示波器探头基础原理系列之一
示波器探头基础知识
示波器探头基础知识示波器探头原理---示波器探头工作原理示波器探头不仅仅是把测试信号判定以示波器输入端的一段导线,而且是测量系统的重要组成部分。
探头有很多种类型号各有其特性,以适应各种不同的专门工作的需要,其中一类称为有源探头,探头内包含有源电子元件可以提供放大能力,不含有源元件的探头称为无源探头,其中只包含无源元件如电阻和电容。
这种探头通常对输入信号进行衰减。
我们将首先集中讨论通用无源探头,说明共主要技术指标以及探头对被测电路和被测信号的影响,接着简单介绍几种专用探头及其附近。
屏蔽示波器探头的一个重要任务是确保只有希望观测的信号才在示波器上出现,如果我们仅仅使用一普通导线来代替探头,那么它的作用就好象是一根天线,可以从无线电台、荧光灯,电机、50或60Hz的电源的交流声甚至当地业余无线电爱好者那里接收到很多不希望的干扰信号,这类噪声甚至还能注入到被测电路中去所以我们首先需要的是屏蔽的电缆,示波器探头的屏蔽电缆通过探头尖端的接地线和被测电路连接,从而保证了很好的屏蔽。
一.探头构造图:4. 一个探头,就算它只是简单的一条电线,它也可能是一个很复杂的电路。
a)对于DC 信号( 0 Hz 频率),探头作为一对导线与一系列电阻,就向一个终端电阻一样。
b) AC 信号的特性变化是因为:电线具有分布电感(L),电线具有分布电容(C)。
分布电感反作用于AC信号,在信号频率增加时,阻止AC信号通过。
分布电容反作用于AC信号,在信号频率增加时,减小 AC信号电流通过的阻抗。
这些反作用元件(L 和 C )的交互作用,与电阻元件(R)一起,成为随信号频率不同而变化的探头阻抗。
示波器选型(探头技术指标参数的意义)自从示波器问世以来,它一直是最重要,最常见的电子测试仪器之一,由于电子技术的发展,示波器的功能在不断上升完善,其它性能和价格也是五花八门主,其探头也是从单一到复杂。
一。
频宽和示波器一们,探头也具有其允许的有限带宽。
示波器探头入门
1-1 中加以说明,探头在此测量图中作为一个未定义的方框而被指明。
探头事实上无论它是什么,它必须在信号源和示波器输入之间提供足够便利的和高质量的连接(图 1-2 )。
适当的连接有3个关键性的定义问题-物理连接,对电路运行的影响,及信号的传送。
图1-1. 探头是在示波器和测试点之间进行物理和电路连接的设备。
图1-2. 大多数探头由一个探头尖,一根探头电缆线,及一个补偿盒或其它类型的信号调节网络组成。
1理想的探头在理想世界中,理想的探头将提供下列关键的属性:连接简单和便利绝对的信号保真度零信号源极负载完全的噪音抗扰性连接简易和便利。
一个连接到测试点的物理连接已经作为探测的关键要求之一被论及。
使用理想的探头,你应该能够使物理连接简单及便利。
对于小型化电路,如高密度的表面装配技术( SMT ) 电路,微型探头及多种类的为SMT设备设计的探头尖适配器,能够使连接简易及便利。
图 1-3a所示,为这样的一个探头系统。
然而,这些探头,对于具有高电压和普通标准导线的工业功率电路而言,是太小了。
对于功率应用,需要应用更大尺寸的具有更多边缘保护的探头。
图1-3b和表1-3c是此类探头的例子。
图1-3b是一根高电压探头,图1-3c是一个通用探头上的夹具。
从这几个物理连接的例子可以看出,对于所有的应用来说,没有唯一的理想的探头尺寸及外形结构,因此,我们设计了各种各样尺寸外形及结构的探头,从而满足各种各样的应用和物理连接的要求。
绝对信号保真度。
理想的探头应该忠实地将信号从探头尖传送到示波器输入端。
换句话说,探头尖处的原有信号应当被忠实地复制到示波器输入端。
a. 探测 SMT 设备。
b. 高电压探头。
c. 通用探头上的夹具。
图1-3 多种多样的探头可应用于不同的技术应用及测量需求之中。
2图 1-5 . 探头和示波器设计为在规定的带宽范围上进行测量。
超越了 3 dB 点的频率,信号振幅极度削弱,测量结果是无法预知的。
图 1-4 .探头是由分布式的阻抗、感抗、电容组成。
示波器电流探头原理
示波器电流探头原理
示波器电流探头是一种用于测量电流的仪器,它通过将电流
信号转换为电压信号,并将其输入示波器进行显示和分析。
其
工作原理主要包括磁性、电阻性和电感性三种类型。
1.磁性电流探头原理:磁性电流探头利用安培定律,通过电
流在导线周围产生的磁场感应来测量电流。
当电流通过被测导
线时,磁性电流探头放置在导线周围,探头内部的磁芯感应到
磁场并产生感应电势,该电势与电流成正比。
感应电势经由传
感器传递到示波器上,经过放大和滤波后,示波器上显示出与
原始电流信号相关的波形。
2.电阻性电流探头原理:电阻性电流探头采用电流感应原理,通过导线内部的电阻产生的电势差来测量电流。
探头内部包含
一个电阻元件,当电流通过被测导线时,一部分电流会通过探
头内的电阻元件,产生电势差。
电势差将被放大并传递到示波
器上,示波器通过计算电势差和电阻之间的关系来确定电流大小。
3.电感性电流探头原理:电感性电流探头利用电流在线圈内
引起的感应电势来测量电流。
探头内部包含一个线圈,当电流
通过被测导线时,线圈内部会产生磁场,导线中的电流和线圈
中的磁场之间会相互作用,从而在线圈两端产生感应电势。
该
感应电势经由传感器传递到示波器上,并经过放大和滤波处理后,示波器上显示出与原始电流信号相关的波形。
总之,示波器电流探头通过不同的原理将电流信号转换为电压信号,从而在示波器上显示出电流的波形。
这种测量方法广泛应用于电子电路测试、电力系统分析和工业自动化等领域。
示波器基础系列之一-关于示波器的带宽(1)
关于示波器的带宽汪进进美国力科公司深圳代表处带宽被称为示波器的第一指标,也是示波器最值钱的指标。
示波器市场的划分常以带宽作为首要依据,工程师在选择示波器的时候,首先要确定的也是带宽。
在销售过程中,关于带宽的故事也特别多。
通常谈到的带宽没有特别说明是指示波器模拟前端放大器的带宽,也就是常说的-3dB截止频率点。
此外,还有数字带宽,触发带宽的概念。
我们常说数字示波器有五大功能,即捕获(Capture),观察(View),测量(Measurement),分析(Analyse)和归档(Document)。
这五大功能组成的原理框图如图1所示。
图1,数字示波器的原理框图捕获部分主要是由三颗芯片和一个电路组成,即放大器芯片,A/D芯片,存储器芯片和触发器电路,原理框图如下图2所示。
被测信号首先经过探头和放大器及归一化后转换成ADC可以接收的电压范围,采样和保持电路按固定采样率将信号分割成一个个独立的采样电平,ADC将这些电平转化成数字的采样点,这些数字采样点保存在采集存储器里送显示和测量分析处理。
图2,示波器捕获电路原理框图示波器放大器的典型电路如图3所示。
这个电路在模拟电路教科书中处处可见。
这种放大器可以等效为RC低通滤波器如图4所示。
由此等效电路推导出输出电压和输入电压的关系,得出理想的幅频特性的波特图如图5所示。
图3,放大器的典型电路图4,放大器的等效电路模型图5,放大器的理想波特图至此,我们知道带宽f2即输出电压降低到输入电压70.7%时的频率点。
根据放大器的等效模型,我们可进一步推导示波器的上升时间和带宽的关系式,即我们常提到的0.35的关系:上升时间=0.35/带宽,推导过程如下图6所示。
需要说明的是,0.35是基于高斯响应的理论值,实际测量系统中这个数值往往介于0.35-0.45之间。
在示波器的datasheet上都会标明“上升时间”指标。
示波器测量出来的上升时间与真实的上升时间之间存在下面的关系式。
示波器探头
示波器探头1. 简介示波器探头(也称为测量探头)是示波器电子设备中的一个重要组成部分,用于连接被测电路和示波器,将电路上的信号转换为示波器可以显示和分析的电压波形。
探头的设计与性能直接影响着示波器的测量准确性和灵敏度。
本文将介绍示波器探头的基本原理、结构和使用方法,并介绍一些常见的示波器探头类型及其特点。
2. 基本原理示波器探头的基本原理是通过在被测电路上插入一个高阻抗的输入电路,将电路上的信号采集到探头中,并通过电缆传输到示波器输入端。
探头在信号采集过程中应尽量不改变被测电路的特性,避免对被测电路造成影响。
为了满足高阻抗和低串扰的要求,示波器探头通常采用共模抑制和差模传输技术。
共模抑制可以抑制干扰信号对被测信号的影响,而差模传输可以将两个相等但反向的信号进行差分处理,提高信号的传输质量。
3. 结构和类型示波器探头的结构通常包括探头头部、探头主体和连接线。
探头头部是用于与被测电路接触的部分,需要具有良好的接触性能和适配不同电路的能力。
探头主体包含信号采集电路和阻抗转换电路,用于将被测信号转换为示波器可以接收的电压波形。
连接线负责将采集到的信号传输到示波器输入端。
根据不同的应用场景和测量需求,示波器探头可以分为以下几种常见类型:3.1 被动探头被动探头是最常用的示波器探头类型之一,也是最基本的探头类型。
它采用被动元件(如电阻、电容和电感等)作为信号采集电路,主要用于测量幅值较小的低频信号。
被动探头具有简单、易用和低成本的特点,但在高频和大幅值信号测量时,性能可能会受到限制。
3.2 主动探头主动探头是专门用于测量高频和大幅值信号的示波器探头。
它通过在探头主体中增加放大器电路,将被测信号放大后再传输到示波器输入端。
主动探头具有较高的输入阻抗和增益,可以在保持信号完整性的同时提高测量精度和灵敏度。
3.3 差分探头差分探头是用于测量差分信号的示波器探头。
它通常由两个采样通道和一个差分放大器组成,将两个信号进行差分放大后传输到示波器输入端。
示波器无源探头的原理
示波器无源探头(Passive Oscilloscope Probe)是一种不需要外部电源即可工作的示波器探头。
它的原理是基于阻抗变换和信号耦合,以适应示波器输入端的要求。
无源探头通常由探头本体、耦合电容、输入阻抗变换网络(通常是一个有源元件,如运算放大器)和终端电阻组成。
以下是示波器无源探头的基本工作原理:
1. 耦合电容:无源探头的输入端通常接有一个耦合电容,用于阻止直流分量通过探头进入示波器,这样可以保护示波器的电子元件不受直流电压的影响。
同时,耦合电容允许交流信号通过。
2. 输入阻抗变换网络:示波器的输入阻抗通常很高,以减少对被测电路的影响。
无源探头内部的输入阻抗变换网络可以将探头侧的较低阻抗转换为示波器输入所需的高阻抗。
这通常通过使用运算放大器和其他电阻元件来实现。
3. 终端电阻:无源探头的输出端接有一个终端电阻,这个电阻的值通常与示波器的输入阻抗相匹配,以确保信号在传输过程中不会因为阻抗不匹配而衰减。
4. 信号耦合:探头的本体通常由导电材料制成,可以用来耦合被测电路的信号。
由于探头本身不提供电源,它不会对被测电路产生影响,这使得无源探头非常适合用于测量敏感电路。
无源探头的优点是不需要外部电源,使用方便,且对被测电路的影响较小。
然而,无源探头的带宽通常有限,对于高速信号的测量可能不够理想。
在需要更高带宽和更精确测量的情况下,可能需要使用有源探头(Active Probe),有源探头内部包含有源电子元件,可以提供更宽的带宽和更好的性能。
(有图)示波器探头原理及种类.pdf
示波器探头原理及种类(1)任何使用过示波器的人都会接触过探头,通常我们说的示波器是用来测电压信号的(也有测光或电流的,都是先通过相应的传感器转成电压量测量),探头的主要作用是把被测的电压信号从测量点引到示波器进行测量。
大部分人会比较关注示波器本身的使用,却忽略了探头的选择。
实际上探头是介于被测信号和示波器之间的中间环节,如果信号在探头处就已经失真了,那么示波器做的再好也没有用。
实际上探头的设计要比示波器难得多,因为示波器内部可以做很好的屏蔽,也不需要频繁拆卸,而探头除了要满足探测的方便性的要求以外,还要保证至少和示波器一样的带宽,难度要大得多。
因此最早高带宽的实时示波器刚出现时是没有相应的探头的,又过了一段时间探头才出来。
要选择合适的探头,首要的一点是要了解探头对测试的影响,这其中包括2部分的含义:1/探头对被测电路的影响;2/探头造成的信号失真。
理想的探头应该是对被测电路没有任何影响,同时对信号没有任何失真的。
遗憾的是,没有真正的探头能同时满足这两个条件,通常都需要在这两个参数间做一些折衷。
为了考量探头对测量的影响,我们通常可以把探头模型简单等效为一个R、L、C 的模型,把这个模型和我们的被测电路放在一起分析。
首先,探头本身有输入电阻。
和万用表测电压的原理一样,为了尽可能减少对被测电路的影响,要求探头本身的输入电阻Rprobe要尽可能大。
但由于Rprobe不可能做到无穷大,所以就会和被测电路产生分压,实际测到的电压可能不是探头点上之前的真实电压,这在一些电源或放大器电路的测试中会经常遇到。
为了避免探头电阻负载造成的影响,一般要求Rprobe要大于Rsource和Rload的10倍以上。
大部分探头的输入阻抗在几十k欧姆到几十兆欧姆间。
其次,探头本身有输入电容。
这个电容不是刻意做进去的,而是探头的寄生电容。
这个寄生电容也是影响探头带宽的最重要因素,因为这个电容会衰减高频成分,把信号的上升沿变缓。
通常高带宽的探头寄生电容都比较小。
示波器探头原理
示波器探头原理示波器探头是示波器中的一个重要部件,它的作用是将被测信号转换成示波器可测量的电压信号。
在示波器测量中,探头起着至关重要的作用,正确的选择和使用探头可以保证测量结果的准确性和可靠性。
本文将介绍示波器探头的原理,帮助读者更好地理解示波器探头的工作原理和选择使用。
首先,我们来了解一下示波器探头的基本结构。
一般来说,示波器探头由接地线、信号引线、衰减器、补偿器和接口等部分组成。
接地线用于连接被测电路的地,信号引线用于连接被测信号的输入端,衰减器用于将被测信号进行衰减,补偿器用于调节探头的频率响应,接口则用于连接示波器主机。
接下来,我们来详细介绍一下示波器探头的工作原理。
当被测信号通过信号引线输入到探头时,首先经过衰减器进行衰减,然后再经过补偿器进行补偿,最后通过接口输入到示波器主机。
衰减器的作用是将被测信号的幅值降低到示波器可测量的范围内,以保护示波器主机不受过大的输入信号影响。
补偿器的作用是校正探头的频率响应特性,使得探头在不同频率下都能够准确地传输信号。
在选择使用示波器探头时,需要考虑被测信号的频率范围、幅值范围和波形特性等因素。
不同的探头具有不同的频率响应特性和衰减比,因此在选择探头时需要根据实际测量需求进行合理选择。
另外,还需要注意探头的接地方式,接地方式的选择会对测量结果产生影响,需要根据具体情况进行合理选择。
总之,示波器探头作为示波器中的重要部件,具有重要的测量作用。
正确的选择和使用探头可以保证测量结果的准确性和可靠性。
希望通过本文的介绍,读者能够更好地理解示波器探头的工作原理和选择使用,从而更好地应用示波器进行信号测量。
示波器探头的原理
示波器探头的原理示波器探头是用于连接被测电路和示波仪,用于测量电压信号波形的一种电子设备。
它的主要原理是通过探头将待测电压转换为能够被示波器读取和显示的信号。
示波器探头主要由探头体、接地线、探头标尺、衰减器和校准器等组成。
探头体一端连接被测电路,另一端插入示波器的输入端口。
探头体内部是一个高频电路,能够通过电容或电阻的变化将电路输出信号转换为示波器可以接收的合适的电压范围。
接地线将被测电路的地与示波器接地点相连,以确保测量的准确性。
探头标尺上刻有不同电压系数的标度,用于测量不同幅值的信号。
衰减器和校准器用于调整和校准接入信号的幅度。
示波器探头的工作原理有两种常见的方式,即电容分压和电阻分压。
电容分压是指通过探头内部的电容将被测电压分压为示波器可以接收的范围内的电压。
探头内部的电容和被测电路之间形成一个电压分压比,通过调节探头标尺上的放大倍数,可以在示波器屏幕上正确显示被测电压的波形。
电阻分压是指通过探头内部的电阻将被测电压按照一定比例分压为示波器可以接收的电压。
探头内部的电阻和被测电路之间形成一个电压分压比,通过调节探头标尺上的放大倍数,从而改变分压比。
这种方式主要适用于低频信号的测量。
示波器探头还有一些其他的技术参数,如频率响应、带宽、输入阻抗和负载容量等。
频率响应是指探头的输出信号与输入信号的频率之间的关系。
带宽是指探头能够准确测量的频率范围。
输入阻抗是指探头的输入端口对被测电路的负载影响。
负载容量是指探头输入端口的电容大小,它影响了探头对高频信号的响应能力。
在使用示波器探头时,需要根据被测电路的特性和测量要求选择合适的探头类型和参数。
一般来说,测量低频信号可以选择频率响应和带宽较低的电容分压型探头;而对于高频信号的测量,则需要选择带宽和频率响应较高的探头。
总结起来,示波器探头通过电容分压或电阻分压的原理将被测电压信号转换为示波器可以显示的合适的电压范围。
它是一种重要的测量工具,能够准确地显示电路中的电压信号波形,帮助工程师进行电路调试和故障排查。
数字示波器探头原理、种类及作用方法
数字示波器探头原理、种类及作用方法任何使用过示波器的人都会接触过探头,通常我们说的示波器是用来测电压信号的(也有测光或电流的,都是先通过相应的传感器转成电压量测量),探头的主要作用是把被测的电压信号从测量点引到示波器进行测量。
大部分人会比较关注示波器本身的使用,却忽略了探头的选择。
实际上探头是介于被测信号和示波器之间的中间环节,如果信号在探头处就已经失真了,那么示波器做的再好也没有用。
实际上探头的设计要比示波器难得多,因为示波器内部可以做很好的屏蔽,也不需要频繁拆卸,而探头除了要满足探测的方便性的要求以外,还要保证至少和示波器一样的带宽,难度要大得多。
因此最早高带宽的实时示波器刚出现时是没有相应的探头的,又过了一段时间探头才出来。
一、探头原理示波器探头不仅仅是把测试信号判定以示波器输入端的一段导线,而且是测量系统的重要组成部分。
探头有很多种类型号各有其没的特性,以适应各种不同的专门工作的击破要,其中一类称为有源探头,探头内包含有源电子元件可以提供放大能力,不含有源元件的探头称为无源探头,其中只包含无源元件如电阻和电容。
这种探头通常对输入信号进行衰减。
二、探头种类2.1 无源电压探头2.1.1 无源探头无源探头由导线和连接器制成,在需要补偿或衰减时,还包括电阻器和电容器。
探头中没有有源器件(晶体管或放大器),因此不需为探头供电。
无源探头一般是最坚固、最经济的探头,它们不仅使用简便,而且使用广泛。
2.1.2 高阻无源电压探头从实际需要出发,使用最多的是电压探头,其中高阻无源电压探头占最大部分。
2.1.3 低阻无源电压探头大多数高阻无源探头的带宽范围在小于100MHz到500MHz或更高的带宽之间。
而低阻无源电压探头(又称为50欧姆探头、Zo探头、分压器探头)的频率特性很好,采用匹配同轴电缆的探头,带宽可达10GHz和100皮秒或更快的上升时间。
这种探头是为用于50欧姆环境中设计的,这些环境一般是高速设备检定、微波通信和时域反射计(TDR)。
示波器探头原理.概要
示波器探头原理示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路,如下图:图1 示波器探头的作用探头的选择和使用需要考虑如下两个方面:其一:因为探头有负载效应,探头会直接影响被测信号和被测电路;其二:探头是整个示波器测量系统的一部分,会直接影响仪器的信号保真度和测试结果一、探头的负载效应当探头探测到被测电路后,探头成为了被测电路的一部分。
探头的负载效应包括下面3部分:1. 阻性负载效应;2. 容性负载效应;3. 感性负载效应。
图2 探头的负载效应阻性负载相当于在被测电路上并联了一个电阻,对被测信号有分压的作用,影响被测信号的幅度和直流偏置。
有时,加上探头时,有故障的电路可能变得正常了。
一般推荐探头的电阻R>10倍被测源电阻,以维持小于10%的幅度误差。
图3 探头的阻性负载容性负载相当于在被测电路上并联了一个电容,对被测信号有滤波的作用,影响被测信号的上升下降时间,影响传输延迟,影响传输互连通道的带宽。
有时,加上探头时,有故障的电路变得正常了,这个电容效应起到了关键的作用。
一般推荐使用电容负载尽量小的探头,以减小对被测信号边沿的影响。
图4 探头的容性负载感性负载来源于探头地线的电感效应,这地线电感会与容性负载和阻性负载形成谐振,从而使显示的信号上出现振铃。
如果显示的信号上出现明显的振铃,需要检查确认是被测信号的真实特征还是由于接地线引起的振铃,检查确认的方法是使用尽量短的接地线。
一般推荐使用尽量短的地线,一般地线电感=1nH/mm。
图5 探头的感性负载二、探头的类型示波器探头大的方面可以分为:无源探头和有源探头两大类。
无源有源顾名思义就是需不需要给探头供电。
无源探头细分如下:1. 低阻电阻分压探头;2. 带补偿的高阻无源探头(最常用的无源探头);3. 高压探头有源探头细分如下:1. 单端有源探头;2. 差分探头;3. 电流探头最常用的高阻无源探头和有源探头简单对比如下:表1 有源探头和无源探头对比低阻电阻分压探头具备较低的电容负载(<1pf),较高的带宽(>1.5GHz),较低的价格,但是电阻负载非常大,一般只有500ohm或1Kohm,所以只适合测试低源阻抗的电路,或只关注时间参数测试的电路。
设计手记:示波器探头原理及种类详解
设计手记:示波器探头原理及种类详解
任何使用过示波器的人都会接触过探头,通常我们说的示波器是用来测电压信号的(也有测光或电流的,都是先通过相应的传感器转成电压量测量),探头的主要作用是把被测的电压信号从测量点引到示波器进行测量。
大部分人会比较关注示波器本身的使用,却忽略了探头的选择。
实际上探头是介于被测信号和示波器之间的中间环节,如果信号在探头处就已经失真了,那么示波器做的再好也没有用。
实际上探头的设计要比示波器难得多,因为示波器内部可以做很好的屏蔽,也不需要频繁拆卸,而探头除了要满足探测的方便性的要求以外,还要保证至少和示波器一样的带宽,难度要大得多。
因此最早高带宽的实时示波器刚出现时是没有相应的探头的,又过了一段时间探头才出来。
要选择合适的探头,首要的一点是要了解探头对测试的影响,这其中包括2部分的含义:1/探头对被测电路的影响;2/探头造成的信号失真。
理想的
探头应该是对被测电路没有任何影响,同时对信号没有任何失真的。
遗憾的是,没有真正的探头能同时满足这两个条件,通常都需要在这两个参数间做一些折衷。
为了考量探头对测量的影响,我们通常可以把探头模型简单等效为一个R、L、C的模型,把这个模型和我们的被测电路放在一起分析。
首先,探头本身有输入电阻。
和万用表测电压的原理一样,为了尽可能减少对被测电路的影响,要求探头本身的输入电阻Rprobe要尽可能大。
但由
于Rprobe不可能做到无穷大,所以就会和被测电路产生分压,实际测到的电
压可能不是探头点上之前的真实电压,这在一些电源或放大器电路的测试中会。
示波器探针原理
示波器探针原理
示波器探针是一种用于测量电压波形的工具。
其原理是将待测电路的电压信号通过探针输入到示波器上,使示波器能够对电压信号进行显示和分析。
探针的核心部分是一个细长的金属探头,它与电路的测试点连接,并将测试点的电压信号传递到示波器上。
为了保证准确的测量结果,探针通常具有很高的输入阻抗,以避免探针本身对电路的影响。
在连接探针时,需要注意探针的接地线要与待测电路的地线相连接,以确保测量的参考点一致。
此外,探针的输入端还需要与示波器的输入端相连接,以将信号传递给示波器进行显示。
示波器通过探针获得的电压信号可以显示在示波器的屏幕上。
示波器通常有多种显示模式,如时间域波形、频谱分析等。
通过对显示波形的观察和分析,可以了解电路的性能、波形的特点以及信号的频率、振幅等参数。
总之,示波器探针利用高阻抗的输入特性将待测电路的电压信号传递给示波器,通过示波器的显示和分析,可以对电路的波形和性能进行准确测量和评估。
示波器电压探头原理
示波器电压探头原理示波器是一种用于测量电信号波形的仪器,而电压探头是示波器的重要组成部分。
电压探头的作用是将被测电路的电压转换为示波器可以测量的电压信号,并保持信号的准确性和稳定性。
本文将介绍示波器电压探头的原理及其工作方式。
一、电压探头的基本原理电压探头的基本原理是利用高阻抗输入电路来测量电路中的电压信号。
通常情况下,电压探头由一个内部电阻和一个电容组成。
电阻用于限制电流的流动,电容则用于对电压进行滤波。
当电压探头连接到被测电路上时,内部电阻和电容将与被测电路并联。
由于电压探头的输入阻抗很高,可以忽略不计,因此它不会对被测电路造成影响。
同时,电容的作用是对电压信号进行滤波,以提供稳定的测量结果。
二、电压探头的工作方式电压探头的工作方式可以分为两个步骤:信号传递和信号调节。
1. 信号传递在信号传递过程中,电压探头将被测电路的电压信号传递给示波器。
当电压探头连接到被测电路上时,探头的输入端将接收到电压信号。
由于电压探头的高阻抗输入电路,这个过程基本上是无损的,不会对被测电路造成影响。
2. 信号调节在信号传递到示波器之前,电压探头会对信号进行调节以适应示波器的测量范围。
这通常涉及到放大和衰减两个过程。
放大是指将被测电路的电压信号放大到示波器可以测量的范围内。
放大过程通常由探头内部的放大器完成。
放大器可以将电压信号放大几十倍或几百倍,以便更好地显示在示波器屏幕上。
衰减是指将被测电路的电压信号降低到示波器可以接受的范围内。
衰减过程通常由探头内部的电阻网络完成。
电阻网络可以根据示波器的测量范围选择不同的衰减系数,以保证测量的准确性和稳定性。
三、电压探头的使用注意事项在使用电压探头时,需要注意以下几点:1. 阻抗匹配:要确保电压探头的输入阻抗与示波器的输入阻抗匹配,以保证测量的准确性。
一般情况下,示波器的输入阻抗是固定的,而电压探头的输入阻抗可以通过选择不同的探头进行调整。
2. 频率响应:电压探头的频率响应是指在不同频率下的响应能力。
示波器探头工作原理
示波器探头工作原理
示波器探头是一种测量电信号的工具,通过将探头连接到示波器上,可以观察并测量信号的波形和特征。
探头的工作原理基于电磁感应和电阻分压原理。
它通常由两部分组成:信号引线和插头。
信号引线是连接探头和被测信号源的部分,一端连接探头插头,另一端连接被测信号的接入点。
引线通常由绝缘材料包裹的导体组成,以防止信号波形受到外界干扰。
插头是探头的连接接口,用于将探头与示波器相连。
插头一般由金属制成,确保良好的电气接触和传输质量。
当信号通过探头时,信号引线会感应到电磁场,并在引线上产生感应电动势。
这个电动势可以通过回路中的电阻进行分压,从而减小信号的幅度,以防止损坏示波器。
在测量过程中,示波器会根据该分压信号计算出原始信号的幅度值,并将其显示在屏幕上。
探头还需要考虑相位延迟。
由于探头本身的电容性质,信号在传输过程中可能会有微小的时间延迟。
示波器会根据探头的特性进行校准,以消除这种延迟并确保准确测量信号的时间特性。
总之,示波器探头通过电磁感应和电阻分压原理来感知和测量被测信号,并将其转换成示波器可读取的波形数据,以实现信号的观测和分析。
示波器探头原理
示波器探头原理示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路,如下图:图1 示波器探头的作用探头的选择和使用需要考虑如下两个方面:其一:因为探头有负载效应,探头会直接影响被测信号和被测电路;其二:探头是整个示波器测量系统的一部分,会直接影响仪器的信号保真度和测试结果一、探头的负载效应当探头探测到被测电路后,探头成为了被测电路的一部分。
探头的负载效应包括下面3部分:1. 阻性负载效应;2. 容性负载效应;3. 感性负载效应。
图2 探头的负载效应阻性负载相当于在被测电路上并联了一个电阻,对被测信号有分压的作用,影响被测信号的幅度和直流偏置。
有时,加上探头时,有故障的电路可能变得正常了。
一般推荐探头的电阻R>10倍被测源电阻,以维持小于10%的幅度误差。
图3 探头的阻性负载容性负载相当于在被测电路上并联了一个电容,对被测信号有滤波的作用,影响被测信号的上升下降时间,影响传输延迟,影响传输互连通道的带宽。
有时,加上探头时,有故障的电路变得正常了,这个电容效应起到了关键的作用。
一般推荐使用电容负载尽量小的探头,以减小对被测信号边沿的影响。
图4 探头的容性负载感性负载来源于探头地线的电感效应,这地线电感会与容性负载和阻性负载形成谐振,从而使显示的信号上出现振铃。
如果显示的信号上出现明显的振铃,需要检查确认是被测信号的真实特征还是由于接地线引起的振铃,检查确认的方法是使用尽量短的接地线。
一般推荐使用尽量短的地线,一般地线电感=1nH/mm。
图5 探头的感性负载二、探头的类型示波器探头大的方面可以分为:无源探头和有源探头两大类。
无源有源顾名思义就是需不需要给探头供电。
无源探头细分如下:1. 低阻电阻分压探头;2. 带补偿的高阻无源探头(最常用的无源探头);3. 高压探头有源探头细分如下:1. 单端有源探头;2. 差分探头;3. 电流探头最常用的高阻无源探头和有源探头简单对比如下:表1 有源探头和无源探头对比低阻电阻分压探头具备较低的电容负载(<1pf),较高的带宽(>1.5GHz),较低的价格,但是电阻负载非常大,一般只有500ohm或1Kohm,所以只适合测试低源阻抗的电路,或只关注时间参数测试的电路。
示波器探头工作原理图解电工仪器仪表
示波器探头工作原理图解 - 电工仪器仪表在进行电子制作的时候,我们免不了要使用各种各样的测试仪器,而其中比较常用的的一种就是示波器了。
使用示波器的时候,我们使用探头来测量时间、频率和电压值等物理量。
但是你是否有想过,探头是如何测量这些物理量呢?要想弄明白这个问题,我们就必需要先将示波器探头拆开,来看一看里面都有些什么东西。
在连接示波器的一段,是一个BNC接口,假如你不用BNC接头而是直接用两根线将信号引入示波器的话,你会留意到信号发生失真,一个方波进去,显示出一个锯齿波!这是为什么呢?示波器一般都是较高的输入阻抗,以降低对被测电路的影响。
所以你会在探头BNC接口的后面看到一个1M欧姆的电阻或类似的电路。
这样有好处也有缺点,外部较小的电容值也会使得输入处形成一个滤波器,从而使得被测波形失真。
如何解决这个问题就要看探头的处理方式了!一般来说,示波器的探头都会用一个并联的可调电容器来抵消掉这部分线缆的影响。
有些补偿电容器可以让我们自己调整,并选择最好的效果。
示波器上都会有一个方波源,我们将探头钩在信号源上,并调整电容器以使得屏幕上显示出来的方波成为最标准的“方波”。
电容量过大会使得探头形成低通滤波器,而相反则变成高通滤波器。
因此要认真调整才行。
未调整好的探头测试到的方波而探头上一般还会有一个衰减器,对被测信号进行衰减。
其倍数一般为10倍。
1V的信号进去,显示出100mV。
部分示波器可以自动识别探头的状态并显示正确的数值。
探头利用高阻抗的特性来保证电路不受到测量部分的干扰,但有些时候我们需要以低阻抗的测试方式来对某些电路进行测量。
比如50欧姆阻抗的射频输出电路,对于有50欧姆阻抗测量功能的机器来说,这就是按一下按键的问题;但是对于一般的示波器来说,这时候探头就不适合测量了。
你需要用BNC三通和50欧的末端电阻来进行匹配,并在另一端直接连接到50欧姆的输出端。
对于很多爱好者来说,这些内容都是格外简洁却又很少去思考的问题。
示波器探头原理及种类
示波器探头原理及种类(1)任何使用过示波器的人都会接触过探头,通常我们说的示波器是用来测电压 信号的(也有测光或电流的,都是先通过相应的传感器转成电压量测量),探头的 主要作用是把被测的电压信号从测量点引到示波器进行测量。
大部分人会比较关注示波器本身的使用,却忽略了探头的选择。
实际上探头 是介于被测信号和示波器之间的中间环节,如果信号在探头处就已经失真了,那么 示波器做的再好也没有用。
实际上探头的设计要比示波器难得多,因为示波器内部 可以做很好的屏蔽,也不需要频繁拆卸,而探头除了要满足探测的方便性的要求以 外,还要保证至少和示波器一样的带宽,难度要大得多。
因此最早高带宽的实时示 波器刚出现时是没有相应的探头的,又过了一段时间探头才出来。
要选择合适的探头,首要的一点是要了解探头对测试的影响,这其中包括 2 部分的含义:1/探头对被测电路的影响;2/探头造成的信号失真。
理想的探头应该 是对被测电路没有任何影响,同时对信号没有任何失真的。
遗憾的是,没有真正的 探头能同时满足这两个条件,通常都需要在这两个参数间做一些折衷。
为了考量探头对测量的影响,我们通常可以把探头模型简单等效为一个 R、 L、C 的模型,把这个模型和我们的被测电路放在一起分析。
首先,探头本身有输入电阻。
和万用表测电压的原理一样,为了尽可能减少 对被测电路的影响,要求探头本身的输入电阻 Rprobe 要尽可能大。
但由于 Rprobe 不可能做到无穷大,所以就会和被测电路产生分压,实际测到的电压可能不是探头 点上之前的真实电压,这在一些电源或放大器电路的测试中会经常遇到。
为了避免 探头电阻负载造成的影响,一般要求 Rprobe 要大于 Rsource 和 Rload 的 10 倍以上。
大部分探头的输入阻抗在几十 k 欧姆到几十兆欧姆间。
其次,探头本身有输入电容。
这个电容不是刻意做进去的,而是探头的寄生 电容。
这个寄生电容也是影响探头带宽的最重要因素,因为这个电容会衰减高频成 分,把信号的上升沿变缓。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
示波器探头基础系列之一
作为一名专业的硬件设计及测试工程师,我们每天都在使用各种不同的数字示波器进行相关电气信号量的量测。
与这些示波器相配的探头种类也非常多,包括无源探头(包括高压探头,传输线探头)、有源探头(包括有源单端探头、有源差分探头等),电流探头、光探头等。
每种探头各有其优缺点,因而各有其适用的场合。
其中,有源探头因具有带宽高,输入电容小,地环路小等优点从而被广泛使用在高速数字量测领域,但有源探头的价位高,动态范围小,静电敏感,校准麻烦,因此,每个工程师使用示波器的入门级探头通常是无源探头。
最常见的500Mhz的无源电压探头适用于一般的电路测量和快速诊断,可以满足大多数的低速数字信号、TV、电源和其它的一些典型的示波器应用。
本文我们将集中讨论无源电压探头的模型和参数设定以及使用校准原理。
一、10倍无源探头的模型以及输入负载设定
图1. 探头原理图
图1是工程师常用的10倍无源电压探头的原理图,其中,Rp (9 MΩ)和Cp位于探头尖端内,Rp为探头输入阻抗, Cp为探头输入电容, R1 (1 MΩ)表示示波器的输入阻抗,C1表示示波器的输入电容和同轴电缆等效电容以及探头补偿箱电容的组合值。
为了精确地测量,两个RC时间常量(RpCp和R1C1)必须相等;任何不平衡都会带来测量波形的失真,从来引起使一些参数如上升时间、幅度的测量结果不准确。
因此,在测量前需要校准示波器的探头的工作以保证测量结果的准确性。
从探头的信号模型我们可以分析,对于信号的DC量测,输入容性Cp和C1等效为开路。
信号通过Rp和R1进行分压,最终示波器的输入为: Vout=[R1/Rp+R1]*Vin=1/10* Vin
示波器输入信号衰减为待测输入信号的1/10。
对于较高频率的输入信号,容抗对于信号的影响会大于阻抗。
例如,一个标准的1MΩ~10pF的无源电压探头,输入信号的频率为100MHz,此时,探头输入容抗为Xc(Cp) = 1/(2×π×f×C)=159Ω,容抗远远小于9MΩ的探头阻抗,信号电流更多的会通过输入电容提供的低阻回路,9MΩ阻抗的高阻回路等效为旁路。
也可以理解为159 Ω和9MΩ的并联之后等效阻抗为159 Ω。
此时,实际输入到示波器的信号幅度(AC/高频)是由探头的输入电容以及回路总电容的比值决定,等效为: Vout=[Cp/Cp+C1]*Vin
一般来说,无源探头的电缆存在8-10pF/foot的容性负载(1 foot 英尺=12 inches 英寸=0.3048 metre 米),1.5nS/foot的上升时间。
对于一个6feet的电缆就存在60pF容性,加上一般示波器的20pF的输入电容以及一些杂散,大致为90pF左右。
根据1:10的分压,探头的输入电容应该为10pF左右才能满足Vout/Vin=[10/10+90]=1/10 输入衰减10倍的特性。
考虑到探头和电缆容性的一些误差,需要使用探头补偿电容箱来进行一个回路补偿,由于误差,无源电压探头的输入容性一般为8~12pF之间。
目前主流的10倍无源电压探头的输入负载模型一般都是输入电容8~12pF,输入电阻9M欧。
二、无源电压探头的校准
讨论到这里,对于无源探头的输入模型大家应该有了一定的了解,那为什么为了精确地测量,两个RC时间常量(RpCp和R1C1)必须相等,测量前需要校准呢?我们可以再进一步简化探头模型为一个更简单的阻容分压电路如下:
让我们来进行一个简单的推导计算:
1.计算初始值uC2(0+)由于电容电压发生跃变,要根据电荷守恒定律和KVL来确定
2.计算稳态uC2(¥)电容开路时,按照电阻分压公式得到
3.计算时间常数
4.用三要素公式得到电容电压uC2(t)
我们可以看到,波形有3种情况:
1.完全补偿
2.过补偿
3.欠补偿
以下图示给出了欠补偿、过补偿和合理补偿三种情况下探头产生的波形。
探头欠补偿波形图
探头过补偿说明图
探头正常补偿说明图
所以, 在获得一台可以工作的示波器和探头后应该要做的第一项工作是校准探头以保证其内部RC时间常量匹配。
这时需要将探头连接到示波器的探头补偿输出。
然后使用非磁性调节工具调节补偿箱中的调节螺螺丝完成校准一直观察到平坦的波形响应。
不要太频繁校准,因为没有必要。
本文关于无源电压探头模型的参数设定以及校准的原理就介绍到这里,而对于示波器和探头以及数字测量在业内有很多的经典理论以及应用原则,比如信号的滚降特性,DSP信号滤波的处理。
如何确保最真实的还原待测信号,大家可以参阅更多专业的书籍。
希望本文的介绍可以让硬件工程师们更深入和全面的了解我们的测量工具,真正做到还原真实信号。