湖北省黄冈中学高考数学 典型例题20 不等式的综合应用
黄冈中学高考数学知识点与典型例题[1]
黄冈中学高考知识点与典型例题集合敬请搜索“黄冈中学高考数学知识点”结合起来看效果更好第一部分高考数学知识点重点难点解集合题首先想到Φ=方程无解一,数学思想应用1、数形结合思想在解集合题中的具体应用:数轴法, 文氏图法, 几何图形法数几文2、函数与方程思想在解集合题中具体应用:函数法方程法判别式法构造法3、分类讨论思想 在解集合题中具体应用:列举法 补集法 空集的运用 数学结合4、化归与转化思想 在解集合题中具体应用:列方程 补集法 文氏图法二,集合的含义与表示方法1、一般地,我们把研究对象统称为元素把一些元素组成的总体叫做集合2、集合元素三特性1.确定性;2.互异性;3.无序性3、 a 是集合A 的元素,a ∈A a 不属于集合A 记作 a ∉A 立体几何中体现为 点与直线/ 点与面 的关系元素与集合之间的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.4、非负整数集(自然数集)记作:N 含0正整数集N*或 N+ 不含0整数集Z 有理数集Q 实数集R3、集合表示方法: 列举法 描述法 韦恩图4、列举法:把集合中的元素一一列举出来,用大括号括上。
描述法:将集合中元素的共同特征描述出来,写在大括号内表用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:{不是直角三角形的三角形}②数学式子描述法:不等式x-3>2的解集是{x ∈R| x-3>2} {x| x-3>2}集合的分类: 有限集 无限集 空集三、集合间的基本关系“包含”关系—子集B A ⊆有两种可能立体几何中体现为 直线与面关系(a )A 是B 的一部分(b )A 与B 是同一集合。
反之: A ⊆/B B ⊇/A (c )A ∩B=A ⇔B A ⊆⇔C U B ⊆C U A(d )A ∪B=B ⇔B A ⊆⇔ C U B ⊆C U A(e )A B ⊆⇔C U A ⊆C U B2.“相等”关系(5≥5,且5≤5⇒5=5)① 任何一个集合是它本身的子集。
2010年湖北黄冈中学高三数学《专题三 函数背景下的不等式问题》
[例4]
(2007年福 建高 考题)已知f (x) 2 3 2 间 = 4x + ax x (x ∈R)在区 [1,1] 3 上是 函 . 增 数
(1) 求实 a的值 数 组成 集 A; 的 合 1 3 (2) 设关 x的方 f (x) = 2x + x 于 程 3 的 个非 两 零实 数根 x1,x2 , 试 :是 为 问
2 x
, , 图象 如图当a > 1 , 时
1 a + ≥ 1得 < a ≤ 2; 1 2 当 < a <1 , 0 时 1 1 a + ≥ 1, 2 1 得 ≤ a < 1. 2
1 2
[链接高考] 链接高考
[链接高考] 链接高考 1 ) f [例1] (2006年天津高考题 设 (x)是 1 x x 函数f (x) = (a a )(a >1)的反函数 , 2 1 则使f (x) >1成立的取值范围为 ( ) 2 2 a 1 a 1 A. ( ,+∞) B. (∞, ) 2a 2a 2 a 1 C. ( , a) D.[a,+∞) 2a
2010年湖北黄冈中学 年湖北黄冈中学
函数背景 下的不等式 问题
第一课时: 第一课时: 函数与不等式中的恒成立问题
第一课时: 第一课时: 函数与不等式中的恒成立问题
[课前引导] 课前引导]
第一课时: 第一课时: 函数与不等式中的恒成立问题
[课前引导] 课前引导]
1. 对一切实数 , f ( x) = x 4 x + 2 x , a > a恒成立 则实数 的取值范围是( )
湖北省黄冈中学高考数学 典型例题14 数列综合应用问题
高考数学典型例题详解 数列综合应用问题纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.●难点磁场(★★★★★)已知二次函数y =f (x )在x =22t 处取得最小值-42t (t >0),f (1)=0.(1)求y =f (x )的表达式;(2)若任意实数x 都满足等式f (x )·g (x )+a n x +b n =x n +1[g (x )]为多项式,n ∈N *),试用t 表示a n 和b n ;(3)设圆C n 的方程为(x -a n )2+(y -b n )2=r n 2,圆C n 与C n +1外切(n =1,2,3,…);{r n }是各项都是正数的等比数列,记S n 为前n 个圆的面积之和,求r n 、S n .●案例探究[例1]从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41. (1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?命题意图:本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力,本题有很强的区分度,属于应用题型,正是近几年高考的热点和重点题型,属★★★★★级题目.知识依托:本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点.错解分析:(1)问a n 、b n 实际上是两个数列的前n 项和,易与“通项”混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差.技巧与方法:正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.解:(1)第1年投入为800万元,第2年投入为800×(1-51)万元,…第n 年投入为800×(1-51)n -1万元,所以,n 年内的总投入为 a n =800+800×(1-51)+…+800×(1-51)n -1=∑=n k 1800×(1-51)k -1=4000×[1-(54)n] 第1年旅游业收入为400万元,第2年旅游业收入为400×(1+41),…,第n 年旅游业收入400×(1+41)n -1万元.所以,n 年内的旅游业总收入为 b n =400+400×(1+41)+…+400×(1+41)k -1=∑=n k 1400×(45)k -1.=1600×[(45)n-1] (2)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即:1600×[(45)n -1]-4000×[1-(54)n ]>0,令x =(54)n ,代入上式得:5x 2-7x +2>0.解此不等式,得x <52,或x >1(舍去).即(54)n <52,由此得n ≥5.∴至少经过5年,旅游业的总收入才能超过总投入.[例2]已知S n =1+3121++…+n1,(n ∈N *)设f (n )=S 2n +1-S n +1,试确定实数m 的取值范围,使得对于一切大于1的自然数n ,不等式:f (n )>[log m (m -1)]2-2011[log (m -1)m ]2恒成立.命题意图:本题主要考查应用函数思想解决不等式、数列等问题,需较强的综合分析问题、解决问题的能力.属★★★★★级题目.知识依托:本题把函数、不等式恒成立等问题组合在一起,构思巧妙.错解分析:本题学生很容易求f (n )的和,但由于无法求和,故对不等式难以处理. 技巧与方法:解决本题的关键是把f (n )(n ∈N *)看作是n 的函数,此时不等式的恒成立就转化为:函数f (n )的最小值大于[log m (m -1)]2-2011[log (m -1)m ]2. 解:∵S n =1+3121++…+n1.(n ∈N *) 0)421321()421221(42232122121321221)()1(1213121)(112>+-+++-+=+-+++=+-+++=-+++++++=-=∴++n n n n n n n n n n n f n f n n n S S n f n n 又Λ∴f (n +1)>f (n ) ∴f (n )是关于n 的增函数 ∴f (n ) min =f (2)=209321221=+++ ∴要使一切大于1的自然数n ,不等式f (n )>[log m (m -1)]2-2011[log (m -1)m ]2恒成立 只要209>[log m (m -1)]2-2011[log (m -1)m ]2成立即可由⎩⎨⎧≠->-≠>11,011,0m m m m 得m >1且m ≠2此时设[log m (m -1)]2=t 则t >0于是⎪⎩⎪⎨⎧>->02011209t t 解得0<t <1由此得0<[log m (m -1)]2<1 解得m >251+且m ≠2.●锦囊妙计1.解答数列综合题和应用性问题既要有坚实的基础知识,又要有良好的思维能力和分析、解决问题的能力;解答应用性问题,应充分运用观察、归纳、猜想的手段,建立出有关等差(比)数列、递推数列模型,再综合其他相关知识来解决问题.2.纵观近几年高考应用题看,解决一个应用题,重点过三关:(1)事理关:需要读懂题意,明确问题的实际背景,即需要一定的阅读能力.(2)文理关:需将实际问题的文字语言转化数学的符号语言,用数学式子表达数学关系.(3)事理关:在构建数学模型的过程中;要求考生对数学知识的检索能力,认定或构建相应的数学模型,完成用实际问题向数学问题的转化.构建出数学模型后,要正确得到问题的解,还需要比较扎实的基础知识和较强的数理能力.●歼灭难点训练一、选择题1.(★★★★★)已知二次函数y=a(a+1)x2-(2a+1)x+1,当a=1,2,…,n,…时,其(d1+d2+…+d n)的值是( ) 抛物线在x轴上截得的线段长依次为d1,d2,…,d n,…,则lim→∞nA.1B.2C.3D.4二、填空题2.(★★★★★)在直角坐标系中,O是坐标原点,P1(x1,y1)、P2(x2,y2)是第一象限的两个点,若1,x1,x2,4依次成等差数列,而1,y1,y2,8依次成等比数列,则△OP1P2的面积是_________.3.(★★★★)从盛满a升酒精的容器里倒出b升,然后再用水加满,再倒出b升,再用水加满;这样倒了n次,则容器中有纯酒精_________升.4.(★★★★★)据2000年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%,”如果“十·五”期间(2001年~2020年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为_________亿元.三、解答题5.(★★★★★)已知数列{a n }满足条件:a 1=1,a 2=r (r >0),且{a n a n +1}是公比为q (q >0)的等比数列,设b n =a 2n -1+a 2n (n =1,2,…).(1)求出使不等式a n a n +1+a n +1a n +2>a n +2a n +3(n ∈N *)成立的q 的取值范围; (2)求b n 和nn S 1lim∞→,其中S n =b 1+b 2+…+b n ;(3)设r =219.2-1,q =21,求数列{n n b b 212log log +}的最大项和最小项的值.6.(★★★★★)某公司全年的利润为b 元,其中一部分作为奖金发给n 位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n 排序,第1位职工得奖金nb元,然后再将余额除以n 发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.(1)设a k (1≤k ≤n )为第k 位职工所得奖金金额,试求a 2,a 3,并用k 、n 和b 表示a k (不必证明);(2)证明a k >a k +1(k =1,2,…,n -1),并解释此不等式关于分配原则的实际意义; (3)发展基金与n 和b 有关,记为P n (b ),对常数b ,当n 变化时,求lim ∞→n P n (b ).7.(★★★★)据有关资料,1995年我国工业废弃垃圾达到7.4×108吨,占地562.4平方公里,若环保部门每年回收或处理1吨旧物资,则相当于处理和减少4吨工业废弃垃圾,并可节约开采各种矿石20吨,设环保部门1996年回收10万吨废旧物资,计划以后每年递增20%的回收量,试问:(1)2001年回收废旧物资多少吨?(2)从1996年至2001年可节约开采矿石多少吨(精确到万吨)? (3)从1996年至2001年可节约多少平方公里土地?8.(★★★★★)已知点的序列A n (x n ,0),n ∈N ,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….(1)写出x n 与x n -1、x n -2之间关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明; (3)求lim ∞→n x n .参考答案 难点磁场解:(1)设f (x )=a (x -22+t )2-42t ,由f (1)=0得a =1.∴f (x )=x 2-(t +2)x +t +1.(2)将f (x )=(x -1)[x -(t +1)]代入已知得:(x -1)[x -(t +1)]g (x )+a n x +b n =x n +1,上式对任意的x ∈R 都成立,取x =1和x =t +1分别代入上式得:⎪⎩⎪⎨⎧+=++=++1)1()1(1n n n n n t b a t b a 且t ≠0,解得a n =t 1[(t +1)n +1-1],b n =t t 1+[1-(t +1]n) (3)由于圆的方程为(x -a n )2+(y -b n )2=r n 2,又由(2)知a n +b n =1,故圆C n 的圆心O n 在直线x +y =1上,又圆C n 与圆C n +1相切,故有r n +r n +1=2|a n +1-a n |=2(t +1)n +1设{r n }的公比为q ,则⎪⎩⎪⎨⎧+=++=+++++2111)1(2)1(2n n n n n n t q r r t q r r②÷①得q =n n r r 1+=t +1,代入①得r n =2)1(21+++t t n∴S n =π(r 12+r 22+…+r n 2)=342221)2()1(21)1(++π=--πt t t q q r n [(t +1)2n-1]歼灭难点训练一、1.解析:当a =n 时y =n (n +1)x 2-(2n +1)x +1 由|x 1-x 2|=a∆,得d n =)1(1+n n ,∴d 1+d 2+…+d n①②1)111(lim )(lim 1111113121211)1(132121121=+-=+++∴+-=+-++-+-=+++⋅+⋅=∞→∞→n d d d n n n n n n n n ΛΛΛ答案:A二、2.解析:由1,x 1,x 2,4依次成等差数列得:2x 1=x 2+1,x 1+x 2=5解得x 1=2,x 2=3.又由1,y 1,y 2,8依次成等比数列,得y 12=y 2,y 1y 2=8,解得y 1=2,y 2=4,∴P 1(2,2),P 2(3,4).∴21),2,2(OP OP ==(3,4) ∴,5||,22,14862121===+=OP OP OP OP110252221sin ||||21102sin ,102722514||||cos 21212121212121=⨯⨯⨯==∴=∴=⨯==∴∆OP P OP OP S OP P OP OP OP P P OP答案:13.解析:第一次容器中有纯酒精a -b 即a (1-a b )升,第二次有纯酒精a (1-ab)-b a a ba )1(-,即a (1-a b )2升,故第n 次有纯酒精a (1-ab )n 升. 答案:a (1-ab )n4.解析:从2001年到2020年每年的国内生产总值构成以95933为首项,以7.3%为公比的等比数列,∴a 5=95933(1+7.3%)4≈120000(亿元).答案:120000 三、5.解:(1)由题意得rq n -1+rq n >rq n +1.由题设r >0,q >0,故从上式可得:q 2-q -1<0,解得251-<q <251+,因q >0,故0<q <251+; (2)∵0,212212212221212121≠=++=++=∴==---+++++++q a a qa q a a a a ab b q a a a a a a nn n n n n n n n n n n n n n n .b 1=1+r ≠0,所以{b n }是首项为1+r ,公比为q 的等比数列,从而b n =(1+r )q n -1.当q =1时,S n =n (1+r ),1)1(),2()3()1( ,0)10( ,111lim ,0)1)(1(1lim 1lim ,1)1)(1(,1;11)1)(1(1lim 1lim ,1)1)(1(,10;0)1(1lim 1lim -∞→∞→∞→∞→∞→∞→∞→+=⎪⎩⎪⎨⎧≥<<+-==-+-=--+=>+-=-+-=--+=<<=+=n n nn nn n n n n nn n n n n n n n q r b q q r qS q r q S qq r S q r qq r q S q q r S q r n S 有由所以时当时当.2.2011log )1)(1(log log )1(log ])1[(log ])1[(log log log 2222122212-+=-+++=++=-+n qn r q n r q r q r b b n n n nnn n b b C 212log log +=记,从上式可知,当n -20.2>0,即n ≥21(n ∈N *)时,C n 随n 的增大而减小,故1<C n ≤C 21=1+8.0112.20211+=-=2.25 ①当n -20.2<0,即n ≤20(n ∈N *)时,C n 也随n 的增大而减小,故1>C n ≥C 20=1+2.0112.20201-=-=-4 ②综合①②两式知,对任意的自然数n 有C 20≤C n ≤C 21,故{C n }的最大项C 21=2.25,最小项C 20=-4.6.解:(1)第1位职工的奖金a 1=n b ,第2位职工的奖金a 2=n 1(1-n1)b ,第3位职工的奖金a 3=n 1(1-n 1)2b ,…,第k 位职工的奖金a k =n 1 (1-n1)k -1b ;(2)a k -a k +1=21n(1-n 1)k -1b >0,此奖金分配方案体现了“按劳分配”或“不吃大锅饭”的原则.(3)设f k (b )表示奖金发给第k 位职工后所剩余数,则f 1(b )=(1-n1)b ,f 2(b )=(1-n 1)2b ,…,f k (b )=(1-n 1)k b .得P n (b )=f n (b )=(1-n1)nb , 故ebb P n n =∞→)(lim . 7.解:设a n 表示第n 年的废旧物资回收量,S n 表示前n 年废旧物资回收总量,则数列{a n }是以10为首项,1+20%为公比的等比数列.(1)a 6=10(1+20%)5=10×1.25=24.8832≈25(万吨)(2)S 6=2.016.1101%)201(]1%)201[(1066-⨯=-+-+=99.2992≈99.3(万吨)∴从1996年到2000年共节约开采矿石20×99.3≈1986(万吨)(3)由于从1996年到2001年共减少工业废弃垃圾4×99.3=397.2(万吨), ∴从1996年到2001年共节约:84104.7102.3974.562⨯⨯⨯≈3 平方公里.8.解:(1)当n ≥3时,x n =221--+n n x x ; aa x x x x x x x a a x x x x x x x a a x x a 41)21(21)(212,21)(212,)2(2332334212212232121=--=--=-+=-=-=--=-+=-==-=由此推测a n =(-21)n -1a (n ∈N ) 证法一:因为a 1=a >0,且1111121)(2122----+-=-=-=-+=-=n n n n n n n n n n n a x x x x x x x x x a (n ≥2) 所以a n =(-21)n -1a . 证法二:用数学归纳法证明:(ⅰ)当n =1时,a 1=x 2-x 1=a =(-21)0a ,公式成立; (ⅱ)假设当n =k 时,公式成立,即a k =(-21)k -1a 成立.那么当n =k +1时,a k +1=x k +2-x k +1=k k k k k k a x x x x x 21)(212111-=--=-++++ .)21()21(21111公式仍成立a a )(k k -+--=--=据(ⅰ)(ⅱ)可知,对任意n ∈N ,公式a n =(-21)n -1a 成立.(3)当n ≥3时,有x n =(x n -x n -1)+(x n -1-x n -2)+…+(x 2-x 1)+x 1 =a n -1+a n -2+…+a 1, 由(2)知{a n }是公比为-21的等比数列,所以32)21(1lim 1=--=∞→a x n n a .s。
黄冈中学高考数学典型例题18---不等式的证明策略
黄冈中学高考数学典型例题详解不等式的证明每临大事,必有静气;静则神明,疑难冰释; 积极准备,坦然面对;最佳发挥,舍我其谁?敬请搜索“黄冈中学高考数学知识点”结合起来看 效果更好体会绝妙解题思路 建立强大数学模型 感受数学思想魅力 品味学习数学快乐不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力.●难点磁场(★★★★)已知a >0,b >0,且a +b =1. 求证:(a +a1)(b +b1)≥425.●案例探究[例1]证明不等式n n2131211<++++(n ∈N *)命题意图:本题是一道考查数学归纳法、不等式证明的综合性题目,考查学生观察能力、构造能力以及逻辑分析能力,属★★★★★级题目.知识依托:本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等.错解分析:此题易出现下列放缩错误:这样只注重形式的统一,而忽略大小关系的错误也是经常发生的.技巧与方法:本题证法一采用数学归纳法从n =k 到n =k +1的过渡采用了放缩法;证法二先放缩,后裂项,有的放矢,直达目标;而证法三运用函数思想,借助单调性,独具匠心,发人深省.证法一:(1)当n 等于1时,不等式左端等于1,右端等于2,所以不等式成立; (2)假设n =k (k ≥1)时,不等式成立,即1+k13121+++ <2k ,,1211)1(11)1(21121131211+=++++<+++=++<+++++k k k k k k k k k k 则∴当n =k +1时,不等式成立. 综合(1)、(2)得:当n ∈N *时,都有1+n13121+++ <2n .另从k 到k +1时的证明还有下列证法:,1111212212:.12112,01),1(21)1(2,0)1()1()1(2)1(21)1(22+=+++>++=-++<++∴>++<++∴>+-=+++-=+--+k k k k k k k k k k k k k k k k k k k k k k k又如.12112+<++∴k k k证法二:对任意k ∈N *,都有:.2)1(2)23(2)12(22131211),1(21221n n n nk k k k k k k =--++-+-+<++++--=-+<+=因此证法三:设f (n )=),131211(2nn ++++-那么对任意k ∈N *都有:1)1(])1(2)1[(11]1)1(2)1(2[1111)1(2)()1(2>+-+=++-+⋅+=-+-++=+--+=-+k k k k k k k k k k k k k k k k f k f∴f (k +1)>f (k )因此,对任意n ∈N * 都有f (n )>f (n -1)>…>f (1)=1>0, ∴.2131211n n<++++[例2]求使y x +≤ay x +(x >0,y >0)恒成立的a 的最小值.命题意图:本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力,属于★★★★★级题目.知识依托:该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值.错解分析:本题解法三利用三角换元后确定a 的取值范围,此时我们习惯是将x 、y 与cos θ、sin θ来对应进行换元,即令x =cos θ,y =sin θ(0<θ<2π),这样也得a ≥sinθ+cos θ,但是这种换元是错误的.其原因是:(1)缩小了x 、y 的范围;(2)这样换元相当于本题又增加了“x 、y =1”这样一个条件,显然这是不对的.技巧与方法:除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a 满足不等关系,a ≥f (x ),则a min =f (x )max ;若 a ≤f (x ),则a max =f (x )min ,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题.还有三角换元法求最值用的恰当好处,可以把原问题转化.解法一:由于a 的值为正数,将已知不等式两边平方,得:x +y +2xy ≤a 2(x +y ),即2xy ≤(a 2-1)(x +y ),① ∴x ,y >0,∴x +y ≥2xy ,②当且仅当x =y 时,②中有等号成立.比较①、②得a 的最小值满足a 2-1=1, ∴a 2=2,a =2 (因a >0),∴a 的最小值是2.解法二:设yx xy yx xyy x yx y x yx yx u ++=+++=++=++=212)(2.∵x >0,y >0,∴x +y ≥2xy (当x =y 时“=”成立),∴yx xy+2≤1,yx xy+2的最大值是1.从而可知,u 的最大值为211=+,又由已知,得a ≥u ,∴a 的最小值为2. 解法三:∵y >0, ∴原不等式可化为yx +1≤a1+yx ,设yx =tan θ,θ∈(0,2π).∴tan θ+1≤a 1tan 2+θ;即tan θ+1≤a se c θ ∴a ≥sin θ+cos θ=2sin(θ+4π),③又∵sin(θ+4π)的最大值为1(此时θ=4π).由③式可知a 的最小值为2.●锦囊妙计1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证.(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等.换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.●歼灭难点训练 一、填空题1.(★★★★★)已知x 、y 是正变数,a 、b 是正常数,且yb x a =1,x +y 的最小值为__________.2.(★★★★)设正数a 、b 、c 、d 满足a +d =b +c ,且|a -d |<|b -c |,则ad 与bc 的大小关系是__________.3.(★★★★)若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________.二、解答题4.(★★★★★)已知a ,b ,c 为正实数,a +b +c =1.求证:(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤65.(★★★★★)已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明:x ,y ,z ∈[0,32]6.(★★★★★)证明下列不等式: (1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则cb a y ba c x ac b +++++22z 2≥2(xy +yz +zx )(2)若x ,y ,z ∈R +,且x +y +z =xyz , 则zy x yx z xz y +++++≥2(zyx111++)7.(★★★★★)已知i ,m 、n 是正整数,且1<i ≤m <n . (1)证明:n i A i m <m i A i n ; (2)证明:(1+m )n >(1+n )m8.(★★★★★)若a >0,b >0,a 3+b 3=2,求证:a +b ≤2,ab ≤1.参考答案 难点磁场证法一:(分析综合法)欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,即证4(ab )2-33(ab )+8≥0,即证ab ≤41或ab ≥8.∵a >0,b >0,a +b =1,∴ab ≥8不可能成立 ∵1=a +b ≥2ab ,∴ab ≤41,从而得证.证法二:(均值代换法) 设a =21+t 1,b =21+t 2.∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21.4254116254123162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t b b aa bb a a显然当且仅当t =0,即a =b =21时,等号成立.证法三:(比较法)∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤41425)1)(1(04)8)(41(4833442511425)1)(1(2222≥++∴≥--=++=-+⋅+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四:(综合法)∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤41.4251)1(41 16251)1(169)1(434111222≥+-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥≥+-⇒≥-⇒=-≥-∴ab ab ab ab ab ab 425)1)(1(≥++bb aa 即证法五:(三角代换法)∵ a >0,b >0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,2π).425)1)(1(4252sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cossin 1(sin )1)(1(2222222222222442222≥++≥-⇒⎪⎭⎪⎬⎫≥≥+-=-≥-∴≤+-=+-+=++=++b b a a bb aa 即得ααααααααααααααααα 2歼灭难点训练 一、1.解析:令xa =cos 2θ,yb =sin 2θ,则x =a sec 2θ,y =bc s c 2θ,∴x +y =a sec 2θ+b csc 2θ=a +b +a tan 2θ+b co t 2θ≥a +b +2ab b a b a 2cot tan 22++=θ⋅θ.答案:a +b +2ab2.解析:由0≤|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔(a +b )2-4ad <(b +c )2-4bc ∵a +d =b +c ,∴-4ad <-4bc ,故ad >bc . 答案:ad >bc3.解析:把p 、q 看成变量,则m <p <n ,m <q <n . 答案:m <p <q <n二、4.(1)证法一:a 2+b 2+c 2-31=31(3a 2+3b 2+3c 2-1)=31[3a 2+3b 2+3c 2-(a +b +c )2]=31[3a 2+3b 2+3c 2-a 2-b 2-c 2-2ab -2ac -2bc ] =31[(a -b )2+(b -c )2+(c -a )2]≥0 ∴a 2+b 2+c 2≥31证法二:∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+a 2+c 2+b 2+c 2 ∴3(a 2+b 2+c 2)≥(a +b +c )2=1 ∴a 2+b 2+c 2≥31证法三:∵33222cb a cb a ++≥++∴a 2+b 2+c 2≥3cb a ++∴a 2+b 2+c 2≥31证法四:设a =31+α,b =31+β,c =31+γ.∵a +b +c =1,∴α+β+γ=0 ∴a 2+b 2+c 2=(31+α)2+(31+β)2+(31+γ)2=31+32 (α+β+γ)+α2+β2+γ2=31+α2+β2+γ2≥31∴a 2+b 2+c 2≥31629)(323232323323,23323,21231)23(23:)2(=+++<+++++∴+<++<+++<⨯+=+c b a c b a c c b b a a a 同理证法一∴原不等式成立. 证法二:3)23()23()23(3232323+++++≤+++++c b a c b a336)(3=+++=c b a∴232323+++++c b a ≤33<6∴原不等式成立.5.证法一:由x +y +z =1,x 2+y 2+z 2=21,得x 2+y 2+(1-x -y )2=21,整理成关于y 的一元二次方程得:2y 2-2(1-x )y +2x 2-2x +21=0,∵y ∈R ,故Δ≥0∴4(1-x )2-4×2(2x 2-2x +21)≥0,得0≤x ≤32,∴x ∈[0,32]同理可得y ,z ∈[0,32]证法二:设x =31+x ′,y =31+y ′,z =31+z ′,则x ′+y ′+z ′=0,于是21=(31+x ′)2+(31+y ′)2+(31+z ′)2=31+x ′2+y ′2+z ′2+32 (x ′+y ′+z ′)=31+x ′2+y ′2+z ′2≥31+x ′2+2)(2z y '+'=31+23x ′2故x ′2≤91,x ′∈[-31,31],x ∈[0,32],同理y ,z ∈[0,32]证法三:设x 、y 、z 三数中若有负数,不妨设x <0,则x 2>0,21=x 2+y 2+z 2≥x 2+21232)1(2)(2222+-=+-=+x x x x z y >21,矛盾.x 、y 、z 三数中若有最大者大于32,不妨设x >32,则21=x 2+y 2+z 2≥x 2+2)(2z y +=x 2+2)1(2x -=23x 2-x +21=23x (x -32)+21>21;矛盾. 故x 、y 、z ∈[0,32])()()()()()(222)(4)(2))(()(2)]()()([)(2)(:)2()(20)()()()2()2()2()(22:)1.(62222222222223333332222222222222222222222222222222222≥-+-+-+-+-+-⇔++≥+++++⇔+++++≥+++++++⇔++≥+++++⋅⇔++≥+++++++≥+++++∴≥-+-+-=-++-++-+=++-+++++y x z x z y z y x y x xy x z zx z y yz xyzz xy yz x xyy x zx x z yz z y xyz z xy yz x x z z y y x xy y x zxx z yzz y z y x zx yz xy y x xy x z zx z y yz xyz zx yz xy zy x yx z xz y z y x zx yz xy z cb a y ba c x a cb x ac z ca z cb y bc y b a x a b zx x ac z c a yz z cb y bc xy y ba x ab zx yz xy z cb a y b ac x c b 所证不等式等介于证明证明∵上式显然成立,∴原不等式得证.7.证明:(1)对于1<i ≤m ,且A i m =m ·…·(m -i +1),n i n n n n n nm i m m m m m miim i im 11A ,11A +-⋅⋅-⋅=+-⋅⋅-⋅= 同理, 由于m <n ,对于整数k =1,2,…,i -1,有mk m nk n ->-,所以im i i n i iim iin n m mnA A ,A A >>即(2)由二项式定理有:(1+m )n =1+C 1n m +C 2n m 2+…+C n n m n , (1+n )m =1+C 1m n +C 2m n 2+…+C m m n m, 由(1)知m iA in>n iA i m(1<i ≤m ,而C i m=!A C,!A i i in i nim =∴m i C i n >n i C i m (1<m <n )∴m 0C 0n =n 0C 0n =1,m C 1n =n C 1m =m ·n ,m 2C 2n >n 2C 2m,…, m m C m n >n m C m m ,m m +1C 1+m n >0,…,m n C n n>0, ∴1+C 1n m +C 2n m 2+…+C n n m n >1+C 1m n +C 2m n 2+…+C m m n m , 即(1+m )n >(1+n )m 成立.8.证法一:因a >0,b >0,a 3+b 3=2,所以 (a +b )3-23=a 3+b 3+3a 2b +3ab 2-8=3a 2b +3ab 2-6=3[ab (a +b )-2]=3[ab (a +b )-(a 3+b 3)]=-3(a +b )(a -b )2≤0.即(a +b )3≤23,又a +b >0,所以a +b ≤2,因为2ab ≤a +b ≤2,所以ab ≤1.证法二:设a 、b 为方程x 2-mx +n =0的两根,则⎩⎨⎧=+=abn b a m ,因为a >0,b >0,所以m >0,n >0,且Δ=m 2-4n ≥0①因为2=a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]=m (m 2-3n ) 所以n =mm 3232-②将②代入①得m 2-4(mm 3232-)≥0,即mm 383+-≥0,所以-m 3+8≥0,即m ≤2,所以a +b ≤2,由2≥m 得4≥m 2,又m 2≥4n ,所以4≥4n , 即n ≤1,所以ab ≤1.证法三:因a >0,b >0,a 3+b 3=2,所以2=a 3+b 3=(a +b )(a 2+b 2-ab )≥(a +b )(2ab -ab )=ab (a +b )于是有6≥3ab (a +b ),从而8≥3ab (a +b )+2=3a 2b +3ab 2+a 3+b 3= (a +b )3,所以a +b ≤2,(下略) 证法四:因为333)2(2b a b a +-+ 8))((38]2444)[(22222b a b a ab b aab b a b a -+=----++=≥0,所以对任意非负实数a 、b ,有233b a +≥3)2(b a + 因为a >0,b >0,a 3+b 3=2,所以1=233b a +≥3)2(b a +,∴2b a +≤1,即a +b ≤2,(以下略)证法五:假设a +b >2,则a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]>(a +b )ab >2ab ,所以ab <1, 又a 3+b 3=(a +b )[a 2-ab +b 2]=(a +b )[(a +b )2-3ab ]>2(22-3ab )因为a 3+b 3=2,所以2>2(4-3ab ),因此ab >1,前后矛盾,故a +b ≤2(以下略)。
黄冈中学高考数学典型例题18---不等式的证明策略
黄冈中学高考数学典型例题详解不等式的证明每临大事,必有静气;静则神明,疑难冰释;积极准备,坦然面对;最佳发挥,舍我其谁敬请搜索“黄冈中学高考数学知识点”结合起来看效果更好体会绝妙解题思路建立强大数学模型感受数学思想魅力品味学习数学快乐不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力.●难点磁场(★★★★)已知a >0,b >0,且a +b =1. 求证:(a +a 1)(b +b1)≥425.●案例探究[例1]证明不等式n n2131211<++++Λ(n ∈N *)命题意图:本题是一道考查数学归纳法、不等式证明的综合性题目,考查学生观察能力、构造能力以及逻辑分析能力,属★★★★★级题目.知识依托:本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等.错解分析:此题易出现下列放缩错误:这样只注重形式的统一,而忽略大小关系的错误也是经常发生的.技巧与方法:本题证法一采用数学归纳法从n =k 到n =k +1的过渡采用了放缩法;证法二先放缩,后裂项,有的放矢,直达目标;而证法三运用函数思想,借助单调性,独具匠心,发人深省.证法一:(1)当n 等于1时,不等式左端等于1,右端等于2,所以不等式成立;(2)假设n =k (k ≥1)时,不等式成立,即1+k13121+++Λ<2k ,,1211)1(11)1(21121131211+=++++<+++=++<+++++k k k k k k k k k k Λ则∴当n =k +1时,不等式成立. 综合(1)、(2)得:当n ∈N *时,都有1+n13121+++Λ<2n .另从k 到k +1时的证明还有下列证法:,1111212212:.12112,01),1(21)1(2,0)1()1()1(2)1(21)1(22+=+++>++=-++<++∴>++<++∴>+-=+++-=+--+k k k kk k k k k k k k k k k k k k k k k k k ΘΘΘ又如.12112+<++∴k k k证法二:对任意k ∈N *,都有:.2)1(2)23(2)12(22131211),1(21221n n n nk k k k k k k =--++-+-+<++++--=-+<+=ΛΛ因此证法三:设f (n )=),131211(2nn ++++-Λ那么对任意k ∈N*都有:1)1(])1(2)1[(11]1)1(2)1(2[1111)1(2)()1(2>+-+=++-+⋅+=-+-++=+--+=-+k k k k k k k k k k k k k k k k f k f∴f (k +1)>f (k )因此,对任意n ∈N * 都有f (n )>f (n -1)>…>f (1)=1>0, ∴.2131211n n <++++Λ[例2]求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值.命题意图:本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力,属于★★★★★级题目.知识依托:该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值.错解分析:本题解法三利用三角换元后确定a 的取值范围,此时我们习惯是将x 、y 与cos θ、sin θ来对应进行换元,即令x =cos θ,y =sin θ(0<θ<2π),这样也得a ≥sin θ+cos θ,但是这种换元是错误的.其原因是:(1)缩小了x 、y 的范围;(2)这样换元相当于本题又增加了“x 、y =1”这样一个条件,显然这是不对的.技巧与方法:除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a 满足不等关系,a ≥f (x ),则a min =f (x )max ;若 a ≤f (x ),则a max =f (x )min ,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题.还有三角换元法求最值用的恰当好处,可以把原问题转化.解法一:由于a 的值为正数,将已知不等式两边平方,得: x +y +2xy ≤a 2(x +y ),即2xy ≤(a 2-1)(x +y ),①∴x ,y >0,∴x +y ≥2xy ,②当且仅当x =y 时,②中有等号成立. 比较①、②得a 的最小值满足a 2-1=1, ∴a 2=2,a =2 (因a >0),∴a 的最小值是2. 解法二:设yx xyy x xy y x y x y x yx yx u ++=+++=++=++=212)(2. ∵x >0,y >0,∴x +y ≥2xy (当x =y 时“=”成立), ∴y x xy +2≤1,yx xy+2的最大值是1. 从而可知,u 的最大值为211=+, 又由已知,得a ≥u ,∴a 的最小值为2. 解法三:∵y >0, ∴原不等式可化为yx+1≤a 1+yx,设y x =tan θ,θ∈(0,2π). ∴tan θ+1≤a 1tan 2+θ;即tan θ+1≤a se c θ ∴a ≥sin θ+cos θ=2sin(θ+4π),③又∵sin(θ+4π)的最大值为1(此时θ=4π). 由③式可知a 的最小值为2.●锦囊妙计1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证.(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等.换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.●歼灭难点训练 一、填空题1.(★★★★★)已知x 、y 是正变数,a 、b 是正常数,且ybxa +=1,x +y 的最小值为__________.2.(★★★★)设正数a 、b 、c 、d 满足a +d =b +c ,且|a -d |<|b -c |,则ad 与bc 的大小关系是__________.3.(★★★★)若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________.二、解答题4.(★★★★★)已知a ,b ,c 为正实数,a +b +c =1. 求证:(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤65.(★★★★★)已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明:x ,y ,z ∈[0,32]6.(★★★★★)证明下列不等式: (1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz ,则zy x y x z x z y +++++≥2(z y x 111++)7.(★★★★★)已知i ,m 、n 是正整数,且1<i ≤m <n . (1)证明:n i A i m <m i A i n ; (2)证明:(1+m )n >(1+n )m8.(★★★★★)若a >0,b >0,a 3+b 3=2,求证:a +b ≤2,ab ≤1.参考答案 难点磁场证法一:(分析综合法)欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,即证4(ab )2-33(ab )+8≥0,即证ab ≤41或ab ≥8.∵a >0,b >0,a +b =1,∴ab ≥8不可能成立 ∵1=a +b ≥2ab ,∴ab ≤41,从而得证. 证法二:(均值代换法) 设a =21+t 1,b =21+t 2.∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21.4254116254123162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a显然当且仅当t =0,即a =b =21时,等号成立. 证法三:(比较法)∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤41425)1)(1(04)8)(41(4833442511425)1)(1(2222≥++∴≥--=++=-+⋅+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四:(综合法)∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤41.4251)1(41 16251)1(169)1(434111222≥+-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥≥+-⇒≥-⇒=-≥-∴ab ab ab ab ab ab 425)1)(1(≥++b b a a 即 证法五:(三角代换法)∵ a >0,b >0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,2π) .425)1)(1(4252sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2222222222222442222≥++≥-⇒⎪⎭⎪⎬⎫≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得αααααααααααααααααΘ 2歼灭难点训练一、1.解析:令xa =cos 2θ,yb =sin 2θ,则x =a sec 2θ,y =bc s c 2θ,∴x +y =a sec 2θ+b csc 2θ=a +b +a tan 2θ+b co t 2θ≥a +b +2ab b a b a 2cot tan 22++=θ⋅θ.答案:a +b +2ab2.解析:由0≤|a -d |<|b -c |⇔(a -d )2<(b -c )2⇔(a +b )2-4ad <(b +c )2-4bc∵a +d =b +c ,∴-4ad <-4bc ,故ad >bc . 答案:ad >bc3.解析:把p 、q 看成变量,则m <p <n ,m <q <n . 答案:m <p <q <n二、4.(1)证法一:a 2+b 2+c 2-31=31(3a 2+3b 2+3c 2-1)=31[3a 2+3b 2+3c 2-(a +b +c )2]=31[3a 2+3b 2+3c 2-a 2-b 2-c 2-2ab -2ac -2bc ] =31[(a -b )2+(b -c )2+(c -a )2]≥0 ∴a 2+b 2+c 2≥31 证法二:∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+a 2+c 2+b 2+c2 ∴3(a 2+b 2+c 2)≥(a +b +c )2=1 ∴a 2+b 2+c 2≥31证法三:∵33222c b a c b a ++≥++∴a 2+b 2+c 2≥3cb a ++ ∴a 2+b 2+c 2≥31证法四:设a =31+α,b =31+β,c =31+γ. ∵a +b +c =1,∴α+β+γ=0∴a 2+b 2+c 2=(31+α)2+(31+β)2+(31+γ)2=31+32 (α+β+γ)+α2+β2+γ2=31+α2+β2+γ2≥31 ∴a 2+b 2+c 2≥31629)(323232323323,23323,21231)23(23:)2(=+++<+++++∴+<++<+++<⨯+=+c b a c b a c c b b a a a 同理证法一Θ ∴原不等式成立.证法二:3)23()23()23(3232323+++++≤+++++c b a c b a 336)(3=+++=c b a∴232323+++++c b a ≤33<6 ∴原不等式成立.5.证法一:由x +y +z =1,x 2+y 2+z 2=21,得x 2+y 2+(1-x -y )2=21,整理成关于y 的一元二次方程得:2y 2-2(1-x )y +2x 2-2x +21=0,∵y ∈R ,故Δ≥0∴4(1-x )2-4×2(2x 2-2x +21)≥0,得0≤x ≤32,∴x ∈[0,32] 同理可得y ,z ∈[0,32]证法二:设x =31+x ′,y =31+y ′,z =31+z ′,则x ′+y ′+z ′=0, 于是21=(31+x ′)2+(31+y ′)2+(31+z ′)2 =31+x ′2+y ′2+z ′2+32 (x ′+y ′+z ′)=31+x ′2+y ′2+z ′2≥31+x ′2+2)(2z y '+'=31+23x ′2故x ′2≤91,x ′∈[-31,31],x ∈[0,32],同理y ,z ∈[0,32]证法三:设x 、y 、z 三数中若有负数,不妨设x <0,则x 2>0,21=x 2+y 2+z 2≥x 2+21232)1(2)(2222+-=+-=+x x x x z y >21,矛盾.x 、y 、z 三数中若有最大者大于32,不妨设x >32,则21=x 2+y 2+z 2≥x 2+2)(2z y +=x 2+2)1(2x -=23x 2-x +21=23x (x -32)+21>21;矛盾. 故x 、y 、z ∈[0,32]0)()()()()()(222)(4)(2))(()(2)]()()([)(2)(:)2()(20)()()()2()2()2()(22:)1.(62222222222223333332222222222222222222222222222222222≥-+-+-+-+-+-⇔++≥+++++⇔+++++≥+++++++⇔++≥+++++⋅⇔++≥+++++++≥+++++∴≥-+-+-=-++-++-+=++-+++++y x z x z y z y x y x xy x z zx z y yz xyz z xy yz x xy y x zx x z yz z y xyz z xy yz x x z z y y x xy y x zx x z yz z y z y x zx yz xy y x xy x z zx z y yz xyz zx yz xy z y x y x z x z y z y x zx yz xy z cb a y b ac x a c b x ac z c a z c b y b c y b a x a b zx x ac z c a yz z c b y b c xy y b a x a b zx yz xy z cb a y b ac x c b 所证不等式等介于证明证明Θ ∵上式显然成立,∴原不等式得证.7.证明:(1)对于1<i ≤m ,且A im =m ·…·(m -i +1),n i n n n n n n m i m m m m m m iim i im 11A ,11A +-⋅⋅-⋅=+-⋅⋅-⋅=ΛΛ同理, 由于m <n ,对于整数k =1,2,…,i -1,有mk m n k n ->-, 所以im i in i i im i in n m m n A A ,A A >>即 (2)由二项式定理有:(1+m )n =1+C 1n m +C 2n m 2+…+C n n m n ,(1+n )m =1+C 1m n +C 2m n 2+…+C m m n m ,由(1)知m i A i n >n i A i m (1<i ≤m),而C i m =!A C ,!A i i i n i n i m = ∴m i C i n >n i C i m (1<m <n ) ∴m 0C 0n =n 0C 0n =1,m C 1n =n C 1m =m ·n ,m 2C 2n >n 2C 2m ,…,m m C m n >n m C m m ,mm +1C 1+m n >0,…,m n C nn >0, ∴1+C 1n m +C 2n m 2+…+C n n m n >1+C 1m n +C 2m n 2+…+C m m n m ,即(1+m )n >(1+n )m 成立.8.证法一:因a >0,b >0,a 3+b 3=2,所以(a +b )3-23=a 3+b 3+3a 2b +3ab 2-8=3a 2b +3ab 2-6=3[ab (a +b )-2]=3[ab (a +b )-(a 3+b 3)]=-3(a +b )(a -b )2≤0. 即(a +b )3≤23,又a +b >0,所以a +b ≤2,因为2ab ≤a +b ≤2, 所以ab ≤1.证法二:设a 、b 为方程x 2-mx +n =0的两根,则⎩⎨⎧=+=ab n b a m , 因为a >0,b >0,所以m >0,n >0,且Δ=m 2-4n ≥0① 因为2=a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]=m (m 2-3n )所以n =m m 3232- ②将②代入①得m 2-4(mm 3232-)≥0, 即m m 383+-≥0,所以-m 3+8≥0,即m ≤2,所以a +b ≤2, 由2≥m 得4≥m 2,又m 2≥4n ,所以4≥4n ,即n ≤1,所以ab ≤1.证法三:因a >0,b >0,a 3+b 3=2,所以2=a 3+b 3=(a +b )(a 2+b 2-ab )≥(a +b )(2ab -ab )=ab (a +b )于是有6≥3ab (a +b ),从而8≥3ab (a +b )+2=3a 2b +3ab 2+a 3+b 3= (a +b )3,所以a +b ≤2,(下略)证法四:因为333)2(2b a b a +-+ 8))((38]2444)[(22222b a b a ab b a ab b a b a -+=----++=≥0, 所以对任意非负实数a 、b ,有233b a +≥3)2(b a + 因为a >0,b >0,a 3+b 3=2,所以1=233b a +≥3)2(b a +, ∴2b a +≤1,即a +b ≤2,(以下略)证法五:假设a+b>2,则a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>(a+b)ab>2ab,所以ab<1,又a3+b3=(a+b)[a2-ab+b2]=(a+b)[(a+b)2-3ab]>2(22-3ab)因为a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)。
2024年湖北省黄冈中学高考数学二模试卷+答案解析
2024年湖北省黄冈中学高考数学二模试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则图中阴影部分表示的集合为()A. B. C. D.2.已知复数z满足,则()A. B. C. D.3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,那么不同插法的种数为()A.42B.96C.48D.1244.已知角,角的顶点均为坐标原点,始边均与x轴的非负半轴重合,终边分别过,,则()A.或B.2或C.D.5.已知为单位向量,向量满足,,则的最大值为()A.9B.C.D.86.已知函数的定义域为R,,若函数为奇函数,为偶函数,且,则()A. B.0 C.1 D.27.过双曲线的右焦点F作渐近线的垂线l,垂足为A,l交另一条渐近线于点B,且点F在点A、B之间,若,则双曲线C的渐近线方程为()A. B. C. D.8.已知a,b,c,d分别满足下列关系:,则a,b,c,d的大小关系为()A. B. C. D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.下列说法正确的是()A.已知随机变量服从二项分布:,设,则的方差B.数据1,3,5,7,9,11,13的第60百分位数为7C.若样本数据,,⋯,的平均数为3,则,,⋯,的平均数为10D.用简单随机抽样的方法从51个样本中抽取2个样本,则每个样本被抽到的概率都是10.如图,在棱长为2的正方体中,P为棱的中点,点Q满足,则下列说法中正确的是()A.平面B.若平面,则动点Q的轨迹是一条线段C.若,则四面体的体积为定值D.若M为正方形的中心,则三棱锥外接球的体积为11.已知圆:,圆:,动圆P与圆外切于点M,与圆内切于点N圆心P的轨迹记为曲线C,则()A.C的方程为B.的最小值为C. D.曲线C在点P处的切线与线段MN垂直三、填空题:本题共3小题,每小题5分,共15分。
高考数学压轴专题黄冈备战高考《不等式选讲》技巧及练习题附解析
【高中数学】数学高考《不等式选讲》复习资料一、141.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( )A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤【答案】A 【解析】 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.2.已知函数()1f x x x a =++-,若()2f x ≥恒成立,则a 的取值范围是( ) A .(][),22,-∞-+∞U B .(][),31,-∞-+∞U C .(][),13,-∞-+∞U D .(][),04,-∞+∞U【答案】B 【解析】 【分析】利用绝对值三角不等式确定()f x 的最小值;把()2f x ≥恒成立的问题,转化为其等价条件去确定a 的范围。
【详解】根据绝对值三角不等式,得1(1)()1x x a x x a a ++-≥+--=+∴()1f x x x a =++-的最小值为1a +()2f x ≥Q 恒成立,∴等价于()f x 的最小值大于等于2,即12a +≥ ∴12a +≥或12a +≤-,1a ≥或3a ≤-,故选B 。
【点睛】本题主要考查了绝对值三角不等式的应用及如何在恒成立条件下确定参数a 的取值范围。
3.若关于x 的不等式222213x t x t t t +-+++-<无解,则实数t 的取值范围是( ) A .1,15⎡⎤-⎢⎥⎣⎦B .(],0-∞C .(],1-∞D .(],5-∞ 【答案】C 【解析】 【分析】先得到当0t ≤时,满足题意,再当0t >时,根据绝对值三角不等式,得到22221x t x t t +-+++-的最小值,要使不等式无解,则最小值需大于等于3t ,从而得到关于t 的不等式,解得t 的范围 【详解】关于x 的不等式222213x t x t t t +-+++-<无解, 当0t ≤时,可得此时不等式无解, 当0t >时,()2222221221x t x t t x t x t t +-+++-+--++-≥21t =--,所以要使不等式无解,则213t t --≥, 平方整理后得20541t t ≤--, 解得115t ≤≤-, 所以01t <≤,综上可得t 的范围为(],1-∞, 故选:C. 【点睛】本题考查绝对值的三角不等式的应用,根据不等式的解集情况求参数的范围,属于中档题.4.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D 【解析】因为若,则,已知不等式不成立,所以,应选答案D 。
高考数学复习----《函数的奇偶性的综合应用》典型例题讲解
高考数学复习----《函数的奇偶性的综合应用》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 在(],3−∞上单调递增,且()3f x +为偶函数,则不等式()()12f x f x +>的解集为( )A .51,3⎛⎫ ⎪⎝⎭B .()5,1,3⎛⎫−∞⋃+∞ ⎪⎝⎭C .(),1−∞D .()1,+∞【答案】B【解析】∵()3f x +为偶函数, ∴()()33f x f x −+=+,即函数()f x 关于3x =对称,又函数()f x 在(],3−∞上单调递增,∴函数()f x 在[)3,+∞上单调递减,由()()12f x f x +>,可得1323x x +−<−,整理得,23850x x −+>,解得1x <或53x >. 故选:B .例2、(2023·全国·高三专题练习)设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,不等式()()24f x f x ≥的解集为( )A .(][),04,−∞+∞UB .[]0,4C .(][),02,−∞⋃+∞D .[]0,2【答案】C 【解析】根据题意,当0x ≥时,()2f x x =,所以()f x 在[0,)+∞上为增函数,因为()f x 是定义在R 上的奇函数,所以()f x 在R 上为增函数,因为20x ≥,所以24()f x x =,24124x f x ⎛⎫= ⎪⎝⎭, 所以221()42x f x f ⎛⎫= ⎪⎝⎭, 所以不等式()()24f x f x ≥可化为2()2x f f x ⎛⎫≥ ⎪⎝⎭, 所以22x x ≥,解得0x ≤或2x ≥, 所以不等式()()24f x f x ≥的解集为(][),02,−∞⋃+∞,故选:C例3、(2023·全国·高三专题练习)已知偶函数()f x 的定义域为R ,且当0x ≥时,()11x f x x −=+,则使不等式()2122f a a −<成立的实数a 的取值范围是( ) A .()1,3−B .()3,3−C .()1,1−D .(),3−∞【答案】A 【解析】当0x ≥时,()()12121111x x f x x x x +−−===−+++,所以()f x 在[)0,∞+上单调递增, 且()132f =,不等式()2122f a a −<即为()()223f a a f −<. 又因为()f x 是偶函数,所以不等式()()223f a a f −<等价于()()223f a a f −<, 则223a a −<,所以,222323a a a a ⎧−<⎨−>−⎩,解得13a −<<. 综上可知,实数a 的取值范围为()1,3−,故选:A .例4、(2023·全国·高三专题练习)定义在R 上的奇函数()f x 在(,0]−∞上单调递增,且(2)2f −=−,则不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭的解集为( ) A .10,100⎛⎫ ⎪⎝⎭B .1,100⎛⎫+∞ ⎪⎝⎭C .(0,100)D .(100,)+∞【答案】D【解析】因为函数()f x 为奇函数,所以()()f x f x −=−,又(2)2f −=−,(2)2f =, 所以不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭,可化为()2(lg )422f x f >=, 即()(lg )2f x f >,又因为()f x 在(,0]−∞上单调递增,所以()f x 在R 上单调递增,所以lg 2x >,解得100x >.故选:D .例5、(2023春·广西·高三期末)()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则()()20232022f f +−=( )A .-1B .12−C .12D .1【答案】A 【解析】()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则 1111111222222f x f x f x f x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−++=−++⇒−+++=− ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. ∴()()40451404512023202212222f f f f ⎛⎫⎛⎫+−=++−+=− ⎪ ⎪⎝⎭⎝⎭. 故选:A 例6、(2023春·甘肃兰州·高三兰化一中校考阶段练习)若函数f (x )=e e sin x x x x −−+−,则满足()()22ln 102x f a x f ⎛⎫−++≥ ⎪⎝⎭恒成立的实数a 的取值范围为( )A .12ln 2,2⎡⎫−+∞⎪⎢⎣⎭B .1(ln 2,)4−+∞C .[7,)4+∞D .[3,)2+∞ 【答案】A 【解析】因为()e e sin ()x x f x x x f x −−−=−+=−,所以()f x 是R 上的奇函数,由()e +e cos 1x x f x x −'=+−cos 11cos 0x x ≥−=+≥ ,所以()f x 是R 上的增函数, 所以2(2ln(1))02x f a x f ⎛⎫−++≥ ⎪⎝⎭等价于: 22(2ln(1))22x x f a x f f ⎛⎫⎛⎫−+≥−=− ⎪ ⎪⎝⎭⎝⎭即22ln(1)2x a x −+≥−, 所以22ln(1)2x a x ≥−++, 令2()2ln(1)2x g x x =−++, 则问题转化为:max ()a g x ≥,因为()()g x g x −=且定义域为R ,所以()g x =22ln(1)2x x −++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =−++, ()()22122()111x x x x g x x x x x +−−−+'=−+==−+++, 则当()0,1x ∈时,()0g x '>;当()1,x ∈+∞时,()0g x '<; 所以()g x 在()0,1上单调递增,在()1,+∞上单调递减,可得:max 1()(1)2ln 22g x g ==−, 即12ln 22a ≥−, 故选:A . 本课结束。
湖北省黄冈中学高考数学 典型例题29 排列、组合的应用问题
高考数学典型例题详解 排列与组合 应用问题排列、组合是每年高考必定考查的内容之一,纵观全国高考数学题,每年都有1~2道排列组合题,考查排列组合的基础知识、思维能力.●难点磁场(★★★★★)有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9,将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?●案例探究[例1]在∠AOB 的OA 边上取m 个点,在OB 边上取n 个点(均除O 点外),连同O 点共m +n +1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )1212111121212121211211C C C D.C C C C C C C.C C C C .C B C C C A.C nm n m n m mn nm m n n m m n n m +++++++++命题意图:考查组合的概念及加法原理,属★★★★★级题目. 知识依托:法一分成三类方法;法二,间接法,去掉三点共线的组合.错解分析:A 中含有构不成三角形的组合,如:C 11+m C 2n 中,包括O 、B i 、B j ;C 11+n C 2m 中,包含O 、A p 、A q ,其中A p 、A q ,B i 、B j 分别表示OA 、OB 边上不同于O 的点;B 漏掉△A i OB j ;D有重复的三角形.如C 1m C 21+n 中有△A i OB j ,C 21+m C 1n 中也有△A i OB j .技巧与方法:分类讨论思想及间接法.解法一:第一类办法:从OA 边上(不包括O )中任取一点与从OB 边上(不包括O )中任取两点,可构造一个三角形,有C 1m C 2n 个;第二类办法:从OA 边上(不包括O )中任取两点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 2m C 1n 个;第三类办法:从OA 边上(不包括O )任取一点与OB 边上(不包括O )中任取一点,与O 点可构造一个三角形,有C 1m C 1n 个.由加法原理共有N =C 1m C 2n +C 2m C 1n +C 1m C 1n 个三角形.解法二:从m +n +1中任取三点共有C 31++n m 个,其中三点均在射线OA (包括O 点),有C 31+m 个,三点均在射线OB (包括O 点),有C 31+n 个.所以,个数为N =C 31++n m -C 31+m -C 31+n 个.答案:C[例2]四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_________.命题意图:本题主要考查排列、组合、乘法原理概念,以及灵活应用上述概念处理数学问题的能力,属★★★★级题目.知识依托:排列、组合、乘法原理的概念.错解分析:根据题目要求每所学校至少接纳一位优等生,常采用先安排每学校一人,而后将剩的一人送到一所学校,故有3A 34种.忽略此种办法是:将同在一所学校的两名学生按进入学校的前后顺序,分为两种方案,而实际题目中对进入同一所学校的两名学生是无顺序要求的.技巧与方法:解法一,采用处理分堆问题的方法.解法二,分两次安排优等生,但是进入同一所学校的两名优等生是不考虑顺序的.解法一:分两步:先将四名优等生分成2,1,1三组,共有C 24种;而后,对三组学生安排三所学校,即进行全排列,有A 33种.依乘法原理,共有N =C 2433A =36(种).解法二:分两步:从每个学校至少有一名学生,每人进一所学校,共有A 34种;而后,再将剩余的一名学生送到三所学校中的一所学校,有3种.值得注意的是:同在一所学校的两名学生是不考虑进入的前后顺序的.因此,共有N =21A 34·3=36(种). 答案:36●锦囊妙计排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.前两种方式叫直接解法,后一种方式叫间接解法.在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.解排列与组合应用题常用的方法有:直接计算法与间接计算法;分类法与分步法;元素分析法和位置分析法;插空法和捆绑法等八种.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.●歼灭难点训练一、填空题1.(★★★★)从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_________条(用数值表示).2.(★★★★★)圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为_________.二、解答题3.(★★★★★)某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?4.(★★★★)二次函数y=ax2+bx+c的系数a、b、c,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?5.(★★★★★)有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.(1)全体排成一行,其中甲只能在中间或者两边位置.(2)全体排成一行,其中甲不在最左边,乙不在最右边.(3)全体排成一行,其中男生必须排在一起.(4)全体排成一行,男、女各不相邻.(5)全体排成一行,男生不能排在一起.(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.(7)排成前后二排,前排3人,后排4人.(8)全体排成一行,甲、乙两人中间必须有3人.6.(★★★★★)20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数.7.(★★★★)用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一色,相邻部分涂不同色,则涂色的方法共有几种?8.(★★★★)甲、乙、丙三人值周一至周六的班,每人值两天班,若甲不值周一、乙不值周六,则可排出不同的值班表数为多少?参考答案难点磁场解:(间接法):任取三张卡片可以组成不同三位数C35·23·A33(个),其中0在百位的有C24·22·A22(个),这是不合题意的,故共有不同三位数:C35·23·A33-C24·22·A22=432(个).歼灭难点训练一、1.解析:因为直线过原点,所以C=0,从1,2,3,5,7,11这6个数中任取2个作为A、B两数的顺序不同,表示的直线不同,所以直线的条数为A26=30.答案:302.解析:2n个等分点可作出n条直径,从中任选一条直径共有C1n种方法;再从以下的(2n-2)个等分点中任选一个点,共有C122-n种方法,根据乘法原理:直角三角形的个数为:C1 n ·C122-n=2n(n-1)个.答案:2n(n-1)二、3.解:出牌的方法可分为以下几类:(1)5张牌全部分开出,有A55种方法;(2)2张2一起出,3张A一起出,有A25种方法;(3)2张2一起出,3张A一起出,有A45种方法;(4)2张2一起出,3张A分两次出,有C23A35种方法;(5)2张2分开出,3张A一起出,有A35种方法;(6)2张2分开出,3张A分两次出,有C23A45种方法.因此,共有不同的出牌方法A55+A25+A45+A23A35+A35+C23A45=860种.4.解:由图形特征分析,a>0,开口向上,坐标原点在内部⇔f(0)=c<0;a<0,开口向下,原点在内部⇔f(0)=c>0,所以对于抛物线y=ax2+bx+c来讲,原点在其内部⇔af(0)=ac <0,则确定抛物线时,可先定一正一负的a和c,再确定b,故满足题设的抛物线共有C1 3C14A22A16=144条.5.解:(1)利用元素分析法,甲为特殊元素,故先安排甲左、右、中共三个位置可供甲选择.有A13种,其余6人全排列,有A66种.由乘法原理得A13A66=2160种.(2)位置分析法.先排最右边,除去甲外,有A16种,余下的6个位置全排有A66种,但应剔除乙在最右边的排法数A15A55种.则符合条件的排法共有A16A66-A15A55=3720种.(3)捆绑法.将男生看成一个整体,进行全排列.再与其他元素进行全排列.共有A3 3A55=720种.(4)插空法.先排好男生,然后将女生插入其中的四个空位,共有A33A44=144种.(5)插空法.先排女生,然后在空位中插入男生,共有A44A35=1440种.(6)定序排列.第一步,设固定甲、乙、丙从左至右顺序的排列总数为N,第二步,对甲、乙、丙进行全排列,则为七个人的全排列,因此A77=N×A33,∴N =3377AA= 840种.(7)与无任何限制的排列相同,有A77=5040种.(8)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有A35种,甲、乙和其余2人排成一排且甲、乙相邻的排法有A23A33.最后再把选出的3人的排列插入到甲、乙之间即可.共有A35×A22×A33=720种.6.解:首先按每个盒子的编号放入1个、2个、3个小球,然后将剩余的14个小球排成一排,如图,|O|O|O|O|O|O|O|O|O|O|O|O|O|O|,有15个空档,其中“O”表示小球,“|”表示空档.将求小球装入盒中的方案数,可转化为将三个小盒插入15个空档的排列数.对应关系是:以插入两个空档的小盒之间的“O”个数,表示右侧空档上的小盒所装有小球数.最左侧的空档可以同时插入两个小盒.而其余空档只可插入一个小盒,最右侧空档必插入小盒,于是,若有两个小盒插入最左侧空档,有C23种;若恰有一个小盒插入最左侧空档,有1313CC种;若没有小盒插入最左侧空档,有C213种.由加法原理,有N=2131131323CCCC++=120种排列方案,即有120种放法.7.解:按排列中相邻问题处理.(1)(4)或(2)(4).可以涂相同的颜色.分类:若(1)(4)同色,有A35种,若(2)(4)同色,有A35种,若(1)(2)(3)(4)均不同色,有A45种.由加法原理,共有N=2A35+A45=240种.8.解:每人随意值两天,共有C26C24C22个;甲必值周一,有C15C24C22个;乙必值周六,有C15C24C22个;甲必值周一且乙必值周六,有C14C13C22个.所以每人值两天,且甲必不值周一、乙必不值周六的值班表数,有N=C26C24C22-2C15C24C22+ C14C13C22=90-2×5×6+12=42个.。
不等式证明19个典型例题
不等式证明19个典型例题典型例题一例1 假设10<<x ,证明)1(log )1(log x x a a +>-〔0>a 且1≠a 〕.分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比拟法证明.解法1 〔1〕当1>a 时,因为 11,110>+<-<x x ,所以 )1(log )1(log x x a a +--)1(log )1(log x x a a +---=0)1(log 2>--=x a .〔2〕当10<<a 时,因为 11,110>+<-<x x所以 )1(log )1(log x x a a +--)1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合〔1〕〔2〕知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号.解法2 作差比拟法.因为 )1(log )1(log x x a a +--ax a x lg )1lg(lg )1lg(+--= [])1lg()1lg(lg 1x x a+--= [])1lg()1lg(lg 1x x a+---= 0)1lg(lg 12>--=x a ,所以)1(log )1(log x x a a +>-.说明:解法一用分类相当于增设了条件,便于在变形中脱去绝对值符号;解法二用对数性质〔换底公式〕也能到达同样的目的,且不必分而治之,其解法自然简捷、明快.典型例题二例2 设0>>b a ,求证:.ab b a b a b a >分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式. 证明:b a a b b a a b b a b a b a ba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba ∴1)(>-b a b a . ∴a b ba ba b a .1> 又∵0>ab b a ,∴.a b b a b a b a >.说明:此题考察不等式的证明方法——比拟法(作商比拟法).作商比拟法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小. 典型例题三例3 对于任意实数a 、b ,求证444()22a b a b ++≥〔当且仅当a b =时取等号〕 分析 这个题假设使用比拟法来证明,将会很麻烦,因为,所要证明的不等式中有4()2a b +,展开后很复杂。
高考数学试题汇编基本不等式、不等式的综合应用
第三节 基本不等式、不等式的综合应用高考试题考点一 利用基本不等式证明1.(2012年福建卷,理5)下列不等式一定成立的是( ) (A)lg(x 2+14)>lg x(x>0) (B)sin x+1sin x≥2(x ≠k π,k ∈Z) (C)x 2+1≥2|x|(x ∈R) (D)211x +>1(x ∈R) 解析:对于选项A,显然x=12时,不成立; 对于选项B,当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确; 对于选项C,由基本不等式得x 2+1≥2|x|(x ∈R),选项C 正确; 对于选项D,因x 2+1≥1,所以211x +≤1.故选C. 答案:C2.(2011年上海卷,理15)若a 、b ∈R,且ab>0,则下列不等式中,恒成立的是( )(A)a 2+b 2>2ab (B)a+b ≥(C)1a +1b (D)b a +ab≥2 解析:对于选项A,a 2+b 2≥2ab,所以选项A 错;对于选项B 、C,虽然ab>0,只能说明a 、b 同号,若a 、b 都小于0时,选项B 、C 错; 对选项D,∵ab>0,∴b a >0,a b >0,则b a +ab≥2. 故选D. 答案:D考点二 利用基本不等式求最值1.(2013年重庆卷,理≤a ≤3)的最大值为( )(A)9 (B)92 (C)3 解析:法一 由-6≤a ≤3,得3-a ≥0,a+6≥0,362a a -++=92, 当且仅当3-a=a+6, 即a=-32时取等号. 故选B.法二 y=(3-a)(a+6)=-a 2-3a+18=-(a+32)2+814,当且仅当a=-32时y取最大值814.92.故选B.答案:B2.(2011年重庆卷,理7)已知a>0,b>0,a+b=2,则y=1a+4b的最小值是( )(A)72(B)4 (C)92(D)5解析:∵a>0,b>0,a+b=2,∴2a b+=1.y=(1a+4b)·2a b+=12(1+4+ba+4ab)=12(5+ba+4ab)≥12=92(当且仅当a=23,b=43时取“=”).故选C.答案:C3.(2012年湖南卷,理8)已知两条直线l1:y=m和l2:y=821m+(m>0),l1与函数y=|log2x|的图象从左至右相交于点A,B,l2与函数y=|log2x|的图象从左至右相交于点C,D.记线段AC和BD在x轴上的投影长度分别为a,b,当m变化时,ba的最小值为( )解析:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),由|log2x|=m,得x1=2-m,x2=2m,|log2x|=821m+,得x3=8212m-+,x4=8212m+,则ba=8218212222mmm m+--+--=8212m+·2m=18122122m +-+(2m+1)≥722当且仅当m=32时,等号成立.故选B. 答案:B4.(2010年重庆卷,理7)已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是( ) (A)3(B)4(C)92(D)112解析:∵2xy=8-(x+2y), 故8-(x+2y)≤(22x y +)2, ∴(x+2y)2+4(x+2y)-32≥0, 解得x+2y ≥4或x+2y ≤-8(舍去), ∴x+2y 的最小值为4. 故选B. 答案:B5.(2013年天津卷,理14)设a+b=2,b>0,则当a= 时,12a +a b取得最小值. 解析:由a+b=2,b>0, 则12a +a b =4a b a ++a b =4a a +4b a +a b, 由a ≠0,若a>0, 则原式=14+4b a +a b ≥1454, 当且仅当b=2a=43时等号成立, 若a<0, 则原式=-14-4b a -a b ≥-14=34, 当且仅当b=-2a 即a=-2,b=4时等号成立, 综上得当a=-2时,12a +a b取得最小值34.答案:-26.(2011年湖南卷,理10)设x 、y ∈R,且xy ≠0,则 (x 2+21y )(21x+4y 2)的最小值为 . 解析:因为x 、y ∈R,且xy ≠0,所以x 2y 2>0.所以(x 2+21y )(21x +4y 2)=1+4x 2y 2+221x y +4≥当且仅当4x 2y 2=221x y ,即x 2y 2=12时等号成立.答案:9考点三 利用不等式求参数的取值范围1.(2012年浙江卷,理17)设a ∈R,若x>0时均有[(a-1)x-1](x 2-ax-1)≥0,则a= .解析:设f(x)=(a-1)x-1,g(x)=x 2-ax-1,易知f(x)与g(x)都过点(0,-1), ∴f(x)与g(x)在(0,+∞)同正同负, ∴a-1>0且g(11a -)=0, ∴有211a ⎛⎫⎪-⎝⎭-a(11a -)-1=0, 化简得2a 2-3a=0,∴a=32,a=0(舍去). 答案:322.(2010年山东卷,理14)若对任意x>0,231xx x ++≤a 恒成立,则a 的取值范围是 .解析:因为x>0, 所以x+1x≥2(当且仅当x=1时取等号), 所以有231x x x ++=113x x++≤123+=15,即231x x x ++的最大值为15,故a ≥15. 答案:[15,+∞) 3.(2010年天津卷,理16)设函数f(x)=x 2-1,对任意x ∈[32,+∞),f(x m)-4m 2f(x)≤f(x-1)+4f(m)恒成立,则实数m 的取值范围是 .解析:依据题意得22x m-1-4m 2(x 2-1)≤(x-1)2-1+4(m 2-1)在x ∈[32,+∞)上恒成立,即21m-4m 2≤-23x -2x +1在x ∈[32,+∞)上恒成立. 当x=32时,函数y=-23x -2x +1取得最小值-53, 所以21m -4m 2≤-53, 即(3m 2+1)(4m 2-3)≥0,解得m ≤或m答案:(-∞∪,+∞) 4.(2010年湖南卷,理20)已知函数f(x)=x 2+bx+c(b,c ∈R),对任意的x ∈R,恒有f'(x)≤f(x). (1)证明:当x ≥0时,f(x)≤(x+c)2;(2)若对满足题设条件的任意b 、c,不等式f(c)-f(b)≤M(c 2-b 2)恒成立,求M 的最小值.(1)证明:易知f'(x)=2x+b. 由题设知对任意x ∈R,2x+b ≤x 2+bx+c,即x 2+(b-2)x+c-b ≥0恒成立,则(b-2)2-4(c-b)≤0,从而c ≥24b +1,于是c ≥1,且c ≥因此2c-b=c+(c-b)>0.故当x ≥0时,有(x+c)2-f(x)=(2c-b)x+c(c-1)≥0,即当x ≥0时,f(x)≤(x+c)2.(2)解:由(1)知c ≥|b|.当c>|b|时,有M ≥22()()f c f b c b --=22222c b bc b c b -+--=2c bc b++.令t=b c ,则-1<t<1,2c b c b ++=2-11t+.而函数g(t)=2-11t+(-1<t<1)的值域是(-∞,32).因此,当c>|b|时,M 的取值范围为[32,+∞). 当c=|b|时,由(1)易知b=±2,c=2. 此时f(c)-f(b)=-8或0,c 2-b 2=0,从而f(c)-f(b)≤32(c 2-b 2). 综上所述,M 的最小值为32. 5.(2013年安徽卷,理21)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n 位学生,每次活动均需该系k 位学生参加(n 和k 都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k 位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为X. (1)求该系学生甲收到李老师或张老师所发活动通知信息的概率; (2)求使P(X=m)取得最大值的整数m.解:(1)因为事件A:“学生甲收到李老师所发信息”与事件B:“学生甲收到张老师所发信息”是相互独立的事件,所以A 与B 相互独立.由于P(A)=P(B)=11k n k n C C --= kn,故P(A )=P(B )=1-kn, 因此学生甲收到活动通知信息的概率P=1-(1-k n)2=222kn k n -.(2)当k=n 时,m 只能取n,有P(X=m)=P(X=n)=1.当k<n 时,整数m 满足k ≤m ≤t,其中t 是2k 和n 中的较小者.由于“李老师和张老师各自独立、随机地发活动通知信息给k 位同学”所包含的基本事件总数为(k n C )2.当X=m 时,同时收到李老师和张老师所发信息的学生人数恰为2k-m,仅收到李老师或仅收到张老师所发信息的学生人数均为m-k.由乘法计数原理知:事件{X=m}所含基本事件数为2k k mm k n kn k C C C ---=k m k m k n k n k C C C ---.此时P(X=m)=()22k k m m kn k n k k nC C C C ---= m k m k k n k kn C C C ---.当k ≤m<t 时,P(X=m)≤P(X=m+1)⇔m k m k kn kC C---≤11m k m k kn kCC+-+--⇔(m-k+1)2≤(n-m)(2k-m)⇔m ≤2k-2(1)2k n ++. 假如k ≤2k-2(1)2k n ++<t 成立,则当(k+1)2能被n+2整除时,k ≤2k-2(1)2k n ++<2k+1-2(1)2k n ++≤t.故P(X=m)在m=2k-2(1)2k n ++和m=2k+1-2(1)2k n ++处取得最大值;当(k+1)2不能被n+2整除时,P(X=m)在m=2k-[2(1)2k n ++]处取得最大值.(注:[x]表示不超过x 的最大整数)下面证明k ≤2k-2(1)2k n ++<t. 因为1≤k<n,所以2k-2(1)2k n ++-k=212kn k n --+≥2(1)12k k k n +--+=12k n -+≥0.而2k-2(1)2k n ++-n=-2(1)2n k n -++<0,故2k-2(1)2k n ++<n,显然2k-2(1)2k n ++<2k.因此k ≤2k-2(1)2k n ++<t. 考点四 不等式的综合应用1.(2013年山东卷,理12)设正实数x,y,z 满足x 2-3xy+4y 2-z=0,则当xy z 取得最大值时,2x +1y -2z的最大值为( ) (A)0 (B)1 (C)94(D)3 解析:由x 2-3xy+4y 2-z=0(x,y,z>0), 得3xy+z=x 2+4y 2≥2x ·2y,即xy ≤z,xyz≤1当且仅当x=2y 时等号成立, 当x=2y 时,z=4y 2-6y 2+4y 2=2y 2. 则2x +1y -2z =22y +1y -222y =-21y +2y=-(21y -2y ) =-(1y-1)2+1. 故当1y =1,即y=1时,2x +1y -2z的最大值为1. 故选B.答案:B2.(2010年湖北卷,理15)设a>0,b>0,称2aba b+为a,b 的调和平均数.如图,C 为线段AB 上的点,且AC=a,CB=b,O 为AB 中点,以AB 为直径作半圆.过点C 作AB 的垂线交半圆于点D,连接OD,AD,BD.过点C 作OD 的垂线,垂足为E.则图中线段OD 的长度是a,b 的算术平均数,线段 的长度是a,b 的几何平均数,线段 的长度是a,b 的调和平均数.解析:在Rt △ABD 中DC 为高, 则由射影定理可得CD 2=AC ·CB,故CD=ab ,即CD 的长度为a,b 的几何平均数, 将OC=a-2a b +=2a b-, CD=ab ,OD=2a b+代入OD ·CE=OC ·CD 中可得 CE=a bab a b-+, 故OE=22OC CE -=2()2()a b a b -+,所以ED=OD-OE=2aba b+, 故DE 的长度为a,b 的调和平均数. 答案:CD DE3.(2013年湖南卷,理20)在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径称为M 到N 的一条“L 路径”.如图所示的路径MM 1M 2M 3N 与路径MN 1N 都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点A(3,20),B(-10,0),C(14,0)处.现计划在x 轴上方区域(包含x 轴)内的某一点P 处修建一个文化中心.(1)写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明);(2)若以原点O 为圆心,半径为1的圆的内部是保护区,“L 路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L 路径”长度之和最小. 解:(1)设点P 的坐标为(x,y).(1)点P 到居民区A 的“L 路径”长度最小值为|x-3|+|y-20|,x ∈R,y ∈[0,+∞).(2)由题意知,点P 到三个居民区的“L 路径”长度之和的最小值为点P 分别到三个居民区的“L 路径”长度最小值之和(记为d)的最小值.①当y ≥1时,d=|x+10|+|x-14|+|x-3|+2|y|+|y-20|. 因为d 1(x)=|x+10|+|x-14|+|x-3| ≥|x+10|+|x-14|,(*)当且仅当x=3时,不等式(*)中的等号成立. 又因为|x+10|+|x-14|≥24,(**)当且仅当x ∈[-10,14]时,不等式(**)中的等号成立, 所以d 1(x)≥24,当且仅当x=3时,等号成立. d 2(y)=2|y|+|y-20|≥21, 当且仅当y=1时,等号成立.故点P 的坐标为(3,1)时,P 到三个居民区的“L 路径”长度之和最小,且最小值为45. ②当0≤y ≤1时,由于“L 路径”不能进入保护区,所以d=|x+10|+|x-14|+|x-3|+1+|1-y|+|y|+|y-20|, 此时,d 1(x)=|x+10|+|x-14|+|x-3|, d 2(y)=1+|1-y|+|y|+|y-20|=22-y ≥21. 由①知,d 1(x)≥24, 故d 1(x)+d 2(y)≥45, 当且仅当x=3,y=1时等号成立.综上所述,在点P(3,1)处修建文化中心,可使该文化中心到三个居民区的“L 路径”长度之和最小.模拟试题考点一 利用基本不等式证明1.(2013北京丰台区期末)“x>0”是“x+1x≥2”的( ) (A)充分但不必要条件 (B)必要但不充分条件 (C)充分且必要条件 (D)既不充分也不必要条件解析:当x>0时,x+1x≥2因为x,1x同号, 所以若x+1x ≥2,则x>0, 1x>0. 所以x>0是x+1x≥2成立的充要条件.选C. 答案:C2.(2012东城区二模)设a>0,b>0,则以下不等式中不恒成立的是( ) (A)(a+b)(1a +1b)≥4 (B)lgb a +lg ab≥2 (C)a 2+b 2+2≥2a+2b解析:∵(a+b)(1a +1b)≥·当且仅当a=b 时,等号成立, ∴选项A 成立;∵a 2+b 2+2-(2a+2b)=(a-1)2+(b-1)2≥0,∴选项C 成立;对于选项D,如果a<b,显然成立, 如果a>b,a-b ≥+b ⇔≤0,而)≤0成立,故选项D 也成立. 对于选项B,显然当0<ba<1时不成立. 故选B. 答案:B考点二 利用基本不等式求最值1.(2012郑州质检)若a>b>0,则代数式a 2+1()b a b -的最小值为( )(A)2 (B)3 (C)4 (D)5 解析:a 2+1()b a b -≥a 2+212b a b +-⎛⎫⎪⎝⎭=a 2+24a ≥4, 当且仅当22,4,0,b a b a a a b =-⎧⎪⎪=⎨⎪>>⎪⎩即时,等号成立.故选C. 答案:C2.(2012武汉质检)双曲线22x a -22y b =1(a>0,b>0)的离心率为2,则213b a+的最小值为( )(C)2 (D)1 解析:已知双曲线的离心率是2,故2=c a= 解得ba, 所以213b a +=2313a a +=a+13a,当且仅当a 2=13时等号成立,. 故选A. 答案:A考点三 含参数的不等式的恒成立问题1.(2012哈师大附中月考)已知关于x 的不等式2x+2x a-≥7在x ∈(a,+∞)上恒成立,则实数a 的最小值为( ) (A)1 (B)32(C)2 (D)52解析:由2x+2x a -=2(x-a)+ 2x a -+2a ≥=4+2a ≥7, 得a ≥32,故实数a 的最小值为32. 故选B. 答案:B2.(2013昆明一中检测)已知m>0,a 1>a 2>0,则使得21m m+≥|a i x-2|(i=1,2)恒成立的x 的取值范围是( )(A)[0,12a ] (B)[0,22a ] (C)[0,14a ] (D)[0,24a ] 解析:21m m +=m+1m≥2,所以要使不等式恒成立, 则有2≥|a i x-2|(i=1,2)恒成立, 即-2≤a i x-2≤2, 所以0≤a i x ≤4, 因为a 1>a 2>0,所以1240,40,x a x a ⎧≤≤⎪⎪⎨⎪≤≤⎪⎩即0≤x ≤14a , 所以使不等式恒成立的x 的取值范围是[0,14a ].故选C. 答案:C考点四 不等式的综合应用1.(2013北京东城区期末)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价2p q+%,若p>q>0,则提价多的方案是 . 解析:设原价为1,则提价后的价格: 方案甲:(1+p%)(1+q%), 乙:(1+2p q +%)2,≤1+%2p +1+%2q =1+2p q +%,因为p>q>0,2p q +%, 即(1+p%)(1+q%)<(1+2p q +%)2,所以提价多的方案是乙.答案:乙2.(2011十堰二模)设M 是△ABC 内一点,且AB ·AC ,∠BAC=30°,定义f(M)=(m,n,p),其中m 、n 、p 分别是△MBC 、△MCA 、△MAB 的面积,若f(M)=(12,x,y),则1x +4y 的最小值是 .解析:根据题意AB ·AC =|AB ||AC |cos ∠可得|AB ||AC |=4,所以S △ABC =12|AB ||AC |sin ∠BAC=12×4×12=1, 则12+x+y=1,即x+y=12, 所以1x +4y =2(x+y)·(1x +4y ) =2(1+4+yx +4xy )≥2×(5+4)=18. 当且仅当yx =4xy ,即x=16,y=13时取等号.答案:18综合检测1.(2013昆明三中模拟)若直线ax-by+2=0(a>0,b>0)被圆x 2+y 2+2x-4y+1=0截得的弦长为4,则1a +1b 的最小值为()(A)14(C)32(D) 32解析:圆的标准方程为(x+1)2+(y-2)2=4,所以圆心坐标为(-1,2),半径为r=2.因为直线被圆截得的弦长为4,所以直线ax-by+2=0过圆心,所以-a-2b+2=0,即a+2b=2, 所以2a+b=1,所以1a +1b =(1a +1b )(2a+b) =12+1+b a +2ab≥32=32当且仅当b a =2a b ,即a 2=2b 2时取等号,所以1a +1b 的最小值为32故选C. 答案:C2.(2012年高考重庆卷)若函数f(x)=x+12x -(x>2)在x=a 处取最小值,则a 等于( )(D)4解析:当x>2时,x-2>0,f(x)=x-2+12x -+2≥+2=4, 当且仅当x-2=12x -(x>2),即x=3时取等号, 即当f(x)取得最小值时,x=3,即a=3.故选C.答案:C3.(2011宿州模拟)已知x>0,y>0,xy=x+2y,若xy ≥m-2恒成立,则实数m 的最大值是 .解析:由x>0,y>0,xy=x+2y ≥得xy ≥8,于是由m-2≤xy 恒成立,得m-2≤8,m ≤10,故m 的最大值为10.答案:10。
高三数学 不等式的证明(比较法、综合法、分析法、反证法、放缩法);不等式的应用知识精讲
高三数学不等式的证明(比较法、综合法、分析法、反证法、放缩法);不等式的应用知识精讲(一)不等式的证明1. 实数大小的性质(1)a b a b ->⇔>0;(2)a b a b -=⇔=0;(3)a b a b -<⇔<0。
2. 比较法证明的步骤(1)求差比较法步骤:作差——变形——判别差的符号,在运用求差比较法证明时其关键是变形,通常变形方法是分解因式、配方、利用判别式及把差化为若干个非负数的和。
(不能分解时证明有恒定符号可配方)(2)求商比较法步骤:作商——变形——判别商与1的大小,在运用求商比较法证明不等式时要根据已知条件灵活采用函数的单调性及基本不等式进行放缩。
3. 基本不等式定理1:如果a b R ,∈,那么a b ab 222+≥(当且仅当a b =时取等号)。
定理2:如果a b c R ,,∈+,那么a b c abc 3333++≥(当且仅当a b c ==时取等号)。
推论1:如果a b R ,∈+,那么a b ab +≥2(当且仅当a b =时取“=”号)。
推论2:如果a b c R ,,∈+,那么a b c abc ++≥33(当且仅当a b c ==时取“=”号)。
4. 综合法:利用某些已经证明过的不等式作为基础,再运用不等式的性质推导出所要求证的不等式,这种证明方法叫做综合法。
综合法的证明思路是:由因导果,也就是从一个(组)已知的不等式出发,不断地用必要条件替代前面的不等式,直到推导出要证的不等式。
5. 分析法:从求证的不等式出发分析这个不等式成立的充分条件,把证明这个不等式的问题转化为这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
这种证明方法叫做分析法。
分析法的证明思路是:“执果索因”,即从求证的不等式出发,不断地用充分条件来代替前面的不等式,直至找到已知不等式为止。
用分析法证明不等式要把握以下三点:(1)寻找使不等式成立的充分条件时,往往是先寻找使不等式成立的必要条件,再考虑这个必要条件是否充分。
湖北黄岗中学高考数学二轮复习考点解析不等式的综合考查考点透析
湖北黄岗中学高考数学二轮复习考点分析8:不等式的综合考察考点透析【考点聚焦】(解、用、证)(两小半大)考点 1:不等式的性质与重要不等运用考点 2:不等式的解法考点 3:不等式的应用问题考点 4:不等式的综合问题【考题形式】1。
小题与会合,函数定义域、值域联合;( 1 小是一定的)2.不等式组与线性规划。
3。
大题形式多样与其余知识联合,不会出现独自的不等式题。
【问题 1】不等式的解法1.已知 R为全集, A={x|log1 (3-x) ≥-2},B={x|5≥ 1},C R A ∩B=(B)x22(A)-2<x<-1(B)– 2<x<-1 或 x=3 (C)-2≤ x<-1 (D)-2≤ x≤12.设 a<0,则对于 x 的不等式42x2+ax-a2<0 的解集为:(A)(A)7a ,6a(B)6a , 7a(C){ 0}(D)无解3.以下不等式中,解集为R 的是(B)A . |x- 3|>x- 32x 2x2> 1 B .x1x 212D.log1x 210C.xx22(x23x 2)( x4) 20 的解为(D)4.不等式x3A .- 1<x≤ 1 或 x≥ 2B. x<- 3 或 1≤ x≤ 2C.x=4 或- 3<x≤ 1 或 x≥2D. x=4 或 x<- 3 或 1≤ x≤ 25.(山东卷)设 f(x)=2e x 1 , x2,则不等式 f(x)>2 的解集为log 3 ( x21), x2,(A) ( 1,2)( 3, +∞) (B) (10 ,+∞)(C)( 1, 2)(10, +∞) (D) ( 1, 2)解:令 2e x 12( x 2),解得 1 x2。
令 log 3 ( x 21)2( x 2)解得 x(10 ,+∞)选 C【精例 1】已知A x x22 x8 0, Bx 9 3x2x19,24ax 3a20,C x x若 A BC ,务实数 a 的取值范围.解:由题意可得, A= { x|x - 4 或 x 2}B= { x|-2x 3}则A B={ x|2x 3}而 C={ x|(x - a)(x - 3a)0} 要使 ABa 2得 a [1,2] .C 则 a>0,且,3a3【精例 2】解不等式log 1( x1)log 21log 1 12 .( 12 分)6 x22解:∵原不等式log 2 ( x 1) log 2 (6 x) log 2 12log ( x1)(6 x) log 12( x 1)( 6x) 0x 3或x 2{ x 1 2且6-x 02 {1 x 6{-1 x 61 x 2或 3 x 6原不等式的解集为: { x1 x2或3x 6} .【精例 3】P 61 例 1【精例 4】P62例 2【问题 2】含有参数的不等式问题含有参数的不等式问题是高考常考题型, 求解过程中要利用不等式的性质将不等式进行变形转变,化为一元二次不等式等问题去解决,注意参数在转变过程中对问题的影响. 【精例 5】已知 f ( x) lg( x 1), g(x) 2lg( 2x t )(t R, t 是参数) .( 1)当 t=-1 时,解 不等式: f(x)≤ g(x) ;(2)假如当 x ∈ [0,1] 时, f(x)≤ g(x)恒成立,求参数t 的取值范围 .x 1 0 解:( 1)t =- 1 时,f(x) ≤ g(x),即为 lg( x1) 2 lg( 2x 1) ,此不等式等价于2 x 1x 1 ( 2x 1) 25 5解得 x ≥ 4 , ∴原不等式的解集为{ x| x ≥ 4}x 1 0(2) x ∈ [0,1] 时, f(x)≤ g(x)恒成立 , ∴ x ∈ [0,1] 时,2x t 0 恒成立,x 1 ( 2xt) 2x 1 0 ∴ x ∈ [0,1] 时,t2x 恒成立,即 x ∈ [0,1] 时, t2xx 1t2xx 1恒成立,于是转变为求 2xx 1 ( x ∈ [0,1] )的最大值问题 .令 ux 1 ,则 x=u 2- 1,由 x ∈ [0,1] ,知 u ∈ [1, 2 ].∴ 2xx 1 =- 2( u 2- 1)+ u= 2(u1 )2 174 8当 u=1 时,即 x=0 时, 2x x 1 有最大值为 1.∴ t 的取值范围是 t ≥1.评论: 对于含参数问题, 经常用分类议论的方法; 而恒成立问题, 除了运用分类议论的方法外,还可采纳分别参数的方法 .【精例 6】解对于 x 的不等式: | log a(ax 2) | | log a x | 2(a 0, 且a 1)点拨与提示:用换元法将原不等式化简,注意对a 的议论 .解:设log a x t ,原不等式化为|1+ 2t |-| t | <2(1)当t1时,- 1- 2t + t<2 ,∴ t>- 3,∴ 3 t122(2)当1 t1,∴1 t20时, 1+2t+t<2 ,∴ t23( 3)当 t ≥ 0 时, 1+2t - t<2 ,∴ t<1, ∴0≤ t < 1综上可知:- 3< t < 1,即- 3< log a x < 1当 a > 1 时,1 1a 3x a ,当 0< a < 1 时, a xa 3因此当 a >1 时,原不等式的解集为 { x|1 x a }, 当 0< a <1 时,原不等式的解集为 { x |a 3a x1 }a 3【精例 7】 P 62 例 3【问题 3】不等式与函数的综合题(隐含不等式)【精例 8】 P 64 T 6【精例 9】已知 f(x)是定义在[ -1, 1]上的奇函数,且 f(1)=1 ,若 m 、n ∈[ -1, 1], m+n ≠f (m)f (n)1(1)用定义证明 f(x) 在[- 1,1]上是增函数; (2)解不等式f(x+ 2)0 时m n> 01<f( x1);(3) 若 f(x) ≤ t -2+1 对全部 x ∈[- 1, 1], a ∈[- 1, 1]恒成立,务实数 t 的取值范围2at【思路剖析】 (1)问单一性的证明,利用奇偶性灵巧变通使用已知条件不等式是重点, (3)问利用单一性把f(x) 转变成“ 1”是画龙点睛(1) 证明 任取 x 1<x 2 ,且 x 1, x 2∈[- 1,1],则 f(x 1212f ( x 1 )f (x 2 )·(x 12)- f(x )= f(x )+ f(- x )=x 1x 2- x )∵- 1≤ x1<x2≤ 1,∴ x1+(- x2)≠ 0,由已知f ( x1 ) f ( x2)>0,又x1-x2<0,x1x2∴ f(x1)- f(x2) < 0,即 f( x)在[- 1, 1]上为增函数1x 11(2) 解∵ f(x)在[- 1,1 ]上为增函数,∴2{ x|-3≤ x<- 1, x 11解得1x21x112x 1∈R }(3)解由(1)可知f(x)在[-1,1]上为增函数,且f(1)=1 ,故对x∈[- 1, 1],恒有f(x)≤ 1,因此要使 f(x)≤ t2- 2at+1 对全部 x∈[- 1,1],a∈[- 1,1]恒成立,即要t2- 2at+1≥1成立,故 t2- 2at≥ 0,记 g( a)=t2- 2at,对 a∈[- 1,1],有 g( a)≥ 0,只要 g(a)在[- 1, 1]上的最小值大于等于0, g(- 1)≥ 0, g(1)≥ 0,解得, t≤- 2 或 t=0 或 t≥ 2∴t 的取值范围是{ t|t≤- 2 或 t=0 或 t≥2}评论此题是一道函数与不等式相联合的题目,考察学生的剖析能力与化归能力它主要波及函数的单一性与奇偶性,而单一性贯串一直,把所求问题分解转变,是函数中的热门问题;问题(2)、( 3)要求的都是变量的取值范围,不等式的思想起到了重点作用【问题 4】线性规划【精例 10】不等式| 2 x y m | 3 表示的平面地区包括点(0,0) 和点 ( 1,1), 则 m 的取值范围是( A )A.C.2m3 B .0m63m6D.0m3yy 2x 4【精例 11】已知点( 3 , 1)和点(- 4 , 6)在直线3x–2y +m = 0 的双侧,则( B )A . m<- 7或 m> 24B .- 7< m< 24 C. m=- 7或 m= 24 D.- 7≤m≤ 24x y sO x图 3x0y0下,当 3 x 5 时,【精例 12】在拘束条件xy sy2x4目标函数 z 3x 2 y 的最大值的变化范围是A. [6,15]B. [7,15]C. [6,8]D.[7,8]【 精 例 13】 已 知 a (0,2), 当 a 为什么值时,直线l 1 : ax 2 y 2a 4与 l 2 : 2x a 2 y2a 24及坐标E yl 1 `12 分)轴围成的平面地区的面积最小?(解:Ca( xBODx l 1 : y 22) l 1恒过 A(2,2),2l 2 `交 x, y 轴分别为 B (24,0),C(0,2a)al 2 : y 22(x 2) l 2 恒过 A(2,2), 交x, y 轴分别为 D (a 22,0), C(0,2 4) ,a 2a 24 0 a2 20,2 a, 由 题 意 知 l 1与 l 2及坐标轴围成的平面地区为aACOD ,S ACODS EODS ECA1 (a2 2)( 24 ) 1 ( 4 a) 2 a 2a 4 ( a1) 2 15 ,2a 2 2 a 224当a1时,(S ACOD ) min1524.【问题 4】不等式的实质应用问题对于应用题要经过阅读, 理解所给定的资料, 找寻量与量之间的内在联系, 抽象失事物系统的主要特点与关系, 成立起能反应其实质属性的数学构造, 进而成立起数学模型, 而后利用不等式的知识求出题中的问题【精例 13】(天津卷) 某企业一年购置某种货物 400 吨,每次都购置 x 吨,运费为4 万元/次,一年的总储存花费为 4x 万元,要使一年的总运费与总储存花费之和最小,则 x_______吨.解: 某企业一年购置某种货物400 吨,每次都购置x 吨,则需要购置400次,运费为 4 万x元/ 次,一年的总储存花费为4x 万元,一年的总运费与总储存花费之和为400 4 4x 万元,x40016004 4x ≥ 160,当x4 x 即 x 20 吨时,一年的总x运费与总储存花费之和最小。
高考数学一轮总复习不等式与绝对值的综合应用题解
高考数学一轮总复习不等式与绝对值的综合应用题解在高考数学中,不等式与绝对值是两个重要的概念和技巧,也是常见的题型之一。
在数学的综合运用中,经常会遇到涉及不等式与绝对值的综合应用题,本文将对这方面的应用进行解析,帮助同学们更好地应对高考。
一、不等式与绝对值的基础知识回顾在进行不等式和绝对值的综合应用前,我们首先需要回顾一下不等式与绝对值的基础知识。
一个不等式由两个数之间的大小关系组成,我们可以使用不等号来表示。
例如,对于两个实数 a 和 b,我们可以表示 a 大于 b,或 a 小于等于 b,等等。
绝对值是一个数与零点之间的距离。
对于一个实数 x,它的绝对值表示为 |x|。
具体地说,当 x 大于等于 0 时,|x| 等于 x;当 x 小于 0 时,|x| 等于 -x。
例如,|2| = 2,|-2| = 2。
二、综合应用题解析接下来,我们将通过具体的综合应用题来解析不等式与绝对值的综合应用。
题目:现有一绳索长 20 米,要在上面划定两个点 P 和 Q,使得 P点到绳索起点 A 的距离不小于 5 米,且 Q 点到绳索终点 B 的距离不小于 4 米。
请问,有多少种划定点的方式?解析:要解决这个问题,我们可以使用不等式与绝对值的知识进行分析和求解。
首先,我们假设点 P 距离绳索起点 A 的距离为 x,点 Q 距离绳索终点 B 的距离为 y。
由于我们要求 P 点到绳索起点 A 的距离不小于 5 米,所以有不等式x ≥ 5;同理,Q 点到绳索终点 B 的距离不小于 4 米,所以有不等式 20 - y ≥ 4。
接下来,我们考虑点 P 和点 Q 的取值范围。
由于绳索的总长度为20 米,所以 x + y = 20。
又因为x ≥ 5,所以可以将不等式x ≥ 5 换成等式 x = 5 + a,其中 a ≥ 0。
同理,可以将不等式 20 - y ≥ 4 换成等式 y =16 - b,其中b ≥ 0。
将等式 x = 5 + a 和等式 y = 16 - b 代入 x + y = 20 中,得到 5 + a +16 - b = 20,化简可得 a - b = -1。
黄岗不等式的综合应用
难点20 不等式的综合应用不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其他知识综合运用的特点比较突出.不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题、本难点提供相关的思想方法,使考生能够运用不等式的性质、定理和方法解决函数、方程、实际应用等方面的问题. ●难点磁场(★★★★★)设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2<a1. (1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图象关于直线x =x 0对称,证明:x 0<21x . ●案例探究 [例1]用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米, (1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)命题意图:本题主要考查建立函数关系式,棱锥表面积和体积的计算及用均值定论求函数的最值.知识依托:本题求得体积V 的关系式后,应用均值定理可求得最值. 错解分析:在求得a 的函数关系式时易漏h >0. 技巧与方法:本题在求最值时应用均值定理. 解:①设h ′是正四棱锥的斜高,由题设可得:⎪⎪⎩⎪⎪⎨⎧=+='⋅+12222412214h a a a h a 消去)0(11:.2>+='a h a h 解得 ②由)1(33122+==h hh a V (h >0) 得:2121)1(31=⋅=++=hh h h h h V 而 所以V ≤61,当且仅当h =h1即h =1时取等号故当h =1米时,V 有最大值,V 的最大值为61立方米.[例2]已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1. (1)证明:|c |≤1;(2)证明:当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x ).命题意图:本题主要考查二次函数的性质、含有绝对值不等式的性质,以及综合应用数学知识分析问题和解决问题的能力.属★★★★★级题目.知识依托:二次函数的有关性质、函数的单调性是药引,而绝对值不等式的性质灵活运用是本题的灵魂.错解分析:本题综合性较强,其解答的关键是对函数f (x )的单调性的深刻理解,以及对条件“-1≤x ≤1时|f (x )|≤1”的运用;绝对值不等式的性质使用不当,会使解题过程空洞,缺乏严密,从而使题目陷于僵局.技巧与方法:本题(2)问有三种证法,证法一利用g (x )的单调性;证法二利用绝对值不等式:||a |-|b ||≤|a ±b |≤|a |+|b |;而证法三则是整体处理g (x )与f (x )的关系.(1)证明:由条件当=1≤x ≤1时,|f (x )|≤1,取x =0得:|c |=|f (0)|≤1,即|c |≤1.(2)证法一:依题设|f (0)|≤1而f (0)=c ,所以|c |≤1.当a >0时,g (x )=ax +b 在[-1,1]上是增函数,于是g (-1)≤g (x )≤g (1),(-1≤x ≤1). ∵|f (x )|≤1,(-1≤x ≤1),|c |≤1, ∴g (1)=a +b =f (1)-c ≤|f (1)|+|c |=2,g (-1)=-a +b =-f (-1)+c ≥-(|f (-2)|+|c |)≥-2, 因此得|g (x )|≤2 (-1≤x ≤1);当a <0时,g (x )=ax +b 在[-1,1]上是减函数,于是g (-1)≥g (x )≥g (1),(-1≤x ≤1), ∵|f (x )|≤1 (-1≤x ≤1),|c |≤1 ∴|g (x )|=|f (1)-c |≤|f (1)|+|c |≤2.综合以上结果,当-1≤x ≤1时,都有|g (x )|≤2. 证法二:∵|f (x )|≤1(-1≤x ≤1) ∴|f (-1)|≤1,|f (1)|≤1,|f (0)|≤1,∵f (x )=ax 2+bx +c ,∴|a -b +c |≤1,|a +b +c |≤1,|c |≤1, 因此,根据绝对值不等式性质得: |a -b |=|(a -b +c )-c |≤|a -b +c |+|c |≤2, |a +b |=|(a +b +c )-c |≤|a +b +c |+|c |≤2,∵g (x )=ax +b ,∴|g (±1)|=|±a +b |=|a ±b |≤2,函数g (x )=ax +b 的图象是一条直线,因此|g (x )|在[-1,1]上的最大值只能在区间的端点x =-1或x =1处取得,于是由|g (±1)|≤2得|g (x )|≤2,(-1<x <1).)21()21(])21()21([])21()21([)2121(])21()21[()(,)21()21(4)1()1(:22222222--+=+-+--++++=--++--+=+=∴--+=--+=x f x f c x b x a c x b x a x x b x x a b ax x g x x x x x 证法三当-1≤x ≤1时,有0≤21+x ≤1,-1≤21-x ≤0, ∵|f (x )|≤1,(-1≤x ≤1),∴|f )21(+x |≤1,|f (21-x )|≤1;因此当-1≤x ≤1时,|g (x )|≤|f )21(+x |+|f (21-x )|≤2. (3)解:因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2,即 g (1)=a +b =f (1)-f (0)=2. ① ∵-1≤f (0)=f (1)-2≤1-2=-1,∴c =f (0)=-1. 因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),根据二次函数的性质,直线x =0为f (x )的图象的对称轴,由此得-ab2<0 ,即b =0.由①得a =2,所以f (x )=2x 2-1. ●锦囊妙计1.应用不等式知识可以解决函数、方程等方面的问题,在解决这些问题时,关键是把非不等式问题转化为不等式问题,在化归与转化中,要注意等价性.2.对于应用题要通过阅读,理解所给定的材料,寻找量与量之间的内在联系,抽象出事物系统的主要特征与关系,建立起能反映其本质属性的数学结构,从而建立起数学模型,然后利用不等式的知识求出题中的问题. ●歼灭难点训练 一、选择题1.(★★★★★)定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( ) ①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A.①③ B.②④ C.①④ D.②③ 二、填空题2.(★★★★★)下列四个命题中:①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若yx 91+=1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________.3.(★★★★★)某公司租地建仓库,每月土地占用费y 1与车库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站__________公里处. 三、解答题4.(★★★★★)已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2.(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围.5.(★★★★)某种商品原来定价每件p 元,每月将卖出n 件,假若定价上涨x 成(这里x 成即10x,0<x ≤10).每月卖出数量将减少y 成,而售货金额变成原来的 z 倍.(1)设y =ax ,其中a 是满足31≤a <1的常数,用a 来表示当售货金额最大时的x 的值;(2)若y =32x ,求使售货金额比原来有所增加的x 的取值范围. 6.(★★★★★)设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.(1)求证:f (0)=1,且当x <0时,f (x )>1; (2)求证:f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围.7.(★★★★★)已知函数f (x )=1222+++x cbx x (b <0)的值域是[1,3],(1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论; (3)若t ∈R ,求证:lg57≤F (|t -61|-|t +61|)≤lg 513.[科普美文]数学中的不等式关系数学是研究空间形式和数量关系的科学,恩格斯在《自然辩证法》一书中指出,数学是辩证的辅助工具和表现形式,数学中蕴含着极为丰富的辩证唯物主义因素,等与不等关系正是该点的生动体现,它们是对立统一的,又是相互联系、相互影响的;等与不等关系是中学数学中最基本的关系.等的关系体现了数学的对称美和统一美,不等关系则如同仙苑奇葩呈现出了数学的奇异美.不等关系起源于实数的性质,产生了实数的大小关系,简单不等式,不等式的基本性质,如果把简单不等式中的实数抽象为用各种数学符号集成的数学式,不等式发展为一个人丁兴旺的大家族,由简到繁,形式各异.如果赋予不等式中变量以特定的值、特定的关系,又产生了重要不等式、均值不等式等.不等式是永恒的吗?显然不是,由此又产生了解不等式与证明不等式两个极为重要的问题.解不等式即寻求不等式成立时变量应满足的范围或条件,不同类型的不等式又有不同的解法;不等式证明则是推理性问题或探索性问题.推理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大多是与自然数n 有关的证明问题,常采用观察—归纳—猜想—证明的思路,以数学归纳法完成证明.另外,不等式的证明方法还有换元法、放缩法、反证法、构造法等. 数学科学是一个不可分割的有机整体,它的生命力正是在于各个部分之间的联系.不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此不等式又可作为一个工具来解决数学中的其他问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题无一不与不等式有着密切的联系.许多问题最终归结为不等式的求解或证明;不等式还可以解决现实世界中反映出来的数学问题.不等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程.总之,不等式的应用体现了一定的综合性,灵活多样性.等与不等形影不离,存在着概念上的亲缘关系,是中学数学中最广泛、最普遍的关系.数学的基本特点是应用的广泛性、理论的抽象性和逻辑的严谨性,而不等关系是深刻而生动的体现.不等虽没有等的温柔,没有等的和谐,没有等的恰到好处,没有等的天衣无缝,但它如山之挺拔,峰之隽秀,海之宽阔,天之高远,怎能不让人心旷神怡,魂牵梦绕呢?参考答案 难点磁场 解:(1)令F (x )=f (x )-x ,因为x 1,x 2是方程f (x )-x =0的根,所以F (x )=a (x -x 1)(x -x 2).当x ∈(0,x 1)时,由于x 1<x 2,得(x -x 1)(x -x 2)>0,又a >0,得F (x )=a (x -x 1)(x -x 2)>0,即x <f (x )x 1-f (x )=x 1-[x +F (x )]=x 1-x +a (x 1-x )(x -x 2)=(x 1-x )[1+a (x -x 2)]∵0<x <x 1<x 2<a1,∴x 1-x >0,1+a (x -x 2)=1+ax -ax 2>1-ax 2>0 ∴x 1-f (x )>0,由此得f (x )<x 1.(2)依题意:x 0=-ab2,因为x 1、x 2是方程f (x )-x =0的两根,即x 1,x 2是方程ax 2+(b -1)x +c =0的根.∴x 1+x 2=-ab 1-∴x 0=-aax ax a x x a a b 2121)(22121-+=-+=,因为ax 2<1,∴x 0<2211x a ax = 歼灭难点训练一、1.解析:由题意f (a )=g (a )>0,f (b )=g (b )>0,且f (a )>f (b ),g (a )>g (b ) ∴f (b )-f (-a )=f (b )+f (a )=g (a )+g (b )而g (a )-g (-b )=g (a )-g (b )∴g (a )+g (b )-[g (a )-g (b )] =2g (b )>0,∴f (b )-f (-a )>g (a )-g (-b ) 同理可证:f (a )-f (-b )>g (b )-g (-a ) 答案:A二、2.解析:①②③不满足均值不等式的使用条件“正、定、等”.④式:|x -y |=|(x -2)-(y -2)|≤|(x -2)-(y -2)|≤|x -2|+|y -2|<ε+ε=2ε. 答案:④3.解析:由已知y 1=x 20;y 2=0.8x (x 为仓库与车站距离)费用之和y =y 1+y 2=0.8x + x20≥2xx 208.0⋅=8 当且仅当0.8x =x20即x =5时“=”成立 答案:5公里处三、4.证明:(1)设g (x )=f (x )-x =ax 2+(b -1)x +1,且x >0.∵x 1<2<x 2<4,∴(x 1-2)(x 2-2)<0,即x 1x 2<2(x 1+x 2)-4,12)42(212)(212)()(2121)(21)11(21221212121210-=++->++-=++-+>-+=---⋅=-=x x x x x x x x x x a a b a b x 于是得(2)解:由方程g (x )=ax 2+(b -1)x +1=0可知x 1·x 2=a1>0,所以x 1,x21°若0<x 1<2,则x 2-x 1=2,∴x 2=x 1+2>2, ∴g (2)<0,即4a +2b -1<0①又(x 2-x 1)2=44)1(22=--a ab ∴2a +1=1)1(2+-b (∵a >0)代入①式得, 21)1(2+-b <3-2b②解②得b <412°若 -2<x 1<0,则x 2=-2+x 1<-2 ∴g (-2)<0,即4a -2b +3<0③又2a +1=1)1(2+-b ,代入③式得 21)1(2+-b <2b -1④解④得b >47. 综上,当0<x 1<2时,b <41,当-2<x 1<0时,b >47. 5.解:(1)由题意知某商品定价上涨x 成时,上涨后的定价、每月卖出数量、每月售货金额分别是:p (1+10x )元、n (1-10y)元、npz 元,因而)10)(10(1001),101()101(y x z y n x p npz -+=∴-⋅+=,在y =ax 的条件下,z =1001[-a [x -a a )1(5-]2+100+a a 2)1(25-].由于31≤a <1,则0<aa )1(5-≤10.要使售货金额最大,即使z 值最大,此时x =aa )1(5-.(2)由z =1001(10+x )(10-32x )>1,解得0<x <5.6.(1)证明:令m >0,n =0得:f (m )=f (m )·f (0).∵f (m )≠0,∴f (0)=1 取m =m ,n =-m ,(m <0),得f (0)=f (m )f (-m )∴f (m )=)(1m f -,∵m <0,∴-m >0,∴0<f (-m )<1,∴f (m )>1(2)证明:任取x 1,x 2∈R ,则f (x 1)-f (x 2)=f (x 1)-f [(x 2-x 1)+x 1] =f (x 1)-f (x 2-x 1)·f (x 1)=f (x 1)[1-f (x 2-x 1)], ∵f (x 1)>0,1-f (x 2-x 1)>0,∴f (x 1)>f (x 2), ∴函数f (x )在R 上为单调减函数.(3)由⎩⎨⎧=+-<+⎩⎨⎧θ==+->+021)(1)2()1()(2222y ax y x f y ax f f y x f 得,由题意此不等式组无解,数形结合得:1|2|2+a ≥1,解得a 2≤3∴a ∈[-3,3]7.(1)解:设y =1222+++x c bx x ,则(y -2)x 2-bx +y -c =0①∵x ∈R ,∴①的判别式Δ≥0,即 b 2-4(y -2)(y -c )≥0, 即4y 2-4(2+c )y +8c +b 2≤0 ②由条件知,不等式②的解集是[1,3]∴1,3是方程4y 2-4(2+c )y +8c +b 2=0的两根⎪⎩⎪⎨⎧+=⨯+=+48312312b c c ∴c =2,b =-2,b =2(舍) (2)任取x 1,x 2∈[-1,1],且x 2>x 1,则x 2-x 1>0,且(x 2-x 1)(1-x 1x 2)>0,∴f (x 2)-f (x 1)=-)1)(1()1)((2)12(122221211221222x x x x x x x x x x ++--=+--+>0,∴f (x 2)>f (x 1),lg f (x 2)>lg f (x 1),即F (x 2)>F (x 1)∴F (x )为增函数.,31|)61()61(||||,61||61|)3(=+--≤+--=t t u t t u 记即-31≤u ≤31,根据F (x )的单调性知F (-31)≤F (u )≤F (31),∴lg 57≤F (|t -61|-|t +61|)≤lg 513对任意实数t 成立.。
湖北省黄冈中学高考数学 典型例题20 不等式的综合应用
高考数学典型例题详解 不等式的综合应用不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其他知识综合运用的特点比较突出.不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题、本难点提供相关的思想方法,使考生能够运用不等式的性质、定理和方法解决函数、方程、实际应用等方面的问题.●难点磁场(★★★★★)设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2<a1. (1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图象关于直线x =x 0对称,证明:x 0<21x .●案例探究[例1]用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)命题意图:本题主要考查建立函数关系式,棱锥表面积和体积的计算及用均值定论求函数的最值.知识依托:本题求得体积V 的关系式后,应用均值定理可求得最值. 错解分析:在求得a 的函数关系式时易漏h >0. 技巧与方法:本题在求最值时应用均值定理. 解:①设h ′是正四棱锥的斜高,由题设可得:⎪⎪⎩⎪⎪⎨⎧=+='⋅+12222412214h a a a h a 消去)0(11:.2>+='a h a h 解得 ②由)1(33122+==h hh a V (h >0) 得:2121)1(31=⋅=++=hh h h h h V 而 所以V ≤61,当且仅当h =h1即h =1时取等号故当h =1米时,V 有最大值,V 的最大值为61立方米.[例2]已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1.(1)证明:|c |≤1;(2)证明:当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x ).命题意图:本题主要考查二次函数的性质、含有绝对值不等式的性质,以及综合应用数学知识分析问题和解决问题的能力.属★★★★★级题目.知识依托:二次函数的有关性质、函数的单调性是药引,而绝对值不等式的性质灵活运用是本题的灵魂.错解分析:本题综合性较强,其解答的关键是对函数f (x )的单调性的深刻理解,以及对条件“-1≤x ≤1时|f (x )|≤1”的运用;绝对值不等式的性质使用不当,会使解题过程空洞,缺乏严密,从而使题目陷于僵局.技巧与方法:本题(2)问有三种证法,证法一利用g (x )的单调性;证法二利用绝对值不等式:||a |-|b ||≤|a ±b |≤|a |+|b |;而证法三则是整体处理g (x )与f (x )的关系.(1)证明:由条件当=1≤x ≤1时,|f (x )|≤1,取x =0得:|c |=|f (0)|≤1,即|c |≤1. (2)证法一:依题设|f (0)|≤1而f (0)=c ,所以|c |≤1.当a >0时,g (x )=ax +b 在[-1,1]上是增函数,于是g (-1)≤g (x )≤g (1),(-1≤x ≤1).∵|f (x )|≤1,(-1≤x ≤1),|c |≤1,∴g (1)=a +b =f (1)-c ≤|f (1)|+|c |=2,g (-1)=-a +b =-f (-1)+c ≥-(|f (-2)|+|c |)≥-2,因此得|g (x )|≤2 (-1≤x ≤1);当a <0时,g (x )=ax +b 在[-1,1]上是减函数,于是g (-1)≥g (x )≥g (1),(-1≤x ≤1),∵|f (x )|≤1 (-1≤x ≤1),|c |≤1 ∴|g (x )|=|f (1)-c |≤|f (1)|+|c |≤2.综合以上结果,当-1≤x ≤1时,都有|g (x )|≤2. 证法二:∵|f (x )|≤1(-1≤x ≤1) ∴|f (-1)|≤1,|f (1)|≤1,|f (0)|≤1,∵f (x )=ax 2+bx +c ,∴|a -b +c |≤1,|a +b +c |≤1,|c |≤1, 因此,根据绝对值不等式性质得:|a -b |=|(a -b +c )-c |≤|a -b +c |+|c |≤2, |a +b |=|(a +b +c )-c |≤|a +b +c |+|c |≤2, ∵g (x )=ax +b ,∴|g (±1)|=|±a +b |=|a ±b |≤2,函数g (x )=ax +b 的图象是一条直线,因此|g (x )|在[-1,1]上的最大值只能在区间的端点x =-1或x =1处取得,于是由|g (±1)|≤2得|g (x )|≤2,(-1<x <1).)21()21(])21()21([])21()21([)2121(])21()21[()(,)21()21(4)1()1(:22222222--+=+-+--++++=--++--+=+=∴--+=--+=x f x f c x b x a c x b x a x x b x x a b ax x g x x x x x Θ证法三当-1≤x ≤1时,有0≤21+x ≤1,-1≤21-x ≤0, ∵|f (x )|≤1,(-1≤x ≤1),∴|f )21(+x |≤1,|f (21-x )|≤1; 因此当-1≤x ≤1时,|g (x )|≤|f )21(+x |+|f (21-x )|≤2. (3)解:因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2,即g (1)=a +b =f (1)-f (0)=2. ①∵-1≤f (0)=f (1)-2≤1-2=-1,∴c =f (0)=-1.因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0), 根据二次函数的性质,直线x =0为f (x )的图象的对称轴, 由此得-ab2<0 ,即b =0. 由①得a =2,所以f (x )=2x 2-1.●锦囊妙计1.应用不等式知识可以解决函数、方程等方面的问题,在解决这些问题时,关键是把非不等式问题转化为不等式问题,在化归与转化中,要注意等价性.2.对于应用题要通过阅读,理解所给定的材料,寻找量与量之间的内在联系,抽象出事物系统的主要特征与关系,建立起能反映其本质属性的数学结构,从而建立起数学模型,然后利用不等式的知识求出题中的问题.●歼灭难点训练 一、选择题1.(★★★★★)定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A.①③ B.②④ C.①④ D.②③二、填空题2.(★★★★★)下列四个命题中:①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若yx 91 =1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________.3.(★★★★★)某公司租地建仓库,每月土地占用费y 1与车库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站__________公里处.三、解答题4.(★★★★★)已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2.(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围.5.(★★★★)某种商品原来定价每件p 元,每月将卖出n 件,假若定价上涨x 成(这里x 成即10x,0<x ≤10).每月卖出数量将减少y 成,而售货金额变成原来的 z 倍. (1)设y =ax ,其中a 是满足31≤a <1的常数,用a 来表示当售货金额最大时的x 的值;(2)若y =32x ,求使售货金额比原来有所增加的x 的取值范围.6.(★★★★★)设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x>0时,0<f (x )<1.(1)求证:f (0)=1,且当x <0时,f (x )>1; (2)求证:f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围.7.(★★★★★)已知函数f (x )=1222+++x cbx x (b <0)的值域是[1,3],(1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论; (3)若t ∈R ,求证:lg 57≤F (|t -61|-|t +61|)≤lg 513.参考答案难点磁场解:(1)令F (x )=f (x )-x ,因为x 1,x 2是方程f (x )-x =0的根,所以F (x )=a (x -x 1)(x -x 2).当x ∈(0,x 1)时,由于x 1<x 2,得(x -x 1)(x -x 2)>0,又a >0,得F (x )=a (x -x 1)(x -x 2)>0,即x <f (x )x 1-f (x )=x 1-[x +F (x )]=x 1-x +a (x 1-x )(x -x 2)=(x 1-x )[1+a (x -x 2)]∵0<x <x 1<x 2<a1,∴x 1-x >0,1+a (x -x 2)=1+ax -ax 2>1-ax 2>0 ∴x 1-f (x )>0,由此得f (x )<x 1. (2)依题意:x 0=-ab 2,因为x 1、x 2是方程f (x )-x =0的两根,即x 1,x 2是方程ax 2+(b -1)x +c =0的根.∴x 1+x 2=-ab 1- ∴x 0=-a ax ax a x x a a b 2121)(22121-+=-+=,因为ax 2<1, ∴x 0<2211x a ax =歼灭难点训练一、1.解析:由题意f (a )=g (a )>0,f (b )=g (b )>0,且f (a )>f (b ),g (a )>g (b ) ∴f (b )-f (-a )=f (b )+f (a )=g (a )+g (b )而g (a )-g (-b )=g (a )-g (b )∴g (a )+g (b )-[g (a )-g (b )] =2g (b )>0,∴f (b )-f (-a )>g (a )-g (-b ) 同理可证:f (a )-f (-b )>g (b )-g (-a ) 答案:A二、2.解析:①②③不满足均值不等式的使用条件“正、定、等”.④式:|x -y |=|(x -2)-(y -2)|≤|(x -2)-(y -2)|≤|x -2|+|y -2|<ε+ε=2ε.答案:④3.解析:由已知y 1=x 20;y 2=0.8x (x 为仓库与车站距离)费用之和y =y 1+y 2=0.8x + x20≥2xx 208.0⋅=8当且仅当0.8x =x20即x =5时“=”成立 答案:5公里处三、4.证明:(1)设g (x )=f (x )-x =ax 2+(b -1)x +1,且x >0. ∵x 1<2<x 2<4,∴(x 1-2)(x 2-2)<0,即x 1x 2<2(x 1+x 2)-4,12)42(212)(212)()(2121)(21)11(21221212121210-=++->++-=++-+>-+=---⋅=-=x x x x x x x x x x a a b a b x 于是得(2)解:由方程g (x )=ax 2+(b -1)x +1=0可知x 1·x 2=a1>0,所以x 1,x 2同号 1°若0<x 1<2,则x 2-x 1=2,∴x 2=x 1+2>2, ∴g (2)<0,即4a +2b -1<0①又(x 2-x 1)2=44)1(22=--a ab ∴2a +1=1)1(2+-b (∵a >0)代入①式得, 21)1(2+-b <3-2b ②解②得b <412°若 -2<x 1<0,则x 2=-2+x 1<-2 ∴g (-2)<0,即4a -2b +3<0③又2a +1=1)1(2+-b ,代入③式得 21)1(2+-b <2b -1④解④得b >47. 综上,当0<x 1<2时,b <41,当-2<x 1<0时,b >47. 5.解:(1)由题意知某商品定价上涨x 成时,上涨后的定价、每月卖出数量、每月售货金额分别是:p (1+10x )元、n (1-10y)元、npz 元,因而 )10)(10(1001),101()101(y x z y n x p npz -+=∴-⋅+=,在y =ax 的条件下,z =1001[-a [x -a a )1(5-]2+100+a a 2)1(25-].由于31≤a <1,则0<aa )1(5-≤10.要使售货金额最大,即使z 值最大,此时x =aa )1(5-. (2)由z =1001(10+x )(10-32x )>1,解得0<x <5.6.(1)证明:令m >0,n =0得:f (m )=f (m )·f (0).∵f (m )≠0,∴f (0)=1 取m =m ,n =-m ,(m <0),得f (0)=f (m )f (-m ) ∴f (m )=)(1m f -,∵m <0,∴-m >0,∴0<f (-m )<1,∴f (m )>1 (2)证明:任取x 1,x 2∈R ,则f (x 1)-f (x 2)=f (x 1)-f [(x 2-x 1)+x 1] =f (x 1)-f (x 2-x 1)·f (x 1)=f (x 1)[1-f (x 2-x 1)], ∵f (x 1)>0,1-f (x 2-x 1)>0,∴f (x 1)>f (x 2), ∴函数f (x )在R 上为单调减函数.(3)由⎩⎨⎧=+-<+⎩⎨⎧θ==+->+021)(1)2()1()(2222y ax y x f y ax f f y x f 得,由题意此不等式组无解,数形结合得:1|2|2+a ≥1,解得a 2≤3∴a ∈[-3,3]7.(1)解:设y =1222+++x c bx x ,则(y -2)x 2-bx +y -c =0 ①∵x ∈R ,∴①的判别式Δ≥0,即 b 2-4(y -2)(y -c )≥0, 即4y 2-4(2+c )y +8c +b 2≤0②由条件知,不等式②的解集是[1,3] ∴1,3是方程4y 2-4(2+c )y +8c +b 2=0的两根⎪⎩⎪⎨⎧+=⨯+=+48312312b c c ∴c =2,b =-2,b =2(舍) (2)任取x 1,x 2∈[-1,1],且x 2>x 1,则x 2-x 1>0,且 (x 2-x 1)(1-x 1x 2)>0,∴f (x 2)-f (x 1)=-)1)(1()1)((2)12(122221211221222x x x x x x x x x x ++--=+--+>0,∴f (x 2)>f (x 1),lg f (x 2)>lg f (x 1),即F (x 2)>F (x 1) ∴F (x )为增函数.,31|)61()61(||||,61||61|)3(=+--≤+--=t t u t t u 记即-31≤u ≤31,根据F (x )的单调性知F (-31)≤F (u )≤F (31),∴lg 57≤F (|t -61|-|t +61|)≤lg 513对任意实数t 成立.[科普美文]数学中的不等式关系数学是研究空间形式和数量关系的科学,恩格斯在《自然辩证法》一书中指出,数学是辩证的辅助工具和表现形式,数学中蕴含着极为丰富的辩证唯物主义因素,等与不等关系正是该点的生动体现,它们是对立统一的,又是相互联系、相互影响的;等与不等关系是中学数学中最基本的关系.等的关系体现了数学的对称美和统一美,不等关系则如同仙苑奇葩呈现出了数学的奇异美.不等关系起源于实数的性质,产生了实数的大小关系,简单不等式,不等式的基本性质,如果把简单不等式中的实数抽象为用各种数学符号集成的数学式,不等式发展为一个人丁兴旺的大家族,由简到繁,形式各异.如果赋予不等式中变量以特定的值、特定的关系,又产生了重要不等式、均值不等式等.不等式是永恒的吗?显然不是,由此又产生了解不等式与证明不等式两个极为重要的问题.解不等式即寻求不等式成立时变量应满足的范围或条件,不同类型的不等式又有不同的解法;不等式证明则是推理性问题或探索性问题.推理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大多是与自然数n 有关的证明问题,常采用观察—归纳—猜想—证明的思路,以数学归纳法完成证明.另外,不等式的证明方法还有换元法、放缩法、反证法、构造法等.数学科学是一个不可分割的有机整体,它的生命力正是在于各个部分之间的联系.不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此不等式又可作为一个工具来解决数学中的其他问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题无一不与不等式有着密切的联系.许多问题最终归结为不等式的求解或证明;不等式还可以解决现实世界中反映出来的数学问题.不等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程.总之,不等式的应用体现了一定的综合性,灵活多样性.等与不等形影不离,存在着概念上的亲缘关系,是中学数学中最广泛、最普遍的关系.数学的基本特点是应用的广泛性、理论的抽象性和逻辑的严谨性,而不等关系是深刻而生动的体现.不等虽没有等的温柔,没有等的和谐,没有等的恰到好处,没有等的天衣无缝,但它如山之挺拔,峰之隽秀,海之宽阔,天之高远,怎能不让人心旷神怡,魂牵梦绕呢?。
湖北省黄冈中学高考数学 典型例题19 解不等式.doc
高考数学典型例题详解解不等式不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式.●难点磁场(★★★★)解关于x 的不等式2)1(--x x a >1(a ≠1).●案例探究[例1]已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[-1,1],m +n ≠0时nm n f m f ++)()(>0.(1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式:f (x +21)<f (11-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数t 的取值范围.命题意图:本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力,属★★★★★级题目.知识依托:本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用.错解分析:(2)问中利用单调性转化为不等式时,x +21∈[-1,1],11-x ∈[-1,1]必不可少,这恰好是容易忽略的地方.技巧与方法:(1)问单调性的证明,利用奇偶性灵活变通使用已知条件不等式是关键,(3)问利用单调性把f (x )转化成“1”是点睛之笔.(1)证明:任取x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=2121)()(x x x f x f --+·(x 1-x 2)∵-1≤x 1<x 2≤1, ∴x 1+(-x 2)≠0,由已知2121)()(x x x f x f --+>0,又 x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x )在[-1,1]上为增函数. (2)解:∵f (x )在[-1,1]上为增函数,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤-≤-≤+≤-112111111211x x x x 解得:{x |-23≤x <-1,x ∈R }(3)解:由(1)可知f (x )在[-1,1]上为增函数,且f (1)=1,故对x ∈[-1,1],恒有f (x )≤1,所以要f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,即要t 2-2at +1≥1成立,故t 2-2at ≥0,记g (a )=t 2-2at ,对a ∈[-1,1],g (a )≥0,只需g (a )在[-1,1]上的最小值大于等于0,g (-1)≥0,g (1)≥0,解得,t ≤-2或t =0或t ≥2.∴t 的取值范围是:{t |t ≤-2或t =0或t ≥2}.[例2]设不等式x 2-2ax +a +2≤0的解集为M ,如果M ⊆[1,4],求实数a 的取值范围.命题意图:考查二次不等式的解与系数的关系及集合与集合之间的关系,属★★★★级题目.知识依托:本题主要涉及一元二次不等式根与系数的关系及集合与集合之间的关系,以及分类讨论的数学思想.错解分析:M =∅是符合题设条件的情况之一,出发点是集合之间的关系考虑是否全面,易遗漏;构造关于a 的不等式要全面、合理,易出错.技巧与方法:该题实质上是二次函数的区间根问题,充分考虑二次方程、二次不等式、二次函数之间的内在联系是关键所在;数形结合的思想使题目更加明朗.解:M ⊆[1,4]有n 种情况:其一是M =∅,此时Δ<0;其二是M ≠∅,此时Δ>0,分三种情况计算a 的取值范围.设f (x )=x 2-2ax +a +2,有Δ=(-2a )2-(4a +2)=4(a 2-a -2) (1)当Δ<0时,-1<a <2,M =∅[1,4] (2)当Δ=0时,a =-1或2.当a =-1时M ={-1}1,4];当a =2时,m ={2}[1,4].(3)当Δ>0时,a <-1或a >2.设方程f (x )=0的两根x 1,x 2,且x 1<x 2,那么M =[x 1,x 2],M ⊆[1,4]⇔1≤x 1<x 2≤4⎩⎨⎧>∆≤≤>>⇔0,410)4(,0)1(且且a f f即⎪⎪⎩⎪⎪⎨⎧>-<>>->+-210071803a a a a a 或,解得:2<a <718,∴M ⊆[1,4]时,a 的取值范围是(-1,718).●锦囊妙计解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题:(1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法.(2)掌握用序轴标根法解高次不等式和分式不等式,特别要注意因式的处理方法. (3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法.(4)掌握含绝对值不等式的几种基本类型的解法.(5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式.(6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论.●歼灭难点训练 一、选择题1.(★★★★★)设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤+)1(11)11(22)1()1(2x xx x x x ,已知f (a )>1,则a 的取值范围是( )A.(-∞,-2)∪(-21,+∞) B.(-21,21) C.(-∞,-2)∪(-21,1)D.(-2,-21)∪(1,+∞)二、填空题2.(★★★★★)已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b ),则f (x )·g (x )>0的解集是__________.3.(★★★★★)已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________.三、解答题4.(★★★★★)已知适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3. (1)求p 的值;(2)若f (x )=11+-x x p p ,解关于x 的不等式f --1(x )>k x p +1log (k ∈R +)5.(★★★★★)设f (x )=ax 2+bx +c ,若f (1)=27,问是否存在a 、b 、c ∈R ,使得不等式:x 2+21≤f (x )≤2x 2+2x +23对一切实数x 都成立,证明你的结论.6.(★★★★★)已知函数f (x )=x 2+px +q ,对于任意θ∈R ,有f (sin θ)≤0,且f (sin θ+2)≥2.(1)求p 、q 之间的关系式; (2)求p 的取值范围;(3)如果f (sin θ+2)的最大值是14,求p 的值.并求此时f (sin θ)的最小值.7.(★★★★)解不等式log a (x -x1)>18.(★★★★★)设函数f (x )=a x满足条件:当x ∈(-∞,0)时,f (x )>1;当x ∈(0,1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围.参考答案 难点磁场解:原不等式可化为:2)2()1(--+-x a x a >0,即[(a -1)x +(2-a )](x -2)>0.当a >1时,原不等式与(x -12--a a )(x -2)>0同解. 若12--a a ≥2,即0≤a <1时,原不等式无解;若12--a a <2,即a <0或a >1,于是a >1时原不等式的解为(-∞,12--a a )∪(2,+∞).当a <1时,若a <0,解集为(12--a a ,2);若0<a <1,解集为(2,12--a a )综上所述:当a >1时解集为(-∞,12--a a )∪(2,+∞);当0<a <1时,解集为(2,12--a a );当a =0时,解集为∅;当a <0时,解集为(12--a a ,2).歼灭难点训练一、1.解析:由f (x )及f (a )>1可得:⎩⎨⎧>+-≤1)1(12a a ① 或⎩⎨⎧>+<<-12211a a ② 或⎪⎩⎪⎨⎧>-≥1111aa ③ 解①得a <-2,解②得-21<a <1,解③得x ∈∅ ∴a 的取值范围是(-∞,-2)∪(-21,1)答案:C 二、2.解析:由已知b >a 2∵f (x ),g (x )均为奇函数,∴f (x )<0的解集是(-b ,-a 2),g (x )<0的解集是(-2,22a b -).由f (x )·g (x )>0可得:⎪⎩⎪⎨⎧-<<--<<-⎪⎩⎪⎨⎧<<<<⎩⎨⎧<<⎩⎨⎧>>2222,0)(0)(0)(0)(2222a x b a x b b x a b x a x g x f x g x f 或即或 ∴x ∈(a 2,2b )∪(-2b ,-a 2) 答案:(a 2,2b )∪(-2b ,-a 2)3.解析:原方程可化为cos 2x -2cos x -a -1=0,令t =cos x ,得t 2-2t -a -1=0,原问题转化为方程t 2-2t -a -1=0在[-1,1]上至少有一个实根.令f (t )=t 2-2t -a -1,对称轴t =1,画图象分析可得⎩⎨⎧≤≥-0)1(0)1(f f 解得a ∈[-2,2].答案:[-2,2] 三、4.解:(1)∵适合不等式|x 2-4x +p |+|x -3|≤5的x 的最大值为3, ∴x -3≤0,∴|x -3|=3-x .若|x 2-4x +p |=-x 2+4x -p ,则原不等式为x 2-3x +p +2≥0,其解集不可能为{x |x ≤3}的子集,∴|x 2-4x +p |=x 2-4x +p .∴原不等式为x 2-4x +p +3-x ≤0,即x 2-5x +p -2≤0,令x 2-5x +p -2=(x -3)(x -m ),可得m =2,p =8.(2)f (x )=1818+-x x ,∴f --1(x )=log 8x x -+11 (-1<x <1),∴有log 8x x -+11>log 8kx+1,∴log 8(1-x )<log 8k ,∴1-x <k ,∴x >1-k . ∵-1<x <1,k ∈R +,∴当0<k <2时,原不等式解集为{x |1-k <x <1};当k ≥2时,原不等式的解集为{x |-1<x <1}.5.解:由f (1)=27得a +b +c =27,令x 2+21=2x 2+2x +23x ⇒=-1,由f (x )≤2x 2+2x +23推得 f (-1)≤23.由f (x )≥x 2+21推得f (-1)≥23,∴f (-1)=23,∴a -b +c =23,故 2(a +c )=5,a +c =25且b =1,∴f (x )=ax 2+x +(25-a ).依题意:ax 2+x +(25-a )≥x 2+21对一切x ∈R 成立, ∴a ≠1且Δ=1-4(a -1)(2-a )≤0,得(2a -3)2≤0,∴f (x )=23x 2+x +1 易验证:23x 2+x +1≤2x 2+2x +23对x ∈R 都成立.∴存在实数a =23,b =1,c =1,使得不等式:x 2+21≤f (x )≤2x 2+2x +23对一切x ∈R 都成立.6.解:(1)∵-1≤sin θ≤1,1≤sin θ+2≤3,即当x ∈[-1,1]时,f (x )≤0,当x ∈[1,3]时,f (x )≥0,∴当x =1时f (x )=0.∴1+p +q =0,∴q =-(1+p )(2)f (x )=x 2+px -(1+p ),当sin θ=-1时f (-1)≤0,∴1-p -1-p ≤0,∴p ≥0(3)注意到f (x )在[1,3]上递增,∴x =3时f (x )有最大值.即9+3p +q =14,9+3p -1-p =14,∴p =3.此时,f (x )=x 2+3x -4,即求x ∈[-1,1]时f (x )的最小值.又f (x )=(x +23)2-425,显然此函数在[-1,1]上递增.∴当x =-1时f (x )有最小值f (-1)=1-3-4=-6.7.解:(1)当a >1时,原不等式等价于不等式组⎪⎪⎩⎪⎪⎨⎧>->-a xx11011由此得1-a >x 1.因为1-a <0,所以x <0,∴a-11<x <0. (2)当0<a <1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧<->-a xx 11011 由 ①得x >1或x <0,由②得0 <x <a -11,∴1<x <a -11. 综上,当a >1时,不等式的解集是{x |a-11<x <0},当0<a <1时,不等式的解集① ②为{x |1<x <a-11}. 8.解:由已知得0<a <1,由f (3mx -1)>f (1+mx -x 2)>f (m +2),x ∈(0,1]恒成立.⎪⎩⎪⎨⎧+<-+-+<-⇔2111322m x mx xmx mx 在x ∈(0,1]恒成立. 整理,当x ∈(0,1)时,⎪⎩⎪⎨⎧+<--<1)1(1222x x m x x 恒成立,即当x ∈(0,1]时,⎪⎪⎩⎪⎪⎨⎧-+>-<112122x x m xx m 恒成立,且x =1时,⎪⎩⎪⎨⎧+<--<1)1(1222x x m xmx 恒成立,∵2121212-=-x x x 在x ∈(0,1]上为减函数,∴x x 212-<-1, ∴m <x x 212-恒成立⇔m <0.又∵2112)1(112+-+-=-+x x x x ,在x ∈(0,1]∴112-+x x <-1.∴m >112-+x x 恒成立⇔m >-1当x ∈(0,1)时,⎪⎪⎩⎪⎪⎨⎧-+>-<112122x x m xx m 恒成立⇔m ∈(-1,0)①当x =1时,⎪⎩⎪⎨⎧+<--<1)1(1222x x m xmx ,即是⎩⎨⎧<<100m ∴m <0②∴①、②两式求交集m ∈(-1,0),使x ∈(0,1]时,f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,m 的取值范围是(-1,0)。
黄冈中学最新高考数学题型分析含黄冈密卷
黄冈中学最新高考数学题型分析含黄冈密卷黄冈中学内部资料复习目标:1.掌握分类讨论必须遵循的原则2.能够合理,正确地求解有关问题命题分析:分类探讨就是一种关键的逻辑方法,也就是一种常用的数学方法,这可以培育学生思维的条理性和概括性,以及重新认识问题的全面性和深刻性,提升学生分析问题,解决问题的能力.因此分类探讨就是历年数学中考的重点与热点.而且也就是中考的一个难点.重点题型分析:例1.解关于x的不等式:x2?a3?(a?a2)x(a?r)(黄冈,二模理科)解:原不等式可分解因式为:(x-a)(x-a)<0(下面按两个根的大小关系分类)222(1)当a>a?a-a<0即00即a<0或a>1时,不等式的解为:x?(a,a2)2222(3)当a=a?a-a=0即a=0或a=1时,不等式为x<0或(x-1)<0不等式的解为x??.2综上,当02当a<0或a>1时,x?(a,a)当a=0或a=1时,x??.旁述:把握住分类的转折点,此题水解因式后,之所以无法马上写下边值问题,主要就是无人知晓两根谁小谁小,那么就按两个根之间的大小关系去分类.例2.解关于x的不等式ax2+2ax+1>0(a?r)解:此题应按a是否为0来分类.(1)当a=0时,不等式为1>0,边值问题为r.(2)a?0时分成a>0与a<0两类a?0?a?0?a?02①a?1时,方程ax+2ax+1=0存有两20?a(a?1)?0?4a?4a?02根x1,2??2a?4a?4a2a2??a?aa?a2??1?a(a?1)aa(a?1)a.则原不等式的意指(??,?1?②??a?0a(a?1)a)?(?1?,??).a?0?a?0?0?a?1时,20?0?a?1?4a?4a?0方程ax2+2ax+1=0没实根,此时为开口向上的抛物线,则不等式的意指(-?,+?).??a?0?a?0?a?0③a?1时,2??0a?0或a?1?4a?4a?0方程ax2+2ax+1=0只有一根为x=-1,则原不等式的意指(-?,-1)∪(-1,+?).1④?a?0a?0?a?0a?0时,0??4a2?4a?0?a?0或a?1方程ax2+2ax+1=0有两根,x?2a?a(a?1)1,2?2a??1?a(a?1)a此时,抛物线的开口向上的抛物线,故原不等式的意指:(?1?a(a?1)a(a?1)a,?1?a).⑤?a?0a?0?a?0a??0??4a2?4a?0?0?a?1综上:当0≤a<1时,边值问题为(-?,+?).当a>1时,边值问题为(??,?1?a(a?1)a)?(?1?a(a?1)a,??).当a=1时,解集为(-?,-1)∪(-1,+?).当a<0时,边值问题为(?1?a(a?1)?1)a,?1?a(aa).例3.解关于x的不等式ax2-2≥2x-ax(a∈r)(黄冈,二模理科)解:原不等式可化为?ax2+(a-2)x-2≥0,(1)a=0时,x≤-1,即x∈(-∞,-1].(2)a?0时,不等式即为为(ax-2)(x+1)≥0.①a>0时,不等式化成(x?2a)(x?1)?0,a0当??,?1]?[22,即a>0时,不等式解为(??,??).a1a?a?0当??2,此时a不存有.??a??1②a<0时,不等式化为(x?2a)(x?1)?0,a当?0??2,即为-2a0当2,即aa1aa当?0?2,即a=-2时,不等式意指x=-1.a1综上:2a=0时,x∈(-∞,-1).a>0时,x∈(??,?1]?[2a,??).-2aa=-2时,x∈{x|x=-1}.评述:通过上面三个例题的分析与解答,可以概括出分类讨论问题的基本原则为:10:能不分则不分;20:若不分则无法确认任何一个结果;30:若分的话,则按谁偷懒就分谁.例4.已知函数f(x)=cos2x+asinx-a2+2a+5.存有最大值2,谋实数a的值域.解:f(x)=1-sin2x+asinx-a2+2a+5??(sinx?a2)2?324a?2a?6.令sinx=t,t∈[-1,1].则f(t)??(t?a232)?4a2?2a?6(t∈[-1,1]).(1)当a2?1即a>2时,t=1,y3max??a?3a?5?2解方程得:a?3?21212或a?3?2(舍).(2)当?1?a22?1时,即-2≤a≤2时,t?a2,y3max??4a?2a?6?2,解方程为:a??43或a=4(比涅).(3)当aymax=-a+a+5=22??1即a即a2-a-3=0∴a?1?132,∵a综上,当a?3?2142或a??3时,能使函数f(x)的最大值为2.基准5.设立{an}就是由正数共同组成的等比数列,sn就是其前n项和,证明:log0.5sn?log0.5sn?22?log0.5sn?1.证明:(1)当q=1时,sn=na1从s22n?sn?2?s2n?1?na1?(n?2)a1?(n?1)a1??a21?0(2)当q≠1时,s1?qn)n?a1(1?q,从而a2nn?22s1(1?q)(1?q)?a1(1?qn?1)2n?sn?2?s2n?1?2??a2n(1?q)1q?0.由(1)(2)得:s2n?sn?2?sn?1.而3∵函数y?logx0.5为单调递减函数.∴log0.5sn?log20.5sn?2?log0.5sn?1.例6.设一双曲线的两条渐近线方程为2x-y+1=0,2x+y-5=0,求此双曲线的离心率.分析:由双曲线的渐近线方程,不能确定其焦点位置,所以应分两种情况求解.解:(1)当双曲线的焦点在直线y=3时,双曲线的方程可改为一条渐近线的斜率为ba?2,∴b=2.∴e?ca?b?aa22(x?1)a5a522?(y?3)b22?1,5.(2)当双曲线的焦点在直线x=1时,仿(1)言双曲线的一条渐近线的斜率为此时e?52ab?2,.52综上(1)(2)所述,双曲线的距心率等同于5或.评述:例5,例6,的分类讨论是由公式的限制条件与图形的不确定性所引起的,而例1-4是对于含有参数的问题而对参数的允许值进行的全面讨论.a(1?x)基准7.求解关于x的不等式5a(1?x)x?2?1?1.(黄冈2021,二模理科)解:原不等式?5a(1x)x210x2150(1?a)x?a?2x?2?0?(x?2)[(1?a)x?(2?a)]?01a01a01a0(1)或(2)?或(3)?2?a2?a)?0)?0?(x?2)(1?2)?0?(x?2)(x??(x?2)(x?1?a1?a??由(1)a=1时,x-2>0,即x∈(2,+∞).2?a?0,下面分为三种情况.由(2)a<1时,1?a?a?1?a?12?a?).①?2?a即a<1时,意指(2,??1?a?2?a?0??1?a?a?1?②?2?a?2??1?a?a?1a?0时,意指?.?a?0?a?1?a?12?a?,2).③?2?a??即01时,2?a1?a的符号不确定,也分为3种情况.4?a?1?a?1?①?2?a?a不存在.2?a?0??1?a?a?1?a?12?a?②?2?a)?(2,??).当a>1时,原不等式的解为:(??,1?a?2?a?0??1?a综上:a=1时,x∈(2,+∞).2?aa<1时,x∈(2,)1?aa=0时,x??.2?a,2)01时,x∈(??,1?a旁述:对于分类探讨的解题程序可以大致分成以下几个步骤:01:明确讨论的对象,确定对象的全体;20:确定分类标准,正确分类,不重不漏;03:逐步展开探讨,赢得结段性结记;40:概括总结,综合结记.课后练习:21.求解不等式logx(5x?8x?3)?22.解不等式|log12x|?|log13(3?x)|?1?0的解集为m.3.未知关于x的不等式ax?5x?a2(1)当a=4时,求集合m:(2)若3?m,谋实数a的值域范围.4.在x0y平面上给定曲线y2=2x,设点a坐标为(a,0),a?r,求曲线上点到点a距离的最小值d,并写成d=f(a)的函数表达式.参考答案:(,)?(,??)1.25392.[,]442133(??,2)?(,2)3.(1)m为 45(2)a?(??,)?(9,??)35??2a?1当a?1时4.d?f(a)??.当a?1时?|a|5。
湖北黄冈中学高三数学等差、等比数列的综合运用-
[解析]
a9 a3 a9 a3 b5 b7 b8 b4 2b6 2b6
a9
a3
a6
a1
a11 11
2
S11
19.
2b6
b6 b1 b11 11 T11 41
2
[解析]
a9 a3 a9 a3 b5 b7 b8 b4 2b6 2b6
a9
a3
a6
a1
a11 11
2
S11
19.
2b6
b6 b1 b11 11 T11 41
2
[答案] 19 41
2.已 知{a数 n}的 列 n前 项S和 n满 足 Snan2n1,求 数 {an}列 的 通 an.项
2.已 知{a数 n}的 列 n前 项S和 n满 足 Snan2n1,求 数 {an}列 的 通 an.项
整理得
4 bn1bn
6 bn1
3 bn
0,即bn1
2bn
4 3
,由 a1
1有 b1
2, b2
8 3
, b3
4, b4
20 3
.
(2) 由 bn1
2 bn
4 3
, bn1
4 3
2(bn
4 ), 3
b1
4 3
2 3
0, {bn
4 }是首 项为 3
2 3
{an }满足 a1 1, f (an an1 ) g(an1an
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学典型例题详解 不等式的综合应用不等式是继函数与方程之后的又一重点内容之一,作为解决问题的工具,与其他知识综合运用的特点比较突出.不等式的应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值问题、本难点提供相关的思想方法,使考生能够运用不等式的性质、定理和方法解决函数、方程、实际应用等方面的问题.●难点磁场(★★★★★)设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2<a1. (1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图象关于直线x =x 0对称,证明:x 0<21x .●案例探究[例1]用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)命题意图:本题主要考查建立函数关系式,棱锥表面积和体积的计算及用均值定论求函数的最值.知识依托:本题求得体积V 的关系式后,应用均值定理可求得最值. 错解分析:在求得a 的函数关系式时易漏h >0. 技巧与方法:本题在求最值时应用均值定理. 解:①设h ′是正四棱锥的斜高,由题设可得:⎪⎪⎩⎪⎪⎨⎧=+='⋅+12222412214h a a a h a 消去)0(11:.2>+='a h a h 解得 ②由)1(33122+==h h h a V (h >0) 得:2121)1(31=⋅=++=hh h h h h V 而 所以V ≤61,当且仅当h =h1即h =1时取等号故当h =1米时,V 有最大值,V 的最大值为61立方米.[例2]已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1.(1)证明:|c |≤1;(2)证明:当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x ).命题意图:本题主要考查二次函数的性质、含有绝对值不等式的性质,以及综合应用数学知识分析问题和解决问题的能力.属★★★★★级题目.知识依托:二次函数的有关性质、函数的单调性是药引,而绝对值不等式的性质灵活运用是本题的灵魂.错解分析:本题综合性较强,其解答的关键是对函数f (x )的单调性的深刻理解,以及对条件“-1≤x ≤1时|f (x )|≤1”的运用;绝对值不等式的性质使用不当,会使解题过程空洞,缺乏严密,从而使题目陷于僵局.技巧与方法:本题(2)问有三种证法,证法一利用g (x )的单调性;证法二利用绝对值不等式:||a |-|b ||≤|a ±b |≤|a |+|b |;而证法三则是整体处理g (x )与f (x )的关系.(1)证明:由条件当=1≤x ≤1时,|f (x )|≤1,取x =0得:|c |=|f (0)|≤1,即|c |≤1. (2)证法一:依题设|f (0)|≤1而f (0)=c ,所以|c |≤1.当a >0时,g (x )=ax +b 在[-1,1]上是增函数,于是g (-1)≤g (x )≤g (1),(-1≤x ≤1).∵|f (x )|≤1,(-1≤x ≤1),|c |≤1,∴g (1)=a +b =f (1)-c ≤|f (1)|+|c |=2,g (-1)=-a +b =-f (-1)+c ≥-(|f (-2)|+|c |)≥-2,因此得|g (x )|≤2 (-1≤x ≤1);当a <0时,g (x )=ax +b 在[-1,1]上是减函数,于是g (-1)≥g (x )≥g (1),(-1≤x ≤1),∵|f (x )|≤1 (-1≤x ≤1),|c |≤1 ∴|g (x )|=|f (1)-c |≤|f (1)|+|c |≤2.综合以上结果,当-1≤x ≤1时,都有|g (x )|≤2. 证法二:∵|f (x )|≤1(-1≤x ≤1) ∴|f (-1)|≤1,|f (1)|≤1,|f (0)|≤1,∵f (x )=ax 2+bx +c ,∴|a -b +c |≤1,|a +b +c |≤1,|c |≤1, 因此,根据绝对值不等式性质得:|a -b |=|(a -b +c )-c |≤|a -b +c |+|c |≤2, |a +b |=|(a +b +c )-c |≤|a +b +c |+|c |≤2, ∵g (x )=ax +b ,∴|g (±1)|=|±a +b |=|a ±b |≤2,函数g (x )=ax +b 的图象是一条直线,因此|g (x )|在[-1,1]上的最大值只能在区间的端点x =-1或x =1处取得,于是由|g (±1)|≤2得|g (x )|≤2,(-1<x <1).)21()21(])21()21([])21()21([)2121(])21()21[()(,)21()21(4)1()1(:22222222--+=+-+--++++=--++--+=+=∴--+=--+=x f x f c x b x a c x b x a x x b x x a b ax x g x x x x x 证法三当-1≤x ≤1时,有0≤21+x ≤1,-1≤21-x ≤0, ∵|f (x )|≤1,(-1≤x ≤1),∴|f )21(+x |≤1,|f (21-x )|≤1; 因此当-1≤x ≤1时,|g (x )|≤|f )21(+x |+|f (21-x )|≤2. (3)解:因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2,即g (1)=a +b =f (1)-f (0)=2. ①∵-1≤f (0)=f (1)-2≤1-2=-1,∴c =f (0)=-1.因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0), 根据二次函数的性质,直线x =0为f (x )的图象的对称轴, 由此得-ab2<0 ,即b =0. 由①得a =2,所以f (x )=2x 2-1.●锦囊妙计1.应用不等式知识可以解决函数、方程等方面的问题,在解决这些问题时,关键是把非不等式问题转化为不等式问题,在化归与转化中,要注意等价性.2.对于应用题要通过阅读,理解所给定的材料,寻找量与量之间的内在联系,抽象出事物系统的主要特征与关系,建立起能反映其本质属性的数学结构,从而建立起数学模型,然后利用不等式的知识求出题中的问题.●歼灭难点训练 一、选择题1.(★★★★★)定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A.①③ B.②④ C.①④ D.②③二、填空题2.(★★★★★)下列四个命题中:①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若yx 91 =1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________.3.(★★★★★)某公司租地建仓库,每月土地占用费y 1与车库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站__________公里处.三、解答题4.(★★★★★)已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2.(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围.5.(★★★★)某种商品原来定价每件p 元,每月将卖出n 件,假若定价上涨x 成(这里x 成即10x,0<x ≤10).每月卖出数量将减少y 成,而售货金额变成原来的 z 倍. (1)设y =ax ,其中a 是满足31≤a <1的常数,用a 来表示当售货金额最大时的x 的值;(2)若y =32x ,求使售货金额比原来有所增加的x 的取值范围.6.(★★★★★)设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )²f (n ),且当x>0时,0<f (x )<1.(1)求证:f (0)=1,且当x <0时,f (x )>1; (2)求证:f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)²f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围.7.(★★★★★)已知函数f (x )=1222+++x cbx x (b <0)的值域是[1,3],(1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论; (3)若t ∈R ,求证:lg 57≤F (|t -61|-|t +61|)≤lg 513.参考答案难点磁场解:(1)令F (x )=f (x )-x ,因为x 1,x 2是方程f (x )-x =0的根,所以F (x )=a (x -x 1)(x -x 2).当x ∈(0,x 1)时,由于x 1<x 2,得(x -x 1)(x -x 2)>0,又a >0,得F (x )=a (x -x 1)(x -x 2)>0,即x <f (x )x 1-f (x )=x 1-[x +F (x )]=x 1-x +a (x 1-x )(x -x 2)=(x 1-x )[1+a (x -x 2)]∵0<x <x 1<x 2<a1,∴x 1-x >0,1+a (x -x 2)=1+ax -ax 2>1-ax 2>0 ∴x 1-f (x )>0,由此得f (x )<x 1. (2)依题意:x 0=-ab 2,因为x 1、x 2是方程f (x )-x =0的两根,即x 1,x 2是方程ax 2+(b -1)x +c =0的根.∴x 1+x 2=-ab 1- ∴x 0=-a ax ax a x x a a b 2121)(22121-+=-+=,因为ax 2<1, ∴x 0<2211x a ax =歼灭难点训练一、1.解析:由题意f (a )=g (a )>0,f (b )=g (b )>0,且f (a )>f (b ),g (a )>g (b ) ∴f (b )-f (-a )=f (b )+f (a )=g (a )+g (b )而g (a )-g (-b )=g (a )-g (b )∴g (a )+g (b )-[g (a )-g (b )] =2g (b )>0,∴f (b )-f (-a )>g (a )-g (-b ) 同理可证:f (a )-f (-b )>g (b )-g (-a ) 答案:A二、2.解析:①②③不满足均值不等式的使用条件“正、定、等”.④式:|x -y |=|(x -2)-(y -2)|≤|(x -2)-(y -2)|≤|x -2|+|y -2|<ε+ε=2ε.答案:④3.解析:由已知y 1=x 20;y 2=0.8x (x 为仓库与车站距离)费用之和y =y 1+y 2=0.8x + x20≥2xx 208.0⋅=8当且仅当0.8x =x20即x =5时“=”成立 答案:5公里处三、4.证明:(1)设g (x )=f (x )-x =ax 2+(b -1)x +1,且x >0. ∵x 1<2<x 2<4,∴(x 1-2)(x 2-2)<0,即x 1x 2<2(x 1+x 2)-4,12)42(212)(212)()(2121)(21)11(21221212121210-=++->++-=++-+>-+=---⋅=-=x x x x x x x x x x a a b a b x 于是得(2)解:由方程g (x )=ax 2+(b -1)x +1=0可知x 1²x 2=a1>0,所以x 1,x 2同号 1°若0<x 1<2,则x 2-x 1=2,∴x 2=x 1+2>2, ∴g (2)<0,即4a +2b -1<0①又(x 2-x 1)2=44)1(22=--a ab ∴2a +1=1)1(2+-b (∵a >0)代入①式得, 21)1(2+-b <3-2b ②解②得b <412°若 -2<x 1<0,则x 2=-2+x 1<-2 ∴g (-2)<0,即4a -2b +3<0③又2a +1=1)1(2+-b ,代入③式得 21)1(2+-b <2b -1④解④得b >47. 综上,当0<x 1<2时,b <41,当-2<x 1<0时,b >47. 5.解:(1)由题意知某商品定价上涨x 成时,上涨后的定价、每月卖出数量、每月售货金额分别是:p (1+10x )元、n (1-10y)元、npz 元,因而 )10)(10(1001),101()101(y x z y n x p npz -+=∴-⋅+=,在y =ax 的条件下,z =1001[-a [x -a a )1(5-]2+100+a a 2)1(25-].由于31≤a <1,则0<aa )1(5-≤10.要使售货金额最大,即使z 值最大,此时x =aa )1(5-. (2)由z =1001(10+x )(10-32x )>1,解得0<x <5.6.(1)证明:令m >0,n =0得:f (m )=f (m )²f (0).∵f (m )≠0,∴f (0)=1 取m =m ,n =-m ,(m <0),得f (0)=f (m )f (-m ) ∴f (m )=)(1m f -,∵m <0,∴-m >0,∴0<f (-m )<1,∴f (m )>1 (2)证明:任取x 1,x 2∈R ,则f (x 1)-f (x 2)=f (x 1)-f [(x 2-x 1)+x 1] =f (x 1)-f (x 2-x 1)²f (x 1)=f (x 1)[1-f (x 2-x 1)], ∵f (x 1)>0,1-f (x 2-x 1)>0,∴f (x 1)>f (x 2), ∴函数f (x )在R 上为单调减函数.(3)由⎩⎨⎧=+-<+⎩⎨⎧θ==+->+021)(1)2()1()(2222y ax y x f y ax f f y x f 得,由题意此不等式组无解,数形结合得:1|2|2+a ≥1,解得a 2≤3∴a ∈[-3,3]7.(1)解:设y =1222+++x c bx x ,则(y -2)x 2-bx +y -c =0 ①∵x ∈R ,∴①的判别式Δ≥0,即 b 2-4(y -2)(y -c )≥0, 即4y 2-4(2+c )y +8c +b 2≤0②由条件知,不等式②的解集是[1,3] ∴1,3是方程4y 2-4(2+c )y +8c +b 2=0的两根⎪⎩⎪⎨⎧+=⨯+=+48312312b c c ∴c =2,b =-2,b =2(舍) (2)任取x 1,x 2∈[-1,1],且x 2>x 1,则x 2-x 1>0,且 (x 2-x 1)(1-x 1x 2)>0,∴f (x 2)-f (x 1)=-)1)(1()1)((2)12(122221211221222x x x x x x x x x x ++--=+--+>0,∴f (x 2)>f (x 1),lg f (x 2)>lg f (x 1),即F (x 2)>F (x 1) ∴F (x )为增函数.,31|)61()61(||||,61||61|)3(=+--≤+--=t t u t t u 记即-31≤u ≤31,根据F (x )的单调性知F (-31)≤F (u )≤F (31),∴lg 57≤F (|t -61|-|t +61|)≤lg 513对任意实数t 成立.[科普美文]数学中的不等式关系数学是研究空间形式和数量关系的科学,恩格斯在《自然辩证法》一书中指出,数学是辩证的辅助工具和表现形式,数学中蕴含着极为丰富的辩证唯物主义因素,等与不等关系正是该点的生动体现,它们是对立统一的,又是相互联系、相互影响的;等与不等关系是中学数学中最基本的关系.等的关系体现了数学的对称美和统一美,不等关系则如同仙苑奇葩呈现出了数学的奇异美.不等关系起源于实数的性质,产生了实数的大小关系,简单不等式,不等式的基本性质,如果把简单不等式中的实数抽象为用各种数学符号集成的数学式,不等式发展为一个人丁兴旺的大家族,由简到繁,形式各异.如果赋予不等式中变量以特定的值、特定的关系,又产生了重要不等式、均值不等式等.不等式是永恒的吗?显然不是,由此又产生了解不等式与证明不等式两个极为重要的问题.解不等式即寻求不等式成立时变量应满足的范围或条件,不同类型的不等式又有不同的解法;不等式证明则是推理性问题或探索性问题.推理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大多是与自然数n 有关的证明问题,常采用观察—归纳—猜想—证明的思路,以数学归纳法完成证明.另外,不等式的证明方法还有换元法、放缩法、反证法、构造法等.数学科学是一个不可分割的有机整体,它的生命力正是在于各个部分之间的联系.不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此不等式又可作为一个工具来解决数学中的其他问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题无一不与不等式有着密切的联系.许多问题最终归结为不等式的求解或证明;不等式还可以解决现实世界中反映出来的数学问题.不等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程.总之,不等式的应用体现了一定的综合性,灵活多样性.等与不等形影不离,存在着概念上的亲缘关系,是中学数学中最广泛、最普遍的关系.数学的基本特点是应用的广泛性、理论的抽象性和逻辑的严谨性,而不等关系是深刻而生动的体现.不等虽没有等的温柔,没有等的和谐,没有等的恰到好处,没有等的天衣无缝,但它如山之挺拔,峰之隽秀,海之宽阔,天之高远,怎能不让人心旷神怡,魂牵梦绕呢?。