文献翻译-注塑模的单浇口优化

合集下载

机械类外文翻译

机械类外文翻译

机械类外文翻译塑料注塑模具浇口优化摘要:用单注塑模具浇口位置的优化方法,本文论述。

该闸门优化设计的目的是最大限度地减少注塑件翘曲变形,翘曲,是因为对大多数注塑成型质量问题的关键,而这是受了很大的部分浇口位置。

特征翘曲定义为最大位移的功能表面到表面的特征描述零件翘曲预测长度比。

结合的优化与数值模拟技术,以找出最佳浇口位置,其中模拟armealing算法用于搜索最优。

最后,通过实例讨论的文件,它可以得出结论,该方法是有效的。

注塑模具、浇口位臵、优化、特征翘曲变形关键词:简介塑料注射成型是一种广泛使用的,但非常复杂的生产的塑料产品,尤其是具有高生产的要求,严密性,以及大量的各种复杂形状的有效方法。

质量ofinjection 成型零件是塑料材料,零件几何形状,模具结构和工艺条件的函数。

注塑模具的一个最重要的部分主要是以下三个组件集:蛀牙,盖茨和亚军,和冷却系统。

拉米夫定、Seow(2000)、金和拉米夫定(2002) 通过改变部分的尼斯达到平衡的腔壁厚度。

在平衡型腔充填过程提供了一种均匀分布压力和透射电镜,可以极大地减少高温的翘曲变形的部分~但仅仅是腔平衡的一个重要影响因素的一部分。

cially Espe,部分有其功能上的要求,其厚度通常不应该变化。

pointview注塑模具设计的重点是一门的大小和位臵,以及流道系统的大小和布局。

大门的大小和转轮布局通常被认定为常量。

相对而言,浇口位臵与水口大小布局也更加灵活,可以根据不同的零件的质量。

李和吉姆(姚开屏,1996a)称利用优化流道和尺寸来平衡多流道系统为multiple 注射系统。

转轮平衡被形容为入口压力的差异为一多型腔模具用相同的蛀牙,也存在明显差异的压力。

一天结束的熔体流动路径在每个空腔为一个家庭模腔数量和几何形状的不同。

方法论已经显示出均匀压力分布在腔成型周期的整个过程中多腔模具。

翟隽孙俐。

(2005a)颁发的两门失水一个成型的声誉的优化提出本文腔的压力梯度搜索法的基础上(PGSS),以及随后的定位焊缝位臵通过改变到所需的尺寸formulti-gate转轮部件(斋el高庆宇,2006)。

文献翻译-注塑模具的设计与热分析

文献翻译-注塑模具的设计与热分析

编号:毕业设计(论文)外文翻译(译文)学院:国防生学院专业:机械设计制造及其自动化学生姓名:学号:指导教师单位:姓名:职称:2014年1月10日注塑模具的设计与热分析摘要:本文介绍了用于生产热变形测试样品的注塑模具的设计,这种模具能为自身实现热分析,从而得到模具的热残余应力的影响。

文章对技术,理论,方法以及在注塑模型设计中需要的考虑的因素也进行了介绍。

模具设计是通过商用计算机辅助设计软件Unigraphics系统的13.0版本实现的。

这种用于分析因样品不均匀冷却产生的热残余应力的模具,已经通过使用13.5版的被称作LUSAS分析员的商业有限元分析软件得到了开发,而且存在问题也已经解决。

该软件通过绘制相应的时间反应曲线为模具提供了温度分布等高线图以及注塑周期中的温度的变化。

结果表明,与其他区域相比,收缩可能更容易发生在冷却渠道附近的区域。

热变形就是这种在模具的不同区域的不均衡降温效果引起的。

关键词:注塑模具;设计;热分析1. 引言塑料业是世界上发展最快的工业之一,被列入产值达数十亿美元的产业。

几乎每一个在日常生活中使用的产品都涉及塑料的使用,这些产品大部分可通过注塑成型方法生产[1]。

注塑成型工艺因其制造过程是以较低的成本生产各种形态和复杂几何形状的产品而众所周知[2]。

注塑成型工艺是一个循环工艺,整个过程分为四个重要的阶段,即:充模,保压,冷却和喷射。

在注塑成型过程是从漏斗中把树脂和适当的添加剂注入到注塑成型机的加热/注射系统开始的[3]。

这就是“充模阶段”,在这个过程中,模腔填充了达到注射温度的热聚合物熔体。

在模腔填充后的“保压”阶段,更多的是聚合物熔体在更高的压力下被装进腔体,以补偿因聚合物固化引起的预计萎缩。

接下来便是冷却阶段,在此过程中模具会冷却,直到有足够的刚性部分被弹出。

最后一个阶段是“弹射阶段”,这个阶段模具被打开,成型部分被弹出,过后,模具会再次被关闭开始下一个循环[4]。

因为主要是靠经验,包括了实际工具的反复修改,所以设计和制造所需性能的注塑成型聚合物部件的过程很昂贵的。

文献翻译—注塑模的单浇口优化

文献翻译—注塑模的单浇口优化

附录A英文翻译Single gate optimization for plastic injection mold Abstract: This paper deals with a methodology for single gate location optimization for plastic injection mold. The objective of the gate optimization is to minimize the warpage of injection molded parts, because warpage is a crucial quality issue for most injection molded parts while it is influenced greatly by the gate location. Feature warpage is defined as the ratio of maximum displacement on the feature surface to the projected length of the feature surface to describe part warpage. The optimization is combined with the numerical simulation technology to find the optimal gate location, in which the simulated annealing algorithm is used to search for the optimum. Finally, an example is discussed in the paper and it can be concluded that the proposed method is effective.INTRODUCTIONPlastic injection molding is a widely used, com plex but highly efficient technique for producing a large variety of plastic products, particularly those with high production requirement, tight tolerance, and complex shapes. The quality of injection molded parts is a function of plastic material, part geometry, mold structure and process conditions. The most important part of an injection mold basically is the following three sets of components: cavities, gates and runners, and cooling system.Lam and Seow (2000) and Jin and Lam (2002) achieved cavity balancing by varying the wall thickness of the part. A balance filling process within the cavity gives an evenly distributed pressure and temperature which can drastically reduce the warpage of the part. But the cavity balancing is only one of the important influencing factors of part qualities. Especially, the part has its functional requirements, and its thicknesses should not be varied usually.From the pointview of the injection mold design, a gate is characterized by its size and location, and the runner system by the size and layout. The gate size and runner layout are usually determined as constants. Relatively, gate locations and runner sizes are more flexible, which can be varied to influence the quality of the part. As a result, they are often the design parameters for optimization.Lee and Kim (1996a) optimized the sizes of runners and gates to balance runner system for multiple injection cavities. The runner balancing was described as the differences of entrance pressures for a multi-cavity mold with identical cavities, and as differences of pressures at the end of the melt flow path in each cavity for a family mold with different cavity volumes and geometries. The methodology has shown uniform pressure distributions among the cavities during the entire molding cycle of multiple cavities mold.Zhai et al.(2005a) presented the two gate location optimization of one molding cavity by an efficient search method based on pressure gradient (PGSS), and subsequently positioned weld lines to the desired locations by varying runner sizes for multi-gate parts (Zhai et al., 2006). As large-volume part, multiple gates are needed to shorten the maxiinjection pressure. The method is promising for de sign of gates and runners for a single cavity with multiple gates.Many of injection molded parts are produced with one gate, whether in single cavity mold or in multiple cavities mold. Therefore, the gate location of a single gate is the most common design parameter for optimization. A shape analysis approach was presented by Courbebaisse and Garcia (2002), by which the best gate location of injection molding was estimated. Subsequently, they developed this methodology further and applied it to single gate location optimization of an L shape example (Courbebaisse, 2005). It is easy to use and not time-consuming, while it only serves the turning of simple flat parts with uniform thickness.Pandelidis and Zou (1990) presented the optimization of gate location, by indirect quality measures relevant to warpage and material degradation, which is represented as weighted sum of a temperature dif ferential term, an over-pack term, and a frictional overheating term. Warpage is influenced by the above factors, but the relationship between them is not clear. Therefore, the optimization effect is restricted by the determination of the weighting factors.Lee and Kim (1996b) developed an automated selection method of gate location, in which a set of initial gate locations were proposed by a designer and then the optimal gate was located by the adjacent node evaluation method. The conclusion to a great extent depends much on the human designer’s intuition, because the first step of the method is based on the designer’s proposition. So the result is to a large ex tent limited to the designer’s experience.Lam and Jin (2001) developed a gate location optimization method based on the minimization of the Standard Deviation of Flow Path Length (SD[L]) and Standard Deviation of Filling Time (SD[T]) during the molding filling process. Subsequently, Shen et al.(2004a; 2004b) optimized the gate location design by minimizing the weighted sum of filling pressure, filling time difference between different flow paths, temperature difference, and over-pack percentage. Zhai et al.(2005b) investigated optimal gate location with evaluation criteria of injection pressure at the end of filling. These researchers presented the objective functions as performances of injection molding filling operation, which are correlated with product qualities. But the correlation between the perform ances and qualities is very complicated and no clear relationship has been observed between them yet. It is also difficult to select appropriate weighting factors for each term.A new objective function is presented here to evaluate the warpage of injection molded parts to optimize gate location. To measure part qualitydi rectly, this investigation defines feature warpage to evaluate part warpage, which is evaluated from the “flow plus warpage” simulation outputs of Moldflow Plastics Insight (MPI) software. The objective function is minimized to achieve minimum deformation in gate location optimization. Simulated annealing al gorithm is employed to search for the optimal gate location. An example is given to illustrate the effectivity of the proposed optimization procedure.QUALITY MEASURES: FEATURE WARPGEDefinition of feature warpageTo apply optimization theory to the gate design, quality measures of the part must be specified in the first instance. The term “quality” may be referred to many product properties, such as mechanical, thermal, electrical, optical, ergonomical or geometrical properties. There are two types of part quality measures: direct and indirect. A model that predicts the properties from numerical simulation results would be characterized as a direct quality measure. In contrast, an indirect measure of part quality is correlated with target quality, but it cannot provide a direct estimate of that quality.For warpage, the indirect quality measures in related works are one of performances of injection molding flowing behavior or weighted sum of those. The performances are presented as filling time dif ferential along different flow paths, temperature differential, over-pack percentage, and so on. It is ob vious that warpage is influenced by these perform ances, but the relationship between warpage and these performances is not clear and the determination of these weighting factors is rather difficult. Therefore, the optimization with the above objective function probably will not minimize part warpage even with perfect optimization technique. Sometimes, improper weighting factors will result in absolutely wrong results.Some statistical quantities calculated from the nodal displacements were characterized as direct quality measures to achieve minimum deformation in related optimization studies. The statistical quantities are usually a maximum nodal displacement, an av erage of top 10 percentile nodal displacements, and an overall average nodal displacement (Lee and Kim, 1995; 1996b). These nodal displacements are easy to obtain from the simulation results, the statistical val-ues, to some extents, representing the deformation. But the statistical displacement cannot effectively describe the deformation of the injection molded part.In industry, designers and manufacturers usually pay more attention to the degree of part warpage on some specific features than the whole deformation of the injection molded parts. In this study, feature warpage is defined to describe the deformation of the injection parts. The feature warpage is the ratio of the maximum displacement of the feature surface to the projected length ofthe feature surface (Fig.1):where γ is the feature warpage, h is the maximum displacement on the feature surface deviating from the reference platform, and L is the projected length of the feature surface on a reference direction paralleling the reference platform.For complicated features (only plane feature iscussed here), the feature warpage is usually sepa rated into two constituents on the reference plane, which are represented on a 2D coordinate system:where γx, γy are the constituent feature warpages in the X, Y direction, and L x, L y are the projected lengths of feature surface on X, Y component.Evaluation of feature warpageAfter the determination of target feature combined with corresponding reference plane and pro jection direction, the value of L can be calculated immediately from the part with the calculating method of analytic geometry (Fig.2). L is a constant for any part on the specified feature surface and projected direction. But the evaluation of h is more complicated than that of L.Simulation of injection molding process is a common technique to forecast the quality of part design, mold design and process settings. The results of warpage simulation are expressed as the nodal de flections on X, Y, Z component (W x, W y, W z), and the odal displacement W. W is the vector length of vector sum of W x·i, W y·j, and W z·k, where i, j, k are the unit vectors on X, Y, Zcomponent. The h is the maximum displacement of the nodes on the feature surface, which is correlated with the normal orientation of the reference plane, and can be derived from the results of warpage simulation.To calculate h, the deflection of ith node is evaluated firstly as follows:where W i is the deflection in the normal direction of the reference plane of ith node; W ix, W iy, W iz are the deflections on X, Y, Z component of ith node; α, β, γ are the angles of normal vector of the reference; A and B are the terminal nodes of the feature to projecting direction (Fig.2); W A and W B are the deflections of nodes A and B:where W Ax, W Ay, W Az are the deflections on X, Y, Z component of node A; W Bx, W By and W Bz are the de flections on X, Y, Z component of node B; ωiA and ωiB are the weighting factors of the terminal node deflections calculated as follows:where L iA is the projector distance between ith node and node A. Ultimately, h is the maximum of the absolute value of W i:In industry, the inspection of the warpage is carried out with the help of a feeler gauge, while the measured part should be placed on a reference platform. The value of h is the maximum numerical reading of the space between the measured part surface and the reference platform.GATE LOCATION OPTIMIZATION PROBLEM RMATIONThe quality term “warpage” means the perma nent deformation of the part, which is not caused by an applied load. It is caused by differential shrinkage throughout the part, due to the imbalance of polymer flow, packing, cooling, and crystallization.The placement of a gate in an injection mold is one of the most important variables of the total mold design. The quality of the molded part is greatly affected by the gate location, because it influences the manner that the plastic flows into the mold cavity. Therefore, different gate locations introduce inho mogeneity in orientation, density, pressure, and temperature distribution, accordingly introducing different value and distribution of warpage. Therefore, gate location is a valuable design variable to minimize theinjection molded part warpage. Because the correlation between gate location and warpage distribution is to a large extent independent of the melt and mold temperature, it is assumed that the molding conditions are kept constant in this investigation. The injection molded part warpage is quantified by the feature warpage which was discussed in the previoussection.The single gate location optimization can thus be formulated as follows:where γ is the feature warpage; p is the injection pressure at the gate position; p0 is the allowable injection pressure of injection molding machine or the allowable injection pressure specified by the designer or manufacturer; X is the coordinate vector of the candidate gate locations; X i is the node on the finite element mesh model of the part for injection molding process simulation; N is the total number of nodes.In the finite element mesh model of the part, every node is a possible candidate for a gate. Therefore, the total number of the possible gate location N p is a function of the total number of nodes N and the total number of gate locations to be optimized n:In this study, only the single-gate location problem is investigated.SIMULATED ANNEALING ALGORITHMThe simulated annealing algorithm is one of the most powerful and popular meta-heuristics to solve optimization problems because of the provision of good global solutions to real-world problems. The algorithm is based upon that of Metropolis et al. (1953), which was originally proposed as a means to find an equilibrium configuration of a collection of atoms at a given temperature. The connection be tween this algorithm and mathematical minimization was first noted by Pincus (1970), but it was Kirkpatrick et al.(1983) who proposed that it formed the basis of an optimization technique for combinational (and other) problems.To apply the simulated annealing method to op timization problems, the objective function f is used as an energy function E. Instead of finding a low energy configuration, the problem becomes to seek an approximate global optimal solution. The configurations of the values of design variables are substituted for the energy configurations of the body, and the control parameter for the process is substituted for temperature. A random number generator is used as a way of generating new values for the design variables. It is obvious that this algorithm just takes the mini-mization problems into account. Hence, while per forming a maximization problem the objective func tion is multiplied by (−1) to obtain a capable form.The major advantage of simulated annealing algorithm over other methods is the ability to avoid being trapped at local minima. This algorithm em ploys a random search, which not only accepts changes that decrease objective function f, but also accepts some changes that increase it. The latter are accepted with a probability pwhere ∆f is the increase of f, k is Boltzman’s constant, and T is a control parameter which by analogy with the original application is known as the system “temperature” irrespective of the objective function involved.In the case of gate location optimization, the implementation of this algorithm is illustrated in Fig.3, and this algorithm is detailed as follows:(1) SA algorithm starts from an initial gate location X old with an assigned value T k of the “tempera ture” parameter T (the “temperature” counter k is initially set to zero). Proper control parameter c (0<c <1) in annealing process and Markov chain N generate are given.(2) SA algorithm generates a new gate location X new in the neighborhood of X old and the value of the objective function f(X) is calculated.(3) The new gate location will be accepted with probability determined by the acceptance functionP accept = min { 1,exp[ − k ( f ( X new ) − f ( X old )) T k ] }A uniform random variable P unif is generated in [0,1]. If P unif<P accept, X new is accepted; otherwise it is rejected.(4) This process is repeated for a large enough number of iterations (N generate) for T k. The sequence of trial gate locations generated in this way is known as Markov chain.(5) A new Markov chain is then generated (starting from the last accepted gate location in the previous Markov chain) for a reduced “temperature” Tk+1=cTk and the same p rocess continues for de creasing values of “temperature” until the algorithm stops.Fig.3 The flow chart of the simulated annealing algorithm APPLICATION AND DISCUSSIONThe application to a complex industrial part is presented in this section to illustrate the proposed quality measure and optimization methodology. The part is provided by a manufacturer, as shown in Fig.4. In this part, the flatness of basal surface is the most important profile precision requirement. Therefore, the feature warpage is discussed on basal surface, in which reference platform is specified as a horizontal plane attached to the basal surface, and the longitudinal direction is specified as projected reference direction. The parameter h is the maximum basal surface deflection on the normal direction, namely the vertical direction, and the parameter L is the projected length of the basal surface to the longitudinal direction.Fig.4 Industrial part provided by the manufacturerThe material of the part is Nylon Zytel 101L (30% EGF, DuPont Engineering Polymer). The molding conditions in the simulation are listed in Table 1. Fig.5 shows the finite element mesh model of the part employed in the numerical simulation. It has 1469 nodes and 2492 elements. The objective function, namely feature warpage, is evaluated by Eqs.(1), (3)~(6). The h is evaluated from the results of “Flow +Warp” Analysis Sequence in MPI by Eq.(1), and theL is measured on the industrial part immediately, L=20.50 mm.Table 1 The molding conditions in the simulationConditions ValuesFill time (s) 2.5Melt temperature (°C) 295Mold temperature (°C) 70Packing time (s) 10Packing pressure (of filling pressure) (%) 80MPI is the most extensive software for the injection molding simulation, which can recommend the best gate location based on balanced flow. Gate location analysis is an effective tool for gate location design besides empirical method. For this part, the gate location analysis of MPI recommends that the best gate location is near node N7459, as shown in Fig.5. The part warpage is simulated based on this recommended gate and thus the feature warpage is evaluated: γ=5.15%, which is a great value. In trial manufacturing, part warpage is visible on the sample work piece. This is unacceptable for the manufacturer.The great warpage on basal surface is caused by the uneven orientation distribution of the glass fiber,as shown in Fig.6a. Fig.6a shows that the glass fiber orientation changes from negative direction to positive direction because of the location of the gate, particularly the greatest change of the fiber orientation appears near the gate. The great diversification of fiber orientation caused by gate location introduces serious differential shrinkage. Accordingly, the feature warpage is notable and the gate location must be optimized to reduce part warpage.Fig.6 The orientation distribution of the glass fiber withvaried gatelocation(a) Gate set on N7459; (b) The optimal gate location N7379To optimize the gate location, the simulated annealing searching discussed in the section “Simulated annealin g algorithm” is applied to this part. The maximum number of iterations is chosen as 30 to ensure the precision of the optimization, and the maximum number of random trials allowed for each iteration is chosen as 10 to decrease the probability of null iteration without an iterative solution. Node N7379 (Fig.5) is found to be the optimum gate location. The feature warpage is evaluated from the war page simulation results f(X)=γ=0.97%, which is less than that of the recommended gate by MPI. And the part warpage meets the manufacturer’s requirements in trial manufacturing. Fig.6b shows the fiber orientation in the simulation. It is seen that the optimal gate location results in the even glass fiber orientation, and thus introduces great reduction of shrinkage difference on the vertical direction along the longitudinal direction. Accordingly, the featurewarpage is reduced.CONCLUSIONFeature warpage is defined to describe the warpage of injection molded parts and is evaluated based on the numerical simulation software MPI in this investigation. The feature warpage evaluation based on numerical simulation is combined with simulated annealing algorithm to optimize the single gate location for plastic injection mold. An industrial part is taken as an example to illustrate the proposed method. The method results in an optimal gate location, bywhich the part is satisfactory for the manufacturer. This method is also suitable to other optimization problems for warpage minimization, such as location optimization for multiple gates, runner system bal ancing, and option of anisotropic materials.注塑模的单浇口优化文摘:本文阐述了一种单浇口优化注塑模具的方法。

注塑成型模具设计工具中英文对照外文翻译文献

注塑成型模具设计工具中英文对照外文翻译文献

导言
注塑成型工艺过程需要专业的知识、技能,最重要的是需要它成功的实践经验。通 常是工艺参数控制过程的效率。在制造过程中,有效地控制和优化这些参数能实现一致 性,这种一致性会在零件质量和零件成本上表现出来的问题。
1 智能化工程模块注塑成型工艺(IKEM)
基于知识的智能化工程模块的注塑成型工艺(IKEM)是一种软件技术,它领先于并 行工程和 CAD / CAM 系统。 它集成工程的设计和制造工艺的最新知识, 给用户各种设计 方面的指示,通过减少在产品开发设计阶段的工程变更,有助于减少一些工时。该系统 将用于注塑设计,设计迭代和流程整合。目前的过程由许多手工计算、CAD 图形结构和 从以前项目取得的经验三部分组成。一旦工程师完成设计,这将是性能评估。 该 IKEM 项目已分为三大模块。 (1) 费用估算模块 (2) 模具设计模块
2.1 文献回顾
模具设计的是另一种注塑成型过程的阶段,有经验的工程师在很大程度上有助于自 动化进程,提高其效率。这个问题需要注意的是深入研究设计模具的时间。通常情况下,
中英文资料
当设计工程师设计模具时,他们会参阅表格和标准手册,这会消耗大量的时间。另外, 在标准的 CAD 软件中需要大量的时间去考虑模具的建模组件。不同的研究人员已经解决 了缩短用不同的方式来设计模具所花费的时间的问题。凯尔奇和詹姆斯采用成组技术来 减少模具设计时间。聚合一类注塑成型件的独特的编码系统和在注射模具中所需的工具 已开发,它可以适用于其它产品生产线。实施编码系统的软件系统也已经被开发。通过 获取在这方面领域的工程师的经验和知识,尝试直接使模具设计过程的自动化。并行模 具设计系统的研究开发就是这样的一个过程,在并行工程环境中试图制定一个系统的注 塑模具设计流程。他们的研究目标是研制一个有利于并行工程实践的模具开发的进程, 和研制开发一个以知识为基础的为注塑模具设计提供工艺问题和产品要求的辅助设计。 通过各种方式获取关于模具设计过程的确定信息和不确定信息,研究人员一直试图 使模具设计流程自动化。这个研究试图研制开发一个独特的模具设计应用程序,它一确 定性和不确定性两种形式获取信息。

注塑模浇口位置优化新方法_经验搜索法

注塑模浇口位置优化新方法_经验搜索法

浇口 位置与塑件质量关系进行了分析和总结, 归纳出浇口位置设计的基本原则, 提出了确定各类塑件浇 口位置的具 体
准则。通过算例分析和方案比较, 证明所提出的优化方法是行之有效的。
关键词: 注塑模; 浇口位置; 经验搜索法
中图分类号: TQ320 66+ 1
文献标识码: A
文 章编号: 1005- 5770 ( 2006) 05- 0028- 03
Keywords: Injection Mould; Gate Locat ion; Experient ial Scouting Method
在注塑成型工艺及模具设计中, 浇口位置是一个 很重要的设计 变量, 它与塑 料性能、塑 件形状和尺 寸、模具结构及注射工艺等因素有关。不合理的浇口 位置将会导致塑件产生缺料、熔体破脆、熔接痕、缩 孔、白斑、烧焦、翘曲等一系列质量缺陷, 甚至直接 产生废品, 因此正确选择浇口位置是提高塑件质量的 重要环节。
从表中可看出方案三在最大注射压力过压熔体最大温差流动平衡冷却时间等方面都比方案一二合理由此验证出以经验搜索法所确定的浇口位置是优化的结结束语浇口位置是浇注系统设计的重点它直接关系着塑件的质量本文将数值模拟技术与设计经验相结提出了经验搜索法经过理论分析和实例运算证明所提出的浇口位置优化方法对于精度高浇口位置可行空间小的注塑模效果明显
1 浇口位置优化的经验搜索法
优化浇口位置最简单的方法是穷尽法, 即对所有 可能的浇口位置逐一进行判定, 但在有限元网格模型 中, 每个节点都可能是浇口位置, 所以这种方法耗时
太大; 随机搜索法也是优化浇口位置常用的方法, 当 目标函数是纯随机时, 这种方法非常有效, 但搜索的 盲目性较大, 很难找出最优点; 还有决策法, 通常用 于大范围搜索空间问题, 对节点较多时很实用, 但搜 索的结果很大程度上取决于最初浇口位置的决策, 当 最初浇口位置选择在远离最佳位置的区域, 则该算法 只能搜索到局部最优, 而无法找出全局最优。

优化单门注塑设计(有出处)--中英文翻译

优化单门注塑设计(有出处)--中英文翻译

优化单门注塑设计(有英文原文,加我Q1985639755)李继全,李德群,郭志赢,刘海元(塑性技术系,上海交通大学,上海200030,中国)E-mail: hutli@接收:2006-11-22 修订接受:2007-3-19摘要:这篇论文论述了注塑模具单门位置优化方法。

门优化的目的就是,缩小注塑浇口部位的尺寸。

因为对于注塑模具的绝大部位,浇口的质量是关键问题,然而浇口又严重被门位置所影响。

特征浇口被定义为比率最高表面特征投影长度替代表面特征目的是来描述浇口部分。

优化就是与数字模拟技术联系起来,寻找最优门位置。

这种模拟热处理算法寻找最优。

最后,在论文中通过一个例子的讨论,得出结论,这种简易方法是有效的。

关键词:注塑模具、浇口、优化、热道特征版头:.2007.A1077 文件代码:A CLC序号:TQ320.66介绍塑料注塑成形被广泛使用,虽复杂但高效技术制造各种各样的塑料产品。

特别是那个高要求产品高精度的公差和复杂的形体。

注塑件质量受到塑胶材料,部分几何,塑具结构和工艺条件的影响。

基本注塑模具最重要的三部分组成如下:腔,浇口和流道,冷却系统。

莱姆和斯奥通过改变腔厚度是腔平衡。

一个平衡的充型过程包括均匀分布的压力和温度这将会很显著的减少曲损面。

但是型腔平衡是塑件质量影响诸因素之一。

尤其是,型腔通常受到功能的要求,而不能常被改变。

从注塑模具浇口设计说起,一个浇口的特征表现在他的大小尺寸和位置,而分流道取决于大小和布局浇口的大小和流道的布局通常被判定为常量,想对而言,浇口位置和流道的大小更加灵活,这些参数可以改变,从而改变塑件特性。

结果是,它们常常作为优化设计的参数。

李和金(1996年)分流和浇口的尺寸目的是平衡分流系统以满足多重注腔。

分流平衡被描述为不同的进压力因为多重腔模具有着相同的腔但不同的压力在融化路径末端每个腔,不同的腔数量和结构。

这种方法论显示了压力一致在多次整个循环中。

在2005年,翟提出了一个模腔的双浇口优化,基于压力梯度来寻找的有效方法,随后通过改变流道尺寸的大小,从而使多腔塑件的焊缝形成在要求的位置(翟2006年)。

文献翻译-注塑模具设计

文献翻译-注塑模具设计

编号:毕业设计(论文)外文翻译(译文)学院:机电工程学院专业:机械制造及其自动化学生姓名:学号:指导教师单位:姓名:职称:2014年 5 月26 日摘录巨大线束网络的塑料装饰构件集成的发现在汽车领域上是降低汽车重量的一个很有吸引力的方式。

当任何异物插入注射成型的部分,在聚合物中横截面的变化导致了缩痕是审美缺陷而不是塑料装饰是可以接受的组件。

在本文中,插入成型采用注射成型过程分量的方法来减少或消除缩痕线。

采用L9正交试验设计实验框架用来研究工艺参数的影响,部分的肋的几何形状,并在水槽的标记线本身存在的形成。

水槽深度被定义为在表面轮廓可以感觉到的剩余的偏转。

一个描述性的模拟研究提出在不同的肋的几何形状的观察水池深度标记的工艺参数、模具温度、熔体温度和包装的时间是不同的。

仿真结果表明,较高的模具温度可有效地最小化的下沉深度为所有的肋的几何形状,而熔体温度和包时间的影响取决于特定的肋的几何形状。

研究结果还表明,适当的组合肋的几何形状和工艺参数消除了水槽标记。

感谢我要感谢我的导师David C. Angstadt 博士的指导和在这个项目的整个过程中的信任和支持。

Angstadt 博士的不断的反馈和很高的期望,驱使我不断进取,完成这项工作。

我衷心感谢Mica Grujicic博士让我进入Moldflow。

特别感谢我的研究生同学Peiman Mosaddegh 和Celina Renner这项工作的过程中的无私帮助。

我还要感谢我的朋友Nitendra Nath,Gayatri Keskar,Sonia Ramnani,Shyam Panyam,Judhajit Roy 和Ajit Kanda的不断鼓励和帮助。

最后,我要感谢我的家人和朋友们所有的爱和关怀,如果没有这些的话,这项工作将是不完整的。

第一章引言汽车制造商正越来越多地用塑料解决方案来减轻重量。

最近的一项研究表明,塑料占了10%的汽车的总重量。

塑料在汽车从内部的保险杠到外部的门体都存在。

注塑模的流道和浇口的设计文献综述

注塑模的流道和浇口的设计文献综述

注塑模的流道和浇口的设计文献综述姓名:学院:专业:班级:学号:指导老师:注塑模的流道和浇口的设计文献综述摘要:流道和浇口设计不合理,则出模产品会出现空洞缩水凹陷气孔等缺陷,从而降低出模产品的机械性能断裂延伸率和冲击性能成型后产品尺寸变差较大,致使影响产品性能。

浇口直接影响注塑制品的外观、变形、成型收缩率及强度, 如果选用不当,容易使注塑制品产生缺料、熔接痕、缩孔、浇口白斑、翘曲、变脆及降解等缺陷。

根据注塑制品的不同特点,探讨了11种浇口形式的优缺点,进一步阐述了选用浇口类型与位置的方法及原则。

关键词:流道浇口 注塑模具 注塑制品设计环节引言流道和浇口设计是设计注塑模具的重要环节,其设计位置形状决定出模产品的质量物理性能等除此之外,流道浇口的合理布置对提高材料利用率,改善注塑工艺性等方面也有十分关键的作用。

浇口亦称进料口, 是连接分流道与型腔熔体的通道。

浇口选择恰当与否直接关系到注塑制品能否完好、高质量地注射成型。

浇口设计包括浇口截面形状与尺寸的确定和浇口位置的选择。

关于浇口截面形状及尺寸的确定, 很多教科书都有提及, 这里不再重复。

浇口位置对熔体流动前沿的形状和保压压力的效果都起着决定性的作用, 因此也决定了注塑制品的强度和其它性能。

对于影响确定浇口位置的因素来说, 包括制品的形状、大小、壁厚、尺寸精度、外观质量及力学性能等。

此外, 还应考虑浇口的加工、脱模及清除浇口的难易程度。

正确的浇口位置可以避。

免出现那些可以预见的问题。

一、主流道设计1.主流道尺寸主流道是一端与注射机喷嘴相接触,另一端与分流道相连的一段带有锥度的流动通道。

主流道小端尺寸为3.5~4mm。

2.主流道衬套的形式主流道小端入口处与注射机喷嘴反复接触,属易损件,对材料要求较严,因而模具主流道部分常设计成可拆卸更换的主流道衬套形式(俗称浇口套,这边称唧咀),以便有效的选用优质钢材单独进行加工和热处理。

唧咀都是标准件,只需去买就行了。

注塑成型优化方法(有出处)--中英文翻译

注塑成型优化方法(有出处)--中英文翻译

A technical note on the characterization of electroformed nickelshells for their application to injection molds ——Universidad de Las Palmas de Gran Canaria, Departamento de Ingenieria Mecanica,SpainAbstractThe techniques of rapid prototyping and rapid tooling have been widely developed during the last years. In this article, electroforming as a procedure to make cores for plastics injection molds is analysed. Shells are obtained from models manufactured through rapid prototyping using the FDM system. The main objective is to analyze the mechanical features of electroformed nickel shells, studying different aspects related to their metallographic structure, hardness, internal stresses and possible failures, by relating these features to the parameters of production of the shells with an electroforming equipment. Finally a core was tested in an injection mold.Keywords: Electroplating; Electroforming; Microstructure; NickelArticle Outline1. Introduction2. Manufacturing process of an injection mold3. Obtaining an electroformed shell: the equipment4. Obtained hardness5. Metallographic structure6. Internal stresses7. Test of the injection mold8. ConclusionsReferences1. IntroductionOne of the most important challenges with which modern industry comes across is to offer the consumer better products with outstanding variety and time variability (new designs). For this reason, modern industry must be more and more competitive and it has to produce with acceptable costs. There is no doubt that combining the time variable and the quality variable is not easy because they frequently condition one another; the technological advances in the productive systems are going to permit that combination to be more efficient and feasible in a way that, for example, if it is observed the evolution of the systems and techniques of plastics injection, we arrive at the conclusion that, in fact, it takes less and less time to put a new product on the market and with higher levels of quality. The manufacturing technology of rapid tooling is, in this field, one of those technologicaladvances that makes possible the improvements in the processes of designing and manufacturing injected parts. Rapid tooling techniques are basically composed of a collection of procedures that are going to allow us to obtain a mold of plastic parts, in small or medium series, in a short period of time and with acceptable accuracy levels. Their application is not only included in the field of making plastic injected pieces [1], [2] and [3], however, it is true that it is where they have developed more and where they find the highest output.This paper is included within a wider research line where it attempts to study, define, analyze, test and propose, at an industrial level, the possibility of creating cores for injection molds starting from obtaining electroformed nickel shells, taking as an initial model a prototype made in a FDM rapid prototyping equipment.It also would have to say beforehand that the electroforming technique is not something new because its applications in the industry are countless [3], but this research work has tried to investigate to what extent and under which parameters the use of this technique in the production of rapid molds is technically feasible. All made in an accurate and systematized way of use and proposing a working method.2. Manufacturing process of an injection moldThe core is formed by a thin nickel shell that is obtained through the electroforming process, and that is filled with an epoxic resin with metallic charge during the integration in the core plate [4] This mold (Fig. 1) permits the direct manufacturing by injection of a type a multiple use specimen, as they are defined by the UNE-EN ISO 3167 standard. The purpose of this specimen is to determine the mechanical properties of a collection of materials representative industry, injected in these tools and its coMParison with the properties obtained by conventional tools.The stages to obtain a core [4], according to the methodology researched in this work, are the following:(a) Design in CAD system of the desired object.(b) Model manufacturing in a rapid prototyping equipment (FDM system). The material used will be an ABS plastic.(c) Manufacturing of a nickel electroformed shell starting from the previous model that has been coated with a conductive paint beforehand (it must have electrical conductivity).(d) Removal of the shell from the model.(e) Production of the core by filling the back of the shell with epoxy resin resistant to high temperatures and with the refrigerating ducts made with copper tubes.The injection mold had two cavities, one of them was the electroformed core and the other was directly machined in the moving platen. Thus, it was obtained, with the same tool and in the same process conditions, to inject simultaneously two specimens in cavities manufactured with different technologies.3. Obtaining an electroformed shell: the equipmentElectrodeposition [5] and [6] is an electrochemical process in which a chemical change has its origin within an electrolyte when passing an electric current through it. The electrolytic bath is formed by metal salts with two submerged electrodes, an anode (nickel) and a cathode (model), through which it is made to pass an intensity coming from a DC current. When the current flows through the circuit, the metal ions present in the solution are transformed into atoms that are settled on the cathode creating a more or less uniform deposit layer.The plating bath used in this work is formed by nickel sulfamate [7] and [8] at a concentration of 400 ml/l, nickel chloride (10 g/l), boric acid (50 g/l), Allbrite SLA (30 cc/l) and Allbrite 703 (2 cc/l). The selection of this composition is mainly due to the type of application we intend, that is to say, injection molds, even when the injection is made with fibreglass. Nickel sulfamate allows us to obtain an acceptable level of internal stresses in the shell (the tests gave results, for different process conditions, not superior to 50 MPa and for optimum conditions around 2 MPa). Nevertheless, such level of internal pressure is also a consequence of using as an additive Allbrite SLA, which is a stress reducer constituted by derivatives of toluenesulfonamide and by formaldehyde in aqueous solution. Such additive also favours the increase of the resistance of the shell when permitting a smaller grain. Allbrite 703 is an aqueous solution of biodegradable surface-acting agents that has been utilized to reduce the risk of pitting. Nickel chloride, in spite of being harmful for the internal stresses, is added to enhance the conductivity of the solution and to favour the uniformity in the metallic distribution in the cathode. The boric acid acts as a pH buffer.The equipment used to manufacture the nickel shells tested has been as follows:• Polypropylene tank: 600 mm × 400 mm × 500 mm in size.• Three teflon resistors, each one with 800 W.• Mechanical stirring system of the cathode.• System for recirculation and filtration of the bath formed by a pump and a polypropylene filter.• Charging rectifier. Maximum intensity in continuous 50 A and continuous current voltage between 0 and 16 V.• Titanium basket with nickel anodes (Inco S-Rounds Electrolytic Nickel) with a purity of 99%.• Gases aspiration system.Once the bath has been defined, the operative parameters that have been altered for testing different conditions of the process have been the current density (between 1 and 22 A/dm2), the temperature (between 35 and 55 °C) and the pH, partially modifying the bath composition.4. Obtained hardnessOne of the most interesting conclusions obtained during the tests has been that the level of hardness of the different electroformed shells has remained at rather high and stable values. In Fig. 2, it can be observed the way in which for current density values between2.5 and 22 A/dm2, the hardness values range from 540 and 580 HV, at pH 4 ± 0.2 and witha temperature of 45 °C. If the pH of the bath is reduced at 3.5 and the temperature is 55 °C those values are above 520 HV and below 560 HV. This feature makes the tested bath different from other conventional ones composed by nickel sulfamate, allowing to operate with a wider range of values; nevertheless, such operativity will be limited depending on other factors, such as internal stress because its variability may condition the work at certain values of pH, current density or temperature. On the other hand, the hardness of a conventional sulfamate bath is between 200–250 HV, much lower than the one obtained in the tests. It is necessary to take into account that, for an injection mold, the hardness is acceptable starting from 300 HV. Among the most usual materials for injection molds it is possible to find steel for improvement (290 HV), steel for integral hardening (520–595 HV), casehardened steel (760–800 HV), etc., in such a way that it can be observed that the hardness levels of the nickel shells would be within the medium–high range of the materials for injection molds. The objection to the low ductility of the shell is compensated in such a way with the epoxy resin filling that would follow it because this is the one responsible for holding inwardly the pressure charges of the processes of plastics injection; this is the reason why it is necessary for the shell to have a thickness as homogeneous as possible (above a minimum value) and with absence of important failures such as pitting.5. Metallographic structureIn order to analyze the metallographic structure, the values of current density and temperature were mainly modified. The samples were analyzed in frontal section and in transversal section (perpendicular to the deposition). For achieving a convenient preparation, they were conveniently encapsulated in resin, polished and etched in different stages with a mixture of acetic acid and nitric acid. The etches are carried out at intervals of 15, 25, 40 and 50 s, after being polished again, in order to be observed afterwards in a metallographic microscope Olympus PME3-ADL 3.3×/10×.Before going on to comment the photographs shown in this article, it is necessary to say that the models used to manufacture the shells were made in a FDM rapid prototyping machine where the molten plastic material (ABS), that later solidifies, is settled layer by layer. In each layer, the extruder die leaves a thread approximately 0.15 mm in diameter which is compacted horizontal and vertically with the thread settled inmediately after. Thus, in the surface it can be observed thin lines that indicate the roads followed by the head of the machine. These lines are going to act as a reference to indicate the reproducibility level of the nickel settled. The reproducibility of the model is going to be a fundamental element to evaluate a basic aspect of injection molds: the surface texture.The tested series are indicated in Table.Table 1.Tested seriesSeries pH Temperature (°C) Current density (A/dm2)1 4.2 ± 0.2 55 2.222 3.9 ± 0.2 45 5.563 4.0 ± 0.2 45 10.004 4.0 ± 0.2 45 22.22Fig. 3 illustrates the surface of a sample of the series after the first etch. It shows the roads originated by the FDM machine, that is to say that there is a good reproducibility. It cannot be still noticed the rounded grain structure. In Fig. 4, series 2, after a second etch, it can be observed a line of the road in a way less clear than in the previous case. In Fig. 5, series 3 and 2° etch it begins to appear the rounded grain structure although it is very difficult to check the roads at this time. Besides, the most darkened areas indicate the presence of pitting by inadequate conditions of process and bath composition.This behavior indicates that, working at a low current density and a high temperature, shells with a good reproducibility of the model and with a small grain size are obtained, that is, adequate for the required application.If the analysis is carried out in a plane transversal to the deposition, it can be tested in all the samples and for all the conditions that the growth structure of the deposit is laminar (Fig. 6), what is very satisfactory to obtain a high mechanical resistance although at the expense of a low ductibility. This quality is due, above all, to the presence of the additives used because a nickel sulfamate bath without additives normally creates a fibrous andnon-laminar structure [9]. The modification until a nearly null value of the wetting agent gave as a result that the laminar structure was maintained in any case, that matter demonstrated that the determinant for such structure was the stress reducer (Allbrite SLA). On the other hand, it was also tested that the laminar structure varies according to the thickness of the layer in terms of the current density.6. Internal stressesOne of the main characteristic that a shell should have for its application like an insert is to have a low level of internal stresses. Different tests at different bath temperatures and current densities were done and a measure system rested on cathode flexural tensiometer method was used. A steel testing control was used with a side fixed and the other free (160 mm length, 12.7 mm width and thickness 0.3 mm). Because the metallic deposition is only in one side the testing control has a mechanical strain (tensile or compressive stress) that allows to calculate the internal stresses. Stoney model [10] was applied and was supposed that nickel substratum thickness is enough small (3 μm) to influence, in an elastic point of view, to the strained steel part. In all the tested cases the most value of internal stress was under 50 MPa for extreme conditions and 2 MPa for optimal conditions, an acceptable value for the required application. The conclusion is that the electrolitic bath allows to work at different conditions and parameters without a significant variation of internal stresses.7. Test of the injection moldTests have been carried out with various representative thermoplastic materials such as PP, PA, HDPE and PC, and it has been analysed the properties of the injected parts such as dimensions, weight, resistance, rigidity and ductility. Mechanical properties were tested by tensile destructive tests and analysis by photoelasticity. About 500 injections were carried out on this core, remaining under conditions of withstanding many more.In general terms, important differences were not noticed between the behavior of the specimens obtained in the core and the ones from the machined cavity, for the set of the analysed materials. However in the analysis by photoelasticiy (Fig. 7) it was noticed a different tensional state between both types of specimens, basically due to differences in the heat transference and rigidity of the respective mold cavities. This difference explains the ductility variations more outstanding in the partially crystalline materials such as HDPE and PA 6.For the case of HDPE in all the analysed tested tubes it was noticed a lower ductility in the specimens obtained in the nickel core, quantified about 30%. In the case of PA 6 this value was around 50%.8. ConclusionsAfter consecutive tests and in different conditions it has been checked that the nickel sulfamate bath, with the utilized additives has allowed to obtain nickel shells with some mechanical properties acceptable for the required application, injection molds, that is to say, good reproducibility, high level of hardness and good mechanical resistance in terms of theresultant laminar structure. The mechanical deficiencies of the nickel shell will be partially replaced by the epoxy resin that finishes shaping the core for the injection mold, allowingto inject medium series of plastic parts with acceptable quality levels.References[1] A.E.W. Rennie, C.E. Bocking and G.R. Bennet, Electroforming of rapid prototyping mandrels for electro discharge machining electrodes, J. Mater. Process. Technol. 110 (2001), pp. 186–196. [2] P.K.D.V. Yarlagadda, I.P. Ilyas and P. Chrstodoulou, Development of rapid tooling for sheet metal drawing using nickel electroforming and stereo lithography processes, J. Mater. Process. Technol. 111 (2001), pp. 286–294.[3] J. Hart, A. Watson, Electroforming: A largely unrecognised but expanding vital industry, Interfinish 96, 14 World Congress, Birmingham, UK, 1996.[4] M. Monzón et al., Aplicación del electroconformado en la fabricación rápida de moldes de inyección, Revista de Plásticos Modernos. 84 (2002), p. 557.[5] L.F. Hamilton et al., Cálculos de Química Analítica, McGraw Hill (1989).[6] E. Julve, Electrodeposición de metales, 2000 (E.J.S.).[7] A. Watson, Nickel Sulphamate Solutions, Nickel Development Institute (1989).[8] A. Watson, Additions to Sulphamate Nickel Solutions, Nickel Development Institute (1989).[9] J. Dini, Electrodeposition Materials Science of Coating and Substrates, Noyes Publications (1993).[10] J.W. Judy, Magnetic microactuators with polysilicon flexures, Masters Report, Department of EECS, University of California, Berkeley, 1994. (cap′. 3).外文资料译文注塑成型优化方法tuncayerzurumlua和巴布尔ozcelik厂房及制造工程,伊利诺斯工学院41400、科贾埃利,土耳其摘要快速成型技术及快速模具发达国家已广泛在过去几年. 在这篇文章中,作为一种程序,使电芯塑料注射模具分析. 贝壳制成模型,通过快速成型得到利用差分系统. 主要目的是分析力学特征镍炮弹、学习方面的不同金相组织,硬度,内部讲,可能失败由这些特色的有关参数以生产贝壳电设备. 终于引爆了一个核心注塑模具.文章概要1. 引言2. 注塑模具制造过程中的3. 壳牌获取电:设备4. 获得硬度5. 金相组织6. 测试的注塑模具7. 结论参考资料1、引言其中最重要的是现代工业遇到的挑战是提供更好的产品与消费者,优秀品种和时间变异(新设计). 因此,现代工业必须有更多的竞争性和生产成本与接受. 毫无疑问,结合时间变量,质量并不容易,因为他们经常变状态互相; 科技进步生产许可证制度,将可更有效和可行的组合在方式,例如,如果是演化的观测系统和注塑技术、我们得出的结论是,事实上需少时间把新产品的市场和较高素质. 快速模具制造技术,在这一领域, 其中的技术进步,使得有可能改善设计和制造过程注入部分. 快速模具制造技术基本上是由程序集将允许我们获取塑料模具零件,小型系列在短短的时间里,以可接受的精度水平. 其应用领域不仅包括制作塑胶件注[1],[2],[3]但是, 的确,这是他们研制并在那里找到更多的最高产量本文包括在科研第一线,广泛试图研究确定,分析测试和建议在产业层次,形成核心的可能性注塑模具从获取镍炮弹、同时,作为一个初步的原型取得了差分模型快速成型设备它也将不得不说,事前并没有任何新电铸技术的应用,因为它业内人士无数、但这种试图调查研究工作,并在多大程度上使用这一技术参数,其中在生产技术上的快速模具. 所有在准确、制度化的方式方法的运用,并提出了工作.2、注塑模具制造过程中的核心是由镍壳薄,透过电进程这是一个充满金属环氧树脂主管期间一体化这一核心板块[4] 模具(图1)制造许可证直接注射A型多用标本、他们确定的甲状旁腺恩的SO3167标准. 目的是要确定这个试样力学性能的材料收集代表工业在注入这些工具及其性能相比常规手段获得该阶段取得核心根据这一方法研制工作,有以下几方面:(一)在设计CAD系统预期目标(二)在快速原型制造设备模型(差分系统). 该材料将ABS塑料(三)生产镍电壳牌从以往的模式已经涂了导电涂料事前(必须有导电).(四)清理壳牌从模型(五)生产核心填写背面与壳牌环氧树脂抗高温随着铜管与冷冻槽有两个空洞的注塑模具、他们一个是电加工的核心,一是直接在移动压板. 因此,它获得了与同一工具及同一工艺条件、同时注入两种不同制成标本蛀牙技术.3、壳牌获取电设备电镀[5]和[6]是一个电化学过程中的化学变化,当它起源于一电解质悠悠电流通过. 该电镀[5]和[6]是一个电化学过程中的化学变化,当它起源于一电解质悠悠电流通过. 该电解槽是由金属盐两个电极淹没,一个阳极(镍)、阴极(示范) 它是通过把烈度来自直流. 当电流流经电路目前在金属离子的溶液转化为原子,是定居于创造一个更加阴极存款少或制服层镀液采用这项工作是由镍、磺酸[7][8]集中在400 毫升/公升,氯化镍(10微克/公升)、硼酸(50微克/公升),allbrite习得(30完工/公升),703allbrite(2完工/公升). 选择这种组合主要原因是我们打算申请类别,即注塑模具,即使注射了玻璃纤维. 磺酸镍让我们获得可以接受的程度,在内部讲壳牌(作了测试结果不同工艺条件,不高于50兆帕的最佳条件和2兆帕左右). 不过,这种程度的内部压力也是作为添加剂使用后果allbrite习得、这是由衍生-T强调消脂、甲醛水溶液. 这种添加剂也赞成增加阻力较小壳当允许粮食. 703allbrite是降解水溶液表面代理商代理已经利用以减少蚀. 氯化镍,尽管危害性的内部讲加上增强导电溶液并赞成在金属均匀分布在阴极. 硼酸pH值的作为缓冲该设备用于制造镍炮弹已测试如下:● 聚丙烯坦克:600毫米×400毫米×500毫米的尺寸● 三聚四氟乙烯电阻器,每一个有800● 特约阴极机械搅拌系统● 再循环和过滤系统组成的水泵、浴聚丙烯过滤● 充电整流器. 最高强度和持续不断的电流电压0至16伏● 镍钛篮阳极(镍矿公司的S轮电解镍)具有纯度99%● 气体吸入系统一旦已确定浴、手术已更改参数测试不同条件的过程一直电流密度(之间 1、22℃),温度(35至55℃)和pH值,改变镀液组成部分4、获得硬度一个非常有趣的测试期间已获得结论,对不同程度的硬度电炮弹一直保持在相当高的稳定价值观. 在无花果. 2,可以观察到哪种方式电流密度值为2.5和22℃之间, 硬度值从高压540、580、在pH0.2和4+摄氏45℃如果是浴的pH值为3.5,气温下降55℃以上这些价值观高压520以下560高压. 这一特点使得测试洗澡不同于其他传统业务组成磺酸镍、允许经营范围更广的价值观念; 然而,这种有限性的将取决于其他因素, 例如内应力,因为其工作状况可能在某些变性的pH值、电流密度和温度. 在另一方面,传统的硬度介于200-250高压磺酸浴、远比取得的一个考验. 既要考虑到,对注塑模具、硬度接受高压300起. 其中最常见的材料就可以找到注塑模具钢改善(高压290) 积分硬化钢(高压520-595),casehardened钢(高压760-800)等这样可以观察到的硬度水平都将炮弹镍中高幅度的注塑模具材料. 反对低延性是有偿壳牌这样的环氧树脂填充它表示,将依负责,因为这是一个内心压力控股收费进程注塑; 这也是为什么必须要由有壳厚度为尽可能均匀(以上最低值),。

文献翻译-注塑模设计

文献翻译-注塑模设计

编号:毕业设计(论文)外文翻译(译文)院(系):机电工程学院专业:机械设计制造及其自动化学生姓名:学号:指导教师单位姓名:职称:2014年5月26日中文翻译注塑模设计模具简介模具型腔可赋予制品其形状,因此在塑料加工过程中模具处于非常重要的地位,这使得模具对于产品最终质量的影响与塑化机构和其他成型设备的部件一样关键,有时甚至更重要。

模具材料根据成型方法和模具使用周期(即要生产的产品数量)的不同,塑料成型模具要满足不同的需求,模具可以由多种材料制成,甚至于可以使比较特殊的材料如纸张和石膏。

然而,由于大多数成型过程需要高压,通常还有高温条件限制,金属迄今为止时最重要的材料,其中刚才居首位。

很多时候,模具材料的选择不仅关系到性能和最佳性价比,还影响到模具的加工方法,甚至是整体设计。

典型的例子是金属铸造模具的材料选择,与机械加工模具相比,不同材料的金属铸造模具冷却系统存在很大的差异。

另外,不同的制造方法也会对材料的选择产生影生产,原型模具的制造常常采用一些新技术,如计算机辅助设计和计算机集成制造,将固体毛配制成原型模具。

与以前以模型为基础的方法相比,用CAD和CIM S方法会更经济,这是因为这类模具厂家自身就能制作,而用其他技术,只能由外面的供应商来加工生产。

总之,虽然模具生产中经常会用到一些高性能材料,但用得最多的仍然是那些常规材料。

像陶瓷这类高性能材料几乎不能用于模具制造,这可能是因为其优点(如高温下性能不会改变)在模具中并不需要,相反,像烧结类陶瓷材料,具有低抗张强度和热传递性差的缺点,在模具中也只有少量应用。

这里所用的零件不是采用粉末冶金和热等压工艺生产,而是指烧结成的多空、透气性零件。

在很多成型方法中,都必须将行腔中的气体排出去,人们已经多次尝试使用多孔金属材料排气。

与专门设置的排气装置相比,其优点是显而易见的,尤其是在熔料前锋处如有熔接线的地方,这里是最容易出现问题的区域:一方面能防止在制品表面有明显的熔接线,还能避免溢流料等残余物堵塞微孔。

微通道注塑成型模具设计外文文献翻译、中英文翻译

微通道注塑成型模具设计外文文献翻译、中英文翻译

附录1:外文翻译微通道注塑成型模具设计大规模生产微流体装置对于其中的生物医学应用是重要的一次性设备被广泛使用。

注射成型是一种众所周知的生产方法的设备以大规模低成本。

在这项研究中,注塑过程适用于制造具有单个微通道的微流体装置。

至提高产品质量,采用高精度机械加工制造的微流体装置的模具。

常规注塑机是在这个过程中实现的。

在不同的模具温度下进行注模。

通过测量部件变形来表征注射件的翘曲。

评估了模具温度对最终装置质量的影响在零件变形和粘接质量方面。

从实验结果来看,翘曲和模制件的粘合质量之间的一致性被观察。

发现随着片的翘曲减小,粘接质量下降增加。

接合断裂压力的最大值和最小值在相同的模具温度下发现翘曲点。

这个模具温度被命名为设计的微流体装置的最佳温度。

它是观察到在45℃的模具温度下产生的微流体装置能够承受高达74巴的压力1介绍微流体装置的微尺度和纳米级制造是一种学术研究和行业的热门话题。

重复,高效,大规模生产的微流体装置是对于一次性设备的生物医学应用而言至关重要广泛使用。

当微流体装置的制造是关心,基本上有两种常见的方法:直接基板制造和基于模具的技术。

直接底物制造包括蚀刻,激光烧蚀和机械加工。

另一方面,基于模具的技术包括软光刻,热压花和注射成型。

虽然模具的制造可能是复杂的;一旦模具该模具可以很好地被使用好几次。

之后完成模具,其余的制造程序是简单且高度可重现(即,低成本复制)使基于模具的技术非常适合批量生产。

在基于模具的技术中,注塑成型是一个很好的成型宏观尺度的制造工艺(尺寸大于毫米),其中熔化的材料被注入进入模具以获得所需的形状。

使用的材料一般通过陶瓷和金属的塑料也可以用塑料模塑粘合剂。

在此过程中,材料被供应到加热桶,混合,并强制进入其中冷却的模具腔并根据腔体的形状固化[1]。

一旦已经制造了一个模具,可以有几千个零件模仿了很少或没有额外的努力。

产品好尺寸公差和过程几乎不需要完成对最终产品的操作。

考虑到这些方面,注射成型是制造零件的流行制造工艺在大规模上广泛应用于航空航天,汽车,医疗,玩具和光学[2]。

中英文翻译模板-注射成型技术以及住塑优化经典资料

中英文翻译模板-注射成型技术以及住塑优化经典资料

Injection mold design and the new-type injekt by shaping technologeThe plastic injection mold is in the present all plastics mold,uses the broadest mold, can take shape the complex high accuracy,plastic product. Under only is sketchily introduces.The design plastic injection mold first must have the certain,understanding to the plastic, the plastic principal constituent is a polymer. Like we often said the ABS plastic then is the propylene nitrile, the pyprolylene, the styrene three kind of monomers uses the emulsion, the main body or aerosol gathers the legitimate production,enable it to have three kind of monomers the high performance and may the compression molding, injects under the certain temperature and the pressure to the mold cavity, has the flow distortion, the obtaining cavity shape, after guarantees presses cooling to go against becomes the plastic product. The polymer member assumes the chain shape structure generally, the linear molecule chain and a chain molecule thought is the thermoplastic, may heat up the cooling processing repeatedly, but passes through heats up many members to occur hands over the association response, including forms netted the build molecular structure plastic usually is this, cannot duplicate injects the processing, also is the thermosetting plastics which said.Since is the chain shape structure, that plastic when processing contracts the direction also is with the polymer molecular chain under the stress function the orientation and the cooling contraction related, must be more than in the flow direction contraction its vertical direction in contraction. The product contraction also with the product shape, therunner, the temperature,guarantees presses factor and so on time and internal stress concerns.In the usual book provides the shrinkage scope is broad, considers is product wall thickness, the structure and the determination casts the temperature pressure size when the practical application and the orientation. The common product if does not have the core strut, the contraction correspondingly wants big. The plastic casts the mold basically to divide into the static mold and to move the mold. Injection Molding . Injection molding is principally used for the production of thermolplastic part ,although some progress has been made in developing a method for injection molding some thermosetting materials .The problem of injecting a melted plastic into a mold cavity from a reservoir of melted material has been extremely difficult to solve for thermosetting plastics which cure and harden under such conditions within a few minutes 。

注塑成型过程外文文献翻译、中英文翻译

注塑成型过程外文文献翻译、中英文翻译

附录 1:外文翻译介绍如今塑料在日常生活中占据着极其重要的地位。

如果我们说,没有哪个领域的塑料没有不经过制造中直接到宇宙飞船的生产中,这一点也不夸张。

在19 世纪中叶,塑料开始在材料和生活中起主导作用。

耐腐蚀性是塑料甚至成为金属和提高制造生产率方面受到了很高的关注。

从塑料的紧缺,因此在塑料产品设计等各个方面发生巨大的变革,在制造加工领域还在测试阶段,现在,由于很多人最后通过体力劳动取得了卓越的成效,另外人工智能的帮助下,开发出了CAD / CAM 软件。

由于高强度的重量比,提高了化学稳定性和耐温性,具有耐热和耐腐蚀的特性,光泽性使其成为材料更好的选择。

塑料在形成过程中消耗的能量更少,并且可以被循环利用。

今天,塑料正在取代黄铜、铜、铸铁、钢铁等金属。

塑料可以根据制造方法分类,在加热时软化,在冷却时凝固。

这些被称为“热塑性塑料”,以及那些由于化学变化而变硬的物质。

这些被称为热固性或混合型塑料材料成为产品选择特殊材料是另一个重要因素。

这对于产品的确定是非常必要的。

它也应该能够承受压力。

每种材料都有自己的属性。

一些材料在高环境和耐磨性方面比较好。

困难的是找到一种合适材料,它将完全满足整个要求。

所以材料应该是通用的,它适合我们产品的所有考虑条件和要求。

在考虑了所有这些点的材料之后,必须选择合适的材料来满足所有这些条件。

注塑成型过程它是一种通过将熔融状态的物质注入模具来生产零件的生产工艺。

注射成型被用在很多领域进行生产,包括金属、眼镜、弹性体、糖果以及最常见的热塑性塑料和热固性塑料。

将材料的一部分送入一个加热的桶,混合,并用高压压入一个模腔,它是可以冷却和硬化地方。

在产品设计后,通常由工业设计师或工程师设计模具,模具由模具制造商(或工具制造商)制造,通常由金属或铝制成,并经过精密加工以形成所需的特性。

注塑成型广泛应用于制造各种零件,从最小的零件到汽车的整个车身。

零件的形状和特点、模具的所需材料,以及造型机的性能都必须考虑在内。

moldflow注塑

moldflow注塑

40Die and Mould Technology No.4 2007文章编号: 00 -4934(2007)04-0040-04基于MoldFlow 的注塑模具浇口优化设计陶筱梅,杜小清(广东茂名学院 机电工程学院,广东 茂名 525000)摘 要:针对选择合理的浇口位置及数量在塑料模具设计中的重要性,在注塑模具设计中利用专业模流分析软件MoldFlow 对模具浇口进行了优化设计。

以手机上盖为实例,介绍了MoldFlow 对其浇口位置和数量进行计算机模拟分析的过程,优化了模具浇口设计,从而获得高预测质量的产品,降低了生产成本,缩短了产品开发周期。

关键词:浇口位置;浇口数目;MoldFlow ;优化设计中图分类号:TG24文献标识码:BAbstract : In view of the importance of gate position and quantity in the design of injection plastic molding ,Moldflow ,special software for analyzing the plastic flow in mold ,was applied to the optimization design of gate in injection mold .Taking the forming of a cell phone cover as an example ,process of Moldflow based simulation analysis on gate position and quantity was introduced .The optimization of position and quantity of gate will improve the products of high predicted quality ,reduce the cost of production and shorten product development cycle .Keywords : gate position ;gate quantity ;Moldflow ;optimization design收稿日期:2007-0 -23作者简介:陶筱梅( 962-),女,讲师。

机械类外文翻译 运用线性规划对注塑模浇口位置优化的研究

机械类外文翻译 运用线性规划对注塑模浇口位置优化的研究

运用线性规划对注塑模浇口位置优化的研究张明,谢英摘要浇口位置是在注塑模设计中关于其质量的最重要的影响因素之一,在本文中,对注塑模注塑过程的数字优化和设计优化方法一起去寻找最佳的浇口位置以获得平衡浇注。

其客观效果通过最大和最小边际填充时间来表示。

浇口道形式根据设计的不同而不同,同时对其加以约束,使其浇口道压力小于参照值。

浇口优化问题通过线性规划来解决,并最终用几个例子来说明使用方法的优劣。

关键词:注塑模,浇口位置,优化设计,浇注平衡1简介注塑模具是目前为止最流行的塑料零件的生产方式,由于在注塑中复杂的加工动力学因素影响很大,完全了解和预测塑件最终的质量是很困难的。

在过去的三十年里,因清楚地了解注塑过程特性和塑料融化过程中的热传递注塑模具的数字仿真得到了很大的发展,因此可以预测塑件的质量特性而不需要实际制作出零件来。

然而电脑辅助设计要求设计者进行数字仿真,执行模具评估,根据经验进行设计直到得到一个满意的模具。

这种手工的设计过程不能保证设计模具的最好的结果,因此引起人们使用优化方式进行模具优化的兴趣。

已经有几个案例对注塑模过程优化进行了研究,pandelidis 和周运用数字仿真和上升技术结合对浇口位置进行了优化,浇口位置影响可以用温度的积分函数来表示。

Young 使用最小化模具注射压力、不同注射方法和注射过程中的不同温度研究出一中浇口优化的方法。

Ye et al 设计出一种组合去最优化塑件质量。

他对零件外形做了数字化定义,并仿真最优的注塑过程。

2 填充模拟由于在注塑过程种融化塑料的雷诺数一般较小,同时塑件的厚度也比较小,所以hele shaw 近似用来为注塑过程建模。

经过近似简化后,注塑过程中遵循的公式如下:式中xy是平面坐标,z是浇口深度,t是时间,uv是xy方向的加速度。

T是温度,p是压力,η是剪切粘度,是剪切率,ρ是热量为Cp、热传导为k时候的密度。

边界条件通过以下方式确定:(a)型腔边界处的速度为0,表述为(b)模具的流动率已经给出。

注射成型外文文献翻译、塑料模具类外文翻译、中英文翻译

注射成型外文文献翻译、塑料模具类外文翻译、中英文翻译

2.3注射成型2.31注射成型注塑主要用于生产热塑性塑料零件,也是最原始的方法之一。

目前注塑占所有塑料树脂消费量的30%。

典型的注塑成型产品“塑料杯、容器、外壳、工具手柄、旋钮、电气和通信组件(如电话接收器)、玩具、和水暖配件。

聚合物熔体由于其分子量具有很高的粘度;它们不能像金属液在重力的条件下倒进模,必须在高压力下注入模具。

因此,金属铸造的力学性能是由模具壁传热的速度决定,同时也决定了在最终铸件的晶粒尺寸和晶粒取向, 高压注射成型过程中熔体的注射剪切力产生的主要原因是材料最后的分子取向。

力学性能影响成品都是因为在模具里的注塑条件很冷却条件。

注塑已应用于热塑性塑料和热固性材料,发泡部分,也已被修改过用于展现注射成型(RIM)反应过程,其中有两个部分组成,一种是热固性树脂体系,另一种是聚合物快速注射模具。

然而大多数注射成型是热塑性塑料,后面的讨论集中于这样的模型。

一个典型的注塑周期或序列由五个阶段组成(见图2 - 1):注射或模具填充;(2) 包装或压缩;(3) 保持;(4) 冷却;(5)部分排除物图2 - 1注射成型过程塑料颗粒(或粉末)被装入进料斗并通过注塑缸上的开口在那里它们被旋转螺杆结转。

螺杆的旋转使颗粒处于高压下加上受热缸壁使它们融化。

加热温度范围从265到500°F。

随着压力的增大,旋转螺丝被迫向后,直到积累了足够的塑料可以进行注射。

注射活塞(或螺钉)迫使熔融塑料从料桶通过喷嘴、浇口和流道系统,最后进入模腔。

在注射过程中,熔融塑料充满模具型腔。

当塑料接触冷模具表面,它迅速凝固(冻结)产生皮肤层。

由于核心仍在熔融状态,塑料流经核心来完成填充。

一般的,该空腔被注入期间填充到95%?98%。

然后成型工艺转向了填充的阶段。

型腔填充后,熔融塑料开始冷却。

由于冷却塑料会收缩产生缺陷,如缩孔、气泡,而且空间存在不稳定性。

所以被迫实行空穴用来补偿收缩、添加塑料。

一旦模腔被填充,压力应用熔体防止腔内熔融塑料会流进浇口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注塑模的单浇口优化摘要:本文论述了一种单浇口位置优化注塑模具的方法。

客观的浇口优化,尽量减少注塑制品翘曲变形,因为翘曲是一个关键质量问题,对大多数注塑件,这绝大部分受浇口位置影响。

专题翘曲的定义是用比例最大位移对特征表面预计长度的表面特征来描述零件翘曲。

优化相结合,数值模拟技术,以找到最佳的浇口位置,其中,模拟退火算法就是用来寻找最佳的浇口位置。

最后,其中一个例子是讨论有关文件,并可以得出结论认为,所提出的方法是有效的。

关键词:注塑模,浇口位置和结构优化,功能翘曲导言塑料注塑成型,是一种广泛使用的,复杂的,对大型品种的塑料制品,尤其是那些高产量要求,精密复杂形状的有高效率的技术制作。

质量注塑件是一个有功能性,部分几何,模具结构和工艺条件的塑胶材料。

最重要的一部分,注塑模,基本上是以下三组组成:腔,浇口和浇道,和冷却系统。

Lam和Seow ( 2000),Jin和Lain( 2002)达到平衡腔不同壁厚的一部分。

平衡充填过程内部腔给出了一个均匀分布的压力和温度,可大幅度减少该部的翘曲。

但腔平衡只是其中一个影响零件质量的重要因素。

尤其是零件有其功能要求,其厚度通常不应该多种多样。

从这个角度谈了注塑模具设计,浇口是由其尺寸和位置,和浇道系统的规模和布局表征的。

浇口尺寸和浇道布局通常定为常量。

相对地,浇口位置和浇道的大小是比较有弹性的,能够多样的影响零件质量。

因此,他们往往优化设计参数。

Lee和Kim(1996年)为多种注射溶洞优化了浇道和浇口的大小来平衡浇道系统。

浇道维持平衡可以理解为有相同腔的多腔模具的不同入口压力,在每一个腔每一个熔体流道底部有不同的情体积和几何形状。

该方法已显示压力在整个多腔模具成型周期中的单腔里均匀分布。

Zhai等(2005年)发布两个浇口位置优化,它的一个成型腔是由一个在压力梯度的基础上的高效率的搜索方法( PGSS),为由不同尺寸的浇道多浇口零件定位,熔接线向理想的地点(翟等, 2006 )。

作为大容量的一部分,多浇口需要缩短最高流径,与相应减少注射压力。

该方法大可成为设计多浇口单型腔的浇口和浇道。

许多注塑件是只制作一个浇口,无论是在单型腔模具或多个腔模具。

因此,单浇口的浇口位置是最常见的设计优化参数。

形状分析方法是由Courbebaisse和Gaarrcia 2002年提出,是最佳浇口位置的注射成型估计。

后来,他们研制的这种理论进一步研究和应用于单一浇口位置优化的一个L形例子(库尔伯贝斯,2005年)。

它易于使用,而不耗费时间,而且它只不过是提供了简单的有均匀厚度的平面零件。

Pandelidis和Zou(1990年)提出的优化浇口位置,由间接质量相关引起的翘曲和物质降解,这代表着加权温度差,摩擦过热的时间。

翘曲是受上述因素的影响,但它们之间的关系并不明确。

因此,优化效果是受制于测定转归的加权因素。

Lee和Kim( l996b )研制出一种自动选择浇口位置的方法,其中一套初步浇口位置,由设计师提出,最优浇口是位于相邻节点。

结论在很大程度上取决于设计师的直觉,因为第一步是基于设计师的主张。

所以在相当大的程度上,受限于设计师的经验。

Lam和Jin(2001)开发了浇口位置优化方法,基于最大限度地减少了标准偏差的流径长度(标准差[大] )和在成型充填过程中的标准偏差的灌装时间(标准差[ T ] )。

随后,沈等人( 2004 年),优化了浇口位置设计通过最小加权充气压力,灌装时间区别不同的水流路径,温差变化大,以及过度包装的百分比。

Zhai 等( 2005 年)在去年底调查了最佳浇口位置与评价标准的注射压力。

这些研究人员介绍目标函数作为注塑成型灌装操作,这对相关产品的品质有益。

但之间的相关性是非常复杂和不清晰在它们之间已经观察到。

人们还很难选择适当的加权因子为每个函数。

一个新的目标函数来评价注塑制品翘曲变形,以优化浇口位置。

直接衡量零件质量,这项调查定义特征翘曲来评价零件翘曲,这是从"流加翘曲"模拟产出Moldflow塑料洞察力(电传等)的软件。

目标函数最小化,在浇口位置优化,以达到最低变形。

模拟退火算法是用来寻找最优浇口位置。

给出了一个例子来说明建议优化程序的有效性。

质量措施:特征翘曲定义特征翘曲运用优化理论设计浇口,零件的质量措施必须指定在初审。

术语"质量"可转介许多产品性能,如力学,热学,电子,光学,工效学或几何性质。

有两种零件质量测量:直接和间接。

一个有预测性的模型,从数值模拟结果,可作为一个直接的质量测量。

相比之下,间接测量的零件质量是正相关目标质量,但它并不能提供对其质量的直接估计。

翘曲,在相关工程的间接质量测量,是一个注塑成型流动行为或加权。

这种行为是作为填充不同流径的时间差,温度差,过度包装的比例问题,等等。

这是很明显的,翘曲是受这些因素的影响,但翘曲和这些因素的关系是不明确的,而且决定这些因素所占的比重是相当困难的。

因此,用上述目标函数优化大概不会减低零件翘曲,甚至是完美的优化技术。

有时,不恰当加权因素,将导致完全错误的结果。

一些统计量计算,节点位移被定性为直接质量测量,以达到最低变形链优化研究。

统计数量通常是最多节点位移,平均每年有10%的节点位移,而且整体平均节点位移(李和金, 1995 ; 1996 )。

这些节点的位移容易从数值模拟结果获得,统计值,在一定程度上代表着变形。

但统计位移不能有效地描述变形的注塑件。

在工业方面,设计者和制造商通常更加注意,部分上翘曲在某些特点上超过整个变形注射模塑件的程度。

在这项研究中,特征翘曲是用来形容变形的注塑件。

特征翘曲是表面上的最大位移与表面特征的预计长度之比(图1 ):(1)其中γ是特征翘曲, h是特征表面偏离该参考平台的最高位移,L是在与参考方向平行的参考平台上的表面特征的预计长度。

对于复杂的特点(这里只讨论平面特征),翘曲的特点是通常在参考平面内分为两个区域,它是代表一个二维坐标系统:(2)其中,是特征翘曲在X , Y方向,,是表面特征的预计长度在X ,Y上的投影。

特征翘曲的评定与相应的参考平面和投影方向结合起来测定目标特征后,,其L的值可以从图中用解析几何立即计算出来(图2 )。

在特定的表面特征和预测的方向,L是一个常量。

但H的评定比L复杂得多。

模拟注射成型过程是一种常见的技术,以预测质量来设计零件,设计模具和工艺设置。

结果翘曲模拟表达为节点挠度上的X , Y , Z分量,以及节点位移W。

W是向量长度的矢量总和:+ + ,其中 i,j,k是在X,Y,Z方向上的单位矢量。

H是在特征表面上的节点的最大位移,这与通常方向的参考平面相同,并能产生结果的翘曲仿真。

计算h时,节点的挠度提取如下:其中是挠度在正常方向参考平面内提取节点; ,,是对挠度的X ,Y , Z分量的提取节点;α,β,γ是角度的向量参考; A和B是终端节点,可以预测方向(图2 ) ; 和是节点A和B的挠度:其中,,,是对节点A的挠度在X,Y,Z方向上的分量;,和是对节点B的挠度在X , Y , Z方向上的分量; 和是终端节点挠度的加权因子,计算方法如下:是提取节点和节点A投影间的距离, H是的最大绝对值。

在工业方面,视察该翘曲借助了一个触角衡量,被测工件放在一个参考平台上。

H是一个最大数值,读数在被测工件表面和参考平台间。

浇口位置优化问题的形成从质量来说, "翘曲" ,是指永久变形的部分不是由实用的负载引起的。

它是由整体差动收缩引起,即聚合物流通,包装,冷却,结晶的不平衡。

安置一个浇口,在注射模具整个设计中是一个最重要的步骤。

高质量的成型零件受浇口的影响很大,因为它影响塑料流进入型腔的浇道。

因此,不同的浇口位置会引入不均匀的取向,密度,压力和温度分布,因而引入不同的值和分配翘曲。

因此,浇口位置,是一个有用的设计变量,以尽量减少注塑零件翘曲。

因为相关关系浇口位置和翘曲分布,是在相当大程度上独立于熔体和模具的温度,在这项调查中它是假定该成型条件保持不变。

注射成型零件翘曲是量化特征翘曲,其中在上一节讨论了。

因此单一浇口位置优化,可以依如下制造:最小化:主题:其中γ是特征翘曲变形; p是在浇口位置的注入压力; 是注入成型机器的可允许注入压力或被设计者或制造业者指定的可允许的注入压力; x是坐标向量的候选浇口位置; 是节点有限元网格模型的一部分,为注射成型过程模拟; N是节点总数。

在有限元网格模型中,每一个节点都有可能是一个浇口。

因此,可能是浇口位置的总数是一个有关的总节点数目N和总浇口数n的函数:在这项研究中,只对单浇口选址问题进行调查。

模拟退火算法模拟退火算法是其中最强大和最流行的元启发式解决优化问题,因为提供良好的以实际条件全面化解决办法。

该算法是基于Metropolis ( 1953 ),这原本是用来在原子某一特定温度找到一个平衡点的方法。

这一算法和数字最小化的联系是Pincus( 1970年)第一个注意到,但Kirkpatrick( 1983年)等人提议,把它形成一项优化技术组合(或其他)。

运用模拟退火法优化问题,目标函数f是用来作为函数E的能源,而不是找到一个低能源配置,问题就变成寻求近似全局最优解。

配置的值的设计变量是替代能源配置本身,控制参数的过程是取代温度。

一个随机数发生器被用作为设计变量产生新的值。

这是显而易见的,该算法只需要将极小化问题列入考虑范围。

因此,在最大化问题上,目标函数是乘以( -1 )来取得一个可能的数。

模拟退火算法的主要优点是比其他方法更能够避免在局部极小被困。

这种算法采用随机搜索,而不是只接受变化,即减少目标函数 f ,而且还接受了一些变化来增加它。

后者则是接受一个概率P其中是f的增量, k是Boltzman常数, T是一个控制参数,其中原数分析是众所周知的"恒温"制度,并且无视客观功能参与。

在浇口位置优化,实施这一算法的说明图(图3),此算法的详细情况如下:( 1 ) SA 算法开始是从最初的浇口位置,同一个指定值的"温度"参数T ("温度"计数器K 最初定为零) 。

适当控制参数( 0 < c < 1 )给出退火过程与马尔可夫链N 。

( 2 ) SA 算法在的旁边生成一个新的浇口位置来计算目标函数f ( x )的值。

( 3 )新浇口位置由接受函数决定接受的概率一个统一的随机变量产生[ 0,1 ] , 如果<, 接受,否则就拒绝。

( 4 ) 这个过程重复是的迭代次数( ),用这种序列审判浇口位置被称为马尔可夫链。

( 5 )因为减少的"温度'',生成一个新的马尔可夫链,(在先前的马尔可夫链里,从最后接受的浇口位置生成),这一“温度”减少的过程将一直持续直到酸算法结束。

相关文档
最新文档