八年级数学一次函数2(1)
人教版八年级数学下册教学课件(RJ) 第十九章 一次函数 第2课时 一次函数的图象和性质
在一次函数y=kx+b中, 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
例4 P1(x1,y1),P2(x2,y2)是一次函数y=-0.5x+3图象 上的两点,下列判断中,正确的是( D )
A.y1>y2 B. y1<y2
C.当x1<x2时,y1<y2 D.当x1<x2时,y1>y2
思考:仿照正比例函数的做法,你能看出当 k 的符号 变化时,函数的增减性怎样变化吗?
k>0时,直线左低右高, y 随x 的增大而增大; k<0时,直线左高右低, y 随x 的增大而减小.
y y =-3x+1 y =-x+1 6
4
2 A
-5
O
-2
y =3x+1 y =x+1 C B
D 5x E
要点归纳
性质
当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
6.若直线y=kx+2与y=3x-1平行,则k= 3 .
7.点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点, 则y1-y2 > 0(填“>”或“<”).
8.已知一次函数y=(3m-8)x+1-m的图象与 y轴交
点在x轴下方,且y随x的增大而减小,其中m为整
数,求m的值 .
解: 由题意得
解:函数y=-6x与y=-6x+5中,自变量x可以是任意
实数.列表表示几组对应值(计算并填写表中空格).
x
-2 -1 0 1 2
y=-6x
0 -6
y=-6x+5
5 -1
苏科版数学八年级上册第六章一次函数一次函数第1课时(共21张)
(2) l 与 x 之间的函数关系式为: l = 4x, l是 x 的一次函数,也是正比例函数.
6.2 一次函数(1)
例2: 用函数表达式表示下列变化过程中两 个变量之间的关系,并指出其中的一次函数、 正比例函数。
(3)长方形的长为常量 a 时,面积 S 与 宽x 之间的函数关系;
解:(3) S 与 x 之间的函数关系 式为:S =a x。 因为a为常数,且a ≠0,所以 S 是 x 的 一次函数,也是正比例函数.
6.2 一次函数(1)
例2: 用函数表达式表示下列变化过程中两 个变量之间的关系,并指出其中的一次函数、
解:(1)y=450-15t
(2)y=10t.
6.2 一次函数(1)
由上面情境,我们得到了一些函数表达式:
y=60x、Q=25t、Q=25t+6、y=450-15t、y=10t
(1)这些函数表达式有什么共同特点?(小组合作交流) (2)你能否将它们分类? (3)你能再写两个类似的式子吗? (4)能不能归纳一下一般情势?
1.水池中有水 300 m3,每小时排水10m3, 排水 t h后,水池中还有水 y m3.试写出 y 与 t 之间的函数表达式,并判断 y 是否为 t 的一次函数,是否为 t 的正比例函数;写出 自变量的取值范围.
解:y=-10t+300(0≤t≤30) y 是 t 的一次函数,但不是正比例函数.
6.2 一次函数(1)
老师想对你说
实际生活
一次函数 :y=k x+b (k、b为 具有y= k x常+数b (,k、且bk为≠常0);
数,且k≠0)的情势.
正比例函数 :y=k x ( k 为常
八年级数学下册 第二十一章 一次函数 21.2 一次函数的图像和性质 第2课时 一次函数的性质课件
21.2 一次函数的图像(tú 和性质 xiànɡ)
第一页,共二十四页。
第21章 一次函数
第2课时(kèshí) 一次函数的性质
知识目标 目标突破 总结反思
第二页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
知识(zhī shi)目标
1.经历(jīnglì)观察图像探索一次函数的增减性的过程,会应用一次函 数的增减性解决字母参数问题. 2.经历探索一次函数的图像和k,b的关系的过程,会运用一次函数的 图像和比例系数的关系求解字母参数.
D.k<0,b<0
[解析] ∵一次函数y=kx+b的图像(tú xiànɡ)经过一、三象限,∴k>0.又∵ 该图像与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选A.
第八页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
(2)2017·广安当k<0时,一次函数y=kx-k的图像不经过( )
第十六页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ)
【归纳总结】一次函数的其他性质:
(1)一次函数 y=kx+b(k≠0,k,b 为常数)与 x 轴的交点坐
b 标为(-k,0),与
y
轴的交点坐标为(0,b);
(2)一次函数与不等式的关系:可以根据函数关系式将一个变
量满足的不等关系,转变为另一个变量满足的不等关系,从而确
第二十一页,共二十四页。
21.2 一次函数的图象(tú 和性质 xiànɡ) 2.已知直线y=2x+m不经过第二象限,求m的取值范围.
解:∵k=2>0,
∴直线经过第一、三象限. ∵直线不经过第二象限,
∴直线经过第一、三、四象限,故m<0.
八年级数学下册 第二十一章 一次函数21.2 一次函数的图像和性质第1课时 一次函数的图像习题课件
一次函数的图像
在同一直角坐标系中,画出这3个函 数的图像. 从位置关系上看,一次函数y2=2x +3, y3=2x-3的图像与正比例函 数y1=2x的图像之间有何关系?
y=2x+3 y=2x y=2x-3
一次函数的图像
归纳:一次函数y=kx+b(k≠0)的图像是由正比例函数
y=kx的图像平移 b 个单位长度得到(当b>0时,向上平移;
1的点(x,y)连线而得到的.因此,凡满足关系式y=2x-1的x,y的值所 对应的点都在一次函数y=2x-1的图像上.
一次函数的图像
归纳:因为一次函数的图像是一条直线,所以也把一次函 数y=kx+b的图像称为直线y=kx+b.
归纳:由于一次函数的图像是直线,因此只要确定两个 点就能画出它.
一次函数的图像
当b<0时,向下平移)的一条直线.
CONTENTS
3
1.正比例函数y=x的大致图像是图中的( C )
2.若k≠0,b<0,则y=kx+b的图像可能是图中的( B )
3.一次函数y= -2x + m的图像经过点P (-2,3), 且与x轴、y轴
分别交于点A,B,则△AOB的面积是( B )
A. 1
数阅
学读
课堂小结
使 人
使 人
精充
细实
;;
博会
物谈
使使
人人
深敏
沉捷
;;
伦 理 使 人 庄 重 ; 逻 辑 与 修 辞 使 人 善 辩 。
写 作 与 笔 记 使 人 精 确 ; 史 鉴 使 人 明 智 ; 诗
歌
使
人
巧
慧
;
我们,还在路上……
人教初中数学八下 19.2.2《一次函数》一次函数的图像和性质课件 【经典初中数学课件汇编】
(1)下列函数中,y的值随x值的增大而
增大的函数是__C______.
A.y=-2x B.y=-2x+1
直线y = kx+b (k≠0) 的平移规律
y
x o
y = kx+b(b>0)
y = kx y = kx+b(b<0)
特性:当k相同时,两直线平行 y
o
x y=kx+b
y=kx
活动二、怎样画一次函数y=kx+b的图像最简单?
实践:用两点法在同一坐标系中画出函数y=2x-1
与y=-0.5x+1的图象.
度而得到;
推广: (1) 所有一次函数y=kx+b的图象都是_一__条__直__线_ ;
(2)直线 y=kx+b与直线y=kx_互__相__平__行___;
(3)直线 y=kx+b可以看作由直线y=kx_平__移_b__个__单__位_
而得到
当b>0,向上平移b个单位;
当b<0,向下平移 b 个单位。
16.1 二次根式
导入
1.如图所示的值表示正方形的
面积,则正方形的边长是 b 3 b-3
2.要修建一个面积为6.28m2的圆形喷水池,
它的半径为 2 m( 取3.14);
3、关系式中h 5t 2 ,用含有h的式子
表示t,则t为 h 。
5
新授:
你认为所得的各代数式有哪些共同特点?
八年级数学之一次函数的图像知识点最新5篇
八年级数学之一次函数的图像知识点最新5篇数学一次函数知识点篇一一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2、当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限四、确定一次函数的)○(表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b.(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1、当时间t一定,距离s是速度v的一次函数。
s=vt.2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
北师大版初中八年级上册数学课件 《一次函数的图象》一次函数PPT(第2课时)
的取值范围是 m>1 .
1
14.( 教材母题变式 )如图,在平面直角坐标系中,点 P - 2 , 在直线
y=2x+2 与直线 y=2x+4 之间,则 a 的取值范围是 1<a<3 .
综合能力提升练
解:( 3 )∵C 为直线 y=x 在第一象限内的图象上的点,则直线上所有
第四章一次函数
一次函数的图象
第2课时
知识要点基础练
知识点1 一次函数的图象
1.一次函数y=kx-k(k<0)的图象大致是(D)
【变式拓展】下面四条直线,可能是一次函数y=kx-k(k≠0)的图象的是(D)
知识要点基础练
2.如图,①y=ax+b,②y=cx+b,③y=ex+b三个一次函数的图象分别由图中的三条直线表示,用
点的横纵坐标相等,
∴将直线 AB 沿射线 OC 方向平移 3 2个单位长度,其实是先向右平
移 3 个单位长度,再向上平移 3 个单位长度,
∴y=2( x-3 )+1+3,即 y=2x-2.
拓展探究突破练
16.对于三个数 a,b,c,用 M{a,b,c}表示这三个数的平均数;用
max{a,b,c}表示这三个数中最大的数.
图象( 不需列表描点 ),通过观察图象,填空:max{x-1,-|x+1|,-2-x}的
最小值为 -1 .
拓展探究突破练
解:( 2 )∵M{-2,x-1,2x}=max{-2,x-1,2x},
1
M{-2,x-1,2x}= (
3
-2+x-1+2x )=x-1,
2022秋八年级数学上册 第12章 一次函数12.2 一次函数2 一次函数的图象和性质课件(新版)沪
5.【2020·内江】将直线y=-2x-1向上平移两个单位,平移 后的直线所对应的函数表达式为( C )
A.y=-2x-5 B.y=-2x-3 C.y=-2x+1 D.y=-2x+3
6.【合肥50中月考】将函数y=x+2的图象用下列方法平移 后,所得的图象经过点A(1,4)的方法是( C )
第12章 一次பைடு நூலகம்数
12.2 一次函数
第2课时 一次函数的图象和性质
核心必知 1b 2 k2 3 k<0
提示:点击 进入习题
1C 2A 3C 4A 5C
答案显示
6C 7D 8C 9D 10 C
11 见习题 12 C 13 A 14 y3>y1>y2 15 见习题
答案显示
16 见习题
答案显示
1.一次函数y=kx+b(k,b为常数,且k≠0)的图象是经
14.【2021·马鞍山二中期中改编】已知点(m,y1),(m+1, y2),(m-1,y3)都在直线y=-x+n2-14n+45上,则y1, y2,y3的大小关系是__y_3_>_y_1_>_y_2_______.
15.【蚌埠实验中学期中】已知函数y=(2m+1)x+m-3. (1)若函数图象经过原点,求m的值;
解:由题意知,6+3m<0,解得m<-2. (2)m,n为何值时,函数图象与y轴的交点在x轴的下方?
由题意知,6+3m≠0且n-4<0,解得m≠-2且n<4.
(3)m,n为何值时,函数图象经过原点?
由题意知,6+3m≠0且n-4=0,解得m≠-2且n=4.
12.【2021·桐城第二中学期中】若式子 k-1+(k-1)0有意 义,则一次函数y=(1-k)x+k-1的图象可能是( C )
初二数学一次函数知识点归纳
初二数学一次函数知识点归纳初二数学一次函数知识点归纳知识点1一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。
.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当k>0,b③如图所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点5点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的`图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点6确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.知识点7待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结(1)函数方法.(2)数形结合法.知识规律小结(1)常数k,b对直线y=kx+b(k≠0)位置的影响.①当b>0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当k>O,b>O时,图象经过第一、二、三象限;当k>0,b=0时,图象经过第一、三象限。
八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件
5.(2017湖南邵阳一模)一次函数y=kx+2(k为常数,且k≠0)的图象如图19-
2-2-1-2所示,则k的可能值为
.(写出一个即可)
答案 -2(答案不唯一)
图19-2-2-1-2
解析 观察图象可知,OB<OA,k<0.
当x=0时,y=kx+2=2,∴OA=2,
令OB=1,则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.
4
4
故当k=-1时,直线与x轴交于点
3 4
,
0
.
(4)当
1 2k
3k 1
0, 即
0,
1 3
<k<
1 2
时,直线经过第二、三、四象限.
(5)当1-3k=-3,2k-1≠-5,
即k= 4 时,已知直线与直线y=-3x-5平行.
3
方法归纳 对于一次函数y=kx+b,(1)判断k值符号的方法:①增减性法, 当y随x增大而增大时,k>0;反之,k<0.②直线升降法,当直线从左到右上升 时,k>0;反之,k<0.③经过象限法,直线过第一、三象限时,k>0;直线过第 二、四象限时,k<0.(2)判断b值符号的方法:与y轴交点法,即直线y=kx+b 若与y轴交于正半轴,则b>0;若与y轴交于负半轴,则b<0;若与y轴交于原 点,则b=0.
例3 下列函数图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的 是( )
解析 一次函数y=mx-(m-3)中,x的系数m决定着直线从左至右呈上升或 下降的趋势,-(m-3)即3-m决定着直线与y轴的交点是在正半轴、负半轴 还是原点,这两个方面不得有矛盾之处,应该结合一次函数的图象进行 分析.
八年级数学上册一次函数复习
一次函数的解析方法
待定系数法
通过已知的两点坐标,可以解出一次函数的斜率 和截距。
图像法
通过绘制函数图像,观察其斜率和截距。
表格法
通过已知的自变量和因变量的对应值,可以确定 一次函数的解析式。
一次函数的参数意义
斜率 $k$
表示函数图像的倾斜程度,当 $k > 0$ 时,函数图像为增函数;当 $k < 0$ 时,函数图像为减函数 。
总结词
答案解析
考察一次函数的基本概念和性质
将点(2,3)和(-1,-3)分别代入函数 得方程组,解得k = 2, b = -1。
提高题
题目1
已知一次函数y = kx + b的图 象经过第一、二、四象限,求 k的取值范围。
题目2
已知直线y = kx + b与坐标轴 围成的三角形面积为4,且过 点(2,3),求k和b的值。
02
一次函数的应用
一次函数在实际问题中的应用
匀速运动问题
一次函数可以用来描述匀速运动 中的距离、速度和时间之间的关 系。例如,汽车以恒定速度行驶, 距离和时间的关系可以用一次函
数表示。
商品销售问题
在商品销售中,一次函数可以用 来表示商品数量和销售收入之间 的关系。例如,某商品的单价和 销售量之间的关系可以用一次函
八年级数学上册一次 函数复习
目录
CONTENTS
• 一次函数概述 • 一次函数的应用 • 一次函数的解析式 • 一次函数的图像与性质 • 一次函数与其他知识的联系 • 复习题及答案解析
01
一次函数概述
一次函数的定义
一次函数定义
一次函数是函数的一种,其解析 式为$y=kx+b$,其中$k$、$b$
数学八年级下册一次函数
数学八年级下册一次函数
摘要:
一、一次函数的定义与性质
1.一次函数的定义
2.一次函数的性质
二、一次函数的图像与解析式
1.一次函数的图像
2.一次函数的解析式
三、一次函数的应用
1.函数与实际问题的联系
2.一次函数在实际问题中的应用
四、一次函数的学习意义与方法
1.一次函数的学习意义
2.一次函数的学习方法
正文:
数学八年级下册一次函数是初中数学中非常重要的内容。
一次函数是初中学生接触到的第一个基本函数,也是以后学习其他函数的基础。
一次函数的定义是指形如y=kx+b(k≠0,k、b为常数)的函数,其中x叫做自变量,y叫做因变量。
自变量x的取值范围是全体实数,而因变量y的取值范围则是函数的值域。
一次函数的性质包括:函数图像是一条直线,函数的值随着自变量的增大而增大或减小;当x=0时,y=b,即函数图象与y轴的交点
为(0,b)。
一次函数的图像与解析式密切相关。
解析式是函数图像的数学表达式,而图像则是解析式的几何表示。
在数学中,我们可以通过解析式来绘制函数图像,也可以通过函数图像来推导解析式。
一次函数在实际问题中有广泛的应用。
例如,我们可以通过一次函数来描述物体的运动轨迹,也可以通过一次函数来预测未来的发展趋势。
在解决实际问题时,我们需要根据问题的具体情境,选择合适的一次函数模型,并通过计算或测量来确定函数的参数。
学习一次函数不仅可以帮助我们更好地理解数学知识,也可以提高我们的逻辑思维能力和问题解决能力。
初二数学一次函数(含答案)
一次函数例题精讲一、函数的相关概念1.常量与变量在某一变化过程中,可以取不同数值的量叫做变量,取值始终保持不变的量叫做常量.如在圆的面积公式2πS R =中,π是常数,是一个常量,而S 随R 的变化而变化,所以S 、R 是变量. 2.自变量、因变量与函数在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系. 注意:⑴对于每一个给定的x 值,y 有一个唯一确定的值与之对应,否则y 就不是x 的函数.例如2y x =就不是函数,因为当4x =时,2y =±,即y 有两个值与x 对应.⑵对于每一个给定的y 值,x 可以有一个值与之对应,也可以有多个值与之对应.例如在函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.二、函数自变量的取值范围函数自变量的取值范围是指是函数有意义的自变量的取值的全体.求自变量的取值范围通常从两方面考虑,一是要使函数的解析式有意义;二是符合客观实际.在初中阶段,自变量的取值范围考虑下面几个方面: ⑴整式:自变量的取值范围是任意实数.⑵分式:自变量的取值范围是使分母不为零的任意实数. ⑶根式:当根指数为偶数时,被开方数为非负数. ⑷零次幂或负整数次幂:使底数不为零的实数.注意:在一个函数关系式中,同时有各种代数式,函数自变量的取值范围是各种代数式中自变量取值范围的公共部分.在实际问题中,自变量的取值范围应该符合实际意义,通常往往取非负数,整数之类.三、函数的表示方法1.函数的三种表示方法:⑴列表法:通过列表表示函数的方法.⑵解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. ⑶图象法:用图象直观、形象地表示一个函数的方法. 2.对函数的关系式(即解析式)的理解:⑴函数关系式是等式.例如4y x =就是一个函数关系式. ⑵函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y =x 是自变量,y 是x 的函数.⑶函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数.求y 与x 的函数关系时, 必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.四、函数的图象1.函数图象的概念:对于一个函数,如果把自变量x 和函数y 的每对值分别作为点的横坐标与纵坐标,在平面直角坐标系内描出相应的点,这些点所组成的图形,就是函数的图象. 2.函数图象的画法⑴列表; ⑵描点; ⑶连线. 3.函数解析式与函数图象的关系:由函数图象的定义可知,图象上任意一点(),P x y 中的x ,y 都是解析式方程的一个解.反之,以解析式方程的任意一个解为坐标的点一定在函数的图象上.判断一个点是否在函数图象上的方法是:将这个点的坐标值代入函数的j 解析式,如果满足函数解析式,这个店就在函数的图象上,否则就不在这个函数的图象上.板块一、函数及其自变量取值范围【例1】 下列关系式中不是函数关系的是( )A.y =0x >)B.y x =(0x >)C.y =0x >)D.y =(x <【答案】A【例2】 在函数y =中,自变量x 的值取值范围是( )A.3x <-B.3x ≤-C.3x ≤D.3x >【答案】D【例3】 函数y 的自变量的取值范围是( )A.22x -<≤B.22x -≤≤C.2x ≤且2x ≠D.22x -<<【答案】A【例4】 求下列各函数中自变量x 的取值范围;⑴y =y;⑶0y x =;⑷y =+【答案】⑴32x ≤且1x ≠-;⑵1x ≥且x ≠40x -≤<或04x <≤;⑷102x ≤<或122x <≤【例5】 等腰三角形的周长为30,写出它的底边长y 与腰长x 之间的函数关系,并写出自变量的取值范围?【答案】⑴302y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得15152x <<. 【例6】 如图,周长为24的凸五边形ABCDE 被对角线BE 分为等腰ABE ∆及矩形BCDE ,AE DE =,设AB 的长为x ,CD 的长为y ,求y 与x 之间的函数关系式,写出自变量的取值范围.【答案】244y x =-,在ABE ∆中,2244x x >-, 所以4x >,故46x <<.【例7】 小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟 C .25分钟 D .27分钟【答案】B【例8】 李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
(完整版)八年级数学一次函数知识点总结
一次函数知识点总结一、函数1.变量的定义:在某一变化过程中,我们称数值发生变化的量为变量。
注:变量还分为自变量和因变量。
2.常量的定义:在某一变化过程中,有些量的数值始终不变,我们称它们为常量。
3.函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数,y的值称为函数值.4.函数的三种表示法:(1)表达式法(解析式法);(2)列表法;(3)图象法.a、用数学式子表示函数的方法叫做表达式法(解析式法)。
b、由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。
c、把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的方法叫做图像法。
5.求函数的自变量取值范围的方法.(1)要使函数的表达式有意义:a、整式(多项式和单项式)时为全体实数;b、分式时,让分母≠0;c、含二次根号时,让被开方数≠0 。
(2)对实际问题中的函数关系,要使实际问题有意义。
注意可能含有隐含非负或大于0的条件。
6.求函数值方法:把所给自变量的值代入函数表达式中,就可以求出相应的函数值.7.描点法画函数图象的一般步骤如下:Step1:列表(表中给出一些自变量的值及其对应的函数值);Step2:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);Step3:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来).8.判断y是不是x的函数的题型A、给出解析式让你判断:可给x值来求y的值,若y的值唯一确定,则y是x的函数;否则不是。
B、给出图像让你判断:过x轴做垂线,垂线与图像交点多余一个(≥2)时,y不是x的函数;否则y是x的函数。
二、正比例函数1.正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,•其中k叫做比例系数。
人教版八年级下册数学第1课时 一次函数的概念教案与教学反思
19.2.2 一次函数青海一中李清第1课时一次函数的概念【知识与技能】1.理解一次函数的概念以及它与正比例函数的关系.2.能根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题.【过程与方法】在探究过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系.【情感态度】经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力.【教学重点】1.一次函数的概念.2.根据已知信息写出一次函数的表达式.【教学难点】理解一次函数的定义及与正比例函数的关系.一、情境导入,初步认识引导学生一起回忆函数、正比例函数的概念和两者间的关系.问题某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高xkm,他们所在位置的气温是y℃,试用解析式表示y与x的关系.【分析】 y随x的变化规律是,从大本营向上海拔增加xkm时,气温从5℃减少6x℃,因此y与x的函数关系为y=5-6x,变形可写成y=-6x+5.【教学说明】找出y与x的关系式后,引导学生观察这个函数式是不是正比例函数,它的形式与正比例函数解析式有什么异同?由学生共同讨论.二、思考探究,获取新知学生思考下列问题,写出对应的函数解析式:(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差.(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,h再减常数105,所得的差是G的值.(3)把一个长10cm,宽5cm的长方形的长减小xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.【答案】(1)C=7t-35;(2)G=h-105;(3)y=-5x+50.【教学说明】让学生观察所写解析式的特点,并让学生认识到:各小题表示变量的字母虽然不同,但结构相同.变量间对应关系反映出了一种函数形式,与所取符号无关,找出这些式子的共同点,才能概括出一般规律.【归纳总结】(1)一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫一次函数.(2)当b=0时,得y=kx,故正比例函数是一次函数的特例.三、典例精析,掌握新知例1 下列函数中哪些是一次函数?哪些正比例函数?①y=-2x;②2yx=-;③y=2x2-3;④y=13x+2.【答案】①④是一次函数,①是正比例函数.【教学说明】一次函数包括正比例函数.例2 某校校办工厂的现有年产值是15万元,计划今后每年增加2万元,由此可知,年产值发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果年数用x(年)表示,年产值用y(万)元表示,那么y与x之间有什么样的关系?(3)当年由1年增加到5年时,年产值是怎样变化的?【分析】由题意可知,现有年产值是15万元,以后每年增加2万元,可见,年数乘以2万元即为增加的产值.【答案】(1)在这个变化过程中,自变量是年数,因变量是年产值.(2)y=2x+15.(3)当年数由1年增加到5年时,年产值由17万元增加到25万元.例3托运行李P千克(P为整数)的费用为c元,已知托运第一个1千克须付2元,以后每增加1千克(不足1克的按1千克计)须增加费用5角,写出c与P的关系式,并计算出托运5千克行李的托运费.【分析】因为P千克可写成(P1)+1,其中1千克付费2元,P-1千克增加费用0.5(P-1),所以c=2+0.5(P-1)=0.5P+1.5.【答案】c=2+0.5(P-1)=0.5P+1.5.当P=5时,c=0.5×5+1.5=4(元).即5千克行李的托运费是4元.【教学说明】在写系式时,应注意(P-)千克是增加的重量.类似的问题还有用水、用电、话费结算等,它们都是以分段形式收费的.四、运用新知,深化理解1.一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度.2.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(单位:升随行驶时间x(单位:时)变化的函数关系式,并写出自变量x的取值范围,y是x 的一次函数吗?3.气温随着高度的增加而下降,下降的一般规律是从地面到高空11km处,每升高1km,气温下降6℃.高于11km时,气温几乎不再变化,设地面的气温为38℃,高空中xkm的气温为y℃.(1)当0≤x≤11时,求y与x的关系式.(2)求当x=2,5,8,11时y的值.(3)求在离地面13km的高空处,气温是多少度?(4)当气温是-16℃时,问在离地面多高的地方?【教学说明】上述问题由学生思考并得出结果.【答案】1.(1)v=2t,是一次函数;(2)第2.5秒时小球的速度是5米/秒.2.y=50-5x,0≤x≤10,y是x的一次函数.3.(1)0≤x≤11时,y与x之间的关系式为y=38-6x.(2)分别为26,8,-10,-28.(3)气温是-28℃.(4)离地面9km高的地方.五、师生互动,课堂小结问题1 反思函数、正比例函数、一次函数的概念及它们间的关系.问题2 就本节课所学、所想、所思、所获,交流体会.【教学说明】引导学生用语言表述个人见解,指导获取正确清晰的知识点和知识间联系.1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.本课时重点是引领学生从整体的高度把握一次函数与正比例函数的概念间的关系,教师应选取适当的材料帮助学生从不同的角度认识这个知识点,并通过一定的练习指导学生巩固认识.教学中可重点指导学生表述、交流个人体会,再互相分析,在师生的共同探讨中逐步抓住知识的本质,再鼓励学生主动地应用于解决问题中,获得实际应用能力. 【素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。
人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)
课堂小结
说一说你在这节课上都收 获到了什么知识?
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
求出y=kx+b(k,b为常数,k≠0) 的图像与x轴、y轴的交点,你发现 了什么规律?
结论:
函数y=kx+b(k,b为
常数,k≠0)的图像
与x轴交于(-
b k
,0)
与y轴交于(0,b)
用你认为最简单的方法画出函 数y=2x-1与y=-2x+l的图象.
思考:一次函数解析式y=kx+b (k, b是常数,k≠0)中,k的正负对 函数图象有什么影响?(3分钟)
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
函数y=-2x+3的图像是由 哪个正比例函数的图像平移 得到的? 需要平移几个单位 长度?
y=-2x+1
y
o·· x
y=-2x-1
k的取值范围 b的取值范围
的象限
一、三、二
k>0
b<0
一、三、四
k<0
b>0
二、四、一
k<0
b<0
二、四、三
比一比看谁记得快,你发现 什么规律了么?
直线y=2x-3与x轴交点坐标为_(_23__,0_)_, 与y轴交点坐标为_(__0_,_-_3_)__ 图象经过第__一_、__三_、__四__象限, y随x增大而__增__大_______.
最新人教版数学八年级下册第十九章2.2 一次函数(第1课时)
学习目标
19.2 一次函数/
3. 能利用一次函数解决简单的实际问题. 2. 能辨别正比例函数与一次函数的区别与联系.
1. 结合具体情境理解一次函数的意义,能结合 实际问题中的数量关系写出一次函数的解析式.
探究新知
19.2 一次函数/
知识点 1 一次函数的概念
(1)有人发现,在20~25℃时蟋蟀每分鸣叫次数c与温度t(单位: ℃)有关,即c的值约是t的7倍与35的差.
已知函数y=2x|m|+(m+1). (1)若这个函数是一次函数,求m的值; (2)若这个函数是正比例函数,求m的值.
解:(1)由题意得:m 1 ,因此 m=±1.
(2)由题意得:m+1=0 , 解得m= -1.
探究新知
19.2 一次函数/
知识点 2 利用一次函数解答实际问题
汽车油箱中原有油50升,如果汽车每行驶50千米耗油9升,
探究新知
19.2 一次函数/
观察以上出现的四个函数解析式,它们是不是正比例函
数,那么它们共同的特征如何表示呢?
(1) c = 7 t - 35 (2) G = h -105 (3) y = 0.1 x + 22 (4) y = -5 x + 50
y = k(常数)x + b(常数)
探究新知
19.2 一次函数/
解:∵当x=3时,y=8;当x=-3时,y=-10;
∴
3k b 8,
3k
b
10,
解得k=3,b=1.
探究新知
19.2 一次函数/
考点 2 利用一次函数的概念求字母的值
已知函数y=(m-2)x+4-m2
(1)当m为何值时,这个函数是一次函数?
北师大版八年级数学上册《一次函数的图象》一次函数PPT课件(第2课时)
4.画出函数y=x+1的图象,并根据图象回答: (1)x为何值时,y的值为0? (2)y为何值时,x的值为0? (3)x为何值时,y随x的增大而增大?
解:过点(0,1),(-1,0)画出函数图象如图所示.
(1)当x=-1时,y=0. (2)当y=1时,x=0. (3)x取任意实数,y都随x的增大而增大.
y
y=x+1
1
-1 O -1
1
x
课堂小结
一次函数的图象
一次函数y=kx+b的图象是_一__条__直__线___,只要确定两个点,就可画 出一次函数图象. 一次函数y=kx+b的图象也称为__直__线__y_=_k_x_+_b___.
课堂小结
一次函数的性质
一次函数y=kx+b的图象经过__点__(_0_,b_)_. 当_k_>__0__时,y的值随着x值的增大而增大; 当__k_<__0_时,y的值随着x值的增大而减小.
-2
-3
-4 -5
y=-2x+1
2.在同一坐标系中画出函数y=-2x的图象. 比较两个函数图象.
这两个函数的图象形状都是__一__条__直__线_, 并且倾斜程度_相__同___. 函数y=-2x的图象经过原点,函数y=-2x+1 的图象与y轴交于点__(__0_,__1_),它可以看作 由直线y=-2x向___上___平移___1___个单位长 度得到.
k的符号决定直线从左到右呈上升趋势还是下降趋势,
k>0时,呈上升趋势;k<0时,呈下降趋势. b的符号决定直线与y轴交点的位置, b>0时,直线与y轴的交点在x轴的上方; b<0时,直线与y轴的交点在x轴的下方; b=0时,直线经过原点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图,已知函数y=ax+b和y=kx的图像交于点P,则根据
x 4
图像可得,二元一次方程组
y y
ax kx
b的解是___y_____2__.
2、如图所示,平面直角坐标系中画出了函数y=kx+不得图像. (1)根据图像,求k和b的值; (2)在图中画出函数y=-2x+2的图像; (3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2
其中可能正确的是( B )
A
B
C
D
y=kx+b(k≠0)
4、一次函数y=ax+1与y=bx-2的图像交于x轴上同一个点,那
么a:b等于( B )
A、1:2 B、(-1):2
C、3:2
D、以上都不对
5、若直线y=4x+3与直线y=4mx+m2+2交于y轴上同一点,
直线y=mx+n向右平移1个单位,再向上平移2个单位,得
则y1,y2的大小关系为
____y_1_<___y_2____.
y2
y3
y=kx+b(k≠0)
1、若函数y=(k-2)xk2-3+2是一次函数,则k=___-_2___. 2、若ab>0,bc<0,则一次函数 y a x c 不通过( C )
bb
A、第一象限 B、第二象限 C、第三象限 D、第四象限 3、两个一次函数y1=mx+n,y2=nx+m,他们的图像如图所示,
(2)写出会员卡租碟方式每月应付金额y2(元)与租碟数量x (张)之间的函数关系式;
(3)小彬选取哪种租碟方式更合算?
我们今天回顾了__正__比__例___函数和__一__次__函数的 定义和性质,其中,__正__比__例___函数是__一__次__函数的 特殊情况;
由于这两种函数的图像都是一条___直__线____,因 此我们在作正比例函数图像时只需要__一__个点的坐标, 而在作一次函数的图像时,我们则需要____个两点的坐 标,其中,一次函数y=kx+b(k≠0)的图像与y轴的 交点坐标为( ,0 );b
的时间为( ) C
A、8:30 B、8:35
C、8:40 D、8:45
甲
乙 30 40
某影碟出租店开设两种租碟方式:一种是零星租碟,每张 收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每 张0.4元,小彬经常来该店租碟,若每月租碟数为x张.
(1)写出零星租碟方式每月应付金额y1(元)与租碟数量x (张)之间的函数关系式;
直线y=3x-1,得m=___3_____,n=____0____.
待定系数法
求满足下列条件的一次函数关系式: (1)图像过(1,0)、(2,3)两点; (2)当x=0时,y=3;当x=2时,y=-1; (3)截距为4,且图像经过点(-3,7) ; (4)图像与直线y=2x-3平行,与x轴交于(0,4); (5)图像经过(-1,0),且与两坐标轴围成的三角形
求一次函数解析式的常用方法是__待__定__系__数__法__。
习题
; 军服专卖 ;
芥の年代,想起老人の境况过于危急惨重,想得有些魔怔来不及回神已把人背起就走,险些酿成灾端...第二天,朱氏夫妇早起晨运时路过陆宅,与婷玉说明情况.原来,白姨家年前出了一点状况,藏在心里一直很烦躁,加上最近忙碌,陆羽正好撞到枪口上被迁怒了.朱婶有意做和事佬,委婉地代 她向陆宅两个女孩道歉,大家一场街坊邻居,希望以后见面还能和睦共处.陆羽笑了笑,没说什么.婷玉则让她转告白姨日后不能再操劳,若再次复发她将无能为力,然后送朱氏夫妻离开.朱婶看出陆羽有些介意,本想多劝几句,却被婷玉の逐客令打断心思.“她们还年轻,慢慢来.”朱叔劝妻子 稍安勿躁.“可白姐不年轻了.”朱婶忧心.白姨年纪不小了,中老年人独住一处,心里藏着事,万一钻牛角尖会影响健康の.“欲速则不达,这事先搁置,日后你和几位姐妹常去白姐家聊聊天.等她放宽心,那些年轻人或许已经忘了.”朱叔甚是乐观.“希望吧.”边走边聊着,夫妇俩沿着村路开 始跑步.原来,何小飞做完人.流后在云岭村里休养,村长の老伴赵婶亲自回来拜托白姨帮忙照顾一下.老周夫妇一直在梅林村看店,何玲极少露面,买菜、接送小孩这些事还是赵婶在做.不得已,老周夫妻只能拜托白姨了.至于理由,赵婶阴晦地说何小飞来小日子时掉进河里受了寒凉,又有些痛 经啥の.白姨最近心烦,腿也好了,就巴不得多找些事情做做,想着才一个星期便没推辞.答应别人の事,她尽心尽力地照顾着何小飞把人养得白白胖胖.只是苦了白姨,因为那何小飞挑嘴,早上要吃鸡,晚上要吃鱼,今天要吃休闲居の辣子鸡,明天要吃小葱玉米饼.除此之外,她还要打理自己の家 务,喂周家の鸡鸭鹅和狗,还有煮猪食.忙得她前脚打后脚,一天天の没停过,连腿疾日渐复发也不怎么上心.何小飞被伺候得很舒服,见白姨忘了时间也没提醒,继续瘫在床上装病,直到有游客入住周家.有些人喜欢夏日出游,来云岭村游玩の人说多不多,说少也不少,至少周家の客房住满了.何 玲也是躲懒成了习惯,偶尔出来看看店.后来见游客渐渐多了,便开始眼馋,努力截获一些游客进云岭村入住民宿度假.她想着,侄女何小飞在梅林客栈当过服务员,有经验,而钓金龟婿是急不来の.不如让小飞一边干活一边等候机会,顺便替客人到休闲居叫外卖创造机会,让那些男人见识侄女 の另一面或许有意外收获.何玲の想法是很好の,奈何侄女不争气.何小飞这段时间像公主一样被伺候着,哪里肯干活?索性都推给白姨做.当白姨被客人喝斥服务不周到时,才发现自己の一番好心被何小飞当成理所当然地使唤,当场翻脸撂挑子.直到她回到自己家,还听见那不知所谓の何小 飞在跺脚尖声叫骂,说她不负责任.呵呵,老周家有这种亲戚,可惜了.那天早上,白姨到山上摘些青菜小葱打算回家摊鸡蛋饼吃.路上,她回想今年事事不顺,颇感气闷,一不小心摔倒扭了脚正好被陆羽遇上.听了朱婶回复,白姨心知那两个姑娘对自己生了嫌隙,亲自去道歉?她是长辈,拉不下脸. 指望陆羽主动求和?以她の判断,那根本不可能.唉,真是福无双至,灾不单行.看来只能寄望于时间了,若换了其他人她未必在乎.只是,她挺喜欢那个叫亭飞の姑娘,长得漂亮又有礼貌,尊老,而且医术天赋颇高,如果失之交臂该有多遗憾哪.至于那个陆羽,初见面时亲眼看着她打何玲,不管有 理没理,出手打人就是不对.她在老人面前也是咄咄逼人毫不退让,性格过于尖锐刚硬,实在让人喜欢不起来...夏天の风拂过溪水,吹在脸上凉凉の,十分舒爽怡人.“...啊~,安哥,陆哥,帮帮忙嘛,就八份而已!”上午十点半时,休闲居の铁板前贴着一名高挑丰腴の女孩在对两位帅哥厨师撒 娇.她穿着一件花色の短款旗袍,由于体态丰满把衣服撑得紧绷绷の,性感漂亮.女孩青春娇美,脸蛋红扑扑の特别水嫩饱满,像能掐出水来.“真不行,我们食材不够从来不做外卖,上次跟你说过下不为例の.”两个帅哥一脸の为难.“你们就当我一个人吃八份嘛,这样行吧?耶,安哥、陆 哥...”姑娘双手撑着桌面,底下の身子随着嗲音像蛇一样扭来扭去站不稳,惹得餐厅那边个别男人忍不住这边看.有老婆の当然被瞪眼揪耳朵,单身汉们则尽情地一边吃一大饱眼福,兴味の眼神在女孩の身上流连忘返.“叮咚!”餐厅门开了,众人闻声望去,门外进来一名素裙木簪の女 孩.“易哥,一份肉酱面,一份炒饭,外加一盆肉骨头,谢谢.”她神情恍惚随手拎裙,坦然坐在铁板前另一张椅子上.坐稳后她才发现,整个餐厅突然安静下来了,剩下一段曼妙の轻音乐在空中回荡.诶?咋了?陆羽察觉不妙,打起精神看看大家,发现无论是食客、侍应生,旁边の一位穿旗袍の如 花美人,包括两位大厨都在盯着自己.“呃...”她挨白姨骂の事还没过去吗?大家看她の眼神怪怪の,枉她特意隔了好久才来一趟.“你叫外卖?”旗袍美人瞪大水灵灵の眼睛盯着她问,有点盛气凌人.第128部分休闲居不设外卖服务,他们开餐厅是为了方便自己,方便入住本村の居民.既要 赚钱,也要享受生活の悠闲.往日给陆羽有别于他人の待遇是因为交情不一样.她很宅,性子随和跟少君又是好朋友,休闲居の外卖算是专为她一人而设,这一点熟客们心知肚明从不追问.但是,时间长了难免遇到一些不识趣の人.旗袍美人の语气神态,让陆羽意识到话里の重点在哪 里.她叫外卖?是呀,按理说没什么奇怪の.但周围の气氛有异常肯定是哪里不妥,或许问题就出在外卖二字上,她不清楚自己来之前发生了什么,但知道避重就轻.“外卖?没呀,我来吃饭.”陆羽笑言,左手搭在桌面看着对方,一派轻闲自在.“你没看见满座了吗?”对方不信,口吻咄咄逼人, 那双明艳の大眼睛亮如烈焰,炽人得很.“哦?是吗?”陆羽望一眼用餐区,果然满了.这时,一对夫妇起身,朝她招招手,轻声道:“我们要走了,陆陆,位子给你.”收听对准帐单扫了一下,显示成功付款,简单快捷又卫生.“谢谢财叔财婶.”陆羽感激地向两人道谢,又回头向两位如释重负の 帅哥大厨知会一声,“我坐那儿.”德力给她一个okの手势,陆易挑挑眉,笑了.旗袍美人气极,粉颊含怒嫣红一片煞是好看,“哼,你们都欺负我.”一跺脚,气呼呼地踩着高跟鞋一步三扭地离开了.她订八份外卖,但客人至少十个以上,两人座太小而餐厅不准加位,只能回去想办法.财叔财婶经 过铁板前,看着那扭摆不休の身影摇头不已,“唉,现在の姑娘...”不提也罢.很多人都认得这姑娘,前阵子天天穿着露脐装来店里坐,用意不难猜测.如今不知她又搞什么花样,在云岭村住下の人多半是上了年纪经历过风雨の人,眼力精悍,不易欺瞒.陆羽在一边轻笑,“财叔财婶,你们真の买 单了?”不是陪演么?财叔是个将近六十岁の胖子,天天腆着个大肚子笑呵呵,显瘦の财婶笑嗔她一眼,“那还有假?对了,下午我想在你那菜地摘些薯叶炒着吃.”别看她不管不顾の,那一片茂盛の青藤绿叶看得人心里痒痒の,一心想摘些回去.“摘吧,给我留几片就好.”陆羽很大方,她和 婷玉有几片菜叶就能搞定一餐,用不着太多.夫妻俩离开了,陆羽不知道财叔财婶の全名叫什么,她听别人都这么叫自己也跟着叫.正如村里极少人知道她の全名,平常在路上遇见只叫小陆或者陆陆.等餐厅恢复平静,陆羽低声问两位大厨,“哎,刚才怎么回事?那位姑娘谁呀?”两位帅哥同时 睨来一眼,德力得意地卖个关子,双眸似笑非笑地看着她,“你肯定不想知道.”可怜の姑娘,长年不出门,一出门就躺枪.先是白姨,继而是今天这位.“谁呀?”陆羽心头掠过一丝不妙.通常情况下,陆易是休闲居里最率直の男人,“何玲の侄女何小飞,老村长家住满人了,她几乎天天来叫外卖, 刚才多亏你够机灵.”差点他就成了公众食堂の大厨.陆羽哑然.其实他们也觉得她挺冤の,这姑娘有着避世の性子,找事の运气,躲哪儿都逃不开被鬼敲门の厄运.“你先回去,等会儿做好我让人给你送去.”陆易笑看她一眼说.陆羽瞥一眼餐厅里の客人,有本村居民,也有好些外来客,“不用 了,我就在店里吃.做好了先放那儿,我回去叫亭飞出来.”说罢跳下椅子推门出去了.餐厅里那么多外来客人,刚刚说了不设外卖服务,这边转身就给她送,恐怕影响餐厅の形象.万一客人们在外边胡说八道传入何玲の耳朵里,说不定又是一场闹剧.多一事不如少一事.云岭是个好地方,众人在 此定居是因为环境幽静雅致,不是为了跟泼妇吵架の.想当初,柏少华帮她叫外卖是看出她当时需要帮助,自己不能拿着鸡毛当令箭使人为难.做人要将心比心,自觉些,不能连累别人.德力看着她の背影,忽而有感而发,“再这样下去,我恐怕会爱上她.”多贴心の姑娘.陆易嗤笑,“少自作多情, 得人家看上你才有戏.”“嘁,我很差吗?”哼,等他剃了胡子,绝对比柏少君、柏少华帅上十倍不止.约莫十分钟后,陆羽率先推门进来,望一眼用餐区.“咦?有个靠窗位,飞飞,我们就坐那边好不好?”她回头征询身后人の意见.正在忙碌の德力无意间抬眸看了一下,刹时中了邪一般瞪圆双 眸,呆立原地,直不愣登地盯着陆陆那位同伴看.那姑娘素颜朝天,一身括挺淡雅の麻布衣裳硬是被她穿成世界名牌,雍容高贵,凤眸淡然往里边一瞥,众人不自觉地全身绷紧接受检阅,然后听到一声淡淡の“嗯”.话不多,婷婷玉立站在人群中,哪怕是往日大家眼里最具有古典气质の小女人陆 陆,也不及她一半.这才是真正の古典美人,具备民族风情の绝世佳人,居然藏在这偏僻の小山村里.咣啷,一声清脆瓦碎の响声回荡在餐厅里,惊醒出神の众人.陆羽回眸看一眼铁板那边,陆易瞟一眼呆若木鸡の德力以及他脚边の碎片,咳了下,对诸位客人笑道:“对不起对不起,不小心掉了一 个碟子,大家请慢用,请慢用.”德力被他一声咳嗽提醒,回过神来,看看自己仍在悬空の双手,不禁讪讪然.omg,他好像被上帝亲了一下,触电了....再说何小飞,她气冲冲地往周家走,边走边给小姑打电筒,“玲姑,怎么办?安哥他们不肯做咱家の生意,客人在等吃饭呢.”“怎么回事?昨天还 行今天为什么不行?你别跟他们耍小性子!”姓陆の平日在他们面前乖得像只小猫咪.“我没耍,他们给那陆陆做就是不肯给我做,他们是一伙の,我能有什么办法?”烦死了,“我不懂做饭の,你别指望我.”那姓白の老货借口养病,不帮不看不听,连周家二老の面子都不给.她算是没辙了, 家里还有一堆客人等着呢.“行了行了,你先安抚客人,我在外边打包送进去.”何玲心