八年级数学几何题复习(人教版)
第19章一次函数——几何变换 专项练习 2022—2023学年人教版数学八年级下册
一次函数典型例题——几何变换◆一次函数的基本性质1.已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9的交点在y轴上;(3)k为何值时,图象平行于y=﹣2x的图象;(4)k为何值时,y随x增大而减小.2.已知一次函数y=(3m﹣7)x+m﹣1(1)当m为何值时,函数图象经过原点?(2)若图象不经过三象限,求m的取值范围.(3)不论m取何值,直线恒过一定点P,求定点P坐标.3.已知y=y1+y2,y1与x﹣2成正比例,y2﹣3与x成正比例,当x=1时,y=4;x=2时,y=7.求y与x的函数解析式.◆图形的平移、旋转、对称4.如图,直线y=2x﹣2与x轴、y轴分别相交于点A、点B.(1)求点A、点B的坐标.(2)将直线AB向上平移3个单位得直线l,若C为直线l上一点,且S△AOC=3,求点C的坐标.5.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.6.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点C,在第一象限内将线段CA沿同一直线CG向下翻折得到线段CD,点D与点A对应且CD∥x轴,过点D作DE⊥x轴于E点,与GC交于F点.求点F的坐标.7.如图,一次函数y=(m+1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)则m=,点A的坐标为(,).(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=4OA,求直线BP的解析式;(3)将一次函数y=(m+1)x+4的图象绕点B顺时针旋转45°,求旋转后的对应的函数表达式.8.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.9.直线y=2x+2与x轴,y轴分别交于A,B两点,将直线AB绕点O按逆时针方向旋转90度得到直线CD,(1)求直线CD的解析式;(2)若将直线AB绕原点按顺时针方向旋转90度得到直线EF,求直线EF的解析式.◆交点问题求范围10.在平面直角坐标系xOy中,直线y=2x+4与x轴,y轴分别交于点A,B,将直线AB向右平移6个单位长度,得到直线CD,点A平移后的对应点为点D,点B平移后的对应点为点C.(1)求点C的坐标;(2)求直线CD的表达式;(3)若点B关于原点的对称点为点E,设过点E的直线y=kx+b,与四边形ABCD有公共点,结合函数图象,求k的取值范围.11.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动.(1)若点B的坐标是(1,﹣2),把直线AB向上平移m个单位后,与直线y=2x﹣4的交点在第一象限,求m 的取值范围;(2)当线段AB最短时,求点B的坐标.12.在平面直角坐标系xOy中,点A(﹣1,m)是直线y=﹣x+2上一点,点A向右平移4个单位长度得到点B.(1)求点A,B的坐标;(2)若直线l:y=kx﹣2(k≠0)与线段AB有公共点,结合函数的图象,求k的取值范围.练习1.如图,已知直线l:y=2x+4交x轴于A,交y轴于B.(1)直接写出直线l向右平移2个单位得到的直线l1的解析式;(2)直接写出直线l关于y=﹣x对称的直线l2的解析式;(3)点P在直线l上,若S△OAP=2S△OBP,求P点坐标.2.如图:一次函数y=x+2交y轴于A,交y=3x﹣6于B,y=3x﹣6交x轴于C,直线BC顺时针旋转45°得到直线CD.(1)求点B的坐标;(2)求四边形ABCO的面积;(3)求直线CD的解析式.3.如图,在直角坐标系中放入一个矩形纸片ABCO,BC=10,将纸片翻折后,点B恰好落在x轴上,记为B',折痕为CE,已知OC:OB'=4:3.(1)求点B'的坐标;(2)求折痕CE所在直线的解析式.4.若一次函数y=(6﹣3m)x+(2n﹣4)不经过第三象限,求m、n的取值范围.5.已知直线l1:y=2x+3与x轴、y轴的交点分别为A、B两点,将直线l1向下平移1个长度单位后得到直线l2,直线l2与x轴交于点C,与y轴交于点D,(1)求△AOB的面积;(2)直线l2的表达式;(3)求△CBD的面积.6.如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AB∥x轴,点A的坐标为(5,3),已知直线l:y=x﹣2(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.一次函数典型例题——几何变换(解析)◆一次函数的基本性质1.已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9的交点在y轴上;(3)k为何值时,图象平行于y=﹣2x的图象;(4)k为何值时,y随x增大而减小.【解答】解:(1)∵一次函数y=(k﹣2)x﹣3k2+12的图象经过原点,∴﹣3k2+12=0,∴,∴k=﹣2;(2)∵直线y=﹣2x+9求出此直线与y轴的交点坐标为(0,9),∴﹣3k2+12=9,∴k=1或k=﹣1;(3)∵一次函数的图象平行于y=﹣2x的图象,∴k﹣2=﹣2,∴k=0;(4)∵一次函数为减函数,∴k﹣2<0,∴k<2.2.已知一次函数y=(3m﹣7)x+m﹣1(1)当m为何值时,函数图象经过原点?(2)若图象不经过三象限,求m的取值范围.(3)不论m取何值,直线恒过一定点P,求定点P坐标.【解答】解:(1)∵函数的图象经过原点,∴m﹣1=0,解得:m=1;(2)∵图象不经过三象限,∴3m﹣7<0,m﹣1≥0,解得:1≤m<;(3)∵不论m取何值,直线恒过一定点P,∴当x=﹣时,y=﹣1=,即不论m取何值,直线恒过一定点P,定点P坐标为:(﹣,).3.已知y=y1+y2,y1与x﹣2成正比例,y2﹣3与x成正比例,当x=1时,y=4;x=2时,y=7.求y与x的函数解析式.【解答】解:∵y1与kx﹣2成正比例,y2﹣3与x成正比例,∴y1=k1(x﹣2),y2﹣3=k2x,∴y=k1(x﹣2)+k2x+3,把x=1时,y=4;x=2时,y=7代入上式解得,解得:,则y与x的解析式为y=3x+1.◆图形的平移、旋转、对称4.如图,直线y=2x﹣2与x轴、y轴分别相交于点A、点B.(1)求点A、点B的坐标.(2)将直线AB向上平移3个单位得直线l,若C为直线l上一点,且S△AOC=3,求点C的坐标.【解答】解:(1)当y=0,则2x﹣2=0,解得x=1;当x=0时,y=﹣2,∴点A的坐标为(1,0),点B的坐标为(0,﹣2);(2)将直线AB向上平移3个单位得直线l:y=2x+1,设C的坐标为(m,2m+1),∵S△AOC=3,∴|2m+1|=3,∴2m+1=±6,解得m=或﹣,∴C(,6)或(﹣,﹣6).5.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)令x=0得:y=4,∴B(0,4).∴OB=4,令y=0得:0=﹣x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB==5.(2)∵AC=AB=5,∴OC=OA+AC=3+5=8,∴C(8,0).设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,﹣6).(3)存在,理由如下:∵S△P AB=S△OCD,∴S△P AB=××6×8=12.∵点P在y轴上,S△P AB=12,∴BP•OA=12,即×3BP=12,解得:BP=8,∴P点的坐标为(0,12)或(0,﹣4).6.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点C,在第一象限内将线段CA沿同一直线CG向下翻折得到线段CD,点D与点A对应且CD∥x轴,过点D作DE⊥x轴于E点,与GC交于F点.求点F的坐标.【解答】解:连接AF,直线y=﹣x+4与x轴交于点A,与y轴交于点C,令x=0,则y=4;令y=0,则x=3,∴A(3,0),C(0,4),∴OA=3,OC=4,∴AC==5,∵CD∥x轴,点D、点A关于直线CF对称,∴CD=CA=5.∠DCF=∠ACF=∠FGA,∴∠CAF=∠D=90°设EF=x,则DF=AF,DF=4﹣x,AE=2,∴(4﹣x)2﹣x2=4.解得x=.∴点F坐标为(5,).7.如图,一次函数y=(m+1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)则m=1,点A的坐标为(﹣2,0).(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=4OA,求直线BP的解析式;(3)将一次函数y=(m+1)x+4的图象绕点B顺时针旋转45°,求旋转后的对应的函数表达式.【解答】解:(1)由一次函数y=(m+1)x+4,令x=0,则y=4,∴B(0,4),∴OB=4,∵S△OAB=4,∴×OA×OB=4,解得OA=2,∴A(﹣2,0),把点A(﹣2,0)代入y=(m+1)x+4,得m=1,故答案为:1;﹣2,0;(2)∵OP=4OA,OA=2,∴P(8,0),设直线BP的解析式为y=kx+b,将(8,0),(0,4)代入得,解得k=﹣,b=4,∴直线BP的解析式为y=﹣x+4;(3)设直线AB绕点B顺时针旋转45°得到直线BE,如图,过点A作AF⊥AB交BE于点F,作FH⊥x轴于H.则∠AHF=∠BOA=90°,AF=BA,∠F AH=∠ABO,∴△AOB≌△FHA(AAS),∴FH=AO=2,AH=BO=4,∴HO=6,∴F(﹣6,2),设直线BE的解析式为y=mx+n,则把点F和点B的坐标代入,可得,解得,∴直线BE的解析式为y=x+4.8.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=1;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.【解答】解:(1)∵一次函数y=2x+b的图象经过点M(1,3),∴3=2+b,解得b=1,(2)∵一次函数y=2x+1的图象与x轴,y轴分别交于A,B两点.∴A(﹣,0),B(0,1),∴OA=,OB=1,作CD⊥y轴于D,∵∠BAC=45°,BC⊥AB,∴∠ACB=45°,∴AB=BC,∵∠ABO+∠BAO=90°=∠ABO+∠CBD,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴BD=OA=,CD=OB=1,∴OD=OB﹣BD=,∴C(1,),设直线l的解析式为y=mx+n,把A(﹣,0),C(1,)代入得,解得,∴直线l的解析式为y=x+.9.直线y=2x+2与x轴,y轴分别交于A,B两点,将直线AB绕点O按逆时针方向旋转90度得到直线CD,(1)求直线CD的解析式;(2)若将直线AB绕原点按顺时针方向旋转90度得到直线EF,求直线EF的解析式.【解答】解:∵直线y=2x+2与x轴,y轴分别交于A,B两点,当x=0时,y=2;当y=0时,x=﹣1;∴A(﹣1,0),B(0,2).(1)∵直线AB绕点O按逆时针方向旋转90度得到直线CD,∴直线CD与x轴,y轴的交点坐标(﹣2,0),(0,﹣1),设直线CD的解析式是y=k1x+b1,则,解得.故直线CD的解析式是y=﹣x﹣1;(2)∵将直线AB绕原点按顺时针方向旋转90度得到直线EF,∴直线EF与x轴,y轴的交点坐标(2,0),(0,1),设直线EF的解析式是y=k2x+b2,则,解得.故直线EF的解析式是y=﹣x+1.◆交点问题求范围10.在平面直角坐标系xOy中,直线y=2x+4与x轴,y轴分别交于点A,B,将直线AB向右平移6个单位长度,得到直线CD,点A平移后的对应点为点D,点B平移后的对应点为点C.(1)求点C的坐标;(2)求直线CD的表达式;(3)若点B关于原点的对称点为点E,设过点E的直线y=kx+b,与四边形ABCD有公共点,结合函数图象,求k的取值范围.【解答】解:(1)直线y=2x+4与x轴,y轴分别交于点A,B,令x=0,则y=4,令y=0,则x=﹣2,∴B(0,4),A(﹣2,0),将直线AB向右平移6个单位长度,点B平移后的对应点为点C为(6,4);(2)∵A(﹣2,0),∴D(4,0),解得:k=2,b=﹣8,∴直线CD的表达式为y=2x﹣8.把C(6,4),D(4,0)代入y=kx+b中得,(3)∵点B(0,4)关于原点的对称点为点E(0,﹣4),∴设过点E的直线y=kx﹣4,把D(4,0)代入y=kx﹣4中得4k﹣4=0,∴k=1,把A(﹣2,0)代入y=kx﹣4中,∴k=﹣2∴k≥1或k≤﹣2.11.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动.(1)若点B的坐标是(1,﹣2),把直线AB向上平移m个单位后,与直线y=2x﹣4的交点在第一象限,求m 的取值范围;(2)当线段AB最短时,求点B的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b.∵点A的坐标为(﹣1,0),点B的坐标是(1,﹣2),∴,解得,∴直线AB的解析式为y=﹣x﹣1,把直线AB向上平移m个单位后得y=﹣x+m﹣1.由,解得,即交点为(,).由题意,得,解得m>3;(2)AB最短时有AB⊥CD,设此时直线AB的解析式为y=﹣x+n,将A(﹣1,0)代入,得0=﹣×(﹣1)+n,解得n=﹣.即直线AB的解析式为y=﹣x﹣.由,解得,所以B点坐标为(,﹣).12.在平面直角坐标系xOy中,点A(﹣1,m)是直线y=﹣x+2上一点,点A向右平移4个单位长度得到点B.(1)求点A,B的坐标;(2)若直线l:y=kx﹣2(k≠0)与线段AB有公共点,结合函数的图象,求k的取值范围.【解答】解:(1)∵点A(﹣1,m)是直线y=﹣x+2上一点,∴m=1+2=3.∴点A的坐标为(﹣1,3).∴点(﹣1,3)向右平移4个单位长度得到点B的坐标为(3,3).(2)当直线l:y=kx﹣2过点A(﹣1,3)时,得3=﹣k﹣2,解得k=﹣5.当直线l:y=kx﹣2过点B(3,3)时,得3=3k﹣2,解得k=.如图,若直线l:y=kx﹣2(k≠0)与线段AB有公共点,则b的取值范围是k≤﹣5或k≥.练习1.如图,已知直线l:y=2x+4交x轴于A,交y轴于B.(1)直接写出直线l向右平移2个单位得到的直线l1的解析式y=2x;(2)直接写出直线l关于y=﹣x对称的直线l2的解析式y=x+2;(3)点P在直线l上,若S△OAP=2S△OBP,求P点坐标.【解答】解:(1)直线l:y=2x+4向右平移2个单位得到的直线l2的解析式为:y=2(x﹣2)+4,即y=2x,(2)∵(0,4),(﹣2,0)在直线ly=2x+4上,这两点关于y=﹣x的对称点为(﹣4,0),(0,2),设直线l1的解析式为y=kx+b,∴,解得,∴直线l1的解析式为:y=x+2,故答案为y=x+2;(3)∵直线l:y=2x+4交x轴于A,交y轴于B.∴A(﹣2,0),B(0,4),∴OA=2,OB=4,设P的坐标为(x,2x+4),∵S△OAP=2S△OBP,∴OA•|2x+4|=2×OB•|x|,即|2x+4|=4|x|,解得x=﹣或2,∴P(﹣,)或(2,8).2.如图:一次函数y=x+2交y轴于A,交y=3x﹣6于B,y=3x﹣6交x轴于C,直线BC顺时针旋转45°得到直线CD.(1)求点B的坐标;(2)求四边形ABCO的面积;(3)求直线CD的解析式.【解答】解:(1)由,解得,∴B(3,3).(2)由题意A(0,2),C(2,0),∴S四边形ABCO=S△OCB+S△AOB=×2×3+×2×3=6.(3)如图,将线段BC绕点B逆时针旋转90得到C′.∵△BCC′是等腰直角三角形,∠BCD=45°,∴点C′在直线CD上,∵B(3,3),C(2,0),∴C′(6,2),设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x﹣1.3.如图,在直角坐标系中放入一个矩形纸片ABCO,BC=10,将纸片翻折后,点B恰好落在x轴上,记为B',折痕为CE,已知OC:OB'=4:3.(1)求点B'的坐标;(2)求折痕CE所在直线的解析式.【解答】解:(1)∵四边形OABC是矩形,∴∠AOC=90°,∵OC:OB'=4:3,∴B′C:OB′=5:3,∵B′C=BC=10,∴OB′=6,∴B′点的坐标为:(6,0);(2)将纸片翻折后,点B恰好落在x轴上的B′点,CE为折痕,∴△CBE≌△CB′E,故BE=B′E,CB′=CB=OA,由OB′=6,OC:OB'=4:3,∴OC=8,设AE=a,则EB′=EB=8﹣a,AB′=AO﹣OB′=10﹣6=4,由勾股定理,得a2+42=(8﹣a)2,解得a=3,∴点E的坐标为(10,3),点C的坐标为(0,8),设直线CE的解析式为y=kx+b,根据题意,得,解得,∴CE所在直线的解析式为y=﹣x+8.4.若一次函数y=(6﹣3m)x+(2n﹣4)不经过第三象限,求m、n的取值范围.【解答】解:∵y=(6﹣3m)x+(2n﹣4)不经过第三象限,∴6﹣3m<0,2n﹣4≥0,故m>2,n≥2.5.已知直线l1:y=2x+3与x轴、y轴的交点分别为A、B两点,将直线l1向下平移1个长度单位后得到直线l2,直线l2与x轴交于点C,与y轴交于点D,(1)求△AOB的面积;(2)直线l2的表达式;(3)求△CBD的面积.【解答】解:(1)在y=2x+3中,令x=0,得y=3;令y=0,得x=,所以A、B的坐标分别为:A(,0),B(0,3),∴S△ABC=×|3|×=;(2)把l1:y=2x+3向下平移1个长度单位后得l2:y=2x+2;(3)直线l2:y=2x+2与x轴、y轴的交点C、D的坐标分别为:C(﹣1,0)、D(0,2),∴S△CBD=×|1|×|3﹣2|=.216.如图,在平面直角坐标系中,边长为2的正方形ABCD 在第一象限内,AB ∥x 轴,点A 的坐标为(5,3),已知直线l :y =x ﹣2(1)将直线l 向上平移m 个单位,使平移后的直线恰好经过点A ,求m 的值(2)在(1)的条件下,平移后的直线与正方形的边长BC 交于点E ,求△ABE 的面积.【解答】解:(1)设平移后的直线方程为y =x +b ,把点A 的坐标为(5,3)代入,得3=×5+b ,解得 b =.则平移后的直线方程为:y =x +.则﹣2+m =,解得 m =;(2)∵正方形ABCD 的边长为2,且点A 的坐标为(5,3),∴B (3,3).把x =3代入y =x +,得y =×3+=2,即E (3,2).∴BE =3﹣2=1,∴△ABE 的面积=×2×1=1.22。
人教版八年级数学下册期末复习专题在直角坐标系中求几何图形的面积(含详解)
人教版八年级数学下册期末复习专题训练——在直角坐标系中求几何图形的面积1.如图,四边形OABC是矩形,点A,C在坐标轴上,△ODE是由△OCB绕点O顺时针旋转90∘得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC =2,OC=4(1)求直线BD的解析式.(2)求△OFH的面积.2.直线a:y=x+2和直线b:y=﹣x+4相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E.(1)在同一坐标系中画出函数图象;(2)求△ABC的面积;(3)求四边形ADOC的面积;(4)观察图象直接写出不等式x+2≤﹣x+4的解集和不等式﹣x+4≤0的解集.3.如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的面积是△AOB面积的,求y=kx+b的解析式.4.如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这10个正方形分成面积相等的两部分,求该直线l的解析式5.如图1,直线3y分别与y轴、x轴交于点A、点B,点C的坐标为(-3,0),D为直线AB -=x3+3上一动点,连接CD交y轴于点E(1) 点B的坐标为__________,不等式+3>-x的解集为___________33(2) 若S△COE=S△ADE,求点D的坐标(3) 如图2,以CD为边作菱形CDFG,且∠CDF=60°.当点D运动时,点G在一条定直线上运动,请求出这条定直线的解析式.6.在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,求线段BC扫过的面积8.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x 轴于点E,PF⊥y轴于点F,连接EF,若△PAO 的面积为S ,求S 关于m 的函数关系式,并写出m 的取值范围;9. 如图,已知直线343+=x y 与坐标轴交于B,C 两点,点A 是x 轴正半轴上一点,并且15=∆ABC S .点F 是线段AB 上一动点(不与端点重合),过点F 作FE ∥x 轴,交BC 于E.(1) 求AB 所在直线的解析式;(2) 若FD ⊥x 轴于D,且点D 的坐标为)0,(m ,请用含m 的代数式,表示DF 与EF 的长;(3) 在x 轴上是否存在一点P,使得△PEF 为等腰直角三角形,若存在,请直接写出点P 的坐标,若不存在,请说明理由.10.如图,在平面直角坐标系xOy 中,直线y=﹣2x +a 与y 轴交于点C (0,6),与x 轴交于点B . (1)求这条直线的解析式;(2)直线AD 与(1)中所求的直线相交于点D (﹣1,n ),点A 的坐标为(﹣3,0).①求n 的值及直线AD 的解析式; ②求△ABD 的面积;③点M 是直线y=﹣2x+a 上的一点(不与点B 重合),且点M 的横坐标为m ,求△ABM 的面积S 与m 之间的关系式.11.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x 轴、y 轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.12.如图,边长为5的正方形OABC的顶点0在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是0A边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)求证:CE=EP;(2)若点E的坐标为(3,O),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标:若不存在,说明理由.13.已知一次函数的图象经过(1,1)和(﹣1,﹣5).(1)求这个一次函数的表达式;(2)求这个一次函数的图象与x轴、y轴的交点坐标,并求出该图象与两坐标轴围成的三角形的面积.14.直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上一点C在第一象限且点C的坐标为(2,2),求△BOC的面积.15.在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积等于____________;(2)直线y=kx+4(k≠0)与x轴交于点E(x0,0),若-2<x0<-1,求k的取值范围.16.如图,己知直线l:y=x+1(k≠0)的图象与x轴、y轴交于A、B两点.(1)直接写出A、B两点的坐标;(2)若P是x轴上的一个动点,求出当△PAB是等腰三角形时P的坐标;(3)在y轴上有点C(0,3),点D在直线l上.若△ACD面积等于4.请直接写出D的坐标.17.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?18.已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;答案:1. (1) OC=4,BC=2,B(-2,4)∵OD =OC =4,∴D (4,0).设 BD 解析式为 y =kx +b (k ≠0), ∴{−2k +b =4,4k +b =0 ∴{k =−23,b =83.∴y =−23x +83. (2) ∵DE =2, ∴E (4,2). ∴ 直线 OE:y =12x ,∴{y =−23x +83,y =12x, ∴{x =167,y =87, ∴H (167,87).当 x =0,y =83, ∴F (0,83), ∴S △OFH =12×83×167=6421. 2.(1)依照题意画出图形,如图所示.(2)令y=x +2中y=0,则x +2=0,解得:x=﹣2,∴点B (﹣2,0);令y=﹣x +4中y=0,则﹣x +4=0,解得:x=4,∴点C (4,0);联立两直线解析式得:,解得:,∴点A (1,3).S △ABC =BC•y A =×[4﹣(﹣2)]×3=9.(3)令y=x +2中x=0,则y=2,∴点D (0,2).S 四边形ADOC =S △ABC ﹣S △DBO =9﹣×2×2=7.(4)观察函数图形,发现:当x <1时,直线a 在直线b 的下方,∴不等式x +2≤﹣x +4的解集为x ≤1;当x >4时,直线b 在x 轴的下方,∴不等式﹣x +4≤0的解集为x ≥4.3.(1)∵一次函数y=kx +b 与y=﹣2x +4是“平行一次函数”,∴k=﹣2,即y=﹣2x +b . ∵函数y=kx +b 的图象过点(3,1),∴1=﹣2×3+b ,∴b=7.(2)在y=﹣2x +4中,令x=0,得y=4,令y=0,得x=2,∴A (2,0),B (0,4),∴S △AOB =OA•OB=4.由(1)知k=﹣2,则直线y=﹣2x +b 与两坐标轴交点的坐标为(,0),(0,b ),于是有|b |•||=4×=1,∴b=±2,即y=kx +b 的解析式为y=﹣2x +2或y=﹣2x ﹣2.4.设直线l 和10个正方形的最上面交点为A ,过A 作AB ⊥OB 于B ,过A 作AC ⊥OC 于C , ∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l 将这10个正方形分成面积相等的两部分,∴两边分别是5,∴三角形ABO 面积是7,∴OB•AB=7,∴AB=,∴OC=AB=,由此可知直线l 经过(,3),设直线方程为y=kx (k ≠0),则3=k ,解得k=∴直线l 解析式为y=x .故答案为:y=x .5.(1) (3,0)、x <3(2) ∵S △COE =S △ADE ∴S △AOB =S △CBD 即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF ∵∠CDF =60°∴△CDF 为等边三角形连接AC ∵AB =AC =BC =6∴△ABC 为等边三角形∴△CAF ≌△CBD (SAS )∴∠CAF =∠ACB =60°∴AF ∥x 轴设D (m ,333+-m )过点D 作DH ⊥x 轴于H ∴BH =3-m ,DB =6-2m =AF∴F (2m -6,33)由平移可知:G (m -9,m 3-)令⎪⎩⎪⎨⎧-=-=m y m x 39∴点G 在直线393--=x y 上6. (1)设直线的解析式为y=kx +b ,把A (﹣1,5),B (3,﹣3)代入,可得:{533=+--=+b k b k ,解得:,所以直线解析式为:y=﹣2x +3,把P (﹣2,a )代入y=﹣2x +3中,得:a=7;(2)由(1)得点P 的坐标为(﹣2,7),令x=0,则y=3,所以直线与y 轴的交点坐标为(0,3),所以△OPD 的面积=.7.∵点A 、B 的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10, ∴CA==8,∴C 点纵坐标为:8,∵将△ABC 沿x 轴向右平移,当点C 落在直线y=x ﹣5上时,∴y=8时,8=x ﹣5,解得:x=13,即A 点向右平移13﹣2=11个单位, ∴线段BC 扫过的面积为:11×8=88.故选:B .8.(1)令x=0,则y=8,∴B (0,8),令y=0,则﹣2x +8=0,∴x=4,∴A (4,0), (2)∵点P (m ,n )为线段AB 上的一个动点,∴﹣2m +8=n ,∵A (4,0),∴OA=4,∴0<m <4∴S △PAO =OA ×PE=×4×n=2(﹣2m +8)=﹣4m +16,(0<m <4) )3,0(30343)1(,9B y x x y 即时,中,当在==+= ∴OB=3同理OC=4 ∵15)(21=⋅+OB OA OC ,153)4(21=⨯+⨯OA ∴OA=6 即点A 的坐标为(6,0) 设AB 所在直线的解析式为y=kx+b⎩⎨⎧⎩⎨⎧=+=-==213063k b b k b 解得则∴AB 所在直线的解析式为 (2)在中,当,即DF= 在中,当mx m y 32,321-=+-=时mm m EF 35)32(=--= (3)10.(1)∵直线y=﹣2x +a 与y 轴交于点C (0,6),∴a=6,∴该直线解析式为y=﹣2x +6 (2)①∵点D (﹣1,n )在直线BC 上,∴n=﹣2×(﹣1)+6=8,∴点D (﹣1,8) 设直线AD 的解析式为y=kx +b ,将点A (﹣3,0)、D (﹣1,8)代入y=kx +b 中, 得:,解得:,∴直线AD 的解析式为y=4x +12.②令y=﹣2x +6中y=0,则﹣2x +6=0,解得:x=3,∴点B (3,0).∵A(﹣3,0)、D (﹣1,8),∴AB=6.S △ABD =AB•y D =×6×8=24.③∵点M 在直线y=-2x+6上,∴M (m ,-2m+6),当m <3时,S=16(26)2m ⨯⨯-+即618S m =-+;当m >3时,即S=6m -18.11. (1)设函数解析式为y=kx +b ,由题意将两点代入得:{15=+-=+-b k b k ,解得:{32=-=k b .∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=32,令x=0,得y=﹣2, 3232221=⨯⨯=∴s 12.(1)在OC 上截取OK =OE .连接EK .∵OC =OA ,∠1=90°,∠OEK =∠OKE =45°,∵AP 为矩形外角平分线,∴∠BAP =45°∴∠EKC =∠PAE =135°.∴CK =EA .∵EC ⊥EP ,∴∠3=∠4.∴△EKC ≌△PAE . ∴EC =EP (2)y 轴上存在点M ,使得四边形BMEP 是平行四边形.如图,过点B 作BM ∥PE 交y 轴于点M ,∴∠5=∠CEP =90°,∴∠6=∠ 4.在△BCM 和△COE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,,46COE BCM OC BC ∴△BCM ≌△COE ,∴BM =CE 而CE =EP ,∴BM =EP .由于BM ∥EP ,∴四边形BMEP 是平行四边形由△BCM ≌△COE可得CM =OE =3,∴OM =CO -CM =2.故点M 的坐标为(0,2).13.(1)设函数解析式为y=kx +b ,由题意将两点代入得:,解得:.∴一次函数的解析式为:y=3x ﹣2;(2)令y=0,得x=,令x=0,得y=﹣2,∴S=×2×=.14.(1)设直线AB 的解析式为y =kx +b(k ≠0).将A(1,0),B(0,-2)代入解析式,得⎩⎪⎨⎪⎧k +b =0,b =-2.解得⎩⎪⎨⎪⎧k =2,b =-2.∴直线AB 的解析式为y =2x -2.(2)S △BOC =12×2×2=2.15.(1)32 当x =-1时,y =-2×(-1)+1=3,∴B(-1,3).将B(-1,3)代入y =kx +4,得k =1.(2)y =kx +4与x 轴的交点为(-4k ,0),∵-2<x 0<-1,∴-2<-4k <-1,(1) 解得2<k <4.16.(1)当y=0时,x+1=0,解得x=﹣2,则A (﹣2,0),当x=0时,y=x+1=1,则B (0,1);(2)AB==,当AP=AB 时,P 点坐标为(﹣,0)或(,0);当BP=BA时,P点坐标为(2,0);当PA=PB时,作AB的垂直平分线交x轴于P,连结PB,如图1,则PA=PB,设P(t,0),则OA=t+2,OB=t+2,在Rt△OBP中,12+t2=(t+2)2,解得t=﹣,此时P 点坐标为(﹣,0);(3)如图2,设D(x,x+1),当x>0时,∵S△ABC+S△BCD=S△ACD,∴•2•2+•2•x=4,解得x=2,此时D点坐标为(2,2);当x<0时,∵S△BCD﹣S△ABC=S△ACD,∴•2•(﹣x)﹣•2•2=4,解得x=﹣6,此时D点坐标为(﹣6,﹣2),综上所述,D点坐标为(2,2)或(﹣6,﹣2).故答案为(﹣2,0),(0,1);(2,2)或(﹣6,﹣2).17.略18.(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4)。
人教版八年级数学上册几何证明习题集
C八年级上册几何证明题题集1、 已知:在⊿ABC 中,AB=AC ,延长AB 到D ,使AB=BD ,E 是AB 的中点。
求证:CD=2CE 。
2、 已知:在⊿ABC 中,作∠FBC=∠ECB=21∠A 。
求证:BE=CF 。
B3、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
CB4、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。
ABB DCA B C DE P 图 ⑴5、如图甲,Rt ∆ABC 中,AB=AC ,点D 、E 是线段AC 上两动点,且AD=EC ,AM ⊥BD ,垂足为M ,AM 的延长线交BC 于点N ,直线BD 与直线NE 相交于点F 。
(1)试判断∆DEF 的形状,并加以证明。
(2)如图乙,若点D 、E 是直线AC 上两动点,其他条件不变,试判断∆DEF 的形状,并加以证明。
6、已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。
7、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .①②③图88、△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点,就下面给出的三种情况,如图8中的①②③,先用量角器分别测量∠BQM的大小,然后猜测∠BQM等于多少度.并利用图③证明你的结论.9、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明);(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
人教版八年级上册数学期末复习——几何部分(含答案)
八年级上册期末复习——几何部份第十二章全等三角形知识点1:全等三角形的判定1.根据下列条件,能唯一画出△ABC的是()A、AB=3 ,BC=4,AC=8;B、AB=4,BC=3,∠A=30°;C、∠C=60°,∠B=45°,AB=4;D、∠C=90°,AB=6。
2.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.3.点C是线段AB的中点,CE=CD, ∠ACD=∠BCE,求证:AE=BD4.如图,已知正方形ABCD和等腰直角三角形△ECF,试说明BE=DF。
5.如图,∠1=∠2,∠3=∠4,求证:AC=AD.6.如图EA⊥AD于A,FD ⊥ AD于D,且AE=DF,AB=DC.求证:CE=BF.7.点E,C在线段BF上,BE=CF,∠A=∠D,∠ACB=∠F.求证:AB∥DE8.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.9.如图,△ABC中,∠ABC=45°,AD⊥BC于D,点E在AD上,且DE=CD,求证:BE=AC.知识点2:角平分线的性质1.如图,点P在∠BAC的角平分线上,PD⊥AB,PE⊥AC,垂足分别为D、E,则△APD与△APE全等的理由是()A.SAS B.AAS C.SSS D.HL2.在公园里有三条互相交织的小路,如图,现在公园的管理人员向在这三条小路所围成的三角形区域内建一小亭供人们休息,且小亭中心到三条小路的距离相等,假如你是公园的管理人员,请试确定小亭的中心位置()A.在△ABC三条中线的交点B.在△ABC三条角平分线的交点C.在△ABC三条高线的交点D.在△ABC三边垂直平分线的交点3.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.1B.2C.D.44.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.5.如图△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,给出下列结论:①DC=DE;②DA平分∠CDE;③DE平分∠ADB;④BE+AC=AB;⑤∠BAC=∠BDE.其中正确的是(写序号)6.已知AB=AC,AE平分∠DAC,那么AE∥BC吗?为什么?7.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.第十三章轴对称知识点1: 线段的垂直平分线的性质1.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点2.如图,AP=BP,AQ=BQ,下列结论正确的是()A.AB垂直平分PQB.PQ垂直平分ABC.AB与PQ互相垂直平分D.AB平分∠PAQ1.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=°.2.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为.3.如图,点D、E在△ABC的边BC上,BD=CE,AB=AC,求证:AD=AE.4.如图,AP平分∠BAC,∠AEP=∠AFP,O是AP上异于点P的任意点.求证:OE=OF.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.5.如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.1.已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1B.1C.2D.32.在平面直角坐标系中,点(4,﹣5)关于x轴对称点的坐标为()A.(4,5)B.(﹣4,﹣5)C.(﹣4,5)D.(5,4)3.点A(﹣3,2)关于x轴的对称点A′的坐标为.4.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出点A1B1C1的坐标(直接写答案).A1B1C1(3)△ABC的面积为.1.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.2.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.3.如图,△ABC中,∠C=Rt∠90,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?知识点4: 等边三角形5.已知:如图,在△ABC中,AB=AC,∠BAC=120°,点D、E在BC上,AD⊥AB,AE⊥AC.求证:△AED是等边三角形.6.如图,△ABC、△ADE是等边三角形,B、C、D在同一直线上.求证:(1)CE=AC+DC;(2)∠ECD=60°.7.已知:等边三角形ABC(1)如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD.知识点5: 最短路径问题1.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC2.著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地,但途中要到水边喂马喝一次水,则将军怎样走最近?知识点6: 尺规作图1.作图题:(不写作法,但必须保留作图痕迹)如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.2.如图,A,B,C是新建的三个居民小区.我们要在到三个小区距离相等的地方修建一所学校,试确定学校的位置.3.已知直线l及其两侧两点A、B,如图.(1)在直线l上求一点P,使PA=PB;(2)在直线l上求一点Q,使l平分∠AQB.(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)答案1. C2.AE=CE3.略4.略5.证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.6.略7.略8.证明:∵∠A=∠D=90°,AC=BD,BC=BC,∴Rt△BAC≌Rt△CDB(HL)∴∠ACB=∠DBC.∴∠OCB=∠OBC.∴OB=OC(等角对等边).9.证明:∵∠ABC=45°,AD⊥BC,∴AD=BD,∠BDE=∠ADC=90°.又∵DE=CD,∴△BDE≌△ADC.∴BE=AC.知识点2:角平分线的性质1B 2B 3B 4 4.5.①②④⑤6.解:AE∥BC.∵AB=AC,∴∠B=∠C,由三角形的外角性质得,∠DAC=∠B+∠C=2∠B,∵AE平分∠DAC,∴∠DAC=2∠DAE,∴∠B=∠DAE,∴AE∥BC.7.解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.第十三章轴对称知识点1: 线段的垂直平分线的性质1.D2. B1. 87°2.223.证明:∵∠ADE=∠AED,∴∠ADB=∠AEC,在△ABD和△ACE中,BD=CE∠ADB=∠AECAD=AE∴△ABD≌△ACE(SAS),∴AB=AC.4.无证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).5.(1)证明:∵∠A=∠ABE,∴EA=EB,∵AD=DB,∴DF是线段AB的垂直平分线;(2)解:∵∠A=46°,∴∠ABE=∠A=46°,∵AB=AC,∴∠ABC=∠ACB=67°,∴∠EBC=∠ABC﹣∠ABE=21°,∠F=90°﹣∠ABC=23°.知识点2: 画轴对称图形1B2.A3.(-3,-2)4.解:(1)如图所示:△A1B1C1,即为所求;(2)A1(﹣1,2),B1(﹣3,1)C1(2,﹣1);故答案为:(﹣1,2),(﹣3,1),(2,﹣1);(3)△ABC的面积为:3×5﹣×2×1﹣×3×3﹣2×5=4.5.故答案为:4.5.知识点3: 等腰三角形1.证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.2.证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.3.解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.4.解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(2)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,(2)中结论不成立,则有DE﹣DF=CG,说明方法同上.知识点4: 等边三角形5证明:∵在△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD⊥AB,AE⊥AC,∴∠BAD=∠B=30°,∠C=∠CAE=30°,∴∠ADE=∠B+∠BAE=60°,∠AED=∠C+∠CAD=60°,∴AD=AE,∴△ADE是等边三角形.6.证明:(1)∵△ABC、△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠DAE+∠CAD,即:∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=EC,∵BD=BC+CD=AC+CD,∴CE=BD=AC+CD;(2)由(1)知:△BAD≌△CAE,∴∠ACE=∠ABD=60°,∴∠ECD=180°﹣∠ACB﹣∠ACE=60°,∴∠ECD=60°.7..(1)证明:延长BP至E,使PE=PC,连接CE,∵∠BPC=120°,∴∠CPE=60°,又PE=PC,∴△CPE为等边三角形,∴CP=PE=CE,∠PCE=60°,∵△ABC为等边三角形,∴AC=BC,∠BCA=60°,∴∠ACB=∠PCE,∴∠ACB+∠BCP=∠PCE+∠BCP,即:∠ACP=∠BCE,∴△ACP≌△BCE(SAS),∴AP=BE,∵BE=BP+PE,∴AP=BP+PC.(2)证明:在AD外侧作等边△AB′D,则点P在三角形ADB′外,连接PB',B'C,∵∠APD=120°∴由(1)得PB′=AP+PD,在△PB′C中,有PB′+PC>CB′,∴PA+PD+PC>CB′,∵△AB′D、△ABC是等边三角形,∴AC=AB,AB′=AD,∠BAC=∠DAB′=60°,∴∠BAC+∠CAD=∠DAB′+∠CAD,即:∠BAD=∠CAB′,∴△AB′C≌△ADB,∴CB′=BD,∴PA+PD+PC>BD.知识点5: 最短路径问题1.B2.解:作B点与河面的对称点B′,连接AB′,可得到马喝水的地方C,如图所示,由对称的性质可知AB′=AC+BC,根据两点之间线段最短的性质可知,C点即为所求.知识点6: 尺规作图1.作图题:(不写作法,但必须保留作图痕迹)解:如图所示:2.解:①连接AB、BC、AC,②作AB、BC、AC的垂直平分线相交于点P,点P就是学校的位置.。
人教版八年级数学上册期末专题复习:几何压轴题强化训练试题(含答案)
人教版八年级数学上册期末专题复习:几何压轴题强化训练试题1、如图,AB>AC,∠BAC的平分线与BC边的中垂线GD相交于点D,过点D作DE⊥AB于点E,DF⊥AC于点F,求证:BE=CF.2、如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.3、如图,在△ABC中,∠BAC=120°,AD,BE分别为△ABC的角平分线,连结DE.(1)求证:点E到DA,DC的距离相等;(2)求∠DEB的度数.4、在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.5、概念学习:规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.6、如图,∠ABC=∠BAD=90°,点E,F分别是AC,BC的中点。
八年级下册数学重难点题型(人教版)专题 几何中常见模型及辅助线题型大视野(解析版)
专题几何中常见模型及辅助线题型大视野【例题精讲】题型一、手拉手模型例题. 【2019·惠州市期末】如图,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′D′的顶点A′与点O重合,A′B′交BC于点E,A′D′交CD于点F.(1)求证:OE=OF;(2)若正方形ABCD的边长为1,求两个正方形重叠部分的面积;(3)若正方形A′B′C′D′绕着O点旋转,EF的长度何时最小,并求出最小值.【答案】见解析.【解析】解:(1)∵四边形ABCD是正方形,四边形OB’C’D’是正方形,∵OB=OC,∵BOC=90°,∵B’OD’=90°,∵OBE=∵OCF=45°,∵∵BOE=∵FOC,∵∵BOE∵∵COF,∵OE=OF;(2)由(1)知,∵BOE∵∵COF,∵S∵BOE=S∵COF∵两正方形重叠部分面积=S四边形OECF=S∵COF+S∵OCE= S∵BOE +S∵OCE=S∵BOC=1 4(3)由(1)知OE=OF,则∵EOF是等腰直角三角形,∵EF= OE,由垂线段最短,知当OE∵BC时,OE长度最小,最小为12,此时EF长度最小,即EF题型二、一线三直角模型例题. 【2019·临沂市期中】如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图∵,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图∵,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.【答案】见解析.【解析】解:(1)结论:PB=PQ,理由:过P作PE∵BC于E,PF∵CD于F,∵P为正方形对角线AC上的点,∵PC平分∵DCB,∵DCB=90°,∵PF=PE,∵四边形PECF为正方形.∵∵BPE+∵QPE=90°,∵QPE+∵QPF=90°,∵∵BPE=∵QPF,∵Rt∵PQF∵Rt∵PBE,∵PB=PQ;(2)结论:PB=PQ.理由:过P作PE∵BC于E,PF∵CD于F,∵P为正方形对角线AC上的点,∵PC平分∵DCB,∵DCB=90°,∵PF=PE,∵四边形PECF为正方形,∵∵BPF+∵QPF=90°,∵BPF+∵BPE=90°,∵∵BPE=∵QPF,∵Rt∵PQF∵Rt∵PBE,∵PB=PQ.题型三、辅助线例1. 【2019·莆田市期末】如图1,在正方形ABCD中,E、F分别是BC、AB上一点,且AF=BE,AE与DF交于点G.(1)求证:AE=DF.(2)如图2,在DG上取一点M,使AG=MG,连接CM,取CM的中点P.写出线段PD与DG之间的数量关系,并说明理由.【答案】见解析.【解析】(1)证明:∵四边形ABCD是正方形,∵AD=AB,∵DAF=∵ABE=90°,∵AF=BE,∵∵DAF∵∵ABE(SAS),∵AE=DF.(2)解:结论:DG PD.理由:连接GP并延长至H,使GP=PH,连接DH、CH,∵PM=PC,∵MPG=∵CPH,PG=PH,∵∵MPG∵∵CPH(SAS),∵∵PMG=∵PCH,GM=CH=AG,∵DF∵CH,∵∵FDC=∵DCH,∵∵DAG+∵ADG=90°,∵ADG+∵CDF=90°,∵∵DAG=∵CDG=∵DCH,∵DA=DC,∵∵DAG∵∵DCH(SAS),∵DG=DH,∵ADG=∵CDH,∵∵GDH=∵ADC=90°,∵∵GDH是等腰直角三角形,∵GP=PH,∵PD=PG,PD∵GH,∵DG PD.例2. 【2019·武汉市期末】在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF 上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.【答案】见解析.【解析】(1)证明:在EG上截取EH=BG,∵∠EAB=∠EGB,∠APE=∠BPG,∴∠ABG=∠AEH.在△ABG和△AEH中,∵AE=AB,∠ABG=∠AEH,BG=EH,∴△ABG≌△AEH,∴AH=AG,∠EAH=∠GAB,∴∠GAH=∠EAB=60°,∴△AGH是等边三角形,∴GH=AG,∴EG=AG+BG;(2)EG=√2AG-BG.如图,过点A作AH∵AG,交GE的延长线于H,则∵GAH=∵EAB=90°,∵∵GAB=∵HAE.∵∵EGB=∵EAB=90°,∵∵AGH+∵AGB=∵AGH+∵H=90°.∵∵AGB=∵H,∵AB=AE,∵∵ABG∵∵AEH.∵BG=EH,AG=AH,∵∵GAH=∵EAB=90°,∵∵AGH是等腰直角三角形.∵√2AG=HG.∵EG=√2AG-BG.【刻意练习】1. 【2018·容县期末】如图,已知∵ABC中,AC=BC=5,AB=,三角形顶点在相互平行的三条直线L1,L2,L3上,且L2,L3之间的距离为3,则L1,L3之间的距离是.【答案】4.【解析】解:如图过点A作AM∵L3于M,过点B作BN∵L3于N.∵AC=BC=5,AB=,∵AC2+BC2=AB2,∵∵ACB=90°,∵∵AMC=∵BNC=90°,∵∵ACM+∵BCN=90°,∵∵BCN+∵CBN=90°,∵∵ACM=∵CBN,∵∵ACM∵∵CBN(AAS),∵AM=CN=3,在Rt∵NCB中,由勾股定理得:BN=4,故答案为:4.2. 【2019·长沙市雨花区期末】在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∵APE的度数,DE与CP的数量关系是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:∵当点P与点B重合时,如图1-1所示,∵APE=______°,用等式表示线段DE与CP之间的数量关系:______;∵当BP=BC时,如图1-2所示,∵中的结论是否发生变化?直接写出你的结论:______;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图2-1,2-2,通过观察、测量,发现:(1)中∵的结论在一般情况下______(填“成立”或“不成立”)(3)证明猜想:若(1)中∵的结论在一般情况下成立,请从图2-1和图2-2中任选一个进行证明;若不成立,请说明理由.【答案】(1)45,PC=√2DE;不变化;(2)成立;(3)见解析.【解析】解:(1)∵当点P与点B重合时,∵四边形ABCD是正方形,∵∵APE=45°,EA=EB=ED,∵PC=√2DE.∵当BP=BC时,∵中的结论不发生变化;故答案为:45,PC=√2DE,不变化;(2)结论仍然成立;(3)如图,过点E作EF∵AD于F,延长FE交BC于G,连接AC、EC,∵点E在线段AP的垂直平分线上,∵EA=EP,∵四边形ABCD是正方形,∵BD是AC的垂直平分线,∵EA=EC,∵∵EAC=∵ECA,∵BA=BC,∵∵BAC=∵BCA,∵∵EAB=∵ECB,∵EA=EP,EA=EC,∵EP=EC,∵∵EPC=∵ECP,∵∵EPC+∵EPB=180°,∵∵BAE+∵EPB=180°,∵∵ABP+∵AEP=180°,∵∵ABP=90°,∵∵AEP=90°,∵∵APE=∵P AE=45°,∵EF∵AD,∵∵DFG=90°,∵∵BCD=∵ADC=90°,∵四边形FGCD是矩形,∵CG=FD,∵FGC=90°,∵∵BDA=45°,∵FD=DE,2∵EP=EC,∵CP=2CG=2DF DE.3. 【2019·阳江市期中】(1)如图(1),在平行四边形ABCD中,DE∵AB,BF∵CD,垂足分别为E、F,求证:AE=CF;(2)如图(2),在平行四边形ABCD中,AC、BD是两条对角线,求证AC2+BD2=2(AB2+BC2)(3)如图(3),PQ是∵PMN的中线,若PM=11,PN=13,MN=10,求出PQ的长度.【答案】见解析.【解析】解:(1)∵平行四边形ABCD中,DE∵AB,BF∵CD,∵AD=CB,DE=BF,∵AED=∵CFB=90°,∵Rt∵AED∵Rt∵CFB(HL),∵AE=CF;(2)如图,分别过A,D作AE∵BC交CB延长线于E,DF∵BC于F.根据勾股定理可得:AC2=AE2+(BE+BC)2 ∵,AE2=AB2-BE2 ∵,BD2=DF2+(BC-CF)2 ∵,DF2=DC2-CF2∵,∵四边形ABCD是平行四边形,∵AB=DC,又∵AE∵BC,DF∵BC,∵∵AEB=∵DFC=90°,AE=DF,∵Rt∵AEB∵Rt∵DFC(HL),∵BE=CF,而AB=DC,把∵代入∵,∵代入∵,可得:AC2=AB2-BE2+(BE+BC)2BD2=DC2-CF2+(BC-CF)2上面两式相加,可得:AC2+BD2=2(AB2+BC2);(3)如图,延长PQ至R,使得QR=PQ,连接RM,RN,∵PQ是∵PMN的中线,∵NQ=MQ,∵四边形NPMR是平行四边形,由(2)可得,MN2+PR2=2(NP2+MP2),又∵PM=11,PN=13,MN=10,∵102+(2PQ)2=2(132+112),解得:PQ=2√30.4. 【2019·十堰市外国语期末】如图,已如等腰Rt∵ABC和∵CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN.(1)试判断∵PMN的形状,并证明你的结论;(2)若CD=5,AC=12,求∵PMN的周长.【答案】见解析.【解析】解:(1)∵PMN是等腰直角三角形,理由如下:延长BE交AD于F,如图所示:∵P为BD中点,M为AB中点、N为DE中点,∵PM∵AD,PM=12AD,PN∵BE,PN=12BE,∵∵BCE∵∵ACD(SAS),∵BE=AD,∵CBE=∵CAD,∵PM=PN,∵∵CBE+∵BEC=90°,∵AEF=∵BEC,∵∵CAD+∵AEF=∵CBE+∵BEC=90°,∵∵AFE=90°,∵BE∵AD,∵PM∵AD,PN∵BE,∵PM∵PN,即∵PMN是等腰直角三角形;(2)∵∵ACD=90°,CD=5,AC=12,由勾股定理得:AD=√CD2+AD2=13,∵PN=PM=12AD=132,∵∵PMN是等腰直角三角形,∵MN PM=2,即∵PMN的周长=PM+PN+MN=13+2.5. 【2019·固始县期末】如图,在正方形ABCD中,E、F分别是边AB、BC的中点,连接AF、DE相交于点G,连接CG.(1)求证:AF∵DE;(2)求证:CG=CD.【答案】见解析.【解析】证明:(1)∵四边形ABCD为正方形∵AB=BC=CD=AD,∵ABF=∵DAE=90°,∵E,F分别是边AB.BC的中点∵AE=12AB,BF=12BC,∵AE=BF.在∵ABF与∵DAE中,∵AD=AB,∵DAF=∵ABF,AE=BF,∵∵DAE∵∵ABF(SAS).∵∵ADE=∵BAF,∵∵BAF+∵DAG=90°,∵∵ADG+∵DAG=90°,∵∵DGA=90°,即AF∵DE.(2)证明:延长AF交DC延长线于M,∵F为BC中点,∵CF=FB∵DM∵AB,∵∵M=∵F AB.在∵ABF与∵MCF中,∵∵M=∵F AB,∵CFM=∵BF A,CF=BF,∵∵ABF∵∵MCF(AAS),∵AB=CM.∵AB=CD=CM,∵∵DGM是直角三角形,∵CG=12DM=CD.6. 【2019·高阳县期中】如图,正方形ABCD的边长为2√2,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM∵BE于点M,交BD于点F.(1)求证:AF=BE;(2)求点E到BC边的距离.【答案】见解析.【解析】(1)证明:∵四边形ABCD为正方形,∵OA=OB,∵AOB=∵BOC=90°,∵AM∵BE于点M,∵∵AME=90°,∵∵MAE=∵OBE,∵∵AOF∵∵BOE,∵AF=BE;(2)解:作EN∵BC于N,如图,∵四边形ABCD为正方形,∵OC BC=2,∵OCB=45°,∵E是OC的中点,∵CE=1,在Rt∵ECN中,∵ECN=45°,∵CEN为等腰直角三角形,∵EN CE.即点E到BC边的距离为27. 【2019·汕头市期中】如图,四边形ABCD和四边形CEFG都是正方形,且BC=CD,CE=CG,∵BCD=∵GCE=90°.(1)求证:∵BCG∵∵DCE;(2)求证:BG∵DE.【答案】见解析.【解析】证明:(1)∵∵BCD=∵GCE=90°,∵∵BCG=∵DCE,在∵BCG与∵DCE中,∵BC=CD,∵BCG=∵DCE,CE=CG,∵∵BCG∵∵DCE(SAS);(2)∵∵BCG∵∵DCE,∵∵HBC=∵ODH,∵∵BHC=∵DHO,∵∵HBC+∵BHC=90°,∵∵ODH+∵DHO=90°,∵∵DOH=90°,∵BG∵DE.8. 【2019·北师大附属中学期末】如图,在∵ABCD中,BC=2AB,点E、F分别是BC、AD的中点,AE、BF交于点O,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若AB=4,∵ABC=60°,求OC的长.【答案】见解析.【解析】(1)证明:∵四边形ABCD是平行四边形,∵BC∵AD,BC=AD.∵E,F分别是BC,AD的中点,∵BE=12BC,AF=12AD,∵BE=AF.∵四边形ABEF是平行四边形.∵BC=2AB,∵AB=BE.∵平行四边形ABEF是菱形.(2)解:过点O作OG∵BC于点G,如图所示:∵E是BC的中点,BC=2AB,∵BE=CE=AB,∵四边形ABEF是菱形,∵ABC=60°,∵BE=CE=AB=4,∵OBE=30°,∵BOE=90°.∵OE=2,∵OEB=60°.∵GE=1,OG∵GC=GE+CE=5.在Rt∵OCG中,由勾股定理得:OC=9. 【2019·厦门六中月考】正方形ABCD中,点P是边CD上的任意一点,连接BP,O为BP的中点,作PE∵BD于E,连接EO,AE.(1)若∵PBC=α,求∵POE的大小(用含α的式子表示);(2)用等式表示线段AE与BP之间的数量关系,并证明.【答案】见解析.【解析】解:(1)在正方形ABCD中,BC=DC,∵C=90°∵∵DBC=∵CDB=45°∵∵PBC=α∵∵DBP=45°-α∵PE∵BD,且O为BP的中点∵EO=BO∵∵EBO=∵BEO∵∵EOP=∵EBO+∵BEO=90°-2α(2)连接OC,EC,在正方形ABCD中,AB=BC,∵ABD=∵CBD,BE=BE∵ΔABE∵ΔCBE∵AE=CE在RtΔBPC中,O为BP的中点∵CO=BO=12 BP∵∵OBC=∵OCB∵∵COP=2α由(1)知∵EOP=90°-2α∵∵EOC=∵COP+∵EOP=90°又由(1)知BO=EO∵EO=CO∵∵EOC是等腰直角三角形∵EO2+OC2=EC2∵EC OC BP即BP EC∵BP AE.10. 【2018·莆田市期中】(1)如图1的正方形ABCD中,点E,F分别在边BC,CD上,∵EAF=45°,延长CD到点G,使DG=BE,连接EF,AG.求证:EF=FG;(2)如图2,等腰Rt∵ABC中,∵BAC=90°,AB=AC,点M,N在边BC上,且∵MAN=45°.若BM=1,CN=3,求MN的长.【答案】见解析.【解析】解:(1)证明:在正方形ABCD中,∵ABE=∵ADG,AD=AB,DG=BE,∵∵ABE∵∵ADG(SAS),∵∵BAE=∵DAG,AE=AG,∵∵EAG=90°,∵∵F AE∵∵GAF(SAS),∵EF=FG;(2)解:如图,过点C作CE∵BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∵BAC=90°,∵∵B=∵ACB=45°.∵CE∵BC,∵∵ACE=∵B=45°.∵∵ABM∵∵ACE(SAS).∵AM=AE,∵BAM=∵CAE.∵∵BAC=90°,∵MAN=45°,∵∵BAM+∵CAN=45°.由∵BAM=∵CAE,得∵MAN=∵EAN=45°.∵∵MAN∵∵EAN(SAS).∵MN=EN.在Rt∵ENC中,由勾股定理,得EN2=EC2+NC2.∵MN2=BM2+NC2.∵BM=1,CN=3,∵MN2=12+32,∵MN=√10.11. 【2019·北师大附属中学期末】四边形ABCD是边长为4正方形,点E是边BC上一动点(含端点B,不含端点C),点F是正方形外角∵DCM的平分线上一点,且满足∵AEF=90°.(1)当点E与点B重合时,直接写出线段AE与线段EF的数量关系;(2)如图1,当点E是边BC的中点时,∵补全图形;∵请证明(1)中的结论仍然成立;(3)取线段CF的中点N,连接DE、NE、DN,∵求证:EN=DN;∵直接写出线段EN长度的取值范围.【答案】见解析.【解析】解:(1)当点E与点B重合时,AE=EF.(2)∵如图,∵如图,在AB上取AB中点H,连接HE,∵四边形ABCD是正方形∵AB=CB,且点H是AB中点,点E是BC中点,∵AH=BH=BE=CE,∵∵BEH=∵BHE=45°,∵∵AHE=135°,∵CF平分∵DCM,∵∵DCF=45°∵∵ECF=135°=∵AHE,∵∵AEF=90°∵∵AEB+∵FEC=90°,且∵AEB+∵BAE=90°,∵∵BAE=∵FEC,且AH=EC,∵AHE=∵ECF,∵∵AHE∵∵ECF(ASA)∵AE=EF.(3)∵如图,延长DN,使HN=DN,连接FH,EH,∵CN=FN,∵DNC=∵HNF,DN=NH,∵∵DCN∵∵HFN(SAS)∵DC=FH,∵DCF=∵FCM=45°,∵FH∵DC,且CD∵BC,∵FH∵BM,∵∵FEM+∵EFH=90°,且∵FEM=∵BAE,∵BAE+∵DAE=90°,∵∵DAE=∵EFH,∵AD=CD,CD=FH,∵AD=FH,且AE=EF,∵DAE=∵EFH,∵∵ADE∵∵FHE,∵DE=EH,且DN=NH,∵EN=DN.∵∵DE=EH,DN=NH,∵EN=DN,EN∵DN∵DE EN,∵点E是边BC上一动点(含端点B,不含端点C),∵4<DE,∵2<EN≤4.12. 【2019·宿迁市期末】(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E 是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN∵DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标______(用含a的代数式表示);(2)如果(1)的条件去掉“且MN=DM”,加上“交∵CBE的平分线与点N”,如图2,求证:MD=MN.将这个问题解决,请写出你的证明过程.(3)在(2)的条件下,如图3,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:∵FM 的长度不变;∵MN平分∵FMB,请你指出正确的结论,并给出证明.【答案】(1)N(2+a,a);(2)(3)见解析.【解析】(1)解:过点N作NE∵OB于E,∵∵DMN=90°,∵∵DMO+∵NME=90°,∵NME+∵MNE=90°,∵∵DMO=∵MNE,∵DM=MN,∵∵DMO∵∵MNE,∵ME=DO=2,NE=OM=a,∵OE=OM+ME=2+a,∵点N坐标(2+a,a),故答案为:(2+a,a).(2)证明:在OD上截取OH=OM,连接HM,∵OD=OB,OH=OM,∵HD=MB,∵OHM=∵OMH,∵∵DHM=180°-45°=135°,∵NB平分∵CBE,∵∵NBE=45°,∵∵NBM=180°-45°=135°,∵∵DHM=∵NBM,∵∵DMN=90°,∵∵DMO+∵NMB=90°,∵∵HDM+∵DMO=90°,∵∵HDM=∵NMB,∵∵DHM∵∵MBN,∵DM=MN.(3)结论:MN平分∵FMB成立.理由:在BO延长线上取OA=CF,易证:∵DOA∵∵DCF,∵AD=DF,∵ADO=∵CDF,∵∵MDN=45°,∵∵CDF+∵ODM=45°,∵∵ADO+∵ODM=45°,∵∵DMA∵∵DMF,∵∵DFM=∵DAM=∵DFC,过M作MP∵DN于P,则∵FMP=∵CDF,由(2)可知∵NMF+∵FMP=∵PMN=45°,∵∵NMB=∵MDH,∵MDO+∵CDF=45°,∵∵NMB=∵NMF,即MN平分∵FMB.13. 【2019·福州市期末】如图1,点E为正方形ABCD的边AB上一点,EF∵EC,且EF=EC,连接AF.求∵EAF 的度数;如图2,连接FC交BD于M,交AD于N.求证:BD=AF+2DM.【答案】见解析.【解析】(1)解:过点F 作FM∵AB 交AB 的延长线于点M,∵四边形ABCD 是正方形,∵∵B=∵M=∵CEF=90°,∵∵MEF+∵CEB=90°,∵CEB+∵BCE=90°,∵EC=EF,∵∵EBC∵∵FME,∵FM=BE,∵EM=BC∵BC=AB,∵EM=AB,∵EM﹣AE=AB﹣AE∵AM=BE,∵FM=AM,∵FM∵AB,∵∵MAF=45°,∵∵EAF=135°.(2)证明:过点F 作FG∵AB 交BD 于点G,由(1)可知∵EAF=135°,∵∵ABD=45°∵∵EAF+∵ABD=180°,∵AF∵BG,∵FG∵AB,∵四边形ABGF 为平行四边形,AF=BG,FG=AB,∵AB=CD,∵AB∵CD,∵FG∵CD,∵∵FGM=∵CDM,∵∵FMG=∵CMD∵∵FGM∵∵DMC(AAS),∵GM=DM,∵DG=2DM,∵BD=BG+DG=AF+2DM.14. 【2019·漯河市期中】如图1,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ∵AP交CD于点Q,将∵BQC沿BQ所在的直线对折得到∵BQC',延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)求证:MQ=MB;(3)若AB=3,BP=2PC,求QM的长.【答案】见解析.【解析】(1)解:结论:AP=BQ.理由:∵四边形ABCD是正方形,∵AB=BC,∵ABC=∵C=90°,∵∵ABQ+∵CBQ=90°.∵BQ∵AP,∵∵P AB+∵QBA=90°,∵∵P AB=∵CBQ.∵∵PBA∵∵QCB,(2)证明:∵四边形ABCD是正方形,∵DC∵AB,∵∵CQB=∵QBA.由折叠可得:∵C′QB=∵CQB,∵∵QBA=∵C′QB,∵MQ=MB.(3)解:过点Q作QH∵AB于H,∵四边形ABCD是正方形,∵QH=BC=AB=3.∵BP=2PC,∵BP=2,PC=1,由勾股定理得:BQ=AP BH=2.∵四边形ABCD是正方形,∵DC∵AB,∵∵CQB=∵QBA,由折叠可得:∵C′QB=∵CQB,∵∵QBA=∵C′QB,∵MQ=MB.设QM=x,则有MB=x,MH=x﹣2.在Rt∵MHQ中,由勾股定理,x2=(x﹣2)2+32,解得x=134.∵QM的长为13 4.15. 【2019·黑龙江秋实中学期中】如图,矩形ABCD的对角线AC、BD交于点O,以BD为斜边作直角三角形BED,∵BED=90°,连结AE、CE、OE.(1)如图∵,请直接写出线段OE与线段AC的数量关系;(2)如图∵,延长EO交AD于H,连AG与HC,若AE=CE,求证:四边形AGCH是菱形.图1 图2【答案】见解析.【解析】解:(1)AC=2OE;∵四边形ABCD是矩形,∵AC=BD,O是BD、AC的中点∵∵BED=90°,∵2OE=BD=AC;(2)由(1)知,O是AC中点,∵AE=CE,∵EH∵AC,∵四边形ABCD是矩形,∵AD∵BC,∵∵OAH=∵OCG,在∵AOH和∵COG中,∵AO=OC,∵OAH=∵OCG,∵AOH=∵COG,∵∵AOH∵∵COG,∵AH=CG,∵四边形AGCH为平行四边形,∵EH∵AC,∵四边形AGCH为菱形.16. 【2019·禹城市期末】如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一直角边与∵CBM的平分线BF相交于点F.(1)如图1,当点E在AB边得中点位置时:∵通过测量DE、EF的长度,猜想DE与EF满足的数量关系是.∵连接点E与AD边的中点N,猜想NE与BF满足的数量关系是,请证明你的猜想.(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.【答案】见解析.【解析】解:(1)∵DE=EF;∵NE=BF;理由如下:∵四边形ABCD为正方形,∵AD=AB,∵DAB=∵ABC=90°,∵N,E分别为AD,AB中点,∵AN=DN=12AD,AE=EB=12AB,∵DN=BE,AN=AE,∵∵DEF=90°,∵∵AED+∵FEB=90°,∵∵ADE+∵AED=90°,∵∵FEB=∵ADE,∵AN=AE,∵∵ANE=∵AEN,∵∵A=90°,∵∵ANE=45°,∵∵DNE=180°﹣∵ANE=135°,∵∵CBM=90°,BF平分∵CBM,∵∵CBF=45°,∵EBF=135°,∵∵DNE∵∵EBF,∵DE=EF,NE=BF.(2)DE=EF,理由如下:连接NE,在DA边上截取DN=EB,∵四边形ABCD是正方形,DN=EB,∵AN=AE,∵∵AEN为等腰直角三角形,∵∵ANE=45°,∵∵DNE=180°﹣45°=135°,∵BF平分∵CBM,AN=AE,∵∵EBF=90°+45°=135°,∵∵DNE=∵EBF,∵∵NDE+∵DEA=90°,∵BEF+∵DEA=90°,∵∵NDE=∵BEF,∵∵DNE∵∵EBF,∵DE=EF.17. 【2019·费县期末】在平行四边形ABCD中,∵BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明:CE=CF;(2)若∵ABC=90°,G是EF的中点(如图2),求出∵BDG的度数;(3)若∵ABC=120°,FG∵CE,FG=CE,分别连接DB、DG(如图3),求∵BDG的度数.【答案】见解析.【解析】解:证明:(1)∵AF平分∵BAD,∵∵BAF=∵DAF,∵四边形ABCD是平行四边形,∵AD∵BC,AB∵CD,∵∵DAF=∵CEF,∵BAF=∵F,∵∵CEF=∵F.∵CE=CF.(2)连接GC、BG,∵四边形ABCD为平行四边形,∵ABC=90°,∵四边形ABCD为矩形,∵AF平分∵BAD,∵∵DAF=∵BAF=45°,∵∵DCB=90°,DF∵AB,∵∵DF A=45°,∵ECF=90°∵∵ECF为等腰直角三角形,∵G为EF中点,∵EG=CG=FG,CG∵EF,∵∵ABE为等腰直角三角形,AB=DC,∵BE=DC,∵∵CEF=∵GCF=45°,∵∵BEG=∵DCG=135°∵∵BEG∵∵DCG,∵BG=DG,∵CG∵EF,∵∵DGC+∵DGA=90°,又∵∵DGC=∵BGA,∵∵BGA+∵DGA=90°,∵∵DGB为等腰直角三角形,∵∵BDG=45°.(3)延长AB、FG交于H,连接HD.∵AD∵GF,AB∵DF,∵四边形AHFD为平行四边形∵∵ABC=120°,AF平分∵BAD∵∵DAF=30°,∵ADC=120°,∵DF A=30°∵∵DAF为等腰三角形∵AD=DF,∵CE=CF,∵平行四边形AHFD为菱形∵∵ADH,∵DHF为全等的等边三角形∵DH=DF,∵BHD=∵GFD=60°∵FG=CE,CE=CF,CF=BH,∵BH=GF∵∵BHD∵∵GFD,∵∵BDH=∵GDF∵∵BDG=∵BDH+∵HDG=∵GDF+∵HDG=60°.18. 【2019·抚顺市期中】∵ABC中,∵BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,∵BC与CF的位置关系为:.∵BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论∵,∵是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=,CD=14 BC,请求出GE的长.【答案】见解析.【解析】解:(1)∵正方形ADEF中,AD=AF,∵∵BAC=∵DAF=90°,∵∵BAD=∵CAF,∵AB=AC,∵∵DAB∵∵F AC,∵∵B=∵ACF,∵∵ACB+∵ACF=90°,即BC∵CF;故答案为:垂直;∵∵DAB∵∵F AC,∵CF=BD,∵BC=BD+CD,∵BC=CF+CD;故答案为:BC=CF+CD;(2)CF∵BC成立;BC=CD+CF不成立,CD=CF+BC.理由如下:∵正方形ADEF中,AD=AF,∵∵BAC=∵DAF=90°,∵∵BAD=∵CAF,∵AB=AC,∵∵DAB∵∵F AC,∵∵ABD=∵ACF,∵∵BAC=90°,AB=AC,∵∵ACB=∵ABC=45°.∵∵ABD=180°﹣45°=135°,∵∵BCF=∵ACF﹣∵ACB=135°﹣45°=90°,∵CF∵BC.∵CD=DB+BC,DB=CF,∵CD=CF+BC.(3)解:过A作AH∵BC于H,过E作EM∵BD于M,EN∵CF于N,∵∵BAC=90°,AB=AC,∵BC=4,AH=12BC=2,∵CD=14BC=1,CH=12BC=2,∵DH=3,由(2)得BC∵CF,CF=BD=5,∵四边形ADEF是正方形,∵AD=DE,∵ADE=90°,∵BC∵CF,EM∵BD,EN∵CF,∵四边形CMEN是矩形,∵NE=CM,EM=CN,∵∵AHD=∵ADE=∵EMD=90°,∵∵ADH+∵EDM=∵EDM+∵DEM=90°,∵∵ADH=∵DEM,∵∵ADH∵∵DEM,∵EM=DH=3,DM=AH=2,∵CN=EM=3,EN=CM=3,∵∵ABC=45°,∵∵BGC=45°,∵∵BCG是等腰直角三角形,∵CG=BC=4,∵GN=1,由勾股定理得:EG。
(word完整版)人教版八年级上册数学几何练习题
人教版八年级上册数学几何练习题1、已知:在⊿ABC中,∠A=90,AB=AC,在BC上任取一点P,作PQ∥AB交AC于Q,作PR∥CA交BA于R,D是BC的中点,求证:⊿RDQ是等腰直角三角形。
2、已知:在⊿ABC中,∠A=90,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。
B3、已知:在⊿ABC中BD、CE是高,在BD、CE或其延长线上分别截取BM=AC、CN=AB,求证:MA⊥NA。
C4、已知:如图,在△ABC中,BP、CP分别平分∠ABC 和∠ACB,DE过点P交AB于D,交AC于E,且DE∥BC.求证:DE-DB=EC. APE DBC图⑴5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
写出点O到△ABC的三个顶点A、B、C的距离的大小关系;如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
A M B6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD,连结EC、ED,求证:CE=DE7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。
几何证明习题答案1. 连接AD,由△ABC为等腰直角三角形可得AD垂直AC,且AD=BD,∠DAQ=∠DBR=45度, 又由平行关系得,四边形RPQA为矩形,所以AQ=RP, △BRP也是等腰直角三角行,即BR=PR,所以AQ=BR由边角边,△BRD全等于△AQD,所以∠BDR=∠ADQ,DR=DQ, ∠RDQ=∠RDA+∠ADQ=∠RDA+∠BDR=90度, 所以△RDQ是等腰RT△。
2. 作AG平分∠BAC交BD于G ∵∠BAC=90° ∴∠CAG= ∠BAG=45° ∵∠BAC=90° AC=AB ∴∠C=∠ABC=45°∴∠C=∠BAG ∵AE⊥BD ∴∠ABE+∠BAE=90°∵∠CAF+∠BAE=90° ∴∠CAF=∠ABE ∵ AC=AB ∴△ACF ≌△BAG ∴CF=AG ∵∠C=∠DAG =45°CD=AD ∴△CDF ≌△ADG ∴∠CDF=∠ADB3. 易证△ABM≌△NAC.∠NAM=∠NAE+∠BAM=∠NAE+ANE=90°4. 略5.因为直角三角形的斜边中点是三角形的外心,所以O到△ABC的三个顶点A、B、C距离相等;△OMN是等腰直角三角形。
人教版八年级数学第一学期几何压轴题期末复习提高训练试题
人教版八年级数学第一学期几何压轴题期末复习提高训练试题1、如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)若AD=12,DE=7,求BE的长.2、已知,如图,△ABC和△BDE都是等边三角形,且点D在AC上.(1)求证:AE∥BC;(2)直接写出AE,AD和AB之间的关系;3、如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.4、根据下列命题画出图形,写出已知、求证,并完成证明过程.命题:等腰三角形两底角的角平分线相等.已知:如图,_____________________________.求证:________________________.5、已知:如图,点A,B在∠MON的边OM,ON上,OA的垂直平分线CP与OB的垂直平分线DP相交于点P,连接P A,PO,PB,AB.(1)求证:①P A=PB;②∠APB=2∠CPD;(2)探究:∠MON满足什么条件时,△P AB是等边三角形,并说明理由;(3)若OA=OB,请在备用图中画出符合条件的图形,并探究∠CPO与∠APB之间的数量关系,并说明理由.6、如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?7、已知:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数;(3)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.①∠AEB的度数为°;②探索线段CM、AE、BE之间的数量关系为.(直接写出答案,不需要说明理由)8、如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=°,∠DEC=°;点D从B向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.9、如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,BE=3cm,AD=9cm.求:(1)DE的长;(2)若CE在△ABC的外部(如图),其它条件不变,DE的长是多少?10、已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=°,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH 为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上11、如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.12、【问题原型】如图1,在等腰直角三角形ABC中,∠ACB=90°,BC=8.将边AB绕点B顺时针旋转90°得到线段BD,连结CD,过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.【初步探究】如图2,在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.用含a的代数式表示△BCD的面积并说明理由.【简单应用】如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,求△BCD的面积(用含a的代数式表示).13、如图,△ABC是等边三角形,D、E为AC上两点,且AE=CD,延长BC至点F,使CF=CD,连接BD.(1)如图1,当D、E两点重合时,求证:BD=DF;(2)延长BD与EF交于点G.①如图2,求证:∠BGE=60°;②如图3,连接BE,CG.若∠EBD=30°,BG=4,则△BCG的面积为.14、在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;(2)如图2,如果∠BAC=60°,则∠BCE=度;(3)设∠BAC=α,∠BCE=β.①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.参考答案1、如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)若AD=12,DE=7,求BE的长.【解答】解:(1)∵∠ACB=90°,BE⊥CE,∴∠ECB+∠ACD=90°∠ECB+∠CBE=90°,∴∠ACD=∠CBE,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∵AC=BC,∴△ACD≌△CBE;(2)∵△ACD≌△CBE,∴AD=CE,CD=BE,∵AD=12,DE=7,∴BE=CD=CE﹣DE=12﹣7=5.2、已知,如图,△ABC和△BDE都是等边三角形,且点D在AC上.(1)求证:AE∥BC;(2)直接写出AE,AD和AB之间的关系;【解答】证明:(1)∵△ABC和△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠DBE=∠C=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,∴∠DBC=∠EBA,∴△DBC≌△EBA(SAS),∴∠C=∠EAB=∠ABC,∴EA∥BC(2)∵△DBC≌△EBA,∴AE=CD,∵AD+CD=AC=AB,∴AE+AD=AB.3、如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.4、根据下列命题画出图形,写出已知、求证,并完成证明过程.命题:等腰三角形两底角的角平分线相等.已知:如图,△ABC中,AB=AC,BD,CE是△ABC的角平分线.求证:BD=CE.【解答】解:已知:如图,△ABC中,AB=AC,BD,CE是△ABC的角平分线.求证:BD=CE,证明:∵AB=AC,∴∠ABC=∠ACB,∵BD,CE是△ABC的角平分线,∴∠ABD=∠ABC,∠ACE=∠ACB,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ABD≌△ACE(ASA),∴BD=CE.故答案为:△ABC中,AB=AC,BD,CE是△ABC的角平分线,BD=CE.5、已知:如图,点A,B在∠MON的边OM,ON上,OA的垂直平分线CP与OB的垂直平分线DP相交于点P,连接P A,PO,PB,AB.(1)求证:①P A=PB;②∠APB=2∠CPD;(2)探究:∠MON满足什么条件时,△P AB是等边三角形,并说明理由;(3)若OA=OB,请在备用图中画出符合条件的图形,并探究∠CPO与∠APB之间的数量关系,并说明理由.【解答】(1)证明:①∵CP为OA的垂直平分线,∴P A=PO,同理:PB=PO,∴P A=PB;②∵P A=PO,PC⊥OA,∴∠APC=∠OPC=∠APO,同理,∠BPD=∠OPD=∠BPO,∠APB=∠APO+∠BPO=2∠CPO+2∠DPO=2(∠CPO+∠DPO)=2∠CPD;(2)∠MON=150°.理由:∵∠CPO+∠COP=90°,∠DPO+∠DOP=90°,∴∠MON+∠CPD=180°,∵∠MON=150°,∴∠CPD=180°﹣150°=30°,由(1)得∠APB=2∠CPD=60°,P A=PB,∴△P AB是等边三角形;(3)在备用图中画出符合条件的图形如备用图,∠CPO=∠APB.理由:∵OC=OA,OD=OB,OA=OB,∴OC=OD,在Rt△PCO和Rt△PDO中,,∴Rt△PCO≌Rt△PDO(HL),∴∠CPO=∠DPO,由(1)得∠APC=∠OPC,∠BPD=∠OPD,∴∠APC=∠CPO=∠OPD=∠BPD,∴∠CPO=∠APB.6、如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【解答】解:(1)①△BPD与△CQP全等,理由如下:∵AB=AC=18cm,AD=2BD,∴AD=12cm,BD=6cm,∠B=∠C,∵经过2s后,BP=4cm,CQ=4cm,∴BP=CQ,CP=6cm=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS),②∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵△BPD与△CQP全等,∠B=∠C,∴BP=PC=BC=5cm,BD=CQ=6cm,∴t=,∴点Q的运动速度==cm/s,∴当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等;(2)设经过x秒,点P与点Q第一次相遇,由题意可得:x﹣2x=36,解得:x=90,∴90﹣()×3=21(s),∴经过90s点P与点Q第一次相遇在线段AB上相遇.7、已知:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数;(3)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.①∠AEB的度数为90°;②探索线段CM、AE、BE之间的数量关系为AE=BE+2CM.(直接写出答案,不需要说明理由)【解答】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图1,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC﹣∠CED=60°;(3)①如图2,∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD,∠BEC=∠ADC,∵点A,D,E在同一直线上,∴∠ADC=180﹣45=135°,∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,故答案为:90;②如图2,∵∠DCE=90°,CD=CE,CM⊥DE,∴CM=DM=EM,∴DE=DM+EM=2CM,∵△ACD≌△BCE(已证),∴BE=AD,∴AE=AD+DE=BE+2CM,故答案为:AE=BE+2CM.8、如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=30°,∠DEC=110°;点D从B向C的运动过程中,∠BDA逐渐变小(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.【解答】解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°∴∠EDC=180°﹣∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°﹣∠BAD∵点D从B向C的运动过程中,∠BAD逐渐变大∴∠BDA逐渐变小,故答案为:小(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA)(3)若AD=DE时,∵AD=DE,∠ADE=40°∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC∴∠EDC=30°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时,∵AE=DE,∠ADE=40°∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC∴∠EDC=60°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形9、如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,BE=3cm,AD=9cm.求:(1)DE的长;(2)若CE在△ABC的外部(如图),其它条件不变,DE的长是多少?【解答】解:(1)∵∠ACB=90°,BE⊥CE,∴∠BCE+∠CBE=90°,∠BCE+∠ECA=90°,∴∠CBE=∠ECA,∠BEC=∠CDA,∵在△BEC和△CDA中,,∴△BEC≌△CDA(AAS),∴BE=CD,CE=AD,∵BE=3cm,AD=9cm,∴CD=3cm,CE=9cm,∴DE=CE﹣CD=6cm.(2)∵∠ACB=90°,BE⊥CE于E,AD⊥CE于D,∴∠BCE+∠CBE=90°,∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠CBE=∠ACD,∵在△CBE和△ACD中,,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD,∵BE=3cm,AD=9cm,∴DE=CD+CE=BE+AD=12cm.10、已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=60°,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH 为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【解答】解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.11、如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°,∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE,∵△ACB,△DCE都是等腰三角形,∴AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵点A、D、E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°,∵∠BEC=∠CED+∠AEB,∠CED=50°,∴∠AEB=∠BEC﹣∠CED=80°.(2)结论:AE=2CF+BE.理由:∵△ACB,△DCE都是等腰直角三角形,∴∠CDE=∠CED=45°,∵CF⊥DE,∴∠CFD=90°,DF=EF=CF,∵AD=BE,∴AE=AD+DE=BE+2CF.12、【问题原型】如图1,在等腰直角三角形ABC中,∠ACB=90°,BC=8.将边AB绕点B顺时针旋转90°得到线段BD,连结CD,过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为32.【初步探究】如图2,在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.用含a的代数式表示△BCD的面积并说明理由.【简单应用】如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,求△BCD的面积(用含a的代数式表示).【解答】解:问题原型:如图1中,如图2中,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°,∵线段AB绕点B顺时针旋转90°得到线段BD,∴AB=BD,∠ABD=90°.∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=8.∵S△BCD=BC•DE∴S△BCD=32,故答案为32.初步探究:△BCD的面积为a2.理由:如图2中,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°.∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.∵S△BCD=BC•DE∴S△BCD=a2;简单应用:如图3中,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,∴∠AFB=∠E=90°,BF=BC=a.∴∠F AB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠F AB=∠EBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△AFB≌△BED(AAS),∴BF=DE=a.∵S△BCD=BC•DE,∴S△BCD=•a•a=a2.∴△BCD的面积为a2.13、如图,△ABC是等边三角形,D、E为AC上两点,且AE=CD,延长BC至点F,使CF=CD,连接BD.(1)如图1,当D、E两点重合时,求证:BD=DF;(2)延长BD与EF交于点G.①如图2,求证:∠BGE=60°;②如图3,连接BE,CG.若∠EBD=30°,BG=4,则△BCG的面积为2.【解答】(1)证明:如图1中,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵AD=DC=CF,∴∠DBC=∠ABC=30°,∠F=∠CDF,∵∠ACB=∠F+∠CDF=60°,∴∠F=30°,∴∠DBC=∠F,∴BD=DF.(2)①证明:如图2中,作EH∥BC交AB于H,连接BE.∵EH∥BC,∴∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∵∠A=60°,∴△AEH是等边三角形,∴AE=EH=AH,∵AB=AC,∴BH=CE,∵AE=CF,∴EH=CF,∵∠BHE=∠ECF=120°,∴△BEH≌△EFC(SAS),∴∠EBH=∠CEF,∵AB=BC,∠A=∠BCD,AE=CD,∴△ABE≌△CBD(SAS),∴∠ABE=∠CBD,∴∠CBD=∠DEG,∵∠CDB=∠GDE,∴∠EGD=∠DCB=60°,即∠BGE=60°.②解:如图3中,在BC上取一点T,使得BT=TG,连接TG,设CG=x.由题意:∠ABE=∠CBD=15°,∵∠BCE=∠BGE=60°,∴B,C,G,E四点共圆,∴∠ECG=∠EBG=30°,∴∠BCG=90°,∵TB=TG,∴∠TBG=∠TGB=15°,∴∠GTC=∠TBG+∠BGT=30°,∴BT=GT=2GC=2c,TC=x,∵BG2=CG2+BC2,∴42=x2+(2x+x)2,∴x2=4(2﹣)∴S△BCG=•BC•CG=×(2+)x2=2,故答案为2.14、在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=90度;(2)如图2,如果∠BAC=60°,则∠BCE=120度;(3)设∠BAC=α,∠BCE=β.①如图3,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,请直接写出α,β之样的数量关系,不用证明.【解答】解:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DAE=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△BAD≌△CAE(SAS)∴∠ABC=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)∵∠BAC=60°,AB=AC,∴△ABC为等边三角形,∴∠ABD=∠ACB=60°,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,∵∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE=60°,∴∠BCE=∠ACE+∠ACB=60°+60°=120°,故答案为:120.(3)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∵∠ACE+∠ACB=β,∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°.②如图1:当点D在射线BC上时,α+β=180°,连接CE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,在△ABC中,∠BAC+∠B+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,即:∠BCE+∠BAC=180°,∴α+β=180°,如图2:当点D在射线BC的反向延长线上时,α=β.连接BE,∵∠BAC=∠DAE,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.。
人教版八年级数学下册专题复习(十一) 几何图形的面积等分
思维特训(十一)几何图形的面积等分方法点津面积等分基本模型:1.三角形的中线把三角形面积等分;2.夹在两条平行线间的距离相等,同底等高的两个三角形面积相等;3.过平行四边形对角线中点(对称中心)的任意一条直线把平行四边形面积等分.典题精练类型一作一个图形的面积等于已知图形1.(1)如图11-S-1①,已知直线m∥n,点A,B在直线n上,点C,P在直线m上.①写出图①中面积相等的三角形:________;②当点P在直线m上移动到任一位置时,总有________与△ABC的面积相等;(2)如图11-S-1②,已知一个五边形ABCDE,你能否过点E作一条直线交BC(或其延长线)于点M,使四边形ABME的面积等于五边形ABCDE的面积?图11-S-1类型二等分面积2.阅读下列材料:小明遇到一个问题:AD是△ABC的中线,M为BC边上任意一点(不与点D重合),过点M作一直线,使其等分△ABC的面积.他的作法是:如图11-S-2①,连接AM,过点D作DN∥AM交AC于点N,作直线MN,直线MN即为所求直线.请你参考小明的作法,解决下列问题:(1)如图②,在四边形ABCD中,AE平分四边形ABCD的面积,M为CD边上一点,过点M作一直线MN,使其等分四边形ABCD的面积(要求:在图②中画出直线MN,并保留作图痕迹);(2)如图③,求作过点A的直线AE,使其等分四边形ABCD的面积(要求:在图③中画出直线AE,并保留作图痕迹).图11-S-23.有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如三角形的中线所在的直线一定是三角形的“二分线”.解决下列问题:(1)在图11-S-3①中,试用三种不同的方法分别画出平行四边形ABCD的“二分线”;(2)解决问题:兄弟俩分家时,有原来共同承包的一块平行四边形田地ABCD,现要进行平均划分,由于在这块地里有一口井P,如图②所示,为了兄弟俩都能方便使用这口井,兄弟俩在划分时犯难了,聪明的你能帮他们解决这个问题吗(画图,并说明结果)?图11-S-34.我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图11-S-4①,在四边形ABCD中,取对角线BD的中点O,连接OA,OC,AC.显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于点E,则直线AE即为一条“好线”.(1)试说明:直线AE是“好线”的理由;(2)如图②,AE为一条“好线”,F为AD边上的一点,请作出经过点F的“好线”,并对画图作适当说明(不需要说明理由).图11-S-45.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图11-S-5①,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法;若不能,请说明理由.(2)如图②,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC 于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”.(3)如图③,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.图11-S-5典题讲评与答案详析1.解:(1)①图①中符合条件的三角形有:△CAB与△P AB,△BCP与△APC,△ACO 与△BPO.②△P AB(2)如图,连接EC,过点D作直线DM∥EC交BC的延长线于点M,作直线EM,直线EM即为所求的直线.2.解:(1)如图①,连接AM,过点E作EN∥AM,交AD于点N,再作直线MN即可.(2)如图②,取对角线BD的中点O,连接AO,CO,AC,过点O作OE∥AC交CD于点E,直线AE就是所求直线.3.解:(1)答案不唯一,示例如下:(2)能解决这个问题.连接AC,BD相交于点O,过点O,P作直线与DC,AB分别交于点E,F,如图所示.则一人分四边形ADEF,一人分四边形CEFB.4.解:(1)∵OE∥AC,∴S△AOE=S△COE,∴S△AOF=S△CEF.又∵折线AOC能平分四边形ABCD的面积,∴直线AE平分四边形ABCD的面积,即AE是“好线”.(2)连接EF,过点A作EF的平行线交CD于点G,连接FG,则FG为一条“好线”.∵AG∥EF,∴S△AGE=S△AFG. 设AE与FG的交点是O,则S△AOF=S△GOE.又∵AE为一条“好线”,∴FG为一条“好线”.5.解:(1)不能.理由:如图①,取AB的中点D,连接CD,则S△ADC=S△DBC,且过点C只能画CD一条直线平分△ABC的面积.∵AC≠BC,∴AD+AC≠BD+BC,∴过点C不能画出△ABC的一条“等分积周线”.(2)证明:如图②,连接AE,DE,设BE=x,∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF.∵∠B=∠C=90°,AB=3,BC=8,CD=5,∴在Rt△ABE和Rt△DCE中,根据勾股定理,得AB2+BE2=CE2+DC2,即32+x2=(8-x)2+52,解得x=5,∴BE=5,CE=3,∴AB+BE=CE+DC,S△ABE=S△DCE.∴AF+AB+BE=DF+CE+DC.∵S四边形ABEF=S△ABE+S△AEF,S四边形DCEF=S△DEF+S△DCE,∴S四边形ABEF=S四边形DCEF,∴直线EF为四边形ABCD的“等分积周线”.(3)如图③,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则直线EF是△ABC的“等分积周线”.理由:由作图可得AF=AC-FC=8-6=2,在CB上取一点G,使得CG=AF=2.∵AB =BC,∴∠A=∠C.在△ABF和△CFG中,AF=CG,∠A=∠C,AB=CF,∴△ABF≌△CFG(SAS),∴S△ABF=S△CFG.又易得BE=EG=2,∴S△BFE=S△EFG,∴S△EFC=S四边形ABEF,AF+AB+BE=CE+CF=10,∴直线EF是△ABC的“等分积周线”.。
最新人教版八年级数学上册几何解答题专项突破(超级经典)
最新人教版八年级数学上册几何解答题专项突破(超级经典)1.已知在等边三角形ABC中,AC的垂直平分线EF交AC于点E,交BC于点F,求证BF=2CF。
2.已知E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D,求证:(1)∠ECD=∠EDC;(2)OE是CD的垂直平分线。
3.(1)如图(1),点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R。
观察AR与AQ,猜想它们相等,证明这个猜想。
(2)如图(2),如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论是否成立,给出证明。
4.已知△ABC中,AD平分∠BAC,AE为BC边上的高,∠B=40°,∠C=60°,求∠DAE的度数。
5.在△ABC中,AB=CB,AB⊥CB,E为CB延长线上一点,点F在AB上,且AE=CF,(1)求证:Rt△ABE≌Rt△CBF;(2)判断直线CF和直线AE的位置关系,并说明理由。
6.在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,已知AB=AC,CF⊥AE于点F,BD⊥AE于点D,点B、C在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD 上,∠1、∠2分别是△ABE、△CAF的外角,求证:△ABD≌△CAF;在△ABC中,AB=AC,AB>BC,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC,若△ABC的面积为15,则△ACF与△BDE的面积之和为45/4.7.在直角坐标系xOy中,直线AB交x轴于A(1,0),交y轴负半轴于B(0,-5),C为x轴正半轴上一点,且OC=5OA。
求证:AE+CE=BC.B同学们开始思考,其中XXX认为可以用勾股定理证明,因为△ABC是等边三角形,所以AC=BC,而AE可以表示为AC-CE,代入勾股定理中即可得证.C但是,XXX认为可以用相似三角形证明,因为△ABC和△AEC相似,所以可以列出比例式,推导可得AE+CE=BC.D最后,XXX给出了自己的证明,他利用了三角形面积公式,将△ABC分成两个三角形,再利用△AEC的高等于△ABC的高减去CE,最终得到AE+CE=BC.E通过这道题目,同学们学会了不同的证明方法,也体会到了数学证明的多样性和美妙之处.点D在CB的延长线上,且ED=EC,如图。
专题四 几何计算人教版八年级数学上册教材
(1)证明:∵FG∥AE,∴∠2 =∠FGC. ∵∠1=∠2, ∴∠1=∠FGC. ∴AB∥CD.
专题四 几何计算人教版八年级数学上册教材
专题四 几何计算人教版八年级数学上册教材
(2)若FG⊥BC 于点H,BC 平分∠ABD,∠D=100°,
求∠1 的度数. (2)解:∵AB∥CD,∴∠ABD+∠D=180°. ∵∠D=100°,∴∠ABD=180°-∠D=80°. ∵BC 平分∠ABD,∴∠ABC= ∠ABD=40°. ∵FG⊥BC, ∴∠1+∠ABC=90°. ∴∠1=90°-40°=50°.
16. 如图,△ABC 为正三角形,点 B,C,D,E
在同一直线上,且 CG=CD=DF=DE,则
∠E= 15
°.
专题四 几何计算人教版八年级数学上册教材
专题四 几何计算人教版八年级数学上册教材
17. 如图,点 F 在线段 AB 上,点 E,G 在线段 CD 上,FG∥AE,∠1=∠2.
(1)求证:AB∥CD; (2)若FG⊥BC 于点H,BC 平分∠ABD,∠D=100°,
专题四 几何计算人教版八年级数学上册教材
专题四 几何计算人教版八年级数学上册教材
13. 如果等腰三角形的一个角是 80°,那么它 的底角是( A ) A. 80°或 50° B. 50°或 20° C. 80°或 20° D. 50°
专题四 几何计算人教版八年级数学上册教材
专题四 几何计算人教版八年级数学上册教材
专题四 几何计算人教版八年级数学上册教材
专题四 几何计算人教版八年级数学上册教材
(3)如图 3,若△ABC 中∠B 的平分线 BO 与△ABC 外角平分线 CO 交于点 O,过点 O 作 OE∥BC 交 AB 于点 E,交 AC 于点 F. 这时图中还有等腰 三角形吗?如果有,分别写出他们.EF 与 BE, CF 之间的数量关系又如何?请说明理由.
人教版八年级数学上册 几何部分 考试测试卷 ( 无答案)
几何单元测试卷(测试时间:120分钟.满分:120分)一、选择题(共10小题,每题3分,共30分)1.下列图形中,对称轴条数最多的是().2.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于().A.40°B.60°C.80°D.90°3.如果一个多边形的内角和是其外角和的一半,那么这个多边形是().A.六边形B.五边形C.四边形D.三角形4.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法:①CE=BF;②△ABD和△ACD的面积相等;③BF∥CE;④△BDF≌△CDE,其中正确的有().A.1个B.2个C.3个D.4个5.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为().A.60°B.75°C.90°D.95°6.如图,在△ABC中,∠A∶∠ABC∶∠ACB=3∶5∶10,且△MNC≌△ABC,则∠BCM∶∠BCN等于().A.1∶2 B.1∶3 C.2∶3 D.1∶47.如图,∠A=15°,AB=BC=CD=DE=EF,则∠MEF的度数为().A.90°C.60°B.75°D.45°8.如图,已知△ABC中,∠ABC=45°,点F是高AD和BE的交点,CD=4,则线段DF的长度为().A.22B.4 C.32D.429.如图,是一个5×5的正方形网格,网格中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上,点C也在小正方形的顶点上.若△ABC为等腰三角形,满足条件的C点的个数为().A.6 B.7 C.8 D.910.如图,已知:等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA的延长线上一点,点O是线段AD上一点,OP=OC.下列结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边彤AOCP;其中正确的结论有().A.①②③B.①②④C.①③④D.①②⑧④二、填空题(共6小题,每题3分,共18分)11.如果一个多边形的每一外角都是24°,那么它是边形.12.如图,AD,A’D’分别是锐角三角形ABC和锐角三角形A’B’C’中BC,B’C'边上的高,且AB=A'B',AD =A’D’.若使△ABC≌△A’B’C’,请你补充条件.(填写一个你认为适当的条件即可)13.如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于点E,若∠B=50°,则∠CAE的度数为.14.如图,点O是△ABC内一点,且OA=OB=OC,若∠OBA=20°,∠OCB=30°,则∠OAC=.15.如图,点E为△ABC边AB上一点,AC=BC=BE,AE=EC,BD⊥AC于D,则∠CBD=.16.如图,平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,…都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,点A2013的坐标为.三、解答题(共9小题,共72分)17.(6分)如图,在△ABC中,BO,CD是内角平分线,已知∠A=70°,求∠BOC的度数.18.(6分)如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.19.(7分)如图,在△ABC中,∠ACB=90°,AC=BC,点D为AB的中点,AE=CF.求证:DE⊥DF.20.(7分)如图,在△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,CE⊥AD,垂足为点E,BF∥AC,BF交CE的延长线于点F.求证:AB垂直平分DF.21.(8分)如图,在平面直角坐标系中,直线l过点T(0,2),且平行于x轴.(1)如果△ABC三个顶点的坐标分别是A(-1,1),B(0,-2),C(-3,-1),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,那么在所给坐标系中画出△A1B1C1与△A2B2C2,A2的坐标为;B2的坐标为;C2的坐标为.(2)如果点F的坐标是(m,-n),其中0<n<2,点F关于x轴的对称点是F1,点F1关于直线l的对称点是F2,求FF2的长.22.(8分)如图,D,E分别为等边△ABC的边AC,BC上的点,且AD=CE,BD,AE交于点N,BM⊥AE于M,求证:(1)∠CAE=∠ABD;(2)MN=12 BN23.(9分)如图1,已知△ABC中,AB=AC=1.∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF 绕D点按逆时针方向旋转.(1)在图1中,DE交边AB于M,DF交边BC于N.①证明:DM=DN;②在这一旋转过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由.24.(9分)已知,在平面直角坐标系中,A(a,0),B(0,b),a,b|a-=0.C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求∠OAB的度数;(2)设AB=6,当点P运动时,PE的值是否变化?若变化,请说明理由;若不变,求PE的值;(3)设AB=6,若∠OPD=45°,求点D的坐标.25.(12分)在平面直角坐标系中,△AOB为等腰直角三角形,∠A=90°,OA=AB.(1)如图1,若点A(-3,1),求点B的坐标;(2)将△AOB绕原点O旋转到如图2的位置,AB交y轴于点E,且AE=BE,AF⊥y轴交OB于点F,连接EF,AG∥EF交y轴于点G,求证:△AGE是等腰三角形;(3)如图3,将△AOB绕原点O旋转,使点A落在y轴正半轴上,以OA为边作等边三角形△ACO,点C在第二象限,AM⊥OB于点M,AM与CB相交于点N,求证:BN=12(CB-AN).。
人教版八年级下册数学一次函数(几何问题)训练
人教版八年级下册数学一次函数(几何问题)训练1.当m ,n 是非零实数,且满足4m ﹣6n =3mn 时,就称点(,)mP m n为“完美点”.(1)若点M 为“完美点”,且横坐标为2,则点M 的纵坐标为 ; (2)“完美点”P 在直线 (填直线解析式)上;(3)如图,直线43y =-x +4分别交x 轴、y 轴于点A 、B ,且C 3(0,)2,直线AB 上的“完美点”为点E ,求△CBE 的面积.2.如图,在平面直角坐标系xOy 中,A 、B 两点分别在x 轴、y 轴的正半轴上,且OA =OB =3.(1)求点A 、B 的坐标;(2)如图1,若点C (−2,2),求三角形ABC 的面积;(3)若点P 是第一、三象限角平分线上一点,且三角形ABP 的面积为392,求点P 坐标.3.如图,在矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(6 ,8),矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,BD所在直线与OA,x轴分别交于点D,F.(1)求线段BO的长;(2)求直线BD的解析式;(3)点M是直线BD上的一个动点,过点M作MN⊥x轴,垂足为点N.在点M的运动过程中,是否存在以N、E、O为顶点的三角形是等腰三角形?若存在,直接写出点N 的坐标并求出点M的坐标;若不存在,请说明理由.4.据环保中心观察和预测:发生于甲地的河流污染一直向下游方向移动,其移动速度v(千米/小时)与时间t(小时)的函数图像如图所示,过线段OC上一点T(t,0)作横轴的垂线l,根据物理知识:梯形OABC在直线l左侧部分的面积表示的实际意义为t(小时)内污染所经过的路程S(千米),其中0≤t≤30.(1)当t=3时,则S的值为;(2)求S与t的函数表达式;(3)若乙城位于甲地的下游,且距甲地171千米,试判断这河流污染是否会侵袭到乙城?若会,求河流污染发生后多长时间它将侵袭到乙城;若不会,请说明理由.5.如图,一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B.(1)若点P(﹣2,m)为第三象限内一个动点,请问△OPB的面积会变化吗?若不变,请求出面积;若变化,请说明理由.(2)在(1)的条件下,试用含m的代数式表示四边形APOB的面积;若△APB的面积是6,求m的值.6.如图,在平面直角坐标系中,直线y=2x+4交坐标轴于A、B两点,过x轴正半轴上一点C作直线CD交y轴正半轴于点D,且⊥AOB⊥⊥DOC.(1)求出直线CD对应的函数表达式;(2)点M是线段CD上一动点(不与点C、D重合),ON⊥OM交AB于点N,连接MN,判断⊥OMN的形状,并说明理由;(3)若E(﹣1,a)为直线AB上的点,P为y轴上的点,请问:直线CD上是否存在点Q,使得⊥EPQ是以E为直角顶点的等腰直角三角形,若存在,请求出此时Q点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线AB 的解析式为132y x =+,它与x 轴交于点B ,与y 轴交于点A ,直线y =-x 与直线AB 交于点C .动点P 从点C 出发,以每秒1个单位长度的速度沿射线CO 运动,运动时间为t 秒.(1)求⊥AOC 的面积;(2)设⊥P AO 的面积为S ,求S 与t 的函数关系式,并写出自变量的取值范围; (3)M 是直线OC 上一点,在平面内是否存在点N ,使以A ,O ,M ,N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系xOy 中,点(,0)A a ,(,)B c c ,(0,)C c ,且满足2(8)0a +=,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B 的坐标 ,AO 和BC 位置关系是 ; (2)当,P Q 分别在线段AO ,OC 上时,连接PB ,QB ,使2,PABQBCS S=求出点P 的坐标.(3)在,P Q 的运动过程中,当30CBQ ∠=时,请你直接写出OPQ ∠和PQB ∠的数量关系,9.如图,一次函数223y x =+的图象与x 轴和y 轴分别交于点A 和B ,直线y kx b =+经过点B 与点()2,0C .(1)求A 、B 点的坐标; (2)求直线y kx b =+的表达式;(3)在x 轴上有一动点(),0M t ,过点M 做x 轴的垂线与直线223y x =+交于点E ,与直线y kx b =+交于点F ,若EF =OB ,求t 的值.10.如图,在⊥ABC 中,⊥ABC =90°,AB =BC ,A (﹣6,0),B (0,3).(1)如图1,求点C 的坐标;(2)如图2,BC 交x 轴于点M ,AC 交y 轴于点N ,且BM =CM ,求证:⊥CMN +⊥BAM =90°;(3)如图3,若点A 不动,点B 在y 轴的正半轴上运动时,分别以OB 、AB 为直角边在第一、第二象限作等腰直角⊥BOF 与等腰直角⊥ABE ,其中⊥ABE =⊥OBF =90°,连接EF 交y 轴于P 点,问当点B 在y 轴正半轴上移动时,BP 的长度是否变化?若变化请说明理由,若不变化,请求出其长度.11.如图⊥,直线y x b =-+与x 轴、y 轴分别交于(6,0)A ,B 两点,过点B 的另一直线交x 轴的负半轴于点C ,且:3:1OB OC =.(1)求点C 的坐标; (2)求直线BC 的表达式;(3)直线(0)y ax a a =-≠交AB 于点E ,交BC 于点F ,交x 轴于点D ,是否存在这样的直线EF ,使BDEBDFS S=?若存在,求出a 的值,若不存在,说明理由.12.如图,已知平面直角坐标系内,点(2,0)A ,点(0,B ,连接AB .动点P 从点B 出发,沿线段BO 向O 运动,到达O时间为t 秒.(1)当点P 运动到OB 中点时,求此时AP 的解析式; (2)在(1)的条件下,若第二象限内有一点(,3)Q a ,当ABQABPSS=时,求a 的值;(3)如图2,当点P从B点出发运动时,同时有点M从A出发,以每秒1个单位的速度沿直线2x=向上运动,点P停止运动,点M也立即停止运动.过点P作PN y⊥轴交AB于点N.在运动过程中,是否存在t,使得AMN为等腰三角形?若存在,求出此时的t值,若不存在,说明理由.13.直线364y x=-+与x轴相交于点B,与y轴相交于点A.(1)求直线AB与坐标轴围成的面积;(2)在x轴上一动点P,使ABP△是等腰三角形,请直接写出所有P点的坐标,并求出如图所示AP PB=时点P的坐标;(3)直线3y x与直线AB相交于点C,与x轴相交于点D;点Q是直线CD上一点,若BQD的面积是BCD△的面积的两倍,求点Q的坐标.14.如图,已知直线364y x=-+与x轴交于点A,与y轴交于点B,点M是直线上一点,且在y轴左侧,点P从点M匀速向终点B运动,点Q从点A匀速向终点B运动,P,Q两点同时出发且同时到达终点B,点Q的运动速度是点P的2倍.设MP t=.(1)求点A,B,M的坐标;(2)过点P 作PH x ⊥轴,垂足为H ,在线段PH 上取一点C ,使6PC =,连结CQ . ⊥当CQ x ∥轴时,求t 的值;⊥当CPQ 为等腰三角形时,求t 的值.15.如图,已知直线y =2x +9与y 轴交于点A ,与x 轴交于点B ,直线CD 与x 轴交于点D (6,0),与直线AB 相交于点C (﹣3,n ).(1)求直线CD 的解折式;(2)点E 为直线CD 上任意一点,过点E 作EF ⊥x 轴交直线AB 于点F ,作EG ⊥y 轴于点G ,当EF =2EG 时,设点E 的横坐标为m ,直接写出m 的值;(3)连接CO ,点M 为x 轴上一点,点N 在线段CO 上(不与点O 重合).当⊥CMN =45°,且⊥CMN 为等腰三角形时,直接写出点M 的横坐标.16.如图,在平面直角坐标系中,一次函数y kx b =+的图象与x 轴交于点()30A -,,与y 轴交于点B ,且与正比例函数43y x =的图象交点为()4C a ,,求:(1)求a 的值与一次函数y kx b =+的解析式; (2)求BOC 的面积;(3)在y 轴上求一点P 使POC 为等腰三角形,请直接写出所有符合条件的点P 的坐标.17.如图,在平面直角坐标系中,直线AB 交x 轴于点A ,交y 轴于点B ;直线CD :1y x =+交y 轴于点C ,与直线AB 交于点D ,且24OB OA OC ==.(1)求直线AB 的解析式; (2)求BCD ∆的面积;(3)若点M 在此平面直角坐标系中,点N 在x 轴上,以AC 为边,点A 、C 、M 、N 为顶点作四边形,请直接写出此四边形为菱形时点M 的坐标.18.如图,在平面直角坐标系中,直线l :y =13x +b (b <0)与x 轴交于点C .点D 为直线l 上第一象限内一点,过D 作DE ⊥y 轴于点E ,CA ⊥DE 于点A .点B 在线段DA 上,DB =AC .连接CB ,P 为线段CB 上一动点,过点P 作PR ⊥x 轴,分别交x 轴、CD 、DE 于点R 、Q 、S .(1)若点D 坐标为(12,3). ⊥求直线BC 的函数关系式; ⊥若Q 为RS 中点,求点P 坐标.(2)在点P运动的过程中,PQCR的值是否变化?若不变,求出该值;若变化,请说明理由.19.如图,在平面直角坐标系xOy中,直线AB与x轴(3,0)、点B(0,4),点D在y轴的负半轴上,沿AD折叠直线BD,点B恰好落在x轴正半轴上的点C处.(1)直接写出AB的长;(2)求直线AB的函数表达式;(3)点C的坐标,点D的坐标;(4)y轴上是否存在一点P,使得S△P AB=12S△OCD?若存在,直接写出点P的坐标;若不存在,说明理由20.已知:如图,A、B两点坐标为(0,4),B(4,0),P为线段AB上的任一点,过P作OP的垂线与过B点的x轴的垂线交于点Q,OQ与直线AB交于点M.请探究解答下列问题:(1)判断⊥OPQ的形状并证明;(2)三条线段AP、PM、BM之间存在何种相等的数量关系?证明你的结论.(3)当点P在线段AB﹣BQ的值是否发生变化?若不变,请求出其值;若变化,请说明理由.参考答案:1.(1)3 (2)33y x 42=+ (3)322.(1)A (3,0),B (0,3);(2)三角形ABC 的面积为92; (3)点P 坐标为(8,8)或(-5,-5).3.(1)BO =10(2)BD 的解析式为:152y x =-+ (3)存在,当ON =OE 时,点N 的坐标为(4,0)或(4-,0),相应的点M 的坐标为(4,3)或(4-,7);当EN =EO 时,点N 的坐标为(245-,0),相应的点M 的坐标为(245-,375);当NE =NO 时,点N 的坐标为(103-,0),相应的点M 的坐标为(103-,203). 4.(1)9;(3)河流污染发生26h 后将侵袭到乙城.5.(1)不变,面积是3 (2)3922APOB S m =+四边形-,m =-3 6.(1)函数对应的表达式为:122y x =-+; (2)⊥OMN 是等腰直角三角形,证明见详解;(3)存在,Q (﹣2,3)或(2,1),理由见详解;7.(1)⊥AOC 的面积=3(2)3,03,4t S t ⎧≤≤⎪⎪=⎨⎪-⎪⎩> (3)存在,133,22N ⎛⎫ ⎪⎝⎭,()23,0N -,3N ⎝⎭,4N ⎛ ⎝⎭ 8.(1)()4,4,--BC //AO(2)点P 的坐标为(﹣4,0)(3)∠OPQ 和∠PQB 的数量关系是∠OPQ =∠PQB ﹣30°或∠OPQ =150°﹣∠PQB ; 9.(1)A (-3,0),B (0,2);(2)y =-x +2; (3)65t =± 10.(1)C 点坐标(3,﹣3)(3)不变,311.(1)C (-2,0)(2)y =3x +6 (3)37a =12.(1)y =(2)1(3)t =43或8- 13.(1)24(2)(18,0)或(-2,0)或(-8,0)或(74,0) (3)(456677,)(876677-,-) 14.(1)(8,0),(0,6)A B ,(4,9)M - (2)⊥53t =;⊥3或103或2.6. 15.(1)y =−13x +2; (2)m =-2113或-21;(3)点M 的横坐标为-3或16.(1)a =3,一次函数的解析式为y =23x +2;(2)3(3)当点P 的坐标为(0,5)或(0,-5)或(0,258)或(0,8)时,三角形POC 是等腰三角形.17.(1)y =-2x +4(2)321)或1) 18.(1)⊥1322y x =-;⊥15(2P ,9)4 (2)结论:16PQ CR = 19.(1)5 (2)y =﹣43x +4 (3)(8,0),(0,﹣6)(4)存在,(0,12)或(0,﹣4) 20.(1)⊥OPQ 是等腰直角三角形(2)PM 2=BM 2+AP 2-BQ 的值没有发生变化,定值为4.。
第12章 全等三角形 —几何压轴专题练习(一)八年级数学人教版上册
第12章《全等三角形》——几何压轴专题练习(一)1.如图,△ABC的角平分线AD、BE相交于点P,(1)在图1中,分别画出点P到边AC、BC、BA的垂线段PF、PG、PH,这3条线段相等吗?为什么?(2)在图2中,∠ABC是直角,∠C=60°,其余条件都不变,请你判断并写出PE与PD 之间的数量关系,并说明理由.2.如图1,图2,在△ABC中,∠ACB=90°,AC=BC,AB=8,点D是AB边的中点,点E 是AB边上一动点(点E不与点A、B重合),连接CE,过点B作BF⊥CE于F,交射线CD 于点G.(1)当点E在点D的左侧运动时,(图1),求证:△ACE≌△CBG;(2)当点E在点D的右侧运动时(图2),(1)中的结论是否成立?请说明理由;(3)当点E运动到何处时,BG=5,试求出此时AE的长.3.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.4.在△ABC中,AB=AC,点D是BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,若∠BAC=90°,①求证;△ABD≌△ACE;②求∠BCE的度数.(2)设∠BAC=α,∠BCE=β.如图2,则α,β之间有怎样的数量关系?请直接写出你的结论.5.已知:在△ABC中,AC=BC,∠ACB=90°,CD平分∠BCA且CD⊥AB,点E是AB边上一点.(1)求∠CAB和∠CBA的度数;(2)直线BF⊥直线CE于点F,交CD于点G(如图①),求证:AE=CG;(3)直线AH⊥直线CE,垂足为点H,交CD的延长线于点M(如图②),找出图中与BE 相等的线段,并证明.6.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,猜想线段DE、AD与BE有怎样的数量关系?请写出这个关系(不用证明);(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.7.如图所示,BD、CE是△ABC的高,点P在BD的延长线上,CA=BP,点Q在CE上,QC=AB.(1)探究PA与AQ之间的关系;(2)若把(1)中的△ABC改为钝角三角形,AC>AB,∠A是钝角,其他条件不变,上述结论是否成立?画出图形并证明你的结论.8.已知点P是Rt△ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F.(1)如图1,当点P为AB的中点时,连接AF,BE.求证:四边形AEBF是平行四边形;(2)如图2,当点P不是AB的中点,取AB的中点Q,连接EQ,FQ.试判断△QEF的形状,并加以证明.9.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.10.在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)①如图(1),当∠B=60°,∠ACB=90°,则∠AFC=;②如图(2),如果∠ACB不是直角,∠B=60°时,请问在①中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(2)如图(3),在②的条件下,请猜想EF与DF的数量关系,并证明你的猜想.11.已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC,DF,CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上的一点,直线AE,CD相交于点P,且∠APD=45°,求证:BD=CE.12.已知∠MAN=120°,AC平分∠MAN.(1)在图1中,若∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.13.如图,CD和BE是△ABC的两条高,∠BCD=45°,BF=FC,BE与DF、DC分别交于点G、H,∠ACD=∠CBE.(1)证明:AB=BC;(2)判断BH与AE之间的数量关系,并证明你的结论;(3)结合已知条件,观察图形,你还能发现什么结论?请写出两个(不与前面结论相同).14.如图(1),在等边△ABC的顶点B、C处各有一只蜗牛,它们同时出发分别以每分钟1个单位的速度由B向C和由C向A爬行,其中一只蜗牛爬到终点s时,另一只也停止运动,经过t分钟后,它们分别爬行到D,P处,请问:(1)在爬行过程中,BD和AP始终相等吗?为什么?(2)问蜗牛在爬行过程中BD与AP所成的∠DQA大小有无变化?请证明你的结论.(3)若蜗牛沿着BC和CA的延长线爬行,BD与AP交于点Q,其他条件不变,如图(2)所示,蜗牛爬行过程中的∠DQA大小变化了吗?若无变化,请证明.若有变化,请直接写出∠DQA的度数.15.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE 有怎样的数量关系和位置关系?请说明理由.。
2024八年级数学上册第二部分期末专题复习专题2图形与几何习题课件新版新人教版
(1)图中与 MF 相等的线段是
;
CE
(2)当 BF + CE 取最小值时,∠ AFB
= 95
1
2
3
4
°.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
19. [2023北京海淀区期中] 如图,在△ ABC 中, AC = BC ,
∠ ACB =90°, AD 平分∠ CAB ,交 BC 于点 D . 点 A
与点 E 关于直线 BC 对称,连接 BE , CE ,延长 AD 交
BE 于点 F .
(2)求证:△ BDF 是等腰三角形;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
(2)证明:∵ AC = BC ,∠ ACB =90°,
∴∠ CAB =∠ CBA =45°.
∵ AD 是∠ CAB 的平分线,
∴△ BDF 是等腰三角形.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
19. [2023北京海淀区期中] 如图,在△ ABC 中, AC = BC ,
∠ ACB =90°, AD 平分∠ CAB ,交 BC 于点 D . 点 A
新人教版八年级数学下册考点综合专题:一次函数与几何图形的综合问题
考点综合专题:一次函数与几何图形的综合问题——代几综合,明确中考风向标◆类型一一次函数与面积问题1.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B 的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.2.如图,直线y=-2x+3与x轴相交于点A,与y轴相交于点B.【易错7】(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.3.如图,直线y=-x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),点P(x,y)是在第一象限内直线y=-x+10上的一个动点.(1)求△OPA的面积S与x的函数解析式,并写出自变量x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.◆类型二一次函数与三角形、四边形的综合4.(2016·长春中考)如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(-1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为________.第4题图第5题图5.(2016·温州中考)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是()A.y=x+5 B.y=x+10C.y=-x+5 D.y=-x+10◆类型三一次函数与几何图形中的规律探究问题6.(2017·安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y 轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为________.第6题图第7题图7.★(2016·潍坊中考)在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点B n的坐标是________.参考答案与解析1.16解析:如图,∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴在Rt△ABC中,由勾股定理得AC=BC2-AB2=4,∴A′C′=4.∵点C′在直线y=2x -6上,∴2x -6=4,解得x =5.即OA ′=5,∴CC ′=AA ′=5-1=4.∴S ▱BCC ′B ′=CC ′·CA =4×4=16.即线段BC 扫过的面积为16.2.解:(1)令y =0,则-2x +3=0,解得x =32;令x =0,则y =3,∴点A 的坐标为⎝⎛⎭⎫32,0,点B 的坐标为(0,3).(2)由(1)得点A ⎝⎛⎭⎫32,0,∴OA =32,∴OP =2OA =3,∴点P 的坐标为(3,0)或(-3,0),∴AP =OP -OA =32或AP =OP +OA =92,∴S △ABP =12AP ·OB =12×92×3=274或S △ABP =12AP ·OB =12×32×3=94.综上所述,△ABP 的面积为274或94. 3.解:(1)∵点P 在直线y =-x +10上,且点P 在第一象限内,∴x >0且y >0,即-x+10>0,解得0<x <10.∵点A (8,0),∴OA =8,∴S =12OA ·|y P |=12×8×(-x +10)=-4x +40(0<x <10).(2)当S =10时,即-4x +40=10,解得x =152.当x =152时,y =-152+10=52,∴当△OP A 的面积为10时,点P 的坐标为⎝⎛⎭⎫152,52.4.-2 5.C6.2n +1-2 解析:由题意得OA =OA 1=2,∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)….∵2=22-2,6=23-2,14=24-2,…∴B n的横坐标为2n +1-2.故答案为2n +1-2.7.(2n -1,2n -1) 解析:∵y =x -1与x 轴交于点A 1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 是正方形,∴A 1B 1=OA 1=1,∴点B 1的坐标为(1,1).∵C 1A 2∥x 轴,点A 2在直线y =x -1上,∴点A 2的坐标为(2,1).∵四边形A 2B 2C 2C 1是正方形,∴A 2B 2=A 2C 1=2,∴点B 2的坐标为(2,3),同理可得点B 3的坐标为(4,7).∵B 1(20,21-1),B 2(21,22-1),B 3(22,23-1),…,∴点B n 的坐标为(2n -1,2n -1).(赠品,不喜欢可以删除)数学这个家伙即是科学界的“段子手”,又是“心灵导师”一枚。
人教版八年级数学上册期末专题复习:以等腰三角形为桥梁的几何题例析(含解析、点评、跟踪训练)
新人教版八年数学上册期末专题复习资料以等腰三角形为桥梁的几何题例析新人教版八年级数学上册前面三个单元都是几何内容,其中以等腰三角形为桥梁的题所占比例较大,在期末统考试题中高频出现,也是中考的热点题型;等腰三角形含特殊等腰三角形等边三角形和等腰直角三角形的“等对等关系” 和“三线合一”是桥梁作用的支撑. 题目一. 平分角添加“垂直”,“平行”元素构成等腰三角形的举例.例1. 如图,⊿ABC 中,过点C 作出∠BAC 的平分线的垂线于点D ,交AB 于点E .=BC 7 ⑴.若∠=346,∠=B 39;求∠BCE 的度数; ⑵.若==AB 12,AC 10;求BE 的长. 分析:对于⑴问利用12∠=∠和∠+∠=1490,∠+∠=2390可以得到:∠=∠43 ;因为∠=∠+∠4B BCE ,结合∠=346,∠=B 39 可以求出∠=-=BCE 46397.⑵问结合⑴问∠=∠43可以得出=AE AC ,所以=-=-=-=BE AB AE AB AE 12102.例2.已知⊿ABC 中,∠=ACB 90,⊥CD AB 于点D ,AE 平分∠BAC ,交CD 于点F ,⊥EG AB 于点G .求证:=EG CF .分析:由AE 平分∠BAC ,∠=ACB 90,⊥EG AB 可以得出: =CE GE ;根据直角三角形的锐角互余和对顶角相等可以得到∠+∠=CEA CAE 90, ∠+∠=CFE DAF 90,而AE 平分∠BAC 可以得到:∠=∠CAE DAE ,所以∠=∠CFE CEF ,所以=CE CF ;综上可证:=EG CF . 点评:例1、例2都是在平分线的基础上添加“垂直”条件,利用互余关系和平分角来得到同一个三角形的两角相等,从而得到等腰三角形为桥梁解决问题.例3.如图,在⊿ABC 中,∠=∠ABC 2C ,BD 平分∠ABC 交AC 于点D ,⊥AE BC 于点E ;求证:=AC 2BE .解析: 过点A 作AF ∥BC 交BD 的延长线于点F .∴∠=∠1F ,∠=∠2C∵BD 平分∠ABC 交AC 于点D本题有3个等腰三角形,其中通过作平行线构建出的等腰⊿ABF 是关键的一环;当然本题方法不止一种.特别注意当有平行线和角平分线结合,往往要通过其中构建出的等腰三角形为桥梁解决问题.追踪练习: 1. 如图,在△ABC ,B C ∠∠、的平分线交于点P ,过点P 作DE ∥BC ,别交AB AC 、于点D E 、两点,已知,,AB a AC b BC 10===,则△ADE 的周长为 ( )A. 10B. 2a 2b +C.a b +D.a b 10++ 2. 如图,⊿ABC 中,过点C 作出∠BAC 的平分线的垂线于点D . 求证:∠>∠1C3.在四边形ABCD 中,AB ∥CD BD AD ⊥,BD 平分ABC ∠,,=∠=BC AD C 120,CD 2cm =;求AB 的长?M .138,则MAB ∠A5.如图,已知△ABC 是等腰直角三角形,∠=BAC 90 ,BE 平分∠ABC ,⊥DE BC ,垂足为点D .⑴.求证:⊥AD BE ; ⑵.如果=BC 10 ,求+AB AE 的长.题目二.遇“垂直+中点”型以及“T 字”型结构连起的等腰三角形举例.例1.如图,在四边形ABCD 中,点E 是边BC 的中点,点F 是边CD 的中点,且有AE BC,AF CD ⊥⊥ . ⑴.求证:AB AD =;⑵.若BCD 114∠= ,求BAD ∠的度数.解析:⑴.连结AC .∵点E 是边BC 的中点,AE BC ⊥ ∴AB AC = (垂直平分线的性质) 同理AD AC = ∴=AB AD⑵.∵AB AC,AD AC == ,且有AE BC,AF CD ⊥⊥。
人教版八年级上册期末数学备考---几何综合 Word版
人教版八年级上册期末数学备考----几何综合(Word版)1.如图,在△ABC 中,AB=AC,∠BAC=90°,点D 是边BC 上的动点,连接AD,点C 关于直线AD 的对称点为点E,射线BE 与射线AD 交于点F.(1)在图中,依题意补全图形;(2)记∠DAC=α(α<45°),求∠ABF的大小;(用含α的式子表示)(3)若△ACE 是等边三角形,猜想EF 和BC 的数量关系,并证明.2.如图,CN 是等边△ABC 的外角∠ACM 内部的一条射线,点A 关于CN 的对称点为D,连接AD,BD,CD,其中AD,BD 分别交射线CN 于点E,P.(1)依题意补全图形;(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);(3)用等式表示线段PB,PC 与PE 之间的数量关系,并证明.3.数学老师布置了这样一道作业题:在△ABC 中,AB=AC≠BC,点D 和点A 在直线BC 的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB 的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30° 时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB 的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D 和点A 在直线BC 的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为(直接写出结果).4.如图1,在△ABC 中,∠ACB=2∠B,∠BAC 的平分线AO 交BC 于点D,点H 为AO上一动点,过点H 作直线l⊥AO 于H,分别交直线AB、AC、BC 于点N、E、M.( 1 )当直线l 经过点 C 时(如图 2 ),证明:BN =CD ;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD 之间的等量关系.5.如图1,在等腰直角三角形ABC 中,AB=AC,∠BAC=90°,点D 在BC 边上,连接AD,AE⊥AD,AE=AD,连接CE,DE.(1)求证:∠B=∠ACE;(2)点A 关于直线CE 的对称点为M,连接CM,EM.①补全图形并证明∠EMC=∠BAD;②利用备用图进行画图、试验、探究,找出当D,E,M 三点恰好共线时点D 的位置.请直接写出此时∠BAD 的度数,并画出相应的图形.6.在△ABC 中,AB=AC,在△ABC 的外部作等边三角形△ACD,E 为AC 的中点,连接DE 并延长交BC 于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF 的度数;(2)如图2,∠ACB 的平分线交AB 于点M,交EF 于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.7.在△ABC 中,∠A=60°,BD,CE 是△ABC 的两条角平分线,且BD,CE 交于点F.(1)如图1,用等式表示BE,BC,CD 这三条线段之间的数量关系,并证明你的结论;小东通过观察、实验,提出猜想:BE+CD=BC.他发现先在BC 上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD 即可.①下面是小东证明该猜想的部分思路,请补充完整:ⅰ)在BC 上截取BM,使BM=BE,连接FM,则可以证明△BEF 与全等,判定它们全等的依据是;ⅱ)由∠A=60°,BD,CE 是△ABC 的两条角平分线,可以得出∠EFB=°;…②请直接利用ⅰ),ⅱ)已得到的结论,完成证明猜想BE+CD=BC的过程.(2)如图2,若∠ABC=40°,求证:BF=CA.8.在等边△ABC 中,点D 在BC 边上,点E 在AC 的延长线上,DE=DA(如图1)(1)求证:∠BAD=∠EDC;(2)点E 关于直线BC 的对称点为M,连接DM,AM.①依题意将图2 补全;②小姚通过观察,实验提出猜想:在点D 运动的过程中,始终有DA=AM,小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明DA=AM,只需证△ADM 是等边三角形;想法2:连接CM,只需证明△ABD≌△ACM 即可.请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可)9.已知:△ABC 是等边三角形.(1)如图1,点D 在AB 边上,点E 在AC 边上,BD=CE,BE 与CD 交于点F.试判断BF 与CF 的数量关系,并加以证明;(2)点D 是AB 边上的一个动点,点E 是AC 边上的一个动点,且BD=CE,BE 与CD 交于点F.若△BFD 是等腰三角形,求∠FBD 的度数.10.已知:在△ABC 中,∠ABC<60°,CD 平分∠ACB 交AB 于点D,点E 在线段CD 上(点E不与点C、D重合),且∠EAC=2∠EBC.(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=°,∠AEC=°.(2)如图2,①求证:AE+AC=BC;②若∠ECB=30°,且AC=BE,求∠EBC 的度数.11.在△ABC 中,AD 是△ABC 的角平分线.(1)如图1,过C 作CE∥AD 交BA 延长线于点E,若F 为CE 的中点,连接AF,求证:AF⊥AD;(2)如图2,M 为BC 的中点,过M 作MN∥AD 交AC 于点N,若AB=4,AC=7,求NC 的长.12.如图,在△ABC 中,AC=BC,∠ACB=90°,D 为△ABC 内一点,∠BAD=15°,AD =AC,CE⊥AD 于E,且CE=5.(1)求BC 的长;(2)求证:BD=CD.13.在Rt△ABC 中,∠ACB=90°,∠A=30°,BD 是△ABC 的角平分线,DE⊥AB 于点E.(1)如图1,连接EC,求证:△EBC 是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG 交DE 延长线于点G.请你在图2 中画出完整图形,并直接写出MD,DG 与AD 之间的数量关系;(3)如图3,点N 是线段AD 上的一点,以BN 为一边,在BN 的下方作∠BNG=60°,NG 交DE 延长线于点G.试探究ND,DG 与AD 数量之间的关系,并说明理由.14.已知:如图,在△ABC 中,如果∠A 是锐角,点D,E 分别在AB,AC 上,且∠DCB=求证:BD=CE.15.在△ABC 中,AB>BC,直线l 垂直平分AC.(1)如图1,作∠ABC 的平分线交直线l 于点D,连接AD,CD.①补全图形;②判断∠BAD 和∠BCD 的数量关系,并证明.(2)如图2,直线l 与△ABC 的外角∠ABE 的平分线交于点D,连接AD,CD.求证:∠BAD=∠BCD.16.在平面直角坐标系xOy 中,△ABO 为等边三角形,O 为坐标原点,点A 关于y 轴的对称点为D,连接AD,BD,OD,其中AD,BD 分别交y 轴于点E,P.(1)如图1,若点B 在x 轴的负半轴上时,直接写出∠BDO 的度数;(2)如图2,将△ABO 绕点O 旋转,且点A 始终在第二象限,此时AO 与y 轴正半轴夹角为α,60°<α<90°,依题意补全图形,并求出∠BDO的度数;(用含α的式子表示)(3)在第(2)问的条件下,用等式表示线段BP,PE,PO之间的数量关系.(直接写出结果17.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P 作PE⊥AC 于E,Q 为BC 延长线上一点,且AP=CQ,连接PQ 交AC 于D,求DE 的长.小明同学经过认真思考后认为,可以通过过点P 作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE 的长.(2)【类比探究】老师引导同学继续研究:1.等边△ABC 边长为2,当P 为BA 的延长线上一点时,作PE⊥CA 的延长线于点E,Q 为边BC 上一点,且AP=CQ,连接PQ 交AC 于D.请你在图2 中补全图形并求DE 的长.2.已知等边△ABC,当P 为AB 的延长线上一点时,作PE⊥射线AC 于点E,Q 为(①BC 边上;②BC 的延长线上;③CB 的延长线上)一点,且AP=CQ,连接PQ 交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)18.如图,在等边三角形ABC 的外侧作直线AP,点C 关于直线AP 的对称点为点D,连接AD,BD,其中BD 交直线AP 于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB 的度数;(3)连结CE,写出AE,BE,CE 之间的数量关系,并证明你的结论.19.如图1,在△ABC 中,∠A 的外角平分线交BC 的延长线于点D.(1)线段BC 的垂直平分线交DA 的延长线于点P,连接PB,PC.①利用尺规作图补全图形1,不写作法,保留痕迹;②求证:∠BPC=∠BAC;(2)如图2,若Q 是线段AD 上异于A,D 的任意一点,判断QB+QC 与AB+AC 的大小,并予以证明.第10页(共17页)20.如图,在△ABC 中,BA=BC,点D 为△ABC 外一点,连接DA,∠DAC 恰好为25°,线段AD 沿直线AC 翻折得到线段AD′,过点C 作AD 的平行线交AD′于点E,连接BE.(1)求证:AE=CE;(2)求∠AEB 的度数.21.如图①,在△ABC 中,D、E 分别是AB、AC 上的点,AB=AC,AD=AE,然后将△ADE 绕点A 顺时针旋转一定角度,连接BD,CE,得到图②,将BD、CE 分别延长至M、N,使BD,EN=CE,得到图③,请解答下列问题:(1)在图②中,BD 与CE 的数量关系是;(2)在图③中,猜想AM 与AN 的数量关系,∠MAN 与∠BAC 的数量关系,并证明你的猜想.22.在等边△ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC.(1)若点E 是AB 的中点,如图1,求证:AE=DB.(2)若点E 不是AB 的中点时,如图2,试确定线段AE 与DB 的大小关系,并写出证明过程.23.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1 中,若C 是∠MON 的平分线OP 上一点,点A 在OM 上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC 和△OAC,参考上面的方法,解答下列问题:如图2,在非等边△ABC 中,∠B=60°,AD,CE 分别是∠BAC,∠BCA 的平分线,且AD,CE 交于点F,求证:AC=AE+CD.24.如图:在Rt△ABC 中,AB=AC,∠BAC=90°,O 为BC 的中点.(1)写出点O 到△ABC 的三个顶点A、B、C 距离之间的关系;(2)如果点M、N 分别在线段AB、AC 上移动,移动中保持AN=BM,请判断△OMN 的形状,并证明你的结论.25.如图,△ABC 是等边三角形,△ADC 与△ABC 关于直线AC 对称,AE 与CD 垂直交BC 的延长线于点E,∠EAF=45°,且AF 与AB 在AE 的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE 上找一点P,使点P 到点B,点C 的距离和最短;②求证:点D 到AF,EF 的距离相等.26.如图,△ABC 中,AB=AC,AD⊥BC 于点D,延长AB 至点E,使∠AEC=∠DAB.判断CE 与AD 的数量关系,并证明你的结论.27.已知C 是线段AB 垂直平分线m 上一动点,连接AC,以AC 为边作等边三角形ACD,点D 在直线AB 的上方,连接DB 与直线m 交于点E,连接BC,AE.(1)如图1,点C 在线段AB 上.①根据题意补全图1②求证:∠EAC=∠EDC;(2)如图2,点C 在直线AB 的上方,0°<∠CAB<30°,用等式表示线段BE,CE,DE 之间的数量关系,并证明.28.在等边△ABC 外作射线AD,使得AD 和AC 在直线AB 的两侧,∠BAD=α(0°<α<180°),点B关于直线AD的对称点为P,连接PB,PC.(1)依题意补全图1;(2)在图1 中,求∠BPC 的度数;(3)直接写出使得△PBC 是等腰三角形的α的值.29.在△DEF 中,DE=DF,点B 在EF 边上,且∠EBD=60°,C 是射线BD 上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接AC.(1)当点C 在线段BD 上时,①若点C 与点D 重合,请根据题意补全图1,并直接写出线段AE 与BF 的数量关系为;②如图2,若点C 不与点D 重合,请证明AE=BF+CD;(2)当点C 在线段BD 的延长线上时,用等式表示线段AE,BF,CD 之间的数量关系(直接写出结果,不需要证明).30.解决下面问题:如图,在△ABC 中,∠A 是锐角,点D,E 分别在AB,AC 上,且∠A,BE 与CD 相交于点O,探究BD 与CE 之间的数量关系,并证明你的结论.小新同学是这样思考的:在平时的学习中,有这样的经验:假如△ABC 是等腰三角形,那么在给定一组对应条件,如图a,BE,CD 分别是两底角的平分线(或者如图b,BE,CD 分别是两条腰的高线,或者如图c,BE,CD 分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.请参考小新同学的思路,解决上面这个问题.31.如图,在△ABC 中,AB=AC,P 为△ABC 内一点,且∠BAP=70°,∠ABP=40°,(1)求证:△ABP 是等腰三角形;(2)连接PC,当∠PCB=30°时,求∠PBC 的度数.32.如图,在等边三角形ABC右侧作射线CP,∠ACP=α(0<α<60°),点A关于射线CP 的对称点为点D,BD 交CP 于点E,连接AD,AE.(1)求∠DBC的大小(用含α的代数式表示);(2)在α(0°<α≤60°)的变化过程中,∠AEB 的大小是否发生变化?如果发生变化,请直接写出变化的范围;如果不发生变化,请直接写出∠AEB 的大小;(3)用等式表示线段AE,BD,CE 之间的数量关系,并证明.33.如图,在等边△ABC 中,点D 是线段BC 上一点作射线AD,点B 关于射线AD 的对称点为E,连接EC 并延长,交射线AD 于点F.(1)补全图形;(2)求∠AFE 的度数;(3)用等式表示线段AF、CF、EF 之间的数量关系,并证明.34.△ABC 是等边三角形,AC=2,点C 关于AB 对称的点为C',点P 是直线C'B 上的一个动点,连接AP,作∠APD=60°交射线BC 于点D.(1)若点P在线段C'B上(不与点C',点B重合).①如图1,若点P 是线段C'B 的中点,则AP 的长为;②如图2,点P 是线段C'B 上任意一点,求证:PD=PA;(2)若点P 在线段C'B 的延长线上.①依题意补全图3;②直接写出线段BD,AB,BP 之间的数量关系为:.35.等边△ABC 的边长为4,D 是射线BC 上任一点,线段AD 绕点D 顺时针旋转60°得到线段DE,连接CE.(1)当点D 是BC 的中点时,如图1,判断线段BD 与CE 的数量关系,请直接写出结论:(不必证明);(2)当点D 是BC 边上任一点时,如图2,请用等式表示线段AB,CE,CD 之间的数量关系,并证明;(3)当点D 是BC 延长线上一点且CD=1 时,如图3,求线段CE 的长.。
2021年人教版八年级数学(上册)期末几何基础必刷题 含答案
2021年人教版八年级数学(上册)期末几何基础必刷题一.选择题1.不是利用三角形稳定性的是()A.自行车的三角形车架B.三角形房架C.照相机的三脚架D.学校的栅栏门2.下列各组线段中能围成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.14cm,12cm,20cm D.5cm,5cm,11cm3.下列图形中,轴对称图形的个数是()A.1个B.2个C.3个D.4个4.一个多边形每一个外角都等于18°,则这个多边形的边数为()A.10B.12C.16D.205.下列图形中AD是△ABC的高的是()A.B.C.D.6.在△ABC中,若∠A=75°,∠B=40°,则∠C的度数为()A.65°B.70°C.75°D.80°7.已知△ABC≌△DEF,∠A=30°,∠F=85°,则∠B的度数是()A.30°B.85°C.65°D.55°8.如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.49.如图,点O是△ABC内一点,∠A=80°,∠ABO=15°,∠ACO=20°,则∠BOC等A.115°B.100°C.95°D.80°10.满足下列条件的△ABC中,不是直角三角形的是()A.∠A=2∠B=3∠C B.∠B+∠A=∠CC.两个内角互余D.∠A:∠B:∠C=2:3:511.如图,五边形ABCDE中,AE∥CD.若∠A=∠C=110°,则∠B的度数为()A.70°B.110°C.140°D.150°12.点(﹣4,3)关于x轴对称的点的坐标为()A.(4,3)B.(4,﹣3)C.(﹣4,﹣3)D.无法确定13.根据下列条件,能画出唯一△ABC的是()A.AB=3,BC=4,CA=7B.AC=4,BC=6,∠A=60°C.∠A=45°,∠B=60°,∠C=75°D.AB=5,BC=4,∠C=90°14.下列推理中,不能判断△ABC是等边三角形的是()A.∠A=∠B=∠C B.AB=AC,∠B=60°C.∠A=60°,∠B=60°D.AB=AC,且∠B=∠C15.如图,在△ABC和△DEC中,已知CB=CE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.AB=DE,∠B=∠E B.AB=DE,AC=DCC.AB=DE,∠A=∠D D.∠A=∠D,∠B=∠E16.如图所示,∠1=∠2,∠3=∠4,则下列结论正确的有()①AD平分∠BAF;②AF平分∠BAC;③AE平分∠DAF;④AF平分∠DAC;⑤AE平A.4个B.3个C.2个D.1个17.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.5B.6C.3D.418.△ABC中,AC=5,BC=14,则AB边的取值范围是()A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<19 19.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定20.等腰三角形两边的长分别为3cm和5cm,则这个三角形的周长是()A.11cm B.13cm C.11cm或13cm D.不确定21.如图,点O是△ABC的两个外角平分线的交点,下列结论:①点O在∠A的平分线上;②点O到△ABC的三边的距离相等;③OB=OC.以上结论正确的有()A.②③B.①②C.①③D.①②③22.如图,CD、BD分别平分∠ACE、∠ABC,∠A=70°,则∠BDC=()A.35°B.25°C.70°D.60°二.填空题23.如图,建高层建筑需要用塔吊来吊建筑材料,塔吊的上部是三角形结构,其中的数学原理是.24.小涛在家打扫卫生,一不小心把一块三角形的玻璃台板打碎了,如图所示,如果要配一块完全一样的玻璃,至少要带的玻璃碎片序号是.25.在△ABC中,∠A的平分线交BC于点D,∠B=60°,∠C=50°,则∠ADB=.26.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=65°,∠C=45°,则∠DAE=度.27.已知△ABC≌△A'B'C',∠A=60°,∠B=50°,则∠C'=.28.如图,将一副三角板如图摆放,则图中∠1的度数是度.29.如图,在△ABC中,AB=9,AC=3,D为BC中点,则线段AD的范围是.30.已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为.31.在平面直角坐标系中,若点P关于x轴的对称点Q的坐标是(﹣3,2),则点P关于y 轴的对称点R的坐标是.32.如图,在△ABC中,AB的垂直平分线MN交AC于点D,连接BD,若AC=9,BC=5,则△BDC的周长是.三.解答题33.在下列各图中分别补一个小正方形,使其成为不同的轴对称图形.34.已知△ABC的三边长分别为3、5、a,化简|a+1|﹣|a﹣8|﹣2|a﹣2|.35.已知点A(a+2b,﹣1),B(﹣2,a﹣b),若点A、B关于y轴对称,求a+b的值.36.如图,在△ABC和△DCB中,AB⊥AC,CD⊥BD,AB=DC,AC与BD交于点O.求证:AC=BD.37.如图,已知OC平分∠MON,点A、B分别在射线OM,ON上,且OA=OB.求证:△AOC≌△BOC.38.如图,△ABC中,∠C=90°,DE垂直平分AB,若∠B=25°,求∠CAE的度数.39.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC交BC于点E,∠B=28°,∠C=52°,求∠DAE的度数.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠BAC+∠B+∠C=180°(),∴∠BAC=180°﹣52°﹣28°=(等式的性质).∵AE平分∠BAC(已知),∴∠CAE==().∵AD⊥BC(已知),∴=90°.∵∠CAD=180°﹣∠ADC﹣∠C=180°﹣90°﹣52°=38°,∴∠DAE=∠CAE﹣=.40.如图,在△ABC中,∠B=30°,∠C=70°,AD是△ABC的高,AE平分∠BAC交BC于E,求∠DAE的度数.41.如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D.(1)求∠ADC的度数;(2)求证:DC=2DB.42.如图,∠1=∠2,∠A=∠B,AE=BE,点D在边AC上,AE与BD相交于点O;(1)求证:△AEC≌△BED;(2)若∠2=40°,求∠C的度数.参考答案一.选择题1.解:A、自行车的三角形车架是利用三角形的稳定性,故此选项不合题意;B、三角形房架是利用三角形的稳定性,故此选项不合题意;C、照相机的三脚架是利用三角形的稳定性,故此选项不符合题意;D、学校的栅栏门不是利用三角形的稳定性,故此选项符合题意;故选:D.2.解:A、3+4<8,不能组成三角形,故此选项错误;B、8+7=15,不能组成三角形,故此选项错误;C、14+12>20,能组成三角形,故此选项正确;D、5+5<11,不能组成三角形,故此选项错误;故选:C.3.解:第1个图形,是轴对称图形;第2个图形,不是轴对称图形;第3个图形,不是轴对称图形;第4个图形,是轴对称图形.故选:B.4.解:∵一个多边形的每一个外角都等于18°,且多边形的外角和等于360°,∴这个多边形的边数是:360°÷18°=20,故选:D.5.解:A、AD不是△ABC的高,故此选项不合题意;B、AD不是△ABC的高,故此选项不合题意;C、AD不是△ABC的高,故此选项不合题意;D、AD是△ABC的高,故此选项符合题意;故选:D.6.解:∵∠A+∠B+∠C=180°,∠A=75°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣75°﹣40°=65°,故选:A.7.解:∵△ABC≌△DEF,∴∠C=∠F=85°,∴∠B=180°﹣∠A﹣∠C=65°,故选:C.8.解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.9.解:连接AO并延长交BC于点E,如图所示.∵∠BOE=∠BAO+∠ABO,∠COE=∠CAO+∠ACO,∴∠BOC=∠BOE+∠COE=∠BAO+∠ABO+∠CAO+∠ACO.又∵∠BAC=∠BAO+∠CAO=80°,∠ABO=15°,∠ACO=20°,∴∠BOC=∠BAC+∠ABO+∠ACO=80°+15°+20°=115°.故选:A.10.解:A、设∠C=2x,则∠B=3x,∠A=6x,∴2x+3x+6x=180°,∴x=°,∴最大的角∠A=6x=°≈98.18°,∴该三角形不是直角三角形,选项A符合题意;B、∵∠B+∠A=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴最大的角∠C=90°,∴该三角形是直角三角形,选项B不符合题意;C、∵两个内角互余,且三个内角的和为180°,∴最大角=180°﹣90°=90°,∴该三角形是直角三角形,选项C不符合题意;D、设∠A=2y,则∠B=3y,∠C=5y,∴2y+3y+5y=180°,∴y=18°,∴最大角∠C=5y=5×18°=90°,∴该三角形是直角三角形,选项D不符合题意.故选:A.11.解:∵AE∥CD,∴∠D+∠E=180°,∵∠A+∠B+∠C+∠D+∠E=(5﹣2)×180°=540°,∠A=∠C=110°,∴∠B=540°﹣180°﹣110°﹣110°=140°.故选:C.12.解:点(﹣4,3)关于x轴对称的点的坐标为(﹣4,﹣3).故选:C.13.解:A、不满足三边关系,本选项不符合题意.B、边边角三角形不能唯一确定.本选项不符合题意.C、没有边的条件,三角形不能唯一确定.本选项不符合题意.D、斜边直角边三角形唯一确定.本选项符合题意.故选:D.14.解:A、由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意.B、由“有一个角是60°的等腰三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意.C、由“∠A=60°,∠B=60°”可以得到“∠A=∠B=∠C=60°”,则由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意.D、由“AB=AC,且∠B=∠C”只能判定△ABC是等腰三角形,故本选项符合题意.故选:D.15.解:A、已知CB=CE,再加上条件AB=DE,∠B=∠E,可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知CB=CE,再加上条件BC=DE,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知CB=CE,再加上条件AB=DE,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知CB=CE,再加上条∠A=∠D,∠B=∠E可利用AAS证明△ABC≌△DEC,故此选项不合题意;故选:C.16.解:∵∠1=∠2,∴AE平分∠DAF,故③正确;又∠3=∠4,∴∠1+∠3=∠2+∠4,即∠BAE=∠EAC,∴AE平分∠BAC,故⑤正确.故选:C.17.解:如图,过点P作PE⊥OB于E,∵OC是∠AOB的平分线,PD⊥OA,∴PE=PD=6,∴点P到边OB的距离为6.故选:B.18.解:AB边的取值范围是14﹣5<AB<5+14,即9<AB<19.故选:D.19.解:由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.20.解:①3cm是腰长时,三角形的三边分别为3cm、3cm、5cm,能组成三角形,周长=3+3+5=11cm,②3cm是底边长时,三角形的三边分别为3cm、5cm、5cm,能组成三角形,周长=3+5+5=13cm,综上所述,这个等腰三角形的周长是11cm或13cm.故选:C.21.解:过O点作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,如图,∵BO平分∠DBC,OD⊥BD,OE⊥BC,∴OD=OE,同理可得OE=OF,∴OD=OF,∴点O在∠A的平分线上,所以①正确;OD=OE=OF,所以②正确;∵不能确定∠ABC=∠ACB,∴不能确定∠OBE=∠OCE,∴不能确定OB=OC,所以③错误.故选:B.22.解:∵CD、BD分别平分∠ACE、∠ABC,∴∠CBD=∠ABC,∠DCE=∠ACE,由三角形的外角性质得,∠DCE=∠D+∠CBD,∠ACE=∠A+∠ABC,∴∠D+∠CBD=(∠A+∠ABC)∴∠D=∠A,∵∠A=70°,∴∠D=×70°=35°.故选:A.二.填空题23.解:根据三角形具有稳定性,主要是应用了三角形的稳定性.故答案为:三角形具有稳定性.24.解:因为3和4有一条完整的边和两个角,从而可以推算三角形的另外一个角的度数及其它两边的长度,所以至少要带2块,序号分别是③,④;带②③或者②④也都能唯一确定三角形,故答案为:③,④(答案不唯一).25.解:∵∠B=60°,∠C=50°,∴∠BAC=180°﹣60°﹣50°=70°,∵AD平分∠BAC,∴∠CAD=∠BAC=35°,∵∠ADB是△ADC的一个外角,∴∠ADB=∠CAD+∠C=85°,故答案为:85°.26.解:在△ABC中,∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣65°﹣45°=70°,∵AE平分∠BAC,∴∠BAE=∠BAC=×70°=35°,在△ABD中,∠B=65°,AD⊥BD,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣65°=25°,∴∠DAE=∠BAE﹣∠BAD=35°﹣25°=10°.故答案为:10.27.解:∵△ABC≌△A'B'C',∴∠A=∠A′=60°,∠B=∠B′=50°,∴∠C′=180°﹣60°﹣50°=70°.故答案为:70°.28.解:由三角形的外角性质控可知,∠2=30°+45°=75°,∴∠1=180°﹣∠2=105°,故答案为:105.29.解:如图,延长AD至E,使DE=AD,∵AD是△ABC中BC边上的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB=9,∵AC=3,∴9+3=12,9﹣3=6,∴6<AE<12,∴3<AD<6.故答案为:3<AD<6.30.解:①当为锐角三角形时,如图1,∵∠ABD=50°,BD⊥AC,∴∠A=90°﹣50°=40°,∴三角形的顶角为40°;②当为钝角三角形时,如图2,∵∠ABD=50°,BD⊥AC,∴∠BAD=90°﹣50°=40°,∵∠BAD+∠BAC=180°,∴∠BAC=140°∴三角形的顶角为140°,故答案为40°或140°.31.解:∵点P关于x轴的对称点Q的坐标是(﹣3,2),∴点P的坐标为(﹣3,﹣2),∴点P关于y轴的对称点R的坐标是(3,﹣2),故答案为:(3,﹣2).32.解:∵MN是线段AB的垂直平分线,∴DA=DB,∴△BDC的周长=BC+CD+DB=BC+CD+DA=BC+AC=14,故答案为:14.三.解答题33.解:如图所示:34.解:∵△ABC的三边长分别为3、5、a,∴5﹣3<a<3+5,解得:2<a<8,故|a+1|﹣|a﹣8|﹣2|a﹣2|=a+1﹣(8﹣a)﹣2(a﹣2)=a+1﹣8+a﹣2a+4=﹣3.35.解:∵点A(a+2b,﹣1),B(﹣2,a﹣b)关于y轴对称,∴,解得.故a+b=0+1=1.36.证明:∵AB⊥AC,CD⊥BD,∴∠A=∠D=90°,在Rt△ABC和Rt△DCB中,,∴Rt△ABC≌Rt△DCB(HL).∴AC=BD.37.证明:∵OC平分∠MON,∴∠AOC=∠BOC,在△AOC和△BOC中,,∴△AOC≌△BOC(SAS).38.解:∵DE垂直平分AB,∴EA=EB,∵∠B=25°,∴∠EAB=∠B=25°,∵∠C=90°,∴∠CAB=65°,∴∠CAE=65°﹣25°=40°.39.解:∵∠BAC+∠B+∠C=180°(三角形内角和定理),∴∠BAC=180°﹣52°﹣28°=100°(等式的性质),∵AE平分∠BAC(已知),∴∠CAE=∠BAC=∠BAE=50°(角平分线的定义),∵AD⊥BC(已知),∴∠ADC=90°,∵∠CAD=180°﹣∠ADC﹣∠C=180°﹣90°﹣52°=38°,∴∠DAE=∠CAE﹣∠CAD=12°,故答案为:三角形内角和定理,100°,∠BAC,∠BAE,角平分线的定义,∠ADC,∠CAD,12°.40.解:∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣30°﹣70°=80°,∵AE平分∠BAC,∴∠BAE=∠BAC=40°,∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣30°=60°,∴∠DAE=60°﹣40°=20°.41.解:(1)∵AB=AC,∠BAC=120°,∴∠B=(180°﹣∠BAC)=(180°﹣120°)=30°,∵DE垂直平分AB,∴AD=BD,∴∠BAD=∠B=30°,∴∠ADC=∠B+∠BAD=30°+30°=60°;(2)∵∠ADC=60°,∠C=30°,∴∠DAC=90°,∴AD=CD,∠BAD=30°,∴∠B=∠BAD,∴BD=AD,∴DC=2DB.42.证明:(1)∵∠1=∠2∴∠BED=∠AEC,且AE=BE,∠A=∠B∴△AEC≌△BED(ASA)(2)∵△AEC≌△BED∴DE=EC,∠1=∠2=40°∴∠C=70°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)请判断四边形EFGH的形状?并说明为什么;
(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?
2.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF,求证:AP=EF
3.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,O A1交AB于点E,OC1交BC于点F.
(1)求证:△AOE≌△BOF;
(2)如果两个正方形的边长都为a,那么正方形A1B1C1O绕O点转动,两个正方形重叠部分的面积等于多少?为什么?
4.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,
延长BE交边AD于点F.
(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.
5.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
经测量发现AD=CF.
(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;
(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.
8.已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.
(1)求证:△BCE≌△DCF;
(2)OG与BF有什么关系?证明你的结论;
9.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC和CD上.
(1)求证:CE=CF;
(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.。