2019-2020学年安徽省示范高中培优联盟高一冬季联赛 数学 PDF版
2019-2020学年安徽省示范高中培优联盟高二冬季联赛数学(理)试题(解析版)
本题考查直线与平面垂直的判断定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.
21.(1)已知 , , ,试比较 与 的大小;
(2)求证: .
【答案】(1)答案不唯一,具体见解析(2)证明见解析
【解析】(1)利用作差比较法比较 与 的大小;(2)由(1)中结论,对于正整数 , ,再给k取值得到n个不等式,再把不等式相乘即得证.
【详解】
因为 ,所以点M是AB的中点.
取 的中点 ,则 为异面直线 与 所成角或补角,
设正四面体的棱长为 ,则 , ,
于是 .
故选:B
【点睛】
本题主要考查异面直线所成的角的计算,考查余弦定理解三角形,意在考查学生对这些知识的理解掌握水平.
5.如图网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中曲线为半径为1的半圆,则该几何体的表面积为()
本题主要考查递推数列求和,考查错位相减法求和,意在考查学生对这些知识的理解掌握水平.
20.三棱台 中, , , , .
(1)求证: 平面 ;
(2)求二面角 的余弦值.
【答案】(1)证明见解析(2)
【解析】(1)由题得侧面 与侧面 为全等的直角梯形,证明 , ,可证明 平面 .(2)取 , 的中点 , ,连接 , , 为等边三角形,连接 , , 即为二面角 的平面角,记为 ,通过求解三角形利用余弦定理求解即可.
15.已知 , , 均为单位向量,若 ,则 的最大值为______.
【答案】 .
【解析】先求出 ,再求 的最小值得解.
【详解】
,
而 ,
设向量 与 的夹角为 ,
则 ,
当 时, 取最大为 .
故答案为:
【点睛】
2019-2020学年安徽省示范高中培优联盟高一春季联赛数学(理) PDF版
" # "!'#J
K
Y
Z
)"##"
-./5$*5&*.&".-#%$#&/#+ &.#+,#.+-&e
)",#0
)
,(
, 0
&N , P r S A s
k!!!!!
fg%&2K&I4L&I</4g%chOiZPjklmnmopqrstu
"!(#"®"]~,/~#
JK¯LT8&YZ)"##"5*&"#%,#PUV°TLM!&LM&" $#$"#()*=/#"9#%9.# 0/%* "#±! $&) "#e. " $#$,%5 +# ,5%&. 1 "2$&#&±²Z5 PrSAs*
1 答案:B 解析:A={x|x2-1>0}={x|x<-1 或 x>1}=(-∞,-1)∪(1,+∞),B=(0,+∞),则 A∩B=
(1,+∞).
2
答案:B
解析:由题意可得
41 y+x=1,则
x+y=(x+y)·
4 y
+
1 x
4x y =5+ y +x≥5+2
4x y y ×x=9,当且仅
当 x=3,y=6 时等号成立,故 x+y 的最小值为 9.选 B.
2 sin B+ 3
2 sin
3
C=1+2sin
B
+
π 6
,∴当
安徽省示范高中培优联盟2019_2020学年高二数学冬季联赛试题文含解析
安徽省示范高中培优联盟2019-2020学年高二数学冬季联赛试题 文(含解析)一、选择题(本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知全集U =R ,{}2A x x x =<,{}210B x x =-≤,则()UAB 等于( ).A. 112x x ⎧⎫≤<⎨⎬⎩⎭B. 112x x ⎧⎫-<<⎨⎬⎩⎭C. 102x x ⎧⎫<≤⎨⎬⎩⎭ D. 112xx ⎧⎫<<⎨⎬⎩⎭【答案】D 【解析】 【分析】分别解出不等式,可得{}|01A x x =<<,1|2B x x ⎧⎫=≤⎨⎬⎩⎭,再根据集合的补集、交集定义求解即可【详解】由题,可得{}|01A x x =<<,1|2B x x ⎧⎫=≤⎨⎬⎩⎭, 则U1|2B x x ⎧⎫=>⎨⎬⎩⎭,所以()1|12UA B x x ⎧⎫⋂=<<⎨⎬⎩⎭故选:D【点睛】本题考查集合的交集、补集运算,考查解不等式2.如图,选自我国古代数学名著《周髀算经》.图中大正方形边长为5,四个全等的直角三角形围成一个小正方形(阴影部分),直角三角形较长的直角边长为4.若将一质点随机投入大正方形中,则质点落在阴影部分的概率是( ).A.125B.225C.325D.425【答案】A【解析】 【分析】由勾股定理,可得阴影部分,即小正方形的边长为1,所求即为小正方形与大正方形的面积比 【详解】由题,大正方形边长为5,直角三角形较长的直角边长为4,根据勾股定理可得直角三角形较短的直角边长为3,则阴影部分,即小正方形边长为431-=,根据面积型的几何概型公式计算可得,质点落在阴影部分的概率为1115525P ⨯==⨯ 故选:A【点睛】本题考查面积型的几何概型的概率公式的应用,属于基础题 3.设sin2cos αα=,0,2πα⎛⎫∈ ⎪⎝⎭,则tan2α的值是( )B. D. -【答案】A 【解析】2cos ,0,,2sin πααα⎛⎫=∈ ⎪⎝⎭2cos cos sin ααα∴=,1,26sin παα∴==,tan 2tan3πα== A.4.下列命题正确的是( ).A. 若p q ∧为假命题,则p ,q 都是假命题B. a b >是ln ln a b >的充分不必要条件C. 命题“若cos cos αβ≠,则αβ≠” 的逆否命题为真命题D. 命题“0x R ∃∈,060x +<”的否定是“0x R ∀∉,060x +≥” 【答案】C 【解析】 【分析】由逻辑联结词的性质判断A 选项;由不等式的性质判断B 选项;由原命题判断逆否命题的真假来判断C 选项;由存在性命题的否定的定义来判断D 选项【详解】对于选项A,若p q ∧为假,则p ,q 中有一个是假命题即可,故A 错误;对于选项B,当0a b >>时,无法推出ln ln a b >,故a b >不是ln ln a b >的充分条件,故B 错误;对于选项C,命题“若cos cos αβ≠,则αβ≠”的逆否命题为“若αβ=,则cos cos αβ=”,该命题正确,故C 正确;对于选项D,命题“0x R ∃∈,060x +<”的否定是“,60x R x ∀∈+≥”,故D 错误 故选:C【点睛】本题考查命题真假的判定,考查对逻辑联结词,充分不必要条件,逆否命题,存在性命题的否定的理解5.已知函数()1108101x xf x ++=+,则()()()()3336log log 6log log 3f f +的值为( ). A. 7 B. 9C. 14D. 18【答案】D 【解析】 【分析】 因为631log 3log 6=,原式可整理为()()()()3333log log 6log log 6f f +-,分析()f x 的性质可得()()18f x f x +-=,即可求解 【详解】由题,631log 3log 6=,则 ()()()()()()33363333log log 6log log 3log log 6log log 61f f f f ⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭()()()()3333log log 6log log 6f f =+-,因为()1108210101101x xx f x ++==-++,则()22101010101101xx xf x -⋅-=-=-++, 所以()()2210221010102020218101101101x x x x xf x f x ⎛⎫⋅+⋅⎛⎫+-=-+-=-=-= ⎪ ⎪+++⎝⎭⎝⎭. 则()()()()3333log log 6log log 618f f +-= 故选:D【点睛】本题考查函数对称性的应用,考查对数的性质,考查观察分析的能力,处理该题时不应直接代入数据处理,而是观察所求之间的关系,利用函数性质求解,以此简化运算 6.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像 ( ) A. 向左平移π6个长度单位 B. 向右平移π6个长度单位 C. 向左平移5π6个长度单位D. 向右平移5π6个长度单位【答案】C 【解析】先化简变形把sin y x =变为πcos 2y x ⎛⎫=-⎪⎝⎭,然后由平移公式有πππcos cos cos ()222y x y x x ϕϕϕ⎛⎫⎛⎫⎛⎫=-→=+-=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭平移个单位()对应相等可得56πϕ=,显然是向左平移.7.如图,在四边形ABCD 中,对角线BD 垂直平分AC ,垂足为O ,若4AC =,则AB AC ⋅= ( ).A. 2B. 4C. 8D. 16【答案】C 【解析】 【分析】由图可得12AB AO OB AC OB =+=+,转化12AB AC AC OB AC ⎛⎫⋅=+⋅ ⎪⎝⎭,根据OB 与AC 的位置关系进而求解即可【详解】因为对角线BD 垂直平分AC ,垂足为O ,所以12AO AC =,BO AC ⊥,即 0BO AC ⋅=,所以12AB AO OB AC OB =+=+, 则22211110482222AB AC AC OB AC AC OB AC AC ⎛⎫⋅=+⋅=+⋅=+=⨯= ⎪⎝⎭, 故选:C【点睛】本题考查向量的数量积,考查平面向量基本定理的应用,考查垂直向量的应用 8.函数f (x )=ln|11xx+-|的大致图象是( ) A. B.C. D.【答案】D 【解析】 因为()()11lnln 11x xf x f x x x-+-==-=-+-,所以函数()f x 是奇函数,图象关于原点对称,可排除,A C ;由()2ln30f =>,可排除B ,故选D.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题. 这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.9.若实数x,y满足约束条件02322302xx yxy<≤⎧⎪-+≥⎨⎪≥⎩,若()0z x ky k=+>的最大值为152,则z的最小值为().A.72B. 4C.256D.92【答案】C【解析】【分析】设0x ky+=,即1=-y xk,且1k-<,画出可行域,平移直线,由图可得截距最大时的点坐标,进而求出2k=,代回直线方程,再平移直线找到截距最小时的点,从而求得z的最小值【详解】由题,设0x ky+=,即1=-y xk,因为0k>,所以1k-<,可行域如图所示,平移直线1=-y xk,在点3,32⎛⎫⎪⎝⎭处截距最大,则此时153322k=+,即2k=,则12y x=-;再平移直线12y x=-,在点34,23⎛⎫⎪⎝⎭处截距最小,此时min34252236z=+⨯=故选:C【点睛】本题考查线性规划的应用,考查数形结合思想10.已知函数()2f x x mx=-+,且()()f f x的最大值与()f x的最大值相等,则实数m的取值范围是( ). A. (][),20,-∞-+∞B. []2,0-C. (][),02,-∞+∞D. []0,2【答案】C 【解析】 【分析】先求出()f x 的对称轴和最大值,将问题转化为存在x ,使()2mf x ≥恒成立,再解不等式即可 【详解】由题,当2m x =时,()2max 4m f x =,因为()()ff x 的最大值与()f x 的最大值相等,所以存在x ,使()2m f x ≥恒成立,则()max 2m f x ≥,即242m m≥,解得0m ≤或2m ≥,故选:C【点睛】本题考查二次函数的最值问题,考查利用二次函数的性质处理含参问题,考查转化思想11.祖暅是我国南北朝时代的伟大科学家,在数学上有突出贡献,他在实践的基础上提出了体积计算原理(祖暅原理):“幂势既同,则积不容异.”教材中的“探究与发现”利用祖暅原理将半球的体积转化为一个圆柱与一个圆锥的体积之差,从而得出球的体积计算公式.如图(1)是一种“四脚帐篷”的示意图,用任意平行于帐篷底面ABCD 的平面截帐篷,得截面四边形为正方形,该帐篷的三视图如图(2)所示,其中正视图的投影线方向垂直于平面AOC ,正视图和侧视图中的曲线均为半径为1的半圆.模仿上述球的体积计算方法,得该帐篷的体积为( ).图(1) 图(2)A. 23B.43C.π3D.2π3【答案】B【解析】【分析】由题,“祖暅原理”为两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等,则可将该四角帐篷的体积等价于一个棱柱减去一个棱锥的体积,根据三视图的数据,求解即可【详解】由“祖暅原理”可得这个四角帐篷的体积等价于一个四棱柱减去一个四棱锥的体积,底面积为正方形,对角线长为2,即边长为;高为1,所以22124112333V=⨯-⨯⨯=-=故选:B【点睛】本题考查类比推理的应用,考查几何体的体积,考查分析推理能力12.若数列{}n a满足:对任意的()3n N n*∈≥,总存在,i j N*∈,使(),,n i ja a a i j i n j n=+≠<<,则称{}n a是“F数列”.现有以下数列{}n a:①2na n=;②2na n=;③3nna=;④112nna-⎛=⎝⎭;其中是F数列的有().A. ①③B. ②④C. ②③D. ①④【答案】D【解析】【分析】利用特殊值的方法可以否定②③,再根据通项公式的特点证明①④即可【详解】①2na n=,则12a=,()12122na n n-=-=-,则11n na a a-=+()3n≥,故①是“F 数列”;②2na n=,则2339a==,若(),,n i ja a a i j i n j n=+≠<<,则,i j只能是1,2,但2111a==,2224a==,此时312a a a≠+,故②不是“F数列”;③3nna=,则33327a==,若(),,n i ja a a i j i n j n=+≠<<,则,i j只能是1,2,但13a =,2239a ==,此时312a a a ≠+,故③不是“F 数列”;④1152n n a -⎛⎫-= ⎪ ⎪⎝⎭,则1121151522n n n a ----⎛⎫⎛⎫--== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭,2132151522n n n a ----⎛⎫⎛⎫--== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,则2312112151515151522222n n n n n a a -------⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-----⎢⎥+=+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111111151515151515151n n n na ------⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-------⎢⎥=⨯⨯+=⨯⨯== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()3n ≥,故④是“F 数列”故选:D【点睛】本题考查数列的通项公式的应用,考查对新定义的理解,考查分析阅读能力,考查推理论证能力二、填空题(本大题共4小题,把答案填在答题卡的相应位置.)13.在边长为1的正六边形的六个顶点中任取两个点,则这两点之间距离大于1的概率为______. 【答案】35【解析】 【分析】由边长为1的正六边形,根据三角形两边之和大于第三边可得对角线均大于1,进而得到所求 【详解】由题,根据三角形两边之和大于第三边可得正六边形的对角线均大于1,如图,六个顶点中任取两个点的情况数为15,对角线的条数为9,则顶点中两点之间距离大于1的概率为93155P ==,故答案为:35【点睛】本题考查概率的求解,考查古典概型的应用,属于基础题14.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 2cos b A a B =,且cos 3cos c A a C =,则cos A =_____________.【解析】因为cos 2cos b A a B =,cos 3cos c A a C =,所以由正弦定理可得sin cos 2sin cos B A A B =,sin cos 3sin cos C A A C =, 整理得tan 2tan B A =,tan 3tan C A =,所以()2tan tan 5tan tan tan 1tan tan 16tan B C AA B C B C A +=-+=-=---, 又tan 0A ≠,所以25116tan A =--,解得tan 1A =(负值舍去),所以4A π=,所以cos 2A =. 15.已知曲线:21C x y =+与直线:l y kx m =+,对任意的m R ∈,直线l 与曲线C 都有两个不同的交点,则实数k 的取值范围为______. 【答案】()2,2- 【解析】 【分析】先分类讨论画出曲线C 的图象,再根据对任意的m R ∈,直线l 与曲线C 都有两个不同的交点,变换直线找到符合条件的情况,即可得到斜率k 的范围 【详解】由题,因为曲线:21C x y =+,则 当0,0x y >>时,21y x =-; 当0,0x y ><时,21y x =-+; 当0,0x y <>时,21y x =--;当0,0x y <<时,21y x =+;画出图象,如下图所示,若对任意的m R ∈,直线l 与曲线C 都有两个不同的交点,则直线l 与曲线C 分别交于两支,故22k -<<,故答案为:()2,2-【点睛】本题考查已知交点个数求参问题,考查数相结合能力,考查分类讨论思想16.如图,设Ox 、Oy 是平面内相交成60︒角的两条数轴,1e 、2e 分别是与x 轴、y 轴正方向同向的单位向量.若向量12OP xe ye =+,则把有序实数对,x y 叫做向量OP 在斜坐标系xOy 中的坐标,记作,OP x y =.在此斜坐标系xOy 中,已知2,3=a ,5,2=-b , ,a b夹角为θ,则θ=______.【答案】23π 【解析】 【分析】由题意,1223a e e =+,1252b e e =-+,分别求出a b ⋅,a ,b ,进而利用数量积求出夹角即可【详解】由题,1223a e e =+,1252b e e =-+,所以()()21221211221195210116101162223a b e e e e e e e e ⋅=⋅-+=--⋅+=--⨯+=+- ()212112222214129412931922e e e e e e a ==+⋅+=++⨯+=,则19a =,()22221211221522520425204192b e e e e e e =-+=-⋅+=-⨯+=,则19b =,所以1912cos 219a b a bθ-⋅===-⨯⋅,则23θπ= 故答案为:23π 【点睛】本题考查平面向量基本定理的应用,考查利用数量积求向量的夹角,考查运算能力 三、解答题(本大题共6小题,解答应写出必要的文字说明、证明过程演算步骤.) 17.某蛋糕店计划按天生产一种面包,每天生产量相同,生产成本每个6元,售价每个8元,未售出的面包降价处理,以每个5元的价格当天全部处理完.(1)若该蛋糕店一天生产30个这种面包,求当天的利润y (单位:元)关于当天需求量n (单位:个,n N ∈)的函数解析式;(2)蛋糕店记录了30天这种面包的日需求量(单位:个),整理得下表:假设蛋糕店在这30天内每天生产30个这种面包,求这30天的日利润(单位:元)的平均数及方差.【答案】(1) 330,3060,30n n y n -<⎧=⎨≥⎩,n N ∈.(2)平均数为59,方差为3.8. 【解析】 【分析】(1)当需求量小于30时,利润为卖出的利润减去亏损的部分;当需求量大于等于30时,利润即为30个面包的利润;(2)将需求量代入解析式求出利润,再利用平均数公式及方差公式运算即可 【详解】(1)由题,当30x <时,()()()866530330y n n n =----=-; 当30x ≥时,()308660y =⨯-=,所以330,3060,30n n y n -<⎧=⎨≥⎩,n N ∈ (2)由题,则所以平均数为()15435746066745930⨯+⨯+⨯+++⨯=⎡⎤⎣⎦; 方差为()()()()2221545935759460596674 3.830⎡⎤-⨯+-⨯+-⨯+++⨯=⎣⎦ 【点睛】本题考查分段函数在实际中的应用,考查平均数与方差,考查运算能力与数据处理能力,考查分类讨论思想18.设数列{}n a 满足123232n a a a na n ++++=.(1)求数列{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)2n a n=(2)()121nn S n =-⋅+ 【解析】 【分析】(1)先求出1a ,再由2n ≥,可得()()123123121n a a a n a n -++++-=-,与题干中条件作差,整理后即可得到通项公式;(2)由(1)可设122nn n nb n a -==⋅,利用错位相减法求前n 项和即可 【详解】解:(1)当1n =时,1212a =⨯=;当2n ≥时,()()123123121n a a a n a n -++++-=-②,因为123232n a a a na n ++++=①,则①-②得,2n na =,即2n a n=, 检验,1221a ==,符合,故2n a n =(2)由(1),设12222n nn n nb n a n-===⋅, 则121n n n S b b b b -=++++()0121=1222122n n n n --⨯+⨯++-⋅+⋅,所以()12121222122n n n S n n -=⨯+⨯++-⋅+⋅,所以012122222n n n S n --=+++-⋅()0212212n n n ⨯-=-⋅-212n n n =--⋅()121n n =-⋅-,则()121nn S n =-⋅+【点睛】本题考查求数列通项公式,考查错位相减法求数列的和,考查运算能力19.如图,在长方体1111ABCD A B C D -中,M ,N ,P 分别是面11ADD A ,面11CDD C ,面1111D C B A 的中心,11AD AA ==,2CD =.(1)求证:平面//MNP 平面1ACB ;(2)求三棱锥1D MNP -的体积;(3)在棱11C D 上是否存在点Q ,使得平面MNP ⊥平面1QBB ?如果存在,请求出1D Q 的长度;如果不存在,求说明理由. 【答案】(1)证明见解析(2)224(3)存在,1322D Q = 【解析】 【分析】(1)延长,,DM DN DP 分别至1,,A C B ,由中心可得到中点,利用中位线证明相交直线平行即可证得面面平行;(2)先求出三棱锥11D AB C-的体积,再由三棱锥各边的比求出1D MNP -的体积即可;(3)将平面MNP ⊥平面1QBB 转化为平面1ACB ⊥平面1QBB ,由长方体可得1BB AC ⊥,因为11//AC A C ,作出111B Q AC ⊥即可,进而求得1D Q【详解】(1)证明:延长,,DM DN DP 分别至1,,A C B ,M ,N ,P 分别是面11ADD A ,面11CDD C ,面1111D C B A 的中心,∴M ,N ,P 是1D A ,1D C ,11D B 的中点,//MN AC ∴,1//MP AB ,又MN MP M ⋂=,1AC AB A ⋂=,,MN MP ⊂平面MNP ,1,AC AB ⊂平面1ACB , ∴平面//MNP 平面1ACB(2)由题,11111111111111111114D AB C ABCD A B C D A D B A D D AC C B D C B ABC ABCD A B C D B ABC V V V V V V V V --------=----=-1121124112323⎛⎫=⨯⨯-⨯⨯⨯⨯⨯=⎪⎝⎭, 由(1)可得,三棱锥1D MNP -的各棱长为三棱锥11D AB C -的12, 111112288324D MNP D AB C V V --∴==⨯=(3)存在,132D Q =1BB 是长方体的侧棱, 1BB ∴⊥平面ABCD ,AC ⊂平面ABCD ,1BB AC ∴⊥,连接11A C ,作111QB AC ⊥,垂足为O ,因为长方体,∴11//AC A C ,112A B 111B C =,1B Q AC ∴⊥,11B Q BB B ⋂=,11,B Q BB ⊂平面1QBB ,AC ∴⊥平面1QBB , AC ⊂平面1ACB ,∴平面1ACB ⊥平面1QBB ,由(1),平面//MNP 平面1ACB ,∴平面MNP ⊥平面1QBB ,此时,1111111112C A B A B O QB C A B O π∠+∠==∠+∠,11111C A B QB C ∴∠=∠, 11111tan tan QB C C A B ∴∠=∠,即1111111QC B C B C A B =,则111Q C =12QC ∴=, 111122D Q D C QC ∴=-==, 【点睛】本题考查面面平行的证明,考查面面垂直的证明,考查三棱锥的体积,考查运算能力与几何体的分析能力20.已知函数()()2log 23f x ax a =++.(1)若()f x 在()1,2上单调递减,求实数a 的取值范围; (2)若存在[]2,1t ∈--使得()12f t f ⎛⎫=⎪⎝⎭,求a 的取值范围. 【答案】(1)304a -≤<(2)1616,,1515⎛⎤⎡⎤-∞-⋃-- ⎥⎢⎥⎝⎦⎣⎦【解析】 【分析】(1)根据复合函数单调性的处理原则“同增异减”可知2log y x =单调递增,函数()f x 单调递减,则求23y ax a =++单调递减,进而求解即可;(2)当0a =时为常数函数,符合条件;当0a ≠时可得()12f t f ⎛⎫=- ⎪⎝⎭,代入可得()1232312at a a a ⎛⎫++++=⎪⎝⎭,整理为关于t 的方程,即()()22561027160aa t a a ++++=,设()()()2256102716g t a a t a a =++++,由()()120g g -⋅-≤求解即可【详解】(1)由题,设2log y u =,()23u x ax a =++,2log y u =单调递增,且()f x 在()1,2上单调递减,()u x ∴在()1,2上单调递减,()020a u <⎧∴⎨≥⎩,即02230a a a <⎧⎨++≥⎩,解得304a -≤<(2)当0a =时,()2log 3f x =,是个常数函数,存在[]2,1t ∈--使得()12f t f ⎛⎫=⎪⎝⎭; 当0a ≠时,()f x 单调,若存在[]2,1t ∈--使得()12f t f ⎛⎫=⎪⎝⎭,则有()12f t f ⎛⎫=- ⎪⎝⎭, 即()221log 23log 232at a a a ⎛⎫++=-++⎪⎝⎭, 则()1232312at a a a ⎛⎫++++= ⎪⎝⎭, ()()252329160t a t a ∴++++=,()()22561027160a a t a a ∴++++=在[]2,1t ∈--有解,设()()()2256102716g t a a t a a =++++,则()()()()()222156102716521165161g a a a a a a a a -=-++++=++=++,()()()2222561027161516g a a a a a -=-++++=+,()()120g g ∴-⋅-≤,即()()()516115160a a a +++≤,1616,,1515a ⎛⎤⎡⎤∴∈-∞-⋃-- ⎥⎢⎥⎝⎦⎣⎦【点睛】本题考查复合函数已知单调性求参数问题,考查对数函数性质的应用,考查转化思想,考查运算能力21.有一块半径为10cm ,圆心角为2π3的扇形钢板,需要将它截成一块矩形钢板,分别按图1和图2两种方案截取(其中方案二中的矩形关于扇形的对称轴对称).图1:方案一 图2:方案二(1)求按照方案一截得的矩形钢板面积的最大值;(2)若方案二中截得的矩形ABCD 为正方形,求此正方形的面积;(3)若要使截得的钢板面积尽可能大,应选择方案一还是方案二?请说明理由,并求矩形钢板面积的最大值. 【答案】(1)25(2)12003003-(3)方案二,最大值为1003,理由见解析【解析】 【分析】(1)连接AC ,设CAB α∠=,则10cos AB α=,10sin BC α=,则矩形面积为关于α的函数,求出最值即可;(2)连接OC ,设COB θ∠=,利用正弦定理和三角形的对称性质可得3BC =20sin 3AB πθ⎛⎫=- ⎪⎝⎭,利用AB BC =解得2sin θ,进而求出正方形面积即可; (3)由(2)得到sin 2633S πθ⎛⎫=+- ⎪⎝⎭,求出最大值,与(1)的最值比较即可【详解】解:(1)连接AC ,设CAB α∠=,0,2πα⎛⎫∈ ⎪⎝⎭,则10cos AB α=,10sin BC α=,10cos 10sin 25sin 2S AB BC ααα∴=⋅=⋅=,()20,απ∈,∴当22πα=,即4πα=时,max 25S = (2)连接OC ,设COB θ∠=03πθ⎛⎫<<⎪⎝⎭,正方形关于扇形轴对称,∴3OBA π∠=2sin 20sin 33AB CD OC ππθθ⎛⎫⎛⎫∴==-=- ⎪ ⎪⎝⎭⎝⎭,则23OBC π∠=, 在OBC 中,由正弦定理可得sin sin OC BC OBC COB=∠∠,即102sin sin 3BCπθ=, 则3BC =, 正方形,AB BC ∴=,即20sin 33πθ⎛⎫-=⎪⎝⎭则33cos 1sin 2θθ⎛= ⎝⎭, 代入22sin cos 1θθ+=可得2sin 1643θ=+,则2240040012003003sin 331643S BC θ-==⨯==+ (3)选择方案二, 由(2),对于方案二1120sin sin 22326463333S AB BC πππθθθ⎡⎤⎛⎫⎛⎫⎛⎫=⋅=-=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦52,666πππθ⎛⎫+∈ ⎪⎝⎭,∴当262ππθ+=,即6πθ=时,max 3S ==由(1)253>, 应选择方案二【点睛】本题考查三角函数与正弦定理在几何中的应用,考查利用三角函数求最值,考查运算能力,考查数形结合能力22.已知圆M 的圆心在射线()600x y x +-=≥上,截直线1:6l x =所得的弦长为6,且与直线2:60l x y -+=相切.(1)求圆M 的方程;(2)已知点()1,1N ,在直线MN 上是否存在点Q (异于点N ),使得对圆M 上的任一点P ,都有PQ PN 为定值λ?若存在,请求出点Q 的坐标及λ的值;若不存在,请说明理由.【答案】(1)()()223318x y -+-=(2)存在,Q 为33,22⎛⎫-- ⎪⎝⎭,32λ= 【解析】【分析】 (1)由题,设圆心为()00,6x x -+,由相切关系求得半径,再由弦长公式求出0x ,进而得到圆的方程;(2)假设存在满足条件点和定值,设Q 为(),a a ()1a ≠,P 为(),x y ,利用两点间距离公式得到222PQ PN λ=,再根据P 在圆M 上,待定系数法求得系数的关系,进而求解即可【详解】(1)圆M 的圆心在射线()600x y x +-=≥上,∴设圆心为()00,6x x -+,圆心到直线1:6l x =的距离为06d x =-,又圆M 与直线2:60l x y -+=相切00r ∴====, 圆M 截直线1:6l x =所得的弦长为6,6∴=则229r d =-,即)()220069x --=, 20012450x x ∴+-=,解得03x =或015x =-(舍)r ∴=圆心为()3,3,∴圆M 为()()223318x y -+-=(2)存在,Q 为33,22⎛⎫-- ⎪⎝⎭,32λ=, 假设存在直线MN 上点Q (异于点N ),使得对圆M 上的任一点P ,都有PQ PN 为定值λ, 由题,设Q 为(),a a ()1a ≠,(0PQ PN λλ=>且1)λ≠,222PQ PN λ∴=, 设P 为(),x y ,则()()222PQ x a y a =-+-,()()22211PNx y =-+-, 则()()()()2222211x a y a x y λ⎡⎤-+-=-+-⎣⎦, 整理可得()()()()()22222222112222220x y a x a y a λλλλλ-+-----+-=, P 在圆M 上,()()223318x y ∴-+-=,即22660x y x y +--=,()()()()2222221161610x y x y λλλλ∴-+-----=, ()22226122220a a λλλ⎧-=-⎪∴⎨-=⎪⎩,解得3232a λ⎧=-⎪⎪⎨⎪=⎪⎩,此时Q 为33,22⎛⎫-- ⎪⎝⎭ 【点睛】本题考查圆的方程,考查直线与圆的位置关系,考查两点间距离公式的应用,考查运算能力,考查数形结合能力。
安徽省示范高中2019-2020学年高一上学期第二次联考数学试题
安徽省示范高中高一第二次联考数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2.请将各题答案填写在答题卡上.3.本试卷主要考试内容:人教A 版必修1,必停4第一章.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|12A x x =-<<,{}|10B x x =-<,则()A B =R I ð( ) A. {}|12x x <<B. {}|12x x <≤C. {}|12x x ≤<D. {}|12x x ≤≤2.函数()()lg 2f x x =+的定义域是( ) A. (]2,5-B. ()2,5-C. (]2,5D. ()2,53.下列各角中,与1376-︒终边相同的角是( ) A. 36︒B. 44︒C. 54︒D. 64︒4.集合{}*2|log 2,M x x x N =<∈,则集合M 的真子集的个数为( )A. 7B. 8C. 15D. 165.若α为钝角,则()k k Z απ+∈是( ) A. 第一或第二象限角 B. 第二或第三象限角 C. 第二或第四象限角D. 第一或第三象限角6.若实数0.2log 0.3a =,0.3log 0.2b =,0.3log 2c =,则( ) A. c b a <<B. c a b <<C. a b c <<D. b a c <<7.若函数212()()2m f x m m x -=--是幂函数,且()y f x =在(0,)+∞上单调递增,则()2f =( )A.14B.12C. 2D. 48.已知函数()()()312cos f x a x a x b x =+-+-是定义在[]3,1a a -+上的奇函数,则()f a b +=( ) A. -2B. -1C. 2D. 59.在平面坐标系中,»AB ,»CD,»EF ,¼GH 是单位圆上的四段弧(如图),点P 在其中一段上,角α以x 轴的非负半轴为始边,OP 为终边,若sin cos 0αα+<,且cos sin tan ααα<<,则P 所在的圆弧是( )A. »ABB. »CD C »EFD. ¼GH10.已知函数245()33f x x ax =-++,若()0f x …在[1,1]-上恒成立,则a 取值范围是( ) A. 11,33⎡⎤-⎢⎥⎣⎦B. 11,3⎡⎤--⎢⎥⎣⎦C. [1,1]-D. 11,3⎡⎤-⎢⎥⎣⎦11.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A. 8B. 9C. 10D. 1412.已知函数()3sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭,若()f x 在区间(,2]ππ内没有零点,则ω取值范围是( )A. 1120,,1233⎛⎫⎡⎫⋃ ⎪⎪⎢⎝⎭⎣⎭ B. 1170,,12612⎛⎫⎡⎫⋃ ⎪⎪⎢⎝⎭⎣⎭C. 10,12⎛⎫⎪⎝⎭D. 70,12⎛⎫⎪⎝⎭第Ⅱ卷.的二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知角α的终边经过点(P ,则cos α=____________.14.若函数()2log ,02,0xx x f x x ->⎧=⎨≤⎩,则()f f =______15.已知α为第三象限角,则cos 3sin +=____________. 16.定义在R 上的偶函数()f x 满足()(4)f x f x =-,且当[0,2]x ∈时,()cos f x x =,则()()lg g x f x x =-的零点个数为____________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合{|2A x x a =≤-或}3x a >+,(){}33|log log 5B x y x x ==+-. (1)当1a =时求A B U ;(2)若A B B =I ,求实数a 的取值范围.18.已知角θ的终边经过点(2,3)P -,求下列各式的值. (1)6sin 3cos sin θθθ-;(2)2223cos ()sin sin ()322πθπθθπ⎛⎫-+++-- ⎪⎝⎭. 19.某同学用“五点法”画函数()()sin f x A x =+ωϕ在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,填写在相应位置,并求出函数()f x 的解析式;(2)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单,位长度,得到函数()y g x =的图象,求236g π⎛⎫⎪⎝⎭的值. 20.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-. (1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围.21.已知函数()sin 24a a x x b f π⎛⎫=+++ ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域是⎡⎤⎣⎦. (1)求常数a ,b 的值; (2)当0a <时,设()2g x f x π⎛⎫=+⎪⎝⎭,判断函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调性. 22.已知函数22()3x xe ef x -+=,其中e 为自然对数的底数. (1)证明:()f x 在(0,)+∞上单调递增; (2)函数25()3g x x =-,如果总存在1[,](0)x a a a ∈->,对任意()()212,x R f x g x ∈…都成立,求实数a 的取值范围.。
2019-2020学年安徽省示范高中高一上学期第二次联考数学试题(解析版)
2019-2020学年安徽省示范高中高一上学期第二次联考数学试题一、单选题1.已知集合{}|12A x x =-<<,{}|10B x x =-<,则()A B =R I ð( ) A .{}|12x x << B .{}|12x x <≤C .{}|12x x ≤<D .{}|12x x ≤≤【答案】C【解析】确定集合B ,由集合运算的定义求解. 【详解】因为集合{}{}|10|1B x x x x =-<=<,所以{}|1R C B x x =≥,所以(){}|12R A C B x x =≤<I .故选:C. 【点睛】本题考查集合的运算,属于基础题.2.函数()()lg 2f x x +的定义域是( ) A .(]2,5- B .()2,5-C .(]2,5D .()2,5【答案】A【解析】使解析式有意义,因此必须有5x 0-≥且20x +>. 【详解】由()()lg 2f x x =+,得5020x x -≥⎧⎨+>⎩,即52x x ≤⎧⎨>-⎩,所以(]2,5x ∈-.故选:A. 【点睛】本题考查求函数定义域,即求使函数式有意义的自变量的取值范围. 3.下列各角中,与1376-︒终边相同的角是( ) A .36︒ B .44︒ C .54︒ D .64︒【答案】D【解析】根据终边相同的角的公式360,k k Z αβ︒=+⋅∈,即可求解.【详解】因为1376436064-︒=-⨯︒+︒,所以与1376-︒终边相同的角是64︒. 故选:D. 【点睛】本题考查终边相同角的公式,属于基础题. 4.集合{}*2|log 2,M x x x N =<∈,则集合M 的真子集的个数为( )A .7B .8C .15D .16【答案】A【解析】解对数不等式得{}1,2,3M =,根据集合元素的个数可得真子集个数. 【详解】由2log 2x <,得04x <<,又*x ∈N , 所以集合{}1,2,3M =, 集合M 的真子集有3217-=个. 故选:A. 【点睛】本题考查集合真子集的个数,关键是要确定集合元素的个数,利用子集个数公式2n 求得真子集个数,是基础题.5.若α为钝角,则()k k Z απ+∈是( ) A .第一或第二象限角 B .第二或第三象限角 C .第二或第四象限角 D .第一或第三象限角【答案】C【解析】若α为钝角,则终边落在第二象限,对k 赋值,即可判断()k k Z απ+∈终边所在象限 【详解】由题,若α为钝角,则终边落在第二象限, 当0k =时,()k k Z απ+∈为第二象限角; 当1k =时,()k k Z απ+∈为第四象限角, 故选:C 【点睛】本题考查象限角的判断,属于基础题6.若实数0.2log 0.3a =,0.3log 0.2b =,0.3log 2c =,则( ) A .c b a << B .c a b <<C .a b c <<D .b a c <<【答案】B【解析】与中间值 0和1比较后可得. 【详解】因为对数函数0.2log y x =是单调递减的,所以0.20.2log 0.3log 0.21a =<=,同理,0.30.3log 0.2log 0.31b =>=,所以01a b <<<,而0.30.3log 2log 10c =<=,所以c a b <<.故选:B. 【点睛】本题考查比较对数的大小,对于同底数的对数,可以利用对数函数的单调性比较,不同底数的对数可以与中间值0,1等比较后得出结论.7.若函数212()()2m f x m m x -=--是幂函数,且()y f x =在(0,)+∞上单调递增,则()2f =( )A .14B .12C .2D .4【答案】D【解析】由幂函数的定义及幂函数的单调性可得3m =,再求值即可得解. 【详解】解:因为函数()()2122m f x m m x-=--是幂函数,所以2221m m --=,解得1m =-或3m =.又因为()y f x =在(0,)+∞上单调递增,所以10m -≥, 所以3m =,即2()f x x =,从而()2224f ==,故选:D. 【点睛】本题考查了幂函数的定义及幂函数的单调性,重点考查了求值问题,属基础题. 8.已知函数()()()312cos f x a x a x b x =+-+-是定义在[]3,1a a -+上的奇函数,则()f a b +=( ) A .-2 B .-1 C .2 D .5【答案】B【解析】根据奇函数的定义域关于原点对称可得310a a -++=,再由()00f =,列方程组求出,a b ,进而求出+a b 代入求函数值即可. 【详解】由函数()()()312cos f x a x a x b x =+-+-是定义在[]3,1a a -+上的奇函数,得3100a a b -++=⎧⎨-=⎩,所以10a b =⎧⎨=⎩,()323f x x x =-, 则()()11f a b f +==-. 故选:B. 【点睛】本题考查函数奇偶性的性质,特别的定义域关于原点对称不要忽略,是基础题.9.在平面坐标系中,»AB ,»CD,»EF ,¼GH 是单位圆上的四段弧(如图),点P 在其中一段上,角α以x 轴的非负半轴为始边,OP 为终边,若sin cos 0αα+<,且cos sin tan ααα<<,则P 所在的圆弧是( )A .»AB B .»CDC .»EFD .¼GH【答案】D【解析】假设点P 在指定象限,得到sin ,cos ,tan ααα的符号,验证sin cos 0αα+<,cos sin tan ααα<<是否成立即可【详解】若点P 在第一象限,则sin 0α>,cos 0α>,则sin cos 0αα+>,与题意不符,故排除A,B ;若点P 在第二象限,则sin 0α>,tan 0α<,则sin tan αα>,与题意不符,故排除C ; 故选:D 【点睛】本题考查象限角的三角函数值的符号的应用,考查排除法处理选择题 10.已知函数245()33f x x ax =-++,若()0f x …在[1,1]-上恒成立,则a 的取值范围是( ) A .11,33⎡⎤-⎢⎥⎣⎦B .11,3⎡⎤--⎢⎥⎣⎦C .[1,1]-D .11,3⎡⎤-⎢⎥⎣⎦【答案】A【解析】()0f x …在[1,1]-上恒成立,则抛物线在[1,1]-间的部分都在x 轴上方或在x 轴上,只需最低点,即区间的两个端点满足即可,可得(1)0,(1)0f f -≥≥,求解即可得出结论. 【详解】因为()0f x …在[1,1]-上恒成立, 所以45(1)0,3345(1)0,33f a f a ⎧=-++⎪⎪⎨⎪-=--+⎪⎩……解得1133a -剟. 故选:A. 【点睛】本题考查不等式在给定区间恒成立,转为为二次函数图像特征,考查数形结合思想,属于基础题.11.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8 B .9C .10D .14【答案】C【解析】根据已知条件得出415ke-=,可得出ln 54k =,然后解不等式1200kt e -≤,解出t 的取值范围,即可得出正整数n 的最小值.【详解】由题意,前4个小时消除了80%的污染物,因为0ktP P e -=⋅,所以()400180%kP Pe --=,所以40.2k e -=,即4ln0.2ln5k -==-,所以ln 54k =, 则由000.5%ktP P e -=,得ln 5ln 0.0054t =-, 所以()23554ln 2004log 2004log 52ln 5t ===⨯5812log 213.16=+=, 故正整数n 的最小值为14410-=.故选:C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题.12.已知函数()3sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭,若()f x 在区间(,2]ππ内没有零点,则ω的取值范围是( ) A .1120,,1233⎛⎫⎡⎫⋃ ⎪⎪⎢⎝⎭⎣⎭B .1170,,12612⎛⎫⎡⎫⋃ ⎪⎪⎢⎝⎭⎣⎭C .10,12⎛⎫⎪⎝⎭D .70,12⎛⎫⎪⎝⎭【答案】B【解析】由函数()f x 在区间(,2]ππ内没有零点,可得6,2(1)6k k k πωπππωππ⎧-≥⎪⎪∈⎨⎪-<+⎪⎩Z ,再结合k ∈Z 求解即可. 【详解】解:因为2x ππ<≤,0>ω, 所以2666x πππωπωωπ-<-≤-.因为()f x 在区间(,2]ππ内没有零点,所以6,2(1)6k k k πωπππωππ⎧-≥⎪⎪∈⎨⎪-<+⎪⎩Z . 解得17,6212k k k ω+≤<+∈Z . 因为17621270212k k k ⎧+<+⎪⎪⎨⎪+>⎪⎩,所以7566k -<<, 因为k ∈Z .所以1k =-或0k =.当1k =-时1012ω<<; 当0k =时,17612ω≤<,故选:B. 【点睛】本题考查了函数的零点问题,重点考查了三角函数图像的性质,属中档题.二、填空题13.已知角α的终边经过点(P ,则cos α=____________.【答案】 【解析】结合三角函数的定义求解即可. 【详解】解:因为(P , 则OP=2r ==,所以cos α=,故答案为:. 【点睛】本题考查了三角函数的定义,属基础题.14.若函数()2log ,02,0x x x f x x ->⎧=⎨≤⎩,则()f f=______.【答案】2【解析】先求出12f =-,再代入12x =-,求12f ⎛⎫- ⎪⎝⎭即可. 【详解】因为21log2f=-=-,所以()12122f ff -⎛⎫=-== ⎪⎝⎭.故答案为:2【点睛】本题考查分段函数的函数值的求解,是基础题.15.已知α为第三象限角,则cos 3sin +=____________. 【答案】4-【解析】由同角三角函数的关系可将原式变形为11cos 3sin |cos ||sin |αααα⋅+⋅,再结合三角函数象限角的符号求解即可. 【详解】 解:cos 3sin cos 3sin +=+11cos 3sin |cos ||sin |αααα=⋅+⋅,又α为第三象限角,则sin 0,cos 0αα<<, 故原式 11cos 3sin 4cos sin αααα=⋅+⋅=---,故答案为:4-. 【点睛】本题考查了三角函数象限角的符号问题,重点考查了同角三角函数的关系,属基础题. 16.定义在R 上的偶函数()f x 满足()(4)f x f x =-,且当[0,2]x ∈时,()cos f x x =,则()()lg g x f x x =-的零点个数为____________.【解析】由函数的零点个数与函数图像的交点个数的关系,函数()()lg g x f x x =-的零点个数等价于函数()y f x =的图像与函数lg y x =的图像的交点个数,再结合函数的性质作图观察即可得解. 【详解】解:由于定义在R 上的偶函数()y f x =满足()4()f x f x =-, 所以()y f x =的图象关于直线2x =对称,画出[0,)x ∈+∞时,()y f x =部分的图象如图,在同一坐标系中画出lg y x =的图象, 由图可知:当(0,)x ∈+∞时,有5个交点, 又lg y x =和()y f x =都是偶函数,所以在(,0)x ∈-∞上也是有5个交点,所以()()lg g x f x x =-的零点个数是10, 故答案为:10.【点睛】本题考查了函数的性质,重点考查了函数的零点个数与函数图像的交点个数的相互转化,属中档题.三、解答题17.已知集合{|2A x x a =≤-或}3x a >+,(){}33|log log 5B x y x x ==+-. (1)当1a =时,求A B U ;(2)若A B B =I ,求实数a 的取值范围.【答案】(1){|1x x ≤-或}0x >;(2)(][),37,-∞-+∞U .【解析】(1)计算{}|05B x x =<<,{|1A x x =≤-或}4x >,再计算A B U 得到答案.(2)根据A B B =I 得到B A ⊆,故30a +≤或25a -≥,计算得到答案.(1)因为050x x >⎧⎨->⎩,所以05x <<,即{}|05B x x =<<,当1a =时,{|1A x x =≤-或}4x >,所以{|1A B x x ⋃=≤-或}0x >. (2)因为A B B =I ,所以B A ⊆, {}|05B x x =<<, 则30a +≤或25a -≥,即3a ≤-或7a ≥, 所以实数a 的取值范围为(][),37,-∞-+∞U . 【点睛】本题考查了并集的计算,根据包含关系求参数,意在考查学生对于集合知识的综合应用. 18.已知角θ的终边经过点(2,3)P -,求下列各式的值. (1)6sin 3cos sin θθθ-;(2)2223cos ()sin sin ()322πθπθθπ⎛⎫-+++-- ⎪⎝⎭. 【答案】(1)-2 (2)1713-【解析】(1)由三角函数的定义可得3tan 2θ=-,再结合同角三角函数的商数关系即可得解.(2)由同角三角函数的平方关系及诱导公式化简即可得解. 【详解】解:(1)由角θ的终边经过点(2,3)P -,可知3tan 2θ=-, 则6sin 6tan 23cos tan 3tan θθθθθ==---.(2)由已知有sin θ==, 所以2223cos sin sin ()322πθπθθπ⎛⎫⎛⎫-+++-- ⎪ ⎪⎝⎭⎝⎭ 222sin cos sin 3θθθ=++- 2sin 13θ=+-91721313=-=-. 【点睛】本题考查了三角函数的定义及同角三角函数的关系,重点考查了运算能力,属基础题. 19.某同学用“五点法”画函数()()sin f x A x =+ωϕ在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,填写在相应位置,并求出函数()f x 的解析式;(2)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位长度,得到函数()y g x =的图象,求236g π⎛⎫ ⎪⎝⎭的值.【答案】(1)见解析,()2sin 23f x x π⎛⎫=-⎪⎝⎭.(2)-1 【解析】(1)由表格中数据,可得5122113122ππωϕππωϕ⎧+=⎪⎪⎨⎪+=⎪⎩,即可求得23ωπϕ=⎧⎪⎨=-⎪⎩,由sin 22A π=可得2A =,则()2sin 23f x x π⎛⎫=-⎪⎝⎭,进而补全表格即可; (2)由图像变换原则可得()2sin g x x =,进而将236x π=代入求解即可 【详解】解:(1)根据表中已知数据,可得5122113122ππωϕππωϕ⎧+=⎪⎪⎨⎪+=⎪⎩,解得23ωπϕ=⎧⎪⎨=-⎪⎩,又sin22A π=,所以2A =,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭. 数据补全如下表:(2)由(1)知()2sin 23f x x π⎛⎫=-⎪⎝⎭, 把()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到2sin 3y x π⎛⎫=- ⎪⎝⎭的图像,再把得到的图像向左平移3π个单位长度,得到2sin sin 33y x x ππ⎛⎫=+-= ⎪⎝⎭的图像,即()2sin g x x =,所以23232sin 2sin 1666g πππ⎛⎫⎛⎫==-=-⎪ ⎪⎝⎭⎝⎭【点睛】本题考查由三角函数性质求解析式,考查三角函数的图像变换,考查运算能力 20.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-.(1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围.【答案】(1)()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩;(2)30,2⎡⎤⎢⎥⎣⎦【解析】(1)由奇函数的定义可求得解析式;(2)由分段函数解析式知,函数在R 上单调,则为单调增函数,结合二次函数对称轴和最值可得参数范围.即0x >时要是增函数,且端点处函数值不小于0. 【详解】解:(1)因为函数()f x 是定义在R 上的奇函数,所以()00f =,当0x <时,0x ->,则()()()232f x x a x a -=-+-+-()232x ax a f x =-+-=-, 所以()()2320x ax a f x x =-+-+<,所以()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩. (2)若()f x 是R 上的单调函数,且()00f =,则实数a 满足02320a a ⎧-≤⎪⎨⎪-≥⎩,解得302a ≤≤,故实数a 的取值范围是30,2⎡⎤⎢⎥⎣⎦.【点睛】本题考查函数的奇偶性与单调性,分段函数在整个定义域上单调,则每一段的单调性相同,相邻端点处函数值满足相应的不等关系. 21.已知函数()sin 24a a x x b f π⎛⎫=+++ ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x的值域是⎡⎤⎣⎦.(1)求常数a ,b 的值;(2)当0a <时,设()2g x f x π⎛⎫=+⎪⎝⎭,判断函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调性. 【答案】(1)2a =,2b =-或2a =-,4b =函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增.函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减.【解析】(1)先求得sin 242x π⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,再讨论0a >和0a <的情况,进而求解即可;(2)由(1)()2sin 224f x x π⎛⎫=-++- ⎪⎝⎭则()2sin 224g x x π⎛⎫=++- ⎪⎝⎭进而判断单调性即可 【详解】 解:(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦,所以sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦, ①当0a >时,由题意可得212a a b a a b ⎧⎛⨯-++=⎪ ⎨⎝⎭⎪⨯++=⎩即222a a b a b ⎧-++=⎪⎨⎪+=⎩解得2a =,2b =-; ②当0a <时,由题意可得221a a b a a b ⎧⎛⨯-++=⎪ ⎨⎝⎭⎪⨯++=⎩,即222a a b a b ⎧-++=⎪⎨⎪+=⎩,解得2a =-,4b =(2)由(1)当0a <时,2a =-,4b =所以()2sin 224f x x π⎛⎫=-++- ⎪⎝⎭所以()2sin 22224f x x g x πππ⎡⎤⎛⎫⎛⎫=+=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2sin 224x π⎛⎫=++- ⎪⎝⎭令222242k x k πππππ-+≤+≤+,k Z ∈,解得388k x k ππππ-+≤≤+,k Z ∈, 当0k =时,388x ππ-≤≤,则3,0,0,8828ππππ⎡⎤⎡⎤⎡⎤-⋂=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增, 同理,函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减 【点睛】本题考查由三角函数性质求解析式,考查正弦型函数的单调区间,考查运算能力22.已知函数22()3x xe ef x -+=,其中e 为自然对数的底数.(1)证明:()f x 在(0,)+∞上单调递增; (2)函数25()3g x x =-,如果总存在1[,](0)x a a a ∈->,对任意()()212,x R f x g x ∈…都成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)[ln 2,)+∞ 【解析】(1)用增函数定义证明;(2)分别求出()f x 和()g x 的最大值,由()f x 的最大值不小于()g x 的最大值可得a 的范围. 【详解】(1)设120x x <<, 则11221222()()()()33x x x x f x f x e e e e ---=+-+1212211[()()]3x x x x e e e e=-+- 1212122()(1)x x x x x x e e e e e e--=, ∵120x x <<,∴12x x e e <,121x x e e >,∴12())0(f x f x -<,即12()()f x f x <, ∴()f x 在(0,)+∞上单调递增;(2)总存在1[,](0)x a a a ∈->,对任意()()212,x R f x g x ∈…都成立,即max max ()()f x g x ≥,25()3g x x =-的最大值为max 5()3g x =,22()3x xe ef x -+=是偶函数,在(0,)+∞是增函数,∴当[,]x a a ∈-时,max22()()3a ae ef x f a -+==, ∴22533a a e e -+≥,整理得22520a a e e -+≥,(2)(21)0a a e e --≥,∵0a >,∴1a e >,即210a e ->,∴20a e -≥,∴ln 2a ≥.即a 的取值范围是[ln 2,)+∞.【点睛】本题考查函数的单调性,考查不等式恒成立问题.单调性的证明只能按照定义的要求进行证明.而不等式恒成立问题要注意问题的转化,本题中问题转化为max max ()()f x g x ≥,如果把量词改为:对任意1x ,总存在2x ,使得12()()f x g x ≥成立,则等价于min min ()()f x g x ≥,如果把量词改为:对任意1x ,任意2x ,使得12()()f x g x ≥恒成立,则等价于min max ()()f x g x ≥,如果把量词改为:存在1x ,存在2x ,使得12()()f x g x ≥成立,则等价于max min ()()f x g x ≥.(12,x x 的范围均由题设确定).。
安徽省示范高中培优联盟2020-2021学年高二上学期冬季联赛数学试题 理(PDF)
(在此卷上答题无效)
绝密★启用前
安徽省示范高中培优联盟2020年冬季联赛(高二)
数学(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至 第4页。全卷满分150分,考试时间120分钟。 考生注意事项:
1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡 上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需 改动,用橡皮擦干净后,再选涂其他答案标号。
3 4..獉题清字答考笔獉卷晰第试描。、Ⅱ结獉草清作卷 束獉稿楚图,时獉纸务。题,獉上必必必可獉答须将须先獉题使试在用獉无用题题铅獉效卷0.号笔。和5所在答毫指答獉题米示题獉卡的的卡獉一黑答规并色定题上墨的区交水位域。签置作字绘答笔出,在超獉,确獉答出獉认獉题答獉后獉卡题獉再獉上区獉用书獉域0写书獉.5,写獉要毫的獉求米答獉字的案獉体黑无獉工色獉效整墨,、在獉水笔试迹签獉
(D)犳(狓)=狓12-狓2
( )
第(4)题图
第(7)题图
(5)四边形犃犅犆犇中,犃→犅+2犆→犇=0,设犅犆的中点为犕,犃→犅=犪,犃→犇=犫,则向量犇犕→= ( )
( ) (A)3 4犪-犫 (B)3 4犪-1 2犫 (C)犪-1 2犫 (D)1 2犪-犫
( (67) )“ ((某φCA几))=充何充3π分体分+必由不2要犽必若π条要干(犽件条大∈件小犣相)”同是的“正函方数体犳(组狓合)=而s成( (iBDn,))其狓2必既三+要不视φ不充图充分的均分也图为条不象如件必关图要于所条狓示件=的3π图形对,称设”该的几何( 体 的)
∑ ∑ ∑ 犻=51狓犻2-5狓-2=10,犻=41狓犻狔犻=6653,犻=41狔犻=3.30.
2019-2020学年安徽省示范中学培优联盟高一上学期冬季联赛数学试题(解析版)
2019-2020学年安徽省示范中学培优联盟高一上学期冬季联赛数学试题一、单选题1.若全集U =R ,集合{}1,2,3,4,5A =,{}3B x R x =∈≥,图中阴影部分所表示的集合为( )A .{}1B .{}1,2C .{}1,2,3D .{}0,1,2【答案】B【解析】图中阴影部分表示的意思为:U A B ⋂ð,根据集合运算关系即可得解. 【详解】根据图中阴影部分表示的意思为:U A B ⋂ð,()U ,3B =-∞ð, 所以{}U 1,2A B =I ð. 故选:B 【点睛】此题考查韦恩图表示的集合关系辨析,并求出图中表示的集合,属于简单题目,关键在于准确识别图中表达的意思.2.下列函数既是增函数,图象又关于原点对称的是( ) A .y x x = B .x y e =C .1y x=D .23y x =【答案】A【解析】A 符合题意,B 不关于原点对称,C 不是增函数,D 不关于原点对称. 【详解】y x x =,记()()(),f x x x f x x x f x =-=-=-,是奇函数,可化为22,0,0x x x x y ⎧=≥⎪⎨-<⎪⎩,当0x <,20y x =-<且是增函数,当0x ≥,20y x =≥且是增函数,所以函数在定义域内单调递增,所以A 正确;x y e =是非奇非偶函数,不关于原点对称,所以B 不正确;1y x=不是增函数,所以C 不正确; 23y x =是偶函数不是奇函数,不关于原点对称,所以D 不正确;故选:A 【点睛】此题考查函数奇偶性和单调性的判断,熟记常见基本初等函数的性质对解题能起到事半功倍的作用.3.已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,且当3,02x ⎛⎫∈-⎪⎝⎭时,2()log (27)f x x =+,则(2020)f =()A .2-B .2log 3C .3D .2log 5-【答案】D【解析】由题意利用函数奇偶性求得()f x 的周期为3,再利用函数的周期性求得(2020)f 的值.【详解】解:Q 已知定义域为R 的奇函数()f x 满足(3)()0f x f x -+=,()()(3)f x f x f x ∴-=-=-,∴()f x 的周期为3.3,02x ⎛⎫∴∈- ⎪⎝⎭时,2()log (27)f x x =+,22(2020)(36731)(1)(1log (27)lo )5g f f f f =⨯+==-=--+-=-,故选:D 。
高中培优联盟高一数学冬季联赛试题PDF(共6页)
2021年冬季联赛(liánsài)高一数学参考答案及解析1【答案】B2【答案】A3【答案】D4【答案】C5【答案】C【解析】当时,有,又因为,所以为增函数,那么有,故有;当时,有,因为是增函数,所以有,解得,故有综上应选C6【答案】A【解析】由图象可知,,,,,,,且,,,令,可得,解可得,,或者,,或者,那么的最小值为,应选:.7【答案】B【解析】函数,要使f(x)有意义,那么,解得0<x≤2.8【答案】D【解析】由函数是上的单调函数,,故为一定值,设为,即,而,解得,因此,所以,,故函数的零点所在的区间为,此题选D.9【答案(dáàn)】C【解析】画出函数图像:,设那么即故答案选C10【答案】B【解析】函数的单调递减区间,即函数的单调递增区间.易知原函数的单调减区间为.结合所给的选项,可知选B.11【答案】B【解析】由函数在[0,2]上为减函数,所以且,解得. 12【答案】A【解析】因为函数是“梦想函数〞,所以在上的值域为,且函数是单调递增的.所以即有2个不等的正实数根,且两根之积等于(děngyú)解得,应选A.13【答案】614【答案】15【答案】16【答案】【解析】由得,所以,又因为,所以,解得,所以,故填 .17【解析】〔1〕集合,因为.所以函数,由,可得集合.或者,故.〔5分〕〔2〕因为,由,而集合应满足>0,因为,故,〔7分〕依题意:,即或者,所以实数的取值范围是.〔10分〕18【解析】(1)因为,即,a 的最大值等于(d ěngy ú),a 的最小值等于,所以,.〔4分〕(2),〔8分〕又,,. 所以,实数a 的取值范围是.〔12分〕19【解析】〔1〕因为,所以()f x 的图象关于直线对称, 所以,解得,又因为,所以1ω=,那么()f x 的最小正周期.〔5分〕〔2〕因为,所以()f x 的单调递增区间为.〔8分〕因为()f x 在上单调递增,所以,解得. 故t 的最大值为.〔12分〕20【解析】〔1〕当1a >时,()f x 在上是减函数,当时,()f x 在()0,+∞上是增函数。
2020-2021学年安徽省示范高中培优联盟高二上学期冬季联赛数学(理)试题 PDF版
第(19)题图
(20)(本小题满分12分) ((如1 2) )图求 若,三证 二棱面:犕锥角犅犘犅⊥犃犃犕犆犅犃犆;中犆,犘的犃大⊥小面为犃45犅°犆,求,犃犘犅犃=的犅犆长.=2,∠犃犅犆=120°,犕为犘犆的中点.
( )
(A)19
(B)2 9
(C)1 3
(D)4 9
命题:马鞍山二中 卢建军 审题:宁国中学 张海元 制卷:等高教育(www.hfdgjy.com) 第1页(共4页)
(4)已知函数狔=犳(狓)的图象如图所示,则犳(狓)的解析式可以为
(A)犳(狓)=-tan狓
(B)犳(狓)=狓1-狓3
(C)犳(狓)=sin1狓
表面积为狓,其外接球的表面积为狔,则π狔狓的值为
( )
(A)1 5 (B)136
(C)1 31 0
(D)1 31 2
(8)卢卡斯是十九世纪法国数学家,他以研究斐波那契数列而著名.卢卡斯数列就是以他的名字
犔(命A狀(名)狀0,∈卢犖卡斯).数则列卢为卡(:B1斯),13数,4列,7{犔,1狀1},的18第,2290,2407(,C项76)2除,1以234,…的,余即数犔是1=1(,犔D2)3=3,且犔狀+2=(犔 狀+1 +)
第 1 页 (共 5 页)
9【答案】C
【解析】设圆台上下底面圆的半径分别为 r , R ( R r ) ,母线长为 L ,由题知, 2 | R2 r2 | πL(R r ) ,即 2(R r) L .母线与底面的夹角的余弦值为 cos R r 1 ,故 60 .
安徽省示范高中培优联盟2020-2021冬季联赛数学答案
综上, 0 x 75 5 29 .———5 分 2
(2)设上班族 S 中有 n 人,则自驾群体中有 nx% 人,公交群体中有 n1 x% .
当 0 x 35 时, g x 30 nx% 40 n 1 x% 400 x ,
n
10
———7 分
当
35
x
100
时,
g
x
2
x
2450 x
———11 分
又因为 b 是其中的一个零点,所以 b 5a ,结合 b f (0) 2 a ,所以 b 16 .———12 分
4
5
22.(12 分) 解: (1)当 0 x 35 时,自驾群体的人均通勤时间为 30 分钟,公交群体的人均通勤
时间为 40 分钟,此时小李采用自驾通勤方式. ———2 分
64 4
16 ,即 3
0 .所以选项
B
能推出方程③无实根.
第 II 卷(非选择题 共 每小题 5 分,共 20 分。)
(13)【答案】 1
【解析】 1 1 2 log2 7 log7 2
2 log2 7 log7 2
1.
1 log2 7 1 log7 2 (1 log2 7)(1 log7 2) 1 log2 7 log7 2 log2 7 log7 2
的最小值为
3.———12
分
19.(12 分)
【解析】
(1)
f
x
2x
4a
1
2x
3 2x
,
———2 分
因为 2x
3 2x
2
2x
3 2x
2
3 (当且仅当 x log2
3 时,等号成立),
安徽省示范高中培优联盟2020-2021冬季联赛高一数学卷及答案
{ } (17)(本题满分10分) 已知集合犃=狓∈犖狘-3<log2狓1≤-1,集合犅={狓狘狓2-犪狓+10>0}, 设狆:狓∈犃,狇:狓∈犅.若狆是狇的充分条件,求实数犪的取值范围.
(18)(本题满分12分) 已知函数犳(狓)=狓-2+狘3-狓狘. (1)求不等式犳(狓)≤5的解集; (2)若犳(狓)的最小值为犿,正数犪,犫满足犪犫=犿,求犪1+犫1+犪2+犫的最小值.
a
0
时,
x1x2
1 a
0
,方程有负根;
又 a 1时,方程根为 x 1 ,所以选 A.
11.【答案】A
【解析】两天的平均速度均为
14 15
8
2
千米/小时,所以①正确;由图可知,上山途中先是
较快匀速,然后休息一段时间,最后是较慢匀速,所以②不正确;由图可知,下山的速度先
快后慢,全程平均速度为 2 千米/小时,所以前一半时间的平均速度大于 2 千米/小时,所以 ③不正确;下山的速度是先较快匀速,后较慢匀速,并不是越来越慢,所以④不正确;将两
进给出,最以后下速说度法较:①慢;两③天下的山平的均前速一度半相时等间;的②平上均山速途度中小分于32个千阶米段/,先小速时;度④较下快山,然的后速匀度速越来前
越慢;⑤两天中存在某个相同时刻,此人恰好在相同的地点.其中正确说法的个数为( )
(A)2 (B)3
(C)4
(D)5
(12)记方程①:狓2+犪狓+1=0,方程②:狓2+犫狓+2=0,方程③:狓2+犮狓+4=0,其中犪,犫,
天的路程时间关系图象画在同一坐标系中,可知它们必有交点,对应的时刻,此人离起点 A 的路程相等,即在同一位置,所以⑤正确.
安徽省示范高中培优联盟2023-2024学年高一上学期冬季联赛试题 数学含答案
安徽省示范高中培优联盟2023年冬季联赛(高一)数学(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页.全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效.4.考试结束,务必将试题卷和答题卡一并上交.第Ⅰ卷(选择题共60分)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合()(){}23270xA x x =--=∣,{}0ln 1B x x =∈Z∣ ,则A B = ()A.{}2B.{}3 C.{}2,3 D.{}1,2,32.若命题:0x ∃>,2210x mx -+ 是真命题,则实数m 的取值范围是()A.[)1,+∞B.[)2,+∞C.)⎡+∞⎣D.[)3,+∞3.已知函数()2y f x =的定义域为3,22⎡⎤-⎢⎥⎣⎦,则函数()()1ln 2f x y x -=+的定义域为()A.70,4⎡⎤⎢⎥⎣⎦B.[)(]3,11,4---C.(]2,4- D.()(]2,11,4--- 4.若:3p a >,q :关于x 的方程210x ax ++=有两个不相等的实数根,则p 是q 成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知定义域为R 的函数()f x 和()g x ,函数()f x 图象关于原点对称,函数()g x 满足()()0g x g x --=,若()()321xf xg x x +=+-,则()1f 与()2g -的大小关系为()A.()()12f g >-B.()()12f g <-C.()()12f g =- D.不确定6.已知1a >,1b >,log 10lg a b =,lg lg 2a b + ,则a b +=()A.2B.5C.10D.207.已知函数()f x 定义域为D ,若对于12,x x D ∀∈,当12x x ≠时,都有()()()()22121221120x x f x f x x f x x f x ⎡⎤+--<⎣⎦成立,则称函数()f x 是“共建”函数,则下列四个函数中是“共建”函数的是()A.()()42x xf x x =+ B.()()12log 21f x x x =-C.()2f x x x =+,()0,x ∈+∞ D.()2f x x =,()0,x ∈+∞8.函数()8149431923x x x x xf x --+⋅+⋅+=+⋅的最小值是()A. B.3C.83 D.103二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.若实数x ,y 满足12x y -<<<,则下列说法中正确的是()A.11x<- B.24x y -<+<C.10x y -<-< D.30x y -<-<10.若点(),8a 在幂函数()()1bf x a x =-的图象上,则以下关于函数()g x =是()A.()g x 的定义域是[]1,2B.()g x 的值域是[]1,1-C.()g x 是增函数D.()()50g x g x -+=11.若函数()f x 的零点与()4ln 2xg x x =+-的零点之差的绝对值不超过12,则()f x 可以是()A.()41f x x =- B.()32f x x x =+-C.()33xxf x -=- D.()()2log 32f x x =-12.定义在R 上的函数()f x ,当0x >时,()22f x x =-,当0x 时,()12x f x +=,若关于x 函数()()21y f x mf x =++在定义域内有四个零点,则实数m 的取值可以是()A.265-B.5- C.103-D.52-第Ⅱ卷(非选择题共90分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.三、填空题(本题共4小题,每小题5分,共20分.)13.已知函数()2f x x =()f x 的值域为________.14.已知函数()()log a f x x b =+的图象不经过第二、四象限,请写出满足条件的一组(),a b 的值________.15.设点()1,0A ,()0,1B ,点C 是函数1112y x x x ⎛⎫=+⎪⎝⎭图象上一点,则ABC △面积的最小值为________.16.若函数()()()232f x x x mx n =+++对于x ∀∈R 都有()()20f x f x -+=,则2m n +=________.四、解答题(本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.)17.(10分)某品牌汽车制造厂引进了一条小型家用汽车装配流水线,本年度第一季度统计数据如下表月份1月2月3月小型汽车数量x (辆)306080创造的收益y (元)480060004800(1)根据上表数据,从下列三个函数模型中:①y ax b =+,②2y ax bx c =++,③xy a b =+选取一个恰当的函数模型描述这条流水线生产的小型汽车数量x (辆)与创造的收益y (元)之间的关系,并写出这个函数关系式;(2)利用上述你选取的函数关系式计算,若这家工厂希望在一周内利用这条流水线创收6020元以上,那么它在一周内大约应生产多少辆小型汽车?18.(12分)(1)已知0b a >>,求证11a ab b+>+;(2)利用(1111111112462n ⎛⎫⎛⎫⎛⎫⎛⎫<---⨯⨯-< ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (*n ∈N 且2n ).19.(12分)我们知道存储温度x (单位:℃)会影响着鲜牛奶的保鲜时间T (单位:h ),温度越高,保鲜时间越短.已知x 与T 之间的函数关系式为()e mx n T x +=(e 为自然对数的底数),某款鲜牛奶在5℃的保鲜时间为180h ,在25℃的保鲜时间为45h .(参考数据:2 1.41≈)(1)求此款鲜牛奶在0℃的保鲜时间约为几小时(结果保留到整数);(2)若想要保证此款鲜牛奶的保鲜时间不少于90h ,那么对存储温度有怎样的要求?20.(12分)定义在R 上的函数()f x ,满足()0f x >,对于任意的,x y ∈R 都有()()ln ln f xy y f x =成立,并且0m ∃>,使得()12f m =.(1)判断函数()f x 的单调性,并证明;(2)若[]2,1x ∀∈--,不等式()212x f a f x ⎛⎫+- ⎪⎝⎭恒成立,求实数a 的取值范围.21.(12分)已知函数()223,0;2ln ,0.x x x f x x x ⎧+-=⎨-+>⎩ (1)请在网格纸中画出()f x 的简图,并写出函数的单调区间(无需证明);(2)定义函数()()2241,20;12,0 2.2f x x x xg x x x ⎧--+-⎪=⎨-<⎪⎩ 在定义域内的0x ,若满足()00g x x =,则称0x 为函数()g x 的一阶不动点,简称不动点;若满足()()00g g x x =,则称0x 为函数()g x 的二阶不动点,简称稳定点.①求函数()g x 的不动点;②求函数()g x 的稳定点.22.(12分)已知函数()log a f x x =,其中1a >.(1)若存在12x x <,使得()()12f x f x =,求122x x +的最小值;(2)令()()x g x f x f a ⎛⎫= ⎪⎝⎭,若关于x 的方程()g x m =有两个根1x 和2x ,求当221x a x >时,实数m 的取值范围.2023冬季联赛高一数学参考答案123456789101112ACDAADBDBDBCDABDAB一、选择题(本大题共8个题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【答案】A{}2,3A =,{}1e B x Z x =∈≤≤∣,所以{}2A B = ,故选A.2.【答案】C2Δ8004m m ⎧=-≥⎪⎨>⎪⎩,即)m ⎡∈+∞⎣,故选C.3.【答案】D ∵3,22x ⎡⎤∈-⎢⎥⎣⎦,∴[]23,4x ∈-,∴3142021x x x -≤-≤⎧⎨+>+≠⎩且,即3421x x x -≤≤⎧⎨>-≠-⎩且,故选D.4.【答案】A 由2Δ40a =->解得2a >或2a <-,故p 是q 成立的充分不必要条件,选A.5.【答案】A因为()()0f x f x +-=,()()0g x g x --=,()()321xf xg x x +=+-,故()()321xf xg x x --+-=--,即()()321xf xg x x --+=--,所以()32222x x x f x --+=,()2222x x g x -+-=,计算可得()714f =,()928g -=,故选A.6.【答案】D∵log 10lg a b =,∴lg10lg lg b a=,即lg lg 1a b ⋅=,由基本不等式可知lg lg 2a b +≥=,又因为lg lg 2a b +≤,所以lg lg 2a b +=,即满足基本不等式取等条件lg lg 1a b ==,即10a b ==,故选D.7.【答案】B根据题意,()()()1221120x x x f x x f x ⎡⎤--<⎣⎦,即()()()121212120f x f x x x x x x x ⎡⎤--<⎢⎥⎣⎦,设()()f x g x x=,即()()()1212120x x x x g x g x ⎡⎤--<⎣⎦,选项B 中,()()12log 21g x x =-在定义域上是单调递减函数,满足“共建”函数的定义,故选B.8.【答案】D设3x t =,则()224222222414121222t t t t t f t t t t t t t t t⎛⎫+++++ ⎪⎝⎭===+++++,因为2221133t t t t t +=++≥,所以()110333f t ≥+=,选D.二、选择题:本大题共4个题,每小题5分,共20分.每小题有多项符合题目要求,全部选对得5分,部分选对得2分,有选错得0分.9.【答案】BD 当1x =时,111x=>-,故A 错误;因为12x y -<<<,根据同向可加性易知24x y -<+<,故B 正确;因为12x y -<<<,所以12x -<<,21y -<-<,则30x y -<-<,故C 错误,D 正确,故选BD.10.【答案】BCD因为()()1bf x a x =-为幂函数,所以11a -=,则2a =,由点()2,8在()bf x x =的图象上得3b =,故()g x =.由3020x x -≥⎧⎨-≥⎩解得23x ≤≤,故A 错误;易知函数()g x =单调递增,故C 正确;当23x ≤≤时,求得值域为[]1,1-,故B 正确;由()g x =()5g x -=()()50g x g x -+=,故选BCD11.【答案】ABD计算可得A ,B ,C ,D 选项中的零点分别为14,1,0,1,根据二分法以及零点存在性定理可求出()14220g =-=>,1112ln 2ln 0222g ⎛⎫=+-=< ⎪⎝⎭,)333ln 221ln0444g ⎛⎫=-=+> ⎪⎝⎭所以()g x 的零点所在区间为13,24⎛⎫⎪⎝⎭,故选ABD.12.【答案】AB 令()t f x =,则21y t mt =++,由题意原函数有4个零点,结合函数()t f x =图象可知函数21y t mt =++有两个不同零点1t 和2t ,不妨设12t t <,且12t t m +=-,121t t =,分析函数()t f x =的图象可知,24t ≥,则12221174m t t t t -=+=+≥,解得174m ≤-,故选AB.三、填空题:本题共4小题,每小题5分,共20分13.15,8⎡⎫+∞⎪⎢⎣⎭14.()2,112-16.14-13.【答案】15,8⎡⎫+∞⎪⎢⎣⎭令t =,则0t ≥,21x t =+,()()2211521248y f x t t t ⎛⎫==+-=-+ ⎪⎝⎭,易得值域为15,8⎡⎫+∞⎪⎢⎣⎭.14.【答案】()2,1只要满足1a >,1b =即可15.12-,如图所示,1111111222222ABC ACO BCO ABO S S S S x x x x x ⎛⎫⎛⎫=+-=++-=+- ⎪ ⎪⎝⎭⎝⎭△△△△,因为112x ≤≤,所以12xx +≥=,当且仅当2x =时取等号,此时ABC △12.(另解:利用点到直线距离公式亦可解决)16.【答案】14-,因为对于R x ∀∈都有()()20f x f x -+=,所以函数()f x 的对称中心为()1,0,又因为()30f -=,所以()50f =,故()()()()()()22315321210f x x x x x x x =+--=+-+,即2241014m n +=-+=-.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(10分)【答案】(1)选取②2y ax bx c =++,由题表可知,随着x 的增大,y 的值先增大后减小,而函数y ax b =+及x y a b =+均为单调函数,故不符合题意,所以选取②2y ax bx c=++2分将()30,4800,()60,6000,()80,4800三点分别代入函数解析式2y ax bx c =++,可得二次函数对称轴为3080552x +==,故可将函数解析式设为2(55)y a x h =-+,即得到2256000254800a h a h ⎧+=⎨+=⎩,解出26050a h =-⎧⎨=⎩,∴2222(55)60502220y x x x ax bx c =--+=-+=++,∴2a =-,220b =,0c =;5分(2)设在一周内大约应生产x 辆小型汽车,根据题意,可得222206020x x -+>,即2222060200x x -+->,即211030100x x -+<,6分因为2Δ11043010600=-⨯=>,所以方程211028000x x -+=有两个实数根155x =,255x =,由二次函数21103010y x x =-+的图象可知不等式的解为5555x <<+.8分因为x 只能取整数值,所以当这条流水线在一周内生产的小型汽车数量5358x ≤≤之间时,这家工厂能够获得6020元以上的收益.10分18.(12分)【答案】(1)证明:因为0b a >>,所以()1011a a b a b b b b +--=>++,于是11a ab b+>+.4分(2135212462n n -<⨯⨯⨯<(*n N ∈且2n ≥)由(1)式可知,2221221221n n nn n n --<<-+,故21352113521124221112462246223521224n n n n n n n n ---⎛⎫⎛⎫⎛⎫⨯⨯⨯>⨯⨯⨯⨯⨯⨯=⨯= ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭ (*n N ∈且2n ≥)2135211352124621246224623572121n n n n n n n --⎛⎫⎛⎫⎛⎫⨯⨯⨯<⨯⨯⨯⨯⨯⨯= ⎪ ⎪⎪++⎝⎭⎝⎭⎝⎭ (*n N ∈且2n ≥)135212462n n -<⨯⨯⨯<(*n N ∈且2n ≥),原式得证.12分19.(12分)【答案】(1)根据题意,将()5,180,()25,45分别代入()emx nT x +=得525e 180e45m n m n ++⎧=⎨=⎩,2分所以20451e1804m==,所以5e 2m =,0m <,当0x =时,()5180e 180 1.41253.8e 2n m T x ====≈⨯=,此款鲜牛奶在0℃的保鲜时间为254小时.6分(2)根据题意,即要求()e 90mx nT x +=≥,由(1)可知101e 2m =,所以101551e e e 180902m m n m n ++⋅=⋅=,故15ee mx nm n ++≥,即15e e mx m ≥,即15mx m ≥,因为0m <,所以15x ≤,所以想要保证此款鲜牛奶的保鲜时间不少于90h ,存储温度要低于15℃12分20.(12分)【答案】(1)函数()f x 单调递减.,证明如下:由()()ln ln f xy y f x =得,()()[]yf xy f x =,则12,R x x ∀∈,当12x x <时()()()()()()121122a babf x f x f ma f mb f m f m ⎛⎫⎛⎫⎡⎤⎡⎤-=-==- ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭-4分因为12x x <,所以ma mb <,则a b <,故()()1211022a bf x f x ⎛⎫⎛⎫-=-> ⎪ ⎪⎝⎭⎝⎭所以函数()f x 单调递减.6分(2)不等式()212x f a f x ⎛⎫+-≥ ⎪⎝⎭可等价变形为()212x f a f x⎛⎫+≥ ⎪-⎝⎭,因为()()[]yf xy f x =,所以()()()12221f x f x f x -⎡⎤=-=⎣⎦-,则不等式可变为()22x f a f x ⎛⎫+≥ ⎪⎝⎭8分由(1)知,函数()f x 在定义域内单调递减,故22xa x +≤,[]2,1x ∈--恒成立,则2min2x a x ⎛⎫≤-⎪⎝⎭,解得32a ≤11分因此实数a 的取值范围是3,2⎛⎤-∞ ⎥⎝⎦.12分21.(12分)【答案】(1)()f x 的单增区间为[]1,0-,()0,+∞,()f x 的单减区间为(],1-∞-5分(2)易知()222,2012,022x x g x x x ---≤≤⎧⎪=⎨-<≤⎪⎩①当020x -≤≤时,()0022g x x =--,令()00g x x =得0022x x --=,解得023x =-;当002x <≤时,()200122g x x =-,令()00g x x =得200122x x -=,解得01x =综上所述:函数()g x 的不动点为23-.8分②当021x -≤<-时,()0022g x x =--,且()002g x <≤,则()()()()2200000122222242g g x g x x x x =--=---=+令()()00g g x x =得,200024x x x +=,解得032x =-或00x =(舍)当010x -≤≤时,()0022g x x =--,且()020g x -≤≤,则()()()()000022222242g g x g x x x =--=----=+令()()00g g x x =得0042x x +=,解得023x =-10分当002x <≤时,()200122g x x =-,且()020g x -≤<,则()()2220000112222222g g x g x x x ⎛⎫⎛⎫=-=---=-+ ⎪ ⎪⎝⎭⎝⎭令()()00g g x x =得2002x x -+=,解得01x =或02x =-(舍)综上所述:函数()g x 的稳定点有3个,分别是32-,23-和1.12分22.(12分)【答案】(1)因为()log a f x x =为单调函数,所以当12x x <时,()()12f x f x ≠,则当()()12f x f x =时,有()()12f x f x =-,即12log log 0a a x x +=,解得121x x =,则2分1211122x x x x +=+≥当且仅当12x =时,取等号,故122x x +的最小值为.5分(2)由题意,()()()log log log log 1a a a a x x g x f x f x x x a a ⎛⎫==⋅=- ⎪⎝⎭令log a t x =,则R t ∈,11log a t x =,22log a t x =,若221x a x >,则221log log a a x a x >,即21log log 2a a x x ->,即212t t ->7分由1t 和2t 为方程()1t t m -=,即方程20t t m --=的两根得Δ140m =+>,解得14m >-,且121t t +=,12t t m =-9分因为212t t ->,所以()1112t t -->,解得112t <-,所以()22121111111124m t t t t t t t ⎛⎫=-=--=-=-- ⎪⎝⎭,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
qVy%i&"7> ,!"{!Q!"r0,!R&'
"(=!"
-3 '$%'"(!")J8=
3#45&!G5/2
H45&0I&G,.J&KJ&22G5/2!KJ&LMNOP4FQRSHFTU
槡 "8#" ,/$+ ?#
"!!#
" # "'#hi[\*"%#"#)*;"%+##
(/$
(/$&&'
.
WPuyPUA$L[\,"%#"
*"%#+,Wz{v|}eT~X%,$%.$t&%, )%.&WX
"!!#
"6#.1
"4#.
"7#-1
"8#
槡 "(#hi[\*"%#" -)%. +9&";@>%#$t*"%#Wjk^
)*"+,-
:;
!<=>
!"#$%&'(
$ ? @ A B 4 & C D E F ./,0 G H I E J "4 K #
./
01#23#45&63#745&8923#3,:3.;3#31: 3-;<#=2,2/2>1?@,./2A
>BCDEF
,3 !"#$%&'"(!")*+,-./012,3456789:;<!")
W5
"#!#""oT,.T#¬R-&®¯.°±¢$²¬R³9,///{<=$´µvT3¶$ ·¸R³W¹º¹»$r¼½´µv¾¿,/Às$´ÁMÂÃ)r¼½´µ4c,/Às$¼ Ä4,À$Å1/½´vÆÂÃ$XÇÈÉÊWË,$ÌÍR³jK{OÎW´µ$ÌÏ OWÐÑÒ^! XÇÓÔÕ}Ö×Ø$´µjX,ÀWÙ\Ú) ¬R³ÛKܬRW ÝÞßÃX2:2/À$´àWËáâã4cßÃ$Þ%"À#VA¼½´µ$Þ'"À# VAäR³Û±KÜWåËá"æçÝÞßÃèWËá#é! "#ê' VAX% W[\$¦ëjk) "#ìélÏOÐÑÒWíÄY$´µjXîïs$Û±KÜWåËðî/
%1.$q%
&
.
WPu^YP&W
"!!#
!" #$%&
!*"
!./&0!12
!!!"#$%&'(")*+ !7,8 9-8
% "&#[\*"%#"
.(%),$% 9*&1"%.
'. ),#$%
$tv3w*"%#(.WxNX $.
"6#").$-#
槡 "7#",$.#) " ,/$+ ?#
"4#")-$).#) "),$.#
"###""oT,.T#
L[\'"*"%#fjk W¼K{%,$lëjk ñlòKW%.$*"%,#*"%.# ",$tgä[\X*óô[\+5
"#£¤[\-"%#";@>% ^õX*óô[\+$¦ö¨÷ø)
"#L[\*"%#".%), ljk'3$4("3 (/#mX*óô[\+$34 WB)
12【答案】A
( ) 【解析】因为函数 f (= x) loga ax + t (a > 0, a ≠ 1) 是“梦想函数”,
所以
f
(
x)
在
m 2
,
n 2
上的值域为 [ m,
n]
,且函数是单调递增的.
m
loga a 2 + t =m
m a 2
+
t
=am
1
W^
"!!#
" # "6#1+ 5$1+.1 "1#,#
" # "4#1)
1$1+
5
"1# ,#
" # "7#.1+ 1$.1+-1 "1#,#
" # "8#.1)
1$.1+
5
"1# ,#
"!!#L[\*"%#"9*&."5).%#l'/$.(mX[\$t\. WB^
x
所以
loga
n a2
+
t
=n
即 n a 2 + t =an
∴ax − a 2 − t =0 有 2 个不等的正实数根,
∴∆ = 1+ 4t > 0 且两根之积等于 −t > 0 解得 − 1 < t < 0 ,故选 A. 4
13【答案】6
14【答案】1009
15【答案】 2 2
设为 t ,即 f (x) − log2 x = t ⇒ f (x) = log2 x + t ,而 f (t) = 3 ,解得 t = 2 ,因此 = f (x) log2 x + 2 , 所以 g(= x) log2 x + x − 7 , g(1) =−6 < 0, g(2) =−4 < 0, g(3) =log2 3 − 4 < 0, g(4) =−1 < 0, g(5) =log2 5 − 2 > 0 , 故函数 g(x=) f (x) + x − 9 的零点所在的区间为 (4,5) ,本题选 D.
时,有
,又因为 ,所以为增函数,则有 ,
故有
;当 时,有
,因为是增函数,所以有
,解得
,故有
综上
故选 C
6【答案】A
【解析】由图象可知,
A=
T
2,
=
2π − π =
1 π , T = 2π , ω = 1 ,= f (x)
2 cos(x + ϕ) ,
4 3 62
f (= π ) 2 cos(π += ϕ) 2 ,且 | ϕ |< 1 π ,ϕ = − π ,= f (x) 2 cos(x − π ) ,令 h(=x) f (x) +=1 2cos(x − π ) +=1 0 ,
.
)%
5
"#*"%#W ¡¢) "#L*"%#l')6$6(m_$6W5
"#+#""oT,.T#
槡 hi[\*"%#"9*&." %. +,)%#".(/q.&,#5
"#£¤[\*"%#l"/$+ ?#mW¥$¦§¨©Wª«)
槡 "#r.(,s$Lv3w*" %. +,#)*")3%#'/fc%# "/$A ?#$3
"7#'
")
, %
"8#' "1%.
" # "$#hijkl "mWn[\*"%#op*"1)%#+*"%#"/$qr% # ) 1 .$/ s$*"%#"
9*&.".%+:#$t*"././#"
"6#).
"4#9*&.1
"7#1
"8#)9*&.2
"!!#
" # "%#[\'
")*;%&<=>%&$/%%
16【答案】[2, 5] 2
10【答案】B
【解析】函数
y
= 3 − 2 cos
2x
−
π 3
的单调递减区间,即= 函数 y
2
cos
2x
−
π 3
的单调递增区间.
易知原函数的单调减区间为
kπ
−
π 3
,
kπ
+
π 6
,
k
∈
Z
.结合所给的选项,可知选
B.
11【答案】B
【解析】由函数 f (x) = loga (6 − ax) 在[0,2]上为减函数,所以 a > 1且 6 − 2a > 0 ,解得1 < a < 3 .
de%&0I&G5J&G:/2e%afMgXNhijklkmnopqrs "!(#""oT,/T#
hiNO! " "$NO# " %%&"%).#"%)1#'/&$[\'"9&%).".).%+.#Wjk
XNO$5
"#L.
"