Long Baseline Neutrino Experiments with Two-Detector Setup
加工深度对单词记忆的影响
加工深度对单词记忆的影响摘要】以大学生为被试,用英文单词作为实验材料,采用加工分离实验范式计算出在不同的加工深度条件下有意识提取的贡献率以及无意识提取的贡献率。
该实验的结果表明(1)在深加工条件下的回忆正确率高于浅加工条件下的回忆正确率。
(2)无意识提取成绩不受加工深度的影响,而有意识提取成绩要受到加工深度的影响。
【关键词】内隐记忆;外显记忆;加工深度;加工分离程序【中图分类号】R19 【文献标识码】A 【文章编号】1007-8231(2017)09-0264-021.研究背景在学习外语的过程中,单词记忆是最基础和最重要的一步,如果没有掌握必需的词汇,听、说、读、写都不能顺利进行。
但是单词学习往往是学生最难攻克的关卡,在记忆单词的过程中效果不好,需要不断的重复记忆才能达到识记的效果,因而摸索出科学的记忆单词的方法非常重要。
2.研究设计2.1 被试样本在四川文理学院随机选择48名大学生为被试,将这48名大学生随机分为两组,每组24人,保证每组中男女各12名。
这些大学生均未参加过类似的心理学实验,且都为右利手,矫正视力正常。
2.2 实验材料采用英语单词作为实验材料,从四级词汇书中选择出72个单词,这些单词长度控制在5~10个字母之间,在书面表达中出现的频率控制在0.02~0.06,将72个单词组合成36对,其中18对单词两两词义相似(如benefit--beneficial),其余的单词词义不同(如bloody——bloom)。
每对单词前一个单词作为线索词(如bloody),后一个单词作为靶子词(bloom)。
将36对单词随机混合后,把前18对单词作为学习阶段的单词,后18对单词作为测试阶段的新词。
在测试阶段把学习阶段的旧词和新词随机混合,然后在测试阶段把36对单词随机呈现。
用E-prime 2.0将实验材料编辑成实验程序。
该实验采取单独测试的方式在学习阶段和测试阶段的单词对均用同一台惠普笔记本电脑呈现。
神经系统研究英语作文
神经系统研究英语作文The nervous system is a complex network of cells and fibers that transmit signals between different parts of the body. It plays a crucial role in coordinating andcontrolling bodily functions, including movement, sensation, and cognition.The brain, the command center of the nervous system, is a fascinating organ. It is responsible for processing information from the senses, making decisions, and controlling the body's actions. It's like the CEO of a company, overseeing all the operations and making sure everything runs smoothly.Neurons, the building blocks of the nervous system, are remarkable cells. They are specialized for transmitting electrical signals, known as action potentials, over long distances. It's like a network of messengers, passing along important information from one place to another. Without neurons, communication within the nervous system would beimpossible.The spinal cord, another crucial component of the nervous system, acts as a relay station. It connects the brain to the rest of the body and allows for the transmission of signals to and from different body parts.It's like a highway, facilitating the smooth flow of information between the brain and the body.The peripheral nervous system, consisting of nervesthat extend from the brain and spinal cord, is responsible for transmitting signals to and from the rest of the body.It's like a vast network of cables, connecting different devices to a central hub. Without the peripheral nervous system, the brain would be isolated and unable to interact with the outside world.The autonomic nervous system, a division of the peripheral nervous system, controls involuntary bodily functions such as heart rate, digestion, and breathing.It's like a background process running on a computer,taking care of essential tasks without us even realizing it.The autonomic nervous system ensures that our body functions properly, even when we're not consciously aware of it.In conclusion, the nervous system is a remarkable and intricate system that allows for communication and coordination within the body. From the brain to the neurons to the spinal cord, each component plays a vital role in ensuring our bodies function properly. Understanding the complexities of the nervous system can help us appreciate the incredible machinery that allows us to move, think, and experience the world around us.。
大亚湾中微子实验结果的简单解释
大亚湾中微子实验结果的简单解释The topic I have chosen is: A simplified explanation of the results from the Daya Bay neutrino experiment.中微子是一种基本粒子,没有电荷而且质量很小。
由于其特殊性质,它们对我们理解宇宙和基本物理有着重要的意义。
大亚湾中微子实验是一个为了研究中微子性质而进行的重要实验。
它位于中国广东省深圳市附近的大亚湾核电站附近。
Neutrinos are elementary particles that have no charge and very little mass. Due to their unique properties, they hold great significance in our understanding of the universe and fundamental physics. The Daya Bay experiment is a crucial endeavor aimed at studying the properties of neutrinos. Itis located near the Daya Bay Nuclear Power Station in Shenzhen, Guangdong Province, China.该实验涉及到三个地下探测台站,每个都装备了一套灵敏的中微子探测器。
在这些探测器之间设置了远距离的干涉装置,以观察中微子的变化。
大亚湾实验主要关注两种类型的中微子:电子型中微子和反电子型中微子。
The experiment involves three underground detector stations, each equipped with a set of sensitive neutrino detectors. Long-baseline detectors are placed between these stationsto observe neutrino oscillations. The primary focus of the Daya Bay experiment is on two types of neutrinos: electron neutrinos and antineutrinos.根据量子力学的原理,中微子在运动过程中会发生一种叫做“中微子振荡”的现象。
The Deep Underground Science and Engineering Laboratory
• The initiative coordination group: major stakeholders (e.g. National Labs)
External review à la NRC
DUSEL seminar 3/4/05
4
B.Sadoulet
Status/Plans
3 workshops
Bernard Sadoulet
Dept. of Physics /LBNL UC Berkeley UC Institute for Nuclear and Particle Astrophysics and Cosmology (INPAC)
The Deep Underground Science and Engineering Laboratory
DUSEL seminar 3/4/05
6
B.Sadoulet
Double beta decay
Many new experiments gearing up to test this claim and go beyond it… Major US efforts
Majorana expt- 500 kg Ge76 (86%) EXO - 1-ton LXe TPC
Do protons decay?
It is expected that baryonic matter is unstable at some level and the lifetime for proton decay is a hallmark of theories beyond the Standard Model. These questions relate immediately to the completion of our understanding of particle and nuclear physics, and to the mystery of why the universe contains much more matter than antimatter.
天文学专业词汇英汉对照
absolute energy distribution 绝对能量分布abundance effect 丰度效应angular diameter—redshift relation 角径—红移关系asteroid astrometry 小行星天体测量bursting pulsar (GRO J1744-28 )暴态脉冲星Caliban 天卫十七canonical Big Bang 典型大爆炸Cepheid binary 造父双星CH anomaly CH 反常chromospheric plage 色球谱斑circumnuclear star-forming ring 核周产星环circumstellar astrophysics 星周天体物理CN anomaly CN 反常colliding-wind binary 星风互撞双星collisional de-excitation 碰撞去激发collisional ionization 碰撞电离collision line broadening 碰撞谱线致宽Compton loss 康普顿耗损continuous opacity 连续不透明度coronagraphic camera 日冕照相机coronal active region 日冕活动区cosmic-ray exposure age 宇宙线曝射法年龄count—magnitude relation 计数—星等关系Cousins color system 卡曾斯颜色系统dating method 纪年法DDO color system DDO 颜色系统deep sky object 深空天体deep sky phenomena 深空天象dense star cluster 稠密星团diagnostics 诊断法dissociative recombination 离解复合Doppler line broadening 多普勒谱线致宽epicyclic orbit 本轮轨道extragalactic background 河外背景extragalactic background radiation 河外背景辐射flare particle emission 耀斑粒子发射flare physics 耀斑物理Fm star Fm 星focal plane spectrometer 焦面分光计focusing X-ray telescope 聚焦X 射线望远镜Friedmann time 弗里德曼时间galactic chimney 星系通道Galactic chimney 银河系通道gas relention age 气体变异法年龄Gauss line profile 高斯谱线轮廓GCR (Galactic cosmic rays )银河系宇宙线Geneva color system 日内瓦颜色系统global oscilletion 全球振荡GW-Vir instability strip 室女GW 不稳定带Highly Advanced Laboratory for 〈HALCA〉通讯和天文高新空间Communications and Astronomy 实验室(HALCA )Hipparcos catalogue 依巴谷星表Hobby-Eberly Telescope (HET )〈HET〉大型拼镶镜面望远镜Hoyle—Narlikar cosmology 霍伊尔—纳里卡宇宙学Hubble Deep Field (HDF )哈勃深空区human space flight 载人空间飞行、人上天imaging spectrograph 成象摄谱仪infrared camera 红外照相机infrared luminosity 红外光度infrared polarimetry 红外偏振测量in-situ acceleration 原位加速intercept age 截距法年龄inverse Compton limit 逆康普顿极限isochron age 等龄线法年龄Johnson color system 约翰逊颜色系统K giant variable (KGV )K 型巨变星kinetic equilibrium 运动学平衡large-scale beam 大尺度射束large-scale jet 大尺度喷流limb polarization 临边偏振line-profile variable 谱线轮廓变星long term fluctuation 长期起伏Lorentz line profile 洛伦兹谱线轮廓magnetic arm 磁臂Mars globe 火星仪massive black hole 大质量黑洞mean extinction coefficient 平均消光系数mean luminosity density 平均光度密度microwave storm 微波噪暴Milli-Meter Array (MMA )〈MMA〉毫米波射电望远镜阵molecular maser 分子微波激射、分子脉泽moving atmosphere 动态大气neutrino loss rate 中微子耗损率non-linear astronomy 非线性天文non-standard model 非标准模型passband width 带宽P Cygni type star 天鹅P 型星Perseus chimney 英仙通道planetary companion 似行星伴天体plateau phase 平台阶段primordial abundance 原始丰度protobinary system 原双星proto-brown dwarf 原褐矮星quiescent galaxy 宁静星系radiation transport 辐射转移radio-intermediate quasar 中介射电类星体random peculiar motion 随机本动relative energy distribution 相对能量分布RGU color system RGU 颜色系统ringed barred galaxy 有环棒旋星系ringed barred spiral galaxy 有环棒旋星系rise phase 上升阶段Rossi X-ray Timing Explorer (RXTE )〈RXTE〉X 射线时变探测器RQPNMLK color system RQPNMLK 颜色系统Scheuer—Readhead hypothesis 朔伊尔—里德黑德假说Serpens molecular cloud 巨蛇分子云soft X-ray transient (SXT )软X 射线暂现源solar dynamo 太阳发电机solar global parameter 太阳整体参数solar neighbourhood 太阳附近空间spectral catalogue 光谱表spectral duplicity 光谱成双性star-formation process 产星过程star-forming phase 产星阶段Stroemgren color system 颜色系统Sub-Millimeter Array (SMA )〈SMA〉亚毫米波射电望远镜阵superassociation 超级星协supermassive black hole 特大质量黑洞supersoft X-ray source 超软X 射线源super-star cluster 超级星团Sycorax 天卫十七symbiotic recurrent nova 共生再发新星synchrotron loss 同步加速耗损time dilation 时间扩展tired-light model 光线老化宇宙模型tremendous outburst amplitude 巨爆幅tremendous outburst amplitude dwarf 巨爆幅矮新星nova (TOAD )Tycho catalogue 第谷星表UBV color system UBV 颜色系统UBVRI color system UBVRI 颜色系统ultraviolet luminosity 紫外光度unrestricted orbit 无限制性轨道uvby color system uvby 颜色系统VBLUW color system VBLUW 颜色系统V enus globe 金星仪Vilnius color system 维尔纽斯颜色系统Virgo galaxy cluster 室女星系团VLBA (Very Long Baseline Array )〈VLBA〉甚长基线射电望远镜阵V oigt line profile 佛克特谱线轮廓VRI color system VRI 颜色系统Walraven color system 沃尔拉文颜色系统waning crescent 残月waning gibbous 亏凸月waxing crescent 娥眉月waxing gibbous 盈凸月WBVR color system WBVR 颜色系统Wood color system 伍德颜色系统zodiacal light photometry 黄道光测光11-year solar cycle 11 年太阳周αCygni variable 天津四型变星δDoradus variable 剑鱼δ型变星Vainu Bappu Observatory 巴普天文台variable-velocity star 视向速度变星vectorial astrometry 矢量天体测量vector-point diagram 矢点图V ega 〈维佳〉行星际探测器V ega phenomenon 织女星现象velocity variable 视向速度变星V enera 〈金星〉号行星际探测器very strong-lined giant, VSL giant 甚强线巨星very strong-lined star, VSL star 甚强线星video astronomy 录象天文viewfinder 寻星镜Viking 〈海盗〉号火星探测器virial coefficient 位力系数virial equilibrium 位力平衡virial radius 位力半径virial temperature 位力温度virtual phase CCD 虚相CCDvisible arm 可见臂visible component 可见子星visual star 光学星VLT, Very Large Telescope 甚大望远镜void 巨洞V ondrak method 冯德拉克方法V oyager 〈旅行者〉号行星际探测器VSOP, VLBI Space Observatory 空间甚长基线干涉测量Programme 天文台计划wave-front sensor 波前传感器weak-line T Tauri star 弱线金牛T 型星Wesselink mass 韦塞林克质量WET, Whole Earth Telescope 全球望远镜WHT, William Herschel Telescope 〈赫歇尔〉望远镜wide-angle eyepiece 广角目镜wide binary galaxy 远距双重星系wide visual binary 远距目视双星Wild Duck cluster (M 11 )野鸭星团Wind 〈风〉太阳风和地球外空磁层探测器WIRE, Wide-field Infrared Explorer 〈WIRE〉广角红外探测器WIYN Telescope, Wisconsin-Indiana- 〈WIYN〉望远镜Yale-NOAO TelescopeWR nebula, Wolf-Rayet nebula WR 星云Wyoming Infrared Telescope 怀俄明红外望远镜xenobiology 外空生物学XMM, X-ray Mirror Mission X 射线成象望远镜X-ray corona X 射线冕X-ray eclipse X 射线食X-ray halo X 射线晕XTE, X-ray Timing Explorer X 射线计时探测器yellow straggler 黄离散星Yohkoh 〈阳光〉太阳探测器young stellar object (YSO )年轻恒星体ZAHB, zero-age horizontal branch 零龄水平支Zanstra temperature 赞斯特拉温度ZZ Ceti star 鲸鱼ZZ 型星γ-ray burster (GRB )γ射线暴源γ-ray line γ谱线γ-ray line astronomy γ谱线天文γ-ray line emission γ谱线发射ζAurigae binary 御夫ζ型双星ζAurigae variable 御夫ζ型变星TAMS, terminal-age main sequence 终龄主序Taurus molecular cloud (TMC )金牛分子云TDT, terrestrial dynamical time 地球力学时television guider 电视导星器television-type detector 电视型探测器Tenma 〈天马〉X 射线天文卫星terrestrial reference system 地球参考系tetrad 四元基thermal background 热背景辐射thermal background radiation 热背景辐射thermal pulse 热脉冲thermonuclear runaway 热核暴涨thick-disk population 厚盘族thinned CCD 薄型CCDthird light 第三光源time-signal station 时号台timing age 计时年龄tomograph 三维结构图toner 调色剂torquetum 赤基黄道仪TRACE, Transition Region and Coronal 〈TRACE〉太阳过渡区和日冕Explorer 探测器tracker 跟踪器transfer efficiency 转移效率transition region line 过渡区谱线trans-Nepturnian object 海外天体Trapezium cluster 猎户四边形星团triad 三元基tri-dimensional spectroscopy 三维分光triquetum 三角仪tuning-fork diagram 音叉图turnoff age 拐点年龄turnoff mass 拐点质量two-dimensional photometry 二维测光two-dimensional spectroscopy 二维分光UKIRT, UK Infrared Telescope Facility 联合王国红外望远镜UKST, UK Schmidt Telescope 联合王国施密特望远镜ultracompact H Ⅱregion 超致密电离氢区ultradeep-field observation 特深天区观测ultraluminous galaxy 超高光度星系ultrametal-poor star 特贫金属星Ulysses 〈尤利西斯〉太阳探测器unseen component 未见子星upper tangent arc 上正切晕弧unnumbered asteroid 未编号小行星Uranian ring 天王星环Ursa Major group 大熊星群Ursa Minorids 小熊流星群Sagittarius dwarf 人马矮星系Sagittarius dwarf galaxy 人马矮星系Sagittarius galaxy 人马星系Saha equation 沙哈方程Sakigake 〈先驱〉空间探测器Saturn-crossing asteroid 越土小行星Saturnian ringlet 土星细环Saturnshine 土星反照scroll 卷滚Sculptor group 玉夫星系群Sculptor Supercluster 玉夫超星系团Sculptor void 玉夫巨洞secondary crater 次级陨击坑secondary resonance 次共振secular evolution 长期演化secular resonance 长期共振seeing management 视宁度控管segregation 层化selenogony 月球起源学separatrice 分界sequential estimation 序贯估计sequential processing 序贯处理serendipitous X-ray source 偶遇X 射线源serendipitous γ-ray source 偶遇γ射线源Serrurier truss 赛路里桁架shell galaxy 壳星系shepherd satellite 牧羊犬卫星shock temperature 激波温度silicon target vidicon 硅靶光导摄象管single-arc method 单弧法SIRTF, Space Infrared Telescope 空间红外望远镜Facilityslitless spectroscopy 无缝分光slit spectroscopy 有缝分光slow pulsar 慢转脉冲星SMM, Solar Maximum MIssion 太阳极大使者SMT, Submillimeter Telescope 亚毫米波望远镜SOFIA, Stratospheric Observatory for 〈索菲雅〉机载红外望远镜Infrared Astronomysoft γ-ray burst repeater 软γ暴复现源soft γrepeater (SGR )软γ射线复现源SOHO, Solar and Heliospheric 〈索贺〉太阳和太阳风层探测器Observatorysolar circle 太阳圈solar oscillation 太阳振荡solar pulsation 太阳脉动solar-radiation pressure 太阳辐射压solar-terrestrial environment 日地环境solitary 孤子性soliton star 孤子星South Galactic Cap 南银冠South Galactic Pole 南银极space density profile 空间密度轮廓space geodesy 空间大地测量space geodynamics 空间地球动力学Spacelab 空间实验室spatial mass segregation 空间质量分层speckle masking 斑点掩模speckle photometry 斑点测光speckle spectroscopy 斑点分光spectral comparator 比长仪spectrophotometric distance 分光光度距离spectrophotometric standard 分光光度标准星spectroscopic period 分光周期specular density 定向密度spherical dwarf 椭球矮星系spin evolution 自旋演化spin period 自旋周期spin phase 自旋相位spiral 旋涡星系spiral arm tracer 示臂天体Spoerer minimum 斯珀勒极小spotted star 富黑子恒星SST, Spectroscopic Survey Telescope 分光巡天望远镜standard radial-velocity star 视向速度标准星standard rotational-velocity star 自转速度标准星standard velocity star 视向速度标准星starburst 星暴starburst galaxy 星暴星系starburst nucleus 星暴star complex 恒星复合体star-formation activity 产星活动star-formation burst 产星暴star-formation efficiency (SFE )产星效率star-formation rate 产星率star-formation region 产星区star-forming region 产星区starpatch 星斑static property 静态特性statistical orbit-determination 统计定轨理论theorysteep-spectrum radio quasar 陡谱射电类星体stellar environment 恒星环境stellar halo 恒星晕stellar jet 恒星喷流stellar speedometer 恒星视向速度仪stellar seismology 星震学Stokes polarimetry 斯托克斯偏振测量strange attractor 奇异吸引体strange star 奇异星sub-arcsec radio astronomy 亚角秒射电天文学Subaru Telescope 昴星望远镜subcluster 次团subclustering 次成团subdwarf B star B 型亚矮星subdwarf O star O 型亚矮星subgiant branch 亚巨星支submilliarcsecond optical astrometry 亚毫角秒光波天体测量submillimeter astronomy 亚毫米波天文submillimeter observatory 亚毫米波天文台submillimeter photometry 亚毫米波测光submillimeter space astronomy 亚毫米波空间天文submillimeter telescope 亚毫米波望远镜submillisecond optical pulsar 亚毫秒光学脉冲星submillisecond pulsar 亚毫秒脉冲星submillisecond radio pulsar 亚毫秒射电脉冲星substellar object 亚恒星天体subsynchronism 亚同步subsynchronous rotation 亚同步自转Sunflower galaxy (M 63 )葵花星系sungrazer comet 掠日彗星supercluster 超星团; 超星系团supergalactic streamer 超星系流状结构supergiant molecular cloud (SGMC )超巨分子云superhump 长驼峰superhumper 长驼峰星supermaximum 长极大supernova rate 超新星频数、超新星出现率supernova shock 超新星激波superoutburst 长爆发superwind galaxy 超级风星系supporting system 支承系统surface activity 表面活动surface-brightness profile 面亮度轮廓surface-channel CCD 表面型CCDSU Ursae Majoris star 大熊SU 型星SW AS, Submillimeter Wave Astronomy 亚毫米波天文卫星Satallitesymbiotic binary 共生双星symbiotic Mira 共生刍藁symbiotic nova 共生新星synthetic-aperture radar 综合孔径雷达systemic velocity 质心速度radial pulsator 径向脉动星radial-velocity orbit 分光解radial-velocity reference star 视向速度参考星radial-velocity standard star 视向速度标准星radial-velocity survey 视向速度巡天radio arm 射电臂radio counterpart 射电对应体radio loud quasar 强射电类星体radio observation 射电观测radio picture 射电图radio pollution 射电污染radio supernova 射电超新星rapid burster 快暴源rapidly oscillating Ap star 快速振荡Ap 星readout 读出readout noise 读出噪声recycled pulsar 再生脉冲星reddened galaxy 红化星系reddened object 红化天体reddened quasar 红化类星体red horizontal branch (RHB )红水平分支red nebulous object (RNO )红色云状体Red Rectangle nebula 红矩形星云redshift survey 红移巡天red straggler 红离散星reflex motion 反映运动regression period 退行周期regular cluster 规则星团; 规则星系团relaxation effect 弛豫效应reset 清零resonance overlap theory 共振重叠理论return-beam tube 回束摄象管richness parameter 富度参数Ring nebula (M 57、NGC 6720 )环状星云ring-plane crossing 环面穿越Rosalind 天卫十三ROSAT, Roentgensatellit 〈ROSAT〉天文卫星Rosette Molecular Cloud (RMC )玫瑰分子云Rossby number 罗斯贝数rotating variable 自转变星rotational evolution 自转演化rotational inclination 自转轴倾角rotational modulation 自转调制rotational period 自转周期rotational phase 自转相位rotational pole 自转极rotational velocity 自转速度rotation frequency 自转频率rotation phase 自转相位rotation rate 自转速率rubber second 负闰秒rubidium-strontium dating 铷锶计年pan 摇镜头parry arc 彩晕弧partial-eclipse solution 偏食解particle astrophysics 粒子天体物理path of annularity 环食带path of totality 全食带PDS, photo-digitizing system、PDS、数字图象仪、photometric data system 测光数据仪penetrative convection 贯穿对流pentaprism test 五棱镜检验percolation 渗流periapse 近质心点periapse distance 近质心距periapsis distance 近拱距perigalactic distance 近银心距perigalacticon 近银心点perimartian 近火点period gap 周期空隙period-luminosity-colour relation 周光色关系PG 1159 star PG 1159 恒星photoflo 去渍剂photographic spectroscopy 照相分光photometric accuracy 测光精度photometric error 测光误差photometric night 测光夜photometric standard star 测光标准星photospheric abundance 光球丰度photospheric activity 光球活动photospheric line 光球谱线planetary biology 行星生物学planetary geology 行星地质学Pleiad 昴团星plerion 类蟹遗迹plerionic remnant 类蟹遗迹plerionic supernova remnant 类蟹超新星遗迹plumbicon 氧化铅光导摄象管pluton 类冥行星p-mode p 模、压力模pointimg accuracy 指向精度point spread function 点扩散函数polarimetric standard star 偏振标准星polarization standard star 偏振标准星polar-ring galaxy 极环星系Portia 天卫十二post AGB star AGB 后恒星post-core-collapse cluster 核心坍缩后星团post-coronal region 冕外区post-main-sequence star 主序后星post red-supergiant 红超巨后星post starburst galaxy 星暴后星系post T Tauri star 金牛T 后星potassium-argon dating 钾氩计年precataclysmic binary 激变前双星precataclysmic variable 激变前变星preceding limb 西边缘、前导边缘precessing-disk model 进动盘模型precession globe 岁差仪precession period 进动周期preflash 预照光pre-main-sequence spectroscopic 主序前分光双星binarypre-planetary disk 前行星盘pre-white dwarf 白矮前身星primary crater 初级陨击坑primordial binary 原始双星principle of mediocrity 折衷原则progenitor 前身星; 前身天体progenitor star 前身星projected density profile 投影密度轮廓proper-motion membership 自行成员星proper reference frame 固有参考架proper reference system 固有参考系proplyd 原行星盘proto-binary 原双星proto-cluster 原星团proto-cluster of galaxies 原星系团proto-earth 原地球proto-galactic cloud 原星系云proto-galactic object 原星系天体proto-Galaxy 原银河系proto-globular cluster 原球状星团proto-Jupiter 原木星proto-planet 原行星proto-planetary disk 原行星盘proto-planetary system 原行星系proto-shell star 原气壳星proto-sun 原太阳pseudo body-fixed system 准地固坐标系Puck 天卫十五pulsar time scale 脉冲星时标pulsation axis 脉动对称轴pulsation equation 脉动方程pulsation frequency 脉动频率pulsation phase 脉动阶段pulsation pole 脉动极pulse light curve 脉冲光变曲线pyrometry 高温测量QPO, quasi-periodic oscillation 似周期振荡quantum cosmology 量子宇宙学quantum universe 量子宇宙quasar astronomy 类星体天文quiescence 宁静态naked-eye variable star 肉眼变星naked T Tauri star 显露金牛T 型星narrow-line radio galaxy (NLRG )窄线射电星系Nasmyth spectrograph 内氏焦点摄谱仪natural reference frame 自然参考架natural refenence system 自然参考系natural seeing 自然视宁度near-contact binary 接近相接双星near-earth asteroid 近地小行星near-earth asteroid belt 近地小行星带near-earth comet 近地彗星NEO, near-earth object 近地天体neon nova 氖新星Nepturian ring 海王星环neutrino astrophysics 中微子天文NNTT, National New Technology Telescope国立新技术望远镜NOAO, National Optical Astronomical 国立光学天文台Observatoriesnocturnal 夜间定时仪nodal precession 交点进动nodal regression 交点退行non-destroy readout (NDRO )无破坏读出nonlinear infall mode 非线性下落模型nonlinear stability 非线性稳定性nonnucleated dwarf elliptical 无核矮椭圆星系nonnucleated dwarf galaxy 无核矮星系nonpotentiality 非势场性nonredundant masking 非过剩遮幅成象nonthermal radio halo 非热射电晕normal tail 正常彗尾North Galactic Cap 北银冠NOT, Nordic Optical Telescope 北欧光学望远镜nova rate 新星频数、新星出现率NTT, New Technology Telescope 新技术望远镜nucleated dwarf elliptical 有核矮椭圆星系nucleated dwarf galaxy 有核矮星系number density profile 数密度轮廓numbered asteroid 编号小行星oblique pulsator 斜脉动星observational cosmology 观测宇宙学observational dispersion 观测弥散度observational material 观测资料observing season 观测季occultation band 掩带O-Ne-Mg white dwarf 氧氖镁白矮星one-parameter method 单参数法on-line data handling 联机数据处理on-line filtering 联机滤波open cluster of galaxies 疏散星系团Ophelia 天卫七optical aperture-synthesis imaging 光波综合孔径成象optical arm 光学臂optical disk 光学盘optical light 可见光optical luminosity function 光学光度函数optically visible object 光学可见天体optical picture 光学图optical spectroscopy 光波分光orbital circularization 轨道圆化orbital eccentricity 轨道偏心率orbital evolution 轨道演化orbital frequency 轨道频率orbital inclination 轨道倾角orbit plane 轨道面order region 有序区organon parallacticon 星位尺Orion association 猎户星协orrery 太阳系仪orthogonal transformation 正交变换oscillation phase 振动相位outer asteroid belt 外小行星带outer-belt asteroid 外带小行星outer halo cluster 外晕族星团outside-eclipse variation 食外变光overshoot 超射OVV quasar, optically violently OVV 类星体variable quasar、optically violent variablevquasaroxygen sequence 氧序Kalman filter 卡尔曼滤波器KAO, Kuiper Air-borne Observatory 〈柯伊伯〉机载望远镜Keck ⅠTelescope 凯克Ⅰ望远镜Keck ⅡTelescope 凯克Ⅱ望远镜Kuiper belt 柯伊伯带Kuiper-belt object 柯伊伯带天体Kuiper disk 柯伊伯盘LAMOST, Large Multi-Object Fibre 大型多天体分光望远镜Spectroscopic TelescopeLaplacian plane 拉普拉斯平面late cluster 晚型星系团LBT, Large Binocular Telescope 〈LBT〉大型双筒望远镜lead oxide vidicon 氧化铅光导摄象管Leo Triplet 狮子三重星系LEST, Large Earth-based Solar 〈LEST〉大型地基太阳望远镜Telescopelevel-Ⅰcivilization Ⅰ级文明level-Ⅱcivilization Ⅱ级文明level-Ⅲcivilization Ⅲ级文明Leverrier ring 勒威耶环Liapunov characteristic number 李雅普诺夫特征数(LCN )light crown 轻冕玻璃light echo 回光light-gathering aperture 聚光孔径light pollution 光污染light sensation 光感line image sensor 线成象敏感器line locking 线锁line-ratio method 谱线比法Liner, low ionization nuclear 低电离核区emission-line regionline spread function 线扩散函数LMT, Large Millimeter Telescope 〈LMT〉大型毫米波望远镜local galaxy 局域星系local inertial frame 局域惯性架local inertial system 局域惯性系local object 局域天体local star 局域恒星look-up table (LUT )对照表low-mass X-ray binary 小质量X 射线双星low-metallicity cluster 低金属度星团;低金属度星系团low-resolution spectrograph 低分辨摄谱仪low-resolution spectroscopy 低分辨分光low - z 小红移luminosity mass 光度质量luminosity segregation 光度层化luminous blue variable 高光度蓝变星lunar atmosphere 月球大气lunar chiaroscuro 月相图Lunar Prospector 〈月球勘探者〉Ly-αforest 莱曼-α森林MACHO (massive compact halo 晕族大质量致密天体object )Magellan 〈麦哲伦〉金星探测器Magellan Telescope 〈麦哲伦〉望远镜magnetic canopy 磁蓬magnetic cataclysmic variable 磁激变变星magnetic curve 磁变曲线magnetic obliquity 磁夹角magnetic period 磁变周期magnetic phase 磁变相位magnitude range 星等范围main asteroid belt 主小行星带main-belt asteroid 主带小行星main resonance 主共振main-sequence band 主序带Mars-crossing asteroid 越火小行星Mars Pathfinder 火星探路者mass loss rate 质量损失率mass segregation 质量层化Mayall Telescope 梅奥尔望远镜Mclntosh classification 麦金托什分类McMullan camera 麦克马伦电子照相机mean motion resonance 平均运动共振membership of cluster of galaxies 星系团成员membership of star cluster 星团成员merge 并合merger 并合星系; 并合恒星merging galaxy 并合星系merging star 并合恒星mesogranulation 中米粒组织mesogranule 中米粒metallicity 金属度metallicity gradient 金属度梯度metal-poor cluster 贫金属星团metal-rich cluster 富金属星团MGS, Mars Global Surveyor 火星环球勘测者micro-arcsec astrometry 微角秒天体测量microchannel electron multiplier 微通道电子倍增管microflare 微耀斑microgravitational lens 微引力透镜microgravitational lensing 微引力透镜效应microturbulent velocity 微湍速度millimeter-wave astronomy 毫米波天文millisecond pulsar 毫秒脉冲星minimum mass 质量下限minimum variance 最小方差mixed-polarity magnetic field 极性混合磁场MMT, Multiple-Mirror Telescope 多镜面望远镜moderate-resolution spectrograph 中分辨摄谱仪moderate-resolution spectroscopy 中分辨分光modified isochrone method 改进等龄线法molecular outflow 外向分子流molecular shock 分子激波monolithic-mirror telescope 单镜面望远镜moom 行星环卫星moon-crossing asteroid 越月小行星morphological astronomy 形态天文morphology segregation 形态层化MSSSO, Mount Stromlo and Siding 斯特朗洛山和赛丁泉天文台Spring Observatorymultichannel astrometric photometer 多通道天测光度计(MAP )multi-object spectroscopy 多天体分光multiple-arc method 复弧法multiple redshift 多重红移multiple system 多重星系multi-wavelength astronomy 多波段天文multi-wavelength astrophysics 多波段天体物理Ida 艾达(小行星243号)IEH, International Extreme Ultraviolet 〈IEH〉国际极紫外飞行器HitchhikerIERS, International Earth Rotation 国际地球自转服务Serviceimage deconvolution 图象消旋image degradation 星象劣化image dissector 析象管image distoration 星象复原image photon counting system 成象光子计数系统image sharpening 星象增锐image spread 星象扩散度imaging polarimetry 成象偏振测量imaging spectrophotometry 成象分光光度测量immersed echelle 浸渍阶梯光栅impulsive solar flare 脉冲太阳耀斑infralateral arc 外侧晕弧infrared CCD 红外CCDinfrared corona 红外冕infrared helioseismology 红外日震学infrared index 红外infrared observatory 红外天文台infrared spectroscopy 红外分光initial earth 初始地球initial mass distribution 初始质量分布initial planet 初始行星initial star 初始恒星initial sun 初始太阳inner coma 内彗发inner halo cluster 内晕族星团integrability 可积性Integral Sign galaxy (UGC 3697 )积分号星系integrated diode array (IDA )集成二极管阵intensified CCD 增强CCDIntercosmos 〈国际宇宙〉天文卫星interline transfer 行间转移intermediate parent body 中间母体intermediate polar 中介偏振星international atomic time 国际原子时International Celestial Reference 国际天球参考系Frame (ICRF )intraday variation 快速变化intranetwork element 网内元intrinsic dispersion 内廪弥散度ion spot 离子斑IPCS, Image Photon Counting System 图象光子计数器IRIS, Infrared Imager / Spectrograph 红外成象器/摄谱仪IRPS, Infrared Photometer / Spectro- 红外光度计/分光计meterirregular cluster 不规则星团; 不规则星系团IRTF, NASA Infrared Telescope 〈IRTF〉美国宇航局红外Facility 望远镜IRTS, Infrared Telescope in Space 〈IRTS〉空间红外望远镜ISO, Infrared Space Observatory 〈ISO〉红外空间天文台isochrone method 等龄线法IUE, International Ultraviolet 〈IUE〉国际紫外探测器ExplorerJewel Box (NGC 4755 )宝盒星团Jovian magnetosphere 木星磁层Jovian ring 木星环Jovian ringlet 木星细环Jovian seismology 木震学jovicentric orbit 木心轨道J-type star J 型星Juliet 天卫十一Jupiter-crossing asteroid 越木小行星Galactic aggregate 银河星集Galactic astronomy 银河系天文Galactic bar 银河系棒galactic bar 星系棒galactic cannibalism 星系吞食galactic content 星系成分galactic merge 星系并合galactic pericentre 近银心点Galactocentric distance 银心距galaxy cluster 星系团Galle ring 伽勒环Galilean transformation 伽利略变换Galileo 〈伽利略〉木星探测器gas-dust complex 气尘复合体Genesis rock 创世岩Gemini Telescope 大型双子望远镜Geoalert, Geophysical Alert Broadcast 地球物理警报广播giant granulation 巨米粒组织giant granule 巨米粒giant radio pulse 巨射电脉冲Ginga 〈星系〉X 射线天文卫星Giotto 〈乔托〉空间探测器glassceramic 微晶玻璃glitch activity 自转突变活动global change 全球变化global sensitivity 全局灵敏度GMC, giant molecular cloud 巨分子云g-mode g 模、重力模gold spot 金斑病GONG, Global Oscillation Network 太阳全球振荡监测网GroupGPS, global positioning system 全球定位系统Granat 〈石榴〉号天文卫星grand design spiral 宏象旋涡星系gravitational astronomy 引力天文gravitational lensing 引力透镜效应gravitational micro-lensing 微引力透镜效应great attractor 巨引源Great Dark Spot 大暗斑Great White Spot 大白斑grism 棱栅GRO, Gamma-Ray Observatory γ射线天文台guidscope 导星镜GW Virginis star 室女GW 型星habitable planet 可居住行星Hakucho 〈天鹅〉X 射线天文卫星Hale Telescope 海尔望远镜halo dwarf 晕族矮星halo globular cluster 晕族球状星团Hanle effect 汉勒效应hard X-ray source 硬X 射线源Hay spot 哈伊斑HEAO, High-Energy Astronomical 〈HEAO〉高能天文台Observatoryheavy-element star 重元素星heiligenschein 灵光Helene 土卫十二helicity 螺度heliocentric radial velocity 日心视向速度heliomagnetosphere 日球磁层helioseismology 日震学helium abundance 氦丰度helium main-sequence 氦主序helium-strong star 强氦线星helium white dwarf 氦白矮星Helix galaxy (NGC 2685 )螺旋星系Herbig Ae star 赫比格Ae 型星Herbig Be star 赫比格Be 型星Herbig-Haro flow 赫比格-阿罗流Herbig-Haro shock wave 赫比格-阿罗激波hidden magnetic flux 隐磁流high-field pulsar 强磁场脉冲星highly polarized quasar (HPQ )高偏振类星体high-mass X-ray binary 大质量X 射线双星high-metallicity cluster 高金属度星团;高金属度星系团high-resolution spectrograph 高分辨摄谱仪high-resolution spectroscopy 高分辨分光high - z 大红移Hinotori 〈火鸟〉太阳探测器Hipparcos, High Precision Parallax 〈依巴谷〉卫星Collecting SatelliteHipparcos and Tycho Catalogues 〈依巴谷〉和〈第谷〉星表holographic grating 全息光栅Hooker Telescope 胡克望远镜host galaxy 寄主星系hot R Coronae Borealis star 高温北冕R 型星HST, Hubble Space Telescope 哈勃空间望远镜Hubble age 哈勃年龄Hubble distance 哈勃距离Hubble parameter 哈勃参数Hubble velocity 哈勃速度hump cepheid 驼峰造父变星Hyad 毕团星hybrid-chromosphere star 混合色球星hybrid star 混合大气星hydrogen-deficient star 缺氢星hydrogenous atmosphere 氢型大气hypergiant 特超巨星Eagle nebula (M 16 )鹰状星云earty cluster 早型星系团early earth 早期地球early planet 早期行星early-stage star 演化早期星early stellar evolution 恒星早期演化early sun 早期太阳earth-approaching asteroid 近地小行星earth-approaching comet 近地彗星earth-approaching object 近地天体earth-crossing asteroid 越地小行星earth-crossing comet 越地彗星earth-crossing object 越地天体earth orientation parameter 地球定向参数earth rotation parameter 地球自转参数eccentric-disk model 偏心盘模型effect of relaxation 弛豫效应Egg nebula (AFGL 2688 )蛋状星云electronographic photometry 电子照相测光elemental abundance 元素丰度elliptical 椭圆星系elliptical dwarf 椭圆矮星系emulated data 仿真数据emulation 仿真encounter-type orbit 交会型轨道enhanced network 增强网络equatorial rotational velocity 赤道自转速度equatorium 行星定位仪equipartition of kinetic energy 动能均分eruptive period 爆发周期Eskimo nebula (NGC 2392 )爱斯基摩星云estimated accuracy 估计精度estimation theory 估计理论EUVE, Extreme Ultraviolet Explorer 〈EUVE〉极紫外探测器Exclamation Mark galaxy 惊叹号星系Exosat 〈Exosat〉欧洲X 射线天文卫星extended Kalman filter 扩充卡尔曼滤波器extragalactic jet 河外喷流extragalactic radio astronomy 河外射电天文extrasolar planet 太阳系外行星extrasolar planetary system 太阳系外行星系extraterrestrial intelligence 地外智慧生物extreme helium star 极端氦星Fabry-Perot imaging spectrograph 法布里-珀罗成象摄谱仪Fabry-Perot interferometry 法布里-珀罗干涉测量Fabry-Perot spectrograph 法布里-珀罗摄谱仪face-on galaxy 正向星系face-on spiral 正向旋涡星系facility seeing 人为视宁度fall 见落陨星fast pulsar 快转脉冲星fat zero 胖零Fermi normal coordinate system 费米标准坐标系Fermi-Walker transportation 费米-沃克移动fibre spectroscopy 光纤分光field centre 场中心field galaxy 场星系field pulsar 场脉冲星filter photography 滤光片照相观测filter wheel 滤光片转盘find 发见陨星finder chart 证认图finderscope 寻星镜first-ascent giant branch 初升巨星支first giant branch 初升巨星支flare puff 耀斑喷焰flat field 平场flat field correction 平场改正flat fielding 平场处理flat-spectrum radio quasar 平谱射电类星体flux standard 流量标准星flux-tube dynamics 磁流管动力学f-mode f 模、基本模following limb 东边缘、后随边缘foreground galaxy 前景星系foreground galaxy cluster 前景星系团formal accuracy 形式精度Foucaultgram 傅科检验图样Foucault knife-edge test 傅科刀口检验fourth cosmic velocity 第四宇宙速度frame transfer 帧转移Fresnel lens 菲涅尔透镜fuzz 展云CAMC, Carlsberg Automatic Meridian 卡尔斯伯格自动子午环Circlecannibalism 吞食cannibalized galaxy 被吞星系cannibalizing galaxy 吞食星系。
斯滕伯格短时记忆提取实验结果
斯滕伯格短时记忆提取实验结果
斯滕伯格短时记忆提取实验是一种经典的心理学实验,用于测试人们在短期记忆任务中的表现。
实验的步骤是:实验者向被试呈现一系列的物品或信息,然后要求被试在一定时间内回忆刚才呈现的物品或信息。
被试通常需要以特定的顺序、数量或特征回忆这些物品或信息。
实验结果的主要观察指标是被试在回忆任务中的准确性和完整性。
通过分析被试在不同条件下的回忆表现,可以得出一些结论,例如:
1. 被试在短期记忆任务中的回忆能力是否受到干扰的影响。
2. 不同类型的信息对被试回忆的影响程度。
3. 回忆能力是否随着时间的推移而下降。
4. 是否存在记忆干扰或混淆效应。
斯滕伯格短时记忆提取实验的具体结果会根据研究目的和实验设计的不同而有所不同。
一般来说,研究者会根据数据进行定量分析,比较不同被试或条件下的平均回忆表现。
通过统计分析可以得出是否存在显著差异,以及不同因素对回忆表现的影响程度。
总的来说,斯滕伯格短时记忆提取实验结果可以提供关于人类短期记忆功能的信息,帮助我们更好地理解和解释人类记忆的特点和机制。
TASI 2002 lectures on neutrinos
1
I.
INTRODUCTION
The success of the Standard Model (SM) can be seen as a proof that it is an effective low energy description of Nature. We are therefore interested in probing the more fundamental theory. One way to go is to search for new particles that can be produced in yet unreached energies. Another way to look for new physics is to search for indirect effects of heavy unknown particles. In this set of lectures we explain how neutrino physics is used to probe such indirect signals of physics beyond the SM. In the SM the neutrinos are exactly massless. This prediction, however, is rather specific to the SM. In almost all of the SM extensions the neutrinos are massive and they mix. The search for neutrino flavor oscillation, a phenomenon which is possible only for massive neutrinos, is a search for new physics beyond the SM. The recent experimental indications for neutrino oscillations are indirect evidences for new physics, most likely, at distances much shorter than the weak scale. In the first lecture the basic mechanisms for generating neutrino masses are described and the ingredients of the SM that ensure massless neutrinos are explained. Then, the neutrino oscillation formalism is developed. In the second lecture the current experimental situation is summarized. In particular, we describe the oscillation signals observed by solar neutrino experiments, atmospheric neutrino experiments and long baseline terrestrial neutrino experiments. Each of these results separately can be accounted for by a rather simple modification to the SM. Trying to accommodate all of them simultaneously, however, is not trivial. In the third lecture we explain what are the theoretical challenges in trying to combine all the experimental indications for neutrino masses, and give several examples of models that cope with some of these challenges. These lecture notes are aimed to provide an introduction to the topic of neutrino physics. They are not meant to be a review. Therefore, many details are not given and many references are omitted. There are many textbooks [1] and reviews [2–4] about neutrinos. There is also a lot of information about neutrinos on the web [5, 6]. All these sources provide more detailed discussions with complete set of references on the topics covered in these lectures. Moreover, they also cover many subjects that are not mentioned here. In preparing the lectures I used mainly the recent review by Gonzalez-Garcia and Nir [4]. This review is a very good starting point to anyone who wants to learn more about neutrino physics.
电大1379《人文英语3》开放大学期末考试试题2023年7月(含答案)
电大1379《人文英语3》开放大学期末考试试题2023年7月(含答案)一、交际用语(每题 2 分, 共 10 分)1-5 题: 选择正确的语句完成下面对话, 并将答案序号写在答题纸上。
1.―Ok, I' ll fix your puter right now.―Oh, _____________.I' m in no hurry.A.Li Mei has done itB.that' s a great ideaC.take your time[答案] C2.―It' s raining so heavily outside.I' m terribly anxious about my son' s safety.―___________________A.Well.I totally agree with you.He is a good boy.B.Don' t worry.He will e back safe and sound.C.Yes, it is, and it is very likely to rain tomorrow.[答案] B3.―How do you feel about your family life?―___________________A.Good.It' s a good choice to work there.B.Not bad.I have visited their family a lot of times.C.Not bad.I think it is a good choice to be afull-time mother.[答案] C4.―Must I finish the report today?―_________You can finish it tomorrow.A.Yes, you must.B.No, you mustn' t.C.No, you don' t have to.[答案] C5.―Don' t you agree that our society has changeda lot and people' s life has bee more colorful?―_________Education is one of the driving forcesin …A.I couldn' t agree more.B.What do you mean by that?C.It' s very easy for people to reach an agreement[答案] A二、词汇与构造(每题 2 分, 共 30 分)6-20 题: 阅读下面的句子, 从三个选项中选出一个能填入空白处的正确选项, 井将答案序号写在答题纸上。
LINGO-1在神经系统疾病中的研究进展2024(全文)
LINGO-1在神经系统疾病中的研究进展2024(全文)摘要LINGO-1是富含亮氨酸重复序列和免疫球蛋白结构域的Nogo 受体作用蛋白-1,在神经系统疾病中特异性表达。
近年来,越来越多证据表明LINGO-1在神经胶质瘢痕形成、细胞死亡及炎症反应中发挥重要作用。
LINGO-1会抑制少突胶质细胞活化,阻止轴突和髓鞘的形成和功能恢复,因此被认为是神经元存活、神经突延伸及轴突髓鞘化的负调节剂。
LINGO-1水平的变化与多种神经系统疾病的发生和发展存在一定联系。
该文对LINGO-1的生理功能进行阐述,并对LINGO-1在多发性硬化症、脊髓损伤、新生儿脑损伤及癫痫等神经系统疾病中的最新研究进展进行综述,旨在探寻神经系统疾病治疗的新策略。
儿童常见的神经系统疾病包括脊髓损伤(spinal cord injury,SCI)、新生儿脑损伤、癫痫、中枢神经系统(central nervous syetem,CNS)感染等,具有高致残率及病死率,严重威胁儿童健康[1 ]。
目前研究发现脑组织中富含亮氨酸重复序列和免疫球蛋白(Ig)结构域的Nogo 受体作用蛋白-1(LINGO-1)是神经再生的抑制因子,在髓鞘的形成和神经突的延伸中发挥重要作用,LINGO-1作为髓鞘再生治疗的新兴分子靶标,其表达水平可能是评估脑损伤严重程度的重要指标[2 ]。
本文主要综述了LINGO-1在多发性硬化症(multiple sclerosis,MS)、新生儿脑损伤、癫痫、SCI等神经系统疾病中的作用及机制,以期能够为神经系统疾病的治疗提供新思路。
1 LINGO-1的生物学功能1.1 LINGO-1的来源、结构和表达特点LINGO-1是一种重要的跨膜蛋白,由12个富含亮氨酸的重复序列和一个Ig结构域组成,共编码614个氨基酸。
LINGO-1基因位于15q24染色体上,具有强大的细胞外结构区域,包括N末端和C末端覆盖结构域、Ig结构域、一个跨膜结构域和一个短的细胞质尾部。
神经生物学家英语
神经生物学家英语Neurobiology is a fascinating field that explores the intricate workings of the nervous system, from the molecular level to the complex behaviors it supports. Neurobiologistsare scientists who specialize in understanding the biological basis of the nervous system, which includes the brain, spinal cord, and peripheral nerves.These researchers delve into various aspects of neurobiology, such as the structure and function of neurons, the transmission of signals across synapses, and the development of the nervous system. They also investigate neurological disorders, such as Alzheimer's disease,Parkinson's disease, and multiple sclerosis, seeking to uncover the underlying mechanisms that contribute to these conditions.The study of neurobiology is crucial for advancing our understanding of the brain and its role in cognition, emotion, and behavior. By examining the neural circuits that underlie sensory perception, learning, memory, and decision-making, neurobiologists contribute to the development of treatmentsfor a wide range of neurological and psychiatric disorders.Technological advancements have greatly facilitated the work of neurobiologists. Techniques such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and optogenetics allow researchers to observe andmanipulate neural activity in real-time, providing unprecedented insights into the brain's functioning.Moreover, the interdisciplinary nature of neurobiology means that neurobiologists often collaborate with experts in fields such as genetics, psychology, computer science, and engineering. This collaboration fosters innovative approaches to studying the brain and developing new therapies for neurological conditions.In conclusion, neurobiologists play a pivotal role in unraveling the mysteries of the nervous system. Their research not only deepens our understanding of the brain but also has the potential to transform the lives of those affected by neurological disorders. As the field continues to evolve, the contributions of neurobiologists will undoubtedly remain at the forefront of scientific discovery.。
短时记忆再认实验报告
心理实验报告实验名称:短时记忆再认实验摘要:短时记忆是指保持十几秒至一分钟左右的记忆,一般把它看作是处于感觉记忆和长时记忆之间的一个记忆阶段。
本次实验的目的学会记忆实验的再认方法,比较三种材料(具体图片、抽象图片、词)的短时记忆效果和思考该实验在广告效果研究的运用及意义。
各个被试根据实验的指导语利用新旧两套图片再认是否看过,根据实验所得数据计算出各个被试的再认正确率。
记忆是一个较为复杂的认识系统,再认被认为是评价记忆巩固水平的重要指标,此次实验结果根据不同被试对不同材料的反应,比较三种材料的不同效果,分析说明其差异的原因,并且分析被试的短时记忆能力。
然后用本实验结果分析不同呈现方式的平面广告的短时记忆效果。
关键词:短时记忆记忆再认记忆差异一、前言短时记忆是瞬时记忆向长时记忆过渡的中间阶段,一般信息保持的时间为5s~2min。
20世纪50年代Perterson等人用无意义音节为材料对短时记忆的容量进行了研究。
为了避免在刺激呈现与回忆中间的时间间隔内被试复习学过的实验材料,通常在呈现和回忆之间加入数学计算题或其他的干扰任务。
结果发现,中间延迟的时间越长,被试回忆的刺激数目就越少。
从Perterson等人的实验可以证明,短时记忆的内容只有经过不断学习才能够被保存下来,并转入长时记忆。
短时记忆的信息提取是将短时记忆中的项目回忆出来,或者当该项目再度呈现时能够正确再认。
Sternberg最早对这个问题进行了研究,即著名的短时记忆信息提取实验。
这个实验主要要验证关于短时记忆信息加工模式的问题,即短时记忆信息提取是系列扫描的,还是并行扫描的。
虽然得出的结论还有一定的争论,但它的意义是开创性的,推动了短时记忆信息加工模式的研究。
Sternberg根据这个实验发展出了一个新的反应时间实验法——加因素法。
其假设是:如果两个因素是相互制约的,则它们是作用于信息加工的同一阶段;如果两个因素的效应是独立可加的,则它们是作用于信息加工的不同阶段。
K2K (KEK to Kamioka) neutrino-oscillation experiment at KEK-PS
a r X i v :h e p -e x /9803014v 2 18 M a r 1998K2K (KEK to Kamioka)neutrino-oscillation experiment atKEK-PS ∗)Yuichi Oyama ∗∗)for K2K collaboration∗∗∗)Institute of Particles and Nuclear Studies,High Energy Accelerator Research Organization,Tsukuba,Ibaraki 305-0801JapanA long-baseline neutrino-oscillation experiment using a well-defined neutrino beam is in preparation at KEK.Neutrinos generated at KEK will be detected by the Super-Kamiokande detector 250km away.The design of the neutrino beam line,beam monitors and detector are briefly presented.The sensitivities for neutrino oscillations are also discussed.§1.OverviewIn recent years,several underground neutrino observatories 1)-3)have reported that the atmospheric neutrino ratio,R ≡(νµ+¯νµ)/(νe +¯νe ),is significantly smaller than the theoretical expectations.This “atmospheric neutrino anomaly”can be explained by a neutrino oscillation hypothesis with an oscillation parameter region of ∆m 2∼10−2eV 2and sin 22θ∼1.The atmospheric neutrino anomaly has also been confirmed by a preliminary result from the Super-Kamiokande experiment,4),which shows a rather smaller ∆m 2than does Kamiokande.The K2K experiment 5)(formerly called the KEK-PS E362experiment)is the first long-baseline neutrino-oscillation experiment using an artificial neutrino beam.The almost pure νµbeam from π+decays is generated in the KEK 12-GeV Proton Synchrotron,and is directed toward the Super-Kamiokande detector,which is about 250km away from KEK.The neutrino events observed in the Super-Kamiokande detector are compared with neutrino events in the front detector constructed at the KEK site.The nominal sensitive region on the neutrino-oscillation parameter is ∆m 2=10−2eV 2∼10−3eV 2,which covers the parameter region suggested by the atmospheric neutrino anomaly.§2.Neutrino beamA neutrino beamline is under construction at KEK.6)A picture of the neutrino beamline under construction is shown in Figure 1.A proton beam of 12GeV is extracted from the Proton Synchrotron with a fastFig.1.Neutrino beamline under construction(November19th,1997). extraction mode.The time width of one spill is1.1µsec.The frequency of the beam is1spill per2.2seconds and the nominal intensity is about6×1012protons/spill.A total of1×1020p.o.t(protons on target)will be extracted in3years of operation.The proton beam is bent by94◦by dipole magnets,and transported to an aluminum target of2cmφ×65cm.Positively charged particles produced in the target are focused by a toroidal magneticfield produced by a pair of Horns7)toward the direction of the Super-Kamiokande detector.The nominal pulse current of the Horn is250kA.The muon neutrinoflux will be enhanced by a factor of14by installing the Horns.A test operation of the Horns was successfully completed in fall,1997.In a200m decay tunnel followed with the Horn magnets,oneπ+decays to oneνµand oneµ+.Muons and the remaining pions are absorbed in a beam dump downstream of the decay tunnel.The generation of the neutrino beam is simulated using a Monte-Carlo simula-tion.The energy spectrum and angular dependence of the beam at the front detector (300m downstream from the target)and at the Super-Kamiokande detector(250km downstream)are shown in Figure2.The mean energy of the neutrino beam is about 1.4GeV,and the peak energy is about1GeV.The contamination of electron neu-trinos was calculated to be∼1%.The energy spectrum of the neutrino beam is uniform within an angular spread of3mrad from the center of the beam axis.Be-cause the angular acceptance of the Super-Kamiokande detector from the KEK site is∼50m/250km=0.2mrad,the divergence of the neutrino beam is much larger than the size of the Super-Kamiokande detector.§3.Beam monitorsIn order to obtain the neutrino-energy spectrum,a pion monitor8)will be set downstream of the second Horn.The pion monitor is a gas Cherenkov detector with a1010101010E ν (GeV)N ν (/c m 2/0.1G e V )1010101010E ν (GeV)N ν (/c m 2/0.1G e V )r (cm)r (km)Fig.2.Expected energy spectrum and radial distribution for 1020protons on the target (corre-sponding to 3years of operation),both at the front detector (L =300m)and Super-Kamiokande (L =250km).spherical mirror and R-C318gas.Charged pions emit Cherenkov light in the gas,and a Cherenkov ring is created in the focus plane.The light intensity of the Cherenkov light is monitored by ADC on a spill-by-spill basis.The information concerning the Cherenkov-light intensity and shape of the ring are used to calculate the momentum distribution and divergence of the pion beam.The ratio of neutrino flux at the front detector and at Super-Kamiokande site can be expected for a neutrino energy larger than 1.0GeV based on the decay kinematics of the pions.A muon monitor will be installed downstream of the decay tunnel.The muon monitor is a 2m ×2m pad-type ionization chamber filled with He gas.The an-ode current induced by the muon beam is read out from the x-direction and the y-direction with an interval of 5cm.The 2-dimensional projection of the muon intensity provides information about the beam profile.The position of the beam center is obtained with an accuracy of ∼2cm.§4.Front detectorThe front detector in the KEK site is located 300m downstream of the target.A schematic view of the front detector is shown in Figure 3.We will constructSide ViewRun555 event 1---------------------------------------Enu = 3.65---------------------------------------6: ( .39 -.49 3.34 ) 3.4014: ( -.46 .39 .48 ) 1.221: ( .00 .00 .00 ) .011: ( .00 .00 .00 ) .00---------------------------------------Fig.4.Cross-sectional view of a typical quasi-elastic scattering event in the Fine-Grained Detector obtained from a Monte-Carlo simulationments are aligned.The absolute time of an event is obtained by plastic scintillators with an accuracy of0.7nsec.This information is used to reject cosmic-ray muon background with a reduction rate of∼99%,and is used in the time correction of the muon chamber data.Neutrino interactions outside of the Fine-Grained Detector can also be identified by the counter.The purpose of the lead-glass counters is to precisely measure the contamination of electron neutrinos in the muon neutrino beam.It consists of600lead-glass coun-ters;each counter is12cm×12cm in acceptance.The basic idea of the electronidentification is based on the response of the lead-glass counters to muons and elec-√trons.The energy deposit of electron can be measured with a resolution of8%/Table I.Summary of the detector performance in the K2K experiment.detector detectorKamiokande8∼10%3%∆θµ∼1%∼10%3%∆E e /E eE e3%/√E eTable II.Number of neutrino interactions in the fiducial volume.detector detector Kamiokande 5.8ton21ton22500ton(dimension)3.0×1012/cm 23.0×1012/cm 22.3×106/cm 2event rate171600552000465(quasi-elastic)125040004is shown in Figure 4.A detailed description of the Super-Kamiokande,which will be used as a far detector,has been made,4),10)and is not presented here.The performance of the 1kt water Cherenkov detector,Fine-Grained Detector and Super-Kamiokande are summarized in Table.I.Number of neutrino events ex-pected in the fiducial volume are also shown in Table.II.§5.SensitivityAn examination of the νe ↔νµoscillation in K2K is an appearance search.Any small contamination of νe in the νµbeam can be confirmed by the lead-glass counter.An excellent particle-identification capability in the Super-Kamiokande detector was already examined.9)Therefore,a possible excess of electron neutrino events in the Super-Kamiokande detector is direct evidence of the neutrino oscillation.Although there is a possible background of π0from a neutral-current interaction of νµ,it can be easily recognized,because most of the π0have an energy of less than 1.0GeV.If the oscillation parameters,(∆m 2,sin 22θ)=(1×10−2,1),are assumed,the number of electron events with E e >1.5GeV is expected to be ∼90,whereas the background from π0and from νe contamination is only ∼4.The νµ↔ντoscillation can be examined by studying any distortion of the neutrino energy spectrum at Super-Kamiokande.The expected neutrino energy spectrum at given neutrino oscillation parameters is shown in Figure 5.The change in the neutrino energy spectrum as well as a reduction of neutrino events wouldFig.5.Expectedνµenergy spectra with Super-Kamiokande at1020protons on target for various νµ↔ντoscillation parameters(a)-(d)(data points with error bars)and for the no oscillations (solid histogram).comprise an evidence of neutrino oscillation.In the determination of the neutrino energy spectrum,we will employ a quasi-elastic interaction of muon neutrinos,because quasi-elastic scattering is recognized as single ring events in the Super-Kamiokande detector,and because the energy of the neutrinos can be calculated from the momentum and the scattering angle of the muon track.It should also be noted that the cross section of quasi-elastic scattering is well understood compared with that of other interactions.The sensitivity of theνe↔νµandνµ↔ντoscillation in K2K is shown in Figure6together with other experiments1),4),11)-20)which are proposed,under construction,in data taking,orfinished.The sensitive parameter regions in K2K are∆m2>∼1×10−3eV2and sin22θ>0.1for theνe↔νµoscillation,and∆m2>∼3×10−3eV2and sin22θ>0.4for theνµ↔ντoscillation.Thefirst neutrino beam in K2K will be available in January,1999.References1)K.S.Hirata et al.,Phys.Lett.B205,416(1988);K.S.Hirata et al.,Phys.Lett.B280,146(1992);E.W.Beier et al.,Phys.Lett.B283,446(1992);Y.Fukuda et al.,Phys.Lett.B335,237(1994).2) D.Casper et al.,Phys.Rev.Lett.66,2561(1991);R.Becker-Szendy et al.,Phys.Rev.D46,3720(1992).3)W.W.M.Allison et al.,Phys.Lett.B391,491(1997).4)Y.Totsuka,in Proceedings of18th International Symposium on Lepton Photon Interac-10-410-310-210-1100.20.40.60.81∆m 2(e V 2)sin 2(2θ)νµ→νx90%C.L.K2KCDHSCHARM MINOSKamiokandesub-GeV + multi-GeVSuper-Kamiokandepreliminary 400dayssub-GeV + multi-GeV, P.C.10-410-310-210-1100.20.40.60.81∆m 2(e V 2)sin 2(2θ)νµ→νe90%C.L.K2KE776KARMENBugeyKrasnoyarsk CHOOZMINOSKamiokandeLSNDsub-GeV + multi-GeV(a)(b)Fig.6.Exclusion contours of 90%C.L.for (a)νµ↔ντoscillation and (b)νe ↔νµoscillation(thick solid lines).The allowed regions by Kamiokande,1)LSND 17)and Super-Kamiokande 4)and excluded (or sensitive)regions by other experiments are also plotted.11)-20).tions,Hamburg,July 1997.5)K.Nishikawa et al.,E362KWK-PS proposal,March,1995;Nucl.Phys.B (Proc.Suppl.)59,289(1997)6)H.Noumi et al.,Nucl.Instrum.Meth.A398,399(1997)7)Y.Yamanoi et al.,“Large Horn Magnets at KEK neutrino beam line”,KEK Preprint 97-225,November 1997.8)T.Inagaki,Master thesis,Univ.of Tokyo,1998(in Japanese).9)S.Kasuga et al.,Phys.Lett.B374,238(1996).10)Nishijima,in these proceedings.11) F.Dydak et al.(CDHS collaboration),Phys.Lett.B134,281(1984).12) F.Bergsma et al.(CHARM collaboration),Z.Phys.C40,171(1988).13)MINOS collaboration,“P-875:A long baseline neutrino oscillation experiment at Fermi-lab”,NuMI-L-63,Feb.1995.14)L.Borodovsky et al.(E776collaboration),Phys.Rev.Lett.68,274(1992).15)G.S.Vidyakin et al.(Krasnoyarsk collaboration),JETP Lett.59,390(1994).16) B.Achkar et al.(Bugey collaboration),Nucl.Phys.B434,503(1995).17) C.Athanassopoulos et al.(LSND collaboration),Phys.Rev.Lett.75,2650(1995);C.Athanassopoulos et al.(LSND collaboration),Phys.Rev.Lett.77,3082(1997).18) B.Armbruster et al.(KARMEN collaboration),Nucl.Phys.B(Proc.Suppl.)38,235(1995).19)G.Zacek et al.(Gosgen collaboration),Phys.Rev.D34,2621(1996).20)M.Apollonio et al.(Chooz collaboration),HEP/EX/9711002,November,1997.。
纹状体中等多棘神经元侧抑制效应与基底神经节运动功能调控
理特性进行有效区分[5]。近年来发现,纹状体还有 一少部分 MSNs共表达 D1DR和 D2DR,参与纹状体 旁支突触 连 接 的 形 成[6]。 在 纹 状 体 内 高 度 叠 加 的 神经元中 MSNs的短程轴突投射与相邻 MSNs之间 形成类似毛细血管的 γ氨基丁酸(γ-aminobutyric acid,GABA)能神 经 侧 支,被 称 为 侧 抑 制 突 触,可 产 生侧抑制 效 应[7]。 根 据 突 触 前 后 胞 体 的 细 胞 膜 包 含 DA受体的类型可以将侧抑制突触分为 D1MSN D2MSN、D1MSND1MSN、D2MSND2MSN及 D2MSN D1MSN四种突 触 连 接 方 式。 有 学 者 认 为,MSNs两 类亚型之间的侧支突触连接存在高度不对称性,即 每个 D2MSNs与相邻的多个 D1MSNs以及其他相 邻的 D2MSNs形成突触连接;而 D1MSNs大多可与 邻近的 D1MSNs形成突触连接,很少与 D2MSNs形 成突触[8];Zhou等[9]的实验发现,表达相同类型 DA 受体 的 MSNs更 容 易 形 成 侧 抑 制 突 触。 目 前 对 MSNs侧抑制 突 触 连 接 方 式 仍 存 在 一 定 争 议,但 上 述结果表明每个 MSNs仅与其靶神经元形成少数 GABA突触;这种来自局部神经元投射产生的前馈 抑制,由于其抑制作用较小,往往被忽视。 基底神经节运动调控的研究证实,D1MSNs接
·58·
生理科学进展 2019年第 50卷第 1期
纹状体中等多棘神经元侧抑制效应与 基底神经节运动功能调控
赵 刚 刘晓莉△ 乔德才
(北京师范大学体育与运动学院,北京 100875)
摘要 中等多棘神经元(medium spinyneurons,MSNs)是 纹 状 体 的 主 要 投 射 神 经 元,其 细 胞 膜 上 表 达的不同类型多巴胺(dopamine,DA)受体,分别参与基底神经节直接与间接两条运动神经通路功 能的调节。近年来发现,纹状体相邻 MSNs之间还存在突触连接,这种突触结构对直接或间接通路 的电活动产生侧抑制效应(lateralinhibition),并通过其前馈作用进一步调节基底神经节信息输出 核团的兴奋性。因此,纹状体 MSNs的侧抑制效应对运动的精确调节具有重要意义。本文拟从纹 状体神经元构筑与侧抑制突触效应、纹状体 MSNs侧抑制突触效应参与基底神经节调控的生理学 机制、MSNs侧抑制效应异常与帕金森病(Parkinson'sdisease,PD)等方面对纹状体 MSNs侧抑制效 应与基底神经节功能调控的机制进行综述。 关键词 基底神经节;纹状体;中等多棘神经元;突触连接;侧抑制效应 中图分类号 G804
短时记忆神经环路的神经生物学机制
短时记忆神经环路的神经生物学机制我们日常的生命活动离不开记忆。
记忆是指大脑通过一系列的神经元连接与重组,对过去的经历和信息进行编码、存储和检索的过程,是大脑对外界信息加工、积累、应用的基础。
其中的短时记忆起着重要的作用。
在咱们处理复杂信息时,短时记忆能够帮助我们暂时储存信息,而在新的信息输入或任务完成后,就会自动失去这些信息。
随后,只有具有重要意义的信息,才会被长期记忆所保存。
那么,短时记忆到底是如何形成的呢?短时记忆是大脑完成任务的一个必要部分,是信息加工和储存过程的关键。
它是一种能够记录自我感觉、表象和内部表象的短暂状态,在短暂状态下,大脑把信息加上一些处理,并且将其转换成人类可以理解的形式。
一般来说,短时记忆保存的时间很短,只有几秒钟,如果没有通过别的方式将这些信息存储下来,它就会丢失。
所以说,短时记忆并不是用来记录长时间储存的,而是用来处理和临时调整行为的。
比如,如果我们看一幅画,就需要利用短时记忆临时储存和处理所有的图像元素,以便帮助我们意识到画面中的重要细节,和更好运用我们的外在信息和知识。
短时记忆神经环路是研究人员最为关注的神经生物学结构之一,它涉及到视觉、听觉、触觉以及空间信息的保存和加工。
研究发现,大脑皮层的不同区域与丘脑、脆隔核、海马区、脑桥的交互作用,形成了神经环路,它们是支持短时记忆存储的基础。
短时记忆的加工与储存是指向丘脑、脆隔核和内侧颞叶的通路。
在丘脑和脆隔核的连接中,刺激信号进入霍纳斯环路,这个环子包含了形成记忆的重要神经元,包括前额叶、额叶尖、中央前回和扣带回。
事实上,近年来研究人员还发现,前额叶和额叶尖在控制短时记忆方面发挥了至关重要的作用,这些不同的区域是由不同的神经元组成,可以根据信息处理的需求进行交互,以创造出最有效的记忆状态。
不仅如此,在内侧颞叶中,海马区以及嗅脑、顶部皮层和伸展区都存在着一些自治系统,它们可以对来自丘脑、脆隔核的中枢信息进行处理和加工,并在随后的储存过程中,对大脑产生积极作用。
小鼠记忆提取实验报告
一、实验目的1. 了解小鼠记忆提取实验的基本原理和方法。
2. 探究不同记忆类型在小鼠大脑中的提取机制。
3. 评估记忆提取实验在研究小鼠认知功能中的应用价值。
二、实验材料1. 实验动物:成年雄性小鼠,体重20-25g,分为实验组和对照组。
2. 实验仪器:迷宫、电刺激器、显微镜、荧光显微镜、酶联免疫吸附试验(ELISA)试剂盒等。
3. 实验试剂:生理盐水、神经递质抗体、荧光染料等。
三、实验方法1. 记忆训练(1)迷宫训练:将实验组小鼠放入迷宫,观察其在迷宫中的行为表现,记录其到达终点所需的时间。
训练过程中,对照组小鼠不接受任何训练。
(2)电刺激训练:在迷宫训练的基础上,对实验组小鼠进行电刺激训练。
在迷宫中设置电刺激区域,当小鼠进入该区域时,给予其电刺激。
观察小鼠在电刺激区域内的行为反应,记录其逃避电刺激所需的时间。
2. 记忆提取(1)迷宫测试:在记忆训练后,对实验组小鼠进行迷宫测试。
观察其在迷宫中的行为表现,记录其到达终点所需的时间。
(2)电刺激测试:在迷宫测试后,对实验组小鼠进行电刺激测试。
观察其在电刺激区域内的行为反应,记录其逃避电刺激所需的时间。
3. 脑组织提取及检测(1)脑组织提取:将实验组小鼠处死后,迅速取出大脑,置于冰浴中,制成脑组织匀浆。
(2)神经递质检测:采用ELISA试剂盒检测小鼠大脑中神经递质的含量。
(3)荧光显微镜观察:将小鼠大脑切片,采用荧光显微镜观察神经元形态及突触结构。
四、实验结果1. 记忆训练(1)迷宫训练:实验组小鼠在迷宫训练中,到达终点所需的时间逐渐缩短,表明其记忆能力得到提高。
(2)电刺激训练:实验组小鼠在电刺激训练中,逃避电刺激所需的时间逐渐缩短,表明其记忆能力得到提高。
2. 记忆提取(1)迷宫测试:实验组小鼠在迷宫测试中,到达终点所需的时间较对照组显著缩短,表明其记忆能力得到提高。
(2)电刺激测试:实验组小鼠在电刺激测试中,逃避电刺激所需的时间较对照组显著缩短,表明其记忆能力得到提高。
探索大脑奥秘向前迈出重要一步 脑皮层环路发育过程中神经元间交流“秘密语言”被破解
探索大脑奥秘向前迈出重要一步脑皮层环路发育过程中神经
元间交流“秘密语言”被破解
佚名
【期刊名称】《中国微侵袭神经外科杂志》
【年(卷),期】2012(17)5
【摘要】复旦大学神经生物学研究所禹永春副教授领衔的课题组与美国纽约斯隆凯特琳癌症研究中心时松海课题组经3年多合作研究,在脑神经环路发育研究方面取得重要进展,首次发现脑神经元间由电突触介导的信息交流在大脑皮层神经环路发育中有重要作用。
该研究不仅为科学家深入揭示大脑皮层神经网络形成之谜提供了重要启示,也为脑神经环路发育异常相关疾病(如小儿癫、自闭症、智力发育迟滞等)的诊断和治疗提供了新思路和新靶点。
该成果预定5月3日在线发表在世界顶级科技学术期刊《自然》杂志上。
【总页数】1页(P238-238)
【关键词】脑神经环路;神经生物学;大脑皮层;发育过程;元间;语言;智力发育迟滞;《自然》杂志
【正文语种】中文
【中图分类】R595.5
【相关文献】
1.小鼠胚胎发育过程中N-Cadherin异常表达对大脑皮层神经元迁移的影响 [J], 付苏雷;杨慈清;贾阳阳;李晗;郭志坤;林俊堂
2.大脑皮层神经元微管相关蛋白-2在人胚发育过程中的表达变化 [J], 王慧娟;郭建国;张金平;张惠欣;赵昱;李陈莉
3.中美科学家联手破解脑皮层的“秘密语言” [J],
4.复旦大学科学家破解脑皮层的“秘密语言” [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :0710.2926v 1 [h e p -p h ] 15 O c t 2007International Journal of Modern Physics A cWorld Scientific Publishing Company Long Baseline Neutrino Experiments with Two-Detector SetupHISAKAZU MINAKATADepartment of Physics,Tokyo Metropolitan University,Hachioji,Tokyo 192-0397,Japanminakata@phys.metro-u.ac.jpI discuss why and how powerful is the two-detector setting in neutrino oscillation ex-periments.I cover three concrete examples:(1)reactor θ13experiments,(2)T2KK,Tokai-to-Kamioka-Korea two-detector complex for measuring CP violation,determining the neutrino mass hierarchy,and resolving the eight-fold parameter degeneracy,(3)two-detector setting in a neutrino factory at baselines 3000km and 7000km for detecting effects of non-standard interactions (NSI)of neutrinos.1.IntroductionUnified understanding of the physics of quark and lepton flavor mixings would be the most important goal for the contemporary flavor physics.Though we started to grasp the structure of the flavor mixing matrix,the MNS matrix 1,there is a long way to go.Unlike the quark sector in which the dominant mechanism of CP violation is identified 2,the very existence of CP violation itself remains a mystery in the lepton sector.Therefore,looking for leptonic CP violation will be one of the crucial key elements in planning the next generation neutrino experiments.Moreover,various studies indicated that uncovering leptonic CP violation is highly challenging experimentally.Therefore,strategic thoughts on how to make the goal may be of some use.This is the only reason I can think of why this talk with such a technical title (though it was given by the organizer)may be worth to be presented in the flavor physics conference.Yet,I will try to cover the related topics in a slightly wider context under the hope that it serves for illuminating the merits of the two-detector setting even more ly,I address the three concrete examples of the two-detector setting;a •Reactor θ13experiments 3,4•T2KK,Tokai-to-Kamioka-Korea identical two-detector complex for measuring CP violation,determining the neutrino mass hierarchy,and resolving the eight-fold parameter degeneracy 5,6•Two-detector setting in a neutrino factory (3000km,7000km)for detecting non-standard interactions (NSI)of neutrinos 7aWe define the two-detector setting as composed of two detectors excluding a front detector which measures un-oscillated neutrino flux or monitors beam.12Hisakazu MinakataBefore entering into the discussions let us raise a general question;What is good in two-detector setting?The answer is:•The systematic errors cancel between the two detectors.•Measurement at the two detectors can have synergy effects whose significance, however,varies a lot in case by case.2.Reactorθ13ExperimentsWith regard to multi detector reactor experiment,there is in fact,an ancestor experiment,the Bugey experiment8which utilized the three detectors albeit not quite identical ones.It was proposed in3,4that the only practical way to measure a small depletion due toθ13is to place two identical detectors one at a near(100-300 m)and the other at a far(1-2km)locations.Controlling the systematic errors and cancelation of them between the two detectors is the key to such difficult measurement.Now it becomes a“customary”design for the reactorθ13experiments and the principle is employed in all the projects in construction9.See10for other projects.3.T2KK;Tokai-to-Kamioka-Korea Two Detector ComplexIn the context of accelerator neutrino experiments a proposal of two detector set-ting appeared in the Brookhaven proposal11.The authors of Ref.12discussed two detector methods for measuring leptonic CP violation by observing neutrino oscilla-tion“phase”at two different locations.A concrete realization of this principle was proposed5,6in a form of identical two-detector setting using two megaton class detectors in Kamioka and Korea receiving an intense neutrino beam from J-PARC, the Tokai-to-Kamioka-Korea(T2KK)project.See13for more about the project.I just give a sketchy description here about how the T2KK two detector setting is powerful.For more details,in particular,for a fuller description of the sensitivities to CP violation,the mass hierarchy,and resolution of the eight-fold parameter de-generacy14,15,16,see5,6.Figure1shows how the spectrum information is powerful to determine CP phaseδresolving theδ↔π−δparison between the left and the right panels indicates that the T2KK setting is more efficient to re-solve the ambiguity by comparing the yields at the two detectors at the two different locations.It is often said that resolution of the mass hierarchy can be done by using long baseline thanks to the earth matter effect to neutrino oscillation.Though it is of course true,Fig.2indicates that it is not the whole story.The left panels are for the T2KK setting with each0.27Mtonfiducial mass detectors placed in Kamioka and Korea,whereas the right panels are for Korea only setting with0.54 Mtonfiducial mass.Thefigure demonstrates that the two detector comparison has a higher resolving power of the neutrino mass hierarchy than the Korea only setting.Though I do not elaborate,resolution of theθ23octant degeneracy is also merited by the two detector setting which does(Korea)and does not(Kamioka)Long Baseline Neutrino Experiments with Two-Detector Setup3(Kamioka 1Mt) × (4MW, ν 4yr + ν–4yr)101010-210-1123456invertedδ s i n 2(2θ13)(Kamioka 0.5Mt + Korea 0.5Mt) × (4MW, ν 4yr + ν–4yr)101010-210-1123456invertedδs i n 2(2θ13)Fig.1.The region allowed in δ−sin 22θ13space by 4years of neutrino and antineutrino running in T2K II (left panels),and the Kamioka-Korea two detector setting (right panels).They are taken from the supplementary figures behind the reference 5to which the readers are referred for details of the analysis.Notice that the standard setting in T2K II,2(6)years of neutrino (antineutrino)running,leads to a very similar results (as given in ?)to the one presented in the left panel of this figure.The true solutions are assumed to be located at (sin 22θ13and δ)=(0.01,π/4)with positivesign of ∆m 231,as indicated as the green star.The intrinsic and the ∆m 231-sign clones appear in thesame and the opposite sign ∆m 231panels,respectively.Three contours in each figure correspondto the 68%(blue line),90%(black line)and 99%(red line)C.L.sensitivities,respectively.feel the solar oscillation effect.There is an interesting competition and synergy between the T2KK and the reactor-acelerator combined method 4,17for lifting the θ23degeneracy.The former (latter)is more powerful at small (large)θ13.4.Probing Non-Standard Neutrino Interactions at Neutrino FactoriesMy last topics is the two detector setting in neutrino factory,one at ∼3000km and the other at ∼7000km,the latter so called the magic baseline 18.The idea of the setting was originated from the consideration of how the intrinsic θ13−δdegeneracy can be lifted 14,18.It has been also shown that a detector at the magic baseline has an extremely high sensitivity for measuring the average earth matter density (assuming the MSW theory)along the neutrino trajectory 19,20.Therefore,it is entirely natural to think about the possibility that neu-trino factory with two detector setting can serve for a powerful hunting tool for possible non-standard interactions (NSI)21,22possessed by neutrinos.It is conceivable that such NSI would arise if there exists new physics scale atTeV ranges.They may be parametrized by four Fermi interactions;L NSIeff=−2√ναγµP L νβ)(4Hisakazu Minakata(Kamioka 0.5Mt + Korea 0.5Mt) × (4MW, ν 4yr + ν–4yr)101010-210-1123456invertedδ s i n 2(2θ13)(Korea 1Mt) × (4MW, ν 4yr + ν–4yr)101010-210-1123456invertedδs i n 2(2θ13)Fig.2.The similar sensitivity plot as in Fig.1.The left panels are for T2KK and the right panels are for a single 0.54megaton detector placed in Korea.coefficients εfP αβand therefore the effective interaction εαβ≡f,Pn fLong Baseline Neutrino Experiments with Two-Detector Setup 5-0.02-0.0100.010.02εe τ-0.02-0.0100.01εe τ-0.02-0.0100.01-0.2-0.100.10.2εeeεe τ1 σ2 σ3 σ-0.02-0.0100.010.02εe τsin 22θ13 and δ marginalizedInput: δ = π/4 sin 22θ13 = 0.001εee = 0.1 εe τ= 0.01 εττ = 0.2-0.02-0.0100.01εe τ-0.02-0.0100.01-0.4-0.200.20.4εττεe τ-0.4-0.200.20.4εττ3000 k m-0.4-0.200.20.4εττ7000 k m-0.4-0.200.20.4-0.2-0.100.10.2εeeεττC o m b i n e dFig.3.Allowed regions projected into the plane of 2NSI parameters,εee -εeτ(left panels),εττ-εeτ(middle panels)and εee -εττ(right panels)corresponding to the case where the input parameters are as follows:sin 22θ13=0.001,δ=π/4,εeτ=0.01,εee =0.1,and εττ=0.2.The neutrino energy is E µ=50GeV and the baseline is taken as L =3000km (upper panels),7000km (middle horizontal panels)and combination (lower pannels).The thin dashed lines are to indicate the input values of εαβ.The fit was performed by varying freely 4parameters,θ13,δand 2ε’s with θ13and δbeing marginalized.The number of muons decays per year is 1021,the exposure considered is 4(4)years for neutrino (anti-neutrino),and each detector mass is assumed to be 50kt.Notice that this figure supplements Fig.16of 7which uses the same parameters as this figure except for the input value of CP phase,δ=3π/2.Ref.7for further details.Therefore,we have concluded (I believe for the first time)that the results obtained in this paper open the door to the possibility of using neu-trino factory as a discovery machine for NSI ,while keeping its function of precision measurement of lepton mixing parameters.Finally,I would like to emphasize that discovery of physics beyond the neutrino mass incorporated Standard Model would be much more exciting goal for remote future neutrino experiments.6Hisakazu MinakataAcknowledgmentsI would like to thank the organizers of ICFP2007for the invitation.My talk is based on works done by fruitful collaborations with my friends,in particular,Takaaki Kajita,Hiroshi Nunokawa,Renata Zukanovich Funchal.This work was supported in part by KAKENHI,Grant-in-Aid for Scientific Research,No19340062,Japan Society for the Promotion of Science,References1.Z.Maki,M.Nakagawa and S.Sakata,Prog.Theor.Phys.28,870(1962).2.M.Kobayashi and T.Maskawa,Prog.Theor.Phys.49,652(1973).3.V.Martemyanov,L.Mikaelyan,V.Sinev,V.Kopeikin and Yu.Kozlov,Phys.Atom.Nucl.66,1934(2003)[Yad.Fiz.66,1982(2003)][arXiv:hep-ex/0211070].4.H.Minakata,H.Sugiyama,O.Yasuda,K.Inoue and F.Suekane,Phys.Rev.D68,033017(2003)[Erratum-ibid.D70,059901(2004)][arXiv:hep-ph/0211111].5.M.Ishitsuka,T.Kajita,H.Minakata and H.Nunokawa,Phys.Rev.D72,033003(2005)[arXiv:hep-ph/0504026].6.T.Kajita,H.Minakata,S.Nakayama and H.Nunokawa,Phys.Rev.D75,013006(2007)[arXiv:hep-ph/0609286].7.N.Cipriano Ribeiro,H.Minakata,H.Nunokawa,S.Uchinami and R.Zukanovich Fun-chal,arXiv:0709.1980[hep-ph].8.Y.Declais et al.,Nucl.Phys.B434,503(1995).9. F.Ardellier et al.[Double Chooz Collaboration],arXiv:hep-ex/0606025;X.Guo etal.[Daya Bay Collaboration],arXiv:hep-ex/0701029;For RENO Collaboration,see, http://neutrino.snu.ac.kr/RENO/;K.K.Joo,Talk at Neutrino Oscillation Workshop (NOW2006),Conca Specchiulla(Otranto,Lecce,Italy),September9-16,2006.10.K.Anderson et al.,arXiv:hep-ex/0402041.11. D.Beavis et al.(E889Collaboration),Physics Design Report,BNL No.52459,April1995.12.H.Minakata and H.Nunokawa,Phys.Lett.B413,369(1997)[arXiv:hep-ph/9706281].13.Thefirst workshop:http://newton.kias.re.kr∼hepph/J2K/The second workshop:http://t2kk.snu.ac.kr/The third workshop:http://www-rccn.icrr.u-tokyo.ac.jp/workshop/T2KK07/14.J.Burguet-Castell,M.B.Gavela,J.J.Gomez-Cadenas,P.Hernandez and O.Mena,Nucl.Phys.B608,301(2001)[arXiv:hep-ph/0103258].15.H.Minakata and H.Nunokawa,JHEP0110,001(2001)[arXiv:hep-ph/0108085].16.G.L.Fogli and E.Lisi,Phys.Rev.D54,3667(1996)[arXiv:hep-ph/9604415].17.K.Hiraide,H.Minakata,T.Nakaya,H.Nunokawa,H.Sugiyama,W.J.C.Teves andR.Zukanovich Funchal,Phys.Rev.D73,093008(2006)[arXiv:hep-ph/0601258].18.P.Huber and W.Winter,Phys.Rev.D68,037301(2003)[arXiv:hep-ph/0301257].19.H.Minakata and S.Uchinami,Phys.Rev.D75,073013(2007)[arXiv:hep-ph/0612002].20.R.Gandhi and W.Winter,Phys.Rev.D75,053002(2007)[arXiv:hep-ph/0612158].21.L.Wolfenstein,Phys.Rev.D17,2369(1978).22.Y.Grossman,Phys.Lett.B359,141(1995)[arXiv:hep-ph/9507344].23.P.Huber,T.Schwetz and J.W. F.Valle,Phys.Rev.Lett.88,101804(2002)[arXiv:hep-ph/0111224].P.Huber,T.Schwetz and J.W.F.Valle,Phys.Rev.D66, 013006(2002)[arXiv:hep-ph/0202048].。