1 ch1 数理方程
数理方程学习方法..
三、如何学好数学物理方法
1.认真学好先行课 2.珍视课堂学习,专心听讲积极思维 3.勤于练习、勤于思考、勤于答疑 4.善于总结、善于分析、善于对比 5.乐于交流,乐于讨论,乐于创新 6.学会举一反三,懂得由树木见森林。 7.熟记重要公式结果,简化求解过程。 8.树立信心,培养兴趣
Xi’an jiaotong University
Xi’an jiaotong University
一、本课程的内容和特点
数学物理方法 成了公认的难教难学的 课程。 如何变难教难学课程为易教易学课 程,也就成了全国高校数学物理研究会
每届年会的重要议题。 数学物理方法应是数学美和物理美的 结合 “我没有试图直接解决某一物理问题,而 只是试图寻求某种优美的数学”
---牛顿
xi xi (t ), t
“只要能解微分方程,我就能预测宇宙的过去 和将来” -Laplace
Xi’an jiaotong University
二、数学物理方法在物理学中的地位
1.数理方法是物理学科的重要基础课 2.数理方法是进行基础研究的重要工具 3.数理方法是培养学生逻辑思维能力和 创造思维能力的重要课程
电动力学 量子力学
Xi’an jiaotong University
二、数学物理方法在物理学中的地位
1.数理方法是物理学科的重要基础课
数理方法是普通物理与四大力学的“粘合剂”
四大力学
理论力学 热 统
数理方法
数理方程 分离变量法 正交曲线坐标 格林函数法 (电象法) 傅里叶变换法 δ函数 特殊函数 变分原理
电动力学 量子力学
Xi’an jiaotong University
二、数学物理方法在物理学中的地位
数理方程课件
数理方程课件数理方程是数学中的重要分支,它研究方程的解和性质。
随着计算机技术的不断发展,数理方程的研究变得越来越重要,其在科学、工程和金融等领域都有着广泛的应用。
本文将介绍数理方程的基本概念、解的求解方法和一些经典方程的应用案例。
一、数理方程的基本概念数理方程是指含有未知数和已知数之间关系的等式。
它通常由代数方程、微分方程和积分方程组成。
在数理方程的研究中,我们需要关注方程的次数、阶数和特殊形式,并通过分析方程的性质来解决相关问题。
在解数理方程时,我们常用的方法包括代数方法、几何方法和数值方法。
其中,代数方法主要通过变换和化简方程,将其转化为更简单的形式进行求解;几何方法通过图形和几何关系来推导方程的解;数值方法则借助计算机的力量,利用数值逼近的方法求解方程。
二、数理方程的解的求解方法1. 代数方程的解的求解方法代数方程是最常见的数理方程形式,其解的求解方法众多。
常见的方法包括因式分解、配方法、二次公式、根号法等。
例如,对于一元二次方程$a x^{2}+b x+c=0$,我们可以使用二次公式来求解:$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$2. 微分方程的解的求解方法微分方程描述了函数与其导数之间的关系,其解的求解方法也有多种。
常见的方法有分离变量法、常数变易法、齐次线性微分方程的解法等。
例如,对于一阶线性微分方程$\frac{d y}{d x}+P(x) y=Q(x)$,我们可以使用常数变易法进行求解。
3. 积分方程的解的求解方法积分方程是利用积分关系表达的方程,其解的求解方法也有多种。
常见的方法有分离变量法、常数变易法、特殊积分方程的解法等。
例如,对于柯西问题(Cauchy problem)中的积分方程$u(x)=f(x)+\int_{a}^{x} K(x, t) u(t) d t$,我们可以使用定积分的性质进行求解。
三、常见数理方程的应用案例1. 常微分方程的应用常微分方程在物理学、化学、生物学等领域有着重要的应用。
数理方程课程介绍
《数理方程》课程介绍
一、本课程的性质与任务:
《数理方程》是理科很多专业的必修课以及相关专业的选修课。
数理方程主要是指在物理学、力学以及工程技术中常见的一些偏微分方程。
它是一门发展相当迅速的学科,不仅有广泛的应用,同时又与数学的其它各个分支有密切的联系,是数学理论与实际问题之间的一个桥梁。
本课程重点讲授一些经典的知识,同时兼顾新近发展的有着广泛应用的有关知识。
使学生了解到数学物理方程的某些应用背景,扩大学生的数学知识面,初步具备了解决数理方程定解问题的能力。
对培养学生的逻辑推理能力起着很大的作用。
本课程主要讲述经典的弦振动、热传导、Laplace方程的物理背景、定解问题的概念和古典的求解方法, 如波动方程的D`Alembert解法、分离变量法,积分变换法及极坐标系下的分离变量法等。
二、课程内容、学时与教学方式:
内容: 1) 绪论;
2) 分离变量法;
3)行波法与积分变换法;
4) 变分法初步与Green函数。
学时:40
教学方式:课堂讲授
三、教材:
数理物理方程与特殊函数》(第二版),南京工学院数学教研组著,北京:高等教育出版社,1997年。
四、开课范围:
力学、物理、数学等理科专业本科生。
五、预备知识:
高等数学、常微分方程。
数理方程总结完整终极版
00|()()t t u x ux t ϕψ===⎧⎪∂⎨=⎪∂⎩拉普拉斯算子:四种方法:分离变量法、 行波法、 积分变换法、 格林函数法 定解问题:初始条件.边界条件.其他 波动方程的初始条件:热传导方程的初始条件初始时刻的温度分布 :泊松方程和拉普拉斯方程的初始条件:不含初始条件,只含边界条件条件 波动方程的边界条件: (1)固定端:对于两端固定的弦的横振动,其为:或:(2)自由端:x =a 端既不固定,又不受位移方向力的作用.(3) 弹性支承端:在x =a 端受到弹性系数为k 的弹簧的支承。
定解问题的分类和检验:(1) 初始问题:只有初始条件,没有边界条件的定解问题;(2) 边值问题:没有初始条件,只有边界条件的定解问题;(3) 混合问题:既有初始条件,也有边界条件的定解问题。
• 解的存在性:定解问题是否有解;• 解的唯一性:是否只有一解;• 解的稳定性:定解条件有微小变动时,解是否有相应的微小k z j y i x ˆˆˆ∂∂+∂∂+∂∂=∇u u ∇=grad 2222222z y x ∂∂+∂∂+∂∂=∇⋅∇=∇22222y u x u u ∂∂+∂∂=∇0(,)|()t u M t M ϕ==0|0,x u ==(,)0u a t =变动。
分离变量法:基本思想:首先求出具有变量分离形式且满足边界条件的特解,然后由叠加原理作出这些解的线性组合,最后由其余的定解条件确定叠加系数。
把偏微分方程化为常微分方程来处理,使问题简单化。
适用范围:波动问题、热传导问题、稳定场问题等分离变量法步骤:一有界弦的自由振动 二有限长杆上的热传导 三拉普拉斯方程的定解问题常用本征方程 齐次边界条件2''0(0)()0,/,1,2,sin k k X X X X l k l k X xλλββπβ+=⎧⎨==⎩====0,1,2,0,1,2,λ0,1,2,λ非齐次方程的求解思路用分解原理得出对应的齐次问题。
数理方程 - 01 - 数理方程绪论
2015/10/13
11
通解(一般解)
• 一般来讲,一阶偏微分方程的解依赖一个任意函数, 二阶方程依赖两个任意函数。 • 通解或一般解:m 阶偏微分方程的解如果包含有 m 个任意函数。 • 注意:这 m 个函数不能合并,如 f + g 其实就相当于 一个任意函数。
2015/10/13
12
例
• 求 tuxt 2ux 2 xt 的通解
M1
M2 d
O
x
x+x
x
2015/10/13
15
受力分析
3. 惯性力:
▫ 惯性会使物体有保持原有运动状态的倾向,若是以该 物体为参照物,看起来就仿佛有一股方向相反的力作 用在该物体上,故称之为惯性力:F = -ma。 每点的质量为 dm ( x)dx ,每点的加速度为 a utt , 所有点求和得到积分,即惯性力为
2 ▫ 设 v ux ,则化为 vt v 2 x t
▫ 视 x 为参数,则为关于 v 的一阶常微分方程,
2 2 dt dt 2 2 3 t t ▫ 由求解公式可得 v e 2 xe dt G( x) t G ( x) xt 3
数理方程总结复习及练习要点-V1
数理方程总结复习及练习要点-V1数理方程是整个数学中最为基础、也最为重要的一个分支。
在学习数学时,数理方程是必修课程之一。
但由于涉及到复杂的计算和具有一定的抽象性质,因此很多学生可能会感到难以掌握。
下面我们一起来总结复习及练习中的要点。
一、基本概念数理方程,又称代数方程,是指含有一个或多个未知量的式子,其中未知量是我们需要求解的。
数理方程主要包括一元一次方程、一元二次方程、多元线性方程组等。
二、重要公式复习数理方程需要掌握一些重要的公式,如求根公式、配方法、消元法等。
这些公式在解题时经常会用到,掌握它们有助于我们快速准确地解题。
三、解题技巧在解数理方程时,我们需要注意一些技巧。
例如:1. 整式变形:将不易求解的方程转化为易求解的方程,如配方法。
2. 对称性:通过利用数学上的对称性,简化计算。
3. 系数对应逐项相消:将一个数学表达式与另一个表达式逐项对应相消,简化计算过程。
四、常见误区在学习数理方程时,我们需要注意一些常见误区。
例如:1. 不认真阅读题目,以及不分析题目中的数据和条件,导致解题错误。
2. 没有掌握好基本概念和公式,导致做题准确性不高。
3. 对题目中的关键词理解不透彻,导致无法准确解题。
五、练习要点练习数理方程需要注意以下要点:1. 反复练习基本公式和解题技巧,多进行心算和口算练习。
2. 练习时要重视细节,注意避免因粗心大意而犯错。
3. 建立练习记录,对带有难度的题目进行整理分类,加强对知识点的掌握。
总之,无论是在学习还是练习中,都要保持认真、耐心、细致的态度。
只有不断地努力和积累,才能准确解出所有的数理方程。
《数理方程》第一讲
通过Ω 的边界流出Ω 外的热量为Q2 , Ω 内温度变化所需要的热量为 Q3 。
10
9.1.2 热传导方程的导出
则
Q1
Q1 Q2 Q3
t2 t1
1.6
F ( x, y, z, t )dVdt
1.7
由热力学的Fourier实验定理得:
t2 u u dQ 2 k d dt Q2 k d dt t1 n n
1.13
16
9.1.2 热传导方程的导出
可得
U U 2U R GU C t L G t C t2 2U 2U U LC RC LG RGU 2 2 t x t 2U I 2I I U R L 2 x IR L t t t t x2 I I U 2U U 2 G C GU C x xt x t x
20
9.1 典型方程的建立
三类典型方程: 波动方程 热传导方程 Poisson方程
utt a 2 u f
ut a 2 u f
u g
21
9.2
定解条件与定解问题
utt a2 u f ut a2 u f
u g 三类方程 如果有解,则其解应该不唯一。 在这众多的解中确定出所需要的解,还需要 增加另外的条件,即定解条件,使之成为定 解问题,在此条件下,再来讨论适定性,即 存在性、唯一性和稳定性。
Q3
t2 t1
u u u k ( cos cos cos )dSdt t1 x y z t2 2u 2u 2u Q2 k 2 2 dvdt 2 t1 y z x
数学物理方程Ch1
-1-
1.2 习题选讲
其中x∗ ∈ (x, x + ∆x).约去∆x并令∆x → 0,即得 ∂ ∂u ∂ ρ (x) S (x) = ∂t ∂t ∂x 当S (x)为常数时,即为
∂ ∂t ρ (x) ∂u ∂t = ∂ ∂x E ∂u ∂x ,
E (x) S (x)
∂u ∂x
2. 在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种 情况下所对应的边界条件.
-3-
1.2 习题选讲
因此, 根据达朗贝尔公式, v (x, t)的通解可写为 v (x, t) = F (x − at) + G(x + at),从而 F (x − at) + G(x + at) u(x, t) = h−x
(2) 根据上述变换, v (x, t)所满足的初始条件为 t = 0 : v = (h − x)ϕ(x), ∂v = (h − x)ψ (x) ∂t
图 1-2
图示
4. 绝对柔软而均匀的弦线有一端固定,在它自身重力的作用下,此线处于铅垂的平衡位置,试导出 此线的微小横振动方程.
-2-
第一章 波动方程
解: 根据弦的微小横振动方程,有
ρ ∂2u ∂ = 2 ∂t ∂x T (x) ∂u ∂x
其中T (x)为弦的内部张力.在本题中,T (x) = ρg (l − x) ,故有 ∂2u ∂ ∂u =g (l − x) . 2 ∂t ∂x ∂x
1 1 − ak ak u (x, t) = φ (x + at) + φ (at − x) + φ (0) , 2 2 (1 + ak ) 1 + ak 6. 求解初边值问题 utt − uxx = 0, 0 < t < kx, k > 1, u| x 0, t=0 = ϕ0 (x) , ut |t=0 = ϕ1 (x) , x 0, ut |t=kx = ψ (x) , 0 < x < at
数理方程课件
一阶常微分方程在物理学、工程学、经济学等领域有广泛应用。
一阶常微分方程可以用于描述各种实际问题中变量的变化规律,如物理中的自由落体运动、电路中的电流变化等。在经济学中,一阶常微分方程可以用于描述供求关系的变化、消费和储蓄的动态过程等。在工程学中,一阶常微分方程也广泛应用于控制系统、化学反应动力学等领域。
数理方程可以根据其形式和性质进行分类。
总结词
根据其形式和性质,数理方程可以分为线性与非线性、自治与非自治、常系数与变系数等多种类型。这些分类有助于更好地理解和研究数理方程的性质和应用。
详细描述
数理方程的分类
总结词
数理方程在各个领域都有广泛的应用。
详细描述
数理方程在物理学、工程学、经济学、生物学等许多领域都有重要的应用。例如,在物理学中,描述波动、热传导、引力场等问题的方程都是数理方程。在工程学中,流体动力学、电磁学等领域的问题也都可以通过数理方程来描述和解决。
总结词
一阶常微分方程的定义
一阶常微分方程的解法
求解一阶常微分方程的方法主要有分离变量法、积分因子法、常数变易法和线性化法等。
总结词
分离变量法是将方程中的变量分离出来,使方程变为可求解的形式。积分因子法是通过引入一个因子,使方程变为全微分方程,从而简化求解过程。常数变易法适用于形式为y' = f(x)y的方程,通过代入可求解。线性化法则是将非线性方程转化为线性方程,便于求解。
分离变量法
有限差分法
有限元法
变分法
用离散的差分近似代替连续的微分,适用于求解初值问题和边界问题。
将连续的求解区域离散化为有限个小的子区域,适用于求解复杂的几何形状和边界条件。
通过求某个泛函的极值来求解偏微分方程,适用于求解某些特殊类型的方程。
数理方程第一章、第二章习题全解
u( 0 , t) = u( l, t) = 0 现考虑初始条件,当冲量 k 作用于 x = c处时, 就相当于在这点 给出了一个初速度 , 我们考虑以 c点为中心 , 长为 2δ的一小段弦 ( c δ, c + δ) , 设弦是均匀的 , 其线密度为 ρ, 则这 一小段 弦的质量 为 2δρ, 受冲击时速度为 ut ( x, 0) , 由动量定理得
h c
x
l
h -
c(
l
-
x)
(0 ≤ x ≤ c) ( c < x ≤ l)
ut ( x, 0) = ψ( x ) = 0
则 u( x, t) 是下列定解问题的解 :
utt - a2 uxx = 0
( 0 < x < l, t > 0)
u( x, 0) = φ( x ) , ut ( x, 0 ) = ψ( x )
2 .4 习题全解
1. 设弦的两端固定于 x = 0 及 x = l, 弦的初始位称如图 2 2 所 示,初速度为零, 又设有外力作用, 求弦作横向振动时的位移函数 u( x, t) 。
解 如图 2 2 所示, 弦作横向振动时初始条件为
62
数学物理方程与特殊函数导教·导学·导考
图2 2
u( x, 0) = φ( x ) =
5. 若 F( z) , G( z) 是任意两个二次连续可微函数 , 验证
u = F( x + at ) + G( x - at )
满足方程
2u t2
=
a2
2x2u。
解 作自变量代换ξ= x + at,η= x - at, 由复合函数求导法则
有
所以 于是
u t
数理方程的三个经典方程
数理方程的三个经典方程1. 引言说到数理方程,很多人可能会觉得这是个高大上的概念,听起来像是在讲什么深奥的数学理论,但其实没那么复杂。
就像我平时喝咖啡时,想的就是怎么让这杯咖啡更好喝,数理方程也在帮助我们解决生活中遇到的问题。
今天,我们就来轻松聊聊三个经典的数理方程,看看它们在日常生活中的“身影”。
2. 一次方程2.1 概念与应用首先,我们得聊聊一次方程。
一次方程就像是我们生活中的小助手,简单明了。
想象一下,如果你在商场里买东西,标价是20元,结果你只带了10元,这时候你就得算算差多少钱才能买下它。
这种时候,你就可以用一次方程来解决了。
形式上,它看起来就像是 ( ax + b = 0 ),也就是用未知数 ( x ) 表示你缺少的钱。
通过简单的计算,问题就迎刃而解,轻松愉快,买到心仪的商品,真是太美好了!2.2 实际例子再比如,假设你想知道买了多少个苹果,总共花了多少钱。
每个苹果2元,你一共花了10元,哦,这里又是一个方程:( 2x = 10 )。
解出来就是 ( x = 5 )。
这样你就知道自己买了5个苹果,真是简单到爆炸!一次方程就像我们生活中的“明白人”,帮我们解决小问题。
3. 二次方程3.1 概念与应用接下来,咱们聊聊二次方程。
二次方程稍微复杂一点,但没关系,生活中的实际例子可多了!二次方程的标准形式是 ( ax^2 + bx + c = 0 )。
想象一下,你在公园里玩飞盘,飞盘飞得又高又远,这时候你就得考虑它的轨迹了。
二次方程可以帮你描绘出这个飞盘的抛物线轨迹,是不是很酷?3.2 实际例子举个例子,假设飞盘的高度与时间的关系可以用方程来表示。
当你投掷飞盘的时候,它的飞行路径呈现出优美的抛物线,最高点的高度是个关键。
这时候,求解这个二次方程,能让你找到飞盘的最佳飞行角度,简直就是运动场上的数学小达人!你还记得小时候在操场上追逐的那些快乐时光吗?这些公式背后,都是我们乐趣的源泉。
4. 指数方程4.1 概念与应用最后,咱们得提提指数方程。
数理方程公式总结
数理方程公式总结数理方程是描述自然界中各种物理现象的数学模型。
它在物理学、工程学、经济学等领域中起着重要作用。
数理方程的研究内容包括方程的分类、解析方法、数值方法等。
在实际应用中,我们经常遇到各种各样的数理方程,比如常微分方程、偏微分方程、积分方程等。
本文将总结几个常见的数理方程,并介绍它们的一些解析方法和数值方法。
1. 常微分方程常微分方程是描述一个未知函数与其导数之间的关系的方程。
根据方程中的未知函数的个数和导数的阶数,常微分方程可以分为一阶、二阶、高阶等。
常见的解析方法包括分离变量法、常系数线性微分方程的特征方程法、变系数线性微分方程的待定系数法等。
数值方法包括欧拉法、梯形法、龙格-库塔法等。
2. 偏微分方程偏微分方程是描述未知函数与其偏导数之间关系的方程。
它的求解通常需要给出适当的边界条件和初值条件。
根据方程的类型和性质,偏微分方程可以分为椭圆型、双曲型、抛物型等。
常见的解析方法包括分离变量法、变量替换法、特征线法等。
数值方法包括有限差分法、有限元法、谱方法等。
3. 积分方程积分方程是未知函数与其积分之间的关系的方程。
它可以看作是微分方程的一种推广。
积分方程能够描述一些涉及积分的物理问题,如电磁场问题、弹性力学问题等。
常见的解析方法包括变量分离法、奇异积分方程的分析法、积分变换法等。
数值方法包括数值逼近法、数值积分法、有限元法等。
总之,数理方程是对自然界中各种物理现象进行数学建模的有效工具。
在实际应用中,我们需要根据问题的具体性质选择适当的数理方程,并采用相应的解析方法或数值方法进行求解。
解析方法能够给出精确解,但对于复杂问题往往难以求解;数值方法能够给出近似解,并且在计算机上容易实现,但对于精度要求较高的问题需要选用更精细的网格或更高阶的方法。
因此,在实际应用中,我们需要权衡解析方法和数值方法的优劣,选择适当的方法求解数理方程。
数理方程
1. 基本概念偏微分方程: 含有未知多元函数及其偏导的方程,如2122121(,,,,;,,,;,)0n n u u u u F x x x u x x x x ∂∂∂∂=∂∂∂∂ 其中:12(,,,)n u u x x x =为多元函数.方程的阶:未知函数导数的最高阶数; 方程的次数:最高阶偏导的幂次;线性方程:未知函数及未知函数偏导数的幂次都是一次的称为线性方程,否则就是非线性的;自由项:不含未知函数及其导数的项;齐次方程:没有自由项的偏微分方程称为齐次方程,否则称为非其次的; 方程的解:若将某函数代入偏微分方程后,使方程化为一个恒等式,则该函数为方程的解;通解:包含任意独立函数的方程的解,且独立函数的个数等于方程的阶数; 特解:不含任意独立函数的方程的解. 例如:22()()sin cos u u x y x y∂∂+=∂∂为一阶非线性非齐次偏微分方程;u 为未知函数。
2222220u u ux y z ∂∂∂++=∂∂∂为二阶线性齐次方程; 二阶线性非其次偏微分方程22uy x x y∂=-∂∂的通解为 221(,)()()2u x y xy x y F x G y =-++其中,(),()F x G y 为两个任意独立的函数.注意:通解所含独立函数的个数=偏微分方程的阶数.2. 线性偏微分方程解的特征含有两个自变量的线性偏微分方程的一般形式为[](,)L u G x y =其中,L 为二阶线性偏微分算符,满足11221122[][].[][][].L cu cL u L c u c u c L u c L u =+=+(1).齐次线性偏微分方程解的特征a.当u 为方程的解,则()c u c R ⋅∈也为方程的解;b.12,u u 为方程的解,则1122c u c u +也为方程的解. (2). 非齐次线性偏微分方程解的特征a. I u 为非齐次方程的特解,II u 为齐次方程的通解,则I II u u +为非其次的通解;b. 若1122[](,),[](,).L u H x y L u H x y ==则1212[][](,)(,).L u L u H x y H x y +=+ (3).线性偏微分方程的叠加原理若k u 是方程[](1,2,)k L u f k ==的解(其中L 为二阶线性偏微分算符),如果级数1()kk k k cu c R ∞=⋅∈∑收敛,且二阶偏导数存在,则1k k k u c u ∞==⋅∑一定是1[]k kk L u c f ∞==⋅∑的解;特别地,若k u 是方程[]0L u =的解,则1k k k u c u ∞==⋅∑一定是[]0L u =的解.4.1数理方程的建立考虑一根均匀柔软的细弦沿x 轴绷紧,在平衡位置附近产生振幅极小的横振动,如图1.1所示.设(,)u x t 是平衡时坐标为x 的点t 时刻沿y 方向的位移,现在求弦上各点的运动规律.“采用隔离法”研究一小段(,)x x dx +与外界的相互作用以建立方程. 假设:(1)弦是完全柔软的,所以张力T 沿着弦振动波形的切线方向;(2)只讨论弦做横向振动,故忽略弦在水平方向的位移,弦的横向加速度为tt u ,单位长度的质量为ρ或线密度为ρ;(3)振动的振幅是极小的,因此张力与水平方向的夹角12,αα也是很小的,则332sin ,3!tan ,3cos 1 1.2!iiii i i i i i i αααααααααα=--≈=++≈=--≈ 而2tan [1()].T i i u uk ds dx dx x xαα∂∂==≈⇒=+=∂∂ 根据牛顿第二运动定律,在(纵向)水平方向上有21()cos ()cos 0()().T x dx T x T x dx T x T αα+-=⇒+=≡∈R在横向上有21sin sin ()()[]()().tt tt x dxxT T g ds ds u uuT g ds ds u xx ααρρρρ+--⋅=⋅∂∂⇒--⋅=⋅∂∂ 根据()()'()f x dx f x f x dx +-=,上式可以化简为2222[]()().tt tt u uT dx g ds ds u T g u x xρρρρ∂∂⋅-⋅=⋅⇒⋅-⋅=⋅∂∂即弦的横振动方程为2222.(,)tt xx xx u Tu a u g u a x ρ∂=⋅-==∂此式即为弦做微小横振动的运动方程,简称弦的振动方程,其中a 就是弦上振动传播的速度.图1.1所示讨论:①若弦的重量远远小于弦的张力,则重力加速度可以忽略不计,其运动方程为2.tt xx u a u =(*)此式称为弦的自由振动方程,也称为一维波动方程.②如果在弦的单位长度上还有横向外力(,)F x t 作用,则(*)式可以改为2(,).(**)tt xx u a u f x t =+则(**)式称为弦的受迫振动,其中(,)(,).F x t f x t ρ=③对于0t ≥,两端固定,则00,0x x l u u ====,弦在0t =时无纵向移动,0000,t t uu v t ==∂==∂。
数理方程 积分方程
数理方程积分方程
数理方程和积分方程是数学中重要的两类方程,它们在许多数学问题中都发挥重要作用。
数理方程是指由一个或多个未知量之间关系构成的方程,这些未知量可以是数字,也可以是其他数学量,如函数、矢量等。
这样的方程可以用来描述实际问题,从而使得问题可以被解决。
比如高斯消元法、牛顿迭代法等。
积分方程是指以积分为基础的方程,这些方程通常涉及一些微分方程的解。
积分方程可以用来解决许多实际问题,比如电力学中的传递方程,力学中的质点运动方程,甚至是热力学中的热输运方程。
数理方程和积分方程都是数学中重要的方程,它们在许多数学问题中都发挥重要作用。
比如,数理方程可以用来描述实际问题,而积分方程可以用来解决微分方程的解,从而解决实际问题。
此外,数理方程和积分方程也可以结合起来,用来解决更复杂的问题。
总之,数理方程和积分方程是数学中重要的两类方程,它们可以用来描述实际问题,从而使得问题可以得到解决。
数理方程第二版课后习题答案
第一章曲线论§ 1 向量函数1.证明本节命题3、命题5 中未加证明的结论略2.求证常向量的微商等于零向量。
证:设,为常向量,因为所以。
证毕3.证明证:证毕4.利用向量函数的泰勒公式证明:如果向量在某一区间所有的点其微商为零,则此向量在该区间上是常向量。
证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。
所以,,根据数量函数的Lagrange 中值定理,有其中,,介于与之间。
从而上式为向量函数的0 阶Taylor 公式,其中。
如果在区间上处处有,则在区间上处处有,从而,于是。
证毕5.证明具有固定方向的充要条件是证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。
充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是为常向量,于是,,即具有固定方向证毕因为,故,从而6.证明平行于固定平面的充要条件是。
证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此充分性:设,即,其中,如果,根据第5 题的结论知, 具有固定方向, 则某个数量函数, 为单位常向量,任取一个与 垂直的单位常向量 ,于是作以 为法向量过原点的平面 ,则 平行于 。
如果 ,则 与 不共线, 又由 可知, , ,和 共面,于是 ,,那么 ,这说明 与共线,从而,根据第 5 题的结论知, 具有固定方向,则 可表 示为,其中 为某个数量函数, 为单位常向量,作以为法向 量,过原点的平面 ,则 平行于 §2 曲线的概念1. 求圆柱螺线 在点 的切线与法平面的方程。
解: ,点 对应于参数 ,于是当 时, ,,于是切线的方程为:法平面的方程为2. 求三次曲线 在点 处的切线和法平面的方程。
解: ,当 时, , , 于是切线的方程为:法平面的方程为3. 证明圆柱螺线 的切线和 轴成固定角 证:可表示为 ,其中 为其中 , 为数量函数, 令 证毕令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4.求悬链线从起计算的弧长解:5.求抛物线对应于的一段的弧长解:6. 求星形线,的全弧长。
数理方程在实际中的应用
数理方程在实际中的应用
数学是一门很抽象的学科,而数理方程更是如此,如
果直接想象很难和实际联系起来。
数学物理方程是指在物理学、力学、工程技术等问题
中经过一些简化后所得到的、反映客观世界物理量之间关系的一些偏微分方程。
虽然比较难联系实际去寻找偏微分方程的应用,但是实际中很多东西离不开数学物理方程,其中热方程便是一个广泛应用的例子。
其中热方程在许多现象的数学模型中出现,而
且常在金融数学中作为期权的模型出现。
著名的布莱克-斯科尔
斯模型中的差分方程可以转成热方程,并从此导出较简单的解。
还有热方程在流形上的推广是处理阿蒂亚-辛格指标定理的
主要工具之一,由此也导向热方程在黎曼几何中的许多深入应用。
拉普拉斯方程为:Δu=d^2u/dx^2+d^2u/dy^2=0,其中Δ 为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ而拉普拉斯方程,在电磁场方面广泛,而我们打电话依赖的电磁场便与其联系紧密。
于是当我们要的信息得以传递
波动是一种重要的偏微分方程,主要描述自然界中的各种的波动现象。
工业生产例如开采煤矿,煤矿很容易塌方,而了解煤层的岩土结构较为重要,在生产过程应该避免共振,于是就需要波动方程去解或是计算煤层是否能安全生产,是否易塌方。
所以,不管是经济金融问题,工业生产问题;还是日常生活手机问候远方的朋友,使用卫星电视观看电视剧,我们无时无刻不在接触着这位很抽象而无处不在的朋友——数
学物理方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理方程的基本概念一. 偏微分方程的基本概念12(,,,)n x x x x ="自变量12()(,,,)n u x u x x x ="未知函数偏微分方程:凡含有多元未知函数及未知函数关于自变量的偏导数的等式。
12111212(,,,,,,,,)0n mn m m m n nnu u u F x x u x x x x x m m m m ∂∂∂=∂∂∂∂∂=+++""""",偏微分方程的一般形式:二.偏微分方程的介绍偏微分方程反映了变量u 和多个自变量x 之间的相约关系,物理学、力学、工程技术等自然科学,经济学、人口学等社会科学中很多重要变量关于时间、空间及其他因素的变化规律常常通过偏微分方程来描述。
微积分方程这门学科产生于十八世纪,欧拉在他的法国数学家达朗贝尔也在他的著作《论动力学》中微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。
这些著作当时没有引起多大注意。
三.偏微分方程的起源年,达朗贝尔在他的论文《张紧的弦振动时形成1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。
这样就由对弦振动的研究开创了偏微分方程这门学科。
和欧拉同时代的瑞士数学家丹尼尔贝努利也研究了数方法,对偏微分方程的发展起了比较大的影响。
拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。
和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。
拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。
学家傅立叶,他年轻的时候就是一个出色的数学学者。
偏微分方程得到迅速发展是在十九世纪,那时候,数学物理问题的研究繁荣起来了,许多数学家都对数学物理问题的解决做出了贡献。
这里应该提一提法国数学家傅立叶,他年轻的时候就是一个出色的数学学者。
在从事热流动的研究中,写出了《热的解析理论》,在文章中他提出了三维空间的热方程,也就是一种偏微分方程。
他的研究对偏微分方程的发展的影响是很大的。
四.偏微分方程的发展现在偏微分方程相关理论及其方法已经应用到各个自然科学,工程技术领域和社会科学领域中。
由于其特殊的地位,偏微分方程现在是数学领域中最活跃,最核心的领域之一。
与偏微分方程研究相关的菲尔兹奖获得者中,就有十位左右的数学家。
千禧年大奖难题,又称世界七大数学难题,其中之一就是纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性。
名气最大,最杰出的贝努利PDE 的阶:所含有的未知函数最高阶导数的阶数PDE的解古典解广义解(弱解)是指满足方程,并且在所考虑的区域内有m 阶连续偏导数的函数。
线性PDE 非线性PDE 半线性PDE 拟线性PDE完全非线性PDE12n m m m m =+++"PDE 的分类偏微分方程: Partial Differential Equation, 简写为: PDE线性PDE :PDE 中所含未知函数及其各阶导数出现的最高次数为一次的。
例如:21111,11(,,)(,,)(,,)(,,),nn ij n j n n n i j j i j j u u a x x b x x c x x u f x x x x x ==∂∂++=∂∂∂∑∑"""",,,ij j a b c f 其中是给定的函数。
,,ij j a b c 系数均为常数.常系数线性PDE :否则称为变系数的PDE .齐次线性PDE:0f ≡.否则称为非齐次的.线性PDE 的主部: 具有最高阶数偏导数组成的部分.主部(1).sin()0u xy u x ∂+=∂线性PDE (2).线性PDE(3).sin u u u x t +=非线性PDE (4).222()()u u u x t +=非线性PDE22222cos u u x a e t t x ∂∂=+∂∂PDE维数:是指方程中出现的空间坐标的个数。
例如:在上一页的例子中(1) 是二维的,(2), (3), (4) 都是一维的。
如果方程中不出现时间t, 则称方程为定常的,否则称为非定常的.例如:在上一页的例子中(1) 是定常的,(2), (3), (4)都是非定常的。
叠加原理偏微分方程也可用偏微分算符来表示.引入以下算符下面我们以二阶偏微分方程的为例来说明叠加原理下面我们以二阶偏微分方程偏微分方程的为例来说明叠加原理. 2,11n nij i i j i i j i L a b c x x x ==∂∂=++∂∂∂∑∑一般含n 个自变量的二阶线性偏微分方程可写为以下形式2,11n n ij i i j i i j i u u a b cu f x x x ==∂∂++=∂∂∂∑∑则上述方程可以写成下面的形式Lu f =3. 两个非齐次方程的解的线性组合,为一个新的非齐次方程的解,新方程的自由项为原方程自由项的同样组合。
即:若L u1= f1,L u2= f2,则:L (au1+ bu2)= af1+ bf2.1.齐次方程的两个解的线性组合仍为原方程的解;即:若L u1= 0 ,L u2= 0,则:L (au1+ bu2)= 0.2. 非齐次方程的特解加对应的齐次方程的解,结果为非齐次方程的解;即:若L u1=f,L u2= 0,则:L (u1+ u2)= f.•设满足方程为常数,而级数收敛,且能够逐项微分两次,则满足方程,此处要求级数收敛。
(1,2,3,)i u i ="(1,2,3,),i i Lu f i =="(1,2,3,)i c i ="1i ii u c u ∞==∑u Lu f =1i ii f c f ∞==∑叠加原理分两次,一定也是此方程的解.特别是,如果二阶线性齐次方程的解,则只要收敛,并且可以逐项微(1,2,3,)i u i ="0Lu =1i i i u c u∞==∑u 叠加原理使得以后在使用分离变量法时能够将分离变量法得到的线性无关的解叠加在一起, 然后去构造原问题的解.小结:数学物理方程的导出•波动方程–均匀弦的微小横振动方程–推广•扩散方程–一维热传导方程–推广•稳定场方程•弦振动方程•弦的特点:匀、细、软、紧的一根弹性细线。
•振动特性:微小的、横向振动:在一个平面内弦上各点的运动方向垂直于最初的平衡位置. “微小的”是指弦上各点的位移与弦的长度相比很小, 弦的纵向伸长可以忽略不计.ρ•考虑一根拉紧的长为l 的弦,线密度, 以弦的平衡位置所在直线为x 轴,并以弦的左端点为坐标原点,则右端点的坐标为l。
求它在平衡位置附近做微小的横向振动的规律。
遵循牛顿第二定律:作用在物体上的力=该物体的质量×该物体的加速度取弦的平衡位置为ox 轴,运动平面为xou oux P Q l 在时刻t ,弦线在x 点的位移为u (x , t )o u xP Qx x Δ+x T T ′左图为上图中PQ 的放大图示α'α•设弦上坐标为x 的点在时刻t 沿垂直于x 轴方向的位移用函数u (x, t ) 来表示。
(,),x x x +Δ下面利用微元法建立方程:在任一时刻t ,任取一小段弦它弧长为α其中倾斜角很小。
()()22222111sin ,u s x u x x tg x x x ααΔ⎛⎞Δ=Δ+Δ=+⋅Δ⎜⎟Δ⎝⎠≈+⋅Δ≈+⋅Δ≈Δ现在研究弧段在时刻t 时的受力情况。
它所受的力有弦内部的张力T ,其方向沿弦的切线方向。
(,),F x t (,).F x t x Δcos cos 0.T T αα′′−+=(,)x x x +Δ其方向垂直于x 轴。
在ox 轴方向上,弧段所受力的总和为上所受的外力近似为:则小弦段设在时刻t ,x 点处的外力密度为假设在弧段运动方向,即ou 轴方向上存在外力作用。
在ou 轴方向上,弧段所受力的总和为sin sin (,)T T F x t xαα′′−++Δ22(,)u x t t∂∂,x ρΔ弧段在时刻t 沿ou 轴方向的加速度近似为其质量为所以由Newton 第二定律知sin sin (,)T T F x t x αα′′−++Δ22(,)u x t x t ρ∂≈Δ∂因为假设弦作微小的横向振动,故振动过程中,弦上的切线倾斜角也很小。
这时有(1)由24cos 124ααα=−+−",αα′cos cos 1.αα′≈≈略去的高于一次方的各项有(2)sin (,)u tg x t xαα∂≈=∂sin (,)u tg x x t xαα∂′′≈=+Δ∂于是有.T T ′≈22(,)(,)(,)(,),u u u x t T x x t x t F x t x x x x t ρ∂∂∂⎡⎤+Δ−+Δ≈Δ⎢⎥∂∂∂⎣⎦,x Δ0x Δ→2222(,)(,)(,)(1)u u T x t F x t x t x t ρ∂∂+=∂∂2222222,u T u F u a f t x x ρρ∂∂∂=+=+∂∂∂两端除以再令可得或所以其中)()(,,/f x t F x t ρ=表示单位质量所受的力。
若弦不受外力作用,即0F ≡则上面方程变为22222(2)u u a t x∂∂=∂∂自由项:方程中与未知函数无关的项。
•方程(1)为非齐次方程,方程(2)为齐次方程。
•方程(1), (2) 称为弦振动方程,或一维波动方程。
·总结:建立数学物理方程是一个辩证分析的过程。
由于客观事物的复杂性,要求对所研究的对象能够抓住事物发展的主要因素,摈弃次要因素,使问题得到适度的简化。
在上面的推导过程中,我们作了一些假设。
我们假设了弦是完全柔软的,张力才会沿着弦的切线方向;又假定了弦的横振动是很小的,所以才可用sinθ代替.tgθ并且弦的纵向伸长可以忽略不计,不然由于各点张力的不同,张力T 就会依赖于u(x, t), 得到的方程将不是一个线性方程,而是非线性方程。
·均匀薄膜的横向振动设有一绷紧的柔软且有弹性的均匀薄膜,静止平衡时薄膜的平面为oxy 平面,薄膜上各点在任意时刻t 的横向位移是u (x, y, t )。
由于薄膜是均匀的,柔软且有弹性,所以薄膜上各点的张力为常数T 。
在薄膜上任取一微元,其原来的静止位置在],;,.x x x y y y ⎡+Δ+Δ⎣先看x 和x x +Δ这两边。
薄膜所受的张力的横向分量分别为(,,)u x y t T x ∂−∂和(,,),u x x y t T x∂+Δ∂所以薄膜在x 和x x +Δ两边所受的总作用力是22(,,)(,,)(,,),u x x y t u x y t u x x y t T T y T x y x x x α∂+Δ∂∂+Δ⎛⎞−Δ=ΔΔ⎜⎟∂∂∂⎝⎠其中0 1.α<<同理,在y 和y y+Δ两边所受的总作用力是22(,,)u x y y t T x y y β∂+ΔΔΔ∂01β<<。