机械设计基础轮系分解

合集下载

机械设计基础 第5章 轮系

机械设计基础 第5章 轮系
z’2 =100,
Z2 H Z1
Z’2
Z3
=99。 z3=99。源自101×99/100× i1H=1-iH13=1-101×99/100×100 =1/10000, iH1=10000 结论:系杆转10000圈时, 结论:系杆转10000圈时,轮1同向转1圈。 10000圈时 同向转1 100, 又若 Z1=100, z2=101, z2’=100, z3=100, =-1/100, i1H=1-iH1H=1-101/100 =-1/100, iH1=-100
所有齿轮几何轴线的位置均固定不 变的轮系,称为定轴轮系。 变的轮系,称为定轴轮系。

§5-1 轮系的类型
二、周转轮系
周转轮系:在运转过程中至少有一个齿轮几何轴线的位置并不固定, 周转轮系:在运转过程中至少有一个齿轮几何轴线的位置并不固定, 而是绕着其它定轴齿轮轴线回转的轮系,称为周转轮系。 而是绕着其它定轴齿轮轴线回转的轮系,称为周转轮系。
方向: 方向:见图 复合轮系
Z5
Z’5

§5-4 复合轮系及其传动比
复合轮系:几个基本周转轮系构成, 复合轮系:几个基本周转轮系构成,或定轴轮系与周转轮系构成 整个复合轮系不可能转化为一个定轴轮系,所以正确的做法是: 整个复合轮系不可能转化为一个定轴轮系,所以正确的做法是: 1 区分其中的基本周转轮系和定轴轮系 2 分别计算各轮系的传动比 3 各传动比联合求解
ω1 3 Z2 Z3 Z5 = i12i2′3i34i45 = (− 1) ω5 Z1Z2′ Z3′

§5-2 定轴轮系及其传动比
传动比计算
ω1 (− 1)3 Z2Z3Z4 Z5 i15 = =i i ′ i i = ω5 12 2 3 34 45 Z1Z2′ Z3′ Z4

机械设计基础轮系

机械设计基础轮系

机械设计基础轮系机械设计中的轮系是指由轴、轮、轴承等零部件组成的能够传递动力和承受载荷的机械装置。

轮系在众多机械设备和工业领域中广泛应用,具有重要的意义。

本文将介绍机械设计基础轮系的一些重要知识和要点。

一、轮系的定义和基本组成轮系是由轮、轴和轴承等零部件组成的。

轮是指机械装置上的圆盘形零部件,轴是指承载轮的长条形零部件,轴承是指连接轮和轴的支撑零部件。

轮系的基本组成主要有:轮、轴、轴承。

1. 轮:轮通常由金属等材料制成,有多种类型,如齿轮、带轮、链轮等。

轮可以传递动力和承受载荷,是轮系中起着重要作用的部件。

2. 轴:轴是承载轮和传递力矩的零部件,通常由金属等材料制成。

轴可以根据其用途和载荷的特点进行选择,有不同的形状和尺寸。

3. 轴承:轴承是连接轮和轴的支撑零部件,可以减小轮与轴之间的摩擦和磨损,保证轮的平稳运转。

轴承分为滚动轴承和滑动轴承两种类型,可以根据实际需求进行选择。

二、轮系的设计原则在机械设计中,轮系的设计需要遵循一些基本原则,以确保轮系的工作效果和安全性。

1. 传递效率:轮系的设计应该追求传递效率的最大化,使得输入的动力能够尽可能地转化为输出的动力。

传递效率和轮系的几何形状、材料、润滑等因素有关,需要综合考虑。

2. 轴心对称性:轮系的轴心应该保持对称,以减小不平衡力矩和振动。

轴心对称性有助于提高轮系的平稳性和稳定性。

3. 载荷分配:轮系的设计应该合理分配载荷,使得各个轴和轮承受的载荷均衡。

合理的载荷分配有助于减小零部件的磨损和延长轮系的使用寿命。

4. 强度和刚度:轮系的设计需要满足一定的强度和刚度要求,以承受正常工作条件下的载荷和冲击。

强度和刚度的设计需要考虑材料的选择、零部件的形状和尺寸等因素。

三、轮系的选择与应用在机械设计中,根据实际需求和具体情况,选择合适的轮系是非常重要的。

以下是一些常见的轮系选择与应用的案例。

1. 齿轮传动:齿轮传动是一种常见的轮系形式,广泛应用于各种机械设备中。

机械设计基础——轮系

机械设计基础——轮系
轮系
现代机械中,为了满足不同的工作要求只用一对齿轮传动 往往是不够的,通常用一系列齿轮共同传动。这种由一系列齿 轮组成的传动系统称为齿轮系(简称轮系)。
本章主要讨论轮系的类型、传动比计算及轮系的功用。
齿轮系的类型
1.按组成轮系的齿轮(或构件)的 轴线是否相互平行可分为: 平面轮系和空间轮系
2.根据轮系运转时齿轮的轴线位置 相对于机架是否固定可分为两大类: 定轴轮系和周转轮系
3.对于差动轮系,必须给定n 1 、 n k 、n H中任意两个(F=2,
两个原动件),运动就可以确定。对于简单周转轮系,有一太
阳轮固定(n k=0),在n 1 、n H只需要给定一个(F=1,需要一
个原动件),运动就可以确定。
例:如图所示的周转轮系中,已知各 轮齿数为Z1=100, Z2=99, Z3=100, Z4=101 ,行星架H为原动件,试求传 动比iH1=?
齿数连 乘积 齿数连 乘积
注意:
1.公式只适用于平面周转轮系。正、负号可按画箭头的方法来 确定,也可根据外啮合次数还确定(-1)m。对于空间周转轮 系,当两太阳轮和行星架的轴线互相平行时,仍可用转化轮系 法来建立转速关系式,但正、负号应按画箭头的方法来确定。
2.公式中的“+”、“-”号表示输入和输出轮的转向相同或相反。
Z2 Z4 Z1 Z3
n H = - 50/6 r/min 负号表示行星架与齿轮1转向相反。
2.求n3
:(n3
i1H2
=
nn21)- n H
n
-
2
n
H
Z2 Z1
n 2 = - 133 r/min = n3
负号表示轮3与齿轮1转向相反。
混合轮系传动比的计算

机械设计基础第五章轮系

机械设计基础第五章轮系

2. 根据周转轮系的组合方式,利用周转轮系传动比计算公式求
03
出周转轮系的传动比。
实例分析与计算
1
3. 将定轴轮系和周转轮系的传动比相乘,得到复 合轮系的传动比。
2
4. 根据输入转速和复合轮系的传动比,求出输出 转速。
3
计算结果:通过实例分析和计算,得到了复合轮 系的输出转速。
05 轮系应用与实例分析
仿真结果输出
将仿真结果以图形、数据等形式输出,以便 进行后续的分析和处理。
实验与仿真结果对比分析
01
数据对比
将实验数据和仿真数据进行对比 ,分析两者之间的差异和一致性 。
结果分析
02
03
优化设计
根据对比结果,分析轮系设计的 合理性和可行性,找出可能存在 的问题和改进方向。
针对分析结果,对轮系设计进行 优化和改进,提高轮系的性能和 稳定性。
04 复合轮系传动比计算
复合轮系构成及特点
构成
由定轴轮系和周转轮系(或几个周转轮系)组合而成,称为复合轮系。
特点
复合轮系的传动比较复杂,其传动比的计算需结合定轴轮系和周转轮系的传动比计算公式进行。
复合轮系传动比计算公式
对于由定轴轮系和周转轮系组成的复合轮系,其传动比计算 公式为:i=n1/nK=(Z2×Z4×…×Zk)/(Z1×Z3×…×Zk-1)×(1)m,其中n1为输入转速,nK为输出转速,Z为各齿轮齿数 ,m为从输入轴到输出轴外啮合齿轮的对数。
火车车轮与轨道
通过轮系保证火车在铁轨 上的平稳运行和导向作用 。
船舶推进器
利用轮系将主机的动力传 递给螺旋桨,推动船舶前 进。
军事装备中轮系应用举例
坦克传动系统
采用轮系实现坦克发动机的动力 输出与行走机构的连接,确保坦 克在各种地形条件下的机动性。

机械设计基础第7章 轮系

机械设计基础第7章 轮系
§7-3 周转轮系传动比计算 16
a,b齿轮选择原则
1. 2.
3.
4.
已知转速的齿轮 固定的齿轮(n=0) 需要求该齿轮转速的齿轮 轮系之间有关联的齿轮(复合轮系) a,b,H轴线平行(周转轮系)
17

例题 在图所示的差动轮系中,已知各轮的齿数为:z1 =30,z2 =25, z2’=20, z3=75。齿轮1的转速为210r/min(蓝箭头向上),齿轮3的转速为 54r/min(蓝箭头向下),求系杆转速 的大小和方向。 解:将系杆视为固定,画出转化轮系中各轮的转向,如图中红 线箭头所示(红线箭头不是齿轮真实转向,只表示假想的转 化轮系中的齿轮转向,二者不可混淆)。因1、3两轮红线箭 头相反,因此 应取符号“-”,根据公式得:
§7-3 周转轮系传动比计算 19
§7-4 复合轮系传动比计算
除了前面介绍的定轴轮系和周转轮系 以外,机械中还经常用到复合轮系。复合轮系常以两 种方式构成: ① 将定轴轮系与基本周转轮系组合; ② 由几个基本周转轮系经串联或并联而成。 由于整个复合轮系不可能转化成为一个 定轴轮系,所以不能只用一个公式来求解。计算复合 轮系时,首先必须将各个基本周转轮系和定轴轮系区 分开来,然后分别列出计算这些轮系的方程式,最后 联立解出所要求的传动比。 正确区分各个轮系的关键在于找出各个基本周转 轮系。找基本周转轮系的一般方法是:先找出行星轮, 即找出那些几何轴线绕另一齿轮的几何轴线转动的齿 轮;支持行星轮运动的那个构件就是行星架;几何轴 线与行星架的回转轴线相重合,且直接与行星轮相啮 合的定轴齿轮就是中心轮。这组行星轮、行星架、中 心轮构成一个基本周转轮系。
根据题意,齿轮1、3的转向相反,若假设n1为正,则应 将n3以负值带入上式,
解得nH =10r/min。因nH 为正号,可知nH 的转向和n1 相同。 在已知n1、nH或n3、nH的情况下,利用公式还可容易地算 出行星齿轮2的转速 。

《机械设计基础》第5章 轮系

《机械设计基础》第5章 轮系

3’ Z4 × 2’ × Z1 Z1 Z2’ Z3’ nn =n1 ( -) ) ) = 21( - Z ( 2 Z (- Z )2× × Z 3 2 4 4 Z3 3 n2’ (代入) i2’3= n = Z 5 (代入) 5 n3 4 Z2’ Z4 n5 =n4 (i45= n = ) Z1 Z Z2’ Z4 5 Z2’ ( - Z (5 Z ) ) n3 =n2’ Z ) = n1 ( Z1 Z2’ Z23’ 3 Z4 () n5 = n1 ( - Z3 ( Z ) ) () Z4 Z5 2 3
H 1 3
再代入公式计算
混合轮系及其传动比
混合轮系: =定轴轮系+周转轮系
H
求解思路: 1 区分轮系 (定轴,周转) 2 分别求传动比 3 联立求解
周转轮系 定轴轮系
(差动)
2 1
3 2’ 4
5
3’
3 已知: 例,联立求解 Z1=24, Z2=52, n5= nH Z2’=21, Z3=78, Z3’=18,
V=
60×1000
(m/s)
ω1 ω2
ω1
Fa1
v2 ω2
(左右手法则)
1 2 3 2’ 4
解1: 求:1 欲使猴子上升,
D 2 因猴子有心脏病, 例:图示电梯, 试确定电机轴 D 3’ 要求:V≤0.1m/s。 已知: 的转向;V 试校核安全性 4 Z1=16 , Z2=32 , V4 ω (D=600mm);倘若 Z2’=20, Z3=40 , 不安全,从机构运 Z3’= 2 , Zω=40 , 4 3’ 动角度出发,可采 n1 =800 rpm 取哪些措施。
轮系的分类:
——分类的方法是按照轮系传动时各 轮轴心线的位置是否运动进行分类的。

机械设计基础之轮系详解

机械设计基础之轮系详解

机械设计基础之轮系详解在机械工程中,轮系的设计与使用至关重要。

轮系主要由一系列相互啮合的齿轮组成,通过齿轮的旋转运动,可以实现动力的传输、速度的改变、方向的转换等功能。

本文将详细解析轮系的基本概念、类型及设计要点。

一、轮系的类型根据齿轮轴线的相对位置,轮系可以分为两大类:平面轮系和空间轮系。

1、平面轮系:所有齿轮的轴线都在同一平面内。

这种类型的轮系在机械设计中最为常见,包括定轴轮系、周转轮系和混合轮系。

2、空间轮系:齿轮的轴线不在同一平面内,而是相互交错。

这种类型的轮系相对复杂,包括差动轮系和行星轮系。

二、定轴轮系定轴轮系是最简单的轮系类型,所有齿轮的轴线都固定在同一轴线上。

这种轮系的主要功能是通过齿轮的旋转实现动力的传输和速度的改变。

定轴轮系的传动比可以根据齿轮的齿数和转速计算得出。

三、周转轮系周转轮系的齿轮轴线可以绕着其他齿轮的轴线旋转。

这种轮系的主要功能是通过齿轮的旋转实现动力的传输和速度的改变,同时还能实现方向的转换。

周转轮系的传动比可以根据齿轮的齿数和转速计算得出。

四、混合轮系混合轮系是定轴轮系和周转轮系的组合。

这种轮系的优点是可以实现更复杂的运动和动力传输,同时具有较高的传动效率。

混合轮系的传动比可以根据定轴轮系和周转轮系的传动比计算得出。

五、差动轮系差动轮系是一种空间轮系,其特点是两个齿轮的轴线可以不在同一平面内。

这种轮系的主要功能是通过齿轮的旋转实现动力的传输和速度的改变,同时还能实现方向的转换。

差动轮系的传动比可以根据齿轮的齿数和转速计算得出。

六、行星轮系行星轮系是一种空间轮系,其特点是至少有一个齿轮的轴线可以绕着其他齿轮的轴线旋转。

这种轮系的主要功能是通过齿轮的旋转实现动力的传输和速度的改变,同时还能实现方向的转换。

行星轮系的传动比可以根据齿轮的齿数和转速计算得出。

七、设计要点在设计和使用轮系时,需要考虑以下几点:1、传动比:根据实际需求选择合适的传动比,以保证轮系的传动效率和稳定性。

机械设计基础(第10章: 轮系)

机械设计基础(第10章: 轮系)

第10章轮系前面我们己经讨论了一对齿轮传动及蜗杆传动的应用和设计问题,然而实际的现代机械传动,运动形式往往很复杂。

由于主动轴与从动轴的距离较远,或要求较大传动比,或要求在传动过程中实现变速和变向等原因,仅用一对齿轮传动或蜗杆传动往往是不够的, 而是需要采用一系列相互啮合的齿轮组成的传动系统将主动轴的运动传给从动轴。

这种由一系列相互啮合的齿轮(包括蜗杆、蜗轮)组成的传动系统称为齿轮系,简称轮系。

本章重点讨论各种类型齿轮系传动比的计算方法,并简要分析各齿轮系的功能和应用。

10.1 轮系的分类组成轮系的齿轮可以是圆柱齿轮、圆锥齿轮或蜗杆蜗轮。

如果全部齿轮的轴线都互相平行,这样的轮系称为平面轮系;如果轮系中各轮的轴线并不都是相互平行的,则称为空间轮系。

再者,通常根据轮系运动时各个齿轮的轴线在空间的位置是否都是固定的,而将轮系分为两大类:定轴轮系和周转轮系。

10.1.1定轴轮系在传动时所有齿轮的回转轴线固定不变的轮系,称为定轴轮系。

定轴轮系是最基本的轮系,应用很广。

由轴线互相平行的圆柱齿轮组成的定轴齿轮系,称为平面定轴轮系,如图10.1所示。

a)b)图10.1 平面定轴齿轮系包含有圆锥齿轮、螺旋齿轮、蜗杆蜗轮等空间齿轮的定轴轮系,称为空间定轴轮系,如图10.2所示。

图10.2 空间定轴轮系10.1.2 周转轮系轮系在运动过程中,若有一个或一个以上的齿轮除绕自身轴线自转外,其轴线又绕另一个齿轮的固定轴线转动,则称为周转轮系,也叫动轴轮系。

如图10.3所示。

a) 周转轮系结构图b)差动轮系c)行星轮系图10.3周转轮系其中齿轮2的轴线不固定,它一方面绕着自身的几何轴线O2旋转,同时O2轴线,又随构件H绕轴线O H公转。

分析周转轮系的结构组成,可知它由下列几种构件所组成:1.行星轮:当轮系运转时,一方面绕着自己的轴线回转(称自转),另一方面其轴线又绕着另一齿轮的固定轴线回转(称公转)的齿轮称行星轮,如图10.3中的齿轮2。

机械设计基础之轮系详解

机械设计基础之轮系详解

引言:轮系是机械设计中的重要概念之一,它由多个齿轮组成,通过齿轮之间的传动使机械运动实现不同的速度和扭矩转换。

本文将着重介绍轮系设计中的一些基本概念以及其应用。

希望通过对轮系的详细解析,能够帮助读者更好地理解和应用机械设计中的轮系。

概述:轮系设计是机械设计中不可或缺的一部分,它是实现传动以及速度和扭矩转换的基础。

轮系设计的关键在于正确选择和组合齿轮,使其能够满足特定的要求。

因此,本文将从多个方面对轮系设计进行详细的阐述和解析。

正文内容:一、齿轮的基本参数1.1齿轮的模数和齿数1.2齿轮的压力角和齿廓1.3齿轮的材料和硬度要求1.4齿轮的螺旋角和端面修形1.5齿轮的轴向间隙和侧隙二、轮系传动的基本原理2.1齿轮的基本传动原理2.2轮系传动效率的计算2.3齿轮的啮合条件和啮合传动比2.4齿轮的传动误差和间隙2.5齿轮传动的轴向力和弯矩三、常见轮系的应用3.1平行轴齿轮传动的设计要点3.2相轴齿轮传动的设计要点3.3斜齿轮传动的设计要点3.4高速齿轮传动的设计要点3.5高扭矩齿轮传动的设计要点四、齿轮设计中的优化方法4.1先进的齿轮设计方法4.2齿轮的强度和寿命计算4.3齿轮的噪声和振动控制4.4齿轮的润滑和附加损失4.5齿轮装配和调试技巧五、齿轮设计的实际案例分析5.1汽车变速器的齿轮设计5.2工业机械设备的齿轮设计5.3风力发电机的齿轮设计5.4船舶传动系统的齿轮设计5.5机械手臂的齿轮设计总结:轮系是机械设计中不可或缺的重要部分,通过合理的齿轮选择和设计,可以实现不同速度和扭矩的转换。

本文详细介绍了轮系设计中的基本参数、传动原理、常见应用、优化方法以及实际案例分析。

希望读者能够通过本文的阐述,更好地理解和应用机械设计中的轮系,为实际工程项目提供参考和指导。

机械设计基础.第五章_轮系机构

机械设计基础.第五章_轮系机构

z2 zn 1 H n H z1 z n 1
各轮齿数已知,就可以确定1、n、H之间的关系; 如果其 中两个转速已知,就可以计算出第三个,进而可以计算周转轮系 的传动比。
1、i1H 是转化机构中齿轮1为主动轮、齿轮n为从动轮时的传动 n
比,其大小和方向可以根据定轴轮系的方法来判断; 2、表达式中 1、n、H的正负号问题。若基本构件的实际 转速方向相反,则 的正负号应该不同。
1 z 2 z 3 z 4 z 5 i15 5 z1 z 2' z 3' z 4
1 2 3 4 1 i15 2 3 4 5 5
大小:
i1 k
1 m 从 动 轮 齿 数 连 乘 积 ( 1) k 主动轮齿数连乘积
m: 外 啮 合 的 次 数
3 要在 先计 学算 会传 分动 析比 传大 动小 路之 线前 Ⅱ 1 2 Ⅲ
动力输出
4
传动路线 动力输入

两级齿轮传动装置
例1
如图所示轮系,分析该轮系传动路线。
Ⅴ Ⅰ
z1
z7 z8

z9

n1 z2

z5 Ⅳ z6
z3
z4
n9

该轮系传动路线为:

n1
z1 z2

z3 z4

z5 z6

z7 z8
z 2 z3 z5 1 z 2 z 3 z 4 z 5 i15 5 z1 z 2' z 3' z 4 z1 z 2 ' z 3'

转向?
平面定轴轮系(各齿轮轴线相互平行)
例 1:

机械设计基础-第8章-轮系

机械设计基础-第8章-轮系

构件
太阳轮1 行星轮2 太阳轮3 行星架H
行星齿轮系中的 转化齿轮系中的
转速
转速
n1
n1H n1 nH
n2
n2H n2 nH
n3
n3H n3 nH
nH
nHH nH nH 0
转化机构中1、3两轮的传动比可以根据定轴齿轮系传动的计算方法得出
i1H3
n1H n3H
n1 nH n3 nH
[解]
该齿轮系为一平面定轴齿轮系,齿轮 2和4为惰轮,齿轮系中有两对外啮合齿 轮,根据公式可得
i 15
n1 n5
(1)2
z3z5 z1 z3'
因齿轮1、2、3的模数相等,故它们之间
的中心距关系为
m 2
( z1
z2
)
m 2
(z3
z2
)
因此: z1 z2 z3 z2
同理:
z3 z1 2z2 20 2 20 60 z5 z3' 2z4 20 2 20 60
在机床、计算机构和补偿装置等得到广泛应用。
滚齿机中的差动齿轮系(下图)
如图所示为滚齿机中的差动
齿轮系。滚切斜齿轮时,由齿轮4
传递来的运动传给中心轮1,转速
为n1;由蜗轮5传递来的运动传给 H,使其转速为nH。这两个运动 经齿轮系合成后变成齿轮3的转速
n3输出。
因 Z1 Z3

i1H3
n1 nH n3 nH
i 12
z 1 2
2
z1
z 3' i 3'4
4;3
'
2 3
3
Z
' 2
i 45
z 4 5
5

机械设计基础第7章 轮系讲解

机械设计基础第7章 轮系讲解

§7-3 周转轮系传动比计算
12
二、转化轮系
§7-3 周转轮系传动比计算
13
三、周转轮系传动比计算
既然转化轮系是一个定轴轮系,就可应用求 解定轴轮系传动比的方法,求出其中任意两个齿 轮的传动比来。根据传动比定义,转化轮系中齿 轮1与齿轮3的传动比为:
注意: i13是两轮真实的传动比;而i13H 是假想 的转化轮系中两轮的传动比。转化轮系是定轴轮 系,且其起始主动轮1与最末从动轮3轴线平行, 故由定轴轮系传动比计算公式可得:
这两个中心轮都能转动,所以齿轮1、2-2’、3和行
星架H组成一个差动轮系。剩下的齿轮3‘、4、5是一
解:个对定定轴轴轮系轮。系二者i合53' 在 一35起' 便- 构zz35'成一个复合3' 轮 系- zz。35' 5
(a)
对周转轮系
i1H3

1 -5 3 -5

-
z2z3 z1z 2 '
定,设外啮合的次数为m,则当m 为奇数时,两轮转向相反;m为偶
数时,两轮转向相同。
§7-1 轮系概述
5
轮系相对转向表达
方法之二——对各对齿轮标 注箭头
标注箭头的规则是:相 互啮合的齿轮,啮合点的线 速度相同。
画箭头的方法是一种普 遍适用的方法,无论轮系中 各轮轴线的相对位置如何, 采用这种方法都可以确定两 轮的相对转向。
解:首先按图所示规则,从轮2开始,顺次标出各啮合齿轮的转动方向。由 图可见,1、7二轮的轴线不平行,1、5二轮转向相反,2、5二轮转向 相同,故由公式得:
i15

n1 n5

(1)3
z2 z3z5 z1z2' z3'

机械设计基础完美第五章轮系PPT课件

机械设计基础完美第五章轮系PPT课件
须相等。
20
• 3、邻接条件 • 确定齿轮齿数时,必须保证相邻两行星齿轮的齿
顶圆之间有一定间隙,如图所示,即满足以下不 等式
• 4、装配条件 • 为了保证各行星齿轮能能均匀的分布在两中心轮
之间,并且与两中心轮啮合良好而没有错位现象, 即在行星轮数目确定后齿数的选择应满足装配条 件。
21
22
第四节 混合轮系及其传动比
16
第三节 周转轮系及其传动比
17
第三节 周转轮系及其传动比
18
第三节 周转轮系及其传动比
19
第三节 周转轮系及其传动比
• 齿数的确定 • 确定齿数的条件 • 在选择行星齿轮传动的齿数时应满足以下条件: • 1、传动比条件 • 齿数的选择首先应保证实现给定传动比的要求。 • 2、同心条件 • 为了保证正确的啮合,各对啮合齿轮的中心距必
第五章 轮 系
一、轮系的分类 二、定轴轮系及其传动比 三、周转轮系及其传动比 四、混合轮系及其传动比 五、轮系的应用
1
第一节 轮系的分类
轮系:一系列齿轮副组成的齿轮机构。 一、定轴轮系
轮系中各齿轮的 轴线相对机架的位置 都是固定的。
2
第一节 轮系的分类
二、周转轮系 轮系中有一个或几个齿轮
的轴线位置并不固定,而是绕 着其它齿轮的固定轴线回转的 轮系。
30
第六节 几种特殊的行星传动简介
一、渐开线少齿差行星传动
31
第六节 几种特殊的行星传动简介
32
第六节 几种特殊的行星传动简介
二、摆线针轮行星传动 摆线针轮行星传动与渐开线少齿差行星传动的
不同处在于齿廓曲线各异。在摆线针轮行星传动中, 轮1的内齿是带有套筒的圆柱销形针齿,行星轮2的 齿廓曲线则是短幅外摆线的等距曲线。

机械设计基础5轮系

机械设计基础5轮系

五轮系工作原理
通过齿轮的啮合,主动齿轮的旋转驱动被动齿轮, 从而实现力传递和转速变换。
五轮系的优点
高效的力传递和转速变换,紧凑的结构设计, 可靠性和稳定性。
五轮系的应用领域
汽车行业、工业机械、军事装备等需要力传递 和转速变换的领域。
五轮系的设计考虑因素
• 齿轮的材料选择 • 齿轮的几何参数 • 齿轮啮合的设计和优化
机械设计基础5轮系
欢迎来到机械设计基础5轮系的世界!本次演讲将带您了解五轮系的构成、工 作原理、优点、应用领域以及设计考虑因素和常见问题的解决方法。
五轮系简介
五轮系是机械设计中常用的传动机构之一,由五个齿轮组成,可实现高效的 力传递和转速变换。
五轮系构成
五轮系由主动齿轮、被动齿轮、中间齿轮、伺服齿 轮和输出齿轮组成,每个齿轮在传动过程中发挥不 同的作用。
1
五轮系的常见问题
齿轮磨损、齿轮间隙过大、齿轮啮合不良精确控制齿轮尺寸、优化齿轮工艺
3
优化实践
应用先进的齿轮设计软件和仿真工具进行性能分析和改进
总结
五轮系作为机械设计的重要传动机构,具有高效的力传递和转速变换能力, 应用广泛。在设计过程中,需要考虑材料选择、齿轮几何参数以及啮合优化。 定期维护和优化实践可解决常见问题。

机械设计基础知识之轮系

机械设计基础知识之轮系

机械设计基础知识之轮系介绍在机械设计中,轮系是一种常见的机械传动装置。

它由多个齿轮组成,通过齿轮之间的啮合传递动力和运动。

轮系常常用于各种机器和设备中,如汽车、机床、工程机械等。

齿轮基础知识齿轮是轮系的核心组成部分,它由齿顶、齿底、齿根和齿间隙等要素组成。

常见的齿轮类型包括圆柱齿轮、锥齿轮、内齿轮等。

圆柱齿轮的齿轮头上的齿轮轴与齿轮头之间的角度为直角,而锥齿轮的齿轮头上的齿轮轴与齿轮头之间的角度小于直角。

齿轮可以根据齿轮头上的齿轮轴的位置及方向,分为同轴齿轮和异轴齿轮。

同轴齿轮是指齿轮头上的齿轮轴位于同一直线上,而异轴齿轮是指齿轮头上的齿轮轴位于不同直线上。

异轴齿轮由于齿轮轴的不平行而产生速度比和力矩比的变化。

轮系设计原则在进行轮系设计时,有一些基本的原则需要遵循:1.正转传动原则:轮系中,每一个轮子均进行正轴向转动,不应有反转现象出现。

2.传动比原则:根据所需的速度和力矩传递要求,设计合适的传动比。

3.齿数选择原则:为了保证齿轮接触的可靠性和传动的平稳性,应根据齿轮的模数、齿数、啮合系数等参数,合理选择齿轮的齿数。

4.齿轮头选用原则:根据齿轮头载荷、齿轮轴的转速、传递的功率等因素,选择适合的材料和热处理方式,保证齿轮头的强度和耐磨性。

5.轮系布置原则:根据轮系中各个齿轮的尺寸、间距、中心距等参数,合理布置整个轮系,减小振动和噪声。

轮系计算方法在进行轮系设计时,需要进行一系列的计算,以确定合适的齿轮参数和传动比例。

1.传动比计算:根据所需的输出速度和输入速度,计算传动比,确定每个齿轮的齿数。

2.载荷计算:根据输入的力矩和转速,计算每个齿轮头上所承受的载荷。

3.强度计算:根据齿轮头的载荷、材料强度和齿轮几何参数,进行强度计算,确保齿轮头的强度满足设计要求。

4.疲劳寿命计算:根据齿轮头的载荷、转速和材料疲劳强度,进行疲劳寿命计算,确保齿轮头有足够的使用寿命。

轮系设计实例以下是一个简单的轮系设计实例,以帮助理解轮系设计的过程:假设要设计一个用于转动机床主轴的同轴齿轮轮系,输入轴的转速为1000rpm,输出轴的转速为3000rpm。

机械设计基础6轮系

机械设计基础6轮系

末两构件的转向关系。
一、传动比大小的计算
定义 i 1 n1 z2 2 n2 z1
i15

1 5
1 2 3 4 2 3 4 5
( z2 ) ( z3 ) ( z4 ) z5 z2 z3 z5 z1 z2' z3' z4 z1z2 z3
计算结果为负,表示主、从动齿轮转向相反。
i15

1 5
(1)3
z2 z3 z5 z1z2 z3
z2 z3 z5 z1z2 z3
齿轮1与齿轮5的转向相反。
定轴轮系传动比的计算
2.空间定轴轮系 只能通过画箭头来确定。
1)蜗杆蜗轮机构—左右手法则
◆左旋用左手,右旋用右手; ◆四指自然弯曲握住蜗杆轴线,且 指尖与蜗杆转向一致; ◆大拇指伸直,大拇指的反方向即 为节点处蜗轮的线速度方向。
2)锥齿轮机构
主、从动轮的转向同时指向 或同时背离啮合区。
定轴轮系传动比的计算
例 在图示的车床溜板箱进给刻度盘轮系中,运动由齿轮1 输入,由齿轮5输出,各齿轮的齿数为z1=18, z2=87, z3=28, z4=20, z5=84。试计算传动比i15。
解:该轮系为平面定轴轮系,所以有
i15

n1 n2
转化轮系
iGHK

G K

G K
H H
(1)m
所有从动轮齿数的连乘积 所有主动轮齿数的连乘积
1)公式只适用于齿轮G、K和行星架H之间的回转轴线互相平行的情况。
2)齿数比前的“土”号表示在转化轮系中,齿轮G、K之间相对于行星 架H的转向关系,它可由画箭头的方法确定。
3)ωG、ωK、ωH均为代数值,在计算中必须同时代入正、负号,求得

机械设计基础——项目七 轮系

机械设计基础——项目七  轮系

三、实现变速和换向传动 四、实现分路传动
五、实现运动的分解与合成 运动的合成是将两个输入运动
合成为一个输出运动。广泛地 应用于机床、计算机构中。
运动的分解是将一个输入运动 分解为两个输出运动。
六、结构紧凑,可实现大功率传动
在图7-18所示的周转轮系中,在轮系总体体积没有变大的 情况下,均布了三个行星轮,系统得到了平衡,承载能力 也得到了提高。
任务三 周转轮系传动比的计算
转化轮系传动比计算的一般式为
计算周转轮系传动比时,需要注意以下几点。 (1)此公式适用于任何基本周转轮系,但要求a、b两轮和系杆H 的几何轴线必须相互平行或重合。 (2)ωaH、ωbH、iabH分别为齿轮a、b在转化机构中的角速度和传 动比。 (3)ωa、ωb和ωH分别为原周转轮系中相应构件的绝对角速度, 均为代数量,在使用时要带上相应的正负号,这样求出的角速度 就可按其符号来确定转动方向。
项目七 轮 系
• 掌握轮系的种类、划分方法; • 熟悉各种轮系的传动比计算; • 了解从动轮转动方向的确定。
任务一 轮系概述
概念:通过一系列的齿轮所组成的传动系统称为轮系。将 轮系分为三大类:定轴轮系、周转轮系和复合轮系。
一、定轴轮系
二、周转轮系 三、复合轮系
任务二 定轴轮系传动比的计算
轮系的传动比,是指轮系中输入轴的角速度(或转速)与 输出轴的角速度(或转速)之比,即
轮系的传动比计算,包括计算其传动比的大小和确定其输 入轴与输出轴的转向两个ቤተ መጻሕፍቲ ባይዱ容。
一、传动比大小的计算
二、主、从动齿轮转向关系的确定 对于图7-1所示轮系,其传动比可写为
也可以用画箭头的方法确定主、从动轮的转向关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
a,b齿轮选择原则
1. 已知转速的齿轮 2. 固定的齿轮(n=0) 3. 需要求该齿轮转速的齿轮 4. 轮系之间有关联的齿轮(复合轮系)
23
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
a,b,H轴线平行(周转轮系)
17
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
作业
P140 题7-10(定轴轮系) 题7-11(周转轮系) 题7-12 (周转轮系) 题7-13 (复合轮系)
转向:画箭头法(适合任何定轴轮系)
(- 1)m 法(只适合所有齿轮轴线都平行的情况)
结果表示:
iab =
wa wb
从动齿轮齿数连乘积
=±? 主动齿轮齿数连乘积(输入、输出轴平行)
画箭头表示方向(输入、输出轴不平行)
§7-2 定轴轮系传动比计算
9
2020年4月23日星期四
‹#›
2020年4月23日星期四
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
轮系相对转向表达
方法之一——用正负号表示相——“-”; 内啮合——转动相同——“+”或 不加符号。
显然,若一个轮系全部由圆柱齿 轮组成,则输入、输出轮的相对 转向可以通过外啮合的次数来判
第7章 轮系设计
轮系的分类 定轴轮系传动比计算 周转轮系传动比计算 复合轮系传动比计算
§7-1 轮系概述
由一系列齿轮组成的传动系统称为轮系。
在机械中,为了获得大的传动比或者为了将输入轴的
一种转速变换为输出轴的多种转速等原因,常采用一 系列互相啮合的齿轮将输入轴和输出轴连接起来。
§7-1 轮系概述
2
定,设外啮合的次数为m,则当m 为奇数时,两轮转向相反;m为偶
数时,两轮转向相同。
§7-1 轮系概述
5
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
定轴轮系的传动比
大小:iab
=
wa wb
=
从a到b所有从动齿轮齿数连乘积 从a到b所有主动齿轮齿数连乘积
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
2020年4月23日星期四
‹#›
小 结
38
相关文档
最新文档