公式|AB|=|t2-t1|再根据韦达定理可得故填.本题主要知识点是定点到弦所在线段中点的距离.弦长公式.这两个知识点都是参数方程中的长测知识点.特别是到中点的距离的计算要理解清楚.试题解析:(1)∵直线l过点P(2,0),斜率为设直线的倾斜角为α,tanα=sinα=cosα=∴直线l的参数方程为 (t为参数)(*) 1分∵直线l和抛物线相交,将直线的参数方程代入抛物线方程y2=2x中,整理得8t2-15t-50=0,且Δ=152+4×8×50>0,设这个一元二次方程的两个根为t1、t2,由根与系数的关系,得t1+t2=t1t2= 3分由M为线段AB的中点,根据t的几何意义,得 4分(2)|AB|=|t2-t1|= 7分【考点】1.直线的参数方程的表示.2.定点到中的距离公式.3.弦长公式.18.在直角坐标系xOy中,过椭圆(为参数)的右焦点,斜率为的直线方程为【答案】【解析】由,即,所以右焦点坐标为(4,0).又斜率为,故易得所求直线方程为.即.【考点】参数方程、直线的点斜式方程19.已知在直角坐标系中,曲线的参数方程为为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点为极点,轴的非负半轴为极轴)中,曲线的方程为.(Ⅰ)求曲线直角坐标方程;(Ⅱ)若曲线、交于A、B两点,定点,求的值.【答案】(Ⅰ)曲线直角坐标方程为;(Ⅱ).【解析】(Ⅰ)由已知,两边都乘以,得,结合即可求得曲线的直角坐标方程(普通方程);(Ⅱ)由已知条件,把的参数方程为参数)代入,得由韦达定理可得:,进一步可计算出的值.试题解析:(Ⅰ)由已知,得,.3分(Ⅱ)把的参数方程代入,得.5分.7分【考点】直线的参数方程与极坐标方程.20.(坐标系与参数方程选做题)在极坐标系中,圆的圆心到直线的距离是 .【答案】.【解析】化圆的方程为直角坐标方程为,化为标准方程为,圆心坐标为,直线的直角坐标方程为,它的一般方程为,故圆的圆心到直线的距离是.【考点】1.极坐标方程与直角坐标方程之间的转化;2.点到直线的距离21.(坐标系与参数方程选做题)圆的极坐标方程为,则圆的圆心的极坐标是.【答案】【解析】圆的圆心为,半径为的圆的极坐标方程为.因为,所以此圆的圆心坐标为.【考点】圆的极坐标方程22.在平面直角坐标系中,过椭圆的右焦点,且与直线(为参数)平行的直线截椭圆所得弦长为.【答案】【解析】椭圆的普通方程为,则右焦点为(1,0);直线的普通方程为,过(1,0)与直线平行的直线为,由得,所以所求的弦长为.【考点】1.参数方程与普通方程的互化;2.两点间的距离公式和弦长公式.23.以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.【答案】(Ⅰ)2;(Ⅱ).【解析】分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.试题解析:解:(Ⅰ)在直角坐标系xOy中,可得点,曲线为圆,圆心为,半径为1,∴=3,∴的最小值为.(5分)(Ⅱ)由已知,曲线为圆,曲线为圆,圆心为,半径为t,∵曲线与曲线有两个不同交点,,解得,∴正数t的取值范围是.(10分)【考点】极坐标与普通方程的互化,参数方程与普通方程的互化.24.以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.【答案】(Ⅰ)2;(Ⅱ).【解析】分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.试题解析:解:(Ⅰ)在直角坐标系xOy中,可得点,曲线为圆,圆心为,半径为1,∴=3,∴的最小值为.(5分)(Ⅱ)由已知,曲线为圆,曲线为圆,圆心为,半径为t,∵曲线与曲线有两个不同交点,,解得,∴正数t的取值范围是.(10分)【考点】极坐标与普通方程的互化,参数方程与普通方程的互化.25.在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,得曲线的极坐标方程为()(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;(Ⅱ)直线: (为参数)过曲线与轴负半轴的交点,求与直线平行且与曲线相切的直线方程【答案】(Ⅰ)、;(Ⅱ)或【解析】(Ⅰ) 利用参数方程化普通方程、极坐标方程化直角坐标方程来求;(Ⅱ)利用点到直线的距离来求试题解析:(Ⅰ)曲线的普通方程为:; 2分由得,∴曲线的直角坐标方程为: 4分(或:曲线的直角坐标方程为: )(Ⅱ)曲线:与轴负半轴的交点坐标为,又直线的参数方程为:,∴,得,即直线的参数方程为:得直线的普通方程为:, 6分设与直线平行且与曲线相切的直线方程为: 7分∵曲线是圆心为,半径为的圆,得,解得或 9分故所求切线方程为:或 10分【考点】参数方程化普通方程、极坐标方程转化为直角坐标方程,考查学生分析问题、解决问题的能力26.已知圆的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(2)圆,是否相交?若相交,请求出公共弦长,若不相交,请说明理由.【答案】(1),;(2)相交,两圆的相交弦长为.【解析】本题考查坐标系与参数方程、极坐标与直角坐标方程的互化,考查学生的转化能力和计算能力.第一问,利用互化公式将参数方程化为普通方程,将极坐标方程化为直角坐标方程;第二问,通过数形结合,利用几何性质求相交弦长.试题解析:(1)由(为参数),得,由,得,即,整理得,. 5分(2)由于圆表示圆心为原点,半径为2的圆,圆表示圆心为,半径为2的圆,又圆的圆心在圆上,由几何性质易知,两圆的相交弦长为. 10分【考点】1.参数方程与普通方程的互化;2.极坐标方程与直角坐标方程的互化;3.相交弦问题.27.在直角坐标系中,已知曲线的参数方程是(是参数),若以为极点,轴的正半轴为极轴,则曲线的极坐标方程可写为________________.【答案】或【解析】曲线的标准方程为,令,得到极坐标方程为,也可转化为.【考点】圆的参数方程和极坐标方程.28.已知直线的参数方程为:(为参数),圆的极坐标方程为,那么,直线与圆的位置关系是 ( )A.直线平分圆B.相离C.相切D.相交【答案】D【解析】先把参数方程化为,再把圆的极坐标方程化成,再利用圆心到直线的距离.【考点】1.参数方程;2.极坐标.29.在平面直角坐标系中,直线的参数方程为,(为参数),曲线的参数方程为,(为参数),试求直线和曲线的普通方程,并求它们的公共点的坐标.【答案】.【解析】因为直线的参数方程为,(为参数),由,得代入得到直线的普通方程为.同理得曲线的普通方程为.联立方程组,解得公共点的坐标为,.【考点】本小题主要考查参数方程与普通方程的互化以及直线与抛物线的位置关系等基础知识,考查转化问题的能力.30.(坐标系与参数方程)在平面直角坐标系xOy中,直线的参数方程是(t为参数)。
高中数学极坐标与参数方程典型例题及答案
高中数学极坐标与参数方程典型例题及答案1. 极坐标与参数方程的基本概念在高中数学中,我们学习到了直角坐标系下的函数图像、方程和曲线的性质。
然而,在极少数情况下,采用直角坐标系来描述函数图像可能并不是最方便的方式。
因此,我们引入了极坐标系和参数方程的概念。
极坐标系是一种将平面上的点用它们到某一点距离和与某一方向线段之间的夹角来表示的坐标系。
在极坐标系中,每一个点都表示为一个有序对(r,θ),其中r代表距离,θ代表夹角。
参数方程是一种使用一个参数来表示函数图像上的点坐标的方式。
我们用参数t来表示一个点的坐标,并通过参数方程给出x和y的关系式。
通过引入极坐标系和参数方程,我们可以更加直观地描述某些特殊的函数图像,同时也方便求解与这些函数有关的问题。
2. 极坐标题型与答案例题1求曲线r = 4sinθ + 2cosθ的极坐标方程并画出图像。
解答:首先,我们将给出的极坐标方程转化为直角坐标系的方程。
根据极坐标到直角坐标的转化公式,我们有:x = r * cosθ y = r * sinθ代入r = 4sinθ + 2cosθ,可得:x = (4sinθ + 2cosθ) * cosθ y = (4sinθ + 2cosθ) * sinθ化简后得到直角坐标系下的方程:x = 4sinθ * cosθ + 2cos^2θ y = 4sin^2θ +2sinθ * cosθ将θ的取值范围设为0°至360°,作出图像如下:x = 4sinθ * cosθ + 2cos^2θy = 4sin^2θ + 2sinθ * cosθ例题2已知曲线y = sin(t),x = cos(t),请写出x和y的普通方程,并求曲线上的一点P的坐标,使得t = π/6。
解答:已知x = cos(t)和y = sin(t),我们可以得到普通方程: x^2 + y^2 = cos^2(t) +sin^2(t) = 1此外,当t = π/6时,我们有:x = cos(π/6) = √3/2 y = sin(π/6) = 1/2因此,当t = π/6时,曲线上的点P的坐标为(√3/2, 1/2)。
高考数学十年真题专题解析—极坐标系与参数方程
极坐标系与参数方程考点116平面直角坐标系中的伸缩变换考点117极坐标和直角坐标的互化1.(2020全国Ⅱ文理21)已知曲线12,C C 的参数方程分别为2124cos ,:4sin x C y θθ⎧=⎪⎨=⎪⎩(θ为参数),21,:1x t tC y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将12,C C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设12,C C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解析】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=,由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭.设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=.2.(2020全国Ⅲ文理22)在直角坐标系xOy 中,曲线C 的参数方程为222,23x t t y t t⎧=--⎪⎨=-+⎪⎩(t 为参数且1t ≠),C 与坐标轴交于,A B 两点.(1)求AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【解析】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==.(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.3.(2020江苏22)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.【解析】(1)1122cos24;4sin 236ππρρρρ=∴==∴=Q Q .(2)5cos 2,4sin 4sin cos 2,sin 21[0,2),44ππρθρθθθθθπθ==∴=∴=∈∴=Q Q ,当4πθ=时ρ=;当54πθ=时0ρ=-<(舍);即所求交点坐标为当)4π.4.(2019全国II 文理22)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==由已知得||||cos23OP OA π==.设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭,经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上.所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ==即 4cos ρθ=..因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.5.(2019全国III 文理22)如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD.(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【解析】(1)由题设可得,弧 ,,AB BCCD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-,所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫= ⎪⎝⎭ ,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫= ⎪⎝⎭ ,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=- ⎪⎝⎭.(2)设(,)P ρθ,由题设及(1)知若π04θ,则2cos θ=,解得π6θ=;若π3π44θ ,则2sin θ=π3θ=或2π3θ=;若3ππ4θ ,则2cos θ-=,解得5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.考点118参数方程与普通方程的互化6.(2020上海14)已知直线方程3410x y ++=的一个参数方程可以是()A .1314x ty t=+⎧⎨=-+⎩B .1413x t y t=-⎧⎨=--⎩C .1314x t y t=-⎧⎨=-+⎩D .1413x t y t=+⎧⎨=--⎩【答案】D【解析】A .参数方程可化简为4370x y --=,故A 不正确;B .参数方程可化简为3470x y --=,故B 不正确;C .参数方程可化简为4310x y +-=,故C 不正确;D .参数方程可化简为3410x y ++=,故D 正确.故选D .7.(2018全国Ⅲ)[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.【解析】(1)O 的直角坐标方程为221x y +=.当2απ=时,l 与O 交于两点.当2απ≠时,记tan k α=,则l 的方程为y kx =-.l 与O 交于两点当且仅当1<,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈.综上,α的取值范围是(,44π3π.(2)l的参数方程为cos ,(sin x t t y t αα=⎧⎪⎨=+⎪⎩为参数,44απ3π<<).设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A BP t t t +=,且A t ,B t满足2sin 10t α-+=.于是A B t t α+=,P t α=.又点P 的坐标(,)x y满足cos ,sin .P P x t y t αα=⎧⎪⎨=+⎪⎩所以点P的轨迹的参数方程是22,2cos 222x y αα⎧=⎪⎪⎨⎪=-⎪⎩(α为参数,44απ3π<<).考点119极坐标方程与参数方程的综合应用8.(2018北京文理)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =___.【答案】1【解析】利用cos x ρθ=,sin y ρθ=,可得直线的方程为0x y a +-=,圆的方程为22(1)1x y -+=,所以圆心(1,0),半径1r =,由于直线与圆相切,故圆心到直线的距离等于半径,即1=,∴1a =或1,又0a >,∴1a =+.9.(2017北京文理)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0)),则||AP 的最小值为___________.【答案】1【解析】圆的普通方程为222440x y x y +--+=,即22(1)(2)1x y -+-=.设圆心为(1,2)C ,所以min ||||211AP PC r =-=-=.10.(2017天津文理)在极坐标系中,直线4cos(106ρθπ-+=与圆2sin ρθ=的公共点的个数为_____.【答案】2【解析】直线的普通方程为210y ++=,圆的普通方程为22(1)1x y +-=,因为圆心到直线的距离314d =<,所以有两个交点.11.(2016北京文理)在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,A B 两点,则||AB =.【答案】2【解析】将cos sin 10ρθθ-=化为直角坐标方程为10x --=,将ρ=2cos θ化为直角坐标方程为22(1)1x y -+=,圆心坐标为(1,0),半径r=1,又(1,0)在直线10x -=上,所以|AB|=2r=2.12.(2015广东文理)已知直线l 的极坐标方程为2sin()24πρθ-=,点Α的极坐标为722,)4πA (,则点Α到直线l 的距离为.【答案】522【解析】由2sin()24πρθ-=得22(sin cos )22ρθθ´-=,所以1y x -=,故直线l 的直角坐标方程为10x y -+=,而点7(22,)4A π对应的直角坐标为(2,2)A -,所以点(2,2)A -到直线l :10x y -+=的距离为|221|5222++=.13.(2015安徽文理)在极坐标系中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是.【答案】6【解析】圆8sin ρθ=即28sin ρρθ=,化为直角坐标方程为22(4)16x y +-=,直线3πθ=,则tan 3θ=,化为直角坐标方程为30x y -=,圆心(0,4)到直线的距离为|4|24-=,所以圆上的点到直线距离的最大值为6.14.(2020全国Ⅰ文理21)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=.(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【解析】(1)当1k =时,曲线1C 的参数方程为cos ,sin x t y t=⎧⎨=⎩(t 为参数),两式平方相加得221x y +=,∴曲线1C 表示以坐标原点为圆心,半径为1的圆.(2)当4k =时,曲线1C 的参数方程为44cos ,sin x t y t⎧=⎨=⎩(t 为参数),∴0,0x y ≥≥,曲线1C 的参数方程化为22cos (sin x tt y t==为参数),两式相加得曲线1C 方程为1x y +=,得1y x =-,平方得1,01,01y x x y=-+≤≤≤≤,曲线2C的极坐标方程为4cos16sin30ρθρθ-+=,曲线2C直角坐标方程为41630x y-+=,联立12,C C方程1,41630y xx y⎧=-+⎪⎨-+=⎪⎩,整理得12130x-=12=136=(舍去),11,44x y∴==,12,C C∴公共点的直角坐标为11(,)44.15.(2019全国1文理22)在直角坐标系xOy中,曲线C的参数方程为2221141txttyt⎧-=⎪⎪+⎨⎪=⎪+⎩,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin110ρθθ+=.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.【解析】(1)因为221111tt--<≤+,且()22222222141211y t txt t⎛⎫-⎛⎫+=+=⎪⎪+⎝⎭⎝⎭+,所以C的直角坐标方程为221(1)4yx x+=≠-.l的直角坐标方程为2110x++=.(2)由(1)可设C的参数方程为cos,2sinxyαα=⎧⎨=⎩(α为参数,ππα-<<).C上的点到lπ4cos113α⎛⎫-+⎪=.当2π3α=-时,π4cos113α⎛⎫-+⎪⎝⎭取得最小值7,故C上的点到l.16.(2018全国Ⅰ文理)在直角坐标系xOy中,曲线1C的方程为||2y k x=+.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线2C的极坐标方程为22cos30ρρθ+-=.(1)求2C的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.【解析】(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22=,故0k =或43k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点.综上,所求1C 的方程为4||23y x =-+.17.(2018全国Ⅱ文理)在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin ,=⎧⎨=⎩x θy θ(θ为参数),直线l 的参数方程为1cos 2sin =+⎧⎨=+⎩x t αy t α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.【解析】(1)曲线C 的直角坐标方程为221416+=x y .当cos 0α≠时,l 的直角坐标方程为tan 2tan αα=⋅+-y x ;当cos 0α=时,l 的直角坐标方程为1=x .(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80ααα+++-=t t .①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120+=t t .又由①得1224(2cos sin )13cos ααα++=-+t t ,故2cos sin 0αα+=,于是直线l 的斜率tan 2α==-k .18.(2018江苏)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.【解析】因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过(4,0)A ,倾斜角为π6,所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB=π6,连结OB ,因为OA 为直径,从而∠OBA=π2,所以π4cos 6AB ==.因此,直线l 被曲线C截得的弦长为.19.(2017全国Ⅰ文理)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l,求a .【解析】(1)曲线C 的普通方程为2219x y +=.当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩,从而C 与l 的交点坐标为(3,0),2124(,2525-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l的距离为d =.当4a -≥时,d=,所以8a =;当4a <-时,d=16a =-.综上,8a =或16a =-.20.(2017全国Ⅱ文理)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,3π,点B 在曲线2C 上,求OAB ∆面积的最大值.【解析】(1)设P 的极坐标为(,)ρθ(0)ρ>,M 的极坐标为1(,)ρθ1(0)ρ>.由椭圆知||OP ρ=,14||cos OM ρθ==.由||||16OM OP ⋅=得2C 的极坐标方程4cos ρθ=(0)ρ>,因此2C 的直角坐标方程为22(2)4(0)x y x -+=≠.(2)设点B 的极坐标为(,)B ρα(0)B ρ>.由题设知||2OA =,4cos B ρα=,于是OAB ∆面积1||sin 2B S OA AOB ρ=⋅⋅∠4cos |sin()|3παα=-32|sin(2|32πα=--2+≤当12πα=-时,S取得最大值2+OAB ∆面积的最大值为2+.21.(2017全国Ⅲ文理)在直角坐标系xOy 中,直线1l 的参数方程为2x ty kt =+⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x mm y k =-+⎧⎪⎨=⎪⎩(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :(cos sin )ρθθ+-0=,M 为3l 与C 的交点,求M 的极径.【解析】(1)消去参数t 得1l 的普通方程():l y k x =-12,消去参数m 得2l 的普通方程():l y x k=+212.设(,)P x y ,由题设得()()y k x y x k ⎧=-⎪⎨=+⎪⎩212,消去k 得()x y y -=≠2240,所以C 的普通方程为()x y y -=≠2240.(2)C 的极坐标方程为()cos sin ρθθ-=2224(),θπθπ≠0<<2,联立()()cos sin cos sin ρθθρθθ⎧-=⎪⎨⎪⎩2224+得()cos sin cos sin θθθθ-=2+,故tan θ=-13,从而cos sin θθ2291=,=1010,代入()cos sin ρθθ222-=4得ρ2=5,所以交点M22.(2017江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为82x tty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】直线l 的普通方程为280x y -+=.因为点P 在曲线C上,设2(2,)P s ,从而点P 到直线l的的距离22d ==s =min 455d =.因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l的距离取到最小值5.23.(2016全国I 文理)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :4cos ρθ=.(I)说明1C 是哪种曲线,并将1C 的方程化为极坐标方程;(II)直线3C 的极坐标方程为0=a θ,其中0a 满足0tan =2a ,若曲线1C 与2C 的公共点都在3C 上,求a .【解析】(1)cos 1sin x a t y a t=⎧⎨=+⎩(t 均为参数),∴()2221x y a +-=①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-=.∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-=,即为1C 的极坐标方程.(2)24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,,224x y x ∴+=,即()2224x y -+=②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C ,①—②得:24210x y a -+-=,即为3C ,∴210a -=,∴1a =.24.(2016全国II 文理)在直角坐标系xOy 中,圆C 的方程为()22625x y ++=.(I)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B 两点,10AB =,求l 的斜率.【解析】(Ⅰ)整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.(Ⅱ)记直线的斜率为k ,则直线的方程为0kx y -=,由垂径定理及点到直线距离公式知:226102521kk ⎛⎫-=- ⎪ ⎪+⎝⎭,即22369014k k =+,整理得253k =,则153k =±.25.(2016全国III 文理)在直角坐标系xOy 中,曲线1C 的参数方程为3cos sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+=.(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.【解析】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(Ⅱ)由题意,可设点P 的直角坐标为3,sin )αα,因为2C 是直线,所以||PQ 的最小值,即为P 到2C的距离()d α的最小值,|3cos sin 4|()2|sin()2|32d ααπαα+-==+-.当且仅当2()6k k Z παπ=+∈时,()d α2,此时P 的直角坐标为31(,)22.26.(2016江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为()11,23,2x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.【解析】椭圆C 的普通方程为2214y x +=,将直线l 的参数方程11232x t y t⎧=+⎪⎪⎨⎪=⎪⎩,代入2214y x +=,得223()12(1)124t ++=,即27160t t +=,解得10t =,2167t =-,所以1216||7AB t t =-=.27.(2015全国Ⅰ文理)在直角坐标系xOy 中,直线1C :2x =-,圆2C :22(1)(2)1x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【解析】(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=222ρ2,|MN|=1ρ-2ρ2,因为2C 的半径为1,则2C MN 的面积o121sin 452⨯=12.28.(2015全国Ⅱ文理)在直角坐标系xOy 中,曲线1C :cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数,t ≠0)其中0απ<≤,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :2sin ρθ=,3C :23ρθ=.(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 的最大值.【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C的直角坐标方程为220x y +-=.联立222220,0,x y y x y ⎧+-=⎪⎨+-=⎪⎩解得0,0,x y =⎧⎨=⎩或3,23,2x y ⎧=⎪⎪⎨⎪=⎪⎩所以2C 与1C 交点的直角坐标为(0,0)和33,22.(Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B的极坐标为,)αα.所以2sin AB αα=-4in(3s πα=-,当56πα=时,AB 取得最大值,最大值为4.29.(2015江苏)已知圆C的极坐标方程为2sin(404πρθ+--=,求圆C 的半径.【解析】以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xoy .圆C的极坐标方程为2sin cos 4022ρθθ⎛⎫+--= ⎪ ⎪⎝⎭,化简,得22sin 2cos 40ρρθρθ+--=.则圆C 的直角坐标方程为222240x y x y +-+-=,即()()22116x y -++=,所以圆C.30.(2015陕西文理)在直角坐标系xOy 中,直线l 的参数方程为13232x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρθ=.(Ⅰ)写出⊙C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.【解析】(Ⅰ)由2,sin ρθρθ==得,从而有(2222+,+3x y x y =-=所以.(Ⅱ)设13(3t,t),22P +又,则|PC |==,故当t =0时,|PC |取最小值,此时P 点的直角坐标为(3,0).31.(2014全国Ⅰ文理)已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.【解析】2cos .().3sin .x y θθθ=⎧⎨=⎩(I)曲线C的参数方程为为参数60.l x y +-=直线的普通方程为2……5分(Ⅱ)cos sin l θθ曲线C上任意一点P(2.3)到的距离为3sin 6.d θθ=+-4)6,tan .sin 303d PA θααα==+-=︒则其中为锐角,且sin 5PA θα当(+)=-1时,取得最大值,最大值为25sin()1.5PA θα+=当时,取得最小值,最小值为32.(2014全国Ⅱ文理)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.【解析】(I)C 的普通方程为22(1)1(01)x y y -+=≤≤,可得C 的参数方程为1cos ,sin ,x t y t =+⎧⎨=⎩(t 为参数,0t x ≤≤).(Ⅱ)设D (1cos ,sin )t t +.由(I)知C 是以G(1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与t 垂直,所以直线GD 与t 的斜率相同,tan 3t t π==.故D 的直角坐标为(1cos,sin 33ππ+,即33(,22.33.(2013全国Ⅰ文理)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.(Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤≤).【解析】将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为4π),(2,2π.34.(2013全国Ⅱ文理)已知动点P ,Q 都在曲线C :()2cos 2sin x y βββ=⎧⎨=⎩为参数上,对应参数分别为βα=与2βα=(02απ<<)M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【解析】(Ⅰ)由题意有()()2cos ,2sin ,2cos 2,2sin 2,P Q αααα因此()cos cos 2,sin sin 2M αααα++,M 的轨迹的参数方程为cos cos 2,sin sin 2,x y αααα=+⎧⎨=+⎩(02απ<<).(Ⅱ)M 点到坐标原点的距离d ==(02απ<<),当απ=时,0d =,故M 的轨迹过坐标原点.35.(2012全国文理)已知曲线1C 的参数方程是⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且A 、B 、C 、D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PD PC PB P A +++的取值范围.【解析】(1)点,,,A B C D 的极坐标为5411(2,),(2,),(2,),(2,)3636ππππ,点,,,A B C D 的直角坐标为(1,3),(3,1),(1,3),(3,1)----.(2)设00(,)P x y ;则002cos ()3sin x y ϕϕϕ=⎧⎨=⎩为参数,222222004416t PA PB PC PD x y =+++=++23220sin [32,52]ϕ=+∈.36.(2011全国文理)在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =uuu v uuuv,P 点的轨迹为曲线2C (Ⅰ)求2C 的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .【解析】(I)设(,)P x y ,则由条件知M(,22x y).由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩,从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数),(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=.射线3πθ=与1C 的交点A 的极径为14sin 3πρ=,射线3πθ=与2C 的交点B 的极径为28sin 3πρ=.所以21||||23AB ρρ-==。
高考复习-极坐标与参数方程
极坐标与参数方程知识集结知识元极坐标知识讲解1.极坐标系【知识点的认识】极坐标系与点的极坐标在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O称为极点,射线Ox称为极轴.设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.显然,每一个有序实数对(ρ,θ)决定一个点的位置.其中,ρ称为点M 的极径,θ称为点M的极角.由极径的意义可知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系,我们约定,极点的极坐标是极径ρ=0,极角θ可取任意角.2.简单曲线的极坐标方程【知识点的认识】一、曲线的极坐标方程定义:如果曲线C上的点与方程f(ρ,θ)=0有如下关系(1)曲线C上任一点的坐标(所有坐标中至少有一个)符合方程f(ρ,θ)=0;(2)以方程f(ρ,θ)=0的所有解为坐标的点都在曲线C上.则曲线C的方程是f(ρ,θ)=0.二、求曲线的极坐标方程的步骤:与直角坐标系里的情况一样①建系(适当的极坐标系)②设点(设M(ρ,θ)为要求方程的曲线上任意一点)③列等式(构造△,利用三角形边角关系的定理列关于M的等式)④将等式坐标化⑤化简(此方程f(ρ,θ)=0即为曲线的方程)三、圆的极坐标方程(1)圆心在极点,半径为r,ρ=r.(2)中心在C(ρ0,θ0),半径为r.ρ2+ρ02﹣2ρρ0cos(θ﹣θ0)=r2.四、直线的极坐标方程(1)过极点,θ=θ0(ρ∈R)(2)过某个定点垂直于极轴,ρcosθ=a(3)过某个定点平行于极轴,r sinθ=a(4)过某个定点(ρ1,θ1),且与极轴成的角度α,ρsin(α﹣θ)=ρ1sin(α﹣θ1)五、直线的极坐标方程步骤1、据题意画出草图;2、设点M(ρ,θ)是直线上任意一点;3、连接MO;4、根据几何条件建立关于ρ,θ的方程,并化简;5、检验并确认所得的方程即为所求.3.极坐标刻画点的位置【知识点的认识】点的极坐标设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.显然,每一个有序实数对(ρ,θ)决定一个点的位置.其中,ρ称为点M 的极径,θ称为点M的极角.由极径的意义可知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系,我们约定,极点的极坐标是极径ρ=0,极角θ可取任意角.4.极坐标系和平面直角坐标系的区别【知识点的认识】极坐标系与平面直角坐标系的区别平面直角坐标系极坐标定位方式横坐标、纵坐标角度和距离点与坐标点与坐标一一对应点与极坐标不一一对应外在形式原点,x,y轴极点,极轴本质两线相交定点圆与射线相交定点5.点的极坐标和直角坐标的互化【知识点的认识】坐标之间的互化(1)点的极坐标和直角坐标的互化以直角坐标系的原点O为极点,x轴的正半轴为极轴,且在两种坐标系中取相同的长度单位(如图).平面内任意一点P的直角坐标与极坐标分别为(x,y)和(ρ,θ),则由三角函数的定义可以得到如下两组公式:,.通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ<2π.(2)空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为:.(3)空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系为:.例题精讲极坐标例1.已知点A是曲线ρ=2cosθ上任意一点,则点A到直线ρsin(θ+)=4的距离的最小值是()A.1B.C.D.例2.在极坐标系中,已知圆C的方程为ρ=2cos(θ-),则圆心C的极坐标可以为()A.(2,)B.(2,)C.(1,)D.(1,)例3.已知点P(1,),则它的极坐标是()A.B.C.D.参数方程知识讲解1.参数方程化成普通方程【知识点的认识】参数方程和普通方程的互化由参数方程化为普通方程:消去参数,消参数的方法有代入法、加减(或乘除)消元法、三角代换法等.如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.2.直线的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tanα(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆+=1(a>b>0)(θ为参数)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.例题精讲参数方程例1.已知直线l:x-y+4=0与圆C:,则C上各点到l的距离的最小值为()A.2-2B.2C.2D.2+2例2.若圆的方程为(θ为参数),直线的方程为(t为参数),则直线与圆的位置关系是()A.相离B.相交C.相切D.不能确定例3.曲线x2+y2=1经过伸缩变换后,变成的曲线方程是()A.25x2+9y2=1B.9x2+25y2=1C.25x+9y=1D.+=1当堂练习单选题练习1.在直角坐标系xOy中,曲线C的方程为,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,射线M的极坐标方程为θ=α(ρ≥0).设射线m与曲线C、直线l分别交于A、B两点,则的最大值为()A.B.C.D.练习2.若点P的直角坐标为,则它的极坐标可以是()A.B.C.D.练习3.点P极坐标为,则它的直角坐标是()A.B.C.D.练习4.在极坐标系中,极点关于直线ρcosθ-ρsinθ+1=0对称的点的极坐标为()A.B.C.D.练习5.极坐标方程ρ=2sinθ表示的曲线为()A.两条直线B.一条射线和一个圆C.一条直线和一个圆D.圆练习6.在极坐标系中,圆ρ=cos(θ-)的圆心的极坐标为()A.(,-)B.(,)C.(1,-)D.(1,)练习7.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,长度单位不变,建立极坐标系,已知曲线C的极坐标方程为ρcos(θ-)=1,M,N分别为曲线C与x轴、y轴的交点,则MN的中点的极坐标为()A.(1,)B.(,)C.D.练习8.直线和直线=1的位置关系()A.相交但不垂直B.平行C.垂直D.重合填空题练习1.将点的极坐标(2,)化为直角坐标为_______.练习2.在极坐标系中,已知两点A、B的极坐标分别为(3,),(4,),则△AOB(其中O 为极点)的面积为___.练习3.在极坐标系中,极点到直线ρcosθ+ρsinθ=2的距离为___.练习4.在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为_____.练习5.在极坐标系中A(2,),B,(4,)两点间的距离___.练习6.原点与极点重合,x轴正半轴与极轴重合,则点(-2,-2)的极坐标是_______.解答题练习1.'在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数,0≤β<π),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)已知直线l与曲线C相交于A,B两点,且|OA|-|OB|=2,求β.'练习2.'已知曲线C的参数方程为(θ为参数),A(2,0),P为曲线C上的一动点.(Ⅰ)求动点P对应的参数从变动到时,线段AP所扫过的图形面积;(Ⅱ)若直线AP与曲线C的另一个交点为Q,是否存在点P,使得P为线段AQ的中点?若存在,求出点P坐标;若不存在,说明理由.'练习3.'已知曲线C1:(t为参数),C2:(θ为参数)(Ⅰ)将C1,C2的方程化为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值。
2020版新高考复习理科数学教学案:坐标系与参数方程 含答案
将直线l的参数方程代入曲线C的直角坐标方程整理.得t2+(2 sinα+2cosα)t-5=0.
因为Δ=(2 sinα+2cosα)2+20>0.所以可设该方程的两个根分别为t1.t2.
则t1+t2=-(2 sinα+2cosα).t1t2=-5.
【例2】[20xx·全国卷Ⅱ]在极坐标系中.O为极点.点M(ρ0.θ0)(ρ0>0)在曲线C:ρ=4sinθ上.直线l过点A(4,0)且与OM垂直.垂足为P.
(1)当θ0= 时.求ρ0及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时.求P点轨迹的极坐标方程.
解:(1)因为M(ρ0.θ0)在C上.当θ0= 时.
(1)求A.B两点间的距离;
(2)求点B到直线l的距离.
解:(1)设极点为O.在△OAB中.A .B .由余弦定理.得
AB= = .
(2)因为直线l的方程为ρsin =3.
则直线l过点 .倾斜角为 .
又B .所以点B到直线l的距离为
(3 - )×sin =2.
■模拟演练——————————————
1.[20xx·南昌二模]已知在平面直角坐标系xOy中.直线l的参数方程为 (t为参数).以坐标原点为极点.x轴非负半轴为极轴建立极坐标系.曲线C的极坐标方程为ρ2-2ρcosθ-2=0.点P的极坐标是 .
所以点P的直角坐标为(1,1).
(2)解法一:将 代入 +y2=1.并整理得41t2+110t+25=0.
Δ=1102-4×41×25=8 000>0.
故可设方程的两根为t1.t2.
则t1.t2为A.B对应的参数.且t1+t2=- .
依题意.点M对应的参数为 .
高三第一轮复习极坐标和参数方程
极坐标和参数方程【提纲挈领】请阅读下面文字,并在关键词下面记着重号 主干知识归纳1.坐标系(1)平面直角坐标系中的伸缩变换:设点P(x ,y)是平面直角坐标系中的任意一点,在变换 φ:⎩⎨⎧x′=λ·x λ>0,y′=μ·yμ>0的作用下,点P(x ,y)对应到P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. (2)直角坐标和极坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y),极坐标是(ρ,θ),则x =ρcosθ,y =ρsinθ且222,,0y x y tan x xρθ=+=≠.这就是直角坐标和极坐标的互化公式.(3)曲线的极坐标方程的概念:在极坐标系中,如果平面曲线C 上任意一点的极坐标至少有一个满足方程f(ρ,θ)=0,并且坐标适合f(ρ,θ)=0的点都在曲线C 上,那么方程f(ρ,θ)=0就叫做曲线C 的极坐标方程. 2.参数方程(1)参数方程的概念:一般地,在平面直角坐标中,如果曲线C 上任一点M 的坐标x ,y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩反过来,对于t 的每个允许值,由函数式()()x f t y g t =⎧⎨=⎩所确定的点M(x ,y)都在曲线C 上,那么方程()()x f t y g t =⎧⎨=⎩叫做曲线C 的参数方程,联系变数x ,y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的叫普通方程.(2)参数方程与普通方程的互化:参数方程化为普通方程的过程就是消参过程,常见方法有三种: ①代入法:利用解方程的技巧求出参数t ,然后代入消去参数; ②三角法:利用三角恒等式消去参数;③整体消元法:根据参数方程本身的结构特征,从整体上消去参数.化参数方程为普通方程F(x ,y)=0:在消参过程中注意变量x 、y 取值范围的一致性,必须根据参数的取值范围,确定f(t)和g(t)的值域即x 、y 的取值范围. (3)常见曲线的参数方程:①圆222x y r += 的参数方程为:⎩⎨⎧x =rcosθ,y =rsinθ(θ为参数);②圆()()22200x x y y r -+-=的参数方程为:00cos sin x x r y y r θθθ=+⎧⎨=+⎩(为参数) , ③椭圆22221x y a b+=的参数方程为:⎩⎨⎧x =acosθ,y =bsinθ(θ为参数);④抛物线2y =2px 的参数方程为:222x pt y pt⎧=⎨=⎩ (t 为参数);⑤过定点P(00,x y ),倾斜角为α的直线的参数方程为:00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数)方法规律总结1.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题,这二者互化的前提条件是:(1)极点与原点重合;(2)极轴与x 轴正方向重合;(3)取相同的单位长度.2.参数方程化为普通方程常见方法有三种:(1)代入法:利用解方程的技巧求出参数t ,然后代入消去参数.(2)三角法:利用三角恒等式消去参数.(3)整体消元法:根据参数方程本身的结构特征,从整体上消去.化参数方程为普通方程F(x ,y)=0时,在消参过程中注意变量x 、y 取值范围的一致性.第119课时 极坐标及参数方程【指点迷津】【类型一】极坐标与曲线的极坐标方程【例1】:在极坐标系中,已知直线过点(1,0),且其向上的方向与极轴的正方向所成的最小正角为π3,则直线的极坐标方程为________.【解析】:根据直线的位置特点,设出所求直线上点的坐标为(ρ,θ),结合三角形的知识建立ρ和θ之间的等式,即可求出该直线的极坐标方程.设直线上任意一点的坐标是(ρ,θ),由正弦定理得ρsin 2π3=1sin⎝⎛⎭⎫π3-θ,即ρsin ⎝⎛⎭⎫π3-θ=sin 2π3=32,∴所求直线的极坐标方程为ρsin ⎝⎛⎭⎫π3-θ=32. 答案:ρsin ⎝⎛⎭⎫π3-θ=32【例2】:在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点.设MN 的中点为P ,则直线OP 的极坐标方程为( ). 【解析】:P 的直角坐标为⎝⎛⎭⎫1,33,则点P 的极坐标为⎝⎛⎭⎫233,π6,所以直线OP 的极坐标方程为θ=π6,ρ∈R.答案:θ=π6,ρ∈R.【类型二】直线和曲线的参数方程【例1】:已知圆C :⎩⎨⎧x =1+cosθ,y =sinθ(θ为参数)和直线l :⎩⎨⎧x =2+tcosα,y =3+tsinα(其中t 为参数,α为直线l 的倾斜角).当直线l 与圆C 有公共点时,求α的取值范围.【解析】:圆C 的普通方程为:(x -1)2+y2=1,将直线l 的参数方程代入圆C 的普通方程,得t2+2(cosα+3sinα)t+3=0,直线与圆有公共点,则这个关于t 的一元二次方程有解, 故Δ=4(cosα+3sinα)2-12≥0,即sin2⎝⎛⎭⎫α+π6≥34,即sin ⎝⎛⎭⎫α+π6≥32或sin ⎝⎛⎭⎫α+π6≤-32.又0≤α<π,故只能sin ⎝⎛⎭⎫α+π6≥32,即π3≤α+π6≤2π3,即π6≤α≤π2. 答案:π6≤α≤π2【例2】:已知P 为半圆C :)0,(sin cos πθθθθ≤≤⎩⎨⎧==为参数y x 上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为3π。
高三数学参数方程试题答案及解析
高三数学参数方程试题答案及解析1.(参数方程与极坐标)已知在直角坐标系中曲线的参数方程为(为参数且),在以原点为极点,以轴正半轴为极轴建立的极坐标系中曲线的极坐标方程为,则曲线与交点的直角坐标为__________.【答案】(2,2)【解析】由曲线的参数方程为(为参数且),消去参数得到曲线的普通方程为:;曲线的极坐标方程为化为直角坐标方程得;由方程组:解得,(舍去),故曲线与交点的直角坐标为(2,2).【考点】1.参数方程与普通方程的互化;2.极坐方程与直角坐标方程的互化;3.曲线的交点.2.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线的参数方程为(t为参数,),曲线C的极坐标方程为.(Ⅰ)求曲线C的直角坐标方程。
(Ⅱ)设直线与曲线C相交于A,B两点,当a变化时,求的最小值【答案】(Ⅰ)(Ⅱ)4【解析】(Ⅰ)将两边乘以得,,将代入上式得曲线C的直角坐标方程;(Ⅱ)将将直线的参数方程代入曲线C的普通方程中,整理关于t的二次方程,设M,N两点对应的参数分别为,利用一元二次方程根与系数将,用表示出来,利用直线参数方程中参数t的几何意义得,|AB|=,再转化为关于与的函数,利用前面,关于的表示式,将上述函数化为关于的函数,利用求最值的方法即可求出|AB|的最小值.试题解析:(Ⅰ)由,得所以曲线C的直角坐标方程为(4分)(Ⅱ)将直线l的参数方程代入,得设A、B两点对应的参数分别为t1、t2,则t 1+t2=,t1t2=,∴|AB|=|t1-t2|==,当时,|AB|的最小值为4 (10分)【考点】极坐标方程与直角坐标互化,直线与抛物线的位置关系,直线的参数方程中参数t的几何意义,设而不求思想3.直线与直线为参数)的交点到原点O的距离是()A.1B.C.2D.2【答案】C【解析】将直线化普通方程为.解得两直线交点为,此交点到原点的距离为.故C正确.【考点】1参数方程和普通方程间的互化;2两点间的距离公式.4.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【答案】(1)(2)(, ),(2, )【解析】(1)将消去参数t,化为普通方程 , 即C1:.将代入得.所以C1的极坐标方程为.(2)C2的普通方程为 .由解得或所以C1与C2交点的极坐标分别为(, ),(2, )5.已知曲线的极坐标方程是,直线的参数方程是(为参数).设直线与轴的交点是,是曲线上一动点,求的最大值.【答案】【解析】首先将曲线的极坐标方程、直线的参数方程转化为直角坐标方程,可知,曲线是以为圆心,1为半径的圆,由直线的直角坐标方程得,令,可求出点的坐标,则点与圆心的距离可以求,从而可得曲线上的动点与定点的最大值为.试题解析:曲线的直角坐标方程为,故圆的圆心坐标为(0,1),半径直线l的直角坐标方程, 令,得,即点的坐标为(2,0).从而,所以.即的最大值为。
2020高考参数方程必刷热点题型(含答案)
2020高考参数方程必刷热点题型1.(2020•长春二模)已知曲线1C 的参数方程为22cos (2sin x y ααα=+⎧⎨=⎩为参数),曲线2C 的参数方程为38cos 4(3sin4x t ty t ππ⎧=+⎪⎪⎨⎪=⎪⎩为参数) (Ⅰ)求1C 和2C 的普通方程;(Ⅱ)过坐标原点O 作直线交曲线1C 于点(M M 异于)O ,交曲线2C 于点N ,求||||ON OM 的最小值.2.(2020春•漳州月考)已知曲线C 的参数方程为2cos ,(sin ,x y ααα=⎧⎨=⎩为参数),P 是曲线C 上的点且对应的参数为β,02πβ<<.直线l 过点P 且倾斜角为πβ-.(1)求曲线C 的普通方程和直线l 的参数方程.(2)已知直线l 与x 轴,y 轴分别交于A ,B ,求证:||||PA PB 为定值.3.(2020•重庆模拟)在直角坐标系xOy 中,曲线C 的参数方程为2cos (2sin x y θθθ=⎧⎨=⎩为参数),直线l 的参数方程为cos (1sin x t t y t αα⎧=⎪⎨=+⎪⎩为参数).(1)求C 的普通方程,并判断直线l 与曲线C 的公共点的个数; (2)若曲线C 截直线l所得弦长为tan α的值.4.(2019秋•三门峡期末)在直角坐标系xOy 中,曲线1C 的参数方程为3cos (sin x y θθθ=⎧⎨=⎩为参数,[0θ∈,2))π,曲线2C的参数方程为(12x a t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数). (Ⅰ)求曲线1C ,2C 的普通方程;(Ⅱ)若曲线1C 上一点P 到曲线2C的距离的最大值为a .5.(2020•江西一模)在直角坐标系xOy 中,直线l 的参数方程为24(31x t a t y t ⎧=+⎨=-⎩为参数),圆C 的参数方程为21||cos (2sin x a y a θθθ=+⎧⎨=-+⎩为参数). (1)求l 和C 的普通方程;(2)将l 向左平移(0)m m >后,得到直线l ',若圆C 上只有一个点到l '的距离为1,求m .6.(2020•佛山一模)在直角坐标系xOy 中,曲线C 的参数方程为24(4x m m y m ⎧=⎨=⎩为参数).(1)写出曲线C 的普通方程,并说明它表示什么曲线;(2)已知倾斜角互补的两条直线1l ,2l ,其中1l 与曲线C 交于A ,B 两点,2l 与C 交于M ,N 两点,1l 与2l 交于点0(P x ,0)y ,求证:||||||||PA PB PM PN =.7.(2020•青羊区校级模拟)在直角坐标系xOy 中,直线cos :(sin x t l t y t αα⎧=+⎪⎨=⎪⎩为参数)与曲线22:(2x m C my m ⎧=⎨=⎩为参数)相交于不同的两点A ,B . (Ⅰ)当4πα=时,求直线l 与曲线C 的普通方程;(Ⅱ)若||||2||||||MA MB MA MB =-,其中M ,0),求直线l 的倾斜角.8.(2020•乐山模拟)在平面直角坐标系xOy 中,已知曲线1C的参数方程为()5x y ϕϕϕ⎧=⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=. (1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l的极坐标方程为sin()4πρθ+=直线l 与y 轴的交点为M ,与曲线1C 相交于A ,B 两点,求||||MA MB +的值.9.(2020•阿拉善盟一模)在直角坐标系xOy 中,直线l的参数方程为1(12x t y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中.圆C 的极坐标方程为26cos 50ρρθ-+=,圆C 与直线l 交于A 、B 两点,P 点的直角坐标为(1,1). ()I 将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程;(Ⅱ)求||||PA PB +的值.10.(2020春•红岗区校级月考)已知直线112:(x t l t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),曲线1cos :(sin x C y θθθ=⎧⎨=⎩为参数). (1)设l 与1C 相交于A ,B 两点,求||AB ; (2)若把曲线1C 上各点的横坐标压缩为原来的12倍,倍,得到曲线2C ,设点P 是曲线2C 上的一个动点,求它到直线l 的距离的最大时,点P 的坐标.11.(2020•辽宁一模)在平面直角坐标系xOy 中,曲线1C的参数方程为2cos (22sin x y ααα⎧=⎪⎨=+⎪⎩为参数),直线2C的方程为y =,以O 为极点,以x 轴非负半轴为极轴建立极坐标系. (1)求曲线1C 和直线2C 的极坐标方程;(2)若直线1C 与曲线2C 交于P ,Q 两点,求||||OP OQ 的值.12.(2020•大武口区校级一模)在直角坐标系xOy 中,圆C 的参数方程为32cos (42sin x y θθθ=+⎧⎨=-+⎩为参数).(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; (2)已知(2,0)A ,(0,2)B ,圆C 上任意一点(,)M x y ,求ABM ∆面积的最大值.13.(2020•南充模拟)在平面直角坐标系x Oy 中,直线l的参数方程为3(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标中,圆C的方程为ρθ=.(Ⅰ)写出直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)若点P坐标为,圆C 与直线l 交于A ,B 两点,求||||PA PB +的值.14.(2019秋•青羊区校级期中)在平面直角坐标系xOy 中,曲线1C 参数方程为6cos (4sin x y θθθ=⎧⎨=⎩为参数),将曲线1C 上所有点的横坐标变为原来的13,纵坐标变为原来的12,得到曲线2C .(1)求曲线2C 的普通方程;(2)过点(1,1)P 且倾斜角为α的直线l 与曲线2C 交于A ,B 两点,求||AB 取得最小值时α的值.15.(2019秋•11月份月考)在平面直角坐标系xOy 中,已知直线112:(x t l t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),曲线1:(sin x C y θθθ⎧⎪⎨=⎪⎩为参数).(1)设l 与1C 相交于A ,B 两点,求||AB ;(2)若Q 是曲线2cos :(3sin x C y ααα=⎧⎨=+⎩为参数)上的一个动点,设点P 是曲线1C 上的一个动点,求||PQ 的最大值.16.(2019春•双流区校级月考)在直角坐标系xOy 中,已知曲线221:1C x y +=,将曲线1C 经过伸缩变换2x xy y '=⎧⎨'=⎩得到曲线2C ;以直角坐标系原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)写出曲线2C 的极坐标方程;(Ⅱ)若A ,B 分别是曲线2C 上的两点,且OA OB ⊥,求证:2211||||OA OB +为定值.17.(2019秋•市中区校级月考)在直角坐标系xOy 中,曲线cos 1:(sin x C y θθθ=+⎧⎨=⎩为参数),直线1:(2x tl t y t =+⎧⎨=-⎩为参数).()I 判断直线l 与曲线C 的位置关系:(2)点P 是曲线C 上的一个动点,求P 到直线l 的距离的最大值.18.(2019•福建模拟)在直角坐标系xOy 中,曲线1C的参数方程是2cos (12sin x y θθθ⎧=⎪⎨=+⎪⎩为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为()2sin()3m m R ρπθ=∈-.(1)求曲线1C ,2C 的直角坐标方程;(2)设A ,B 分别在曲线1C ,2C 上运动,若||AB 的最小值是1,求m 的值.19.(2019•河南模拟)已知直线1cos,:(sinx tl ty tαα=-+⎧⎨=⎩为参数,α为l的倾斜角,且0)απ<<与曲线2cos,:(xCyθθθ=⎧⎪⎨=⎪⎩为参数)相交于A,B两点,点F的坐标为(1,0),点E的坐标为(1,0)-.(1)求曲线C的普通方程和ABF∆的周长;(2)若点E恰为线段AB的三等分点,求ABF∆的面积.20.(2019•怀化三模)在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线1C的极坐标方程为22cos30([0,])ρρθθπ--=∈,将曲线1C向左平移1个单位再经过伸缩变换:232x xy y'=⎧⎪⎨'=⎪⎩得到曲线2C.(Ⅰ)求1C的普通方程与2C的参数方程;(Ⅱ)若直线1cos:(sinx tl ty tαα=+⎧⎨=⎩为参数)与1C,2C分别相交于A,B两点,求当||2AB=时直线l的普通方程.21.(2019春•香坊区校级月考)已知曲线11cos:(23sinxCyααα⎧=⎪⎨⎪=⎩为参数),曲线2:sin()4Cπρθ+=,将1C的横坐标伸长为原来的2倍,纵坐标缩短为原来的13得到曲线3C.(1)求曲线3C的普通方程,曲线2C的直角坐标方程;(2)若点P为曲线3C上的任意一点,Q为曲线2C上的任意一点,求线段||PQ的最小值,并求此时的Q的坐标;(3)过(2)中求出的点Q做一直线l,交曲线3C于A,B两点,求AOB∆面积的最大值(O为直角坐标系的坐标原点),并求出此时直线l的方程.22.(2019春•桃城区校级月考)在平面直角坐标系xOy 中,已知倾斜角为α的直线l 的参数方程为2cos (sin x t t y t αα=-+⎧⎨=⎩为参数),曲线C 的参数方程为cos (sin x y θθθ=⎧⎨=⎩为参数),点P 的坐标为(2,0)-. (1)当12cos 13α=时,设直线l 与曲线C 交于A ,B 两点,求||||PA PB 的值; (2)若点Q 在曲线C 上运动,点M 在线段PQ 上运动,且2PM MQ =,求动点M 的轨迹方程.23.(2019秋•中原区校级月考)在直角坐标系xOy中,曲线1,:(2x C y ααα⎧=⎪⎨=⎪⎩为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线22:4cos 3C ρρθ=-. (1)求1C 的普通方程和2C 的直角坐标方程;(2)若曲线1C 与2C 交于A ,B 两点,A ,B 的中点为M ,点(0,)P l -,求||||PM AB 的值.24.(2019春•玉山县校级期中)在直角坐标系xOy 中,直线l的参数方程为4(3x ty ⎧=+⎪⎪⎨⎪=+⎪⎩为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为22(3sin )12ρθ+=. (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于A ,B 两点,且设定点(2,1)P ,求11||||PA PB +的值.25.(2019春•龙凤区校级期中)已知曲线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是1cos (sin x t t y t αα=+⎧⎨=⎩是参数).(Ⅰ)写出曲线C 的参数方程;(Ⅱ)若直线l 与曲线C 相交于A 、B两点,且||AB =l 的倾斜角α的值.26.(2019•双流区校级一模)在直角坐标系xOy 中,圆C 的参数方程为1cos sin x y αα=+⎧⎨=⎩,其中a 为参数,以坐标原点O 为点,x 轴正半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)B 为圆C 上一点,且B 点的极坐标为0(ρ,0)θ,0(,)26ππθ∈-,射线OB 绕O 点逆时针旋转3π,得射线OA ,其中A 也在圆C 上,求||||OA OB +的最大值.27.(2019春•渝中区校级期中)在直角坐标系xOy 中,直线l的参数方程为12x y ⎧=⎪⎪⎨⎪=⎪⎩(其中t 为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为28cos sin θρθ=. (1)求曲线C 的直角坐标方程;(2)设直线与曲线C 交于A ,B 两点,点(1,2)P ,求||||||PA PB -的值.28.(2019•双流区校级模拟)在平面直角坐标系xOy 中,曲线C的参数方程为3cos (x y ααα=⎧⎪⎨=⎪⎩为参数),在以原点为极点,x 轴正半轴为轴的坐标系中,直线l的极坐标方程为sin()4πρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)设点(1,0)P -,直线l 和曲线C 交于A ,B 两点,求||||PA PB +的值.29.(2019•淄博三模)在平面直角坐标系xOy 中,设倾斜角为α的直线l的参数方程为cos ,(2sin ,x t t y t αα⎧=⎪⎨=+⎪⎩为参数).在以坐标原点O 为极点,以x 轴正半轴为极轴建立的极坐标系中,曲线C的极坐标方程为ρ=,直线l 与曲线C 相交于不同的两点A ,B .(1)若6πα=,求直线l 的普通方程和曲线C 的直角坐标方程;(2)若||OP 为||PA 与||PB的等比中项,其中P ,求直线l 的斜率.30.(2019•安徽二模)在平面直角坐标系xOy 中,直线l的参数方程为1(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数),在以原点O为极点,x 轴非负半轴为极轴的极坐标系中,圆C 的方程为2cos ρθ=- (1)写出直线的普通方程和圆C 的直角坐标方程;(2)若点A 的直角坐标为(0,2)-,P 为圆C 上动点,求PA 在直线l 上的投影长的最小值参考答案与试题解析1.(2020•长春二模)已知曲线1C 的参数方程为22cos (2sin x y ααα=+⎧⎨=⎩为参数),曲线2C 的参数方程为38cos 4(3sin4x t ty t ππ⎧=+⎪⎪⎨⎪=⎪⎩为参数) (Ⅰ)求1C 和2C 的普通方程;(Ⅱ)过坐标原点O 作直线交曲线1C 于点(M M 异于)O ,交曲线2C 于点N ,求||||ON OM 的最小值. 【分析】(Ⅰ)由22cos (2sin x y ααα=+⎧⎨=⎩为参数),消去参数α,可得1C 的参数方程;化38cos 43sin4x t y t ππ⎧=+⎪⎪⎨⎪=⎪⎩为8x y ⎧=-⎪⎪⎨⎪=⎪⎩,消去参数t ,可得2C 的普通方程; (Ⅱ)分别写出圆1C 的极坐标方程与直线2C 的极坐标方程,设过坐标原点且与两曲线相交的直线方程为()42ππθαα=-<<,可得8|||cos sin |||4|cos |ON OM ααα+=,整理后利用三角函数求最值. 【解答】解:(Ⅰ)由22cos (2sin x y ααα=+⎧⎨=⎩为参数),消去参数α,可得1C 的参数方程为22(2)4x y -+=;由38cos 4(3sin 4x t t y t ππ⎧=+⎪⎪⎨⎪=⎪⎩为参数),得82x y ⎧=-⎪⎪⎨⎪=⎪⎩,消去参数t ,可得2C 的普通方程为8x y +=;(Ⅱ)如图,圆1C 的极坐标方程为4cos ρθ=,直线2C 的极坐标方程为cos sin 8ρθρθ+=, 即8cos sin ρθθ=+,设过坐标原点且与两曲线相交的直线方程为()42ππθαα=-<<,则28||244|cos sin |||4|cos ||sin cos ||sin 2cos 21|)1|4ON OM cos ααπααααααα+====+++++.42ππα-<<,∴52444πππα-<+<.∴)1|[1,14πα++∈,则||||ON OM 1)=-.【点评】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,训练了利用三角函数求最值,考查计算能力,是中档题.2.(2020春•漳州月考)已知曲线C 的参数方程为2cos ,(sin ,x y ααα=⎧⎨=⎩为参数),P 是曲线C 上的点且对应的参数为β,02πβ<<.直线l 过点P 且倾斜角为πβ-.(1)求曲线C 的普通方程和直线l 的参数方程.(2)已知直线l 与x 轴,y 轴分别交于A ,B ,求证:||||PA PB 为定值.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用直线与x 轴和y 轴的交点的应用求出结果.【解答】解:(1)曲线C 的参数方程为2cos ,(sin ,x y ααα=⎧⎨=⎩为参数),转换为直角坐标方程为2214x y +=,P 是曲线C 上的点且对应的参数为β,02πβ<<.直线l 过点P 且倾斜角为πβ-.所以直线的参数方程为:2cos cos (sin sin x t t y t ββββ=-⎧⎨=+⎩为参数).(2)证明:由于,02πβ<<.所以sin 0β≠,cos 0β≠,由sin sin 0y t ββ=+=,解得1t =-. 即点A 对应的参数1A t =-,由2cos cos 0x t ββ=-=,解得B 对应的参数2B t =, 所以:||||||2A B PA PB t t ==为定值.【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,三角函数关系式的恒等变换,正弦型函数性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 3.(2020•重庆模拟)在直角坐标系xOy 中,曲线C 的参数方程为2cos (2sin x y θθθ=⎧⎨=⎩为参数),直线l 的参数方程为cos (1sin x t t y t αα⎧=⎪⎨=+⎪⎩为参数).(1)求C 的普通方程,并判断直线l 与曲线C 的公共点的个数;(2)若曲线C 截直线l 所得弦长为tan α的值.【分析】(1)由22cos sin 1θθ+=可得曲线C 的普通方程,由直线l 所过定点与圆的位置关系可得直线与圆的位置关系,从而得交点个数;(2)把直线l 的方程化为普通方程,求出圆心到直线的距离,由垂径定理计算圆的弦长可求得直线的斜率k ,即tan α.【解答】解:(1)22:4C x y +=,l 经过点P ,而点P 在圆C 的内部,l ∴与C 有两个交点.(2):(1l y k x =+,设O 到l 的距离为d ,l 与C 交于点A ,B ,AB 中点为M , 224AM d +=,1d ∴=,∴10d k ==⇒=或tan 0α∴=或【点评】本题考查参数方程与普通方程的互化和直线与圆相交弦长问题,考查了转化思想,属中档题. 4.(2019秋•三门峡期末)在直角坐标系xOy 中,曲线1C 的参数方程为3cos (sin x y θθθ=⎧⎨=⎩为参数,[0θ∈,2))π,曲线2C的参数方程为(12x a t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数). (Ⅰ)求曲线1C ,2C 的普通方程;(Ⅱ)若曲线1C 上一点P 到曲线2C的距离的最大值为a .【分析】(Ⅰ)曲线1C 的参数方程为3cos (sin x y θθθ=⎧⎨=⎩为参数,[0θ∈,2))π,利用平方关系可得1C 普通方程.由曲线2C的参数方程为(12x a t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数).消去参数可得2C 的普通方程. (Ⅱ)设点(3cos ,sin )P θθ,利用点到直线的距离公式可得:点P 到2C 的距离|)|32a d πθ---==,对a 分类讨论,利用三角函数的单调性即可得出. 【解答】解:(Ⅰ)曲线1C 的参数方程为3cos (sin x y θθθ=⎧⎨=⎩为参数,[0θ∈,2))π,利用平方关系可得:22:19x C y +=. 由曲线2C的参数方程为(12x a t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),消去参数可得::0C x a --=. (Ⅱ)设点(3cos ,sin )P θθ,点P 到2C的距离|)|32a d πθ---==, 当0a 时,有sin()13πθ-=时,max d ==∴a =; 当0a <时,有sin()13πθ-=-时,max d =∴a =-综上,a =a =-【点评】本题考查了参数方程、点到直线的距离公式、分类讨论、三角函数的单调性,考查了推理能力与计算能力,属于中档题.5.(2020•江西一模)在直角坐标系xOy 中,直线l 的参数方程为24(31x t a t y t ⎧=+⎨=-⎩为参数),圆C 的参数方程为21||cos (2sin x a y a θθθ=+⎧⎨=-+⎩为参数). (1)求l 和C 的普通方程;(2)将l 向左平移(0)m m >后,得到直线l ',若圆C 上只有一个点到l '的距离为1,求m . 【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用点到直线的距离公式的应用和关系式的平移变换的性质的应用求出结果. 【解答】解:(1)由题意可得||1a =,故l 的参数方程为24(31x t a t y t ⎧=+⎨=-⎩为参数),转换为为41(31x t t y t =+⎧⎨=-⎩为参数),圆C 的参数方程为1cos (2sin x y θθθ=+⎧⎨=-+⎩为参数),消去参数t ,得l 的普通方程为3470x y --=, 消去参数θ,得C 的普通方程为22(1)(2)1x y -++=. (2)将l 向左平移(0)m m >后,得到直线l ', 即37()44y x m =+-,即34370x y m -+-=.因为圆C 上只有一个点到l '的距离为1,圆C 的半径为1,所以(1,2)C -到l '的距离为2, 即|3837|25m ++-=,解得142(03m m ==-<舍去). 【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,函数的关系式的平移变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 6.(2020•佛山一模)在直角坐标系xOy 中,曲线C 的参数方程为24(4x m m y m ⎧=⎨=⎩为参数).(1)写出曲线C 的普通方程,并说明它表示什么曲线;(2)已知倾斜角互补的两条直线1l ,2l ,其中1l 与曲线C 交于A ,B 两点,2l 与C 交于M ,N 两点,1l 与2l 交于点0(P x ,0)y ,求证:||||||||PA PB PM PN =.【分析】(1)由4y m =,得4ym =,代入24x m =,求出C 的普通方程为24y x =,表示开口向右,焦点为(1,0)F 的抛物线.(2)设直线1l 的倾斜角为α,直线2l 的倾斜角为πα-,直线1l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩,(t 为参数),与24y x =联立,得222000sin (2sin 4cos )40t y t y x ααα+-+-=,由此能证明||||||||PA PB PM PN =. 【解答】解:(1)解:由4y m =,得4ym =, 代入24x m =,得24y x =,∴曲线C 的普通方程为24y x =,C ∴的普通方程为24y x =,表示开口向右,焦点为(1,0)F 的抛物线.(2)证明:设直线1l 的倾斜角为α,直线2l 的倾斜角为πα-, ∴直线1l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩,(t 为参数),与24y x =联立,得222000sin (2sin 4cos )40t y t y x ααα+-+-=, 设方程的两个解为1t ,2t ,则2001224y x t t sin α-=,2001224||||||||||y x PA PB t t sin α-∴==,2200002244||||||||()y x y x PM PN sin sin παα--==-,||||||||PA PB PM PN ∴=.【点评】本题考查曲线方程的求法,考查两组线段乘积相等的证明,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查运算求解能力,是中档题.7.(2020•青羊区校级模拟)在直角坐标系xOy 中,直线cos :(sin x t l t y t αα⎧=+⎪⎨=⎪⎩为参数)与曲线22:(2x m C m y m ⎧=⎨=⎩为参数)相交于不同的两点A ,B. (Ⅰ)当4πα=时,求直线l 与曲线C 的普通方程;(Ⅱ)若||||2||||||MA MB MA MB =-,其中M ,0),求直线l 的倾斜角.【分析】(Ⅰ)当4πα=时,直线cos :(sin x t l t y t αα⎧=⎪⎨=⎪⎩为参数)化为x y ⎧=+⎪⎪⎨⎪=⎪⎩,消去参数t ,可得直线l的普通方程;直接把曲线C 的参数方程消去参数m ,可得曲线C 的普通方程;(Ⅱ)将直线cos :(sin x t l t y t αα⎧=⎪⎨=⎪⎩为参数)代入22y x =,化为关于t 的一元二次方程,利用根与系数的关系结合已知等式列式求得|cos |α=,则直线l 的倾斜角可求. 【解答】解:(Ⅰ)当4πα=时,直线cos :(sin x t l t y t αα⎧=⎪⎨=⎪⎩为参数)化为x y ⎧=⎪⎪⎨⎪=⎪⎩,消去参数t ,可得直线l的普通方程为y x =-由曲线22:(2x m C m y m⎧=⎨=⎩为参数),消去参数m ,可得曲线C 的普通方程为22y x =;(Ⅱ)将直线cos :(sin x t l t y t αα⎧=⎪⎨=⎪⎩为参数)代入22y x =, 得222cos 230sin t t αα--=. 1222cos tt sin αα+=,12t t 由||||2||||||MA MB MA MB =-,得1212||2||t t tt =+, 即22cos |2||sin αα=,解得|cos |α=. ∴直线l 的倾斜角为6π或56π.【点评】本题考查参数方程化普通方程,关键是直线参数方程中参数t 的几何意义的应用,是中档题.8.(2020•乐山模拟)在平面直角坐标系xOy 中,已知曲线1C 的参数方程为()5x y ϕϕϕ⎧=⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=. (1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l 的极坐标方程为sin()4πρθ+=直线l 与y 轴的交点为M ,与曲线1C 相交于A ,B 两点,求||||MA MB +的值.【分析】(1)由曲线1C 的参数方程消去参数ϕ,得曲线1C 的普通方程.把4cos ρθ=两边同时乘以ρ,结合极坐标与直角坐标的互化公式得曲线2C 的普通方程.联立两圆的普通方程可得两交点所在直线的普通方程,进一步得到直线的极坐标方程;(2)由sin()4πρθ+=l 的直角坐标方程,求得(0,4)M ,写出直线l 的参数方程,代入曲线221(5)10C x y -+=,再由参数t 的几何意义求解.【解答】解:(1)由5(x y ϕϕϕ⎧=⎪⎨=⎪⎩为参数),消去参数ϕ,得曲线1C 的普通方程为:22(5)10x y -+=. 由4cos ρθ=,得24cos ρρθ=,得曲线2C 的普通方程为:224x y x +=,即22(2)4x y -+=.由两圆心的距离32)d =∈,得两圆相交,∴两方程相减可得交线为6205x -+=,即52x =. ∴直线的极坐标方程为5cos 2ρθ=; (2)由sin()4πρθ+=sin cos ρθθ=∴直线l 的直角坐标方程:4x y +=,则与y 轴的交点为(0,4)M .直线l的参数方程为4x y ⎧=⎪⎪⎨⎪=+⎪⎩,代入曲线221(5)10C x y -+=,得2310t ++=.设A ,B 两点的参数为1t ,2t ,∴12t t +=-,1231t t =,则1t ,2t 同号.∴1212||||||||||MA MB t t t t +=+=+=【点评】本题考查参数方程与普通方程,以及极坐标方程与直角坐标方程的互化,考查直线参数方程中参数t 的几何意义及其应用,着重考查了运算与求解能力,是中档题. 9.(2020•阿拉善盟一模)在直角坐标系xOy 中,直线l的参数方程为1(1x t y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中.圆C 的极坐标方程为26cos 50ρρθ-+=,圆C 与直线l 交于A 、B 两点,P 点的直角坐标为(1,1).()I 将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程;(Ⅱ)求||||PA PB +的值.【分析】(Ⅰ)根据已知中直线l 的参数方程和圆C 的极坐标方程,可得直线和圆的普通方程.(Ⅱ)将直线的参数方程代入圆的直角坐标系,根据根与系数关系求出两实根的关系式,再有t 的几何意义求解.【解答】解:(Ⅰ)由直线l的参数方程为1(1x t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数), 可得:直线l 的普通方程为:2x y +=,即20x y +-=由26cos 50ρρθ-+=,得22650x y x +-+=,即22(3)4x y -+=; (Ⅱ)将l 的参数方程代入圆C的直角坐标方程,得22(13)(1)422+-+-=.即210t -+=,由于△2(4140=--=>, 故可设1t ,2t 是上述方程的两实根,所以12t t +=121t t =, 又直线l 过点(1,1)P , 故由上式及t 的几何意义得:1212||||||||PA PB t t t t +=+=+=.【点评】本题主要考查坐标系与参数方程的关系,考查直线的参数方程、圆的极坐标方程、直线与圆的位置关系等基础知识,考查运算求解能力.较复杂.10.(2020春•红岗区校级月考)已知直线112:(x t l t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),曲线1cos :(sin x C y θθθ=⎧⎨=⎩为参数). (1)设l 与1C 相交于A ,B 两点,求||AB ; (2)若把曲线1C 上各点的横坐标压缩为原来的12倍,倍,得到曲线2C ,设点P 是曲线2C 上的一个动点,求它到直线l 的距离的最大时,点P 的坐标.【分析】(1)联立方程求得交点坐标,然后求解弦长即可;(2)由题意得到距离函数,然后讨论距离的最大值和点的坐标即可. 【解答】解:(1)l的普通方程1)y x =-,1C 的普通方程221x y +=,联立方程组221)1y x x y ⎧=-⎪⎨⎪+=⎩解得l 与1C 的交点为(1,0)A,1(,2B -,则||AB =(2)2C的参数方程为1cos 2(x y θθθ⎧=⎪⎪⎨⎪=⎪⎩为参数),故点P的坐标是1(cos )2θθ,从而点P 到直线l的距离是13|cos sin 1|)1|22222θθθϕ---+=,由此当sin()1θϕ-=时,d12+. 此时,点P坐标为(. 【点评】本题考查极坐标方程及其应用,点到直线距离公式等,重点考查学生对基础概念的理解和计算能力,属于中等题.11.(2020•辽宁一模)在平面直角坐标系xOy 中,曲线1C的参数方程为2cos (22sin x y ααα⎧=⎪⎨=+⎪⎩为参数),直线2C的方程为y =,以O 为极点,以x 轴非负半轴为极轴建立极坐标系. (1)求曲线1C 和直线2C 的极坐标方程;(2)若直线1C 与曲线2C 交于P ,Q 两点,求||||OP OQ 的值.【分析】(1)首先把圆的参数方程转化为普通方程,进一步转化为极坐标方程,再把直线方程转化为极坐标方程.(2)根据(1)所得到的结果,建立方程组求得结果.【解答】解:(1)曲线1C的参数方程为2cos (22sin x y ααα⎧=⎪⎨=+⎪⎩为参数),转化为普通方程:22((2)4x y -+-=,即22430x y y +--+=,则1C 的极坐标方程为2cos 4sin 30ρθρθ--+=,⋯(3分)直线2C 的方程为y x =, ∴直线2C 的极坐标方程()6R πθρ=∈.⋯(5分)(2)设1(P ρ,1)θ,2(Q ρ,2)θ,将()6R πθρ=∈代入2cos 4sin 30ρθρθ--+=,得:2530ρρ-+=, 123ρρ∴=,12||||3OP OQ ρρ∴==.⋯(10分)【点评】本题考查的知识要点:直角坐标方程和极坐标方程的转化,参数方程与直角坐标方程的转化,一元二次方程与的应用,属于基础题型.12.(2020•大武口区校级一模)在直角坐标系xOy 中,圆C 的参数方程为32cos (42sin x y θθθ=+⎧⎨=-+⎩为参数).(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; (2)已知(2,0)A ,(0,2)B ,圆C 上任意一点(,)M x y ,求ABM ∆面积的最大值.【分析】(1)圆C 的参数方程为32cos (42sin x y θθθ=+⎧⎨=-+⎩为参数).利用平方关系可得:22(3)(4)4x y -++=.展开可得:2268210x y x y +-++=.把cos x ρθ=,sin y ρθ=代入可得圆C 的极坐标方程.(2)直线AB 的方程为:122x y+=,即20x y +-=.圆心(3,4)C -到直线AB 的距离2d >,可得直线AB 与AB 相离.可得圆C 上任意一点(,)M x y 直线AB 的距离的最大值,可得ABM ∆面积的最大值1||()2AB d r =+. 【解答】解:(1)圆C 的参数方程为32cos (42sin x y θθθ=+⎧⎨=-+⎩为参数).利用平方关系可得:22(3)(4)4x y -++=.展开可得:2268210x y x y +-++=.把cos x ρθ=,sin y ρθ=代入可得圆C 的极坐标方程:26cos 8sin 210ρρθρθ-++=. (2)直线AB 的方程为:122x y+=,即20x y +-=.圆心(3,4)C -到直线AB的距离2d ==>,可得直线AB 与AB 相离. ∴圆C 上任意一点(,)M x y 直线AB的距离的最大值2d r =+=+, ABM ∴∆面积的最大值11||()2)322AB d r =+=⨯+=+ 【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、点到直线的距离公式、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.13.(2020•南充模拟)在平面直角坐标系x Oy 中,直线l的参数方程为3(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标中,圆C的方程为ρθ=.(Ⅰ)写出直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)若点P坐标为,圆C 与直线l 交于A ,B 两点,求||||PA PB +的值.【分析】(Ⅰ)先利用两方程相加,消去参数t 即可得到l 的普通方程,再利用直角坐标与极坐标间的关系,即利用cos x ρθ=,sin y ρθ=,222x y ρ=+,进行代换即得圆C 的直角坐标方程.(Ⅱ)把直线l 的参数方程代入圆C 的直角坐标方程,利用参数的几何意义,求||||PA PB +的值. 【解答】解:(Ⅰ)由3x y ⎧=⎪⎪⎨⎪=+⎪⎩得直线l的普通方程为302x y +-=--------分又由ρθ=得2sin ρθ=,化为直角坐标方程为22(5x y +=;5---------分 (Ⅱ)把直线l 的参数方程代入圆C 的直角坐标方程,得22(3))5+=,即240t -+= 设1t ,2t 是上述方程的两实数根,所以12t t +=又直线l过点P ,A 、B 两点对应的参数分别为1t ,2t ,所以1212||||||||PA PB t t t t +=+=+=.10------------------分.【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.14.(2019秋•青羊区校级期中)在平面直角坐标系xOy 中,曲线1C 参数方程为6cos (4sin x y θθθ=⎧⎨=⎩为参数),将曲线1C 上所有点的横坐标变为原来的13,纵坐标变为原来的12,得到曲线2C .(1)求曲线2C 的普通方程;(2)过点(1,1)P 且倾斜角为α的直线l 与曲线2C 交于A ,B 两点,求||AB 取得最小值时α的值.【分析】(1)根据题意得到曲线C 的直角坐标方程为2213616x y +=,然后由伸缩变换规则求得答案;(2)把直线l 的参数方程代入曲线2C 的普通方程可得:22(cos sin )20t t αα++-=,记A ,B 对于的参数分别为1t ,2t ,12122(cos sin )2t t t t αα+=-+⎧⎨=-⎩,12||||AB t t =-=数的最值求得答案.【解答】解:(1)将曲线1C 参数方程6cos (4sin x y θθθ=⎧⎨=⎩为参数)的参数消去,得到直角坐标方程为2213616x y +=,设1C 上任意一点为0(x ,0)y ,经过伸缩变换后的坐标为(,)x y '', 由题意得:0000133212x x x x y y y y⎧'=⎪'=⎧⎪⇒⎨⎨'=⎩⎪'=⎪⎩,故2C 的直角坐标方程224x y +=;(2)过点(1,1)P 倾斜角为α的直线l 的参数方程为:1cos (1sin x t y t ααα=+⎧⎨=+⎩为参数),代入2C 的方程224x y +=得:22(cos sin )20t t αα++-=,记A ,B 对于的参数分别为1t ,2t ,12122(cos sin )2t t t t αα+=-+⎧⎨=-⎩,12||||AB t t =-=故当34πα=时,||min AB = 【点评】本题考查了直线的参数方程及其应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.15.(2019秋•11月份月考)在平面直角坐标系xOy 中,已知直线112:(x t l t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),曲线1:(sin x C y θθθ⎧⎪⎨=⎪⎩为参数).(1)设l 与1C 相交于A ,B 两点,求||AB ;(2)若Q 是曲线2cos :(3sin x C y ααα=⎧⎨=+⎩为参数)上的一个动点,设点P 是曲线1C 上的一个动点,求||PQ 的最大值.【分析】(1)化曲线1C 的参数方程为普通方程,把直线的参数方程代入,化为关于t 的一元二次方程,利用根与系数的关系及此时t 的几何意义求解;(2)点(,)P x y 是曲线1C 上的一个动点,化曲线2C 的参数方程为普通方程,由两点间的距离公式写出2||PC ,利用二次函数求其最大值,进一步得到||PQ 的最大值.【解答】解:(1)由曲线1:(sin x C y θθθ⎧=⎪⎨=⎪⎩为参数),消去参数θ,可得普通方程为2212x y +=.把直线l 的参数方程代入为2212x y +=,得27440t t +-=.则1247t t +=-,1247t t =-.12||||7AB t t ∴=-==(2)设点(,)P x y 是曲线1C 上的一个动点,化曲线2cos :(3sin x C y ααα=⎧⎨=+⎩为参数)为22(3)1x y +-=.2||PC ∴=,11y -,2||PC ∴的最大值为4,则||PQ 的最大值为5.【点评】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,训练了圆与椭圆位置关系的应用,是中档题.16.(2019春•双流区校级月考)在直角坐标系xOy 中,已知曲线221:1C x y +=,将曲线1C 经过伸缩变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用多出来的一个月,多多练习,提升自己,加油!高三数学测试题—参数方程和极坐标方程一、选择题(本题每小题5分,共60分)1.参数方程)50(1,2322≤≤⎪⎩⎪⎨⎧-=+=t t y t x 表示的曲线是 ( ) A .线段B .双曲线的一支C .圆弧D .射线2.参数方程⎪⎪⎩⎪⎪⎨⎧+=<<+=)sin 1(21)20(|2sin 2cos |θπθθθy x 表示 ( )A .双曲线一支,这支过点(1,21)B .抛物线的一部分,这部分过点(1,21)C .双曲线的一支,这支过点(-1,21)D .抛物线的一部分,这部分过点(-1,21) 3.极坐标方程)0(arcsin 2≥+=ρρπθ化为直角坐标方程的形式是( ) A .022=++x y x B .)1(x x y +-=C .)1(+--=x yD .14122---=y x4.在极坐标系中,如果等边三角形的两个顶点是A (2,4π),B (2,45π),那么顶点C 的 坐标可能是( )A .)43,4(π B .)43,32(π C .),32(πD .(3,π)5.已知动圆方程θπθθ(0)4sin(222sin 22=+⋅+-+y x y x 为参数),那么圆心的轨迹 是( )A .椭圆B .椭圆的一部分C .抛物线D .抛物线的一部分 6.已知集合}12|),{(},1)1(|),{(22-=-⋅==+-=x yx y y x B y x y x A ,,cos 2|),{(θρθρ==C},,sin cos 1|),{(},,4Z k k y x y x D Z k k ∈≠⎩⎨⎧=+==∈≠πθθθπθ,下列等式成立的是( )A .A=BB .B=DC .A=CD .B=C7.点P (x ,y )是曲线05864322=---+y x y x 上的点,则y x z 2+=的最大值和最小 值分别是( )A .7,-1B .5,1C .7,1D .4,-18.实数x 、y 满足2222,623y x x y x +=+则的最大值是 ( )A .2B .4C .29D .59.曲线)0(4,0>==ρπθθ和5=ρ所围成的图形的面积是 ( )A .25π B .225πC .625πD .825π10.直线θθρsin cos 1b a +=与圆)0(cos 2>=c θρ相切的条件是( )A .1222=+ac c bB .122=+ac c bC .1222=-bc c aD .122=-bc c a11.直线απθαθρ-==+2)sin(和a 的位置关系是( )A .平行B .重合C .垂直D .斜交12.已知直线l 的方程θθρsin cos 1+=,直线l '与l 关于极点对称,则l '的方程为( ) A .θθρcos sin 1+=B .θθρsin cos 1-=C .θθρcos sin 1-=D .θθρcos sin 1+-=二、填空题(本题每小题4分,共16分)13.由参数方程)22(,2)1(sec 22πθπθθ<<-⎩⎨⎧=-=tg y x 给出的曲线在直角坐标下的普通方程是 .14.在满足方程2)2()2(22=-+-y x 的所有实数对(x ,y )中,xy 的最大值为最小值为 .15.在极坐标系中,以)2,2(πa 为圆心,2a为半径的圆的方程为 .16.长为3a 的线段的端点分别在x 、y 轴上滑动,M 为AB 的一个三等分点,则M 的轨迹方程是 .三、解答题(本题17—21小题每小题12分,22小题14分,共74分)17.已知椭圆ϕϕϕ(sin 3cos 2:1⎩⎨⎧=+=y m x C 为参数)及抛物线φ≠-=2122).23(6:C C x y C I 当时,求m 的取值范围.18.求椭圆)0(sin ,cos 2πθθθ<≤⎩⎨⎧==y x 上的点P 到直线04=--y x 的最大距离及此时P 点的坐标.19.求以y 轴为准线,顶点在曲线12222=-by a x 上的抛物线焦点的轨迹方程,并指出是什么曲线.20.已知P'为直线0x上任意一点,连P'O并延长至P,使+y-1=|P'O|·|OP|=4,求P点的轨迹.21.已知抛物线7:21+=x y C 与圆5:222=+y x C . (1)求证:C 1与C 2无交点;(2)过点P (a ,0)作与x 轴不垂直的直线l 交C 1于A 、D 两点,交C 2于B 、C 两点,且|AB|=|CD|,求a 的取值范围.22.A 、B 是椭圆12222=+by a x 上两点,且OA ⊥OB ,(1)求证22||1||1OB OA +为定值; (2)求证直线恒切于一定圆; (3)试求||1||1OB OA +的最值.高三数学测试题参考答一、1.A 消参后,得)241(053≤≤-=--y y x 2. B 3. B 4. B 5. D 圆心轨迹的参数方程为:⎩⎨⎧+-==⎪⎪⎩⎪⎪⎨⎧+-==)cos (sin cos sin ,)4sin(22sin 21θθθθπθθy x y x 即,消去参数得)2121(212≤≤-+=x x y . 6. B 集合B 与D 都是曲线:).2,0(1)1(22≠≠=+-x x y x 7. 将原方程配方,得13)1(4)1(22=-+-y x 令即1)6sin(),6sin(432,sin 31cos 21=+∴++=+⎩⎨⎧+=+=πθπθθθ当则y x y x 时7)2(max =+y x ;当1)2(,1)6sin(min -=+-=+y x 时πθ. 8.B 令θθsin 26,cos 1=+=y x ,代入22y x +得4)(,1cos .29)2(cos 21max 22222=+=+--=+y x y x 时当θθ. 9.D 10.A11.C 12.D二、13.)(212x x y -=消参可得 14. 最大值为9,最小值为 1. 15.θρsin a =.利用直角三角形的边、角关系. 16.141422222222=+=+ay a x a y a x 或 利用定比分点坐标公式. 三、17.解:将椭圆C 1的参数方程代入C 2:).23(62-=x y 整理得)23cos 2(6sin 32-+=ϕϕm3cos 42cos 12-+=-∴ϕϕm 也即,9)2(cos 1.28)2(cos 22≤+≤-=+ϕϕΘm.2721.9281≤≤-≤-<∴m m 解之 ].27,21[,21-∈≠∴m C C 时当φI18.解:∵椭圆上的点)0)(sin ,cos 2(πθθθ<≤P 到直线04=--y x 的距离5|4sin cos 2|--=θθd.51cos ,52sin .5|4)sin(5|==+-=ϕϕϕθ其中 当ϕπθϕθ+==-2,1)sin(即时时,).55,554(,51cos sin ,52sin cos ,545max -∴==-=-=+=∴P d ϕθϕθ此时 19.解:依题意,抛物线的顶点坐标为⎩⎨⎧==θθbtg y a x 00sec ,∵y 轴为准线,),(00y x 顶点∴到准线的距离为.|sec |2θa p=∴焦点到准线的距离|,sec |2θa p =又焦点与顶 点的横坐标同号,设焦点为(x ,y ),则⎩⎨⎧==θθbtg y a x sec 2,消去θ,得焦点的轨迹方程为142222=-by a x .表示双曲线20.解:以原点O 为极点,O x 为极轴,建立极坐标系,则直线方程化为极坐标方程为:θθρsin cos 2+=,设),(θρ''P 、),(θρP ,由已知ρρρρ4,4='=⋅'即.代入直线的极坐标方程得:θθρsin 4cos 4+=,化为直角坐标方程:.8)2()2(22=+++y x (除去原点).21.解:(1)两方程联立,消去y ,得∴<-=⨯-=∆=++,07241,022Θx x 两曲线无交点.(2)设直线⎩⎨⎧=+=ααsin cos :t y t a x l (t为参数)代入07cos sin .7222=---+=a t t x y αα得.则,0sin )7(4cos 221>++=∆ααa ① 且.sin cos 221αα=+t t 将l 的方程代入522=+y x ,得.05cos 222=-++a at t α 0)5(4cos 42222>--=∆a a α,② 且αcos 221a t t -='+',由|AB|=|CD|,∴AB与BC 的中点必重合,a a t t t t 21sin cos 2sin cos .222121-=⇒-='+'=+∴αααα即 ).0cos (≠αΘ ③ 将③分别代入①和②,得:⎪⎩⎪⎨⎧<<-->⇒⎪⎪⎩⎪⎪⎨⎧>+-+>+-+.010,227.05)211(4,0)7(2421122a a a a a a a a 又由③.2110,21121-<<-∴-<⇒<-a a a 22.解(1)将椭圆222222b a y a x b =+化为极坐标方程得:.sin cos 2222222θθρa b b a +=设,sin cos ||),2,(),,(22222221221ααρπαραρa b b a OA A +==∴+.cos sin ||222222222ααρa b b a OB +== ]cos sin sin cos [111||1||12222222222222122ααααρρa b a b ba OB OA +++=+=+∴22222222)(1ba b a b a b a +=+==定值.(2)∆∴⊥,OB OA ΘAOB 是直角三角形. 222||||||OB OA AB +=∴αααα222222222222cos sin sin cos a b b a a b b a +++=)cos sin )(sin cos (sin cos cos sin 222222222222222222ααααααααa b a b a b a b b a +++++= )cos sin )(sin cos ()(22222222222ααααa b a b b a b a +++=.过O 作OH ⊥AB 则OH 为点O到AB 的距离.||||||||||21AB AB OB OA OH ρρ==∴αααααααα222222222222222222cos sin sin cos cos sin sin cos a b a b b a ab a b aba b ab+⋅+++⋅+=22b a ab +=(定值). ∴直线AB 恒切于一定圆:圆心为O (0,0),半径22ba ab r +=,方程为222222ba b a y x +=+(3)由21222222211||1||1sin cos ρρθθρ+=+++=OB OA a b b a 得]cos sin sin cos [122222222ααααa b a b ab+++=21222222222])cos sin sin cos [(1ααααa b a b ab+++= 2122222222)2sin )(4(1θb a b a b a ab-+++=. 12sin ,12sin 2±==∴θθ即当时,也就是||1||1,434OB OA +=时或ππθ的最大值为)(21])(4[122212222222b a ab b a b a b a ab +=-+++. 当0,02sin ,02sin 2===θθθ即或||1||1,OB OA +时π的最小值为.]2[1212222ab ba b a b a ab +=++。