八年级数学实数检测试题

合集下载

八年级上册数学的实数试卷

八年级上册数学的实数试卷

一、选择题(每题4分,共20分)1. 下列各数中,不是有理数的是()A. -3.14B. 0.101001C. √2D. 32. 已知a是正数,且a²=1,那么a的值为()A. 1B. -1C. 1或-1D. 无法确定3. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -14. 已知a,b是实数,且a+b=0,那么a,b的关系是()A. a,b互为相反数B. a,b互为倒数C. a,b互为有理数D. a,b互为无理数5. 下列各数中,无理数是()A. √4B. √9C. √16D. √25二、填空题(每题4分,共20分)6. 下列各数中,有理数是________,无理数是________。

7. 已知a,b是实数,且a²=4,b²=9,那么a,b的值分别为________,________。

8. 绝对值小于2的实数有________个。

9. 下列各数中,正数是________,负数是________。

10. 已知a,b是实数,且a²+b²=0,那么a,b的值分别为________,________。

三、解答题(每题10分,共40分)11. 简述实数的概念,并举例说明。

12. 已知a,b是实数,且a²+b²=5,a-b=1,求a,b的值。

13. 已知x²+2x-3=0,求x的值。

14. 已知a,b是实数,且a²+b²=1,求a²+b²的最小值。

四、附加题(20分)15. 已知a,b是实数,且a²+b²=4,求|a|+|b|的最小值。

解答:一、选择题1. C2. A3. B4. A5. C二、填空题6. 有理数:-3.14,0.101001;无理数:√27. a=2或-2,b=3或-38. 无穷多个9. 正数:3;负数:-3.14三、解答题11. 实数包括有理数和无理数。

八年级数学上册第二章实数测试题含答案解析

八年级数学上册第二章实数测试题含答案解析

第二章实数检测题(本检测题满分:100分:时间:90分钟)一、选择题(每小题3分:共30分)1.(2016·天津中考)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.(2015·安徽中考)与1+最接近的整数是()A.4B.3C.2D.13.(2015·南京中考)估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间4.(2016·浙江衢州中考)在:﹣1:﹣3:0这四个实数中:最小的是()A. B.﹣1 C.﹣3 D.05.(2015·重庆中考)化简12的结果是()A.43B.23C.32D.266.若a:b为实数:且满足|a-2|+2b-=0:则b-a的值为()A.2 B.0 C.-2 D.以上都不对7.若a:b均为正整数:且a>7:b>32:则a+b的最小值是()A.3B.4C.5D.68.已知3a=-1:b=1:212c⎛⎫-⎪⎝⎭=0:则abc的值为()A.0 B.-1 C.-12D.129.(2016·黑龙江大庆中考)已知实数a、b在数轴上对应的点如图所示:则下列式子正确的是()第9题图A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>010.有一个数值转换器:原理如图所示:当输入的x=64时:输出的y等于()是有理数A.2 B.8 C.2D.2二、填空题(每小题3分:共24分)11.(2015·南京中考)4的平方根是_________;4的算术平方根是__________.12.(2016·福州中考)若二次根式在实数范围内有意义:则x 的取值范围是 .13.已知:若 3.65≈1.910:36.5≈6.042:则365000≈ :±0.000365≈ .14.绝对值小于π的整数有 .15.已知|a -5|+3b +=0:那么a -b = .16.已知a :b 为两个连续的整数:且a >28>b :则a +b = . 17.(福州中考)计算:(2+1)(2-1)=________. 18.(2016·山东威海中考) 化简:= .三、解答题(共46分) 19.(6分)已知:求的值.20.(6分)若5+7的小数部分是a :5-7的小数部分是b :求ab +5b 的值. 21.(6分)先阅读下面的解题过程:然后再解答: 形如n m 2±的化简:只要我们找到两个数a :b :使m b a =+:n ab =:即m b a =+22)()(:n b a =⋅:那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+:这里7=m :12=n : 因为::即7)3()4(22=+:1234=⨯: 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小:并说明理由: (1)与6: (2)与.23.(6分)大家知道是无理数:而无理数是无限不循环小数:因此的小数部分我们不能全部写出来:于是小平用-1来表示的小数部分:你同意小平的表示方法吗? 事实上小平的表示方法是有道理的:因为的整数部分是1:用这个数减去其整数部分:差就是小数部分. 请解答:已知:5+的小数部分是:5-的整数部分是b :求+b 的值.24.(8分)计算:(1)862⨯-82734⨯+:(2))62)(31(-+-2)132(-. 25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+:();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值:(2)nn ++11(n 为正整数)的值:(3++⋅⋅⋅+的值.第二章 实数检测题参考答案一、选择题1.C 解析: 19介于16和25之间:∵ 16<19<25:∴∴ 45:∴的值在4和5之间.故选C.2.B 解析:∵ 4.84<5<5.29:∴即2.22.3:∴ 1+2.2<11+2.3:即3.2<13.3:∴ 与1最接近的整数是3.3.C 解析:22 2.25 2.3, 2.2 2.3, 1.21 1.3,<<∴<<∴<<∴ 0.60.65<<:故选C .4.C 解析:根据实数的大小比较法则(正数都大于0:负数都小于0:正数大 于一切负数:两个负数比较大小:绝对值大的反而小)比较即可. ∵ ﹣3<﹣1<0<:∴ 最小的实数是﹣3:故选C . 5.B 解析:212432323=⨯=⨯=.6.C 解析:∵ |a -2|+2b -=0:∴ a =2:b =0:∴ b -a =0-2=-2.故选C .7.C 解析:∵ a :b 均为正整数:且a >7:b >32:∴ a 的最小值是3:b 的最小值是2: 则a +b 的最小值是5.故选C .8.C 解析:∵ 3a =-1:b =1:212c ⎛⎫- ⎪⎝⎭=0:∴ a =-1:b =1:c =12:∴ abc =-12.故选C . 9.D 解析:根据实数a 、b 在数轴上对应的点的位置可知1<a <2:﹣1<b <0:∴ ab <0:a +b >0:|a |>|b |:a ﹣b >0.故选D .10.D 解析:由图得64的算术平方根是8:8的算术平方根是22.故选D .二、填空题11.2± 2 解析:∵ ()2224,24,=-=∴ 4的平方根是2±:4的算术平方根是2.12.x ≥﹣1 解析:若二次根式在实数范围内有意义:则x +1≥0:解得x ≥﹣1.13.604.2 ±0.019 1 解析:436500036.510=⨯≈604.2:±0.000365=±43.6510-⨯ ≈±0.019 1. 14. ±3:±2:±1:0 解析:π≈3.14:大于-π的负整数有:-3:-2:-1:小于π的正整数有:3:2:1:0的绝对值也小于π.15. 8 解析:由|a -5|+3b +=0:得a =5:b =-3:所以a -b =5-(-3) =8. 16.11 解析:∵ a >28>b : a :b 为两个连续的整数: 又25<28<36:∴ a =6:b =5:∴ a +b =11. 17. 1 解析:根据平方差公式进行计算:(2+1)(2-1)=()22-12=2-1=1.18.2 解析:先把二次根式化简:再合并同类二次根式:得18-832-222==.三、解答题19.解:因为::即: 所以.故:从而:所以:所以.20.解:∵ 2<7<3:∴ 7<5+7<8:∴ a =7-2. 又可得2<5-7<3:∴ b =3-7.将a =7-2:b =3-7代入ab +5b 中:得ab +5b =(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2. 21.解:根据题意:可知:因为:所以.22.分析:(1)可把6转化成带根号的形式:再比较它们的被开方数:即可比较大小:(2)可采用近似求值的方法来比较大小. 解:(1)∵ 6=36:35<36:∴ 35<6. (2)∵ -5+1≈-2.236+1=-1.236:-22≈-0.707:1.236>0.707: ∴ -5+1<-22.23.解:∵ 4<5<9:∴ 2<<3:∴ 7<5+<8:∴ =-2.又∵ -2>->-3:∴ 5-2>5->5-3:∴ 2<5-<3:∴ b =2: ∴ +b =-2+2=.24. 解:(1)原式=623332223-+⨯ (2)原式=()266321343-+--- =6236623-+ =432213--.=1362323-.11(76)25.17 6.76(76)(76)⨯-==-++-解:()(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++=-11001+10=9.。

八年级数学上册实数试卷

八年级数学上册实数试卷

一、选择题(每题4分,共40分)1. 下列实数中,属于无理数的是()A. √4B. √9C. √16D. √252. 下列各数中,最小的数是()A. -1.5B. -1C. 0D. 13. 若a、b是实数,且a > b,则下列不等式中成立的是()A. a + b > 0B. a - b < 0C. a - b > 0D. a + b < 04. 已知实数x满足不等式-2 < x < 3,则x的取值范围是()A. (-2, 3)B. (-2, 0)C. (0, 3)D. (0, 3)5. 若实数x满足方程x^2 - 4x + 3 = 0,则x的值是()A. 1B. 3C. 1 或 3D. 26. 下列各数中,是绝对值最小的数是()A. |3|B. |-3|C. |0|D. |-5|7. 若a、b是实数,且a^2 = b^2,则下列结论正确的是()A. a = bB. a ≠ bC. a < bD. a > b8. 下列各数中,是等差数列的公差是1的是()A. 2, 3, 4, 5B. 1, 2, 3, 4C. 0, 1, 2, 3D. -1, 0, 1, 29. 已知实数x满足不等式x^2 - 5x + 6 ≥ 0,则x的取值范围是()A. x ≤ 2 或x ≥ 3B. x ≤ 3 或x ≥ 2C. x ≤ 2 或x ≥ 6D. x ≤ 6 或x ≥ 210. 下列各数中,是等比数列的公比是2的是()A. 1, 2, 4, 8B. 2, 4, 8, 16C. 4, 8, 16, 32D. 8, 16, 32, 64二、填空题(每题4分,共20分)11. 实数0的相反数是______。

12. 2的平方根是______。

13. 若a是正实数,则|a|的值是______。

14. 下列各数中,无理数有______。

15. 下列各数中,有理数有______。

八年级数学实数试卷【含答案】

八年级数学实数试卷【含答案】

八年级数学实数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是实数?A. √-1B. 3.14C. ∞D. 1/02. 两个实数相加,结果是什么类型的数?A. 自然数B. 整数C. 有理数D. 实数3. 下列哪个数是有理数?A. √2B. πC. 1/2D. √-14. 下列哪个数是无限不循环小数?A. 0.333B. 3.141592653C. 0.121212D. 1.4142135625. 下列哪个数是无理数?A. 0.5B. 1.333C. √3D. 1/3二、判断题(每题1分,共5分)1. 所有的有理数都是实数。

()2. 两个实数相乘,结果一定是实数。

()3. 0是实数。

()4. 所有的整数都是有理数。

()5. 两个无理数相加,结果一定是有理数。

()三、填空题(每题1分,共5分)1. 实数包括有理数和无理数,有理数包括整数和_________。

2. 两个实数相加,结果一定是_________。

3. 两个实数相乘,结果一定是_________。

4. 0的倒数是_________。

5. 两个实数相除,结果一定是_________。

四、简答题(每题2分,共10分)1. 请简述实数的定义。

2. 请简述有理数的定义。

3. 请简述无理数的定义。

4. 请简述实数的分类。

5. 请简述实数的性质。

五、应用题(每题2分,共10分)1. 已知a和b是实数,且a+b=5,ab=6,求a和b的值。

2. 已知x和y是实数,且x+y=3,x-y=1,求x和y的值。

3. 已知m和n是实数,且m+n=4,mn=3,求m和n的值。

4. 已知p和q是实数,且p+q=7,p-q=1,求p和q的值。

5. 已知r和s是实数,且r+s=8,rs=15,求r和s的值。

六、分析题(每题5分,共10分)1. 请分析实数与有理数的关系。

2. 请分析实数与无理数的关系。

七、实践操作题(每题5分,共10分)1. 请用计算器计算√2的值,并判断其是有理数还是无理数。

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。

八年级数学实数综合测试题及参考答案(人教版)

八年级数学实数综合测试题及参考答案(人教版)

八年级数学《实数》综合测试题一、选择题: 1. 在实数5757757775.0722、(相邻两个5之间7的个数逐次加1)、、、、02753- 32)2(0-、、ππ中,无理数的个数是( ) (A ) 3个 (B ) 4个 (C ) 5个 (D ) 6个2.以下语句或式子:①-3是81的平方根;②-7是2)7(-的算术平方根;③25的平方根是±5;④-9的平方根是±3;⑤ 0没有算术平方根.其中正确的个数是 [ ] (A )0个 (B )1个 (C )2个 (D )3个 3. 若32b -是b -2的立方根,那么( )A 2<bB 2=bC 2>bD b 能够为任意实数4.|-64|的立方根是 [ ](A )4± (B )4 (C )8± (D )8 5. 当14+a 的值为最小值时,a 的值为( )A 1-B 41- C 0 D 16.估量3124与26的大小关系是 [ ](A )3124>26 (B )3124=26(C )3124<26 (D )无法判定7.假设一个自然数的算术平方根是m ,那么此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是 [ ](A )12+m (B )12+m (C ) 1+m (D )1+m8.若33b a +=0,那么a 与b 的关系是 [ ](A )0==b a (B )b a = (C )0=+b a (D )ba 1= 9. 若m 是n 的算术平方根,那么n 的平方根是( )A mB m ±C m ±D m10.若a a -=2,那么实数a 在数轴上的对应点必然在 [ ](A )原点左侧 (B )原点右边 (C )原点或原点左侧 (D )原点或原点右边 二、填空题:11. 比较大小:215- 85(填“>”,“<”或“=”) 12.已知,10<<a 化简=-+-++2121aa a a _____.13.已知,2323,2323+-=-+=y x 那么代数式222y xy x +-的值为_____.14.计算:_______)25()25(20082007=+⨯-. 15.已知,04)1(222=-++y x 则22y x +______.16. 1,34,39,322,… 符合那个规律的第五个数是_____. 17.有四个实数别离是|3-|,2π,9,π4,请你计算其中有理数的和与无理数的积的差,其计算结果是_____. 18.实数a ,b 在数轴上的位置如图1所示,那么化简=-++2)(a b b a _____. 三、解答题: 19.计算:(1)91)3(220160+--⨯π (2) 36632223513459-⨯÷ (3) 432|2535|)2(2⨯÷-+- (3)|23|3)13(3)33(4801----+-- 20.已知13的整数部份为a ,小数部份为b ,试求)13(41a b +的值. 21. (1)已知实数z y x 、、知足0412311442=+-++++-z z z y y x ,求22)(x z y ⋅+的值; (2)已知,321,321-=+=y x 求xy y x -+2222的值.22. 阅读以下运算进程: ①3333331=⨯=,②3252525)25)(25(25251-=--=-+-=+ 数学上把这种将分母中的根号去掉的进程称作“分母有理化”。

((新人教版))八年级数学第二章《实数》单元测试卷(共4页)

((新人教版))八年级数学第二章《实数》单元测试卷(共4页)

八年级数学第二章《实数》单元测试卷 班级 姓名 学号一、选择题1、在下列各数3.1415、0.2060060006…、0、2.0 、π-、35、722、27无理数的个数是 ( )A 、 1 ;B 、2 ;C 、 3 ;D 、 4。

2、一个长方形的长与宽分别时6、3,它的对角线的长可能是 ( )A 、整数;B 、分数 ;C 、有理数 ;D 、无理数3、下列六种说法正确的个数是 ( )A 、1 ;B 、2;C 、3;D 、4○1无限小数都是无理 ○2正数、负数统称有理数 ○3无理数的相反数还是无理数 ○4无理数与无理数的和一定还是无理数 ○5无理数与有理数的和一定是无理数 ○6 无理数与有理数的积一定仍是无理数4、下列语句中正确的是 ( )A 、3-没有意义;B 、负数没有立方根;C 、平方根是它本身的数是0,1;D 、数轴上的点只可以表示有理数。

5、下列运算中,错误的是( ) ①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A 、1个 ; B 、2个;C 、3个 ;D 、4个。

6、2)5(-的平方根是( )A 、5± ;B 、5;C 、5-;D 、5±。

7、下列运算正确的是( )A 、3311--=-;B 、 3333=- ;C 、 3311-=- ;D 、3311-=- 。

8、若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为 ( ) A 、1± ;B 、;C 、3或5 ;D 、5。

9、下列说法错误的是( )A 、2是2的平方根;B 、两个无理数的和,差,积,商仍为无理数;C 、—27的立方根是—3;D 、无限小数是无理数。

10、若9,422==b a ,且0<ab ,则b a -的值为 ( )A 、2-;B 、5± ;C 、5;D 、5-。

11、数 032032032.123是 ( )A 、有限小数 ;B 、无限不循环小数 ;C 、无理数 ;D 、有理数12、下列说法中不正确的是( )A 、1-的立方根是1-,1-的平方是1 ;B 、两个有理之间必定存在着无数个无理数;C 、在1和2之间的有理数有无数个,但无理数却没有;D 、如果62=x ,则x 一定不是有理数。

苏教版数学八年级上册第4章《实数》检测卷(含答案)

苏教版数学八年级上册第4章《实数》检测卷(含答案)

八年级上册第4章《实数》检测卷满分120分姓名:___________班级:___________学号:___________一.选择题(共8小题,满分24分,每小题3分)1.在3.14159,4,1.1010010001…,4.,π,中,无理数有()A.1个B.2个C.3个D.4个2.以下说法正确的是()A.两个无理数之和一定是无理数B.带根号的数都是无理数C.无理数都是无限小数D.所有的有理数都可以在数轴上表示,数轴上所有的点都表示有理数.3.用四舍五入法将0.00519精确到千分位的近似数是()A.0.0052 B.0.005 C.0.0051 D.0.00519 4.下列说法正确的是()A.实数与数轴上的点一一对应B.无理数与数轴上的点一一对应C.整数与数轴上的点一一对应D.有理数与数轴上的点一一对应5.a2的算术平方根是2,则a的值为()A.±2 B.2 C.4 D.±4 6.利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.9 7.实数a、b、c满足a<b且ac>bc,它们在数轴上的对应点的位置可以是()A.B.C.D.8.若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7 B.﹣1,7 C.1,﹣7 D.﹣1,﹣7二.填空题(共8小题,满分32分,每小题4分)9.实数81的平方根是.10.计算:=.11.比较2和大小:2 (填“>”、“<“或“=”).12.一个正数的两个平方根是a﹣4和3,则a=.13.将1299万取近似值保留三位有效数字为,该近似数精确到位.14.若的整数部分为a,小数部分为b,则a﹣b=.15.若+|b+1|=0,则(a+b)2020=.16.对于实数m,n,定义运算m*n=(m+2)2﹣2n.若2*a=4*(﹣3),则a=.三.解答题(共8小题,满分64分)17.(6分)计算:.18.(8分)求下列各式中x的值:(1)25x2﹣36=0;(2)x3﹣3=;19.(6分)已知2a﹣1的一个平方根是3,3a+b﹣1的一个平方根是﹣4,求a+2b的平方根.20.(8分)阅读材料:图中是小马同学的作业,老师看了后,找来小马问道:“小马同学,你标在数轴上的两个点对应题中的两个无理数,是吗?”小马点点头.老师又说:“你这两个无理数对应的点找的非常准确,遗憾的是没有完成全部解答.”请你帮小马同学完成本次作业.请把实数0,﹣π,﹣2,,1表示在数轴上,并比较它们的大小(用<号连接).解:21.(8分)车工小王加工生产了两根轴,当它把轴交给质检员验收时,质检员说:“不合格,作废!”小王不服气地说:“图纸要求精确到2.60m,一根为2.56m,另一根为2.62m,怎么不合格?”(1)图纸要求精确到2.60m,原轴的范围是多少?(2)你认为是小王加工的轴不合格,还是质检员故意刁难?22.(8分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)求m的值.(2)求|m﹣1|+m+6的值.23.(10分)阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣1×i+2×i﹣i2=2+(﹣1+2)i+1=3+i;i3=i2×i=﹣1×i=﹣ii4=i2×i2=﹣1×(﹣1)=1根据以上信息,完成下列问题:(1)填空:3i3=;(2)计算:(1+i)×(3﹣4i)+i5;(3)计算:i+i2+i3+i4+ (i2022)24.(10分)如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E在数轴上表示的数是5.且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,求当x多少秒时,OM=ON.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,当两个长方形重叠部分的面积为6时,求长方形ABCD运动的时间.参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:在3.14159,4,1.1010010001…,4.,π,中,无理数有1.1010010001…,π共2个.故选:B.2.解:A、两个无理数之和一定是无理数,错误,例如+(﹣)=0;B、带根号的数都是无理数,错误,例如;C、无理数都是无限小数,正确;D、所有的有理数都可以在数轴上表示,数轴上所有的点都表示有理数,错误,实数与数轴上的点一一对应.故选:C.3.解:0.00519精确到千分位的近似数是0.005.故选:B.4.解:数轴不仅表示有理数,也可以表示无理数,例如:如图,矩形OABC,OA=1,OC=2,则OB =,以O为圆心,OB为半径画弧交数轴于点D,则点D所表示的数为:,同理,可以在数轴上表示其它的无理数,因此数轴上的点与实数一一对应,故选:A.5.解:∵a2的算术平方根是2,∴a2=4,则a=±2,故选:A.6.解:∵≈2.646,∴与最接近的是2.6,故选:B.7.解:A由图可知,因为a>b,不符合题意,所以A选项不正确;B由图可知,因为a<b<0,c<0,根据不等式的性质ac>bc,所以B选项正确;C由图可知,因为a<b<0,c>0,根据不等式的性质ac<bc,所以C选项不正确;D由图可知,因为a>b,不符合题意,所以D选项不正确.故选:B.8.解:∵|a|=4,,且a+b<0,∴a=﹣4,b=﹣3或a=﹣4,b=3,则a﹣b=﹣1或﹣7.故选:D.二.填空题(共8小题,满分32分,每小题4分)9.解:实数81的平方根是:±=±9.故答案为:±9.10.解:=﹣0.1.故答案为:﹣0.1.11.解:∵1<3<4,∴<<,∴1<<2,∴2>,故答案为:>.12.结:由题意得a﹣4+3=0,解得a=1,故答案为1.13.解:根据分析得:将1 299万取近似值保留三位有效数字为1.30×107,该近似数精确到十万位.14.解:∵92<93<102,∴,∴a=9,b=,∴a﹣b=9﹣()=18﹣.故答案为:18﹣.15.解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.16.解:∵m*n=(m+2)2﹣2n,∴2*a=(2+2)2﹣2a=16﹣2a,4*(﹣3)=(4+2)2﹣2×(﹣3)=42,∵2*a=4*(﹣3),∴16﹣2a=42,解得a=﹣13,故答案为:﹣13.三.解答题(共8小题,满分64分)17.解:=5﹣1+2+(﹣4)=2.18.解:(1)方程整理得:x2=,开方得:x=±;(2)方程整理得:x3=,开立方得:x=.19.解:∵2a﹣1的平方根为±3,3a+b﹣1的平方根为±4,∴2a﹣1=9,3a+b﹣1=16,解得:a=5,b=2,∴a+2b=5+4=9,∴a+2b的平方根为±3.20.解:根据题意,在数轴上分别表示各数如下:∴.21.解:(1)车间工人把2.60m看成了2.6m,近似数2.6m的要求是精确到0.1m;而近似数2.60m的要求是精确到0.01m,所以轴长为2.60m的车间工人加工完原轴的范围是2.595m≤x<2.605m,(2)由(1)知原轴的范围是2.595m≤x<2.605m,故轴长为2.56m与2.62m的产品不合格.22.解:(1)由题意A点和B点的距离为2,A点的坐标为,因此B点坐标m=2.(2)把m的值代入得:|m﹣1|+m+6=|2﹣1|+2﹣+6,=|1|+8﹣,=﹣1+8﹣,=7.23.解:(1)3i3=3×i×(﹣1)=﹣3i,故答案为﹣3i;(2)原式=3﹣4i+3i﹣4i2=3﹣i﹣4×(﹣1)=3﹣i+4=7﹣i;(3)原式=[i+(﹣1)+i×(﹣1)+1]×505+(﹣1)=0+(﹣1)=﹣1.24.解:(1)∵长方形EFGH的长EH是8个单位长度,且点E在数轴上表示∴点H在数轴上表示的数是5+8=13∵E、D两点之间的距离为12点D表示的数为5﹣12=﹣7∵长方形ABCD的长AD是4个单位长∴点A在数轴上表示的数是﹣7﹣4=﹣11故答案为:13,﹣11;(2)由题意知,线段AD的中点为M,则M表示的数为﹣9,线段EH上一点N且EN=EH,则N 表示的数为7;由M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,则经过x秒后,M点表示的数为4x﹣9,N点表示的数为7﹣3x,∵OM=ON,∴|4x﹣9|=|7﹣3x|,∴4x﹣9=7﹣3x,或4x﹣9=3x﹣7,∴x=,或x=2,∴x=秒或x=2秒时,OM=ON;(3)∵在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,两个长方形重叠部分的面积为6,∴重叠部分的的长方形的长为3,∴①当点D运动到E点右边3个单位时,两个长方形重叠部分的面积为6,此时长方形ABCD运动的时间为:(DE+3)÷2=(12+3)÷2=(秒),②当点A运动到H点右边3个单位时,两个长方形重叠部分的面积为6,此时长方形ABCD运动的时间为:(AD+DE+EH﹣3)÷2=(4+12+8﹣3)÷2=(秒),综上,长方形ABCD运动的时间为秒或秒.。

2024~2025学年八年级数学上册第二章实数单元检测[含答案]

2024~2025学年八年级数学上册第二章实数单元检测[含答案]

1的结果是( )A .2BC .D .2.有一个数值转换器,原理如图所示.当输入的x 为-512时,输出的y 是 ( )A .-2B .C .D .3.如图,实数3在数轴上的大致位置是( )A .点AB .点BC .点CD .点D4a 的取值为( )A .0B .12-C .﹣1D .15用不等号连接起来为( )A B C D 6.已知有理数a 、b 、c 在数轴上的位置如图所示,试化简:2a a c b a b c -++--+-.( )A .-2bB .-bC .-2aD .a 7.最简二次根式与是同类二次根式,则a 为( )A .6B .2C .3或2D .18.下列关于实数a 说法正确的是( )A .a 的相反数是-aB .a 的倒数是-aC .a 的绝对值是±aD.a的平方是正数9.下列说法:①5是25的算术平方根;②56是2536的一个平方根;③2(4)-的平方根是4-;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图为张小亮的答卷,他的得分应是()姓名张小亮得分?填空(每小题20分,共100分)①1-的绝对值是1 .②2的倒数是2-.③2-的相反数是2 .④1的立方根是1 .⑤1-和7的平均数是3 .A.100分B.80分C.60分D.40分11=.12.计算:2-=.13=x满足14.若0x-=,则1y x+的值为.15.如图,从一个大正方形中截去面积分别为8和18的两个小正方形,则图中阴影部分面积为.16.如图,已知Rt△ABC中,BC=1,以点A为圆心,AC长为半径画弧,交数轴于点D,则点D表示的数为.17.对于任意不相等的两个实数a 、b ,定义一种运算如下:a ⊗,如图3⊗8⊗5= .18.观察下列各式:2225(23)+=++=++=,2228(17)121(1+=++=++´=,…….请运用以上的方法化简= .19.计算:(2)(3)+)21.20.已知A =-B =,12C =-A 、B 、C 是可以合并的最简二次根式,求a 、b 及A B C +-的值.21.秦九韶(1208年~1268年),字道古,南宋著名数学家.与李冶、杨辉、朱世杰并称宋元数学四大家,他精研星象、音律、算术、诗词、弓剑、营造之学,他于1247年完成的著作《数学九章》中关于三角形的面积公式与古希腊几何学家海伦的成果并称“海伦−秦九韶公式”,它的主要内容是,如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,S 为三角形的面积,那么S =.(1)如图在ABC V 中,5BC =,6AC =,7AB =,请用上面的公式计算ABC V 的面积;(2)一个三角形的三边长分别为a ,b ,c ,15s p ==,10a =,求bc 的值,22.问题探究:因为21)3=-1,=因为21)3=+1,=因为2(27=-2=请你根据以上规律,结合你的经验化简下列各式:;23.[材料一]两个含有二次根式且非零的代数式相乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式.2=1)1)2+´-=,11互为有理化因式.(1的有理化因式是______(写出一个即可),2_______(写出一个即可);[材料二]如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.(2+[材料三]与分母有理化类似,将代数式分子、分母同乘分子的有理化因式,从而消去分子中的根式,这种变形叫做分子有理化.=(31.C故选C.2.D【分析】把-512按给出的程序逐步计算即可.【详解】由题中所给的程序可知:把-512取立方根,结果为-8,因为-8是有理数,所以再取立方根为-2,因为-2是有理数,所以再取立方根为因为.故选d.【点睛】本题考查了立方根,此类题目比较简单,解答此类题目的关键是弄清题目中所给的运算程序.3.C【详解】分析:根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质,可得答案.详解:由3<4,得﹣4<﹣<﹣3,﹣1<3﹣<0,故选C.点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.4.B【详解】分析:二次根式一定是非负数,则最小值即为0,列方程求解即可.详解:0³,=时为最小值.即:210a+=,∴12 a=-.故选B.点睛:本题考查了二次根式有意义的条件.5.D【详解】≈1.414=1.380,1.380<1.414<1.442,故选D.6.A【详解】根据数轴上点的位置得:a<b<0<c,且|b|<|c|<|a|,∴-a>0,a+c<0,b−2a>0,b−c<0,则原式=-a-( a+c)-( b−2a)-(b−c)=-a-a-c-b+2a-b+c=-2b,故选A.7.B【详解】由题意可得a2+3=5a−3,解得a=2或a=3;当a=3时,a2+3=5a−3=12不是最简根式,因此a=3不合题意,舍去;因此a=2.故选B.8.A【详解】A.a的相反数是−a,故A正确;B.a的倒数是1a,故B错误;C.|a|是非负数,故C错误;D.a的平方是非负数,故D错误;故选A.9.C【分析】根据平方根和算术平方根、立方根的意义,逐一判断即可.【详解】①5是25的算术平方根,正确;②56是2536的一个平方根,正确;③()24-的平方根是4±,不正确;④立方根和算术平方根都等于自身的数是0和1,正确.故选C.【点睛】此题主要考查了平方根、算术平方根、立方根的意义,熟练掌握概念是解题关键. 10.B【分析】根据绝对值、倒数、相反数、立方根以及平均数进行计算即可.【详解】解:−1的绝对值是1,2的倒数是12,−2的相反数是2,1的立方根为1,−1和7的平均数是3,答对了4题,故小亮得了80分,故选B .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.11= =【点睛】本题主要考查二次根式的分母有理化,利用平方差公式进行分母有理化计算是解题关键.12【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22éù-ëû【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键.13.2≤x<3【分析】因为二次根式的除法法则)0,0a b =³>,=:20,30-³->x x ,解得:23x £<.=,根据二次根式除法法则可得:2030x x -³ìí->î,解得:23x £<.故答案为:23x £<.【点睛】本题主要考查二次根式的除法法则,解决本题的关键是要熟练掌握二次根式除法法则.14.12-【详解】∵,∴x−y=0,y+2=0,解得:x=-2,y=-2.∴x y+1=(-2)-2+1=12-.故答案为12-.15.24【分析】此题考查了二次根式的应用,利用二次根式化简求出两个小正方形的边长,得到大正方形的边长,求出大正方形的面积,即可得到阴影面积,正确掌握二次根式的化简是解题的关键.==,∴大正方形的边长为=,∴大正方形的面积为(250=,∴图中阴影部分面积为5081824--=故答案为24.16.【详解】根据勾股定理可知D 点的坐标为故答案为点睛:此题主要考查了实数与数轴的对应关系,解题关键是先根据勾股定理求出AC=AD,.17【详解】根据新定义得:8⊗=.18+【分析】本题考查了复合二次根式的化简,完全平方公式的应用;按照题中提供的方法进行化简即可.===+.19.(2)6(3)1+(4)4【分析】本题主要考查了二次根式的混合计算:(1)先化简二次根式,再根据二次根式的加减计算法则求解即可;(2)根据二次根式的乘除混合计算法则求解即可;(3)先计算二次根式乘除法,再计算加减法即可;(4)先计算二次根式乘法,再计算加减法即可.【详解】(1==(2)解:==6=;(3)解:22=-32=-+1=+(4)2113=-31=-4=.20.1a =,45b =-,A B C +-=【分析】由A 、B 、C 是可以合并的最简二次根式可得A 、B 、C 的被开方数相等,由此可得关于a 、b 的方程,解出a 、b 的值后,即可求出A B C +-的值.【详解】解:∵A =-,B =C =A 、B 、C 是可以合并的最简二次根式,∴ 131a a +=-.∴1a =,则A =-B ,且()1012b +=.∴45b =-,则C =故A B C +-=-=【点睛】本题考查了最简二次根式和同类二次根式的定义以及合并同类二次根式的法则,正确理解题意,得出关于a 、b 的方程是求解的关键.21.(1)(2)78bc =【分析】本题考查二次根式的应用,解答本题的关键是明确题意,熟悉掌握海伦-秦九韶公式求三角形的面积.(1)根据题意,了解海伦-秦九昭公式,根据具体的数字先计算p 的值,然后再代入公式,计算三角形的面积即可;(2)根据2a b c p ++=得以得到20b c +=,再根据面积可以得到3002253bc -+=,计算即可.【详解】(1)由题意,18922BC AC AB p ++===,∴S ===.即ABC V 的面积为;(2)由题意,101522a b c b c p ++++===,∴20b c +=,∵S p ==,∴15S ==∴()()15153b c --=.∴()152253bc b c -++=,即3002253bc -+=∴78bc =.22.12+【分析】(1)因为22523=+=+,且2=为完全平方式,进一步因式分解,化简得出答案即可;(2)因为229112442æö=+=+ç÷èø122=´方式,进一步因式分解,化简得出答案即可.【详解】(112.【点睛】此题考查活用完全平方公式,把数分解成完全平方式,进一步利用二次根式的性质化简,注意在整数分解时参考后面的二次根号里面的数值.23.(1,2;(2)1;(3>【分析】本题考查分母有理化,估算无理数的大小及规律探索问题,熟练掌握分母有理化的步骤及方法是解题的关键.(1)根据有理化因式的定义即可求得答案;(2)根据所得规律计算即可;(3==【详解】(1)解:5=,;∵((22431´=-=,∴2的有理化因式是2+;,2;(2+1=-K1=-1=1=;(3>.理由如下:====,<<,>。

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

一、选择题1.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 2.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 3.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 4.下列实数227,3π,3.14159,9-,39,-0.1010010001…….(每两个1之间依次多1个0)中无理数有( )A .1个B .2个C .3个D .4个5.如x 为实数,在“(31)-□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A .31-B .31+C .33D .13-6.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 7.下列说法中正确的是( ) A .25的值是±5B .两个无理数的和仍是无理数C .-3没有立方根.D .22-a b 是最简二次根式.8.实数a 、b 在数轴上的位置如图所示,那么()2a b a b -++的结果是( )A .2aB .2bC .2a -D .2b - 9.下列说法正确的是( )A 5B .55C .2<5<3D .数轴上不存在表示5的点10.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近﹣10的是( )A .点MB .点NC .点PD .点Q11.已知x 5,则代数式x 2﹣x ﹣2的值为( ) A .5B .5 C .5D .512.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D 2(5)-=5二、填空题13.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.14.3x -+|2x ﹣y |=0,那么x ﹣y =_____.15.一个数的算术平方根是6,则这个数是_______,它的另一个平方根是_________. 16.计算((2323⨯+的结果是_____.17.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.18.已知b>032a b -=_____.19.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.20.已知:15-=m m,则221m m -=_______. 三、解答题 21.计算.(121483230(223)5; (2)22021021(1)(2)(4)362π-⎛⎫---⨯- ⎪⎝⎭22.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.23.计算:21()|12-24.计算:(1))11(2142⎛⎫⨯-- ⎪⎝⎭25.计算:(1(2)2|1(2)+--26.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据2ndf 键是功能转换键列算式,然后解答即可.【详解】14==. 故选:D .【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf 键的功能. 2.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据无理数的概念即可判断.【详解】解:,无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个. 故选:C .【点睛】 本题考查了无理数.解题的关键是熟练掌握无理数的概念.5.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键. 6.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.7.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.8.D解析:D【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.B解析:B【分析】根据无理数的估值方法进行判断即可;【详解】∵-3.16,∴点N最接近故选:B.【点睛】本题考查了实数与数轴,无理数的估算,熟练掌握知识点是解题的关键;11.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.二、填空题13.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x、y的二元一次方程组,求出x、y的值是解题关键.15.-6【分析】根据正数的平方根有两个它们互为相反数进行解答【详解】解:∵∴这个数是36∵一个正数的两个平方根互为相反数这个数的算术平方根为6∴它的另一个平方根是6的相反数即-6故答案为:36-6【点睛解析:-6【分析】根据正数的平方根有两个,它们互为相反数进行解答.【详解】解:∵26=36,∴这个数是36∵一个正数的两个平方根互为相反数,这个数的算术平方根为6,∴它的另一个平方根是6的相反数,即-6.故答案为:36,-6.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.17.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.18.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键. 19.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)-7;(2)-5【分析】(1)先算二次根式的乘方,乘除,再算加减法,即可求解;(2)先算乘方,算术平方根,再算加减法,即可求解.【详解】(1)原式-3-7;(2)原式=4(164)1--⨯--=4416+--=-5.【点睛】本题主要考查二次根式的混合运算以及实数的混合运算,掌握二次根数的混合运算法则以及实数的混合运算法则,是解题的关键.22.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;23.14【分析】先计算平方、立方根、绝对值,再加减即可.【详解】解:21()|12-+ =12|13|4+-- =1224+- =14【点睛】本题考查了实数的计算,解题关键是准确的计算立方根、算术平方根和乘方,明确绝对值的意义.24.(1)2;(3)-3【分析】(1)根据平方差公式计算即可;(2)根据实数混合运算法则计算即可.【详解】解:(1)原式221=-31=-2=(2)原式()223=+--3=-.【点睛】本题主要考查了实数的运算以及平方差公式,解题的关键是熟练掌握平方差公式以及实数混合运算法则.25.(1)13;(2)3 【分析】(1)直接利用算术平方根的性质、二次根式的性质、立方根的性质分别化简在计算得出答(2)直接利用绝对值的性质、平方的的性质计算得出答案.【详解】解:(1=1-2+4=1-23+ 1=3(2)2|1(2)+--14+=3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

八年级上册数学实数测试及答案

八年级上册数学实数测试及答案

八年级数学《实数》检测题一、1.写出和为8的两个无理数 .22,那么a = . 3.下列实数:12,π3-,|1|-0.1010010001,0中,有m 个有理数,n 个无理数,5位有效数字).4、若a 、b 都是无理数,且a +b =2,则a 、b 的值可以是 (填上一个满足条件的值即可).5、实数a 在数轴上的位置如图1所示,则|1|a -= .6.(2-3)2007(2-3)2008= .7、若一个正数的平方根是2a-1和-a+2,则a= ,这个正数是 . 8.已知按一定规律排列一组数:1,12,13,…,119,120,…用计算器探索:如果从中选出若干个数,使它们的和大于3,那么至少需要选出 个9、用计算器计算比较大小:311、“=”“<”). 10、观察下列各式:311+=231,412+=341,513+=451,……,请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是 . 二、精心选一选,慧眼识金!11.如果一个有理数的平方根和立方根相同,那么这个数是( ) A. ±1. B. 0. C. 1. D. 0和1.12.一个直角三角形的两直角边分别是6、3,则它的斜边长一定是( ) A .整数 B.分数 C.有理数 D. 无理数13.3的值( ) A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间14.已知0<x <1,那么在x ,x1,x ,x 2中最大的是( ) A .x B .x1 C .x D .x 215、下列各组数中互为相反数的是( )A.5B.5-和15C.5-D.5--和()5--16、化简31-3+4的结果是( )A. 3-1.B. 3-3.C. -1-3.D.1+3.17 )A. x ≥1B. x ≥-1C.-1≤x ≤1D. x ≥1或x ≤-1 18、下列各式中计算正确的是( ).A.7434322=+=+B.20)5()4(2516)25()16(=-⨯-=-⨯-=-⨯-C.228324324===D.5382512425124=∙= 19、在Rt △ABC 中,∠C =90°,c 为斜边,a 、b 为两条直角边,则化简2||c a b --的结果为( )A .3a b c +-B .33a b c --+C .33a b c +-D .2a20、设4a ,小整数部分为b ,则1a b-的值为( )A .1-B C .1 D .三、用心想一想,马到成功!21、用计算器求372258-的值.(保留两个有效数字)22、如图的集合圈中,有5个实数.请计算其中的有理数的和与无理数的积的差.23、化简并求值:221122a b a b a a b a -⎛⎫--+ ⎪-⎝⎭,其中33a b =-=.24、自由下落的物体的高度h (m )与下落时间t (s )的关系为h =4.9t 2.有一学生不慎让一个玻璃杯从19.6m 高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗(声音的速度为340m/s )?25、已知:x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.26、如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请在图中画出1352===AD AC AB 、、这样的线段.27、观察下列各式及验证过程:式①:322322+=⨯验证:()()322122122122223232222233+=-+-=-+-==⨯ 式②:833833+=⨯验证:()()833133133133338383322233+=-+-=-+-==⨯ ⑴ 针对上述式①、式②的规律,请再写出一条按以上规律变化的式子;⑵ 请写出满足上述规律的用n (n 为任意自然数,且n ≥2)表示的等式,并加以验证参考答案一、1.2+,6-(答案不惟一) 2.16 3.1.58744、1a =,1b =。

八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)

八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)

八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)一、选择题(每题3分,共30分)1.在π,227,-3,38,3.14,0这些数中,无理数的个数是( )A .1B .2C .3D .4 2.下列各式中,无意义的是( )A .- 3B .-3C .3-3 D .(-3)2 3.下列计算错误的是( )A .8=2 2B .2-1=12 C .16=±4 D .|3-2|=2-3 4.与a 3b 不是同类二次根式的是( )A .ab2 B .b a C .1abD .b a 35.下列计算错误的是( )A .62×3=6 6B .27÷3=3C .32-2=3 2D .(2-3)(2+3)=1 6.当1<x <4时,化简(1-x )2-(x -4)2结果是( )A .-3B .3C .2x -5D .57.已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 022时,所对应y 值的总和是( )A .2 034B .2 033C .2 032D .2 031 8.已知a +b =4,ab =2,则a -b 的值为( )A .2 2B .2 3C .±2 2D .±2 39.将4块尺寸完全相同的长方形薄木板(薄木板如图,厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个框内.已知薄木板的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .219+2B .19+4C .219+4D .19+210.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形ABCD 绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2,则翻转2 022次后,数轴上数2 022对应的点是( ) A .D B .C C .B D .A 二、填空题(每题3分,共15分) 11.化简:32=________________,23=____________.12.计算3-64125的结果等于________________.13.已知a ,b 满足-()4+a 2=2 022||b -3,a 2+b 2的平方根为________. 14.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +ba -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 15.观察下列各式:①223=2+23;②338=3+38;③4415=4+415;….根据这些等式反映的规律,若x 2 022y =x +2 022y ,则x 2-y =________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来.(1)如图1,点A表示的数是________;(2)如图2,直线l垂直数轴于表示4的点,请用尺规作出表示1-13的点(不写作法,保留作图痕迹).17.计算:(1)18+|3-8|-(3)2;(2)2+32-3-(3+6)(3-6).18.解方程:(1)9(x+2)2-64=0;(2)12(x +3)3=108.19.求代数式a+a2-2a+1的值,其中a=-2 022.小亮的解法为:原式=a+(1-a)2=a+1-a=1.小芳的解法为:原式=a+(1-a)2=a+a-1=-4 045.(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.已知m-15的平方根是±2,33+4n=3,求m+n的算术平方根.21.已知:如图.化简:a2-(a+b)2+(b-c)2+(a+c)2.22.阅读下面的内容:我们规定:用[x]表示实数x的整数部分,用<x>表示实数x的小数部分,如[3.14]=3,<3.14>=0.14;[2]=1,而大家知道2是无理数,无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,即<2>=2-1.事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵22<(7)2<32,即2<7<3,∴[7]=2,<7>=7-2.请解答以下问题:(1)[11]=________,<11>=________;(2)如果<5>=a,[41]=b,求a+b-5的平方根.23.(5+2)(5-2)=1,a·a=a(a≥0),(b+1)(b-1)=b-1(b≥0)……像这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,5与5,2+1与2-1,23+3与23-3等都互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:233;(2)计算:12-3+13-2;(3)比较 2 023- 2 022与 2 022- 2 021的大小,并说明理由.参考答案一、1. B 2. B 3. C 4. A 5. D 6. C 7. A 8. C 9. C 10. C 二、11. 42;63 12. -45 13. ±19 14. 2 15. 1 三、16. 解:(1) 5(2)如图,点P 即为所求.17. 解:(1)原式=32+3-22-3=2.(2)原式=(2+3)2(2-3)×(2+3)-(9-6)=4+43+3-3=4+43.18. 解:(1)因为9(x +2)2-64=0,所以9(x +2)2=64, 所以(x +2)2=649, 所以x +2=±83, 所以x =23或x =-143. (2)因为12(x +3)3=108, 所以(x +3)3=216, 所以x +3=6,所以x =3. 19. 解:(1)小芳(2)a +2a 2-6a +9=a +2(a -3)2, 因为a =-2 022,所以a -3<0,所以原式=a +2(3-a )=a +6-2a =6-a =6-(-2 022)=6+2 022= 2 028,即代数式的值是2 028. 20. 解:因为m -15的平方根是±2,所以m-15=(±2)2,所以m=19.因为33+4n=3,所以3+4n=27,所以n=6.所以m+n的算术平方根为m+n=19+6=5.21.解:根据数轴可得a<0,a+b<0,b-c<0,a+c<0,所以原式=|a|-|a+b|+|b-c|+|a+c|=-a+a+b+c-b-a-c=-a.22.解:(1)3;11-3(2)因为2<5<3,6<41<7,且<5>=a,[41]=b,所以a=5-2,b=6,所以a+b-5=5-2+6-5=4,所以a+b-5的平方根是±2.23.解:(1)233=2×333×3=239.(2)12-3+13-22+3(2-3)×(2+3)3+2(3-2)×(3+2)=2+3+3+2=2+23+2.(3) 2 023- 2 022< 2 022- 2 021.理由如下:因为 2 023- 2 022=12 023+ 2 022,2 022- 2 021=12 022+ 2 021,2 023+ 2 022> 2 022+ 2 021,所以 2 023- 2 022< 2 022- 2 021.。

(压轴题)初中数学八年级数学上册第二单元《实数》检测题(包含答案解析)

(压轴题)初中数学八年级数学上册第二单元《实数》检测题(包含答案解析)

一、选择题1.的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间2 )A .4B .4±C .2±D .-23.3的值应在( ) A .5和6之间 B .6和7之间 C .7和8之间D .8和9之间 4.一个正方体的体积扩大为原来的27倍,则它的棱长变为原来的( )倍. A .2 B .3 C .4 D .55.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★a bb ;若a b <,则a ★b b a.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b +<★ A .①B .②C .①②D .①②③ 6.下列各式计算正确的是( )A +=B .26=(C 4=D = 7.与数轴上的点一—对应的数是( ) A .分数或整数B .无理数C .有理数D .有理数或无理数8. )A .8B .4CD 9.下列说法中正确的是( )A ±5B .两个无理数的和仍是无理数C .-3没有立方根.D .10.已知三角形的三边长a 、b 、c 满足2(a +|c |=0,则三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .不能确定11.实数a 、b 在数轴上的位置如图所示,那么a b -+的结果是( )A .2aB .2bC .2a -D .2b -12.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是( ) A .①② B .①②③ C .②③ D .③二、填空题13.两个数a 与2在数轴上对应的点之间的距离为3,已知b 2=4,且a <b ,则a ﹣b 的值为_____.14.已知3x -+|2x ﹣y |=0,那么x ﹣y =_____.15.已知mn 、是两个连续的整数,且410m n <+<,则m n +=_______________________. 16.如图,设AB 是已知线段,经过点B 作BD AB ⊥,使12BD AB =,连接DA ,在DA 上截取DE DB =;在AB 上截取AC AE =.点C 就是线段AB 的黄金分割点.已知线段AB 的长为80cm ,则线段AC 的长为____cm .17.若代数式2x x+有意义,则实数x 的取值范围是_________. 18.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________. 19.188=_____.20.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______. 三、解答题21.计算:(181262; (251051312 22.计算:﹣327-+113-⎛⎫ ⎪⎝⎭.23.计算.(12;(2)2202101(1)(2π-⎛⎫---⨯ ⎪⎝⎭24.如果一个正方形ABCD 的面积为69.(1)求正方形ABCD 的边长a .(2)正方形ABCD 的边长满足m a n <<,m ,n 表示两个连续的正整数,求m ,n 的值.(3)M 、N 在满足(2的值25.计算题:(1;(2;(3))()2331⨯- 26.计算:(1)3432(2)12x y x y ⋅÷;(2)2[(3)(3)]a a +-;(3)23()(2)(2)m n m n n m --+-+;(4)2(7(2+-++-+【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先根据二次根式的乘法计算得到原式为4的范围,即可得出答案.【详解】解:原式4=== ∵34<<,∴<<,748故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.2.C解析:C【分析】先计算16的算术平方根a,再计算a的平方根即可.【详解】∵=,4∴4的平方根为±2.故选C.【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.3.C解析:C【分析】先根据19位于两个相邻平方数16和25【详解】解:由于16<19<25,<<,所以45<<,因此738故选:C.【点睛】本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.B解析:B【分析】根据正方体的体积公式解答.【详解】解:设原来正方体的棱长为a,则原来正方体的体积为3a,27a,由题意可得现在正方体的体积为3∵3a=,∴现在正方体的棱长为3a,故选:B.【点睛】本题考查立方根的应用,熟练掌握立方根的意义及正方体的体积计算方法是解题关键. 5.A解析:A【分析】①根据新运算a b ★的运算方法,分类讨论:a b ≥,a b <,判断出a b ★是否等于b a ★即可;②由①,推得=a b b a ★★,所以()()1a b b a =★★不一定成立;③应用放缩法,判断出1a b a b+★★与2的关系即可. 【详解】解:①a b ≥时,a a bb ★, b a a b ★, ∴=a b b a ★★;a b <时,a b ba ★,b b a a★, ∴=a b b a ★★;∴①符合题意.②由①,可得:=a b b a ★★,当a b ≥时,∴()()()()22a b b a a b a a a b b b ba b ====★★★★, ∴()()a b b a ★★不一定等于1, 当a b <时, ∴()()()()22a b b a a b b b b aa a aa b ====★★★★, ∴()()a b b a ★★不一定等于1,∴()()1a b b a =★★不一定成立,∴②不符合题意.③当a b ≥时,0a >,0b >,∴1a b≥,∴(12a b a b a b b a ab ab ++===+=≥≥★★, 当a b <时,∴(12a b a b a b a b ab ab ++===+=≥≥★★, ∴12a b a b +<★★不成立, ∴③不符合题意,∴说法中正确的有1个:①.故选:A .【点评】此题主要考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.6.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB、错误,212=(;C==D==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 7.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D .【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.8.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】=== 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.9.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.10.C解析:C【分析】根据非负数的性质可知a ,b ,c 的值,再由勾股定理的逆定理即可判断三角形为直角三角形.【详解】解:()220a c -+-=∴ 0a =,30b -= , 0c =∴a =,3b = ,c =又∵ 222279a c b +=+==∴该三角形为直角三角形故选C .【点睛】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a ,b ,c 的值,并正确运用勾股定理的逆定理.11.D解析:D 【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<, ∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.12.D解析:D【分析】分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可.【详解】解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误; ②∵42=16,∴4是16的算术平方根,故②错误,③平方根等于它本身的数只有0,故③正确,④8的立方根是2,故④错误.【点睛】本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键.二、填空题13.-3【分析】求出b=±2根据a<b确定a再求a﹣b的值【详解】解:∵b2=4∴b=±2∵a与2在数轴上对应的点之间的距离为3当a在2左侧时a=-1当a在2右侧时a=5∵a<b∴a=-1b=2a﹣b=解析:-3.【分析】求出b=±2,根据a<b确定a,再求a﹣b的值.【详解】解:∵b2=4,∴b=±2,∵a与2在数轴上对应的点之间的距离为3,当a在2左侧时,a=-1,当a在2右侧时,a=5,∵a<b,∴a=-1,b=2,a﹣b=-1-2=-3故答案为:-3.【点睛】本题考查了数轴上点的距离和平方根,解题关键是根据题意求出a、b的值.14.﹣3【分析】先根据非负数的性质列出方程组求出xy的值进而可求出x﹣y 的值【详解】解:∵+|2x﹣y|=0∴解得所以x﹣y=3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x 、y 的二元一次方程组,求出x 、y 的值是解题关键.15.【分析】估算确定出m 与n 的值即可求出m+n 的值【详解】解:∵∴即∴m=5n=6则m+n=5+6=11故答案为:11【点睛】此题考查了估算无理数的大小弄清无理数估算的方法是解本题的关键解析:11【分析】估算确定出m 与n 的值,即可求出m +n 的值.【详解】解:∵34<<, ∴526<+<,即56<<,∴m =5,n =6,则m +n =5+6=11,故答案为:11【点睛】此题考查了估算无理数的大小,弄清无理数估算的方法是解本题的关键. 16.【分析】根据通过勾股定理计算得AD ;结合计算得AE 从而得到AC 的值即可得到答案【详解】∵∴∵的长为80cm ∴cm ∴cm ∵∴cm ∴cm ∴cm 故答案为:【点睛】本题考查了勾股定理二次根式线段和与差的知识解析:)401 【分析】 根据BD AB ⊥、12BD AB =,通过勾股定理计算得AD ;结合DE DB =,计算得AE ,从而得到AC 的值,即可得到答案.【详解】∵BD AB ⊥ ∴90ABD ∠= ∵12BD AB =,AB 的长为80cm ∴40BD =cm∴AD ==cm∵DE DB =∴40DE =cm∴)401AE AD DE =-=cm∴)401AC AE ==cm故答案为:)401. 【点睛】 本题考查了勾股定理、二次根式、线段和与差的知识;解题的关键是熟练掌握勾股定理和二次根式的性质,从而完成求解.17.且【分析】根据二次根式中的被开方数是非负数分式分母不为0列出不等式解不等式得到答案【详解】解:由题意得x+2≥0x≠0解得x≥-2且x≠0故答案为:x≥-2且x≠0【点睛】本题考查了二次根式有意义的解析:2x ≥-且0x ≠【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.18.12或【分析】根据平方和立方的意义求出a 与b 的值然后代入原式即可求出答案【详解】解:∵a2=64b3=64∴a=±8b=4∴当a=8b=4时∴a+b=8+4=12当a=-8b=4时∴a+b=-8+4解析:12或4-【分析】根据平方和立方的意义求出a 与b 的值,然后代入原式即可求出答案.【详解】解:∵a 2=64,b 3=64,∴a=±8,b=4,∴当a=8,b=4时,∴a+b=8+4=12,当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型. 19.【分析】先化简二次根式再合并同类二次根式即可【详解】故答案为:【点睛】本题主要考查二次根式的化简以及同类二次根式的合并掌握二次根式的化简以及同类二次根式的合并方法是解题关键【分析】先化简二次根式,再合并同类二次根式即可.【详解】【点睛】本题主要考查二次根式的化简以及同类二次根式的合并,掌握二次根式的化简以及同类二次根式的合并方法是解题关键.20.【分析】根据题目所给计算方法令再两边同时乘以求出用求出的值进而求出的值【详解】解:令则∴∴则故答案为:【点睛】本题考查了同底数幂的乘法利用错位相减法消掉相关值是解题的关键 解析:2019112-【分析】 根据题目所给计算方法,令23201911112222S,再两边同时乘以12,求出12S ,用12S S ,求出12S 的值,进而求出S 的值. 【详解】 解:令23201911112222S , 则22023401111122222S , ∴2020111222S S , ∴2020111222S , 则2019112S .故答案为:2019112-【点睛】 本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键. 三、解答题21.(1+;(21. 【分析】(1)先把二次根式化成最简二次根式,后根据混合运算的法则有序计算即可; (2)利用运算律,因式分解,二次根式乘法公式,有序计算即可.【详解】(1=2+; (2=1-2=1.【点睛】本题考查了二次根式的化简计算,熟练掌握化简的技巧,运算的技巧,运算的顺序是解题的关键.22.-4.【分析】先计算立方根及负指数幂,再根据实数运算法则计算即可得答案.【详解】﹣+113-⎛⎫ ⎪⎝⎭=-4+(-3)+3=-4.【点睛】本题考查实数的运算,包括立方根、负整数指数幂的计算,熟练掌握运算法则是解题关键. 23.(1)-7;(2)-5【分析】(1)先算二次根式的乘方,乘除,再算加减法,即可求解;(2)先算乘方,算术平方根,再算加减法,即可求解.【详解】(1)原式-3-7;(2)原式=4(164)1--⨯--=4416+--=-5.【点睛】本题主要考查二次根式的混合运算以及实数的混合运算,掌握二次根数的混合运算法则以及实数的混合运算法则,是解题的关键.24.(1;(2)8m =,9n =;(3)-5【分析】(1)正方形ABCD 的边长a ,由正方形面积269a =.开平方即可;(2)正方形ABCD 的边长满足m a n <<,即m n <<,可得2269m n <<,可得m 2=64,n 2=81,开平方即可;(3)当8m =,9n =计算即可.【详解】解:(1)正方形ABCD 的边长269a =.0a a =>,a =;(2)正方形ABCD 的边长满足m a n <<, ∴m n <<,∴2269m n <<,∴m,n 都为整数,而且是连续正整数,∴m 2=64,n 2=81,∴8m =,9n =;(3)当8m =,9n =,235--=-.【点睛】本题考查平方根,算术平方根,无理数估值,代数式求值,掌握平方根,算术平方根求法,无理数估值方法,代数式求值的方法是解题关键.25.(1)2)8+;(3)【分析】(1)先利用二次根式的性质进行化简,再利用二次根式的乘除法运算法则计算即可; (2)先利用二次根式的性质进行化简,再利用二次根式的运算法则计算即可;(3)先利用完全平方公式和平方差公式进行计算,再利用二次根式的加减运算法则计算即可.【详解】(1====(2=102=-+8=(3)23)(31)+--2(31)=--22223211⎡⎤=---+⎣⎦9531=--+=.【点睛】本题主要考查二次根式的混合运算,解题的关键是正确化简二次根式,熟练掌握二次根式的运算法则.26.(1)原式=223y ;(2)原式=421881a a -+ ;(3)原式=22-64m mn n -+;(4)原式【分析】(1)先计算乘方,再根据单项式除以单项式法则可得;(2)先利用平方差公式计算中括号内的,再根据完全平方公式计算即可;(3)先计算完全平方及多项式乘多项式,再合并同类项可得;(4)先根据完全平方公式和平方差公式计算,再计算加减可得.【详解】解:(1)原式=3432812x y x y ÷ =223y ; (2)原式=22(-9)a =421881a a -+ ;(3)原式=22223(2)(242)m mn n mn m n mn -+--+-+=2222363+2-4+-2m mn n mn m n mn -+=22-64m mn n -+;(4)原式=(7(43)+-+-=(71+-+=(4948)1-+【点睛】本题主要考查整式的混合运算,熟练掌握整式的混合运算顺序和运算法则是解题的关键.。

(典型题)初中数学八年级数学上册第二单元《实数》检测(有答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》检测(有答案解析)

一、选择题1.16的平方根是( ) A .4B .4±C .2±D .-22.下列二次根式中,不能..与3合并的是( ) A .12 B .8 C .48 D .108 3.若2x -+|y+1|=0,则x+y 的值为( ) A .-3B .3C .-1D .1 4.下列各式计算正确的是( )A .235+=B .2236=()C .824+=D .236⨯=5.在数227,7,0,18,2(2),316,112π-,3.2020020002…(相邻的两个2之间依次多一个0)中,无理数有( ) A .3个 B .4个 C .5个 D .6个6.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b7.已知:23-,23+,则a 与b 的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .平方相等 8.已知21a -与2a -+是一个正数的平方根,则这个正数的值是( ) A .9B .3C .1D .819.下列说法正确的是( )A 5B .55C .25 3D 5的点10.已知()253y x x =+-x 分别取1,2,3,…,2021时,所对应y 值的总和是( ) A .16162 B .16164C .16166D .1616811.在代数式13x -中,字母x 的取值范围是( ) A .x >1B .x ≥1C .x <1D .x 13≤12.下列各计算正确的是( )A .382-=B .842= C .235+= D .236⨯=二、填空题13.若最简二次根式41a -和135a b -+可以合并,则b a -=______. 14.化简题中,有四个同学的解法如下: ①33(52)5252(52)(52)-==-++-②3(52)(52)525252+-==-++③()()()()a b a b a b a b a b a b a b ---==-++-④()()a b a b a b a b a b a b-+-==-++他们的解法,正确的是___________.(填序号) 15.83=______. 16.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.17.比较大小:22-_____________1(填“>”、“=”或“<”).18.已知实数a 、b 在数轴上的位置如图所示,化简2()a b a b -++=_____________19.比较3、4 、350的大小_______________.(用“<”连接)20.如图所示,在数轴上点A 所表示的数为a ,则a 的值为____________________.三、解答题21.化简求值:21a,b =,求1a bb a++的值.22.已知2a =2b =-a 2+b 2﹣3ab 的值. 23.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.24.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数. 25.(1)判断下列各式是否成立?并选择其中一个说明理由;=== (2)用字母表示(1)中式子的规律,并给出证明. 26.计算下列各题:(1(2)()(3)(2【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算16的算术平方根a ,再计算a 的平方根即可. 【详解】 ∵4=,∴4的平方根为±2. 故选C. 【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.2.B【分析】并的二次根式.【详解】解:AB被开方数不相同,不是同类二次根式,不能进行合并,故本选项正确;C被开方数相同,是同类二次根式,能进行合并,故本选项错误;D故选B.【点睛】本题主要考查二次根式的化简,同类二次根式的定义,关键在于熟练掌握同类二次根式的定义,正确的对每一选项中的二次根式进行化简.3.D解析:D【分析】先根据绝对值和算术平方根的非负性,求得x、y的值,最后求和即可.【详解】解:∵∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D.【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x、y的值是解答本题的关键.4.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB、错误,212(;=C==D==故选:D.本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.5.C解析:C 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】227,0,22=,这些数都是有理数;,=112π-,3.2020020002…(相邻的两个2之间依次多一个0),是无理数,无理数共有5个. 故选:C .【点睛】本题考查了无理数的定义.解题的关键是掌握无理数的定义和各种类型.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A 【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案. 【详解】 由数轴得b<a<0, ∴a+b<0,∴a b + =-a-b+a =-b , 故选:A . 【点睛】此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.7.C解析:C 【解析】 因为1a b ⨯==,故选C.8.A解析:A 【分析】首先根据正数有两个平方根,它们互为相反数可得2120a a --+=,解方程可得1a =-,然后再求出这个正数即可. 【详解】解:由题意得:2120a a --+=, 解得:1a =-,213a -=-,23a -+=, 则这个正数为9. 故选:A . 【点睛】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.9.C解析:C 【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案. 【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D 错误; 故选:C . 【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.A解析:A 【分析】根据二次根式的性质和绝对值的性质尽心化简,然后代入求值即可求出答案案. 【详解】对于5y x =+-当3x ≤时,5322y x x x =++-=+,∴当1x =时,4y =;当2x =时,6y =;当3x =时,8y =; 当3x >时,538y x x=+-+=∴y值的总和为:46888=4582019=16162y=++++⋅⋅⋅⋅⋅⋅+++⨯;故选A.【点睛】本题考查了二次根式,关键是熟练运用二次根式的性质,属于基础题型.11.B解析:B【分析】根据二次根式有意义的条件求解即可;【详解】由题意得,x﹣1≥0,解得x≥1,故选:B.【点睛】本题考查了二次根式有意义的条件,正确掌握知识点是解题的关键;12.D解析:D【分析】分别计算即可.【详解】解:2=-,原式错误,不符合题意;=≠D. =故选:D.【点睛】本题考查了二次根式和立方根的运算,解题关键是熟练掌握二次根式和立方根的运算法则,准确进行计算.二、填空题13.【分析】由最简二次根式的定义以及同类二次根式的定义先求出ab的值然后进行计算即可得到答案【详解】解:∵最简二次根式和可以合并∴和是同类二次根式∴∴∴;故答案为:【点睛】本题考查了最简二次根式的定义以解析:1 9【分析】由最简二次根式的定义,以及同类二次根式的定义,先求出a 、b 的值,然后进行计算,即可得到答案. 【详解】解:∵和∴和∴124135a ab -=⎧⎨-=+⎩,∴32a b =⎧⎨=⎩, ∴2139ba --==; 故答案为:19. 【点睛】本题考查了最简二次根式的定义,以及同类二次根式的定义,解题的关键是熟记所学的定义,正确求出a 、b 的值.14.①②④【分析】对于分子分母都乘以分母的有理化因式计算约分后可判断①对于把分子化为再分解因式约分后可判断②对于当时分子分母都乘以分母的有理化因式计算约分后可判断③对于把分子化为再分解因式约分后可判断④解析:①②④ 【分析】-,计算约分后可判断①,对于,把分子化为22-,再分解因式,约分后可判断②,对于0≠,计算约分后可判断③,把分子化为22-,再分解因式,约分后可判断④,从而可得答案. 【详解】()()22333====-故①符合题意;22-===,故②符合题意;≠时,()a ba b-===-故③不符合题意;22-===故④符合题意;故答案为:①②④.【点睛】本题考查的是分母有理化,掌握平方差公式的应用,分母有理化的方法是解题的关键.15.【分析】根据二次根式的性质进行化简【详解】解:故答案为:【点睛】本题考查了二次根式的性质与化简解题的关键是掌握二次根式的性质和分母有理化【分析】根据二次根式的性质进行化简.【详解】3=..【点睛】本题考查了二次根式的性质与化简.解题的关键是掌握二次根式的性质和分母有理化.16.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数; 把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数; 把5写在1的右边,得15,写在2的右边得25,…… 由于个位上是5的数都能被5整除,故5是魔术数; 故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x nx x +=+, ∴100nx为整数, ∵n 为整数,∴100x为整数, ∴x 的可能值为:10、20、25、50;故答案为:10、20、25、50. 【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.17.【分析】先估算出无理数的大小再进行比较即可【详解】解:∵1<2<4∴1<<2∴0<<1故答案为:<【点睛】此题考查实数的大小比较关键是估算出无理数的大小 解析:<【分析】的大小,再进行比较即可. 【详解】 解:∵1<2<4, ∴1<2, ∴0<21, 故答案为:< 【点睛】的大小.18.【分析】先根据数轴的定义可得从而可得再化简绝对值和二次根式然后计算整式的加减即可得【详解】由数轴的定义得:则因此故答案为:【点睛】本题考查了数轴绝对值二次根式整式的加减熟练掌握数轴的定义是解题关键 解析:2a -【分析】先根据数轴的定义可得0a b <<,从而可得0,0a b a b -<+<,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:0a b <<,则0,0a b a b -<+<,因此()a b b a a b -=-+--,b a a b =---,2a =-,故答案为:2a -.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键. 19.3<<4;【分析】先估算出的范围即可求出答案【详解】∵∴故答案为:【点睛】本题考查了估算无理数的大小能估算出的大小是解此题的关键解析:34;【分析】【详解】 ∵3=4= ∴34<<.故答案为:34<<.【点睛】20.【分析】根据图示得到圆的半径为所以A 点表示的数为【详解】∵圆的半径为∴A 点表示的数为故答案为【点睛】此题主要考查了实数与数轴之间的对应关系关键是要判断出圆的半径然后根据实数计算法则求解即可解析:1-【分析】A 点表示的数为1--【详解】∵圆的半径为,∴A 点表示的数为1-故答案为1-【点睛】此题主要考查了实数与数轴之间的对应关系,关键是要判断出圆的半径,然后根据实数计算法则求解即可.三、解答题21.()2a b ab ab +-;7【分析】 将a 、b 进行分母有理化,然后求出+a b 、ab 的值,对代数式变形,采用整体代入的方法求值【详解】 ∵21a,b =,∴1a ==,1b ==, ∴)()21211ab =+=,11a b +=++= ∴1a b b a++ 221a b ab +=+ 22a b ab ab++= ()2a b ab ab +-=(2171-==. 故1a b b a++的值为7. 【点睛】本题考察二次根式的有理化,根据二次根式的乘除法则进行二次根式有理化,代数式求值的问题可以先对代数式进行变形,采用整体代入的方法,可使运算简便22.11【分析】利用二次根式的运算法则首先计算出a+b ,ab 的值,然后利用配方法对多项式进行变形整理,再代入,进行计算即可.【详解】解:∵2a =+2b =-∴a +b =4,(2431ab =+=-=,∴a 2+b 2﹣3ab =(a +b )2﹣5ab =42﹣5×1=11.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则并能灵活应用完全平方公式进行计算是解题关键.23.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a、b的值,然后将所求式子变形,再将a、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0,∴a=0,b﹣2=0,∴a,b=2,∴a2﹣a+2+b2=(a2+b2)2+22=02+4=0+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;24.(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解;(2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解.【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.25.(1)成立,理由见解析;(21)n =>,理由见解析 【分析】(1)通过二次根式的性质与化简即可判断;(2)类比上述式子,即可写出几个同类型的式子,然后根据已知的几个式子即可用含n 的式子将规律表示出来,再证明即可求解.【详解】(1)成立,===;(2)∵====,1)n =>,1)n ==>. 【点睛】本题主要考查了列代数式,二次根式的性质与化简,正确得出数字之间变化规律是解题关键.26.(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)()(3)(2=32)2﹣2=9﹣﹣2=【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.。

初中八年级数学《实数》综合测试题

初中八年级数学《实数》综合测试题

第十三章《实数》综合测试题一.选择题(每小题3分,共24分)1. 的结果是( ).A.2 B.±2 C.-2 D.4.2. 在-1.732,2,π,3.41 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( ).A.5B.2C.3D.43. 已知下列结论:①在数轴上只能表示无理数2;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ).A.①②B.②③C.③④D.②③④4. 下列各式中,正确的是( ). A.3355-=- B.6.06.3-=- C.13)13(2-=- D.636±=5. 下列说法中,不正确的是( ).A 3是2)3(-的算术平方根B ±3是2)3(-的平方根C -3是2)3(-的算术平方根 D.-3是3)3(-的立方根6. 下列说法中,正确的是( ).A. 不带根号的数不是无理数B. 8的立方根是±2C. 绝对值是3的实数是3D. 每个实数都对应数轴上一个点7. 若a a =-2)3(-3,则a 的取值范围是( ).A. a >3B. a ≥3C. a <3D. a ≤38. 能使xx --+352有意义的x 的范围是( ). A. x >-2且x ≠3 B. x ≤3 C.-2≤x <3 D.-2≤x ≤3二.填空(每题3分,共24分)9.若x 的立方根是-41,则x =___________. 10.平方根等于它本身的数是 .11.1-2的相反数是_________,绝对值是__________.12.一个实数的平方根大于2小于3,那么它的整数位上可能取到的数值为__________.13.已知1)12(2-++b a =0,则-20042b a +=_______.14.若y=41441+-+-x x ,则xy =_______. 15.如果2180a -=,那么a 的算术平方根是 .16.若a<440-=m <b ,则a 、b 的值分别为 .三.解答题(每题6分,共12分)17. π25152-+;(用计算器,保留4个有效数字)18.如图2,在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.四.解答题(每题8分,共40分)19.实数a 、b 在数轴上的位置如图所示,请化简:22b a a --.20.如果记三角形的三边长分别为a 、b 、c ,p =21(a +b +c),那么三角形的面积可以表示为S =))()((c p b p a p p ---.已知一个三角形的三边长分别为2厘米、3厘米、4厘米,试求这个三角形的面积.(结果保留2个有效数字)21.y=833+-+-x x ,求3x +2y 的算术平方根.22.16461)21(3=-+x23.若a 、b 、c 是△ABC 的三边,化简:参考答案一.选择题1.A 2.D 3.B4.A5.C 6.D 7.B 8.A二.填空题9.1 64 -10.0111-1 12 .5,6,7,813.3 414.16 15.3 16.2,3 三.解答题17. 2.170 18.四.解答题19.-b 20.2.9 21.522.1 823.2a-2b+2c。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年第一学期初二数学测试题
一、选择题:(本题满分30分)
1.下列各式中,正确的是…………………………………………………………( )
2=-;9=;3=±;13=; 2.下列各数中,互为相反数的一组是……………………………………………( )
A.-2
B.-2;
C.-2与12
-;D.2-与2; 3.某种鲸的体重约为51.3610⨯㎏,关于这个近似数,下列说法正确的是…………( )
A .它精确到百位;
B .它精确到0.01;
C .它精确到千分位;
D .它精确到千位;
4.一直角三角形的两边长分别为3和4,则第三边的长为…………………………( )
A .5;
B
C
D .5
5. 若规定误差小于1,的估算值为……………………………………………( )
A .3;
B .7;
C .8;
D .7或8;
6.和数轴上的点一一对应的是…………………………………………………………( )
A.整数;
B.有理数;
C.无理数;
D.实数;
7.()220y +=,则()
2014x y +等于…………………………………( ) A.-1;B.1;C.20143;D.20143-;
8.若27a -与33a -是同一个数的平方根,则a 的值是………………………………( )
A . 2;
B .-4;
C .2或-4;
D .-2;
9.如图,数轴上1A 、B ,A 是线段BC 的中点,则点C 对应的实数为……………( )
A .2
B 1;
C 2;
D .1
10.(2015.淮安)如图,M 、N 、P 、Q 是 …………( )
A .M ;
B .N ;
C .P ;
D .Q ;
二、填空题:(本题满分27分)
11.当x 时,3x +有平方根. ;--(用“>”或“<”)
12.实数227,8-3
π中的无理数是 .
13.2 ,1 .
14.16的平方根是
的算术平方根是 . 绝对值最小的实数是.
15.若22m n x y --与423m n x y +是同类项,则3m n -的立方根是 .
16.
若a b <<,且a 、b 为连续正整数,则22b a -= .
17.(2013•漳州)如图,正方形ODBC 中,OC=1,OA=OB ,则数轴上点A 表示的数是.
18.规定用符号[]x 表示一个实数x 的整数部分,例如:[]3.693=
,1=.
按此规定,1⎤⎦
=. 三、解答题:
19.求下列各式的值:
(1)()381270x +-=; (2)()2252360x +-=; (3)(
)2
21x +=;
20. 计算:
(1)(
)012122-⎛⎫-+ ⎪⎝⎭⎝⎭; (2
1;
21. 用直尺和圆规在如图所示的数轴上作出表示.
22. 如图,a 、b 、c 分别是数轴上A 、B 、C 所对应的实数
.试化
简a b b c -
-.
第10题图
第17题图
23. 已知21a -的平方根是3±,31a b +-的平方根是4±,求2a b +的平方根.
24.实数a b ,互为相反数,c d ,互为倒数,x =,求代数式()
22x a b cd x +++.
25. (本题满分8分)正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,
(1)在图①中,画一个面积为10的正方形;
(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.
26.(本题满分8分)
(1()2x y -的平方根.
(2)已知8y =
.。

相关文档
最新文档