数学人教版七年级上册《整式的加减--去括号》
第二章 第5课 整式的加减(去括号)-七年级上册初一数学(人教版)
第二章第5课整式的加减(去括号)-七年级上册初一数学(人教版)一、整式的加减(去括号)概述整式是指由常数、变量及它们的积和商以及乘方构成的代数式。
整式的加减运算是指将两个或多个整式相加或相减的过程。
在进行整式的加减运算时,常常会遇到括号,而去括号是进行整式加减运算的关键步骤之一。
本课将重点讲解如何去括号进行整式的加减运算。
二、去括号的基本方法对于一个被括号包围的整式,去括号就是将括号内的表达式扩展成多项式。
去括号的方法包括:直接扩展法、分配律法则和合并同类项法则。
2.1 直接扩展法直接扩展法就是将括号内的每一项与括号外的每一项相乘。
例如,对于整式(3x+2)(4x−5)进行去括号,按照直接扩展法则,我们将(3x+2)(4x−5)扩展为$3x\\cdot4x + 3x\\cdot(-5) + 2\\cdot4x + 2\\cdot(-5)$。
2.2 分配律法则分配律是指将一个括号内的整式分别与括号外的整式相乘,再将所得的乘积相加。
例如,对于整式3x(4x+2)进行去括号,按照分配律法则,我们将3x(4x+2)分别与4x和2相乘,再将所得的乘积相加,即$3x\\cdot4x + 3x\\cdot2$。
2.3 合并同类项法则合并同类项法则是指将同类项相加或相减,得到的结果仍然是同类项。
同类项是指含有相同的字母和相同的幂的项。
例如,2x和5x是同类项,3x2和4x2是同类项。
三、整式的加减运算步骤整式的加减运算步骤如下:1.去括号:按照去括号的基本方法,对于括号内的整式进行扩展;2.合并同类项:对于得到的多项式,将同类项相加或相减,得到最简形式的整式。
以下是一些具体的例子,展示了整式的加减运算步骤。
3.1 例题1计算(2x+3)(4x−5)。
解答:首先,按照直接扩展法则去括号,得到:$2x\\cdot4x + 2x\\cdot(-5) +3\\cdot4x + 3\\cdot(-5)$。
然后,根据合并同类项法则,将同类项相加,得到最简形式的整式。
2.2.2整式的加减-去括号法则教学设计人教版数学七年级上册
整式的加减去括号法则教学设计一、案例背景七年级数学二章第二节第2课时“整式的加减去括号法则”二、教学设计(一)教学目标(基于学科核心素养的教学目标)1.知识与技能:能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力3.情感态度与价值观:培养学生主动探究、由生活中的实例体会数学来源于生活又高于生活.(二)内容分析1.教材分析:本节课的教学内容《去括号》是中学数学部分的一个基础知识点,是在前面学习了有理数、单项式、多项式、同类项、合并同类项的基础上来学习的,它是整式的化简和整式的加减的基础,为进一步学习下一章一元一次方程等后续数学知识做好准备,同时也是是以后分解因式、解方程(组)与不等式(组)、函数等知识点当中的重要环节之一,对于七年级学生来说接受这个知识点存在一个思维上的转换过程,同时它也是一个难点,因此去括号在初中数学教材中有其特殊地位和重要作用。
2.学生分析:七年级的学生在前面已经学习了有理数的运算、单项式、多项式、整式、合并同类项,而且在小学就学习了乘法分配律并用其进行简便运算,已经积累了一定的学习经验,但是对于七年级的学生用字母表示数以及式的运算还不太熟悉,前面学生已经学习了“字母表示数”的问题,接下来要让学生理解字母可以像数一样进行计算,所以本节课类比数学习式,数的运算性质和运算律在式的运算中仍然成立,让学生通过类比学习充分体会“数式通性”,为学习整式的加减运算打好基础,从而实现数到式的飞跃。
3.教学重点、难点:教学重点:去括号法则,准确应用法则将整式化简.教学难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。
(三)教学策略设计1.教学方法设计:根据七年级学生的思维所呈现出的具体、直观、形象之特点,为突破本节课的难点,我选用“类比——探索——发现”的教学模式。
人教版七年级上册数学教案:2.2整式的加减-去括号
-去括号的基本原则:同号括号相乘得正,异号括号相乘得负。
-去括号的方法:将括号内的每一项分别乘以括号外的系数,并保留符号。
-去括号的应用:解决整式加减问题,简化计算过程。
二、核心素养目标
1.培养学生的逻辑推理能力:通过学习去括号的方法,使学生能够理解和掌握整式加减的基本规则,提高他们在数学问题中的逻辑思维和推理能力。
三、教学难点与重点
1.教学重点
-重点一:去括号法则的理解与运用。使学生理解并掌握去括号的方法,包括同号括号相乘得正,异号括号相乘得负的规律,并能将其应用于整式的加减运算中。
举例:对于表达式3(x - 2y + z) - 2(x + y - z),学生需要能够去掉括号,得到3x - 6y + 3z - 2x - 2y + 2z。
-重点二:整式加减运算的顺序与法则。强调在进行整式加减时,先去括号,然后按照同类项合并的顺序进行运算。
举例:在解决2(x + 3) - 5 + x - (2x - 1)的问题时,学生应先去掉括号,再合并同类项,得到2x + 6 - 5 + x - 2x + 1。
2.教学难点
-难点一:符号的运用。学生在去括号时,容易在正负符号上出错,特别是在多层括号或括号前有负号的情况下。
举例:对于表达式-2(-3x + 4y - z),学生可能会错误地去掉括号后变为-6x + 8y - 2z,而正确的应该是6x - 8y + 2z。
-难点二:括号内项的分配律应用。学生需要理解并正确应用分配律,将括号外的数与括号内的每一项相乘。
举例:在处理5(2x - 3) + 4(3x + 1)的去括号过程中,学生应正确地将5乘以2x和-3,将4乘以3x和1,得到10x - 15 + 12x + 4。
人教版七年级上册数学-第二章 第5课 整式的加减(去括号)
12.已知多项式 A=2x2-3xy,B=-3x2+5xy,化简下列式子:
(1)A-B; (1)2x2-3xy-(-3x2+5xy)
(2)A-2B.
=2x2-3xy+3x2-5xy
=5x2-8xy
(2)2x2-3xy-2(-3x2+5xy) =2x2-3xy+6x2-10xy =8x2-13xy
第3关 18.化简 2a-3b-5a+2(a-7b).
原式=2a-(3b-5a+2a-14b) =2a-3b+5a-2a+14b =5a+11b
19.已知多项式:A=a2-2ab-2b2,B=3a2+ab-3b2,化简下列
各式:
(1)A+B;
(2)A-2B.
(1)a2-2ab-2b2+3a2+ab-3b2
11.(例 4)已知多项式 A=a2-2ab,B=3a2+5ab,化简下列式子:
(1)A+B; (1)a2-2ab+3a2+5ab
(2)A-B.
=(a2+3a2)+(-2ab+5ab)
=4a2+3ab
(2)a2-2ab-(3a2+5ab) =a2-2ab-3a2-5ab =(a2-3a2)+(-2ab-5ab) =-2a2-7ab
三、过关检测
第1关
13.式子 x-2(y-1)去括号,结果为( D )
A.x-2y-1
B.x-2y+1
C.x-2y-2
D.x-2y+2
14.化简 a-b-(a+b)的结果是( C )
A.0
B.2a
C.-2b
D.2a-2b
15.下面去括号的过程正确的是( C ) A.m+2(a-b)=m+2a-b B.3x-2(4y-1)=3x-8y-2 C.(a-b)-(c-d)=a-b-c+d D.-5(x-y-z)=-5x+5y-5z
人教版七年级上数学教案:2.2整式的加减----去括号
时,于是,冻土地段的路程为100t千米,
•非冻土地段的路程为120(t-0.5)千米,因此,
这段铁路全长为
100t+120(t-0.5)千米①
冻土地段与非冻土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都带有括号,它们应如何化简?
思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:
利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:
+120(t-0.5)=+120t-60 ③
-120(t-0.5)=-120+60 ④
比较③、④两式,你能发现去括号时符号变化的规律吗?
思路点拨:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-鼓励学生
通过观
察,试用
自己的语
言叙述去
括号法
则,然后
教师板书
(或用屏
幕)展示:
解答过程
按课本,
可由学生
口述,教
师板书.
老师让
学生上
黑板
全班集中
交流以上
结论,归
纳引出去
括号法
则。
两个学生
上黑板做
题,其他
同学在练
习本上完
成。
人教版七年级数学上册整式的加减(去括号)课件
要点归纳:1.当括号前面有数字因数时,可应用乘法分配律 将这个数字因数乘以括号内的每一项,切勿漏乘.
2.当含有多重括号时,可以由内向外逐层去括号,也可以由 外向内逐层去括号.每去掉一层括号,若有同类项可随时合 并,这样可使下一步运算简化,减少差错.
当堂练习
1.下列去括号中,正确的是( )
A. a2-(2a-1)=a2-2a-1 B. a2+(-2a-3)=a2-2a+3 C. 3a-[5b-ห้องสมุดไป่ตู้2c-1)]=3a-5b+2c-1 D. -(a+b)+(c-d)=-a-b-c+d
切勿漏乘.
(2)2小时后甲船比乙船多航行多少千米?
解:2小时后甲船比乙船多航行(单位:km) 2(50+a)-2(50-a)=100+2a-100+2a=4a.
课堂小结
(1)去括号时要将括号前的符号和括号一起去掉; (2)去括号时第一弄清括号前是“+”还是“-”; (3)去括号时当括号前有数字因数应用乘法分配律,
当堂练习
2.不改变代数式的值,把代数式括号前的“-” 号变成“+”号,a-(b-3c) 结果应是( D )
A. a+(b-3c) B. a+(-b-3c) C. a+(b+3c) D. a+(-b+3c)
3.已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为(B )
A.1
B.5
C.-5 D.-1
解:(1)原式=8a+2b+5a-b =13a+b
(2)原式=(5a-3b)-(3a2-6b) =5a-3b-3a2+6b =-3a2+5a+3b;
人教版七年级数学《整式的加减-去括号应用题》
(2)一个数的十位数是 m-n ,个位数是n-3m,
则这个数可以表示为 170m(m-9-n)+(n-3m)
。
练习1:一个两位数,把它的十位数字和个位数字 颠倒位置后,得到的新两位数与原两位数的和是 11的倍数码?为什么?
练习2:一个两位数,把它的十位数字和个位数字 颠倒位置后,得到的新两位数与原两位数的差是 几的倍数?为什么?
4(a+20) = 4a+80(千米) 逆风飞行3小时的行程为:
3(a-20) = 3a-60(千米) 两个行程相差:
(4a+80)-(3a-60)= 4a+80-3a+60=a+140(千米) 答:飞机顺风4小时飞行(4a+80)千米,逆风4小时
飞行(3a-60)千米,两个行程相差(a+140)千米
例1、一种笔记本的单价是x(元),圆珠笔 的单价是y(元),小红买这种笔记本3本, 买圆珠笔2枝;小明买这种笔记本4个,买圆 珠笔3枝,买这些笔记本和圆珠笔,小红和 小明共花费多少钱?
方法一
方法二:
小红和小明一共花去 (3x+2y)+(4x+3y)
=3x+2y+4x+3y
=7x+5y(元)
小红和小明共花去 (3x+4x)+(2y+3y)
例4、如图,用火柴棒拼成一排由正方形组成 的图形,如果图形中含有n个正方形,需要 多少根火柴棒?
法一:第一个正方形由4根火柴拼成,每增加一个正方形 增加3根,那么搭n个正方形就需要火柴棒 4 3(n 1) 根 法二:第一个正方形可以看成是1根火柴棒加3根火柴棒 搭成的,此后每增加一个正方形就增加3根,搭n个正方形
人教版七年级上册整式的加减--去括号
例3:两船从同一港口同时出发反向而行,甲船 顺水,乙船逆水,两船在静水中的速度都是50千 米/时,水流速度是a千米/时.2小时后两船相距 多远?2小时后甲船比乙船多航行多少千米?
解:2小时后两船相距为: 2(50+a)+2(50-a)=200(千米) 2小时后甲船比乙船多航行的路程为: 2(50+a)-2(50-a)=4a (千米) 答:2小时后两船相距200千米,甲船比乙船多 航行4a千米.
=-x+3
归纳总结:
如果括号外的因数是正数,去括号后原括号内
的各项的符号与原来的符号 相同 ;
如果括号外的因数是负数,去括号后原括号内
的各项的符号与原来的符号 相反 。
顺口溜: 去括号,看符号: 是“+”号,不变号; 是“-”号,全变号; 原来的符号和括号 都扔掉
练一练: 1去括号:
(1) +(3a-4b);
课外作业: 第70页第3题
类比数的运算, 利用分配律,可以去括号,合 并同类项,得:
100u+120(u-0.5) =100u+120u-120×0.5 =100u+120u-60 =220u-60
100u-120(u-0.5) =100u-120u-(-120)×0.5 =100u-120u+60 =-20u+60
请观察式子+120(u-0.5)=+120u-60和 -120(u-0.5)= -120u+60去括号时符号 发生什么变化。
A -2b
B a-2b
C0
D 3a
例2化简下列各式:
(1)8a 2b (5a b) (2)(5a 3b) 3(a2 2b)
人教版七年级数学上册《整式的加减——去括号》教学设计
人教版《义务教育教科书·数学》七年级上册2.2整式的加减-去括号一、内容和内容解析1.内容整式的去括号法则.2.内容解析整式的去括号法则是本小节的主要内容,也是本章的难点,它是整式加减的基础,也是今后学习因式分解、分式运算及解方程的基础.本节课类比数的运算,让学生体会在数的运算中遇到括号时怎样去掉括号,去掉括号的理由是什么.在学生搞清楚数的运算中去括号的算理后,可以让学生归纳得出式子中去括号时符号的变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.合并同类项和去括号的学习将为学习整式加减的运算做好铺垫,使得整式加减运算法则的学习水到渠成.基于以上分析,可以确定本节课的教学重点为:掌握去括号时符号的变化规律.二、目标和目标解析1.目标(1)经历去括号法则的推导过程,体验“数式通性”的数学研究方法.(2)能熟练、准确地应用去括号法则,并能进行整式的化简.2.目标解析达成目标(1)的标志是:使学生明白式子中的字母表示数,数的运算中去括号的方法在式的去括号中仍然成立,由学生归纳得出去括号时符号的变化规律.达成目标(2)的标志是:学生能准确地化简例2中的4道小题,掌握去括号的过程中应对括号内的每一项的符号都予考虑,做到要变都变;要不变都不变;另外,括号内原有几项,去掉括号后仍有几项.三、教学问题诊断分析本节课是“整式的加减”的第三节课.括号中符号的处理是教学的难点,也是学生容易出错的地方.掌握去括号的关键是让学生理解去括号的依据,并进行一定量的训练.学生在进行去括号时,有时不能做到改变括号内每一项的符号;括号前有数字因数,去括号时经常没有把数字因数与括号内的每一项相乘,出现漏乘的现象.基于以上分析,可以确定本节课的教学难点:括号中符号的处理四、教学策略分析本节课是“整式的加减”的第三节课.本节课先通过三个问题引出列出三个等量关系。
2024年秋人教版七年级数学上册 第四章 “整式的加减”《整式的加减(2)去括号》精品课件
去括号时符号变化的规律:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符
号 相同 ;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符
号
相反
.
知识点1 整式的加减
【例1】(人教7上P66例4)化简下列各式:
(1)8a+2b+(5a-b);
解:(1)8a+2b+(5a-b)
=8a+2b+5a-b
解:(1)-x+(2x-2)-(3x+5)
=-x+2x-2-3x-5
=-2x-7.
1
1
2
(2)(2x- +3x)-4(x-x + ).
2
2
2
解:(2)(2x- +3x)-4(x-x + )
=5x- -4x+4x2-2
2
=4x +x- .
5.已知A=3x2-5xy,B=-2x2+3xy,化简A-3B.
=13a+b.
(2)(5a-3b)-3(a2-2b).
解:(2)(5a-3b)-3(a2-2b)
=5a-3b-3a2+6b
=-3a2+5a+3b.
【变式1】(1)12(x-0.5)
=12x-12×0.5
=12x-6.
1
(2)-5(1- x);
5
解:(2)-5(1- x)
=1×(-5)- x·(-5)
=-5+x.
(3)-5a+(3a-2)-(3a-7);
解:(3)-5a+(3a-2)-(3a-7)
=-5a+3a-2-3a+7
=-5a+5.
1
(4) (9y-3)+2(y+1).