专题03 导数与函数零点(精讲篇)-用思维导图突破导数压轴题
导数思维导图及真题解析
一、思维导图二、疑难透析1、曲线“在点P处的切线”是以点P x0,y0为切点,这样的切线只有一条,切线方程为y−y0=f′x0x−x0。
2、“过点P的切线”,点P可能是切点,也可能不是切点。
点P x0,y0不是切点时的切线方程求解步骤:(1)设出切点坐标P′x1,f(x1);(2)写出过P′x1,f(x1)的切线方程y−f(x1)=f′x1x−x1;(3)将点P x0,y0代入切线方程求出x1;(4)将x1的值代入方程y−f(x1)=f′x1x−x1可得出过点P x0,y0的切线方程。
3、图像连续不断的函数在开区间a,b上不一定有最大值(或最小值)。
若图像连续不断的函数在开区间a,b内只有一个极值,则该极值就是最值。
4、用导数法求函数单调区间的一般步骤:求定义域求导数f'(x)求f'(x)=0在定义域内的根用求得的根划分定义域确定f'(x)在各个开区间内的符号确定单调区间5、用导数法证明函数在 a ,b 的单调性的一般步骤:6、解决函数极值问题的一般步骤:7、导数与极值关系f ′ x 0 =0只是可导函数f x 在x 0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f ′ x 0 在x 0两侧异号.另外,已知极值点求参数时要进行检验。
三、题型示例=(x −3)e x 的单调递增区间是(A.(−∞,2) B.(0,3) C.(1,4) D.(2,+∞) 【解析】(性质法)f ′ x =e x + x −3 e x =(x −2)e x ∵当f ′ x >0时,f x 单调递增求f'(x)确定f'(x)在(a ,b)内的符号得出结论:f'(x)>0,增函数;f'(x)<0,减函数求定义域求导数f'(x)解方程f'(x)=0判断根左右f'(x)的符号极值得方程f'(x)=0根的情况得关于参数的方程(不等式)参数值(范围)求极值用极值∴(x −2)e x >0 ∵e x >0 ∴x −2>0 即x >2 【答案】D2、若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+-- 的值( )A .'0()f xB .'02()f xC .'02()f x - D .0【解析】000000()()()()lim lim2[]2h h f x h f x h f x h f x h h h→→+--+--='0000()()2lim2()2h f x h f x h f x h→+--== 【答案】B3、曲线在处的切线方程为( ) A. B. C. D. 【解析】∵ ∴,∴切点坐标为 ∴切线方程为 【答案】B4、曲线y = x +1 x +2 (x +3)在点A (0,6)处的切线的斜率是( )A.9B.10C.11D.12【解析】求函数的导数先化简解析式再求导,连乘形式先展开化为多项式再求导;根式形式 先化为分数指数幂再求导;复杂形式先化为简单分式的和、差再求导。
高考导数题型及方法总结(思维导图)
函数极值最值
和差型导函数 积商型导函数 指数e^x混合型 幂次x^n混合型
逆构造解不等式
求函数零点个数 求函数极值最值
抽象导函数问题பைடு நூலகம்
导数
恒成立求参
参变分离 分离函数 必要性探路 端点效应 分类讨论求最值 隐极值代换 双任意双存在问题
不等式证明
一元不等式证明
指对处理技巧 基本放缩 隐零点代换 凹凸反转
直线与曲线最短距离 对称曲线最短距离 公共切点 不同切点
在点切线 过点切线 距离最值
公切线问题
导数的几何意义
一次型
因式分解型 不能因式分解
二次型
二次求导
可以参变分离
几何意义 函数性质
不能参变分离
常见函数图像 含参讨论单调性 已知单调性求参
函数单调性
求函数极值最值 已知极值最值求参 极值最值范围问题
双重最值问题
二元不等式证明
主元法 同构法
齐次式法
极值点偏移问题 数列不等式证明
对称构造 比值代换\差值代换 对数均值\指数均值 切线构造
函数零点问题
求函数零点个数 已知零点个数求参
找点技巧
利用导数探究函数的零点问题专题讲座-PPT
函数 f (x) 的图象与 g(x) 的图象有且只有三个不同的交点,
等价于函数 h(x) 的图象与 x 轴的正半轴有且只有三个不同的交点.
h(x) 2x 8 6 2(x 1)(x 3) ,由 h(x) 0 得 x 1或 x 3.
x
x
当 x 变化时, h(x) , h(x) 的变化情况如下表:
(2)若过点 P(1,t)存在 3 条直线与曲线 y=f(x)相切,求 t 的取值
范围.
解 (1)由 f(x)=2x3-3x 得 f′(x)=6x2-3.
令
f′(x)=0,得
x=-
22或
x=
2 2.
因为 f(-2)=-10,f
-
22=
2,f
22=-
2,f(1)=-1,
所以 f(x)在区间[-2,1]上的最大值为 f
f(x)与f′(x)在区间(0,+∞)上的变化情况如下表:
x
(0, k)
k
f′(x)
-
0
k(1-ln k)
f(x)
2
( k,+∞) +
所以,f(x)的单调递减区间是(0, k).单调递增区间是( k,+∞),
f(x)在 x=
k处取得极小值 f(
k)=k(1-2ln
k) .
(2)证明 由(1)知,f(x)在区间(0,+∞)上的最小值为 f( k)=
k(1-ln k)
2
.
因为 f(x)存在零点,所以k(1-2ln k)≤0,从而 k≥e, 当 k=e 时,f(x)在区间(1, e)上单调递减,且 f( e)=0, 所以 x= e是 f(x)在区间(1, e]上的唯一零点. 当 k>e 时,f(x)在区间(0, e)上单调递减,且 f(1)=12>0,f( e)=e-2 k <0, 所以 f(x)在区间(1, e]上仅有一个零点.
2021高考数学导数与函数零点用思维导图破解导数压轴大题
2021高考数学导数与函数零点用思维导图破解导数压轴大题用思维导图突破导数压轴题专题3 导数与函数零点函数()f x 零点x 0就是方程()f x =0的根x 0,也是函数()f x 图象与x 轴交点的横坐标x 0.这里函数与方程随时转化,互换角色,充分体现数形结合的思想.函数零点个数转化为方程根的个数,有时把方程()f x =0转化为函数y h x =()与y g x =(),再作函数的图象,从图象确定交点个数,即把求方程根的个数转化为两个函数图象交点的个数.如果连续函数在某个单调区间内两个端点函数值之积为负,则函数在该区间有且仅有一个零点.要求函数的单调区间有回到求其导数的路子上,即转化为前面熟悉的问题.函数零点方程根 求导定调需认真 端点异号那最好 如若不然做转化例1(2019年Ⅰ理第20题)已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.求函数f (x )的零点数:求导判断f (x )的单调性,适当选取区间,确定端点函数值异号形:a =g (x )或h (x )=q (x ) 判断相应函数单调性、值域,确定零点个数或范围结合具体问题运用分析法和相关性质确定端点(一般不唯一,见例2等)结合图象确定零点范围(见例3、例6),有时还需证明(见例1)思路点拨第(1)题:若1()cos 1f x x x '=-+在区间(1,)2π-的极大值点x 0,则在x 0左边,()f x '递增,在x 0右边()f x '递减.这需要考虑()f x ''在x 0左边为正,右边为负,也就是说x 0是()f x '的零点,从而()f x '在0(1,)x -上单调递增;在0(x ,)2π上()f x ''<0,可得()f x '单调递减. 第(2)结论等价于方程sinx=ln(1+x)有且仅有两个不等的实数根.在同一坐标系中分别作出图象可知一根为0,另一根介于(2]2π,之间.从图象可以看出当(1,0)x ∈-和(0,)2π时,sin ln(1)0x x -+>,即()0f x >;当[2,)x ∈+∞,()0f x <.这就需要考虑f ′(x )在(−1,0)、(0,π2]、(π2,2]、(2,+∞)单调性以及端点值的正负.由于x 0位于(0,x 0)和(x 0,π2),还有对这两个区间作相应讨论. 第(2)的思维导图:f '(x)-1yx0π2x 02y =ln(1+x )y =sin x-1yx0π2已知f (x )=sin x -ln(1+x )结论:f (x )有且仅有2个零点sinx=ln(1+x)有两个不等实数根当和时,f (x )>0;当 x ∈ሾ2,+∞)时,f (x )<0当 x ∈ሾ2,+∞)时, f (x )<0等价转化函数方程不等式三者联系很密切相互转化无痕迹根据需要作选择极值两边单调反一撇两撇找零点区分左右大和小增减正负是关键综上,f(x)有且仅有2个零点.思路点拨(1)直接进行求导,分类讨论.(2)由(1)知()f x 在上单调递减,在上单调递增, ()f x 有极小值,若()f x 有两个零点,则,且在该点左右两个区间再各找一个点,其函数值大于0即可,当然也可以把函数有两个零点问题转化为另外两个函数图象有两个交点. 满分解答(1)对函数进行求导可得. ①当时,恒成立,故而函数恒递减.②当时,,解得x >ln 1a ,所以函数在上单调递减,在上单调递增.(2)解1 由(1)知,当时,在上单调递减,故在上至多一个零点,不满足条件;当时,. 令,则,从而在上单调递增,而,故当时,;当时,;当时,.当时,,此时恒成立,从而无零点,不满足条件. 当时,,,此时仅有一个实根,不满足条件.当时,,,注意到,故在上有一个实根. 1,ln a ⎛⎫-∞ ⎪⎝⎭1ln ,a ⎛⎫+∞ ⎪⎝⎭11ln ln 1f a a a ⎛⎫=-+ ⎪⎝⎭()1ln 100a a a-+<>()()()()2'22111x x x xf x ae a e ae e =+--=-+0a ≤()()()'110x xf x ae e =-+≤0a >()()()1'110ln x xf x ae e x a =-+>⇒>1,ln a ⎛⎫-∞ ⎪⎝⎭1ln ,a ⎛⎫+∞ ⎪⎝⎭0a ≤()f x R ()f x R 0a >()min 1()ln 1ln f x f a a a=-=-+()11ln (0)g a a a a=-+>()2110g a a a'=+>()g a ()0,+∞()10g =01a <<()0g a <1a =()0g a =1a >()0g a >1a >()0g a >()0f x >()f x 1a =()0g a =min 1()1ln 0f x a a =-+=()0f x =01a <<()0g a <()min 1()ln 1ln 0f x f a a a=-=-+<22ln 0,(1)10a a a f e e e->-=++->()f x (1,ln )a --而 ,. 故在上有一个实根.又在上单调减,在单调增,故在上至多两个实根.注 怎么知道要算f (-1)>0、3ln(1)0⎛⎫->⎪⎝⎭f a ?事实上,()()[2]=+--x x f x e ae a x ,当x =-1时f (-1)>0;为了再找一点x ,使f (x )>0,因为()()22=+--x xf x ae a e x()=[2]+--x x e ae a x ,注意到0->x e x ,所以只要()21+-=x ae a ,解得3ln(1)=-x a.其实,还可以证f (-2)>0,03ln(1)>-x a 时,3ln(1)0⎛⎫-> ⎪⎝⎭f a . (2)解2 令()0f x =,即()220xxae a e x +--=,所以有22x x x e xa e e+=+.于是函数()f x 有两个零点,即y a =与()22x x x e xg x e e+=+的图象有两个交点.()g x 的导函数为()()()()2211'1xx xxe e x g x e e ++-=-+,当0x <时,()'0g x >;当0x >时,()'0g x <时,所以()g x 在(),0-∞上单调递增,在()0,+∞上单调递减,且()g x 在0x =处取得最大()01g =.当1a ≥时,y a =与()g x 至多有一个零点,不符合题意;当0a ≤时,由于当0x ≥时,()0g x >,而当0x <时,()g x 是单调递增,所以y a=与()g x 至多有一个交点,不符合题意;当01a <<时,一方面,由于()()20,01g a g a -<<=>,且()g x 在()2,0-上单调递增,所以y a =与()g x 在()2,0-上有且仅有一个交点.31ln 1ln ln a a a ⎛⎫->=- ⎪⎝⎭33ln 1ln 133ln(1)e e2ln 1a a f a a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫-=⋅+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()33132ln 1a a a a ⎛⎫⎛⎫=-⋅-+--- ⎪ ⎪⎝⎭⎝⎭331ln 10a a ⎛⎫⎛⎫=---> ⎪ ⎪⎝⎭⎝⎭()f x 3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,()f x ()ln a -∞-,(ln ,)a -+∞()f x R思路点拨 第(1)题要证明不等式()1f x ≥,由于(0)=1f ,结论等价于当0x ≥时,()(0)f x f ≥,只要证明'()0f x >,接下来就是从已知入手证明'()0f x >,也可以把()1f x ≥转化为只要证明210x e x --≥,两边同时除以xe (注:这样构造下面的函数g(x)求导比较方便),不等式转化为2(1)10x x e -+-≤,构造新的函数2()(1)1x g x x e -=+-,只要证明()(0)g x g ≤.第(2)题要求()f x 的零点,如果直接对()f x 求导得'()2x f x e ax =-,要判断其符号就要对a 进行讨论,如果把()f x 转化为22()()x f x x e x a -=-,令2()x h x e x a -=-,则()f x 与()h x 在(0,)+∞零点个数相同,而'3(2)()xx eh x x-=中没有a ,讨论符号方便,运算量会减小.当然,也可把()f x 转化为2()1xx f x e ax e -=-()来解答.还可以用最常见的方法来思考:函数()f x 只有一个零点问题等价转化为方程2xe a x=只有一根问题,从而寻找两函数(y a =与 2()x e G x x =)的图像只有一个交点问题,于是,本小题有下面的3种解法. 满分解答解(1)解 1 因为2()x f x e ax =-,所以'()2x f x e x =-, 令'()2,()2x x g x e x g x e =-=-,由2=0x e -得ln 2x =.当''[0,ln 2),()0;(ln 2,),()0x g x x g x ∈<∈+∞>,所以()g x 在[0,ln 2)上单调递减,在(ln 2,)+∞上单调递增,所以()(ln 2)220,g x g ln ≥=->因此()f x 在[0,)+∞上递增,所以2()1(0)x f x e x f =-≥=.解2 设函数2()(+1)1x g x x e -=-,则'22()(21)(1)x x g x x x e x e --=--+=--, 当1x ≠时,'()0g x <,所以()g x 在[0,)+∞单调递减,从而有()(0)0g x g ≤=,即2(+1)10x x e --≤,整理得,21x e x -≥,故有()1f x ≥.(2)解1因为()f x 在(0,)+∞只有一个零点,由于22()x f x x e x a -=-(),则2()xh x e x a -=-在(0,)+∞只有一个零点,'3(2)()x x e h x x-=,当(0,2)x ∈时,'()0h x <,当(2,)x ∈+∞时,'()0h x >,所以()h x 在(0,2)上递减,在(2,)+∞上递增,所以()h x ≥2(2)4e h a =-.当24e a <时,()h x 在(0,)+∞无零点;当24e a =时,()h x 在(0,)+∞只有一个零点,满足题意;当24e a >时,由(1)可得:()20xg x e x =->,即22()x e h x a a x x=->-,当 20a x ->,此时22x a <<时,()0,h x >取1,x a =故()h x 在1(,2)a有一个零点.由(1)可得当0x >时,2x e x >,有32,3xx e >此时即3222()83()27xx e h x a a x a x x =->-=-,当2728x a >>时,()0,h x >取4,x a =则(4)0h a >,由零点存在定理知()h x 在(2,4)a 有一个零点,此时()f x 在(0,)+∞有两个零点,不合题意.综上所述:24e a =.解2因为()f x 在(0,)+∞只有一个零点,由于2()1xx f x e ax e -=-(),令2()1xh x ax e -=-在(0,)+∞只有一个零点,(i )当0a ≤时,()0h x >,()h x 没有零点; (ii )当0a >时,'(2)()xax x h x e -=; 当(0,2)x ∈时,'()0h x <;当(2,)+∞时,'()0h x >.所以()h x 在(0,2)单调递减,在(2,)+∞单调递增.故有24()(2)1ah x h e ≥=-. 当24e a <时,24()10,a h x e ≥->函数无零点,不合题意;当24e a =时,24()10,a h x e ≥-=函数只有一个零点,满足题意;当24e a >时,24()10,a h x e ≥-<由(0)1h =,所以()h x 在(0,2)有一个零点,由(1)得,当0x >时,2,xe x >所以33342241616161(4)11110()(2)a a a a a h a e e a a=-=->-=->,故有()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上所述,()f x 在(0,+∞)只有一个零点时,24e a =.解3 由()f x 在(0,)+∞只有一个零点可知方程20x e ax -=在(0,)+∞只有一个根,即 2xe a x=在(0,)+∞只有一个根,从而可得函数y a =与 2()x e G x x =的图像在(0,)+∞只有一个交点.'3(2)()x e x G x x-=,当(0,2)x ∈时,'()0G x <,当(2,)x ∈+∞时,'()0,G x >所以()G x 在(0,2)递减,在(2,)+∞递增;当0x →时,()G x →+∞,当x →+∞时,()G x →+∞,所以()f x 在(0,)+∞只有一个零点时,2(2)4e a G ==.思路点拨第(2)题解1是把零点问题转化为不等式问题,又转化为方程解的问题,但不是直接解方程,由于通过条件知道方程的解,就转化为验证是否是方程的解,有效回避解高次方程.解2是通过“两边夹”的方法得到c 的值,再验证其是唯一满足条件的值. 满分解答(1)()ax x x f 232'+=,令()0'=x f ,解得01=x ,322ax -=. 若0=a ,因()032'≥=x x f ,所以函数()x f 在R 上单调递增. 若0>a ,当32ax -<或0>x 时,()0'>x f ; 当032<<-x a 时,()0'<x f ,所以函数()x f 在⎪⎭⎫ ⎝⎛-∞-32,a 和()+∞,0上单调递增,在⎪⎭⎫⎝⎛-0,32a上单调递减.若0<a ,当32ax ->或0<x 时,()0'>x f ; 当320a x -<<时,()0'<x f ;所以函数()x f 在()0,∞-和⎪⎭⎫ ⎝⎛+∞-,32a 上单调递增,在⎪⎭⎫ ⎝⎛-32,0a 上单调递减. (2)解1 ()a c ax x x f -++=23,()ax x x f 232'+=,322ax -=. 由函数()x f 有三个不同的零点知0≠a 且()0320<⎪⎭⎫ ⎝⎛-⋅a f f ,即()02743<⎪⎪⎭⎫ ⎝⎛-+-a c a a c . 又因为a 的解集是()⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,2323,13, .31-=a ,12=a ,233=a 是()02743=⎪⎪⎭⎫ ⎝⎛-+-a c a a c 因为c a =一定是方程的一个根,若分别令31,,32c =-,则只要检验a 的其余两个值是否满足34027a c a +-=. (*) 当1=c 时,3a =-和32a =是(*)的根(32a =是重根);当3-=c 时,32a =和1a =不是(*)的根; 当23=c 时,3a =-和1a =不是(*)的根. 综上所述,1=c .解2 由(1)知,函数()x f 的两个极值为()b f =0,b a af +=⎪⎭⎫ ⎝⎛-327432,则函数()x f 有三个零点等价于()02743203<⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛-⋅b a b a f f ,从而30,40,27a a b >⎧⎪⎨-<<⎪⎩或30,40.27a b a <⎧⎪⎨<<-⎪⎩又a c b -=,所以当0>a 时,02743>+-c a a 或当0<a 时,02743<+-c a a . 设()c a a a g +-=3274,因为函数()x f 有三个零点时,a 的取值范围恰好是(),3-∞-331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,所以当(),3a ∈-∞-时,(g (),3a ∈-∞-时,()0<a g ,且当31,2a ⎛⎫∈ ⎪⎝⎭3,2⎛⎫+∞ ⎪⎝⎭时,()min 0g a >,()0g a >均恒成立,从而()013≤-=-c g ,且0123≥-=⎪⎭⎫ ⎝⎛c g ,因此1=c .此时,()a ax x x f -++=123()()[]ax a x x -+-++=1112,因函数有三个零点,则()0112=-+-+a x a x 有两个异于1-的不等实根, 所以()()2141a a ∆=---2a =+2a 30->,且()()2111320a a a ---+-=-≠,解得()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 综上1=c . 解3 由解1得函数()f x 有三个不同的零点知0a ≠等价于()34027a c a c a ⎛⎫-+-< ⎪⎝⎭,即43222727270424a ca a ca c --+->,其解集恰为()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 又不等式233102a a a +⋅-⋅->()()(),即4322727270424a a a a --+->的解集也是()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a ,故不等式43222727270424a ca a ca c --+->与不等式4322727270424a a a a --+->同解,比较系数可得1=c .思路点拨第(1)的①可直接求解,②可转换为恒成立问题;(2)由f (0)=2知0就是g(x )的零点,由条件知这是唯一零点.利用导数判断g(x )的单调性,则需唯一的极小值为0,由此得ab 的值. 满分解答①()122xxf x ⎛⎫=+ ⎪⎝⎭,由01a <<可得1222x x+=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =. ②由题意得221122622xx x x m ⎛⎫++- ⎪⎝⎭≥恒成立. 令122x x t =+,则由20x >可得2t ≥,此时226t mt --≥恒成立,即244t m t t t+=+≤恒成立.因为2t ≥时44t t +=≥,当且仅当2t =时等号成立,因此实数ab 的最大值为4.(2)解1()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 由01a <<,1b >可得1b a >,令()ln ln xb ah x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b aa xb ⎛⎫=-⎪⎝⎭时()00h x =,因此, 当()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <; 当()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;所以,()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22ax a a >=,0x b >,则()0g x >;当x >log b 2时,0x a >,log 22bx b b >=,则()0g x >;当1log 2a x <且10x x <时,()10g x >,则()g x 在()10,x x 有零点,当2log 2b x >且20x x >时,()20g x >,则()g x 在()02,x x 有零点,所以()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x ,可得()00g x =,由()00020g a b =+-=,因此00x =.因此ln log 0ln b aa b ⎛⎫-= ⎪⎝⎭,即ln 1ln ab -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.解2 因为函数2)()(-=x f x g 只有1个零点,而022)0()0(00=-+=-=b a f g , 所以0是函数)(x g 的唯一零点.由解1知道()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x . 下证00x =.若00x <,则0002x x <<,于是0()(0)02x g g <=,又log 2log 2log 2(log 2)220a a a a g ab a =+->-=,且函数()g x 在以2x 和log 2a 为端点的闭区间上的图象不间断,所以在02x 和log 2a 之间存在()g x 的零点,记为1x .因为01a <<,所以log 20a <,又002x <,所以10x <与“0是函数()g x 的唯一零点”矛盾.若00x >,同理可得,在02x 和log 2a 之间存在()g x 的非0的零点,矛盾. 因此,00x =.于是ln 1ln ab-=,故ln ln 0a b +=,所以1ab =.。
导数与函数的零点问题考点与题型归纳
导数与函数的零点问题考点与题型归纳考点一判断函数零点的个数[典例]设函数f(x)=ln x+mx,m∈R.讨论函数g(x)=f′(x)-x3零点的个数.[解]由题设,g(x)=f′(x)-x3=1x-mx2-x3(x>0),令g(x)=0,得m=-13x3+x(x>0).设φ(x)=-13x3+x(x>0),则φ′(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.所以x=1是φ(x)的极大值点,也是φ(x)的最大值点.所以φ(x)的最大值为φ(1)=23.由φ(0)=0,结合y=φ(x)的图象(如图),可知①当m>23时,函数g(x)无零点;②当m=23时,函数g(x)有且只有一个零点;③当0<m<23时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>23时,函数g(x)无零点;当m=23或m≤0时,函数g(x)有且只有一个零点;当0<m<23时,函数g(x)有两个零点.[题组训练]1.已知函数f (x )=3ln x -12x 2+2x -3ln 3-32,求方程f (x )=0的解的个数. 解:因为f (x )=3ln x -12x 2+2x -3ln 3-32(x >0), 所以f ′(x )=3x -x +2=-x 2+2x +3x =-(x -3)(x +1)x, 当x ∈(0,3)时,f ′(x )>0,f (x )单调递增;当x ∈(3,+∞)时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (3)=3ln 3-92+6-3ln 3-32=0, 因为当x →0时,f (x )→-∞;当x →+∞时,f (x )→-∞,所以方程f (x )=0只有一个解.2.设f (x )=x -1x-2ln x . (1)求证:当x ≥1时,f (x )≥0恒成立;(2)讨论关于x 的方程x -1x-f (x )=x 3-2e x 2+tx 根的个数. 解:(1)证明:f (x )=x -1x-2ln x 的定义域为(0,+∞). ∵f ′(x )=1+1x 2-2x =x 2-2x +1x 2=(x -1)2x 2≥0, ∴f (x )在[1,+∞)上是单调增函数,∴f (x )≥f (1)=1-1-2ln 1=0对于x ∈[1,+∞)恒成立.故当x ≥1时,f (x )≥0恒成立得证.(2)化简方程得2ln x =x 3-2e x 2+tx .注意到x >0,则方程可变为2ln x x=x 2-2e x +t . 令L (x )=2ln x x,H (x )=x 2-2e x +t , 则L ′(x )=2(1-ln x )x 2. 当x ∈(0,e)时,L ′(x )>0,∴L (x )在(0,e)上为增函数;当x ∈(e ,+∞)时,L ′(x )<0,∴L (x )在(e ,+∞)上为减函数.∴当x=e时,L(x)max=L(e)=2e.函数L(x)=2ln xx,H(x)=(x-e)2+t-e2在同一坐标系内的大致图象如图所示.由图象可知,①当t-e2>2e ,即t>e2+2e时,方程无实数根;②当t-e2=2e ,即t=e2+2e时,方程有一个实数根;③当t-e2<2e ,即t<e2+2e时,方程有两个实数根.考点二由函数零点个数求参数[典例](2018·全国卷Ⅱ)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.[解](1)证明:当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g′(x)<0,所以g(x)在(0,+∞)上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.(2)设函数h(x)=1-ax2e-x.f(x)在(0,+∞)上只有一个零点等价于h(x)在(0,+∞)上只有一个零点.(ⅰ)当a≤0时,h(x)>0,h(x)没有零点;(ⅱ)当a>0时,h′(x)=ax(x-2)e-x.当x∈(0,2)时,h′(x)<0;当x∈(2,+∞)时,h′(x)>0.所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增.故h (2)=1-4a e 2是h (x )在(0,+∞)上的最小值. ①当h (2)>0,即a <e 24时,h (x )在(0,+∞)上没有零点. ②当h (2)=0,即a =e 24时,h (x )在(0,+∞)上只有一个零点. ③当h (2)<0,即a >e 24时,因为h (0)=1,所以h (x )在(0,2)上有一个零点. 由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3(e 2a )2>1-16a 3(2a )4=1-1a >0,故h (x )在(2,4a )上有一个零点.因此h (x )在(0,+∞)上有两个零点.综上,当f (x )在(0,+∞)上只有一个零点时,a =e 24. [解题技法]根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数图象与x 轴的交点个数,或者两个相关函数图象的交点个数确定参数满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.[题组训练]1.(2019·安阳一模)已知函数f (x )=x 33+x 22与g (x )=6x +a 的图象有3个不同的交点,则a 的取值范围是________.解析:原问题等价于函数h (x )=x 33+x 22-6x 与函数y =a 的图象有3个不同的交点, 由h ′(x )=x 2+x -6=(x -2)(x +3),得x =2或x =-3,当x ∈(-∞,-3)时,h ′(x )>0,h (x )单调递增;当x ∈(-3,2)时,h ′(x )<0,h (x )单调递减;当x ∈(2,+∞)时,h ′(x )>0,h (x )单调递增.且h (-3)=272,h (2)=-223, 数形结合可得a 的取值范围是⎝⎛⎭⎫-223,272. 答案:⎝⎛⎭⎫-223,272 2.(2019·赣州模拟)若函数f (x )=a e x -x -2a 有两个零点,则实数a 的取值范围是________.解析:∵f (x )=a e x -x -2a ,∴f ′(x )=a e x -1.当a ≤0时,f ′(x )≤0恒成立,函数f (x )在R 上单调递减,不可能有两个零点;当a >0时,令f ′(x )=0,得x =ln 1a ,函数f (x )在⎝⎛⎭⎫ -∞,ln 1a 上单调递减,在⎝⎛⎭⎫ ln 1a ,+∞上单调递增,∴f (x )的最小值为f ⎝⎛⎭⎫ ln 1a =1-ln 1a-2a =1+ln a -2a . 令g (a )=1+ln a -2a (a >0),则g ′(a )=1a-2. 当a ∈⎝⎛⎭⎫ 0,12时,g (a )单调递增;当a ∈⎝⎛⎭⎫ 12,+∞时,g (a )单调递减, ∴g (a )max =g ⎝⎛⎭⎫ 12=-ln 2<0, ∴f (x )的最小值为f ⎝⎛⎭⎫ ln 1a <0,函数f (x )=a e x -x -2a 有两个零点. 综上所述,实数a 的取值范围是(0,+∞).答案:(0,+∞)[课时跟踪检测]1.设a 为实数,函数f (x )=-x 3+3x +a .(1)求f (x )的极值;(2)是否存在实数a ,使得方程f (x )=0恰好有两个实数根?若存在,求出实数a 的值;若不存在,请说明理由.解:(1)f ′(x )=-3x 2+3,令f ′(x )=0,得x =-1或x =1.∵当x ∈(-∞,-1)时,f ′(x )<0;当x ∈(-1,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0,∴f (x )在(-∞,-1),(1,+∞)上单调递减,在(-1,1)上单调递增.∴f (x )的极小值为f (-1)=a -2,极大值为f (1)=a +2.(2)方程f (x )=0恰好有两个实数根,等价于直线y =a 与函数y =x 3-3x 的图象有两个交点.∵y =x 3-3x ,∴y ′=3x 2-3.令y ′>0,解得x >1或x <-1;令y ′<0,解得-1<x <1.∴y =x 3-3x 在(-1,1)上为减函数,在(1,+∞)和(-∞,-1)上为增函数.∴当x =-1时,y 极大值=2;当x =1时,y 极小值=-2.∴y =x 3-3x 的大致图象如图所示.y =a 表示平行于x 轴的一条直线,由图象知,当a =2或a =-2时,y =a 与y =x 3-3x 有两个交点.故当a =2或a =-2时,方程f (x )=0恰好有两个实数根.2.(2019·锦州联考)已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解:(1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1.∴f (x )=e x -x +1,f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1), ∴f (x )在[-2,1]上的最大值是1e 2+3. (2)f ′(x )=e x +a .①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x >1时,f (x )=e x +a (x -1)>0;当x <0时,取x =-1a,则f ⎝⎛⎭⎫-1a <1+a ⎝⎛⎭⎫-1a -1=-a <0,∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,则x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减;当x ∈(ln(-a ),+∞)时,f ′(x )>0 ,f (x )单调递增,∴当x =ln(-a )时,f (x )取得极小值,也是最小值.函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).3.(2018·郑州第一次质量预测)已知函数f (x )=ln x +1ax -1a(a ∈R 且a ≠0). (1)讨论函数f (x )的单调性;(2)当x ∈⎣⎡⎦⎤1e ,e 时,试判断函数g (x )=(ln x -1)e x +x -m 的零点个数. 解:(1)f ′(x )=ax -1ax 2(x >0), 当a <0时,f ′(x )>0恒成立,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )=ax -1ax 2>0,得x >1a, 由f ′(x )=ax -1ax 2<0,得0<x <1a, 函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫0,1a 上单调递减. 综上所述,当a <0时,函数f (x )在(0,+∞)上单调递增;当a >0时,函数f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫0,1a 上单调递减. (2)当x ∈⎣⎡⎦⎤1e ,e 时,函数g (x )=(ln x -1)e x +x -m 的零点个数,等价于方程(ln x -1)e x +x =m 的根的个数.令h (x )=(ln x -1)e x +x ,则h ′(x )=⎝⎛⎭⎫1x +ln x -1e x +1. 由(1)知当a =1时,f (x )=ln x +1x-1在⎝⎛⎭⎫1e ,1上单调递减,在(1,e)上单调递增, ∴当x ∈⎣⎡⎦⎤1e ,e 时,f (x )≥f (1)=0.∴1x+ln x -1≥0在x ∈⎣⎡⎦⎤1e ,e 上恒成立. ∴h ′(x )=⎝⎛⎭⎫1x +ln x -1e x +1≥0+1>0, ∴h (x )=(ln x -1)e x +x 在x ∈⎣⎡⎦⎤1e ,e 上单调递增,∴h (x )min =h ⎝⎛⎭⎫1e =-2e 1e +1e,h (x )max =h (e)=e. ∴当m <-2e 1e+1e或 m >e 时,函数g (x )在⎣⎡⎦⎤1e ,e 上没有零点; 当-2e 1e +1e ≤m ≤e 时,函数g (x )在⎣⎡⎦⎤1e ,e 上有一个零点.4.(2019·益阳、湘潭调研)已知函数f (x )=ln x -ax 2+x ,a ∈R.(1)当a =0时,求曲线y =f (x )在点(e ,f (e))处的切线方程;(2)讨论f (x )的单调性;(3)若f (x )有两个零点,求a 的取值范围.解:(1)当a =0时,f (x )=ln x +x ,f (e)=e +1,f ′(x )=1x +1,f ′(e)=1+1e ,∴曲线y =f (x )在点(e ,f (e))处的切线方程为y -(e +1)=⎝⎛⎭⎫1+1e (x -e),即y =⎝⎛⎭⎫1e +1x . (2)f ′(x )=-2ax 2+x +1x(x >0), ①当a ≤0时,显然f ′(x )>0,f (x )在(0,+∞)上单调递增;②当a >0时,令f ′(x )=-2ax 2+x +1x=0,则-2ax 2+x +1=0,易知Δ>0恒成立. 设方程的两根分别为x 1,x 2(x 1<x 2),则x 1x 2=-12a<0,∴x 1<0<x 2, ∴f ′(x )=-2ax 2+x +1x =-2a (x -x 1)(x -x 2)x(x >0). 由f ′(x )>0得x ∈(0,x 2),由f ′(x )<0得x ∈(x 2,+∞),其中x 2=1+8a +14a, ∴函数f (x )在⎝ ⎛⎭⎪⎫0,1+8a +14a 上单调递增,在⎝ ⎛⎭⎪⎫1+8a +14a ,+∞上单调递减. (3)函数f (x )有两个零点,等价于方程a =ln x +x x2有两解. 令g (x )=ln x +x x 2(x >0),则g ′(x )=1-2ln x -x x 3. 由g ′(x )=1-2ln x -x x 3>0,得2ln x +x <1,解得0<x <1, ∴g (x )在(0,1)单调递增,在(1,+∞)单调递减,又∵当x ≥1时,g (x )>0,当x →0时,g (x )→-∞,当x →+∞时,g (x )→0,∴作出函数g (x )的大致图象如图,结合函数值的变化趋势猜想:当a ∈(0,1)时符合题意.下面给出证明:当a ≥1时,a ≥g (x )max ,方程至多一解,不符合题意; 当a ≤0时,方程至多一解,不符合题意;当a ∈(0,1)时,g ⎝⎛⎭⎫1e <0,∴g ⎝⎛⎭⎫1e -a <0, g ⎝⎛⎭⎫2a =a 24⎝⎛⎭⎫ln 2a +2a <a 24⎝⎛⎭⎫2a +2a =a , ∴g ⎝⎛⎭⎫2a -a <0.∴方程在⎝⎛⎭⎫1e ,1与⎝⎛⎭⎫1,2a 上各有一个根,∴若f (x )有两个零点,a 的取值范围为(0,1).。
九年级函数知识点思维导图
九年级函数知识点思维导图函数是数学中一个非常重要的概念,九年级学生需要掌握函数的相关知识点。
为了帮助大家更好地理解九年级函数知识点,我将为大家制作一个思维导图,来系统地梳理九年级函数知识点。
一、函数的定义与性质函数的定义:函数是一种具有特定输入与输出关系的规则。
1.1 输入与输出:函数将自变量(输入值)映射到因变量(输出值)。
1.2 定义域与值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
1.3 单调性:函数可以是递增的(单调增),也可以是递减的(单调减)。
1.4 奇偶性:函数可以是奇函数或偶函数,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
1.5 周期性:函数可以是周期函数,例如正弦函数和余弦函数。
二、函数的图像与图像的性质函数的图像是函数在平面直角坐标系上的可视化形式,通过观察函数的图像可以了解更多函数的性质。
2.1 函数的图像类型:线性函数、二次函数、立方函数、指数函数、对数函数等。
2.2 对称性:函数的图像可能具有对称性,如关于x轴对称、关于y轴对称、关于原点对称等。
2.3 函数的平移与伸缩:函数的图像可以通过平移和伸缩来变换,平移会改变图像的位置,伸缩会改变图像的形状。
2.4 零点与极值:函数的零点是使函数取值为0的自变量,函数的极值是取得最大或最小值的点。
三、函数的性质与运算函数的性质和运算是九年级函数知识点的重点,它们可以帮助我们对函数进行分析和计算。
3.1 奇偶性的性质:奇函数和偶函数具有一些特殊的性质,如奇函数之间相加是奇函数,奇函数和偶函数相乘是偶函数。
3.2 复合函数:复合函数是一种由两个或多个函数组成的函数,通过复合函数可以将函数的运算进行扩展。
3.3 反函数:反函数是满足特定条件的函数,它与原函数的作用正好相反,可以通过反函数找到原函数的逆运算。
四、函数的应用函数的应用广泛存在于现实生活中,九年级学生需要了解一些函数的实际应用。
4.1 函数与图像的应用:函数的图像可以模拟真实世界中的各种现象,如物体的运动轨迹、声音的波动等。
方程的根与函数的零点 (3)PPT说课稿思维导图知识点[PPT白板课件]
bx
bx
c Oa
y
c Oa
b x
b x
例1如判果断函正数误y=,f(若x)不在正区确间,[a,请b]上使的用图函象数是图连象续举不出断反的例一条曲线, 并 (且 1)有已f(知a)函·f(数b)<y=0f,(x那)在么区,间函[数a,by]=上f(连x)在续区,间且(fa(,ab)) ·内f(b有) <零0点,.则
函数的图象与x 两个交点 轴的交点 (-1,0),(3,0)
一个交点 (1,0)
没有交点
上述一元二次方程的实数根二次函数图象与x轴交点的横坐标
意图:引起认知冲突;了解本课主旨; 通过熟悉情境,形成初步结论.
创设情境,感知概念
2、一般函数的图象与方程根的关系.
师生互动:在学 生提议的基础上, 教师现场在几何画 板下展示类似如下 函数的图象:
引例:
解方程:(1)2-x=4;(2)2-x=x. 解(1)2-x=4 ⇒ -x=log24 ⇒ x= -2.
(2)2-x=x ⇒ -x=log2x ⇒ -x-log2x=0
⇒
⇒
2x x
1 log2
2x x
0 log22-x-log2x=0
填空:
方程
x2-2x-3=0
x2-2x+1=0
〖即兴练习〗下列函数在相应区间内是否存在零点? (1)f(x)=log2x,x∈[0.5,2]; (2)f(x)=2x·ln(x-2)-3,x∈[3,5] .
意图:通过观察,归纳判定方法,描述零点存在性定理.
正反例证,熟悉定理
5、零点存在性定理的辨析与应用.
函数零点存在性定理:
y
ac O
y
y
专题01 导数与函数的最(极)值(精讲篇)-用思维导图突破导数压轴题
用思维导图突破导数压轴题解答数学题的“思维导图”:逛公园顺道看景,好风光驻足留影. 把条件翻成图式,关键处深挖搞清. 综合法由因导果,分析法执果索因. 两方法嫁接联姻,让难题无以遁形.这里把解题比作逛公园,沿路而行,顺道看景,既有活跃气氛,又有借景喻理之意,即理解题意后把已知条件“翻译”出来,如果能得到结论那是最好,如果不行就要转化,即从已知条件入手推出中间结论(可知),当中间结论能直接证明最终结论时,则解题成功.当中间结论不能直接证明最终结论时,可把最终结论等价转化为“需知”,再用中间结论证明“需知”从而达到解题目的.有时还要挖掘题目的隐含条件.从某种意义上说,解题就是“找关系”----找出已知与未知的联系,不断缩小以至消除二者之间的差距,从而达到解题目的.这个思维导图不仅是用来解答压轴题,其实,每个层次的学生都有相应的难题。
中等以下水平的学生高考基本不用做压轴题的,但他们做中档题会有困难,思维导图一样适用。
专题01 导数与函数的最(极)值问题利用导数求函数f (x )极值、最值的基本方法是先求f (x )的导数f 'x (),再求f 'x ()的零点i x ,i N ∈,根据f 'x ()在i x 两边的符号判断的单调性,最后确定i f x ()是极大值或极小值,再确定最值。
先求导数 再定零点 考查单调极值来了思路点拨第(1)只要直接计算即可。
第(2)题先求出()f x 和()f x '的含参数零点(用a 、b 表示),再根据零点均在集合{3-,1,3}中确定a 、b 的值。
第(3)题求出()f x '的零点12,x x (设12x x <),根据单调性确定极大值为321111()(1)=-++f x x b x bx ,这里含有两个变量,最容易想到的方法就是转化为一元变量,但恒等变形能力要求较高,也可以挖掘隐含条件利用基本不等式整体消元。
第(3)解题思维导图如下:.(2)a b ≠,b c =,设2()()()f x x a x b =--, 令2()()()0f x x a x b =--=,解得x a =,或x b =.又2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---,令()0f x '=,解得x b =,或23a bx +=. 因为()f x 和()f x '的零点均在集合{3A =-,1,3}中,所以3a =-,1b =,则2615333a b A +-+==-∉,舍去; 1a =,3b =-,则2231333a b A +-==-∉,舍去; 3a =-,3b =,则263133a b A +-+==-∉,舍去; 3a =,3b =-,则263133a b A +-==∈; 3a =,1b =,则2617333a b A ++==∉,舍去; 1a =,3b =,则2533a b A +=∉,舍去.因此3a =,3b =-,213a bA +=∈,从而2()(3)(3)f x x x =-+,()3[(3)](1)f x x x '=---, 令()0f 'x =,得3x =-或1x =.列表如下:从而可知,()f x 的单调递增区间为(−∞,−3]和[1,+∞),单调递减区间为[−3,1],由此可知当1x =时,函数()f x 取得极小值,2(1)2432f =-⨯=-.(3)证明:0a =,01b <„,1c =,()()(1)f x x x b x =--,则2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++.因为△22214(1)124444()332b b b b b =+-=-+=-+…,所以()0f x '=有两实根12,x x ,设12x x <,则()f x 单调递增区间为(−∞,1x ]和[2x ,+∞),单调递减区间为12[,]x x ,于是()f x 取得极大值为1111()()(1)M f x x x b x ==--。
导数及其应用讲导数与函数的零点
汇报人:日期:•导数概念•导数与函数零点•导数在几何中的应用目•导数在物理中的应用•导数的实际应用录导数概念函数f在x=x0点的导数是指当h趋近于0时,f(x0+h)与f(x0)之差与h的商的极限。
函数在某一点的导数描述了函数曲线在该点处的切线斜率。
导数的定义导数的几何意义函数在某一点的导数1 2 3若函数f和g可导,则其和、差、积、商的导数等于各自导数的和、差、积、商。
线性性质若函数f和g可导,则f乘以g的导数为f的导数乘以g加上g的导数乘以f。
乘积法则幂函数的导数是幂函数的系数与自然对数的和。
幂函数的导数导数的运算性质导数与函数零点函数图像与x轴交点的横坐标称为函数的零点。
零点函数的零点实际上就是对应方程的根。
函数的零点与方程的根函数在零点两侧的函数值异号。
零点存在的条件函数零点的定义利用导数找函数零点导数与单调性函数的导数可以判断函数的单调性,如果导数大于0,函数单调递增;如果导数小于0,函数单调递减。
找零点的步骤第一步,求函数的导数;第二步,根据导数判断函数的单调性;第三步,求出函数与x轴的交点,即函数的零点。
定理内容如果函数在区间[a,b]上连续,且在(a,b)上有导数,那么函数在(a,b)上至少有一个零点。
定理证明利用中值定理,当f'(x)在区间[a,b]上连续且在(a,b)上有导数时,存在ξ∈(a,b),使得f'(ξ)=0,从而证明了定理。
函数零点存在性定理导数在几何中的应用导数可以用来表示函数图像在某一点的切线斜率。
当函数在某一点处可导时,函数图像在该点的切线斜率等于该点的导数值。
切线斜率给定曲线上的一个点以及该点的切线斜率,可以得出该点的切线方程。
切线方程在几何上描述了曲线在这一点处的切线。
切线方程切线斜率与曲线在某点的切线方程导数小于0的区间,函数值单调递减;导数大于0的区间,函数值单调递增。
极值点是导数为0的点。
最值在一定区间内,函数值有最大值和最小值。
最值点可能是区间的端点或是极值点。
第3章 命题探秘1 第3课时 利用导数解决函数的零点问题 课件(共37张PPT)
第3课时 利用导数解决函数的零点问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
(1)f′(x)=3x2+b.
思维过程
依题意得f′12=0,即34+b=0,故b=-34. (2)证明:由(1)知f(x)=x3-34x+c,f′(x)=3x2-34.
→ 关键1:求f′x=0的根
第3课时 利用导数解决函数的零点问题
∴当x=e时,f(x)取得极小值f(e)=ln e+ee=2,
∴f(x)的极小值为2.
第3课时 利用导数解决函数的零点问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
(2)由题意知g(x)=f′(x)-3x=1x-xm2-3x(x>0),
令g(x)=0,得m=-13x3+x(x>0). 设φ(x)=-13x3+x(x≥0),
第3课时 利用导数解决函数的零点问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
当a>0时,由f′(x)=0可得x=ln a.当x∈(-∞,ln a)时,
f′(x)<0;当x∈(ln a,+∞)时,f′(x)>0.所以f(x)在(-∞,ln a)单调
递减,在(ln a,+∞)单调递增.故当x=ln a时,f(x)取得最小值,最
[解] (1)当a=1时,f(x)=ex-x-2,则f′(x)=ex-1. 当x<0时,f′(x)<0;当x>0时,f′(x)>0. 所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)f′(x)=ex-a. 当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)单调递增,故f(x)至 多存在一个零点,不合题意.
【冲刺必刷】专题01 导数与函数的最(极)值(精讲篇)-用思维导图突破导数压轴题
用思维导图突破导数压轴题《挑战压轴题•高中数学•精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者上海市特级教师文卫星解答数学题的“思维导图”:逛公园顺道看景,好风光驻足留影.把条件翻成图式,关键处深挖搞清. 综合法由因导果,分析法执果索因. 两方法嫁接联姻,让难题无以遁形.这里把解题比作逛公园,沿路而行,顺道看景,既有活跃气氛,又有借景喻理之意,即理解题意后把已知条件“翻译”出来,如果能得到结论那是最好,如果不行就要转化,即从已知条件入手推出中间结论(可知),当中间结论能直接证明最终结论时,则解题成功.当中间结论不能直接证明最终结论时,可把最终结论等价转化为“需知”,再用中间结论证明“需知”从而达到解题目的.有时还要挖掘题目的隐含条件.从某种意义上说,解题就是“找关系”----找出已知与未知的联系,不断缩小以至消除二者之间的差距,从而达到解题目的.这个思维导图不仅是用来解答压轴题,其实,每个层次的学生都有相应的难题。
中等以下水平的学生高考基本不用做压轴题的,但他们做中档题会有困难,思维导图一样适用。
专题01 导数与函数的最(极)值问题利用导数求函数f(x)极值、最值的基本方法是先求f(x)的导数f 'x (),再求f 'x ()的零点i x ,i N ∈,根据f 'x ()在i x 两边的符号判断的单调性,最后确定i f x ()是极大值或极小值,再确定最值。
先求导数再定零点 考查单调 极值来了否已知条件隐含条件中间结论(可知)已知条件的等价转化待求(证)的结论结论的等价转化(需知)能否能引例(2019江苏卷第19题)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数.(1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值;(3)若0a =,01b <„,1c =,且()f x 的极大值为M ,求证:427M „.思路点拨第(1)只要直接计算即可。
数学导数知识点总结图
数学导数知识点总结图一、导数的定义在微积分中,导数的定义是通过极限的概念给出的。
设函数f(x)在点x=a处有定义,那么f(x)在点x=a处的导数可以定义为:f'(a) = lim [f(x) - f(a)] / (x - a) (x→a)其中f'(a)表示函数f(x)在点x=a处的导数,lim表示极限运算。
这个极限表示当自变量x 趋向于a时,函数f(x)在点x=a处的平均变化率的极限值,即函数在这一点的瞬时变化率或者斜率。
如果这个极限存在,那么我们说函数f(x)在点x=a处是可导的,而这个极限的值就是函数f(x)在点x=a处的导数。
导数的值可以告诉我们函数在这一点处的斜率,以及函数变化的速度和方向。
二、导数的基本性质1. 可导性和连续性:可导函数一定是连续的,但连续函数不一定可导。
由于导数的定义是通过极限给出的,如果一个函数在某一点可导,那么它在这一点必然是连续的。
但是,即使一个函数在某一点连续,也不一定能保证它在这一点可导。
2. 导数的几何意义:函数在某一点的导数就是函数图像在这一点处的切线的斜率。
导数的绝对值越大,表示函数图像在这一点处的变化越快;导数为正表示函数在这一点处是增加的,导数为负表示函数在这一点处是减少的;导数为零表示函数在这一点处是平稳的,即函数图像在这一点处的斜率为零。
3. 导数的运算法则:如果函数f(x)和g(x)在点x=a处可导,c为常数,那么常用的导数运算法则有:(1)常数性质:f(x) = c,f'(x) = 0(2)线性性质:[c*f(x) ± g(x)]' = c*f'(x) ± g'(x)(3)乘法法则:[f(x)*g(x)]' = f'(x)*g(x) + f(x)*g'(x)(4)商法则:[f(x) / g(x)]' = [f'(x)*g(x) - f(x)*g'(x)] / g^2(x)(5)复合函数求导:[f(g(x))]` = f'(g(x)) * g'(x)三、求导法则对于常见的初等函数,我们可以通过求导法则来求导。
专题03 导数与函数零点(精讲篇)-用思维导图突破导数压轴题
用思维导图突破导数压轴题《挑战压轴题•高中数学•精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者上海市特级教师文卫星专题3 导数与函数零点函数()f x 零点x 0就是方程()f x =0的根x 0,也是函数()f x 图象与x 轴交点的横坐标x 0.这里函数与方程随时转化,互换角色,充分体现数形结合的思想.函数零点个数转化为方程根的个数,有时把方程()f x =0转化为函数y h x =()与y g x =(),再作函数的图象,从图象确定交点个数,即把求方程根的个数转化为两个函数图象交点的个数.如果连续函数在某个单调区间内两个端点函数值之积为负,则函数在该区间有且仅有一个零点.要求函数的单调区间有回到求其导数的路子上,即转化为前面熟悉的问题.端点异号那最好 如若不然做转化思路点拨第(1)题:若1()cos 1f x x x'=-+在区间(1,)2π-的极大值点x 0,则在x 0左边,()f x '例1(2019年Ⅰ理第20题)已知函数()sin (1)f x x ln x =-+,()f x ' 为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.f '(x)-1yxπ2x 0求函数f (x )的零点数:求导判断f (x )的单调性,适当选取区间,确定端点函数值异号形:a =g (x )或h (x )=q (x ) 判断相应函数单调性、值域,确定零点个数或范围结合具体问题运用分析法和相关性质确定端点(一般不唯一,见例2等) 结合图象确定零点范围(见例3、例6),有时还需证明(见例1)递增,在x 0右边()f x '递减.这需要考虑()f x ''在x 0左边为正,右边为负,也就是说x 0是()f x '的零点,从而()f x '在0(1,)x -上单调递增;在0(x ,)2π上()f x ''<0,可得()f x '单调递减.第(2)结论等价于方程sinx=ln(1+x)有且仅有两个不等的实数根.在同一坐标系中分别作出图象可知一根为0,另一根介于(2]2π,之间. 从图象可以看出当(1,0)x ∈-和(0,)2π时,sin ln(1)0x x -+>,即()0f x >;当[2,)x ∈+∞,()0f x <.这就需要考虑f ′(x )在(−1,0)、(0,π2]、(π2,2]、(2,+∞)单调性以及端点值的正负.由于x 0位于(0,x 0)和(x 0,π2),还有对这两个区间作相应讨论.第(2)的思维导图:函数方程不等式 三者联系很密切 相互转化无痕迹 满分解答(1)21()sin (1)f x x x ''=-++, 记21()sin (1)g x x x =-++,则32()cos 0(1)g x x x '=--<+在(1,)2π-恒成立,所以()f x ''在(1,)2π-上为减函数. 2y =ln(1+x )y =sin x-1yx0π2已知f (x )=sin x -ln(1+x )结论:f (x )有且仅有2个零点 sinx=ln(1+x)有两个不等实数根数形结合:一根为0,一根在之间当和时,f (x )>0;当 x ∈ሾ2,+∞)时,f (x )<0当 x ∈ሾ2,+∞)时, f (x )<0等价转化其中f (π2)>0, f (2)= −ln(1+2)= −ln3<0.由函数零点存在性定理可知,f (x )在(π2,2]上有且只有一个零点x 2.④当x ∈(2,+∞)时,f (x )=sinx −ln(1+x )<1 −ln3<0,因此函数f (x )在(2,+∞)上无零点. 综上,f (x )有且仅有2个零点.思路点拨(1)直接进行求导,分类讨论.(2)由(1)知()f x 在上单调递减,在上单调递增, ()f x 有极小值,若()f x 有两个零点,则,且在该点左右两个区间再各找一个点,其函数值大于0即可,当然也可以把函数有两个零点问题转化为另外两个函数图象有两个交点. 满分解答(1)对函数进行求导可得.①当时,恒成立,故而函数恒递减.②当时,,解得x >ln 1a ,所以函数在上单调递减,在上单调递增. (2)解1 由(1)知,当0a ≤时,()f x 在上单调递减,故()f x 在上至多一个零点,不满足条件;当0a >时,()min 1()ln 1ln f x f a a a=-=-+. 1,lna ⎛⎫-∞ ⎪⎝⎭1ln ,a ⎛⎫+∞ ⎪⎝⎭11ln ln 1f a a a ⎛⎫=-+ ⎪⎝⎭()1ln 100a a a-+<>()()()()2'22111xx x x f x aea e ae e =+--=-+0a ≤()()()'110xxf x ae e =-+≤0a >()()()1'110ln x xf x ae e x a =-+>⇒>1,ln a ⎛⎫-∞ ⎪⎝⎭1ln,a ⎛⎫+∞ ⎪⎝⎭R R令()11ln (0)g a a a a =-+>,则()2110g a a a'=+>,从而()g a 在()0,+∞上单调递增,而()10g =,故当01a <<时,()0g a <;当1a =时,()0g a =;当1a >时,()0g a >. 当1a >时,()0g a >,此时()0f x >恒成立,从而()f x 无零点,不满足条件. 当1a =时,()0g a =,min 1()1ln 0f x a a=-+=,此时()0f x =仅有一个实根,不满足条件.当01a <<时,()0g a <,()min 1()ln 1ln 0f x f a a a=-=-+<,注意到22ln 0,(1)10a a a f e e e->-=++->,故()f x 在(1,ln )a --上有一个实根. 而 31ln 1ln ln a a a ⎛⎫->=- ⎪⎝⎭,33ln 1ln 133ln(1)e e2ln 1a a f a a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫-=⋅+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()33132ln 1a a a a ⎛⎫⎛⎫=-⋅-+--- ⎪ ⎪⎝⎭⎝⎭331ln 10a a ⎛⎫⎛⎫=---> ⎪ ⎪⎝⎭⎝⎭. 故()f x 在3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,上有一个实根. 又()f x 在上单调减,在(ln ,)a -+∞单调增,故在上至多两个实根. 注 怎么知道要算f (-1)>0、3ln(1)0⎛⎫-> ⎪⎝⎭f a ?事实上,()()[2]=+--x xf x e ae a x ,当x =-1时f (-1)>0;为了再找一点x ,使f (x )>0,因为()()22=+--xx f x aea e x()=[2]+--x x e ae a x ,注意到0->x e x ,所以只要()21+-=x ae a ,解得3ln(1)=-x a.其实,还可以证f (-2)>0,03ln(1)>-x a时,3ln(1)0⎛⎫-> ⎪⎝⎭f a . (2)解2 令()0f x =,即()220xxae a e x +--=,所以有22x x xe xa e e+=+.于是函数()f x 有两个零点,即y a =与()22x x x e xg x e e+=+的图象有两个交点.()g x 的导函数为()()()()2211'1xx xxe e x g x e e ++-=-+,当0x <时,()'0g x >;当0x >时,()'0g x <时,所以()g x 在(),0-∞上单调递增,在()0,+∞上单调递减,且()g x 在0x =()ln a -∞-,()f x R处取得最大()01g =.思路点拨第(1)题要证明不等式()1f x ≥,由于(0)=1f ,结论等价于当0x ≥时,()(0)f x f ≥,只要证明'()0f x >,接下来就是从已知入手证明'()0f x >,也可以把()1f x ≥转化为只要证明210x e x --≥,两边同时除以x e (注:这样构造下面的函数g (x )求导比较方便),不等式转化为2(1)10xx e-+-≤,构造新的函数2()(1)1x g x x e -=+-,只要证明()(0)g x g ≤.第(2)题要求()f x 的零点,如果直接对()f x 求导得'()2xf x e ax =-,要判断其符号就要对a 进行讨论,如果把()f x 转化为22()()x f x x e x a -=-,令2()x h x e x a -=-,则()f x 与()h x 在(0,)+∞零点个数相同,而'3(2)()xx e h x x-=中没有a ,讨论符号方便,运算量会减小.当然,也可把()f x 转化为2()1x x f x e ax e -=-()来解答.还可以用最常见的方法来思考:函数()f x 只有一个零点问题等价转化为方程2xe a x=只有一根问题,从而寻找两函数(y a =与 2()x eG x x=)的图像只有一个交点问题,于是,本小题有下面的3种解法. 满分解答解(1)解 1 因为2()xf x eax =-,所以'()2x f x e x =-,令'()2,()2xx g x e x g x e =-=-,由2=0x e -得ln 2x =.当''[0,ln 2),()0;(ln 2,),()0x g x x g x ∈<∈+∞>,所以()g x 在[0,ln 2)上单调递减,在(ln 2,)+∞上单调递增,所以()(ln 2)220,g x g ln ≥=->因此()f x 在[0,)+∞上递增,所以2()1(0)xf x e x f =-≥=.解2 设函数2()(+1)1xg x x e-=-,则'22()(21)(1)x x g x x x e x e --=--+=--,当1x ≠时,'()0g x <,所以()g x 在[0,)+∞单调递减,从而有()(0)0g x g ≤=,即2(+1)10x x e --≤,整理得,21x e x -≥,故有()1f x ≥.(2)解1因为()f x 在(0,)+∞只有一个零点,由于22()x f x x e x a -=-(),则2()xh x e x a -=-在(0,)+∞只有一个零点,'3(2)()x x e h x x-=,当(0,2)x ∈时,'()0h x <,当(2,)x ∈+∞时,'()0h x >,所以()h x 在(0,2)上递减,在(2,)+∞上递增,所以()h x ≥2(2)4e h a =-.当24e a <时,()h x 在(0,)+∞无零点;当24e a =时,()h x 在(0,)+∞只有一个零点,满足题意;当24e a >时,由(1)可得:()20xg x e x =->,即22()x e h x a a x x=->-,当20a x ->,此时22x a <<时,()0,h x >取1,x a =故()h x 在1(,2)a有一个零点. 由(1)可得当0x >时,2xe x >,有32,3xxe >此时即3222()83()27xx e h x a a x a x x =->-=-,当2728x a >>时,()0,h x >取4,x a =则(4)0h a >,由零点存在定理知()h x 在(2,4)a 有一个零点,此时()f x 在(0,)+∞有两个零点,不合题意.综上所述:24e a =. 解2因为()f x 在(0,)+∞只有一个零点,由于2()1x x f x eax e -=-(),令2()1x h x ax e -=-在(0,)+∞只有一个零点,(i )当0a ≤时,()0h x >,()h x 没有零点; (ii )当0a >时,'(2)()xax x h x e -=; 当(0,2)x ∈时,'()0h x <;当(2,)+∞时,'()0h x >.所以()h x 在(0,2)单调递减,在(2,)+∞单调递增.故有24()(2)1a h x h e≥=-. 当24e a <时,24()10,a h x e ≥->函数无零点,不合题意;当24e a =时,24()10,a h x e ≥-=函数只有一个零点,满足题意;当24e a >时,24()10,a h x e ≥-<由(0)1h =,所以()h x 在(0,2)有一个零点,由(1)得,当0x >时,2,xe x >所以33342241616161(4)11110()(2)a a a a a h a e e a a=-=->-=->,故有()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点. 综上所述,()f x 在(0,+∞)只有一个零点时,24e a =. 解3 由()f x 在(0,)+∞只有一个零点可知方程20x e ax -=在(0,)+∞只有一个根,即2xe a x =在(0,)+∞只有一个根,从而可得函数y a =与 2()x e G x x =的图像在(0,)+∞只有一个交点.'3(2)()x e x G x x-=,当(0,2)x ∈时,'()0G x <,当(2,)x ∈+∞时,'()0,G x >所以()G x 在(0,2)递减,在(2,)+∞递增;当0x →时,()G x →+∞,当x →+∞时,()G x →+∞,所以()f x 在(0,)+∞只有一个零点时,2(2)4e a G ==.解方程,由于通过条件知道方程的解,就转化为验证是否是方程的解,有效回避解高次方程.解2是通过“两边夹”的方法得到c 的值,再验证其是唯一满足条件的值. 满分解答(1)()ax x x f232'+=,令()0'=x f ,解得01=x ,322a x -=. 若0=a ,因()032'≥=x x f ,所以函数()x f 在R 上单调递增. 若0>a,当32a x -<或0>x 时,()0'>x f ; 当032<<-x a 时,()0'<x f ,所以函数()x f 在⎪⎭⎫ ⎝⎛-∞-32,a 和()+∞,0上单调递增,在⎪⎭⎫⎝⎛-0,32a 上单调递减. 若0<a ,当32a x ->或0<x 时,()0'>x f ; 当320a x -<<时,()0'<x f ;所以函数()x f 在()0,∞-和⎪⎭⎫ ⎝⎛+∞-,32a 上单调递增,在⎪⎭⎫⎝⎛-32,0a 上单调递减. (2)解 1 ()a c ax x x f -++=23,()ax x x f232'+=,当322a x -=. 由函数()x f 有三个不同的零点知0≠a且()0320<⎪⎭⎫⎝⎛-⋅a f f ,即()02743<⎪⎪⎭⎫ ⎝⎛-+-a c a a c . 又因为a 的解集是()⎪⎭⎫ ⎝⎛+∞⎪⎭⎫⎝⎛-∞-,2323,13, .因此,可得31-=a ,12=a ,233=a 是()02743=⎪⎪⎭⎫ ⎝⎛-+-a c a a c 的所有根. 因为c a =一定是方程的一个根,若分别令31,,32c =-,则只要检验a 的其余两个值是否满足34027a c a +-=. (*)当1=c 时,3a =-和32a =是(*)的根(32a =是重根); 当3-=c 时,32a =和1a =不是(*)的根; 当23=c 时,3a =-和1a =不是(*)的根. 综上所述,1=c .解2 由(1)知,函数()x f 的两个极值为()b f =0,b a a f +=⎪⎭⎫ ⎝⎛-327432,则函数()x f 有三个零点等价于()02743203<⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛-⋅b a b a f f ,从而 30,40,27a a b >⎧⎪⎨-<<⎪⎩或30,40.27a b a <⎧⎪⎨<<-⎪⎩又a c b -=,所以当0>a时,02743>+-c a a 或当0<a 时,02743<+-c a a . 设()c a a a g +-=3274,因为函数()x f 有三个零点时,a 的取值范围恰好是(),3-∞-331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,所以当(),3a ∈-∞-时,()g a (),3a ∈-∞-时,()0<a g ,且当31,2a ⎛⎫∈ ⎪⎝⎭3,2⎛⎫+∞ ⎪⎝⎭时,()min 0g a >,()0g a >均恒成立,从而()013≤-=-c g 且0123≥-=⎪⎭⎫ ⎝⎛c g ,因此1=c . 此时,()a ax x x f -++=123()()[]a x a x x -+-++=1112,因函数有三个零点,则()0112=-+-+a x a x 有两个异于1-的不等实根,所以()()2141a a ∆=---2a =+2a 30->,且()()2111320a a a ---+-=-≠,解得()⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 综上1=c .解3 由解1得函数()f x 有三个不同的零点知0a ≠等价于()34027a c a c a ⎛⎫-+-< ⎪⎝⎭,即43222727270424a ca a ca c --+->,其解集恰为()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 又不等式233102a a a +⋅-⋅->()()(),即4322727270424a a a a --+->的解集也是()⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a ,故不等式43222727270424a ca a ca c --+->与不等式4322727270424a a a a --+->同解,比较系数可得1=c .思路点拨第(1)的①可直接求解,②可转换为恒成立问题;(2)由f (0)=2知0就是g(x )的零点,由条件知这是唯一零点.利用导数判断g(x )的单调性,则需唯一的极小值为0,由此得ab 的值. 满分解答①()122xxf x ⎛⎫=+ ⎪⎝⎭,由01a <<可得1222x x +=,则()222210x x -⨯+=,即()2210x-=,则21x =,0x =.② 由题意得221122622xx x x m ⎛⎫++- ⎪⎝⎭≥恒成立. 令122x x t =+,则由20x>可得2t =≥, 此时226t mt --≥恒成立,即244t m t t t+=+≤恒成立.因为2t ≥时44t t +=≥,当且仅当2t =时等号成立,因此实数ab 的最大值为4.(2)解1 ()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 由01a <<,1b >可得1b a >,令()ln ln xb ah x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b a a x b ⎛⎫=- ⎪⎝⎭时()00h x =,因此,当()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <; 当()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;所以,()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22a x a a >=,0x b >,则()0g x >; 当x >log b 2时,0x a >,log 22b x b b >=,则()0g x >;当1log 2a x <且10x x <时,()10g x >,则()g x 在()10,x x 有零点,当2log 2b x >且20x x >时,()20g x >,则()g x 在()02,x x 有零点,所以()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x ,可得()00g x =,由()00020g a b =+-=,因此00x =.因此ln log 0ln b a a b ⎛⎫-= ⎪⎝⎭,即ln 1ln ab -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.解2 因为函数2)()(-=x f x g 只有1个零点,而022)0()0(00=-+=-=b a f g ,所以0是函数)(x g 的唯一零点.由解1知道()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x . 下证00x =.若00x <,则0002x x <<,于是0()(0)02x g g <=,又log 2log 2log 2(log 2)220a a a a g ab a =+->-=,且函数()g x 在以2x 和log 2a 为端点的闭区间上的图象不间断,所以在2x 和log 2a 之间存在()g x 的零点,记为1x . 因为01a <<,所以log 20a <,又002x <,所以10x <与“0是函数()g x 的唯一零点”矛盾.若00x >,同理可得,在02x 和log 2a 之间存在()g x 的非0的零点,矛盾. 因此,00x =.于是ln 1ln ab-=,故ln ln 0a b +=,所以1ab =.。
专题04 导数与切线(精讲篇)-用思维导图突破导数压轴题
用思维导图突破解导数压轴题引例(2018天津理科第20题)已知函数()x f x a =, ()log a g x x =,其中a >1. (1)求函数()()ln h x f x x a =-的单调区间;(2)若曲线()y f x =在点()()11,x f x 处的切线与曲线()y g x =在点()()22,x g x 处的切线平行,证明()122lnln ln ax g x a+=-; (3)证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线.()h x 函数y =f (x )与y =g(x )图象相切构造函数h (x )=f (x )–根据具体问题,运用分析法确定区间[a,b](区间不唯一)判断在区间[a,b]上的正负,使h(a)h(b)<0满分解答()x h x a xlna=-()-'=x h x a lnalna ()0h x '=()h x '()h x (),0-∞()0,+∞()h x '-()h x ()h x (),0-∞()0,+∞()x f x a lna'=()y f x =()()11,x f x 1x a lna()1g x xlna='()y g x =()()22,x g x 21x lna121x a lna x lna=()1221x x a lna =若函数,有公切线在点处的切线l 2:在点处的切线l 1:令,证明r (x )有零点21220a log x x log lna ++=()12x g x lna+=()y f x =11(,)x x a 111ln ()x x y a a a x x -=⋅-()y g x =22(,log )a x x 2221log ()ln a y x x x x a-=⋅-1ee a ≥()y f x =()y g x =1eea ≥1(,)x ∈-∞+∞2(0,)x ∈+∞1eea ≥1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧=⎪⎪⎨⎪-=-⎪⎩①②()2ln ln 20r e a =--≤12lnln 0a +≤12ln ln 0ln ln ax a x+-≥1ee a ≥1eea ≥()y g x =()r x xy a =log a y x=()1221x x a lna =1111120x x lnlna a x a lna x lna lna-+++=1ea e≥()12xxlnlnau x a xa lna x lna lna=-+++1ea e≥()y u x =()()21xu x lna xa '=-(),0x ∈-∞()0u x '>()0,x ∈+∞()u x '()010u '=>()()212110lna u a lna ⎡⎤=-<⎢⎥⎥'⎢⎣⎦()00u x '=()02010x lna x a -=()u x ()0,x -∞()0,x +∞()u x 0x x =()0u x 1ea e≥()1ln lna ≥-()()000000201212220x x lnlna lnlna lnlna u x a x a lna x x lna lna lna lna x lna +=-+++=++≥≥()0u t<1x a xlna≥+x >()()()1211lnlnau x xlna xlna x lna lna≤+-+++()22121lnlna lna x x lna lna=-++++()0u t<22()(ln )u x a x =-12ln ln 1ln ln a x a a++++11ln a +22(ln )a x -(,t ∈-∞+∞)()0u t <1ea e ≥()1,x ∈-∞+∞()10u x =1ea e≥()y f x =()y g x =1l 2l ln ,01,()ln ,1,x x f x x x -<<⎧=⎨>⎩1P 2P 1l 2l 1l 2l PAB△()0,1(0,2)(0,)+∞(1,)+∞()()111222,,,P x y P x y 1201x x <<<12,l l 12,P P ()1,01'1,1x xf x x x⎧-<<⎪⎪=⎨⎪>⎪⎩,,1l 1k 11x -2l 2k 21l 2l 120x x <<1112111k k x x ⋅=-⋅=-121x x ⋅=1l 1l ()1111ln y x x x x =---2l 2l ()2221ln y x x x x =-+A()10,1ln x -B()20,1ln x -+()12122ln ln 2ln 2AB x x x x =--=-⋅=P1212122ln 2x x x x x x x -==++PAB∆1211112221122PAB x S AB P x x x x ∆=⋅=⨯⨯=≤++111x x =11x =101x <<1PAB S ∆<(1,1)2(2)1y ax a x =+++a =()ln f x x x =+()g x 2ax =(2)1a x +++1()1f x x'=+(1,1)(1)2k f '==:2l y x =1-0a =2(2)1y ax a x =+++0a ≠l()g x ln y x x=+00(,)x y 0000()22221g x ax a y x '=++=⎧⎨=-⎩00122x y ⎧=-⎪⎨⎪=-⎩00()y g x =8a =11y x'=+(1,1)2k =:21l y x =-0a =2(2)1y ax a x =+++0a ≠2(2)121y ax a x y x ⎧=+++⎨=-⎩220ax ax ++=0∆=8a =,a b R ∈1a ≤32()63(4)f x x x a a x b=---+()()x g x e f x =()f x ()yg x =xy e =00()x y ,()f x 0x x =x()xg x e ≤00[1,1]x x -+b解32()63(4)f x x x a a x b =---+2()3123(4)f x x x a a '=---[]3()(4)x a x a =---()0f x '=x a=4x a =-1a ≤4a a<-x ()f x '()f x ()f x ()a -∞,(4)a -+∞,(,4)a a -()(()())xg x e f x f x ''=+0000()()xx g x e g x e ⎧=⎪⎨'=⎪⎩000000()(()())x xx x f x e e e f x f x e ⎧=⎪⎨'+=⎪⎩00()1()0f x f x =⎧⎨'=⎩()f x 0x x =()x g x e ≤[]001,1x x x ∈-+0x e >()1f x ≤0()1f x =0()0f x '=0x ()fx 0x a=1≤14a a +<-()f x (1)a a -,(1)a a +,0x a=()()1f x f a ≤=[]11a a -+,()x g x e ≤[]001,1x x -+()()326341f a a a a a a b =---+=32261b a a =-+11a -≤≤32()261t x x x =-+[]11x ∈-,2()612t x x x'=-()0t x '=2x =0x =(1)7t -=-(1)3t =-(0)1t =()t x [7,1]-b[7,1]-例5 (15·天津文)已知函数().,R x x x x f ∈-=44(1)求()x f 的单调区间;(2)设曲线()x f y =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()x g y =,求证:对于任意的实数x ,都有()()x g x f ≤;(3)若方程()a x f =(a 为实数)有两个实数根,,21x x 且,x x 21<求证:311243-+-≤ax x .解(),x x x f 44-=()344.f x x '=-(),x f 0>'1<x ()x f(),x f 0<'1>x ()x f ()x f (),,1∞-().∞+,1P()0,0x ,x 3104=()0f x '=12.-()x f y =P()()00x x x f y -'=()()()0012(g x f x x x x '=-=-()()(),x g x f x F -=()41612F x x x =--()'3164F x x =-()x F '()+∞∞-,(),x F 00='()00x ,x ∞-∈()0F x '>()∞+∈,00x x (),x F 0<'()x F ()0x ,∞-()∞+,0x x()(),00=≤x F x Fx()12(g x x =-()ax g =2x '212a x '=-1a >()=f x 2(1)x x e a+-)(x f ()()x g x f ≤3()f x '()=f m '2(1)mm e +()=f x '2(1)x x e '+2(1)x ++()x e '⋅2(1)x x e =+0≥1a >(0)10f a =-<()=f a 2(1)a a e a+-210a a >+->(0,)a )(x f )(x f ()=0f x '=1x -(1)=f-2a e -2(1,)P a e--2OP k a e=-()=f m '2(1)m m e +1m ≤3(1)m +≤a e-2(1)m m e a +=3(1)m +≤2(1)m m e +,1mm e +≤()1m g m e m =--()=g m '1m e -()>0g m '>0m ()<0g m '<0m ()g m (,0)-∞(0,)+∞min ()(0)0g m g ==()0g m ≥R1x e m ≥+)(x f (),-∞+∞()yf x Px(,)M m n OP O 123--≤ea m ()f x (),-∞+∞()f x (),-∞+∞(),-∞+∞123--≤ea m11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用思维导图突破导数压轴题专题3 导数与函数零点()f x()f x()f x()f x y h x=()y g x=()求函数f(x)的零点:求导判断f(x)的单调性,适当选取区间,确定端点函数值异号:a=g(x)或h(x)=q(x)判断相应函数单调性、值域,确定零点个数或范围结合具体问题运用分析法和相关性质确定端点(一般不唯一,见例2等)结合图象确定零点范围(见例3、例6),有时还需证明(见例1)()sin (1)f x x ln x =-+()f x '()f x ()f x '(1,)2π-()f x 思路点拨第(1)题:若1()cos 1f x x x'=-+在区间(1,)2π-的极大值点x 0,则在x 0左边,()f x '递增,在x 0右边()f x '递减.这需要考虑()f x ''在x 0左边为正,右边为负,也就是说x 0是()f x '的零点,从而()f x '在0(1,)x -上单调递增;在0(x ,)2π上()f x ''<0,可得()f x '单调递减.第(2)结论等价于方程sinx=ln(1+x)有且仅有两个不等的实数根.在同一坐标系中分别作出图象可知一根为0,另一根介于(2]2π,之间. 从图象可以看出当(1,0)x ∈-和(0,)2π时,sin ln(1)0x x -+>,即()0f x >;当[2,)x ∈+∞,()0f x <.这就需要考虑f ′(x )在(−1,0)、(0,π2]、(π2,2]、(2,+∞)单调性以及端点值的正负.由于x 0位于(0,x 0)和(x 0,π2),还有对这两个区间作相应讨论.第(2)的思维导图:f '(x)-1yxπ2x 02y =ln(1+x )y =sin x-1yx0π2已知f (x )=sin x -ln(1+x )结论:f (x )有且仅有2个零点 sinx=ln(1+x)有两个不等实数根数形结合:一根为0,一根在当和时,f (x )>0;当 x ∈ሾ2,+∞)时,f (x )<0当 x ∈ሾ2,+∞)时, f (x )<0等价转化()f x ()f x a(1)直接进行求导,分类讨论.(2)由(1)知()f x 在上单调递减,在上单调递增, ()f x 有极小值,若()f x 有两个零点,则,且在该点左右两个区间再各找一个点,其函数值大于0即可,当然也可以把函数有两个零点问题转化为另外两个函数图象有两个交点.(1)对函数进行求导可得.①当时,恒成立,故而函数恒递减.②当时,,解得x >ln 1a ,所以函数在上单调递减,在上单调递增. (2)解1 由(1)知,当0a ≤时,()f x 在上单调递减,故()f x 在上至多一个零点,不满足条件;当0a >时,()min 1()ln 1ln f x f a a a=-=-+. 令()11ln (0)g a a a a =-+>,则()2110g a a a'=+>,从而()g a 在()0,+∞上单调递增,而()10g =,故当01a <<时,()0g a <;当1a =时,()0g a =;当1a >时,()0g a >. 当1a >时,()0g a >,此时()0f x >恒成立,从而()f x 无零点,不满足条件. 当1a =时,()0g a =,min 1()1ln 0f x a a=-+=,此时()0f x =仅有一个实根,不满足条件.当01a <<时,()0g a <,()min 1()ln 1ln 0f x f a a a=-=-+<,注意到22ln 0,(1)10a a a f e e e->-=++->,故()f x 在(1,ln )a --上有一个实根. 1,ln a ⎛⎫-∞ ⎪⎝⎭1ln ,a ⎛⎫+∞ ⎪⎝⎭11ln ln 1f a a a ⎛⎫=-+ ⎪⎝⎭()1ln 100a a a-+<>()()()()2'22111xx x x f x aea e ae e =+--=-+0a ≤()()()'110xxf x ae e =-+≤0a >()()()1'110ln xxf x ae e x a=-+>⇒>1,ln a ⎛⎫-∞ ⎪⎝⎭1ln,a ⎛⎫+∞ ⎪⎝⎭R R而 31ln 1ln ln a a a ⎛⎫->=- ⎪⎝⎭,33ln 1ln 133ln(1)e e 2ln 1a a f a a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫-=⋅+--- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()33132ln 1a a a a ⎛⎫⎛⎫=-⋅-+--- ⎪ ⎪⎝⎭⎝⎭331ln 10a a ⎛⎫⎛⎫=---> ⎪ ⎪⎝⎭⎝⎭. 故()f x 在3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,上有一个实根. 又()f x 在上单调减,在(ln ,)a -+∞单调增,故在上至多两个实根. 注 怎么知道要算f (-1)>0、3ln(1)0⎛⎫-> ⎪⎝⎭f a ?事实上,()()[2]=+--x xf x e ae a x ,当x =-1时f (-1)>0;为了再找一点x ,使f (x )>0,因为()()22=+--xx f x aea e x()=[2]+--x x e ae a x ,注意到0->x e x ,所以只要()21+-=x ae a ,解得3ln(1)=-x a.其实,还可以证f (-2)>0,03ln(1)>-x a时,3ln(1)0⎛⎫-> ⎪⎝⎭f a . (2)解2 令()0f x =,即()220xxae a e x +--=,所以有22x x xe xa e e+=+.于是函数()f x 有两个零点,即y a =与()22x x x e xg x e e+=+的图象有两个交点.()g x 的导函数为()()()()2211'1xx xxe e x g x e e ++-=-+,当0x <时,()'0g x >;当0x >时,()'0g x <时,所以()g x 在(),0-∞上单调递增,在()0,+∞上单调递减,且()g x 在0x =处取得最大()01g =.当1a ≥时,y a =与()g x 至多有一个零点,不符合题意;当0a ≤时,由于当0x ≥时,()0g x >,而当0x <时,()g x 是单调递增,所以y a =与()g x 至多有一个交点,不符合题意;当01a <<时,一方面,由于()()20,01g a g a -<<=>,且()g x 在()2,0-上单调递增,所以y a =与()g x 在()2,0-上有且仅有一个交点.()ln a -∞-,()f x R2f x ax=-()e xf x≥x≥()1a=01()f x (0,)+∞a()1f x ≥(0)=1f 0x ≥()(0)f x f ≥'()0f x >'()0f x >()1f x ≥210x e x --≥xe 2(1)10x x e -+-≤2()(1)1x g x x e -=+-()(0)g x g ≤()f x ()f x '()2x f x e ax=-()f x 22()()x f x x e x a -=-2()x h x e x a-=-()f x ()h x (0,)+∞'3(2)()xx e h x x -=()f x 2()1xx f x e ax e -=-()()f x 2xe a x=y a=2()xe G x x=满分解答 解(1)解 1 因为2()x f x e ax =-,所以'()2x f x e x =-,令'()2,()2xxg x e x g x e =-=-,由2=0x e -得ln 2x =.当''[0,ln 2),()0;(ln 2,),()0x g x x g x ∈<∈+∞>,所以()g x 在[0,ln 2)上单调递减,在(ln 2,)+∞上单调递增,所以()(ln 2)220,g x g ln ≥=->因此()f x 在[0,)+∞上递增,所以2()1(0)xf x e x f =-≥=.解2 设函数2()(+1)1xg x x e-=-,则'22()(21)(1)x x g x x x e x e --=--+=--,当1x ≠时,'()0g x <,所以()g x 在[0,)+∞单调递减,从而有()(0)0g x g ≤=,即2(+1)10x x e --≤,整理得,21x e x -≥,故有()1f x ≥.(2)解1因为()f x 在(0,)+∞只有一个零点,由于22()x f x x e x a -=-(),则2()xh x e x a -=-在(0,)+∞只有一个零点,'3(2)()x x e h x x-=,当(0,2)x ∈时,'()0h x <,当(2,)x ∈+∞时,'()0h x >,所以()h x 在(0,2)上递减,在(2,)+∞上递增,所以()h x ≥2(2)4e h a =-.当24e a <时,()h x 在(0,)+∞无零点;当24e a =时,()h x 在(0,)+∞只有一个零点,满足题意;当24e a >时,由(1)可得:()20xg x e x =->,即22()x e h x a a x x=->-,当20a x ->,此时22x a <<时,()0,h x >取1,x a =故()h x 在1(,2)a有一个零点. 由(1)可得当0x >时,2x e x >,有32,3xxe >此时即3222()83()27xx e h x a a x a x x =->-=-,当2728x a >>时,()0,h x >取4,x a =则(4)0h a >,由零点存在定理知()h x 在(2,4)a 有一个零点,此时()f x 在(0,)+∞有两个零点,不合题意.综上所述:24e a =.解2因为()f x 在(0,)+∞只有一个零点,由于2()1x x f x eax e -=-(),令2()1x h x ax e -=-在(0,)+∞只有一个零点,(i )当0a ≤时,()0h x >,()h x 没有零点; (ii )当0a >时,'(2)()xax x h x e-=; 当(0,2)x ∈时,'()0h x <;当(2,)+∞时,'()0h x >.所以()h x 在(0,2)单调递减,在(2,)+∞单调递增.故有24()(2)1a h x h e ≥=-. 当24e a <时,24()10,a h x e ≥->函数无零点,不合题意;当24e a =时,24()10,a h x e ≥-=函数只有一个零点,满足题意;当24e a >时,24()10,a h x e ≥-<由(0)1h =,所以()h x 在(0,2)有一个零点,由(1)得,当0x >时,2,xe x >所以33342241616161(4)11110()(2)a a a a a h a e e a a=-=->-=->,故有()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点. 综上所述,()f x 在(0,+∞)只有一个零点时,24e a =. 解3 由()f x 在(0,)+∞只有一个零点可知方程20x e ax -=在(0,)+∞只有一个根,即2xe a x=在(0,)+∞只有一个根,从而可得函数y a =与 2()x e G x x =的图像在(0,)+∞只有一个交点.'3(2)()x e x G x x-=,当(0,2)x ∈时,'()0G x <,当(2,)x ∈+∞时,'()0,G x >所以()G x 在(0,2)递减,在(2,)+∞递增;当0x →时,()G x →+∞,当x →+∞时,()G x →+∞,所以()f x 在(0,)+∞只有一个零点时,2(2)4e a G ==.),()(23R b a b ax x x f ∈++=)(x f a c b -=c a)(x f a),23()23,1()3,(+∞--∞ c思路点拨满分解答(1)()ax x x f232'+=,令()0'=x f ,解得01=x ,322ax -=. 若0=a ,因()032'≥=x x f ,所以函数()x f 在R 上单调递增. 若0>a,当32a x -<或0>x 时,()0'>x f ; 当032<<-x a 时,()0'<x f ,所以函数()x f 在⎪⎭⎫ ⎝⎛-∞-32,a 和()+∞,0上单调递增,在⎪⎭⎫⎝⎛-0,32a 上单调递减. 若0<a ,当32a x ->或0<x 时,()0'>x f ; 当320a x -<<时,()0'<x f ;所以函数()x f 在()0,∞-和⎪⎭⎫ ⎝⎛+∞-,32a 上单调递增,在⎪⎭⎫⎝⎛-32,0a 上单调递减.(2)解 1 ()a c ax x x f -++=23,()ax x x f232'+=,当322a x -=. 由函数()x f 有三个不同的零点知0≠a且()0320<⎪⎭⎫⎝⎛-⋅a f f ,即()02743<⎪⎪⎭⎫ ⎝⎛-+-a c a a c . 又因为a 的解集是()⎪⎭⎫ ⎝⎛+∞⎪⎭⎫⎝⎛-∞-,2323,13, .因此,可得31-=a ,12=a ,233=a 是()02743=⎪⎪⎭⎫ ⎝⎛-+-a c a a c 的所有根. 因为c a =一定是方程的一个根,若分别令31,,32c =-,则只要检验a 的其余两个值是否满足34027a c a +-=. (*)当1=c 时,3a =-和32a =是(*)的根(32a =是重根); 当3-=c 时,32a =和1a =不是(*)的根; 当23=c 时,3a =-和1a =不是(*)的根. 综上所述,1=c .解2 由(1)知,函数()x f 的两个极值为()b f =0,b a a f +=⎪⎭⎫ ⎝⎛-327432,则函数()x f 有三个零点等价于()02743203<⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛-⋅b a b a f f ,从而 30,40,27a a b >⎧⎪⎨-<<⎪⎩或30,40.27a b a <⎧⎪⎨<<-⎪⎩又a c b -=,所以当0>a 时,02743>+-c a a 或当0<a 时,02743<+-c a a . 设()c a a a g +-=3274,因为函数()x f 有三个零点时,a 的取值范围恰好是(),3-∞-331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,所以当(),3a ∈-∞-时,()g a (),3a ∈-∞-时,()0<a g ,且当31,2a ⎛⎫∈ ⎪⎝⎭3,2⎛⎫+∞ ⎪⎝⎭时,()min 0g a >,()0g a >均恒成立,从而()013≤-=-c g 且0123≥-=⎪⎭⎫ ⎝⎛c g ,因此1=c . 此时,()a ax x x f -++=123()()[]a x a x x -+-++=1112,因函数有三个零点,则()0112=-+-+a x a x 有两个异于1-的不等实根,所以()()2141a a ∆=---2a =+2a 30->,且()()2111320a a a ---+-=-≠,解得()⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 综上1=c .解3 由解1得函数()f x 有三个不同的零点知0a ≠等价于()34027a c a c a ⎛⎫-+-< ⎪⎝⎭,即43222727270424a ca a ca c --+->,其解集恰为()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 又不等式233102a a a +⋅-⋅->()()(),即4322727270424a a a a --+->的解集也是()⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a ,故不等式43222727270424a ca a ca c --+->与不等式4322727270424a a a a --+->同解,比较系数可得1=c .例5(2016年江苏第19题)已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠. ⑴ 设2a =,12b =. ① 求方程()2f x =的根;② 若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值; ⑵ 若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值.思路点拨满分解答① ()122xxf x ⎛⎫=+ ⎪⎝⎭,由01a <<可得1222x x +=,则()222210x x -⨯+=,即()2210x-=,则21x =,0x =.② 由题意得221122622xx x x m ⎛⎫++- ⎪⎝⎭≥恒成立.令122x x t =+,则由20x>可得2t =≥, 此时226t mt --≥恒成立,即244t m t t t+=+≤恒成立.因为2t ≥时44t t +=≥,当且仅当2t =时等号成立,因此实数ab 的最大值为4.(2)解1 ()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 由01a <<,1b >可得1b a >,令()ln ln xb ah x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b aa xb ⎛⎫=-⎪⎝⎭时()00h x =,因此, 当()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <; 当()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;所以,()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22ax a a >=,0x b >,则()0g x >;当x >log b 2时,0x a >,log 22bx b b >=,则()0g x >;当1log 2a x <且10x x <时,()10g x >,则()g x 在()10,x x 有零点,当2log 2b x >且20x x >时,()20g x >,则()g x 在()02,x x 有零点,所以()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x ,可得()00g x =,由()00020g a b =+-=,因此00x =.因此ln log 0ln b a a b ⎛⎫-= ⎪⎝⎭,即ln 1ln ab -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.解2 因为函数2)()(-=x f x g 只有1个零点,而022)0()0(00=-+=-=b a f g , 所以0是函数)(x g 的唯一零点.由解1知道()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x . 下证00x =.若00x <,则0002x x <<,于是0()(0)02x g g <=,又log 2log 2log 2(log 2)220a a a a g ab a =+->-=,且函数()g x 在以2x 和log 2a 为端点的闭区间上的图象不间断,所以在02x 和log 2a 之间存在()g x 的零点,记为1x .因为01a <<,所以log 20a <,又002x <,所以10x <与“0是函数()g x 的唯一零点”矛盾.若00x >,同理可得,在02x 和log 2a 之间存在()g x 的非0的零点,矛盾. 因此,00x =.于是ln 1ln ab-=,故ln ln 0a b +=,所以1ab =.。