近世代数基础
群论
群论一群的定义群论是代数学中最古老最丰富的分支之一,是近世代数的基础。
变换群在几何学中起着重要的作用,而有限群则是伽罗华理论(Galois,E[法] 1811—1832)的基础。
在所有只含一个代数运算的代数体系中,最重要的一个研究对象就是群。
而群的等价关系可谓“品种繁多”,本讲只是依教材作一些一般性地介绍,为扩大知识面,这里将适当引入一些如同“半群”和“monoid(幺半群)”这样的基本概念。
本讲的教学里要求学生对逆元(左逆元、右逆元),单位元(左单位元、右单位元)和群以及元素的阶要弄清楚,尤其是彼此的联系务必要明白其脉络。
教材中定义的群的第一定义和第二定义的区别及关系必须清楚。
对下列问题引起注意:(1)半群,幺半群和群的关系.(2)本讲的论证部分(通过逐渐熟悉这些理论证明,慢慢踏上“近世代数”的学习之路.(3)群的阶和群中元素的阶.说明:本章群的代数运算“ ”习惯上称为乘法(这时群也称为乘群),特殊情况下,“ ”也叫加法并改用“+”表示(群也随之叫做加群)一、半群定义 1. 设G 为任一非空集合,G 上定义了一个能封闭的代数运算“ ”,如果 “ ”满足结合律,即)()(,,,c b a c b a G c b a =∈∀,那么代数体系},{ G 叫做是一个半群.注:(1)乘法“ ”的表达形式上,以后都用“ab ”来替代“b a ”. (2)在不发生混淆的前提下,半群},{ G 可简记为G . 定义2. 设},{ G 是一个半群,那么∙如果乘法“ ”满足交换律,则称},{ G 为可换半群. ∙如果G 是有限集,则称},{ G 为有限半群.例1、},{},,{⋅+Z Z 都是半群,并且是可换半群.其中“+”和“·”分别是通常的加法和乘法。
(但不是有限半群)同理:},{},,{⋅+Q Q ,},,{},,{},,{},,{},,{},,}{,{⋅⋅+⋅⋅+⋅∙∙∙C C C R R R Q},{},,{},,{},,{+⋅⋅+∙∙N N N N 都是可换半群。
《近世代数》课件
近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。
近世代数基础1
S
1 p
gS
2 p
g
1
(其中S
1 p
,
S p2为sylow
p子群)
8.对{e}≠G,若 G 没有非平凡正规子群,称为单群。
9.交换群 G 是单群⇔ G Z p ,p 为素数。 10.阶数最小的非交换单群是 60 阶的 5 元交代群 A5。
第 8 页 共 29 页
近世代数基础
2.6 群在集上的作用
2.4 同态
第 5 页 共 29 页
近世代数基础
1.设群(G,·)和(H,×),φ 是 G 到 H 的映射,若对 x, y G 有
(x y) (x) (y) 则称 φ 是群(G,·)到(H,×)的同态。当 φ 是单/满射时称 φ 为单/满同态。φ 的像(G 的同态像)为 Im {(x) | x G} H ;φ 的核为 Ker {x G | (x) e,e为H的恒等元} G 。当 φ 为满 同态时 Imφ=H;当 φ 为单同态时 Kerφ={e}。
是双射,且 (1) S T (S) (T ) (2) S G (S) G (3)若 S G 则 G / S G /(S)
2.5 有限群 设有限群 G 的阶为 n,子群 H、元素 a 阶为 m。
1.m|n 且 an=e。 2.设 H 在 G 中不同左陪集的个数为[G:H],称[G:H]为 H 在 G 中的指数,则 n=[G:H]m, 即|G|=|H|[G:H]。若 H G,则|G/H|=t,即|G|=|H||G/H|。
(x y) (y) (x) 则称 φ 是群(G,·)到(H,×)的反同构,称群(G,·)反同构于(H,×),记为 (G,) 1 (H ,) 。反同构关 系具有对称性。
近世代数基础课件
第3讲 特殊的唯一分解环 1 主理想环 2 欧氏环 3 唯一分解环上的一元多项式环 4 因子分解与多项式的根
38
第六章 群论补充
39
第1讲 共轭元与共轭子群 1 第2讲 群的直积 第3讲 群在集合上的作用 第4讲 西罗定理
40
第1讲 共轭元与共轭子群
研究群内一些特殊类型的元素和子群
1 中心和中心化子 2 共轭元和共轭子群 3 共轭子群与正规化子
53
四 代数学发展的四个阶段
代数学经历了漫长的发展过程,抽象代 数(近世代数)是19世纪最后20年直到20世 纪前30年才发展起来的现代数学分支. 1 最初的文字叙述阶段 2 代数的简化文字阶段 3 符号代数阶段 4 结构代数阶段
54
1 最初的文字叙述阶段
古希腊之前直到丢番图(Diophantine,公元250年)时 代,代数学处于最初的文字叙述阶段,这一阶段除古希腊 数学之外还包括古巴比伦、古埃及与古代中国的数学. 此时算术或代数尚未形成任何简化的符号表达法,代数 运算则都采用通常的语言叙述方式表达,因而代数推理 也都采用直观的方法.在中国古代则有著名的筹算法,而 在古希腊则借助于几何图形的变换方法.最典型的代表 是毕达哥拉斯(Pythagoras,公元前585-497)几何数论方 法.例如通过图形的组合可以得到
}
} }
映射相关概念及举例
映射的运算 映射及其相关概念的推广
}
特殊映射
6
第3讲 基本概念之代数运算适应的规则 ——运算律 运算律
1 与一种代数运算发生关系的运算律 (1)结合律 (2)交换律 (3)消去律 2 与两种代数运算发生关系的运算律 (1)第一分配律 (2)第二分配律
7
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射 同态映射 1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例
近世代数基础知识点总结
近世代数基础知识点总结近世代数是数学中的一个重要分支,它研究的是代数结构及其性质。
本文将对近世代数的基础知识点进行总结,包括群、环、域和向量空间等的定义和性质。
一、群群是近世代数的基础概念,它是一个集合和一个二元运算构成的代数结构。
群的定义包括四个要素:集合、封闭性、结合律和单位元,还需要满足可逆性。
群的性质有唯一性、消去律、幂等性和逆元的唯一性等。
二、环环是在群的基础上引入了乘法运算的代数结构。
环的定义包括三个要素:集合、封闭性和满足环公理。
环的性质有零元的唯一性、加法逆元的唯一性、分配律和幂等性等。
三、域域是在环的基础上引入了除法运算的代数结构。
域的定义包括四个要素:集合、封闭性、满足域公理和乘法逆元的存在性。
域的性质有乘法单位元的唯一性、乘法逆元的唯一性和消去律等。
四、向量空间向量空间是线性代数的基础概念,它是一个集合和一个数域上的向量运算构成的代数结构。
向量空间的定义包括十个要素:集合、封闭性、加法单位元、加法逆元、加法交换律、加法结合律、标量乘法结合律、标量乘法分配律、标量乘法单位元和标量乘法结合律。
向量空间的性质有零向量的唯一性、加法逆元的唯一性和标量乘法的分配律等。
五、同态映射同态映射是近世代数中的一个重要概念,它是保持代数结构之间运算关系的映射。
同态映射的定义要求保持运算的封闭性、满足运算关系和保持单位元。
同态映射的性质有保持运算的封闭性、满足运算关系和保持单位元等。
六、理想理想是环和域中的一个重要概念,它是一个子集,并且满足加法逆元、封闭性和分配律。
理想的性质有加法单位元的存在性、加法逆元的存在性和分配律等。
七、同余关系同余关系是环中的一个重要概念,它是一种等价关系,表示两个元素具有相同的余数。
同余关系的性质有自反性、对称性和传递性等。
八、域的扩张域的扩张是域论中的一个重要概念,它是在一个域上构造出一个更大的域。
域的扩张可以通过添加一个或多个元素来实现,使得新的域仍然满足域公理。
第1章近世代数基本概念汇总
引言 近世代数理论的两个来源
有理运算以及开方的方法求出它的所有根,什么条件之下不能 求根。 最终解决这一问题的是法国年青数学家Galois(1811-
1832),Galois引入了扩域以及群的概念,并采用了一种全新 的理论方法发现了高次代数方程可解的法则。在Galois之后群 与域的理论逐渐成为现代化数学研究的重要领域,这是近世代 数产生的一个最重要的来源。
An到D的一个n元映射。 一的d D,则称 是A1 A2
d叫做(a1 , a2 ,
an )在之下的象; (a1, a2 ,
an ) d (a1, a2 ,
an )叫做d 在下
an )
的一个逆象(原象). 用符号表示:
: (a1, a2 ,
2018/10/13
§2 映射
A1 , A2 ,, An 的并和交分别记为:
n i 1
Ai A1
n
A2
n
An ,
i 1
Ai A1
A2
An .
x x
2018/10/13
i 1 n i 1
Ai Ai , x Ai . Ai Ai , x Ai .
§1 集合
集合的差运算: A B {x | x A但x B} 即A-B是由一切属于A但不属于B 的元素所组成。
则 不是一个A B到D的映射.
例5 设A=D=R. 定义
: a a, 若是 a 1
1 b, 这里 b2 1 则不是一个A到D的映射.
§2 映射
映射定义要注意以下几点:
1) 集合 A 1, A 2,
2) A1 , A2 ,
, An , D 可以相同;
近世代数的基础知识
近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。
近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。
设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。
若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。
若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:${}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。
本文中常用的集合及记号有: 整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ;正整数(自然数)集合{} ,3,2,1=+Z;有理数集合Q ,实数集合R ,复数集合C 等。
—一个集合A 的元素个数用A 表示。
当A 中有有限个元素时,称为有限集,否则称为无限集。
用∞=A 表示A 是无限集,∞<A 表示A 是有限集。
近世代数基础PPT课件
来说四元数的发现使人们对于数系的代数性质的认识提高了
一大步。四元数代数也成为抽象代数研究的一个新的起点,
它是近世代数的另一个重要理论来源。
返回
16
(3)Kummer理想数的发现
17世纪初法国数学家费马(P.Fermat 1601-1665) 研究整数方程时发现当n≥3时,方程 xn+yn=zn 没有正整数解,费马认为他能够证明这个 定理,但是其后的三百多年中人们研究发现这是一 个非常困难的问题,这一问题被后来的研究者称为 费马问题或费马大定理,此定理直到1995年才被英 国数学家A.Wiles证明。对费马问题的研究在三个半 世纪内从未间断过,欧拉、高斯等著名数学家都对 此作出过重要贡献。但最重大的一个进展是由 E.Kummer作出的。
18
Kummer方法的前提是形如a+bη的复整数也象 整数一样具有唯一的素因子分解,其中a与b是通 常整数。并不是对于每个整数n,复整数a+bη都具 有唯一分解性,Kummer把这种复整数的因子分解 称为理想数的分解。
14
加罗华
阿贝尔
返回
15
(2)Hamilton四元数的发现
长期以来人们对于虚数的意义存在不同的看法,后来发
现可以把复数看成二元数(a,b)=a+bi,其中i2= -1。二元数按
(a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进行
代数运算,二元数具有直观的几何意义;与平面上的点一一
近 世 代 数
概 述
11
>>
1. 近世代数理论的三个来现 (3) Kummer理想数的发现
下一页
12
(1) 代数方程的解 两千多年之前古希腊时代数学家就能够利用开
信息论与编码第八章 近世代数基础
+
0
1
0
0
1
1
1
0
×
0
1
0
0
0
1
0
1
显然,在模2加上为一个交换群,在模2乘上为一个群, 因此只需计算 a·(b+c) 和 a·b+a·c 在a、b、c 8种可能组合下的结果,容易验证模2乘法 对模2加法满足分配律,因此集合{0,1}在模2加和模2乘上为一个域。
8.5 素数域 G(p)
p为一个素数,可以证明{0,1,2,3,…,p-1}在模p加法和乘法下都是交换群。 根据模p加法与乘法的定义以及实属加法和乘法的分配律,可以证明模p加 法和乘法也满足分配律。
3为生成元
3. 循环群
8.2 子群 & 循环群
定理8.4 交换群G中的每一个元素α 都能生成一个循环群,它是G的子 群,元素α 的阶就是循环群的阶。
练习1: 请大家计算模9余数在模9加法运算“⊙”下构成的群,分别 取生成元为2 和 6, 并给出其阶数
8.3 群的陪集
1. 群的陪集
设G′为群G的非空子群,取h ∈ G,则称h ∗ G′为G′的左陪集,称 G′∗ h为G′的右陪集。当G是交换群时,子群G′的左、右陪集是相 等的,元素h称作陪集首。
有限群 阶为有限值的群称作有限群。
8.1 群
定理 8.2 任何正整数a均可表示成其素因数的幂之积:
a
=
p1r1
p
r2 2
p nrn
p1 , p2 , … , pn:a的互不相同的素因数,ri:正整数。
例 8.2 若不考虑排列次序,这种分解是唯一的,例:180 = 223251。
定理 8.3 设a、b是不全为0的整数,则存在整数 p、q使 pa + qb = (a , b)
近世代数基础课件
3 环的初步性质
25
第2讲 特殊元素及性质
1 特殊元素之一—零元、负 元及单位元、逆元、零因子 2 零因子的性质 3 求环中的特殊元素——举例
26
第3讲 环的分类及特殊环的性质
1 特殊环的定义 2 除环的性质 3 有限环的几个相关结论 4 域中元素的计算方法
5 循环环的性质
第7讲 循环群
第8讲 变换群 第9讲 特殊子群
特殊群
第10讲 群的同态与同构 第11讲 群与对称的关系
11
第1讲 代数系统 1 代数系统及子代数系统的定义 2 代数系统的举例
12
第2讲 半群
1 半群、子半群、交换半群的定 义及判定定理 2 半群的举例 3 半群中幂的定义及性质
13
第3讲 群的定义及性质
第11讲 群与对称的关系
1 序言 2 几何对称
3 代数对称
22
第四章
环论
23
第1讲 环的定义及基本性质
第2讲 特殊元素及性质
第3讲 环的分类及特殊环的性质
第4讲 环的特征
第5讲 子环、理想(主理想)及素理想和极大理想
第6讲 环的同态与同构
第7讲 特殊环
第8讲 商域
第9讲 有限域
24
第1讲 环的定义及基本性质
第5讲 等价关系与分类
4
第1讲 基本概念之集合及其之间的关系 —集合
1 集合与集合元素的定义 2 集合与集合元素的表示符号 3 集合与集合元素之间的关系—— 属于关系 4 集合的分类标准及分类 5 集合的表示方法 6 集合之间的内在关系——包含关 系 7 集合运算 8 运算律 9 特殊集合的表示符号 10 集合的补充说明 11 包含与排斥原理
近世代数的基础知识
近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(),它的研究对象主要是代数方程和线性方程组)。
近世代数()又称为抽象代数(),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素是集合A的元”记作“”,反之,“”表示“不是集合的元”。
设有两个集合A和B,若对A中的任意一个元素(记作)均有,则称A是B的子集,记作。
若且,即A和B有完全相同的元素,则称它们相等,记作。
若,但,则称A 是B的真子集,或称B真包含A,记作。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:;,其中表示元素具有的性质。
本文中常用的集合及记号有:整数集合;非零整数集合;正整数(自然数)集合;有理数集合Q,实数集合R,复数集合C等。
一个集合A的元素个数用表示。
当A中有有限个元素时,称为有限集,否则称为无限集。
用表示A是无限集,表示A是有限集。
3.1.2 映射映射是函数概念的推广,它描述了两个集合的元素之间的关系。
定义1 设A,B为两个非空集合,若存在一个A到B的对应关系f,使得对A中的每一个元素x,都有B中唯一确定的一个元素y 与之对应,则称f是A到B的一个映射,记作(x)。
y称为x的像,x称为y的原像,A称为f的定义域,B称为f 的定值域。
定义2 设f是A到B的一个映射(1)若和均有,则称f是一个单射。
(2)若均有使,则称f是满射。
(3)若f既是单射又是满射,则称f是双射。
3.1.3 二元运算3.1.3.1 集合的笛卡儿积由两个集合可以用如下方法构造一个新的集合。
近世代数基础第三章环与域
近世代数基础第三章环与域第三章环与域本章主要讨论两种代数系统,在⾼代中看到了,全体整数作⼀个环,全体有理数,全体实数或全体复数都作⼀个域,由此可见,环与域这两个概念的重要性。
§3.1 加群、环的意义●课时安排约1课时●教学内容本书P80-84定义:⼀个交换群叫做⼀个加群,假如我们把这个群的代数运算叫做加法,并且⽤符号+来表⽰。
在群中有零元、负元定义:⼀个集R叫做⼀个环,假如:1、R是⼀个加群;‘2、R对乘法运算封闭3、适合结合律4、两个分配律成⽴●教学重点加群和环的定义●教学难点环的运算性质的证明●教学要求了解加群和环的关系●布置作业P84 2●精选习题P84 1§3.2 交换律、单位元、零因⼦、整环●课时安排约1课时●教学内容本书P84-P89定义:⼀个环R叫做⼀个交环环,假如ab=ba不管a1b是R的哪两个元定义:⼀个环R的⼀个元e叫做⼀个单位元。
假如对R的任意元a来说,都有:ea = ae = a例1:书上P85定义:⼀个有单位元环的⼀个元b叫做a的⼀个逆元。
假如:ba=ab=1例2:P86定义:若是在⼀个环⾥a≠0,b≠0,但ab=0则a是环的⼀个左零因⼦,b是⼀个右零因⼦。
例3:P88定理:在⼀个没有零因⼦的环⾥两个消去律都成⽴。
a≠0,ab=ac=>b=c a≠0,ba=ca=>b=c反之也成⽴推论:在⼀个环⾥如果有⼀个消去律成⽴,那么另⼀个消去律也成⽴。
定义:⼀个环R叫做⼀个整环,假如:1、乘法适合交换律:ab=ba;2、R有单位元1:|a=a|=a3、R没有零因⼦:ab=0=>a=0或b=0●教学重点交换环、整环、单位元、零因⼦●教学难点剩余类环和定理的证明●教学要求掌握以上内容●布置作业P89 1,2,5●精选习题P89 3,4§3.3 除环、域●课时安排约1课时●教学内容P89-93例1:P90例2:P90定义:⼀个环R叫做⼀个除环,假如:1、R⾄少包含⼀个不等于零的元;2、R有⼀个单位元;3、R的每⼀个不等于零的元有⼀个逆元。
近世代数主要知识点
除环、域
除环 1, R至少包含一个而不等于零的元 2,R有单位 元 3,R的每一个不等于零的元有一个逆元 域 一个交换除环叫做一个域 在一个没有零因子的环里所有不等于零的元对于加法来说 的阶都一样的 一个无零因子的环里的非零元的相同的阶叫做环的特征 整环 除环 域 的特征或是无限大 或是一个素数
变换群
定理1 假定G是集合A的若干个变换所做成的集合,并且G包含恒等 变换ε ,若是对乘法(ζ :a→aζ,λ:a→a٨ 那么a→(a)ד٨)来说 做成一个群,那么G只包含A的一一变换。 变换群 一个集合的若干个一一变换对于以上规定的乘法做成的一个 群叫做A的一个变换群 定理2 一个集合的所有一一变换做成一个变换群 定理3 任何一个群都同一个变换群同构 证明,假定G是一个群,G的元是a,b,c · · · · · · · 我们在G里任意取出一个 元x来,那么גx:g→gx=g٨x是集合的一个变换。因为给了G的任意 元g,我们能够得到一个唯一的G的元g٨x。这样由G的每个元x,可 以得到G的一个变换גx。我们把所有这样的来的G的变换放在一起, 做成一个集合G’={ a’,b‘,c’ · · · · · · · }那么x→x’是G到G’的满射,但消 去律x≠y=>gx≠gy告诉我们若x≠y,那么x’ ≠y’,所以x→x’是一一 映射。在进一步看,是同构映射 所以任何群和一个变换群同构
同态、不变子群
一个群G同他的每一个商群G/N同态 同态映射的核 :假定 &是一个群G到另一个群G’的一个同 态映射。G’的单位元e’在&之下的所有逆象所做成的G的 子集就叫做同态映射的核 。 定理 假定 G 与G’是两个群,并且G与G’同态,那么这个 同态映射的核N是G的一个不变子群,且G/N≌G’
高等学校教材·近世代数基础
高等学校教材·近世代数基础
近世代数学是现代数学的基础,由西方古希腊数学家贝叶斯等人发掘、深入研究而成。
它可以帮助我们更好地理解复杂的数学问题,也可以帮助我们通过数学原理来求解问题,并发现规律。
因此,熟悉近世代数学基础是一门课必须掌握的知识。
近世代数学基础包括代数、几何与微积分三大部分。
其中,代数是最基础的一部分。
它重要探索和描述不同元素之间关系,从而可以解决数学关系上的问题,建立方程式对数学问题进行描述,并且运用高级数学技巧解决数学问题。
几何是一种可视化思维,它不仅能够帮助我们更好地理解空间结构,同时也能够解决大量几何实际问题。
最后,微积分是一种可以探究数字的变化的技术,可以描述不同的函数在给定的范围内的变化,从而了解不同的系统的变化。
熟悉近世代数学基础不仅有助于我们掌握数学思想,而且也有助于我们深入理解更多的科学知识,从而加深我们对其原理的理解。
同时,它还能帮助我们预测未来,从而更好地解决问题。
例如,由于拥有微积分知识,我们可以利用微积分方法来测量物体在加速运动中的速度、位移等,并且在求解问题中发挥作用。
总而言之,近世代数学基础的学习和掌握是一门课程的必备知识,同时也是理解数学思想和深入科学知识的基础,它不仅能够为我们理解复杂的数学概念奠定坚实的基础,而且还能够帮助我们探究解决问题的方法,实现未来的可能性。
- 1 -。
近世代数基础知识点总结
近世代数基础知识点总结近世代数是现代数学中的一个重要分支,它研究的是代数结构和代数运算的一般性质。
近世代数的基础知识点包括群论、环论和域论,这些知识点在数学研究和应用中都有着广泛的应用。
一、群论群是近世代数中最基本的代数结构之一。
群由一个集合和一个二元运算组成,这个二元运算必须满足封闭性、结合律、单位元和逆元四个性质。
群论的基本概念包括子群、陪集、正规子群、循环群等,并且研究了群之间的同构和同态等映射关系。
群论的应用非常广泛,例如在密码学、物理学、化学等领域都有着重要的应用。
二、环论环是一种比群更一般化的代数结构。
环由一个集合和两个二元运算组成,这两个二元运算分别满足封闭性、结合律、交换律和分配律等性质。
环论的基本概念包括子环、理想、商环等,并且研究了环的同态和同构等映射关系。
环论在数论、代数几何、代数拓扑等领域有着广泛的应用。
三、域论域是一种比环更一般化的代数结构。
域由一个集合和两个二元运算组成,这两个二元运算满足封闭性、结合律、交换律和分配律等性质,并且其中一个二元运算有单位元和逆元。
域论的基本概念包括子域、域扩张、代数元和超越元等,并且研究了域之间的同态和同构等映射关系。
域论在数论、代数几何、代数数论等领域有着广泛的应用。
四、线性代数线性代数是近世代数的一个重要分支,研究的是向量空间及其线性变换的性质。
线性代数的基本概念包括向量、线性组合、线性相关性、基、维数等,并且研究了线性变换、特征值和特征向量等。
线性代数在几何学、物理学、工程学等领域有着广泛的应用。
五、Galois理论Galois理论是近世代数的一个重要分支,研究的是域的扩张和多项式方程的解的关系。
Galois理论的基本概念包括Galois扩张、Galois群、Galois对应等,并且研究了可解多项式和不可解多项式的判别方法。
Galois理论在数论、代数几何、代数数论等领域有着广泛的应用。
六、表示论表示论是近世代数的一个重要分支,研究的是群的表示及其性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先算出图的总数,23 =8, 其中一些是相同的。
G1
G2
G3
G8
二 集合与映射
集合的表示形式有两种,一种是直接写出所有元素, 一种是写出集合中元素的性质。如:A={1,2,3}, B={x|p(x)}
3.子集运算
设U是一个集合,A,B,C都是U的子集,则两个集合的 并、交、差和一个子集的余定义为: 并:A∪B={x∈U|x∈A或x∈B} 余:A’=A=U A 交:A∩B={x∈U|x∈A且x∈B} 差:A B=A-B={x∈U|x∈A且x∈B}
对称差:AΔB=(A B)∪(B A)
运算律:幂等、交换、结合、分配、吸收、模、DMG
近世代数基础
目
第一章 第二章 第三章 第四章 第五章 第六章 第七章
录
几类实际问题 集合与映射 二元关系 整数与同余方程 群的基本概念 子群 循环群与生成群,群的同构
一 几类实际问题
初等代数、高等代数、线性代数 通称为经典代数,其主要研究对象是 代数方程。近世代数研究代数系,即 在一个集合中定义一种或多种运算构 成的系统,如整数集合Z和普通加法 “+”构成的体系,记成(Z, +)。近世 代数也称抽象代数。
n
n
Ai
nnAi 源自nA i A j ... ( 1)
n 1
n
Ai
i 1
i 1
1 i j n
i 1
i 1
Ai
i 1
Ai
1 i j n
A i A j ... ( 1)
n 1
i 1
Ai
例1: 求不大于500且可被5, 7, 9中某一个整数整除的正整数 的个数。 解: 设不大于500可被5整除的正整数集合为A1。
常用的数的集合: Z={0,±1,±2,…}, Z+ ={1,2,3,…} 有理数集合Q,实数集合R,复数集合C。集合A的元 素的个数|A|,从元素个数方面,集合分为有限集和无限 集。有限集合|A|=∞ ,无限集合|A|<∞ 。
1. 子集与幂:元素a属于A记成a∈A, 用a∈A表示不属于。 两个集合A、B,若 ∨a∈A,均有a∈B,称A是B的子集, 记成A B, 如果同时B A,则A=B,这时如果A≠B,则称 A是B的真子集,记成A B,A B表示A不属于B。
近世代数是许多专业研究的基础, 同时也是必须的工具,在近代物理、 近代化学、计算机技术、数字通讯、 系统工程、管理等各学科有着重要的 应用价值。
例1 项链问题
用n中颜色的珠子做成有m颗珠子的 项链,可以做成多少中不同的项链?
按照乘法原理,这样做成的项链应 该有nm个。但是考虑到项链的圆对称性, 其实有很多经过适当旋转后就变成一样 的项链了,需要在计算中把相同的项链 数目减掉,因此当n和m比较大时,这样 的计算用手工一个一个的计算是很麻烦 的。 例如:当n=5, m=2时,可以用手工的方 法计算得到这样的项链一共有8种。
A 2 A3
500 500 7 , A1 A 2 A 3 1 63 315
A1 A 2 A 3
i 1
3
Ai
i j
A i A j A1 A 2 A 3
= 100+71 + 55 – 14 – 11 – 7 +1 = 195
4.包含与排斥原理
设A, B, C是U的有限子集,则:
|A∪B|=|A|+|B| - |A∩B| |A∩B|=|A|+|B| - |A∪B| 其它式子略(参考书中形式) 当A∩B=Ф 时,有|A∪B|=|A|+|B| ,即加法原理。 定理1: (包含与排斥原理) 设A1,A2,…,An是U的有限子集, 则
不大于500可被5整除的正整数集合为A2。
不大于500可被5整除的正整数集合为A3。 |A1|=100, |A2|=|500/7|=71, |A3|=|500/9|=55
A1 A 2 500 500 1 4 , A1 A 3 11 35 45
2.空集与幂集
没有任何元素的集合成为空集,记成Ф 。由A的所有 子集组成的集合称为A的幂集,记成P(A)。如A={0,1,2}, 则P(A)={Ф ,{0},{1},{2},{0,1},{0,2},{1,2},A}
A的幂集也可以记成2A, 当|A|<∞时, 2A的元素个数 正好为 |2A|= 2|A|
对于一个有m个面的正多面体用n种颜色着色,可 以有多少种不同的着色方法,例如正六面体。
从数学的角度来讲,n种颜色的集合A={a1,a2,…,an}
正六面体面的集合 B={b1,b2,b3,b4,b5,b6} 对于每一种着色都对应着一个映射:f: B → A 反之每一个映射都对应一种着色方法。因此全部 的着色方法数为n6,但是由于正多面体的对称性,许多 结果经过适当的位置变化都变成一样的了。我们要求 的是不同的着色方法数。
例2 苯分子结构的问题
类似地用n种元素可以合 成多少种不同物质的问题。 例如:在一个苯环上结 合H原子或CH3原子团,可以 形成多少种不同的化合物? 显然假定苯环上相邻C原 子之间的键都是互相等价的, 则此问题就是两种颜色6颗珠 子的项链问题。
H H CH3
CH3
C C C H C C C H
例3 正多面体着色的问题
当n比较小时可以枚举的方法得到,如n=2时,方 法数为10,对于较大的n必须用群论的方法。
例4 图的构造与计数问题
图:设V={v1,v2,…,vn},称为顶点集合,E是由其 中的一些2元子集做成的边集合,称G=(V, E)为图。
例如:V={1,2,…,10}, E={e1,e2,…,e15}, 其中e1={1,2}, e2={2,3},…,e15={7,10}, 如图G={V, E}。