七年级数学上册1.2数轴相反数与绝对值1.2.1数轴课件2新版湘教版
湘教版七年级上册数学精品教学课件 第1章 有理数 绝对值 绝对值
例4 已知|x-4|+|y-3|=0,求 x+y 的值. 解析: 一个数的绝对值总是大于或等于 0,即为非 负数,若两个非负式的和为 0,则这两个式同时为 0.
解:根据题意可知 x-4=0,y-3=0, 所以 x=4,y=3, 故 x+y=7.
【归纳】 几个非负式的和为 0,则这几个式都为 0.
练一练
| 0.2 |= 0.2
213 =
21 3
| b |= -b (b<0)
| a – b | = a-b(a>b)
| a | = ±a 或 0
6. 正式排球比赛对所用的排球重量是有严格规定的, 现检查 5 个排球的重量,超过规定重量的克数记作正 数,不足规定重量的克数记作负数,检查结果如下:
问题: 指出哪个排球的质量好一些,并用绝对值的知识加以 说明. 答:第五个排球的质量好一些,因为它的绝对值
问题2 若把上面变化放在我们学过的数轴上分析,规 定向东为正方向,O 点为出发点,点 A,B 分别到出 发点 O 的距离是多少?
10
10
A
O
B
-10
0
10
点 A,B 分别到出发点 O 的距离是 10.
问题3 -10 与 10 是相反数,把它们在数轴上表示
出来,它们有什么相同之处和不同之处?
10
10
解:6 6, 8 8, 3.9 3.9, 5 5, 22
2 2 , 100 100, 0 0 11 11
想一想:因为正数可用a>0表示,负数可用a<0表示, 那么上述三条可怎么表述呢?
(1)如果a>0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0
典例精析
例1 求下列各数的绝对值.
湘教版数学七年级上册1.2《数轴、相反数与绝对值》说课稿2
湘教版数学七年级上册1.2《数轴、相反数与绝对值》说课稿2一. 教材分析湘教版数学七年级上册1.2《数轴、相反数与绝对值》这一节,主要让学生理解数轴的概念,掌握数轴的画法,理解相反数和绝对值的概念,并会进行相反数和绝对值的运算。
本节内容是初中数学的基础知识,对于学生以后的学习具有重要意义。
二. 学情分析七年级的学生已经初步掌握了实数的概念,对于实数的运算也有一定的了解。
但是,对于数轴、相反数和绝对值的概念,学生可能还很陌生。
因此,在教学过程中,需要引导学生从实际问题出发,逐步理解和掌握这些概念。
三. 说教学目标1.让学生理解数轴的概念,会画简单的数轴。
2.让学生理解相反数和绝对值的概念,并会进行相反数和绝对值的运算。
3.培养学生运用数轴解决实际问题的能力。
四. 说教学重难点1.数轴的概念和画法。
2.相反数和绝对值的概念及运算。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中抽象出数轴、相反数和绝对值的概念。
2.使用多媒体课件,帮助学生形象地理解数轴、相反数和绝对值的概念。
3.采用小组合作学习的方式,让学生在讨论中加深对知识的理解。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何用数轴表示两个数的大小关系。
2.新课导入:介绍数轴的概念,讲解数轴的画法。
3.讲解相反数的概念,并通过例题让学生掌握相反数的运算。
4.讲解绝对值的概念,并通过例题让学生掌握绝对值的运算。
5.练习:让学生独立完成一些有关数轴、相反数和绝对值的练习题。
6.总结:对本节课的内容进行总结,强调数轴、相反数和绝对值的重要性。
7.作业布置:布置一些有关数轴、相反数和绝对值的练习题,让学生巩固所学知识。
七. 说板书设计板书设计如下:数轴、相反数与绝对值•定义:规定了原点、正方向、单位长度的直线。
•画法:从左到右依次表示负数、零、正数。
•定义:两个数只有符号不同,我们称其中一个数为另一个数的相反数。
•运算:加上一个数的相反数,结果为零。
湘教版七年级上册数学精品教学课件 第1章 有理数 数轴 数轴
(1)请写出 A,B,C,D 分别表示什么数?
(2)在数轴上表示出﹣5,0,+3,﹣2 的点.
-5
-2 0
+3
解:(1)点 A 表示的数是 6;点 B 表示的数是 -4; 点 C 表示的数是 4;点 D 表示的数是 -1. (2)在数轴上表示出﹣5,0,+3,﹣2 的点如图所示.
6.在数轴上,老师不小心把一滴墨水滴在画好的数轴 上,如图所示,试根据图中标出的数值判断被墨水盖 住的整数,并把它写出来.
C
51
21
2
2
当堂练习
1.下列各图表示的数轴中,正确的是( C )
2.如图所示,在数轴上 A,B 两点所表示的有理数分
别为( C )
A. 3.5 和 3
B. 3.5 和 -3
C. -3.5 和 3
D. -3.5 和 -3
3.下列说法中,正确的是( C ) A. 数轴是一条规定了原点、正方向和单位长度的射线
4
★ 任何一个有理数都可以用数轴上的一个点来表示.
典例精析
例1 指出数轴上 A,B,C,D,E 各点分别表示什 么数.
解:点 A 表示 1.5;点 B 表示-0.5;点 C 表示 -3;点 D 表示3;点 E 表示-2.
方法归纳
由数轴上点的位置找出该点所表示的有理数的方法: 先根据点的位置定出数的符号,原点右边的点为
B. 离原点近的点所表示的有理数较小
C. 数轴上的点可以表示任意有理数
D. 原点在数轴的正中间
0
4.有理数 a,b,c 在数轴上的位置如图所示,则( D )
A. a,b,c 均是正数
B. a,b,c 均是负数
C. a,b 是正数,c 是负数 D. a,b 是负数,c 是正数
七年级数学上册第1章有理数1.2数轴相反数与绝对值1.2.3绝对值习题课件新版湘教版
编后语
做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐句,有言必录;最略则廖廖数笔,提纲挈领。做笔记的详略要依下面这些条件而定。
讲课内容——对实际材料的讲解课可能需要做大量的笔记。 最讲授的主题是否熟悉——越不熟悉的学科,笔记就越需要完整。 所讲授的知识材料在教科书或别的书刊上是否能够很容易看到——如果很难从别的来源得到这些知识,那么就必须做完整的笔记。 有的同学一味追求课堂笔记做得“漂亮”,把主要精力放在做笔记上,常常为看不清黑板上一个字或一句话,不断向四周同学询问。特意把笔记做得很
2019/5/25
最新中小学教学课件
23
谢谢欣赏!
2019/5/25
最新中小学教学课件
24
ቤተ መጻሕፍቲ ባይዱ
湘教版七年级数学上册 1.2 数轴、相反数与绝对值(第一章 有理数 学习、上课课件)
的两个点所表示的数互为相反数(0 除外) .
感悟新知
2. 相反数的性质:
知2-讲
任何一个数都有相反数,而且只有一个 .
正数的相反数是负数;负数的相反数是正数;
0 的相反数是 0.
3. 相反数的求法:
求一个数的相反数就是在这个数的前面加上“ -”,即 a
的相反数是 -a,其实质是改变这个数的符号 .
说法错误;
C. 一个数和它的相反数可能相等,例如 0,故该
选项说法正确;
D. 正数与负数互为相反数,例如 -2 和 3,符合
说法,但不是相反数,故该选项说法错误;
答案:C
知2-练
感悟新知
4-1.下面说法:① m的相反数是-m;
②互为相反数的两个数符号一定相反;
③ -(-3.8)的 相 反 数是-3.8;
感悟新知
知1-练
方法点拨:在数轴上识别数的正负性,关键看该数表示
的点与原点的位置关系:若点在原点的右侧,
则该点表示的数是正数;若点在原点的左侧,
则该点表示的数是负数;原点表示的数是 0.
感悟新知
知1-练
3-1.如图,在数轴上有 A, B, C, D 四个点,分别
表示不同的四个数,若从这四点中选一点作为原
点,使得其余三点表示的数中有两个正数和一个
负数,则这个点是(
A.点 A
B.点 B
C.点 C D.点 D
B
)
感悟新知
知识点 2 相反数
知2-讲
1. 定义 : 如果两个数只有符号不同,那么其中一个数叫作另
一个数的相反数,也称这两个数互为相反数 的距离相等
距离;
第 3 步:标出对应点后将数写在数轴的上方 .
1.2数轴、相反数与绝对值1.2.3 绝对值(课件)湘教版数学七年级上册
若几个数的绝对值之和为0,则这个和式中的 每个数都为0.
随堂练习
5.已知 a,b,c 为有理数,且它们在数轴上的对应点的
位置如图所示:
-c -b
-a
(1)试判断 a,b,c 的正负性.a是负数,b,c 是正数. (2)在数轴上表示 a,b,c 的相反数. (3)根据数轴化简:
(3) 当a 是负数时,|a|=-a.
新知探究 知识点 绝对值
例2 填一填: a<0
a>0
a -2 -1 -0.5 -0.1 0 2 4 5 100 |a| 2 1 0.5 0.1 0 2 4 5 100
|a|>0
|a|>0
a,a为非负数, 即|a|= -a,a为负数.
一个数的绝对值一 定是一个非负数.
①| a | =__-_a___;②| b | =___b___;③| c | =__c___.
课堂小结
定义
|a|=a, (a≥0) 代数意义
|a|=-a, (a<0)
绝对值
几何意义 一个数的绝对值表示这个数在数
轴上的对应点与原点之间的距离. 利用绝对值求值
应用
绝对值在实际生活中的应用
B
4
D
2O
4
2
C
A
-4 -3 -2 -1 0 1 2 3 4
点A,B与原点O的距离均为4,点C,D与原点O的距离均为2.
又|4|=4 , |-4|=4, |2|=2,|-2|=2.
因此,一个数的绝对值表示这个数在数轴上的对应点 与原点之间的距离.
湘教版七年级数学上册课件数轴、相反数与绝对值
()
(4) 如果两个数的绝对值相等,那么这两个数
相等
()
(5) 互为相反数的两个数的绝对值相等 ( )
4. 已知有三个数a,b,c在数轴上的位 置如下图所示
c
b
0a
则a,b,c三个数从小到大的顺序是:
c <b <a
则│a│< │c│, │<b│ │c│
5. 足球比赛中对所用的足球有严格的规定,下面是5个足 球的质量检测结果(用正数表示超过规定质量的克数,用 负数表示不足规定质量的克数)
2.选择: 下列几对数中互为相反数的一对为( B ) A.-(-8)和-(+8)B.-(+8)与+(-8) C.-(-8)与-(+8)
3.在数轴上标出2,-1, 5,-3及它们的相反数,视察每对相反 数所对应的点到原点的距离有什么关系.
解:2的相反数是-2,-1.5的相反数是1.5,-3的相反数是3.它 们在数轴上表示如下图所示;
(3)如果a=0,那么|a|=0
而且a 0
a (a>0)
即:︱a︱= 0 (a=0)
- a (a<0)
或者:
a
a (a 0) - a (a 0)
a
a (a 0) - a (a 0)
即: a 0
例2 若| a |=8.7,求a.
解 因为绝对值等于8.7的有理数有8.7和-8.7 两个,所以a=8.7或a=-8.7.
每对相反数所对应的点到原点的距离相等.
课堂小结
本节课学习了以下内容: 1.相反数的概念:如果两个数只有符号不同,那么其中一个
数叫做另一个数的相反数. 2.-a表示a的相反数.
布置作业:
1.2.3 绝对值
视察: