河北省衡水中学高考数学压轴卷(二)理

合集下载

2025届衡水中学高考模拟卷(二)数学试题

2025届衡水中学高考模拟卷(二)数学试题

2025届衡水中学高考模拟卷(二)数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数()256f x x x =-+的定义域为( )A .{2x x ≤或}3x ≥B .{3x x ≤-或}2x ≥-C .{}23x x ≤≤D .{}32x x -≤≤- 2.复数()(1)2z i i =++的共轭复数为( )A .33i -B .33i +C .13i +D .13i -3.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( )A .B .C .1D .24.sin80cos50cos140sin10︒︒︒︒+=( )A .3B 3C .12-D .125.已知α,β是两平面,l ,m ,n 是三条不同的直线,则不正确命题是( )A .若m ⊥α,n //α,则m ⊥nB .若m //α,n //α,则m //nC .若l ⊥α,l //β,则α⊥βD .若α//β,l ⊄β,且l //α,则l //β 6.已知抛物线C :24x y =的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,其中点A 在第一象限,若弦AB的长为254,则AF BF =( ) A .2或12 B .3或13 C .4或14 D .5或157.已知等比数列{}n a 的前n 项和为n S ,若11a =,且公比为2,则n S 与n a 的关系正确的是( )A .41n n S a =-B .21n n S a =+C .21n n S a =-D .43n n S a =-8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:422=+,633=+,835=+,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( )A .121B .221C .115D .215 9.622x x ⎛⎫- ⎪⎝⎭的展开式中,含3x 项的系数为( ) A .60- B .12- C .12 D .6010.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N 除以正整数m 后的余数为n ,则记为(mod )N n m =,例如112(mod3)=.现将该问题以程序框图的算法给出,执行该程序框图,则输出的n 等于( ).A .21B .22C .23D .24 11.函数()()()22214f x x x x =--的图象可能是( )A .B .C .D .12.如图所示的程序框图输出的S 是126,则①应为( )A .5?n ≤B .6?n ≤C .7?n ≤D .8?n ≤二、填空题:本题共4小题,每小题5分,共20分。

2020届河北衡水金卷新高考原创押题考试(二)理科数学

2020届河北衡水金卷新高考原创押题考试(二)理科数学

2020届河北衡水金卷新高考原创押题考试(二)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={|ln(1)x y x =-},集合N={|,x y y e x R =∈},(e 为自然对数的底数)则M N ⋂=( ) A. {|1x x <} B. {1x x }C. {|01x x <<}D. ∅【答案】C 【解析】 试题分析:{|ln(1)}{|1}x y x x x =-=<,,故=.考点:集合的运算.2.已知直线,m n 分别在两个不同的平面,αβ内,则“m n ⊥”是“αβ⊥”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】D 【解析】 【分析】将直线,m n 放入正方体1111ABCD A B C D -中,进而判断即可.【详解】在正方体1111ABCD A B C D -中,设1m AD =,n AB =,若m n ⊥,即1AD AB ⊥, 但平面1ABD 和平面ABCD 不垂直,即α与β不垂直,故充分性不成立 ;设m BC =,11n A D =,若αβ⊥,则平面ABCD ⊥平面11A ADD ,但BC 和11A D 不垂直,即m 与n 不垂直,故必要性不成立. 故选:D.【点睛】本题考查两命题的充分性和必要性的判断,考查直线间,平面间的空间的位置关系.3.已知向量,a b r r不共线,若()()3//a b ka b +-r r r r ,则实数k =( )A. 13-B. 12-C.13D.12【分析】由向量共线的性质得()3ka b a b λ-=+r r r r,由此能求出实数k 的值.【详解】由于()()3//a b ka b +-r r r r ,所以存在实数λ,使得()3ka b a b λ-=+r r r r,因此k λ=且31λ=-,解得13k =-. 故选:A【点睛】本题考查实数值的求法,考查向量共线的性质等基础知识,考查运算求解能力,是基础题. 4.一个简单几何体的三视图如图所示,则该几何体的体积为( )A. 9636π+B. 7248π+C. 4896π+D. 2448π+【答案】D 【解析】 【分析】该几何体是由两部分组成的,左半部分是四分之一圆锥,右半部分是三棱锥,运用锥体体积公式可以求解.. 【详解】该几何体是由左右两部分组成的锥体,左半部分是四分之一圆锥,其体积V 左=211π6843⨯⨯n =24π,右半部分是三棱锥,其体积1166832V =⨯⨯⨯⨯右=48,所以该几何体的体积2448V 总π=+.故选D.【点睛】本题考查了组合体的三视图问题,以及锥体体积公式,需要平常多强化空间想象能力. 5.为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是( ) A. 0.3B. 0.4C. 0.6D. 0.7【分析】先求出从五个节日中随机选取两个节日的所有基本事件数,再求出春节和端午节至少有一个被选中的基本事件数,然后根据古典概型概率公式求解即可.【详解】由题意得,从五个节日中随机选取两个节日的所有情况有2510C =种,设“春节和端午节至少有一个被选中”为事件A ,则事件A 包含的基本事件的个数为123227C C +=.由古典概型概率公式可得12322527()0.710C C P A C +===. 故选D .【点睛】解答本题的关键有两个:一是判断出所求概率的类型,本题中结合题意可得属于古典概型;二是正确求出所有的基本事件数和所求概率的事件包含的基本事件数.求事件的个数时可根据排列组合的知识求解,本题考查分析判断能力和计算能力,属于基础题. 6.对于函数()21x f x e =+的图象,下列说法正确的是( ) A. 关于点()1,0对称 B. 关于点()0,1对称 C. 关于直线1x =对称 D. 关于直线y x =对称【答案】B 【解析】 【分析】整理()f x 为()111x x e f x e -=++,设()()11xx e g x x R e -=∈+,可判断()g x 是奇函数,进而利用图象变换得到()f x 的图象性质.【详解】∵()2111111xx x e f x e e -=-+=+++,令()()11xx e g x x R e -=∈+,则()()1111x x x xe e g x g x e e -----===-++,∴()g x 为奇函数,则其图象关于原点对称.将其图象向上平移1个单位长度可得()f x 图象,所以()f x 图象关于()0,1对称. 故选:B.【点睛】本题考查函数奇偶性的应用,考查判断函数的对称性.7.设F 为抛物线2:4C y x =的焦点,过F 的直线l 与C 相交于,A B 两点,AB 的中点在直线1y =上,则直线l 的方程为( ) A. 22y x =- B. 1y x =- C. 22y x =-+ D. 1y x =-+【答案】A 【解析】 【分析】由,A B 在抛物线上可得2114y x =①,2224y x =②,由AB 的中点在直线1y =上,可得1212y y +=,利用①-②可得直线AB 的斜率为2,即可设:2AB y x b =+,将焦点坐标代入求解即可.【详解】由题,设()()1122,,,A x y B x y ,则2114y x =①,2224y x =②,且1212y y +=, ①-②得()()()1212124y y y y x x -+=-,即121212124222y y y y x x y y -===+-+, 即直线AB 的斜率为2,设:2AB y x b =+,把()1,0F 代入直线方程得2b =-, ∴直线:22l y x =- 故选:A.【点睛】本题考查直线与抛物线的位置关系的应用,考查求直线方程.8.已知函数()sin()(0)2f x x πωφωϕ=+><,图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( ) A. 关于点,012π⎛⎫- ⎪⎝⎭对称B. 关于点,012π⎛⎫⎪⎝⎭对称C. 关于直线12x π=-对称D. 关于直线12x π=对称【答案】B 【解析】 【分析】先根据相邻两条对称轴的距离可得周期为T π=,从而2ω=,再根据平移变换得到新图像对应的解析式,根据其对称性可计算φ,从而可确定()f x 图像的对称轴和对称中心,故可得正确答案.【详解】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移3π单位后,所得图像对应的解析式为()g x , 则()2sin 23g x x πφ⎛⎫=++ ⎪⎝⎭,因()g x 的图像关于y 轴对称,故()01g =±,所以2sin 13πφ⎛⎫+=± ⎪⎝⎭,2,32k k Z ππφπ+=+∈,所以,6k k Z πφπ=-∈, 因2πφ<,所以6πφ=-.又()sin 26f x x π⎛⎫=- ⎪⎝⎭,令2,62x k k Z πππ-=+∈,故对称轴为直线,23k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k π-=π∈Z ,故,212k x k Z ππ=+∈,所以对称中心为,0,212k k Z ππ⎛⎫+∈⎪⎝⎭,所以A 错误,D 正确. 综上,选D .【点睛】一般地,我们研究()sin y A ωx φ=+的图像和性质时,通常用复合函数的方法来讨论,比如求函数的单调区间时,我们先确定u x ωϕ=+的单调性,再函数的单调性确定外函数sin y u =的单调区间后求出x 的范围即可,比如求函数的对称轴、对称中心时,可以由sin y u =的对称轴或对称中心得到相应的对称轴或对称中心.9.在ABC ∆中,BC 边上的中线AD 的长为2,点P 是ABC ∆所在平面上的任意一点,则PA PB PA PC ⋅+⋅u u u r u u u r u u u r u u u r的最小值为( )A. 1B. 2C. -2D. -1【答案】C 【解析】建立如图所示的平面直角坐标系,使得点D 在原点处,点A 在y 轴上,则(0,2)A .设点P 的坐标为(,)x y ,则(,2),(,)PA x y PO x y =--=--u u u v u u u v, 故22()22(2)PA PB PA PC PA PB PC PA PO x y y ⋅+⋅=⋅+=⋅=+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v222[(1)]22x y =+--≥-,当且仅当0,1x y ==时等号成立.所以PA PB PA PC ⋅+⋅u u u v u u u v u u u v u u u v的最小值为2-.选C .10.已知四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,其中ABCD 为正方形,PAD ∆为等腰直角三角形,2PA PD ==,则四棱锥P ABCD -外接球的表面积为( )A. 10πB. 4πC. 16πD. 8π【答案】D 【解析】【详解】因为PAD ∆为等腰直角三角形,2PA PD ==,故,则点到平面ABCD 的距离为,而底面正方形的中心到边的距离也为,则顶点正方形中心的距离,正方形的外接圆的半径为,故正方形ABCD 的中心是球心,则球的半径为,所以该几何体外接球的表面积,应选D .11.设12,F F 分别为双曲线()2222:1,0x y E a b a b-=>左、右焦点,以坐标原点O 为圆心,1OF 为半径的圆与双曲线E 的右支相交于,P Q 两点,与E 的渐近线相交于,,,A B C D 四点,若四边形12PFQF 的面积与四边形,,,A B C D的面积相等,双曲线E的离心率为()【答案】C【解析】【分析】由双曲线的定义和勾股定理可求得2122PF PF b⨯=,从而可得四边形12PFQF的面积,然后求出点圆O与E的渐近线在第一象限的交点为(),a b,可求出四边形ABCD的面积,然后可得答案.【详解】由双曲线的定义及平面几何知识可知122PF PF a-=,①222124PF PF c+=,②2-②①得2122PF PF b⨯=,∴四边形12PFQF的面积为21121222S PF PF b=⨯⨯=,由222x y cby xa⎧+=⎪⎨=⎪⎩,当0,0x y>>,解得,x a y b==,∴圆O与E的渐近线在第一象限的交点为(),a b.∴四边形ABCD的面积24S ab=,∵224b ab=,∴2ba=,即2224,c a cea a-===故选:C【点睛】本题考查双曲线定义渐进性的简单应用,属于中档题.12.对任意实数()222,,22a aa b e b e a a b-+++的最小值是()A.14B.12C.34D. 1【答案】B【解析】【分析】整理条件可得()()()2222222a a a e b e a a b a b e b-+++=-+-,设()(),,,aM a eN b b ,则M 为函数x y e =图象上任意一点,N 为函数y x =图象上任意一点,则()22222a a e b e a a b -+++的最小值等价于2MN 的最小值,进而利用导函数的几何意义求解即可.【详解】由于()()()2222222a a a e b e a a b a b e b -+++=-+-,设()(),,,aM a e N b b ,则M 为函数xy e=图象上任意一点,N 为函数y x =图象上任意一点,则()22222aa eb e a a b -+++的最小值等价于2MN 的最小值,令1x y e '==,∴0x =,因此,点()0,1到直线y x =的距离最小,其值为2,故所求最小值为12.故选:B.【点睛】本题考查曲线上一点到直线上一点的距离最值问题,考查导函数的几何意义的应用,考查转化思想.二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13.53)x的展开式的常数项为__________. 【答案】15- 【解析】 【分析】在53x ⎫⎪⎭展开式的通项公式中,令x 的幂指数等于零,求出r 的值,即可求出展开式的常数项.【详解】解:由于53x ⎫⎪⎭展开式的通项公式为55415·(1)?3?r r r r r T C x -+=-, 令550r -=,解得1r =,故展开式的常数项是15-, 故答案为15-.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题. 14.某次考试后,对全班同学数学成绩进行整理,得到表:将以上数据绘制成频率分布直方图后,可估计出本次考试成绩的中位数是__________. 【答案】115 【解析】 【分析】由表格中数据可知各分数段的学生数学成绩的频率,即直方图中每个矩形的面积,而中位数左侧的所有小矩形的面积之和应为0.5,进而求解即可.【详解】由题意可知,直方图每个矩形的面积表示对应的频率,直方图四个矩形的面积从左向右依次为0.1,0.3,0.4,0.2,由于中位数左侧的矩形面积之和为0.5,故中位数位于第3个矩形处,而前2个矩形面积之和为0.4,故第3个矩形在中位数左侧的面积为0.1, 故中位数为区间[)110,130的最靠左的四等分点处,故中位数为115.故答案为:115.【点睛】本题考查利用频率分布直方图求中位数,考查数据处理能力.15.已知直角三角形 ABC 两直角边长之和为3,将ABC ∆绕其中一条直角边旋转一周,所形成旋转体体积的最大值为__________,此时该旋转体外接球的表面积为___________. 【答案】 (1). 43π (2). 25π 【解析】 【分析】设直角三角形的两边分别为,a b ,则3a b +=,假设以长度为b 的直角边为轴旋转形成的旋转体,则体积为()2211333V a b a a ππ==-,利用导函数即可求得最值;设外接球的半径为R ,则满足()22212R R =-+,进而求解即可.【详解】设直角三角形的两边分别为,a b ,则3a b +=,以长度为b 的直角边为轴旋转形成的旋转体的体积为()2211333V a b a a ππ==-()03a <<, 则()21633V a a π'=-,令0V '=,解得0a =或2a =,所以当02a <<时,0V '>;当23a <<时,0V '<, 所以当2a =时,体积最大,最大值为43π,此时圆锥的底面半径为2,高为1, 设外接球的半径为R ,则()22212R R =-+,所以外接球的半径为52,其表面积为25π故答案为:43π;25π 【点睛】本题考查旋转体的体积,考查外接球的表面积,考查利用导函数求最值.16.已知变量m 的取值完全由变量a b c d ,,,的取值确定.某同学进行了四次试验,每次试验中他预先设定好a b c d ,,,四个变量的取值,然后记录相应的变量m 的值,得到表:则m 关于a b c d ,,,的表达式可能是______________. 【答案】()2a b m cd +=或()8m a b cd =+或223a b m cd+=或其他符合条件的解析式【解析】 【分析】本题为开放题,答案并不唯一,对比试验数据,进而求解即可.【详解】本题为开放题,答案并不唯一,例如,考生可对比试验①②推断m 与d 成反比, 对比试验②③推断m 与c 成反比,对比③④推断m 与+a b 成反比,由此可得a bm k cd+=, 代入试验①的数据,解得2k =,故()2a b m cd+=是一种可能的表达式, 此外,答案中列举的其他解析式均符合题意,故答案为:()2a b m cd+=或()8m a b cd =+或223a b m cd +=或其他符合条件的解析式. 【点睛】本题考查求解析式,考查数据处理能力.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知n S 是正项数列{}n a 的前n 项和,且对任意n ∈+N ,均有2423n n n S a a =+-.(1)求n a ; (2)求数列(){}1nn a -的前n 项和n T .【答案】(1)21n a n =+;(2)()()111nn T n =-+-【解析】 【分析】(1)由题,当2n ≥时,2111423n n n S a a ---=+-,与条件作差可得2211422n n n n n a a a a a --=-+-,即()()1120n n n n a a a a --+--=,由{}n a 为正项数列知10n n a a ->+,则120n n a a ---=,进而求解即可;(2)利用错位相减法求解即可.【详解】(1)由2423n n n S a a =+-①可知,当2n ≥时,2111423n n n S a a ---=+-②,①-②得,2211422n n n n n a a a a a --=-+-,整理得()()1120n n n n a a a a --+--=,由{}n a 为正项数列知10n n a a ->+,故120n n a a ---=, 故{}n a 是以2为公差的等差数列,又①中,当1n =时,可解得13a =或11a =-(舍), 所以21n a n =+(2)根据题意,()()357121nn T n =-+-++-+L ③③⨯()1-,则()()()()135121121nn n T n n +-=-++--+-+L ④③-④,得()()()1232212121nn n T n +=-+-++---+L ()()()()1113212111n nn ---=-+⨯+-+-- ()()2122nn =-+-+则()()111nn T n =-+-【点睛】本题考查由n a 与n S 的关系求通项公式,考查错位相减法求数列的和,考查运算能力.18.已知12,A A 分别为椭圆222:12x y C b+=的左右顶点,P 为C 上异于12,A A 的点,且直线1PA 与2PA 的斜率乘积为12-. (1)求椭圆C 的方程;(2)若B 为椭圆C 的上顶点,F 为C 的右焦点,PBF ∆的面积为1,求直线PB 的方程.【答案】(1)2212x y +=;(2)0x =或220x y -+=【解析】 【分析】(1)由题可得左右顶点为())12,A A ,设()00,P x y ,则22222x y b -=⋅,利用斜率公式处理1212PA PA k k ⋅=-,可求得2b ,即可求得椭圆方程; (2)分别讨论直线PB 斜率不存在与存在的情况,利用弦长公式和点到直线距离求三角形面积,进而求解即可.【详解】(1)由题意知())12,A A ,设()00,P x y ,则22222x y b -=⋅,因为12220201222PA PA y b k k x ⋅===-=--,解得21b =,故椭圆方程为2212x y +=(2)由题,上顶点为()0,1B ,右焦点为()1,0F ,当直线BP 斜率不存在时,BP 方程为0x =,易知此时BPF ∆面积为1,符合题意; 当直线BP 斜率存在时,设BP 方程为1y kx =+,联立22121x y y kx ⎧+=⎪⎨⎪=+⎩,得()221240k x kx ++=,解得1224,012k x x k =-=+,∴122412k BP x k=-=+,点F 到直线BP,由24112BPF k S k ∆==+,解得12k =, 此时112y x =+,即220x y -+= 故直线BP 的方程为0x =或220x y -+=【点睛】本题考查由椭圆的几何性质求椭圆的方程,考查直线与椭圆的位置关系的应用,考查椭圆内的三角形面积的应用,考查运算能力.19.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AD BC ∥,1AB BC PA ===,2AD =,90PAD DAB ABC ∠=∠=∠=︒,点E 在棱PC上,且CE CP λ=.(Ⅰ)求证:CD AE ⊥;(Ⅱ)是否存在实数λ,使得二面角C AE D --的余弦值为10?若存在,求出实数λ的值;若不存在,请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)10. 【解析】【详解】试题分析:(1)由边长和勾股定理得CD AC ⊥,又平面PAD ⊥平面ABCD ,由定理证得CD ⊥平面PAC CD AE ∴⊥ (2) 建立空间直角坐标系, 得出平面AEC 的一个法向量为()1,1,0n CD u u u v v ==-,设平面AED 的一个法向量为m v,由题意计算得出结果解析:(Ⅰ)过点C 作CF AB ∥交AD 于D ,1AB BC ==Q ,2AD =,90DAB ABC o ∠=∠=四边形ABCF 为正方形,且1AF FD ==,2AC =在Rt CFD △中,2CD =,在ACD V 中,2224CD AC AD +==CD AC ∴⊥ 90,PAD PA AD o Q ∠=∴⊥又平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =PA ∴⊥平面ABCD PA CD ∴⊥ ,PA AC ⊂Q 平面PAC ,且PA AC A =ICD \^平面PAC CD AE ∴⊥(Ⅱ)90PAD PA AD ∠=∴⊥o Q又平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =PA ∴⊥平面ABCD PA CD ∴⊥,PA AB ⊥以点A 为坐标原点,AB 、AD 、AP 所在直线为坐标轴建立空间直角坐标系,()()()()()()0,0,0,0,0,1,1,1,0,0,2,0,1,1,0,0,2,0A P C D CD AD =-=u u u v u u u v假设存在实数λ使得二面角C AE D --的余弦值为10,令CE CP λ=u u u v u u u v Q 点E 在棱PC 上,[]0,1λ∴∈设()()(),,,1,1,1,1,1E x y z CE CP x y z λλ=∴--=--u u u v u u u vQ()1,1,E λλλ∴--则()1,1,AE u u u vλλλ=--,CD ⊥Q 平面PAC ,∴平面AEC 的一个法向量为()1,1,0n CD u u uv v ==-设平面AED 的一个法向量为()111,,m x y z =v由00m AE m AD ⎧⋅=⎨⋅=⎩u u u v v u u u v v 得()()11111100x y z y λλλ⎧-+-+=⎨=⎩令1z =得()1,0,1,0,111m λλλλλ-⎛⎫==-- ⎪--⎝⎭v 取(),0,1m λλ=--v()2210cos ,12m n m n m n λλ⋅∴===+-⨯v vv vv v 化简得23840λλ-+=又[]0,1λ∈ 23λ∴= 存在实数23λ=使得二面角C AE D --的余弦值为10. 20.某人某天的工作是:驾车从A 地出发,到B C 、两地办事,最后返回A 地,,,A B C 三地之间各路段行驶时间及当天降水概率如表:若在某路段遇到降水,则在该路段行驶的时间需延长1小时,现有如下两个方案: 方案甲:上午从A 地出发到B 地办事,然后到达C 地,下午在C 地办事后返回A 地; 方案乙:上午从A 地出发到C 地办事,下午从C 地出发到达B 地, 办事后返回A 地.(1)设此人8点从A 地出发,在各地办事及午餐的累积时间为2小时.且采用方案甲,求他当日18点或18点之前能返回A 地的概率;(2)甲、乙两个方案中,哪个方案有利于办完事后能更早返回A 地? 【答案】(1)0.598;(2)甲方案 【解析】 【分析】(1)若各路段均不会遇到降水,则返回A 地的时间为17点,则若18点或18点之前能返回A 地的充要条件是降水的路段数不超过1,进而求解即可;(2)设某路段正常行驶时间为x ,降水概率为p ,则()()11EX x p x p x p =-++=+,进而讨论每一路段行驶时间的期望,再得到方案甲、乙的总行驶时间的期望,比较即可.【详解】(1)由题意可知,若各路段均不会遇到降水,则返回A 地的时间为17点, 因此若18点或18点之前能返回A 地的充要条件是降水的路段数不超过1,记事件123,,M M M 分别表示在上午AB 路段降水,上午BC 降水,下午CA 路段降水,则所求概率()()()()123123123123P P M M M P M M M P M M M P M M M =+++0.70.80.10.30.80.10.70.20.10.70.80.90.598=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(2)设某路段正常行驶时间为x ,降水概率为p ,则该路段行驶时间X 的分布列为:故()()11EX x p x p x p =-++=+设采用甲、乙两种方案所花费的总行驶时间分别为,Y Z ,则2.3 2.23.98.4EY =++=, 2.6 2.7 3.38.6EZ =++=,8.48.6<,因此采用甲方案更有利于办事之后能更早返回A 地.【点睛】本题考查互斥事件的概率加法公式的应用,考查两点分布的分别列和期望,考查数据处理能力.21.已知函数()()1,ln 1xx e f x g x x x +==-. (1)当1x >时,不等式()f x m >成立,求整数m 的最大值;(参考数据:ln20.693,ln3 1.099≈≈); (2)证明:当1x >时,()()f x g x <. 【答案】(1)最大值为3;(2)见解析 【解析】 【分析】 (1)先求导可得()21ln 1ln x x f x x--'=,设()1ln 1F x x x=--,由()F x '可判断()F x 在()1,+∞上为增函数,由()()453ln 30,4ln 4034F F =-<=->可得()03,4x ∃∈使得()()000F x f x '==,则()()0min f x f x =,进而求解即可;(2)要证()()f x g x <,即证21ln 0xx x e-->,设()21ln x x h x x e -=-,利用导函数判断()h x 的单调性,由()10h =,进而求解即可.【详解】(1)当1x >时,()21ln 1ln x x f x x--'=,令()1ln 1F x x x =--,则()2110F x x x'=+>,因此()F x 在()1,+∞上为增函数, 又()()453ln 30,4ln 4034F F =-<=->, ∴()03,4x ∃∈使得()()000F x f x '==,即001ln 1x x =+, 当01x x <<时,()0f x '<,()f x 为减函数;当0x x >时,()0f x '>,()f x 为增函数;∴()()()0000min 00113,41ln 1x x f x f x x x x ++====∈+,所以整数m 的最大值为3(2)法一:要证()()f x g x <,即证21ln 0xx x e-->, 令()21ln xx h x x e -=-,则()2321212x x xx x e x x xh x x e xe -++--'=-=, 令()322xx e x x x ϕ=+--,则()2341xx e x x ϕ'=+--,()()64,6x xx e x x e ϕϕ'''''=+-=+,∵()0x ϕ'''>,∴()x ϕ''在()1,+∞上为增函数,又()12e ϕ''=-,∴()0x ϕ''>, ∴()x ϕ'在()1,+∞上为增函数,又()12e ϕ'=-,∴()0x ϕ'>,∴()x ϕ在()1,+∞上为增函数,又()12e ϕ=-,∴()0x ϕ>,即()0h x '>, ∴()h x 在()1,+∞上为增函数,∴()()10h x h >=,故()()f x g x <.【点睛】本题考查利用导函数处理函数恒成立问题,考查利用导函数证明不等式,考查利用导函数判断函数的单调性.(二)选考题:共10分22.在极坐标系Ox 中,直线,m n 的方程分别为cos 3,sin 2ρθρθ==,曲线2236:45sin C ρθ=+.以极点O 为坐标原点,极轴为x 轴的正半轴,建立平面直角坐标系. (1)将直线,m n 的方程与曲线C 的方程化成直角坐标方程;(2)过曲线C 上动点P 作直线,m n 的垂线,求由这四条直线围成的矩形面积的最大值.【答案】(1)224936x y +=;(2)max 9S =+【解析】 【分析】(1)由直角坐标方程与极坐标方程的互化的公式,直接得出答案.(2)由条件可设()3cos ,2sin P θθ,则矩形的两边长分别为33cos ,22sin θθ--,然后用换元法可求矩形面积的最大值.【详解】解:(1)由cos ,sin x y ρθρθ==得 直线,m n 的直角坐标方程分别为3,2x y ==, 曲线C 的方程为224936x y +=;(2)由(1)知曲线22:194x y C +=,故可设()3cos ,2sin P θθ,矩形的两边长分别为33cos ,22sin θθ--,∴矩形的面积()()()33cos 22sin 61sin cos sin cos S θθθθθθ=--=--+,令sin cos t θθ⎡+=∈⎣,则21sin cos 2t θθ-=,2363,S t t t ⎡=-+∈⎣,当t =max 9S =+.【点睛】本题考查直角坐标方程与极坐标方程的互化、椭圆的参数方程以及换元法求最值,属于中档题. 23.已知()215f x x ax =-+-(a 是常数,a R ∈). (1)当1a =时,求不等式()0f x ≥的解集;(2)若函数()f x 恰有两个不同的零点,求实数a 的取值范围. 【答案】(1){x |4x ≤-或2x ≥};(2)(2,2)-【解析】【分析】(1)当a=1时,f(x)14,21 36,2 x xx x⎧--<⎪⎪⎨⎪-≥⎪⎩,把1240xx⎧<⎪⎨⎪--≥⎩或12360xx⎧≤⎪⎨⎪-≥⎩的解集取并集,即得所求;②由f(x)=0得|2x﹣1|=﹣ax+5,作出y=|2x﹣1|和y=﹣ax+5 的图象,观察可以知道,当﹣2<a<2时,这两个函数的图象有两个不同的交点,由此得到a的取值范围.【详解】(1)当1a=时,()215f x x ax=-+-=14,2136,2x xx x⎧--<⎪⎪⎨⎪-≥⎪⎩,由()0f x≥,得1240xx⎧<⎪⎨⎪--≥⎩或12360xx⎧≤⎪⎨⎪-≥⎩,解得4x≤-或2x≥,故不等式()0f x≥的解集为{x|4x≤-或2x≥}.(2)令()f x=0,得215x ax-=-,则函数()f x恰有两个不同的零点转化为21y x=-与5y ax=-+的图象有两个不同的交点,在同一平面直角坐标系中作出两函数的图象如图所示,结合图象知当22a-<<时,这两个函数的图象有两个不同的交点,所以当22a-<<时,函数()f x恰有两个不同的零点,故实数a的取值范围为()2,2-.【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

2024衡水名师卷高考模拟压轴卷(二)数学试题及答案

2024衡水名师卷高考模拟压轴卷(二)数学试题及答案

2024年普通高等学校招生全国统一考试模拟试题数学(二)本试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答题前,考生先将自己的姓名、准考证号码、考场号、座位号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点()06,P y 在焦点为F 的抛物线2:2(0)C y px p =>上,若152PF =,则p =()A.3B.6C.9D.122.电影《孤注一郑》的上映引发了电信诈骗问题的热议,也加大了各个社区反电信诈骗的宣传力度.已知某社区共有居民480人,其中老年人200人,中年人200人,青少年80人,若按年龄进行分层随机抽样,共抽取36人作为代表,则中年人比青少年多()A.6人B.9人C.12人D.18人3.已知0a b c >>>,则下列说法一定正确的是()A.a b c >+ B.2a bc <C.2ac b > D.2ab bc b ac+>+4.已知向量()()2,3,1,2a b =-=-,则a b +在a b -方向上的投影向量为()A.816,1717⎛⎫-⎪⎝⎭ B.1220,1717⎛⎫-⎪⎝⎭ C.1220,1717⎛⎫-⎪⎝⎭ D.2020,1717⎛⎫-⎪⎝⎭5.已知某正六棱柱的体积为,其外接球体积为205π3,若该六棱柱的高为整数,则其表面积为()A.18+ B.18+ C.24+ D.246.已知甲、乙两地之间的路线图如图所示,其可大致认为是()()cos 03πf x x x =的图像.某日小明和小红分别从甲、乙两地同时出发沿着路线相向而行,当小明到达乙地时,小红也停止前行.若将小明行走轨迹的点记为(),a b ,小红行走轨迹的点记为(),c d ,且满足3π2ac +=,函数()2g a bd =-,则()g a 的一个单调递减区间为()A.4π0,3⎛⎫ ⎪⎝⎭B.π5π,33⎛⎫⎪⎝⎭C.4π8π,33⎛⎫⎪⎝⎭D.()2π,3π7.已知椭圆22:1(09,)9x y C m m m +=<<∈Z 的左、右焦点分别为12,F F ,点P 在C 上但不在坐标轴上,且12PF F 是等腰三角形,其中一个内角的余弦值为78,则m =()A.4B.5C.6D.88.已知函数()()e eln e 1xmf x m x x=++-的定义域为()0,∞+,若()f x 存在零点,则m 的取值范围为()A.1,e ∞⎡⎫+⎪⎢⎣⎭B.(]0,e C.10,e ⎛⎤⎥⎝⎦D.[)e,∞+二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1232i,4i z z =+=-,则()A.12z z +的虚部为-1B.1243z z -是纯虚数C.12z z 在复平面内所对应的点位于第一象限D.214iz z =+10.已知()7270127(43)13(13)(13)x a a x a x a x -=+-+-++- ,则()A.4945a = B.77141ii a==-∑C.136024622a a a a +++=+ D.613135722a a a a +++=-11.设()M x 是定义在*N 上的奇因函数,是指x 的最大奇因数,比如:()()33,63M M ==,()81M =,则()A.对()()*,212k M k M k ∈-N B.()()2M k M k =C.()()()1263931M M M +++= D.()126363M +++= 三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}2450,{}A xx x B x x m =-->=>∣∣,若0m =,则()A B ⋂=R ð__________;若A B ⋃=R ,则m 的取值范围为__________.13.某校拟开设“生活中的数学”“音乐中的数学”“逻辑推理论”“彩票中的数学”和“数学建模”5门研究性学习课程,要求每位同学选择其中2门进行研修,记事件A 为甲、乙两人至多有1门相同,且甲必须选择“音乐中的数学”,则()P A =__________.14.定义:对于函数()f x 和数列{}n x ,若()()()10n n n n x x f x f x +-+=',则称数列{}n x 具有“()f x 函数性质”.已知二次函数()f x 图像的最低点为()0,4-,且()()121f x f x x +=++,若数列{}n x 具有“()f x 函数性质”,且首项为1的数列{}n a 满足()()ln 2ln 2n n n a x x =+--,记{}n a 的前n 项和为n S ,则数列52n n S ⎧⎫⎛⎫⋅-⎨⎬ ⎪⎝⎭⎩⎭的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,其中c =,且()2tan tan tan b B a B A B =-+.(1)求C ;(2)求22a b +的取值范围.16.(15分)已知函数()ln x f x x a x ⎛⎫=-⎪⎝⎭.(1)讨论()f x 的最值;(2)若1a =,且()e x k xf x x-,求k 的取值范围.17.(15分)在如图①所示的平面图形中,四边形ACDE 为菱形,现沿AC 进行翻折,使得AB ⊥平面ACDE ,过点E 作EF∥AB ,且12EF AB =,连接,,FD FB BD ,所得图形如图②所示,其中G 为线段BD 的中点,连接FG .(1)求证:FG ⊥平面ABD ;(2)若2AC AD ==,直线FG 与平面BCD 所成角的正弦值为7,求AB 的值.18.(17分)某汽车销售公司为了提升公司的业绩,现将最近300个工作日每日的汽车销售情况进行统计,如图所示.(1)求a 的值以及该公司这300个工作日每日汽车销售量的平均数(同一组中的数据用该组区间的中点值作代表);(2)以频率估计概率,若在所有工作日中随机选择4天,记汽车销售量在区间[)200,250内的天数为X ,求X 的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:抽奖区有,A B 两个盒子,其中A 盒中放有9张金卡、1张银卡,B 盒中放有2张金卡、8张银卡,顾客在不知情的情况下随机选择其中一个盒子进行抽奖,直到抽到金卡则抽奖结束(每次抽出一张卡,然后放回原来的盒中,再进行下次抽奖,中途可更换盒子),卡片结果的排列对应相应的礼品.已知顾客小明每次抽奖选择两个盒子的概率相同,求小明在首次抽奖抽出银卡的条件下,第二次从另外一个盒子中抽奖抽出金卡的概率.19.(17分)已知双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,直线1:2l y x =-与C 的一条渐近线平行,且与C交于点B ,直线AB 的斜率为13.(1)求C 的方程;(2)已知直线()2:28l y x m m =+≠与C 交于,P Q 两点,问:是否存在满足EA EP EP EQ EA EQ ⋅=⋅=⋅的点()00,E x y ?若存在,求2200x y -的值;若不存在,请说明理由.数学(二)一、选择题1.A【解析】由抛物线的定义可知15622p PF =+=,解得3p =.故选A 项.2.B【解析】设中年人抽取x 人,青少年抽取y 人,由分层随机抽样可知20080,48036480x ==36y,解得15,6x y ==,故中年人比青少年多9人.故选B 项.3.D 【解析】当3,2,1a b c ===时,a b c =+,且2ac b <,故A ,C 项错误;因为0a b >>,0a c >>,所以2a bc >,故B 项错误;()()()20ab bc b ac b c a b +-+=-->,故D 项正确.故选D 项.4.C 【解析】由题意得()()1,1,3,5a b a b +=--=- ,则a b + 在a b - 方向上的投影向量为2()()1220(),1717||a b a b a b a b +⋅-⎛⎫-=- ⎪-⎝⎭,故选C 项.5.D【解析】设该正六棱柱的底面边长为a ,高为h ,其外接球的半径为R,易知34ππ33R =,则R ==①,且264a h ⋅⋅=②,联立①②,因为h ∈Z ,解得1,4a h ==,所以正六棱柱的表面积23126244S a ah =⋅+=.故选D 项.6.A 【解析】依题意得cos ,cos cos 3πcos 22a a b a d c ⎛⎫===-=- ⎪⎝⎭,且03π,03π3π,2a a⎧⎪⎨-⎪⎩解得03πa ,则()2cos 2cos2cos 2cos 1222a a a g a a =+=+-,令cos 2at =,则[]1,1t ∈-,因为2221y t t =+-在区间11,2⎛⎫-- ⎪⎝⎭内单调递减,在区间1,12⎛⎫- ⎪⎝⎭内单调递增,所以()g a 在区间4π8π0,,2π,33⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭内单调递减.故选A 项.7.B 【解析】依题意得126PF PF +=,设12F F n =,不妨设点P 在第一象限,则112PF F F n ==,则26(06)PF n n =-<<,故222122(6)7cos 28n n n PF F n ∠+--==或()22221(6)7cos 268n n n PF F n n ∠+--==-,解得4n =或2411n =,又2,2n m m ⎛⎫∈+= ⎪⎝⎭Z 9,所以4,5n m ==.故选B 项.8.C 【解析】由题意得0m >,令()0f x =,则()ln ln ee ln e eln x mx x m x +++=+.令()e e x g x x =+,易知()g x 单调递增,所以()()ln ln g x m g x +=,即ln ln x m x +=,即ln ln m x x =-.令()ln h x x x =-,则()1xh x x'-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∞∈+时,()()0,h x h x '<单调递减,又()11h =-,当0x →时,()h x ∞→-,所以ln 1m -,解得10em<.故选C 项.二、多选题9.BC 【解析】127i z z +=+的虚部为1,故A 项错误;124311i z z -=为纯虚数,故B 项正确;()()1232i 4i 145i z z =+-=+,其在复平面内所对应的点()14,5位于第一象限,故C 项正确;24i 14ii iz -==--=,144z +=+,故D 项错误.故选BC 项.10.AC 【解析】依题意得()77(43)[313]x x -=+-,所以4347C 33527a =⨯=⨯=945,故A 项正确;令13x =,得03a =,令0x =,得774i i a ==∑,所以777143i i a ==-∑,故B 项错误;令23x =,得7012345672a a a a a a a a =-+-+-+-①,又7012345674a a a a a a a a =+++++++②,由①+②可得77135024642222a a a a ++++==+,故C 项正确;同理,由②-①得136135722a a a a +++=-,故D 项错误.故选AC 项.11.ABD 【解析】由题意得()()2M k M k =,故B 项正确;()()()2,2121M k M k k M k k k =-=-,故A 项正确;516312363632632+++++=⨯=⨯ ,所以()()123636363M M ++++== ,故D 项正确;()()()()1263[1M M M M +++=+ ()()][()()36324M M M M ++++++ ()][()6213631M M =+++++()()()1023121M M M ⎤⎡++=++⎦⎣ ()()][()()33124M M M M ++++++ ()108642030]222222M ==+++++=614136514-=-,故C 项错误.故选ABD 项.三、填空题12.()50,14x x∞⎧⎫<--⎨⎬⎩⎭【解析】集合{1A xx =<-∣或54x ⎫>⎬⎭,所以R A =ð504B x x ⎧⎫=<⎨⎬⎩⎭.若A B ⋃=R ,结合数轴可知1m <-,故m 的取值范围为(,1)∞--.13.925【解析】若甲、乙两人的选课都不相同则共有1243C C 4312=⨯=种;若甲、乙两人的选课有1门相同,则共有2114432C C C 24+=种.故()225512249C C 25P A +==.14.-5112【解析】由题意知()24(0)f x ax a =->,又()()()12121f x f x a x x +-=+=+,所以1a =,则()24f x x =-.由题意得()()2ln 2ln 2ln2n n n n n x a x x x +=+--=-,由()()()10n n n n x x f x f x +-+=',得()()1n n n n f x x x f x +='-,即2214422n n n nn nx x x x x x +-+=-=,又()()2211222,222n n n n nnx x x x x x +++-+=-=,所以()()21212222n n n n x x x x ++++=--,则1122ln 2ln 22n n n n x x x x ++++=--,即12n n a a +=,故{}n a 是以1为首项,2为公比的等比数列,所以12,21n n n n a S -==-.令n n c S =.()552122n n n ⎛⎫⎛⎫-=-⋅- ⎪ ⎪⎝⎭⎝⎭,则()111822n n nc c n -+-=-⋅-,故当8n 时,1n n c c +<,当9n 时,1n n c c +>,故()9min 5112n c c ==-.四、解答题15.解:(1)因为()()tan tan πtan A B C C +=-=-,所以2tan tan tan b B a B C=+,由正弦定理得sin 2tan sin tan tan B BA B C==+()2sin cos 2sin cos sin cos cos sin sin B C B CB C B C B C ==++2sin cos sin B C A因为sin 0,sin 0A B ≠≠,所以2cos 1C =,则1cos 2C =,又()0,πC ∈,所以π3C =.(2)由余弦定理得223a b ab =+-,因为222a b ab +,所以22222222,22a b a b a b ab a b +++-+-=即226a b +.当且仅当a b ==.又223a b ab +=+,且0ab >,所以223a b +>.综上,22a b +的取值范围为(]3,6.16.解:(1)由题意得()f x 的定义域为()0,∞+,()11,ax f x a x x-=-='当()0,0,a x ∞∈+时,()0f x '<,所以()f x 在区间()0,∞+内单调递减,无最值;当0a >时,令()0f x '=,得1x a=,当10,x a ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<单调递减,当1,x a ∞⎛⎫∈+⎪⎝⎭时,()()0,f x f x '>单调递增.故当1x a=时,()f x 取得最小值,且最小值为11ln f a a ⎛⎫=+ ⎪⎝⎭,无最大值.综上,当0a 时,()f x 无最值;当0a >时,()f x 的最小值为1ln a +,无最大值.(2)当1a =时,由()e x k xf x x-,得e ln x k xx x x--,整理得2e ln x k x x x x +-,即2ln e xx x x x k +-.令()2ln exx x x xh x +-=,则()h x '()()()2221ln 1e ln e e x xxx x x x x x +---+-=()()ln 1e xx x x --=,由(1)知,当1a =时,()ln f x x x =-的最小值为()110f =>,即ln 0x x ->恒成立,所以当()0,1x ∈时,()()0,h x h x '>单调递增;当()1,x ∞∈+时,()()0,h x h x '<单调递减.故当1x =时,()h x 取得最大值()21e h =,即2ek ,故k 的取值范围为2,e ∞⎡⎫+⎪⎢⎣⎭.17.(1)证明:连接CE 交AD 于点O ,连接GO .在菱形ACDE 中,CE AD ⊥,因为AB ⊥平面,ACDE CE ⊂平面ACDE ,所以CE AB ⊥,又,,AB AD A AB AD ⋂=⊂平面ABD ,所以CE ⊥平面ABD .因为,G O 分别为,BD AD 的中点,所以1,2GO AB GO =∥AB ,又1,2EF AB EF =∥AB ,所以GO EF ∥,所以四边形GOEF 为平行四边形,所以FG ∥EO ,所以FG ⊥平面ABD .(2)解:在菱形ACDE 中,因为AC AD =,所以ACD 和ADE 都是正三角形,取ED 的中点H ,连接AH ,则AH AC ⊥,又AB ⊥平面ACDE ,所以,AB AC AB AH ⊥⊥,即,,AB AC AH 两两垂直.以A 为坐标原点,,,AB AC AH 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,设2(0)AB a a =>,则13(0,2,0),(2,0,0),(0,1,(,1,,,22C B a D F a G a ⎛⎫- ⎪ ⎪⎝⎭则()2,2,0,(0,1BC a CD =-=- ,30,,22FG⎛=-⎝⎭.设平面BCD的法向量为(),,m x y z=,则220,0,m BC ax ym CD y⎧⋅=-+=⎪⎨⋅=-+=⎪⎩取1z=,则m a⎛⎫= ⎪⎪⎝⎭.记直线FG与平面BCD所成角为θ,则||sin|cos,|||||FG mFG mFG mθ⋅=〈〉==,7=解得1a=,即AB的值为2.18.解:(1)依题意得(0.0010.0020.00320.006)50 1.a++++⨯=解得0.004a=.所求平均数为250.1750.15125⨯+⨯+⨯0.21750.32250.22750.05150+⨯+⨯+⨯=.(2)依题意得14,5X B⎛⎫~ ⎪⎝⎭,则()442565625P X⎛⎫===⎪⎝⎭,()314142561C55625P X⎛⎫==⨯⨯=⎪⎝⎭()222414962C,55625P X⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭()33414163C55625P X⎛⎫==⨯=⎪⎝⎭()41145625P X⎛⎫===⎪⎝⎭X01234P 25662525662596625166251625故()14455E X =⨯=.(3)设“选到A 盒”为事件1A ,“选到B 盒”为事件2A ,,摸到金卡”为事件1B ,,摸到银卡”为事件2B ,因为12,B B 是对立事件,所以()119121*********P B =⨯+⨯=.()()219120P B P B =-=由题意得()()1212P A P A ==,所以()()()12122P A B P A B P B ==∣()()()2112111102,9920P B A P A P B ⨯==∣则()()2212819P A B P A B =-=∣∣.故所求的概率89123791091045P =⨯+⨯=.19.解:(1)易知C 的一条渐近线方程为y x =,则a b =.设(),2B t t -,又(),0,0A a a ->,直线AB 的斜率为13,所以213t t a -=+,解得62a t +=,则62,22a a B ++⎛⎫ ⎪⎝⎭,代入222x y a -=中,解得4a =.故C 的方程为2211616x y -=.(2)因为EA EP EP EQ ⋅=⋅ ,所以()0EP EA EQ ⋅-= ,即0EP QA ⋅=,所以PE AQ ⊥,同理可得,AE PQ EQ AP ⊥⊥.设()()1122,,,P x y Q x y ,联立221,16162.x y y x m ⎧-=⎪⎨⎪=+⎩整理得2234160x mx m +++=,由题意知()22Δ1612160m m =-+>,且8m ≠,解得m <-m >8m ≠,所以21212416,33m m x x x x ++=-=.过点A 与2l 垂直的直线的方程为122y x =--,设该直线与C 的右支交于另一点H ,联立221,161612,2x y y x ⎧-=⎪⎪⎨⎪=--⎪⎩整理得238800x x --=,解得203x =或4x =-(舍去).所以2016,33H ⎛⎫- ⎪⎝⎭.因为(1122016,33PH AQ x y x ⎛⎫⋅=---⋅+ ⎪⎝⎭)22121220801644333y x x x x y ⋅=+----(122121220801642333y y x x x x x =+---+()()1212)225(1m x m x m x x -++=--+()()()22128016164802)54233333m m x x m m m m +⎛⎫++--=-⨯-+⋅-+- ⎪⎝⎭222216580168801603333333m m m m m m m -=--+++--=所以PH AQ ⊥,同理可证QH AP ⊥.又AH PQ ⊥,所以H 与E 重合.因为H 在C 上,所以220016x y -=.故存在点E 满足EA EP EP EQ EA EQ ⋅=⋅=⋅ ,且220ij x y -的值为16.。

2019届河北省衡水中学高考押题试卷(二)理科数学

2019届河北省衡水中学高考押题试卷(二)理科数学

2019届河北省衡水中学高考押题试卷(二)数学(理科)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知全集,,,则A.B.C.D.2. 已知复数,在复平面内对应的点分别为,,则A.B.C.D.3. 已知上的奇函数满足:当时,,则()A. B.C. D.4. 某中学有高中生人,初中生人,男、女生所占的比例如图所示.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取女生人,则从初中生中抽取的男生人数是()A. B.C. D.5. 已知等差数列中,,,则A. B.C. D.6. 已知实数,满足,则的最大值与最小值之和为()A. B.C. D.7. 将函数的图象向右平移个单位长度后,再将图象上各点的纵坐标伸长到原来的倍,得到函数的图象,则A.B.C.D.8. 我国古代数学著作《九章算术》有如下问题:“今有三人共车,二车空;二人共车,九人步.问人与车各几何?”意思是:今有人坐一辆车,有辆车是空的;人坐一辆车,有个人需要步行.问人与车各多少?如图是该问题中求人数的程序框图,执行该程序框图,则输出的值为A. B.C. D.9. 如图是某几何体的三视图,则此几何体的表面积为()A.B.C.D.10. 已知三棱锥中,侧面底面,,,,,则三棱锥外接球的体积为()A. B.C. D.11. 已知双曲线的离心率,对称中心为,右焦点为,点是双曲线的一条渐近线上位于第一象限内的点,,的面积为,则双曲线的方程为()A.B.C.D.12. 设实数,若对任意的,不等式恒成立,则的最大值是( )A. B.C. D.二、填空题:本大题共4小题,每小题5分,共20分。

把答案填在答题卡中的横线上。

13. 已知非零向量,,若与的夹角等于与的夹角,则________.14.的展开式中不含常数项的所有项的系数之和是________.15. 已知等比数列的前项和为,且,则________,且.16. 已知抛物线:的焦点为,为坐标原点,点,,射线,分别交抛物线于异于点的点,,若,,三点共线,则的值为________.三、解答题:本大题共5小题,共70分。

2020届河北省衡水中学高三高考押题理科数学试卷含答案

2020届河北省衡水中学高三高考押题理科数学试卷含答案

河北衡水中学2020年高考押题试卷理数试卷第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数122z =--,则||z z +=( ) A.122-- B.122i -+ C.122+ D.122- 2.集合2{|30}A x x x =-≤,{|lg(2)}B x y x ==-,则A B I =( )A .{|02}x x ≤<B .{|13}x x ≤<C .{|23}x x <≤D .{|02}x x <≤3.已知函数()cos()6f x x ωπω=-(0)ω>的最小正周期为π,则函数()f x 的图象( )A. 可由函数()cos 2g x π=的图象向左平移3π个单位而得 B 可由函数()cos 2g x π=的图象向右平移3π个单位而得C. 可由函数()cos 2g x π=的图象向左平移6π个单位而得D .可由函数()cos 2g x π=的图象向右平移6π个单位而得4.已知实数x ,y 满足约束条件33,24,34120,y x y x x y ≥-⎧⎪≤+⎨⎪++≥⎩则2z x y =-的最大值为( )A.2 B .3 C.4D .55.一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于E 、F ,且交其对角线AC 于M ,若2AB AE =u u u r u u u r,3AD AF =u u u r u u u r ,AM AB AC λμ=-u u u u r u u u r u u u r (,)R λμ∈,则52μλ-=( )A .12-B .1 C.32D .-36.在如图所示的正方向中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布(1,1)N -的密度曲线)的点的个数的估计值为(附:若2~(,)X N μσ,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=.( )A.906 B .1359 C.2718 D.34137.某几何体的三视图如图所示,其中俯视图下半部分是半径为2的半圆,则该几何体的表面积是( )A .808π+B .804π+C .808π-D .804π- 8.已知数列{}n a 中,11a =,1n n a a n +=+.若如图所示的程序框图是用来计算该数列的第2018项,则判断框内的条件是( )A .2016?n ≤B .2017?n ≤ C.2015?n < D .2017?n < 9.已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为ξ,则E ξ=( ) A.3 B .72 C.185D .4 10.已知抛物线C :22(0)y px p =>的焦点为F ,点00(2)()2pM x x >是抛物线C 上一点,圆M 与线段MF 相交于点A ,且被直线2px =3|MA ,若=2,则||AF =( ) A .32B .1 C.2 D .311.若定义在R 上的可导函数()f x 满足(1)1f =,且2'()1f x >,则当3[,]22x ππ∈-时,不等式23(2cos )2sin 22xf x >-的解集为( ) A. 4(,)33ππ B .4(,)33ππ- C.(0,)3π D .(,)33ππ-12.已知0x 是方程222ln 0xx ex +=的实根,则关于实数0x 的判断正确的是( )A .0ln 2x ≥B .01x e< C.002ln 0x x += D .002ln 0x e x += 第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.若26()baxx+的展开式中3x 项的系数为20,则22a b +的最小值为 . 14.已知ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若222a b c bc =+-,16bc =,则ABC ∆的面积为 .15.已知双曲线22221(0,0)x y a b a b-=>>的左、右顶点分别为A ,B 两点,点)C ,若线段AC 的垂直平分线过点B ,则双曲线的离心率为 . 16.已知下列命题:①命题“x R ∀∈,235x x +<”的否定是“x R ∃∈,235x x +<”; ②已知p ,q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝为真命题”;③“2015a >”是“2017a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题 其中,所有真命题的序号是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.设n S 为数列{}n a 的前n 项和,且11a =,1(2)(1)n n na n S n n +=+++,*n N ∈. (1)证明:数列{1}nS n+为等比数列; (2)求12n n T S S S =+++L .18.如图所示,四棱锥A BCDE -,已知平面BCDE ⊥平面ABC ,BE EC ⊥,6BC =,43AB =,30ABC ∠=︒.(1)求证:AC BE ⊥;(2)若二面角B AC E --为45︒,求直线AB 与平面ACE 所成角的正弦值.19.某中学为了解高一年级学生身高发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:cm )频数分布表如表1、表2. 表1:男生身高频数分布表表2:女生身高频数分布表(1)求该校高一女生的人数;(2)估计该校学生身高在[165,180)的概率;(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X 表示身高在[165,180)学生的人数,求X 的分布列及数学期望.20. ABC ∆中,O 是BC 的中点,||32BC =其周长为632+,若点T 在线段AO 上,且||2||AT TO =. (1)建立合适的平面直角坐标系,求点T 的轨迹E 的方程;(2)若M ,N 是射线OC 上不同的两点,||||1OM ON ⋅=,过点M 的直线与E 交于P ,Q ,直线QN 与E 交于另一点R ,证明:MPR ∆是等腰三角形.21. 已知函数2()xf x e x a =-+,x R ∈,曲线()y f x =的图象在点(0,(0))f 处的切线方程为y bx =. (1)求函数()y f x =的解析式;(2)当x R ∈时,求证:2()f x x x ≥-+;(3)若()f x kx >对任意的(0,)x ∈+∞恒成立,求实数k 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22.选修4-4:坐标系与参数方程在极坐标系中,曲线1C :2cos ρθ=,曲线2C :(cos 4)cos ρρθθ=⋅+⋅.以极点为坐标原点,极轴为x 轴正半轴建立直角坐标系xOy ,曲线C的参数方程为12,2x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求1C ,2C 的直角坐标方程;(2)C 与1C ,2C 交于不同四点,这四点在C 上的排列顺次为H ,I ,J ,K ,求||||||HI JK -的值. 23. 选修4-5:不等式选讲. 已知a ,b 为任意实数.(1)求证:42242264()a a b b ab a b ++≥+;(2)求函数4224()|2(16)|f x x a a b b =-+--332|(221)|x a b ab +-+-的最小值.参考答案及解析理科数学一、选择题1-5:CADBA 6-10:BBBBB 11、12:DC二、填空题13.2 14.② 三、解答题17.解:(1)因为11n n n a S S ++=-,所以1()(2)(1)n n n n S S n S n n +-=+++,即12(1)(1)n n nS n S n n +=+++,则1211n n S Sn n+=⨯++, 所以112(1)1n n S S n n ++=++,又1121S+=,故数列{1}n S n+为等比数列.(2)由(1)知111(1)221n nn S S n -+=+⋅=,所以2n n S n n =⋅-,故2(12222)(12)nn T n n =⨯+⨯++⋅-+++L L . 设212222nM n =⨯+⨯++⋅L , 则231212222n M n +=⨯+⨯++⋅L ,所以212222n n M n +-=+++-⋅=L 11222n n n ++--⋅,所以1(1)22n M n +=-⋅+,所以1(1)(1)222n nn n T n ++=-⋅+-.18.解:(1)ABC ∆中,应用余弦定理得222cos 2AB BC AC ABC AB BC+-∠=g 2=解得AC = 所以222AC BC AB +=, 所以ACBC ⊥.因为平面BCDE ⊥平面ABC ,平面BCDE I 平面ABC BC =,BC AC ⊥,所以AC ⊥平面BCDE ,又因为BE ⊂平面BCDE , 所以AC BE ⊥.(2)由(1)AC ⊥平面BCDE ,CE ⊂平面BCDE , 所以AC CE ⊥. 又因为BCAC ⊥,平面ACE I 平面ABC AC =,所以BCE ∠是平面EAC 与平面BAC 所成的二面角的平面角,即45BCE ∠=︒. 因为BE EC ⊥,AC BE ⊥, 所以BE ⊥平面ACE .所以BAE ∠是AB 与平面ACE 所成的角. 因为在Rt ACE ∆中,sin 4532BE BC =︒=,所以在Rt BAE ∆中,6sin BE BAE AB ∠==. 19.解:(1)设高一女学生人数为x ,由表1和表2可得样本中男、女生人数分别为40,30,则7004030x x -=,解得300x =.即高一女学生人数为300.(2)由表1和表2可得样本中男女生身高在[165,180)的人数为5141363142+++++=,样本容量为70.所以样本中该校学生身高在[165,180)的概率为423705=. 因此,可估计该校学生身高在[165,180)的概率为35.(3)由题意可得X 的可能取值为0,1,2.由表格可知,女生身高在[165,180)的概率为13,男生身高在[165,180)的概率为45. 所以412(0)(1)(1)5315P X ==-⨯-=,41419(1)(1)(1)535315P X ==-+-⨯=,414(2)5315P X ==⨯=.所以X 的分布列为:所以9417()012151515E X =+⨯+⨯=. 20.解:(1)以BC 所在直线为x 轴,O 为坐标原点,建立平面直角坐标系,则||||6||AB AC BC +=>, 所以点A 的轨迹是以B ,C 为焦点的椭圆.所以26a =,232c =所以3a =,2c =, 所以22292ba c =-=, 所以点A 的轨迹方程为221(0)992x y y +=≠. 设(,)T x y ,点T 在线段AO 上,且||2||AT TO =,所以(3,3)A x y ,代入221992x y +=,整理可得点T 的轨迹E 的方程是221(0)12y x y +=≠. (2)证明:设(,0)(0)M m m >,由||||1OM ON ⋅=得1(,0)N m,11(,)P x y ,22(,)Q x y ,33(,)R x y .由题意,直线QM 不与坐标轴平行,11QM y k x m =-,直线QM 的方程为11()y y x m x m=--.与椭圆方程联立,消去y ,得22211(12)2(1)m mx x m x x +---+222111(2)0mx x m x --=.所以2221111221212mx x m x x x m mx --=+-,同理222111131221212mx x m x x x x x m mx --==+-, 所以23x x =,或10x =. 当23x x =时,PR x ⊥轴.当10x =时,2221m x m =+,322212211()1mmx x m m⋅===++,PR x ⊥轴, 所以||||MP MR =, 所以MPR ∆是等腰三角形.21. 解:(1)根据题意,得'()2xf x e x =-,则'(0)1f b ==. 由切线方程可得切点坐标为(0,0),将其代入()y f x =,得1a =-,故2()1x f x e x =--.(2)令2()()1xg x f x x x e x =+-=--. 由'()10xg x e =-=,得0x =,当(,0)x ∈-∞,'()0g x <,()y g x =单调递减; 当(0,)x ∈+∞,'()0g x >,()y g x =单调递增. 所以min ()(0)0g x g ==,所以2()f x x x ≥-+. (3)()f x kx >对任意的(0,)x ∈+∞恒成立等价于()f x k x>对任意的(0,)x ∈+∞恒成立. 令()()f x x x ϕ=,0x >,得2'()()'()xf x f x x xϕ-==22(2)(1)x x x e x e x x ----=2(1)(1)x x e x x ---. 由(2)可知,当(0,)x ∈+∞时,10xex -->恒成立,令'()0x ϕ>,得1x >;令'()0x ϕ<,得01x <<.所以()y x ϕ=的单调增区间为(1,)+∞,单调减区间为(0,1),故min ()(1)2x e ϕϕ==-,所以min ()2k x e ϕ<=-.所以实数k 的取值范围为(,2)e -∞-.22.解:(1)因为cos x ρθ=,sin y ρθ=,由2cos ρθ=,得22cos ρρθ=,所以1C 的直角坐标方程为22(1)1x y -+=.由(cos 4)cos ρρθθ=⋅+⋅,得22sin4cos ρθρθ=,所以曲线2C 的直角坐标方程为24y x =.(2)不妨设四点在C 上的排列顺序由下而上依次为H ,I ,J ,K ,它们对应的参数分别为,1234,,,t t t t ,如图.连接1C J ,则1C IJ ∆为正三角形,所以||1IJ =,故||||||||||||||HI JK HI IK IJ -=-+=1414|||||1||()1|t t t t -+=-++.把1 2,23 2x ty t⎧=-⎪⎪⎨⎪=⎪⎩代入24y x=,得23824t t=-,即238320t t+-=,故1483t t+=-,所以11||||||3HI JK-=.23. 解:(1)42242264()a ab b ab a b++-+=2222222()4()4a b ab a b a b+-++⋅=222(2)a b ab+-4()a b=-,因为4()0a b-≥,所以42242264()a ab b ab a b++≥+.(2)4224()|2(16)|f x x a a b b=-+--332|(221)|x a b ab+-+-=4224|2(16)|x a a b b-+--+ 33|22(221)|x a b ab-+-≥33|[22(221)]x a b ab-+--4224[2(16)]|x a a b b-+--=4|()1|1a b-+≥.即max()1f x=.。

河北省衡水金卷压轴卷全国统一考试模拟试题理科数学(二)---精校解析Word版

河北省衡水金卷压轴卷全国统一考试模拟试题理科数学(二)---精校解析Word版

已知集合,(D.,然后再求出【详解】由题意得.复数满足∵,,,.前三个路口遇到红灯的概率均为第四个路口遇到红灯的概率为则李明从家到学校恰好遇到一次红灯的概率为(【答案】前三个路口恰有一次红灯,且第四个路口为绿灯的概率为..已知双曲线方程为,为双曲线的左、右焦点为渐近线上一点且在第一象限若,则双曲线的离心率为(C. D.为直角三角形,又得所以故得的倾斜角为,即,由此可得离心率.【详解】设为正三角形,直线的倾斜角为,离心率将提供的双曲线的几何关系转化为关于双曲线基本量利用和则B. C. D.【答案】D,进而可得,然后再根据两角和的正弦公式求解即可.∵,又为锐角,故选D.A. B. C. D.第一次:第二次:第三次:第四次:第五次:第六次:第七次:时,的值为(C. D.运用赋值法求解,令,得,.故选C.B.D.故几何体的表面积为,B.【答案】D可得,,然后对给出的四个选项分别进行判断即可得到结论.∵整理得.,解得,所以,由于,解得,,所以C成立.,所以【点睛】本题考查对数、指数的转化及基本不定式的变形及其应用,解题时注意不等式10.若函数在区间则B.D.【答案】在区间内单调,故可先求出函数的单调区间,再根据区间的单调区间为,.函数在区间内没有最值,在区间内单调,,解得.,得时,得;时,得,又,故的取值范围是函数在区间的单调区间后将问题转化为两个集合间的包含关系处理,并将问题再转化过抛物线上两点若两切线垂直且交于点则直线【答案】B并结合点的坐标求得.再根据两切线垂直可得抛物线的方程为,设出直线方程,联立消元后根据二次方程根与系数的关系可求得直线的斜率及截距,于是可得直线方程.【详解】由,得,则抛物线在点处的切线方程为,点处的切线方程为,解得又两切线交于点,,故得.∵过两点的切线垂直,,故,故得抛物线的方程为.的斜率存在,可设直线方程为整理得和可得的方程为中,正三菱锥的内切球与三个侧面切点分别为与底面切于点的体积之比为(【答案】B,由题意可得.,.,解得.把面单独拿出来分析,如图.的中心,,.D作于,则,为等边三角形,故选B.【点睛】解答本题时注意:中,与【答案】【解析】与分别用表示,通过求【详解】设,,.,.与的夹角为【点睛】求向量夹角时,可先由坐标运算或定义计算出这两个向量的数量积,并求得两向量的模,然后根,组成的区域为作关于直线,和点内的任一点,则的最小值为【答案】,求出区域内的点到直线的最小距离,由题意得的最小值为表示的区域,如下图阴影部分所示.由题意得三个交点的坐标分别为.结合图形可得区域内的点到直线的距离最小,且最小值为.由题意得的最小值为因此所求的最小值为【点睛】解答本题的关键有两个:一是正确画出不等式组表示的平面区域,并根据数形结合解题;二是将和内的两点间的距离的最小值转化为点到直线的距离处理,满足,当,且斜率为的直线与个交点【答案】【解析】为偶函数且图象的对称轴为,由此得到函数的周期为∵,即的周期为时,,结合函数的周期性,画出函数且斜率为的直线方程为.结合图象可得:联立消去整理得,,得(舍去)时,点与点,此时直线与有两个交点,又,相切,将两式联立消去整理得,得(所以当时有三个交点.综上可得的取值范围为.【点睛】已知函数有零点(方程有根中,【答案】【解析】中由题意可得,故得.过点,交的延长线于点,根据平行线,且.然后在中,由正弦定理得【详解】在中,,,.过点作,交的延长线于点,如下图,,.中,由正弦定理得【点睛】本题考查正弦定理在几何中的应用,同时也考查三角变换的应用,解题时要注意平面几何知识的利用,并由此寻求解三角形所需要的条件,然后再根据正弦(余弦)定理求解.在数列已知,求数列或,可得由以上两式消去的公比为,,整理得,解得或)得,当,此时数列为等比数列,,此时数列【点睛】本题考查定比数列的定义及其通项公式的求法,解题时要根据所给出的条件并结合等比数列的有平面平面平面四边形为正方形,,在棱为的中点为平面平面,使得平面平面?使得平面平面平面可得平面,从而有,结合条件可得四边形平行四边形,于是,可得平面.又可根据条件得到平面的判定定理可得结论.(2)在中,由余弦定理得,于是,所以,又两两垂直,故可建立空间直角坐标系,根据空间向量的知识求解.【详解】(1)∵平面平面平面平面平面.平面,∴四边形为平行四边形,.平面平面平面.,又平面平面平面.平面平面,平面平面)在中,由余弦定理得,,∴为直角三角形,且,平面可得两两垂直.依次为则的一个法向量为,即,解得,.设平面的一个法向量为,,得,平面化简得,,故此方程无解,平面【点睛】立体几何中,对于“是否存在”型问题的解答方式有两种:一种是根据条件作出判断,再进一步,期中在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系后与临界值表对照可得结论.;设获得某高校自主招生通过的人数为,则可得的分布列.结合可得通过的人数为因此在犯错误的概率不超过的前提下认为学习先修课程与优等生有关系.②设获得某高校自主招生通过的人数为,则,∴的分布列为.列联表;②根据公式计算的值;③比较的值可以确定在多大程度上认为“两个分类变量有关系”;的值越大,认为“两个分类变量有关系”的把握越大.已知椭圆的方程为其离心率且短轴的个端点与两焦点组成的三角形面积为作轴的垂线,垂足为,点满足,的轨迹为曲线.求曲线)若直线与曲线且交椭圆于,的面积为的面积为,设,,得根据代入法可得曲线的方程为设直线的方程为,由与圆相切可得.将与,从而得到,求得,,.,,得代人椭圆方程得曲线的方程为由题知直线的斜率存在,设直线的方程为,,即.消整理得又直线与椭圆交于,故得,,.,.,当且仅当,即时,等号成立.的最大值为.【点睛】求解解析几何中的范围(最值)问题时,可先建立目标函数,再求这个函数的最值,在利用代数知函数与在交点的解析式;已知若函数的取值范围(1)。

2023年河北省衡水中学高考数学押题卷(理科)(金卷二)(解析版)

2023年河北省衡水中学高考数学押题卷(理科)(金卷二)(解析版)

2023年河北省衡水中学高考数学押题卷(理科)(金卷二) 一.选择题:本大题共12小题,每小题5分,在每小题给出地四个选项中.只有一项是符合题目要求地.1.集合M={x|y=lg(x2﹣8x)},N={x|x=2n﹣1,n∈Z},则{1,3,5,7}=( )A.∁R(M∩N)B.(∁R M)∩N C.(∁R M)∩(∁R N)D.M∩(∁R N)2.若复数z满足(+2i﹣3)(4+3i)=3﹣4i,则|z|=( )A.B.C.3D.23.将函数f(x)=3sin2x﹣cos2x地图象向左平移个单位,所得地图象其中地一条对称轴方程为( )A.x=0B.x=C.x=D.x=4.已知等差数列{a n},S n为数列{a n}地前n项和,若S n=an2+4n+a﹣4(a∈R),记数列{}地前n项和为T n,则T10=( )A.B.C.D.5.执行如下图所示地程序框图,若输出地s=86,则判断框内地正整数n地所有可能地值为( )A.7B.6,7C.6,7,8D.8,96.已知夹角为地两个向量,,,向量满足()•()=0,则||地取值范围为( )A.[1,]B.[0,2]C.[1,]D.[0,2]7.若实数x、y满足不等式组,且z=ax+y仅在点P(﹣,)处取得最小值,则a地取值范围为( )A.0<a<1B.a>1C.a≥1D.a≤08.已知双曲线C:﹣=1(a>0,b>0)地左焦点为F1,P为左支上一点,|PF1|=a,P0与P关于原点对称,且=0.则双曲线地渐近线方程为( )A.y=±x B.y=x C.y=x D.y=±2x9.设函数f(x)=,其中对∀x1,x2∈(﹣∞,0],且x1≠x2均有x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1)成立,且g(0)=1,若不等式f(x﹣a)≤1(a∈R)地解集为D,且2e∈D(e为自然对数地底数),则a地最小值为( )A.0B.1C.e D.2e10.某几何体地三视图如下图所示,且该几何体地体积为,则正视图中x地值为( )A.B.2C.D.11.已知正项数列{a n}地前n项和为S n,a1=2,且对于任意地正整数n≥2, +=1,设数列{b n}满足b n=a sin,其前4n项和为T4n,则满足T4n≤﹣36地最小正整数n地值为( )A.1B.2C.3D.412.若二次函数f(x)=x2+1地图象与曲线C:g(x)=ae x+1(a>0)存在公共切线,则实数a 地取值范围为( )A.(0,]B.(0,]C.[,+∞)D.[,+∞)二.填空题:本大题共4小题.每小题5分.13.数列{a n}地前n项和记为S n,a1=3,a n+1=2S n(n≥1),则S n=_______.14.已知α∈(0,),若cos(α+)=,则tan(2α+)=_______.15.已知点A、F分别是椭圆C: +=1(a>b>0)地上顶点和左焦点,若AF与圆O:x2+y2=4相切于点T,且点T是线段AF靠近点A地三等分点,则椭圆C地标准方程为_______.16.将三项式(x 2+x +1)n 展开,当n=0,1,2,3,…时,得到以下等式:(x 2+x +1)0=1(x 2+x +1)1=x 2+x +1(x 2+x +1)2=x 4+2x 3+3x 2+2x +1(x 2+x +1)3=x 6+3x 5+6x 4+7x 3+6x 2+3x +1…观察多项式系数之间地关系,可以仿照杨辉三角构造如下图所示地广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数地,缺少地数计为0)之和,第k 行共有2k +1个数.若在(1+ax )(x 2+x +1)5地展开式中,x 7项地系数为75,则实数a 地值为_______.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.如图,设△ABC 地个内角A 、B 、C 对应地三条边分别为a 、b 、c,且角A 、B 、C 成等差数列,a=2,线段AC 地垂直平分线分别交线段AB 、AC 于D 、E 两点.(1)若△BCD 地面积为,求线段CD 地长;(2)若DE=,求角A 地值.18.如图,已知三棱柱ABC ﹣A 1B 1C 1中,CA=CB,侧面AA 1B 1B 是菱形,且∠ABB 1=60°.(I )求证:AB ⊥B 1C ;(Ⅱ)若AB=B 1C=2,BC=,求二面角B ﹣AB 1﹣C 1地正弦值.19.2023年10月十八届五中全会决定全面放开二胎,这意味着一对夫妇可以生育两个孩子.全面二胎于2023年1月1日起正式实施.某地计划生育部门为了了解当地家庭对"全面二胎"地赞同程度,从当地200位城市居民中用系统抽样地方法抽取了20位居民进行问卷调查.统计如表:居民编号28问3577110771024778957755卷得分62806028040880457385(注:表中居民编号由小到大排列,得分越高赞同度越高)(Ⅰ)列出该地得分为100分地居民编号;(Ⅱ)该地区计划生育部门从当地农村居民中也用系统抽样地方法抽取了20位居民,将两类居民问卷得分情况制作了茎叶图,试通过茎叶图中数据信息,用样本特征数评价农村居民和城市居民对"全面二胎"地赞同程度(不要求算出具体数值,给出结论即可);(Ⅲ)将得分不低于70分地调查对象称为"持赞同态度".当地计划生育部门想更进一步了解城市居民"持赞同态度"居民地更多信息,将调查所得地频率视为概率,从大量地居民中采用随机抽样地方法每次抽取1人,共抽取了4次.(i )求每次抽取1人,抽到"持赞同态度"居民地概率;(ii )若设被抽到地4人"持赞同态度"地人数为ξ.每次抽取结果相互独立,求ξ地分布列、期望E (ξ)及其方差D (ξ).20.已知点M 是抛物线C 1:y 2=2px (p >0)地准线与x 轴地交点,点P 是抛物线C 1上地动点,点A 、B 在y 轴上,△APB 地内切圆为圆C 2,(x 一1)2+y 2=1,且|MC 2|=3|OM |为坐标原点.(I )求抛物线C 1地标准方程;(Ⅱ)求△APB 面积地最小值.21.已知函数f (x )=x 3﹣x 2+ax +2,g (x )=lnx ﹣bx,且曲线y=f (x )在点(0,2)处地切线与x 轴地交点地横坐标为﹣2.(Ⅰ)求a 地值;(Ⅱ)若m 、n 是函数g (x )地两个不同零点,求证:f (mn )>f (e 2)(其中e 为自然对数地底数).[选修4-1:几何证明选讲]22.如图,直线ED与圆相切于点D,且平行于弦BC,连接EC 并延长,交圆于点A,弦BC 和AD 相交于点F .(I )求证:AB •FC=AC •FB ;(Ⅱ)若D 、E 、C 、F 四点共圆,且∠ABC=∠CAB,求∠BAC .[选修4-4:坐标系与参数方程选讲]23.在直角坐标系xOy中,直线l地参数方程为(t为参数,φ∈[0,]),以坐标原点O为极点,x轴地非负半轴为极轴建立极坐标系,已知圆C地圆心C地极坐标为(2,),半径为2,直线l与圆C相交于M,N两点.(I)求圆C地极坐标方程;(Ⅱ)求当φ变化时,弦长|MN|地取值范围.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣2|+|x﹣a|.(I)当a=1时,解不等式f(x)≤2;(Ⅱ)当a=3时,若f(x)≥m恒成立,求实数m地取值范围.2023年河北省衡水中学高考数学押题卷(理科)(金卷二)参考解析与试卷解析一.选择题:本大题共12小题,每小题5分,在每小题给出地四个选项中.只有一项是符合题目要求地.1.集合M={x|y=lg(x2﹣8x)},N={x|x=2n﹣1,n∈Z},则{1,3,5,7}=( )A.∁R(M∩N)B.(∁R M)∩N C.(∁R M)∩(∁R N)D.M∩(∁R N)【考点】交、并、补集地混合运算.【分析】先化简集合M,根据N={x|x=2n﹣1,n∈Z},和{1,3,5,7}可得解析.【解答】解:∵x2﹣8x>0,解得x<0或x>8,∴M=(﹣∞,0)∪(8,+∞),∴∁R M=[0,8],∵N={x|x=2n﹣1,n∈Z},∴(∁R M)∩N={1,3,5,7}.故选:B.2.若复数z满足(+2i﹣3)(4+3i)=3﹣4i,则|z|=( )A.B.C.3D.2【考点】复数求模.【分析】把已知等式变形,利用复数代数形式地乘除运算求得,再由求得解析.【解答】解:由(+2i﹣3)(4+3i)=3﹣4i,得=,∴.故选:C.3.将函数f(x)=3sin2x﹣cos2x地图象向左平移个单位,所得地图象其中地一条对称轴方程为( )A.x=0B.x=C.x=D.x=【考点】函数y=Asin(ωx+φ)地图象变换.【分析】利用两角差地正弦函数公式可求f(x)=2sin(2x﹣),根据函数y=Asin(ωx+φ)地图象变换规律可得g(x)=2sin(2x+),利用正弦函数地对称性即可得解.【解答】解:f(x)=sin2x﹣cos2x=2sin(2x﹣),将函数地图象向左平移个单位得到函数g(x)=2sin[2(x+)﹣]=2sin(2x+),由2x+=kπ+,k∈Z,可得所得地图象地对称轴方程为:x=+,k∈Z,当k=0时,可知函数g(x)图象关于直线x=对称.故选:B.4.已知等差数列{a n},S n为数列{a n}地前n项和,若S n=an2+4n+a﹣4(a∈R),记数列{}地前n项和为T n,则T10=( )A.B.C.D.【考点】数列地求和.【分析】由等差数列{a n}地前n项和地性质及其S n=an2+4n+a﹣4,可得a﹣4=0,a=4.于是S n=4n2+4n.=.利用"裂项求和"方法即可得出.【解答】解:由等差数列{a n}地前n项和地性质及其S n=an2+4n+a﹣4,可得a﹣4=0,解得a=4.∴S n=4n2+4n.∴=.∴T10=+…+==.故选:D.5.执行如下图所示地程序框图,若输出地s=86,则判断框内地正整数n地所有可能地值为( )A.7B.6,7C.6,7,8D.8,9【考点】程序框图.【分析】由已知中地程序框图可知:该程序地功能是利用循环结构计算并输出变量s地值,模拟程序地运行过程,分析循环中各变量值地变化情况,可得解析.【解答】解:模拟执行程序,可得s=1,k=0执行循环体,s=2,k=2不满足条件2>n,执行循环体,s=6,k=4不满足条件4>n,执行循环体,s=22,k=6不满足条件6>n,执行循环体,s=86,k=8此时,应该满足条件8>n,执行循环体,退出循环,输出s地值为86,所以,判断框内n地值满足条件:6≤n<8,则判断框内地正整数n地所有可能地值为6,7.故选:B.6.已知夹角为地两个向量,,,向量满足()•()=0,则||地取值范围为( )A.[1,]B.[0,2]C.[1,]D.[0,2]【考点】平面向量数量积地运算.【分析】由向量垂直地条件可得•=0,运用向量地平方即为模地平方,可得|+|=2,再化简运用向量地数量积地定义,结合余弦函数地值域,即可得到所求最大值,进而得到所求范围.【解答】解:由题意可得•=0,可得|+|==2,(﹣)•(﹣)=2+•﹣•(+)=||2﹣||•|+|cos<+,>=0,即为||=2cos<+,>,当cos<+,>=1即+,同向时,||地最大值是2.则||地取值范围为[0,2].故选:B.7.若实数x、y满足不等式组,且z=ax+y仅在点P(﹣,)处取得最小值,则a地取值范围为( )A.0<a<1B.a>1C.a≥1D.a≤0【考点】简单线性规划.【分析】由题意作平面区域,化z=ax+y为y=﹣ax+z,从而可得﹣a<﹣1,从而解得.【解答】解:由题意作平面区域如下,,z=ax+y可化为y=﹣ax+z,∵z=ax+y仅在点P(﹣,)处取得最小值,∴﹣a<﹣1,∴a>1,故选:B.8.已知双曲线C:﹣=1(a>0,b>0)地左焦点为F1,P为左支上一点,|PF1|=a,P0与P关于原点对称,且=0.则双曲线地渐近线方程为( )A.y=±x B.y=x C.y=x D.y=±2x【考点】双曲线地简单性质.【分析】根据双曲线地定义结合直角三角形地边角关系进行求解即可.【解答】解:设双曲线地右焦点为F2,则由对称性知,|P0F2|=|PF1|=a,则|P0F1|﹣|P0F2|=2a,即|P0F1|=3a,∵=0,∴P0F1⊥PF1,即P0F1⊥P0F2,则4c2=(3a)2+a2=10a2=4(a2+b2)即3a2=4b2,则,即=,即双曲线地渐近线方程为y=x,故选:C.9.设函数f(x)=,其中对∀x1,x2∈(﹣∞,0],且x1≠x2均有x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1)成立,且g(0)=1,若不等式f(x﹣a)≤1(a∈R)地解集为D,且2e∈D(e为自然对数地底数),则a地最小值为( )A.0B.1C.e D.2e【考点】函数地图象.【分析】根据函数地单调性地定义可得g(x)在(﹣∞,0]内单调递增,根据题意作出函数f (x)地简图,利用树形结合地思想即可求出.【解答】解:对∀x1,x2∈(﹣∞,0],且x1≠x2均有x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1),∴[g(x2)﹣g(x1)](x2﹣x1)>0,∴g(x)在(﹣∞,0]内单调递增,根据题意作出函数f(x)地简图,如图所述,令f(x)≤1,由f(x)地图象可知x≤e,若f(x﹣a)≤1,则x≤e+a,∴D=(﹣∞,e+a],又2e∈D,∴2e≤a+e,∴a≥e,则a地最小值是e,故选:C.10.某几何体地三视图如下图所示,且该几何体地体积为,则正视图中x地值为( )A.B.2C.D.【考点】由三视图求面积、体积.【分析】由三视图知几何体是直三棱柱ABC﹣DEF为长方体一部分,画出直观图求出几何体地棱,结合几何体地体积和柱体地体积公式列出方程,求出x即可.【解答】解:根据三视图知几何体是:直三棱柱ABC﹣DEF为长方体一部分,直观图如下图所示:其中AB=x,且BC=2,长方体底面地宽是,∵该几何体地体积为,∴=,解得x=,故选:D.11.已知正项数列{a n}地前n项和为S n,a1=2,且对于任意地正整数n≥2, +=1,设数列{b n}满足b n=a sin,其前4n项和为T4n,则满足T4n≤﹣36地最小正整数n地值为( )A.1B.2C.3D.4【考点】数列递推式.【分析】先由递推公式得到数列{a n}是以2为首项吗,以1为公差地等差数列,再求出b n,分别计算前4项和,5﹣8项和,9﹣12项和,找到规律得到T4n递减,当n=2时,满足,问题得以解决.【解答】解:由题意可得,当n=2时, +=1,∴=1,即a22﹣a2﹣6=0,解得a2=3或a2=﹣2(舍去),当n≥2, +=1,∴2(S n+1)+S n﹣1•a n=a n(S n+1),∴2(S n+1)+(S n﹣a n)a n=a n(S n+1),∴2S n+2=a n2+a n,当n≥3时,2S n﹣1+2=a n﹣12+an﹣1,两式相减得2a n=a n2+a n﹣a n﹣12﹣an﹣1,∴a n+a n﹣1=a n2﹣a n﹣12,∵正项数列{a n},∴a n﹣a n﹣1=1,(n≥3),∵a2﹣a1=1,∴数列{a n}是以2为首项吗,以1为公差地等差数列,∴a n=2+(n﹣1)=n+1,∴b n=(n+1)2sin,∴当n=1时,sin=1,n=2时,sinπ=0,n=3时,sin=﹣1,n=4时,sin2π=0,∴b1+b2+b3+b4=4+0﹣16+0=﹣12,b5+b6+b7+b8=36+0﹣64+0=﹣28,b9+b10+b11+b12=102+0﹣122+0=﹣44,…b4n﹣3+b4n﹣2+b4n﹣1+b n=(4n﹣2)2﹣(4n)2=﹣2(8n﹣2)=4﹣16n<0,∴T4n递减,当n=2时,满足,故选:B12.若二次函数f(x)=x2+1地图象与曲线C:g(x)=ae x+1(a>0)存在公共切线,则实数a 地取值范围为( )A.(0,]B.(0,]C.[,+∞)D.[,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】设公切线与f(x)、g(x)地切点坐标,由导数几何意义、斜率公式列出方程化简,分离出a后构造函数,利用导数求出函数地单调区间、最值,即可求出实数a地取值范围.【解答】解:设公切线与f(x)=x2+1地图象切于点(x1,),与曲线C:g(x)=ae x+1切于点(x2,),∴2x1===,化简可得,2x1=,得x1=0或2x2=x1+2,∵2x1=,且a>0,∴x1>0,则2x2=x1+2>2,即x2>1,由2x1=得a==,设h(x)=(x>1),则h′(x)=,∴h(x)在(1,2)上递增,在(2,+∞)上递减,∴h(x)max=h(2)=,∴实数a地取值范围为(0,],故选:A.二.填空题:本大题共4小题.每小题5分.13.数列{a n}地前n项和记为S n,a1=3,a n+1=2S n(n≥1),则S n=3n.【考点】数列递推式.【分析】由a n+1=2S n(n≥1),可得S n+1﹣S n=2S n,即S n+1=3S n利用等比数列地通项公式即可得出.【解答】解:∵a n+1=2S n(n≥1),∴S n+1﹣S n=2S n,即S n+1=3S n,∴数列{S n}是等比数列,首项为S1=3,公比为q=3,∴S n=3•3n﹣1=3n.故解析为:3n.14.已知α∈(0,),若cos(α+)=,则tan(2α+)=.【考点】三角函数中地恒等变换应用.【分析】由同角三角函数关系得sin(α+)=,由二倍角公式得tan[2(α+)]=,由两角差地正切公式得结果.【解答】解:∵cos(α+)=,α∈(0,),∵cos2(α+)+sin2(α+)=1,α+∈(,)∴sin(α+)=,∴tan(α+)=,∴tan[2(α+)]==,∴tan(2α+)=tan(2α+﹣)=tan[2(α+)﹣]=.15.已知点A、F分别是椭圆C: +=1(a>b>0)地上顶点和左焦点,若AF与圆O:x2+y2=4相切于点T,且点T是线段AF靠近点A地三等分点,则椭圆C地标准方程为=1.【考点】椭圆地简单性质;椭圆地标准方程.【分析】如下图所示,设|AT|=m,|FT|=2m,即|AF|=3m.由△AOT∽△OFT,可得:|OT|2=|TF||AT|,解得m.又|OT|=2,可得b2=2+m2.c2=9m2﹣b2=12.可得a2=b2+c2,即可得出.【解答】解:如下图所示,设|AT|=m,|FT|=2m,即|AF|=3m.由△AOT∽△OFT,可得:|OT|2=|TF||AT|,∴4=2m2,解得m=.又|OT|=2,∴b2=2+22=6.c2=9m2﹣b2=12.∴a2=b2+c2=18.∴椭圆C地标准方程为=1.故解析为:=1.16.将三项式(x2+x+1)n展开,当n=0,1,2,3,…时,得到以下等式:(x2+x+1)0=1(x2+x+1)1=x2+x+1(x2+x+1)2=x4+2x3+3x2+2x+1(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1…观察多项式系数之间地关系,可以仿照杨辉三角构造如下图所示地广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数地,缺少地数计为0)之和,第k行共有2k+1个数.若在(1+ax)(x2+x+1)5地展开式中,x7项地系数为75,则实数a 地值为1.【考点】归纳推理.【分析】由题意可得广义杨辉三角形第5行为1,5,15,30,45,51,45,30,15,5,1,所以(1+ax)(x2+x+1)5地展开式中,x7项地系数为30+45a=75,即可求出实数a地值.【解答】解:由题意可得广义杨辉三角形第5行为1,5,15,30,45,51,45,30,15,5,1,所以(1+ax)(x2+x+1)5地展开式中,x7项地系数为30+45a=75,所以a=1.故解析为:1.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.如图,设△ABC地个内角A、B、C对应地三条边分别为a、b、c,且角A、B、C成等差数列,a=2,线段AC地垂直平分线分别交线段AB、AC于D、E两点.(1)若△BCD地面积为,求线段CD地长;(2)若DE=,求角A地值.【考点】正弦定理;余弦定理.【分析】(1)先根据三角形地内角A,B,C成等差数列,求出B地度数,再根据三角地面积公式求出BD,再根据余弦定理即可求出,(2)根据垂直平分线地性质得到AC=2AE=,再根据正弦定理,即可求出解析.【解答】解:(1)三角形地内角A,B,C成等差数列,则有2B=A+C.又A+B+C=180°,∴B=60°,∵△BCD地面积为,a=2∴BD•BC•sin60°=,∴BD=,由余弦定理,CD2=BD2+BC2+2BD•BC•cos60°=+4+2××2×=,∴CD=,(2)∵线段AC地垂直平分线分别交线段AB、AC于D、E两点,DE=,∴AE=,∴AC=2AE=2×=,由正弦定理可得=,即=,∴cosA=,∵0<A<180°,∴A=45°18.如图,已知三棱柱ABC﹣A1B1C1中,CA=CB,侧面AA1B1B是菱形,且∠ABB1=60°.(I)求证:AB⊥B1C;(Ⅱ)若AB=B1C=2,BC=,求二面角B﹣AB1﹣C1地正弦值.【考点】二面角地平面角及求法;直线与平面垂直地性质.【分析】(1)取AB中点,连接OC,OB1,证明AB⊥平面OCB1,即可证明.AB⊥B1C;(2)建立空间坐标系,求出平面地法向量,利用向量法先求出二面角地余弦值,然后求正弦值即可.【解答】解:(1)∵四边形AA1B1B是菱形,且∠ABB1=60°.∴△ABB1是等边三角形,取AB中点,连接OC,OB1,则AB⊥OB1,∵CA=CB,∴AB⊥OC,∵OC∩OB1=O,OB1,OC⊂平面OB1C,∴AB⊥平面OCB1,∴AB⊥B1C;(2)∵△ABB1是等边三角形,AB=2,∴OB1=,∵在△ABC中,AB=2,BC=AC=,O为AB地中点,∴OC=1,∵B1C=2,0B1=,∴OB12+OC2=B1C2,∴OB1⊥OC,∵OB1⊥AB,∴OB1⊥平面ABC,以O为坐标原点,OB,OC,OB1地方向为x,y,z轴地正向,建立如下图所示地坐标系,可得A(﹣1,0,0),B1(0,0,),B(1,0,0),C(0,1,0),则=+=+=(﹣1,1,),则C(﹣1,1,),=(1,0,),=(0,1,),则平面BAB1地一个法向量为=(0,1,0),设=(x,y,z)为平面AB1C1地法向量,则:•=x+z=0,•=y+z=0,令z=﹣1,则x=y=,可得=(,,﹣1),故cos<,>==,则sin<,>==,即二面角B﹣AB1﹣C1地正弦值是.19.2023年10月十八届五中全会决定全面放开二胎,这意味着一对夫妇可以生育两个孩子.全面二胎于2023年1月1日起正式实施.某地计划生育部门为了了解当地家庭对"全面二胎"地赞同程度,从当地200位城市居民中用系统抽样地方法抽取了20位居民进行问卷调查.统计如表:居民编号2 8问卷得分3652787161072781024478788945577735 855(注:表中居民编号由小到大排列,得分越高赞同度越高)(Ⅰ)列出该地得分为100分地居民编号;(Ⅱ)该地区计划生育部门从当地农村居民中也用系统抽样地方法抽取了20位居民,将两类居民问卷得分情况制作了茎叶图,试通过茎叶图中数据信息,用样本特征数评价农村居民和城市居民对"全面二胎"地赞同程度(不要求算出具体数值,给出结论即可);(Ⅲ)将得分不低于70分地调查对象称为"持赞同态度".当地计划生育部门想更进一步了解城市居民"持赞同态度"居民地更多信息,将调查所得地频率视为概率,从大量地居民中采用随机抽样地方法每次抽取1人,共抽取了4次.(i)求每次抽取1人,抽到"持赞同态度"居民地概率;(ii)若设被抽到地4人"持赞同态度"地人数为ξ.每次抽取结果相互独立,求ξ地分布列、期望E(ξ)及其方差D(ξ).【考点】离散型随机变量及其分布列;列举法计算基本事件数及事件发生地概率;离散型随机变量地期望与方差.【分析】(Ⅰ)数列{a n}为由小到大排列居民编号,依题意知数列{a n}为等差数列,即可求出解析;(Ⅱ)根据茎叶图和平均数中位数即可判断农村居民"全面二胎"地赞同程度要高于城市居民;(Ⅲ)(i)城市居民"持赞同态度"地居民有12人,即可求出解析,(ii)由题意知ξ~B(4,),故ξ地分步列如下表,根据数学期望和方差地计算公式计算即可.【解答】解:(Ⅰ)记数列{a n}为由小到大排列居民编号,依题意知数列{a n}为等差数列,公差d=10,且a3=28,得到为100分地居民编号分别对应为a6,a9,则a6=a3+3d=58,a9=a3+6d=88,所以得分为100分地居民编号分别为58,88,(Ⅱ)通过茎叶图可以看出,该地区农村居民问卷得分地平均值明显高于城市居民问卷得分地平均值,农村居民问卷得分地中位数为(94+96)=95,城市居民问卷得分地中位数为(72+73)=72.5,农村居民问卷得分地中位数明显高于城市居民问卷得分地中位数,所以农村居民"全面二胎"地赞同程度要高于城市居民;(Ⅲ)(i)城市居民"持赞同态度"地居民有12人,每次抽到"持赞同态度"居民地概率为=,(ii)由题意知ξ~B(4,),故ξ地分步列如下表,ξ01234PE(ξ)=4×=所以D(ξ)=np(1﹣p)=4××=20.已知点M是抛物线C1:y2=2px(p>0)地准线与x轴地交点,点P是抛物线C1上地动点,点A、B在y轴上,△APB地内切圆为圆C2,(x一1)2+y2=1,且|MC2|=3|OM|为坐标原点.(I)求抛物线C1地标准方程;(Ⅱ)求△APB面积地最小值.【考点】抛物线地简单性质;抛物线地标准方程.【分析】(I)求出M(﹣,0),可得=,即可求抛物线C1地标准方程;(Ⅱ)设P(x0,y0),A(0,b),B(0,c),求得直线PA地方程,运用直线和圆相切地条件:d=r,求得b,c地关系,求得△PAB地面积,结合基本不等式,即可得到最小值.【解答】解:(I)由题意,C2(1,0),∵|MC2|=3|OM|,∴M(﹣,0),∴=,∴p=1,∴抛物线C1地标准方程是y2=2x;(Ⅱ)设P(x0,y0),A(0,b),B(0,c),直线PA地方程为:(y0﹣b)x﹣x0y+x0b=0,又圆心(1,0)到PA地距离为1,即=1,整理得:(x0﹣2)b2+2y0b﹣x0=0,同理可得:(x0﹣2)c2+2y0c﹣x0=0,所以,可知b,c是方程(x0﹣2)x2+2y0x﹣x0=0地两根,所以b+c=,bc=,依题意bc<0,即x0>2,则(c﹣b)2=,因为y02=2x0,所以:|b﹣c|=||所以S=|b﹣c|•|x0|=(x0﹣2)++4≥8当x0=4时上式取得等号,所以△PAB面积最小值为8.21.已知函数f(x)=x3﹣x2+ax+2,g(x)=lnx﹣bx,且曲线y=f(x)在点(0,2)处地切线与x轴地交点地横坐标为﹣2.(Ⅰ)求a地值;(Ⅱ)若m、n是函数g(x)地两个不同零点,求证:f(mn)>f(e2)(其中e为自然对数地底数).【考点】利用导数研究曲线上某点切线方程;函数零点地判定定理.【分析】(Ⅰ)求出f(x)地导数,可得切线地斜率,运用两点地斜率公式可得a=3:(Ⅱ)求出f(x)地导数,可得f(x)在R上递增,要证f(mn)>f(e2),只需证mn>e2,m、n是函数g(x)地两个不同零点,可得lnm=bm,lnn=bn,相加减,可得ln(mn)=ln•=ln•,设m>n>0,令t=>1,则h(t)=lnt•,只需证得当t>1时,h(t)>2.设φ(t)=lnt+﹣2,求得导数,判断单调性,即可得证.【解答】解:(Ⅰ)函数f(x)=x3﹣x2+ax+2地导数为f′(x)=x2﹣2x+a,可得曲线y=f(x)在点(0,2)处地切线斜率为k=a,由两点地斜率可得=a,解得a=3;(Ⅱ)证明:f(x)=x3﹣x2+x+2地导数为f′(x)=x2﹣2x+1=(x﹣1)2≥0,即有f(x)在R上递增,要证f(mn)>f(e2),只需证mn>e2,m、n是函数g(x)地两个不同零点,可得lnm=bm,lnn=bn,相减可得lnm﹣lnn=b(m﹣n),相加可得lnm+lnn=b(m+n),可得b==,即有ln(mn)=ln•=ln•,设m>n>0,令t=>1,则h(t)=lnt•,下证当t>1时,h(t)>2.即当t>1时,lnt•>2,即lnt>=2(1﹣),只需证t>1时,lnt+﹣2>0,设φ(t)=lnt+﹣2,则φ′(t)=﹣=>0,即φ(t)在(1,+∞)递增,可得φ(t)>φ(1)=0,即ln(mn)>2,故f(mn)>f(e2).[选修4-1:几何证明选讲]22.如图,直线ED与圆相切于点D,且平行于弦BC,连接EC并延长,交圆于点A,弦BC和AD 相交于点F.(I)求证:AB•FC=AC•FB;(Ⅱ)若D、E、C、F四点共圆,且∠ABC=∠CAB,求∠BAC.【考点】与圆有关地比例线段;圆內接多边形地性质与判定.【分析】(I)连接CD,证明:△CFD∽△ACD,得到,即可证明AB•FC=AC•FB;(Ⅱ)证明∠ACF=∠CFA.∠EAD=∠DAB,即可求∠BAC.【解答】(I)证明:连接CD,∵直线ED与圆相切于点D,∴∠EDC=∠EAD,∵ED∥BC,∴∠EDC=∠DCB,∴∠EAD=∠DCB,∴∠CAD=∠DCF,∵∠CDF=∠ADC,∴△CFD∽△ACD,∴,∴AB•FC=AC•FB;(Ⅱ)解:∵D、E、C、F四点共圆,∴∠CFA=∠CED,∵ED∥BC,∴∠ACF=∠CED,∴∠ACF=∠CFA.由(I)可知∠EAD=∠DCB,∠DCB=∠DAB,∴∠EAD=∠DAB,设∠EAD=∠DAB=x,则∠ABC=∠CAB=2x,∴∠CFA=∠FBA+∠FAB=3x,在等腰△ACF中,∠CFA+∠ACF+∠CAF=π=7x,∴x=∴∠BAC=2x=.[选修4-4:坐标系与参数方程选讲]23.在直角坐标系xOy 中,直线l 地参数方程为(t 为参数,φ∈[0,]),以坐标原点O 为极点,x 轴地非负半轴为极轴建立极坐标系,已知圆C 地圆心C 地极坐标为(2,),半径为2,直线l 与圆C 相交于M,N 两点.(I )求圆C 地极坐标方程;(Ⅱ)求当φ变化时,弦长|MN |地取值范围.【考点】参数方程化成普通方程;简单曲线地极坐标方程.【分析】(I )由圆C 地圆心C 地极坐标为(2,),即,半径为2,可得圆地标准方程为: =4,展开 利用互化公式即可化为极坐标方程.(II )把直线l 地参数方程代入圆C 地方程可得:t 2+2tcos φ﹣3=0,利用根与系数地关系可得:|MN |=|t 1﹣t 2|=,再利用三角函数地单调性与值域即可得出.【解答】解:(I )由圆C 地圆心C 地极坐标为(2,),即,半径为2,可得圆地标准方程为:=4,展开可得:x 2+y 2﹣2x ﹣2y=0,化为极坐标方程:ρ2﹣2ρcos θ﹣2ρsin θ=0,即ρ=2cos θ+2sin θ=4cos .(II )把直线l 地参数方程代入圆C 地方程可得:t 2+2tcos φ﹣3=0,∴t 1+t 2=﹣2cos φ,t 1t 2=﹣3.∴|MN |=|t 1﹣t 2|==2,∵φ∈[0,],∴cos φ∈,cos 2φ∈.∴|MN |∈.[选修4-5:不等式选讲]24.已知函数f (x )=|x ﹣1|+|x ﹣2|+|x ﹣a |.(I)当a=1时,解不等式f(x)≤2;(Ⅱ)当a=3时,若f(x)≥m恒成立,求实数m地取值范围.【考点】绝对值三角不等式;绝对值不等式地解法.【分析】(Ⅰ)a=1时,通过讨论x地范围,求出各个区间上地不等式地解集,取并集即可;(Ⅱ)a=3时,通过讨论x地范围,求出f(x)地最小值,从而求出m地范围即可.【解答】解:(Ⅰ)a=1时,f(x)=2|x﹣1|+|x﹣2|=,x≤1时,4﹣3x≤2,解得:≤x≤1,1<x<2时,x≤2,∴1<x<2,x≥2时,3x﹣4≤2,∴x=2,综上,不等式地解集是{x|≤x≤2};(Ⅱ)a=3时,f(x)=,x≤1时,6﹣3x≥3,∴f(x)≥3,1<x≤2时,2≤4﹣x<3,∴2≤f(x)<3,2<x≤3时,2<f(x)≤3,x>3时,3x﹣6>3,∴f(x)>3,综上,x=2时,f(x)地最小值是2,若f(x)≥m恒成立,则m≤2,故实数m地范围是(﹣∞,2].2023年9月8日。

2020届河北省衡水金卷新高考押题模拟考试(二)理科数学

2020届河北省衡水金卷新高考押题模拟考试(二)理科数学

2020届河北省衡水金卷新高考押题模拟考试(二)数学(理科)★祝考试顺利★ 注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题1.已知集合{|ln(1)}A y y x ==-,{}2|40B x x =-≤,则A B =I ( ) A. {|2}x x ≥- B. {|12}x x <<C. {|12}x x <≤D. {|22}x x -≤≤【答案】D 【解析】 【分析】化简集合,A B ,再根据交集的概念进行运算可得. 【详解】因为函数ln(1)y x =-的值域为R 所以A R =, 又集合[2,2]B =-,所以[2,2]A B B ⋂==-. 故选:D【点睛】本题考查了交集的运算,函数的值域,解一元二次不等式,属于基础题.2.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.特别是当x π=时,10i e π+=被认为是数学上最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,2i e 表示的复数在复平面中位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】 【分析】根据定义把2i e 写出复数的代数形式,再写出对应点坐标.【详解】由题意2cos 2sin 2i e i =+,对应点为(cos 2,sin 2),在第二象限. 故选B .【点睛】本题考查复数的指数形式与代数形式的转化,考查复数的几何意义.解题关键是依定义把复数的指数形式化为代数形式.本题考查数学文化,使学生认识到数学美.3.质监部门对2辆新能源汽车和3辆燃油汽车进行质量检测,现任取2辆,则选中的2辆都为燃油汽车的概率为( ) A. 0.6B. 0.5C. 0.4D. 0.3【答案】D 【解析】 【分析】 对所有车辆编号,能源车与燃油车区别开来,用列举法写出任取2辆的所有情况.计数后可求得概率. 【详解】2辆新能源汽车编号为,A B ,3辆燃油汽车编号为1,2,3,任取2辆的所有情况如下:,1,2,3,1,2,3,12,13,23AB A A A B B B 共10种,其中2辆都为燃油汽车的有12,13,23共3种,所以所求概率为310P =. 故选:D .【点睛】本题考查古典概型,解题时可用列举法写出所有的基本事件,得事件的总数,然后再计算出所求概率事件所包含的基本事件的个数即可计算概率.4.已知角α的终边经过点(sin 48,cos48)P ︒︒,则sin(12)α︒-=( )A.12C. 12-D. 【答案】A 【解析】 【分析】结合三角函数定义求出α,然后再计算sin(12)α-︒.【详解】∵角α的终边经过点(sin 48,cos48)P ︒︒,∴α是第一象限角,不妨设其为锐角,又cos sin 48cos42α=︒=︒,∴42α=︒,∴sin(12)α-︒1sin 302=︒=. 故选:A .【点睛】本题考查三角函数的定义,考查诱导公式,属于基础题.5.“3<<7m ”是“方程22137x y m m+=--为椭圆”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B 【解析】 【分析】求出方程22137x y m m+=--为椭圆时m 的取值范围,再分析充分必要条件.【详解】方程22137x ym m +=--表示椭圆,则307037m m m m->⎧⎪->⎨⎪-≠-⎩,解得35m <<或57m <<. ∴“3<<7m ”是“方程22137x y m m+=--为椭圆”的必要不充分条件.故选:B .【点睛】本题考查充分必要条件的判断,考查方程表示椭圆的条件.注意二次方程221x y m n+=表示椭圆时除了要求0,0m n >>以外还有m n ≠,这个容易遗忘.6.设{}n a 为等差数列,124a =,n S 为其前n 项和,若1015S S =,则公差d =( )A. 1-B. 2-C. 1D. 2【答案】B 【解析】 【分析】用基本量法求解,即把1015,S S 用1a 和d 表示. 【详解】∵{}n a 为等差数列,124a =,1015S S = ∴10915141024152422d d ⨯⨯⨯+⨯=⨯+⨯,解得2d =-. 故选:B .【点睛】本题考查等差数列的前n 项和公式,方法是基本量法,属于基础题. 7.函数2|sin |2()61x f x x=-+的图象大致为( )A. B.C. D.【答案】A 【解析】 【分析】用偶函数的图象关于y 轴对称排除C ,用()0f π<排除B ,用()42f π>排除D .故只能选A .【详解】因为22|sin()||sin |22()66()1()1x x f x f x x x--==-=+-+ ,所以函数()f x 为偶函数,图象关于y 轴对称,故可以排除C ;因为2|sin |242()61111f πππππ==++11101122<=-=+,故排除B ,因为2|sin |2()()62f πππ==6-6>-4666242=>-=-=由图象知,排除D . 故选:A【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题. 8.为了得到函数sin 3cos3y x x =+的图象,可以将函数3y x =的图象( )A. 向右平移4π个单位 B. 向右平移12π个单位 C. 向左平移4π个单位D. 向左平移12π个单位【答案】B 【解析】试题分析:sin 3cos33-412y x x x x ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,可以将函数3y x =的图象向右平移12π个单位即可. 考点:1、三角恒等变换;2、图象平移.【方法点睛】先平移的话,如果平移a 个单位长度,那么相位就会改变wa , 而先伸缩势必会改变w 的大小,这时再平移,要使相位改变值仍为wa ,那么平移长度一定不等于a , 因此二者平移长度不一样,原因就是w 发生了变化 .cos3x 平移到cos 3-4x π⎛⎫⎪⎝⎭,因为x 是自变量,平移的长度只与x 有关,毕竟是在x 轴上平移,所以要针对x 而不是3x 来确定,这也是三角函数图象平移伸缩变换问题中要特别注意w 的原因,像cos3x 平移到cos 3-4x π⎛⎫⎪⎝⎭,就得向右平移12π个单位长度. 9.如图,在ABC ∆中,23AN NC =u u u r u u u r ,P 是BN 上一点,若13AP t AB AC =+u u u r u u u r u u u r,则实数t 的值为( )A.23B.25C.16D.34【答案】C 【解析】 【分析】由题意,可根据向量运算法则得到25AP mAC =+u u u r u u u r (1﹣m )AB u u u r,从而由向量分解的唯一性得出关于t 的方程,求出t 的值.【详解】由题意及图,()()1AP AB BP AB mBN AB m AN AB mAN m AB =+=+=+-=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,又,23AN NC =u u u r u u u r ,所以25AN AC =u u u r u u u r ,∴25AP mAC =+u u u r u u u r (1﹣m )AB u u u r ,又AP =u u u r t 13AB AC +u u u r u u u r ,所以12153m t m -=⎧⎪⎨=⎪⎩,解得m 56=,t 16=,故选C .【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.10.过抛物线2(0)x my m =>的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的纵坐标为4,3||2PQ m =,则m =( )A. 6B. 8C. 10D. 12【答案】B 【解析】 【分析】利用抛物线的定义,即抛物线上的点到焦点的距离等于它到准线的距离求解.【详解】如图,设M 是PQ 中点,,P Q 在抛物线准线上的射影分别为,G E ,设1122(,),(,)P x y Q x y ,抛物线2x my =中2mp =,14m PG PF y ==+,24m QE QF y ==+,∴122m PQ PF QF y y =+=++,又M 是PQ 的中点,∴122248M y y x +==⨯=,∴3822m PQ m =+=,8m =. 故选:B .【点睛】本题考查抛物线的焦点弦性质,可直接利用焦点弦性质解题.焦点弦性质:对抛物线22(0)x py p =>,PQ 是它的焦点弦,1122(,),(,)P x y Q x y ,则11PQ y y p =++.212x x p =-,2124p y y =.11.设()f x 是定义在R 上的偶函数,且在(0,)+∞单调递增,则( )A. 0.20.32(log 0.2)((2)2)f f f -->> B. 0.30.22(log 0.2)(2)(2)f f f -->> C. 0.30.22(2)(2)(log 0.2)f f f -->>D. 0.20.322(2)(log 0.2))(f f f -->>【答案】A 【解析】 【分析】利用偶函数性质函数值中的自变量转化为(0,)+∞上,然后利用单调性比较大小. 【详解】2221log 0.2log log 55==-,∵()f x 是偶函数,∴222(log 0.2)(log 5)(log 5)f f f =-=, 易知2log 52>,0.20.31220-->>>,∴0.30.2222log 5--<<,又()f x 在(0,)+∞上递增,∴0.30.22(2)(2)(log 5)f f f --<<,即0.30.22(2)(2)(log 0.2)f f f --<<.故选:A .【点睛】本题考查函数的奇偶性与单调性,考查指数函数与对数函数的性质.利用偶函数把函数值中自变量转化为(0,)+∞上的数,利用指数函数与对数函数的性质比较它们的大小,最后由函数()f x 的单调性得出结论.12.如图所示的三棱柱111ABC A B C -,其中AC BC ⊥,若12AA AB ==,当四棱锥11B A ACC -体积最大时,三棱柱111ABC A B C -外接球的体积为( )A.163π B.23C.823D.43π 【答案】C 【解析】 【分析】四棱锥11B A ACC -体积是三棱柱111ABC A B C -体积的23,因此要三棱柱111ABC A B C -体积,而棱柱的高h 最大值为12AA =,因此只要ABC S ∆最大即可,此时三棱柱111ABC A B C -是直三棱柱,且底面ABC ∆是直角三角形,AB 是斜边,因此其外接球球心是1A B 和1AB 的交点.由此可得外接球半径. 【详解】∵11111113B A B C ABC A B C V V --=,∴1111123ABC B A ACC A B C V V --=,∴只要三棱柱111ABC A B C -体积取最大值,则四棱锥11B A ACC -体积最大,三棱柱111ABC A B C -的高h 最大值为12AA =, ∴此时111ABC A B C V -112AC BC AA AC BC =⨯⨯=⨯,22242AC BC AB AC BC +==≥⨯,当且仅当AC BC =时等号成立,∴AC BC ⨯的最大值为2(此时2AC BC ==,∴max 2V =.连接1AB 交1A B 于点O ,设,E F 分别是11,A B AB 的中点,则O EF ∈,且EF AB ⊥,从而EF ⊥平面ABC ,由AC BC ⊥知F 是ABC ∆的外心,∴O 是三棱柱111ABC A B C -外接球的球心,在正方形11ABB A 中,2OA =∴334482(2)33V OA πππ==⨯=. 故选:C .【点睛】本题考查球的体积,考查三棱柱与其外接球,考查棱柱与棱锥的体积.本题难点有两个,一个是三棱柱体积最大时三棱柱中的线面位置关系,一个是外接球的球心位置.多面体的外接球球心一定在过各面外心的该面的垂线上.二、填空题13.已知函数()(,)x f x ae b a b R =+∈在点(0,(0))f 处的切线方程为21y x =+,则a b -=_______. 【答案】3 【解析】 【分析】由f (x )=ae x +b ,得f '(x ),因为函数f (x )在点(0,f (0))处的切线方程是y =2x +1,故(0,f (0))适合方程y =2x +1,且f ′(0)=2;联立可得结果. 【详解】由f (x )=ae x +b ,得f '(x )=ae x ,因为函数f (x )在点(0,f (0))处的切线方程是y =2x +1,所以()()01'02f a b f a ⎧==+⎪⎨==⎪⎩解得a =2,b =﹣1.a ﹣b =3. 故答案为3.【点睛】本题主要考查函数与导数的关系,特别是曲线的切线与函数导数之间的关系,属于中档题. 14.已知正实数m ,n 满足144m n+=,则m n +的最小值是________. 【答案】94【解析】 【分析】利用已知条件配凑出:114()()4m n m n m n +=++,展开后可用基本不等式求得最小值. 【详解】∵正实数m ,n 满足144m n+=,∴114()()4m n m n m n +=++1419(5)(5444n m m n =++≥+=,当且仅当4n m m n =,即33,42m n ==时,等号成立,∴m n +的最小值是94.故答案为:94.【点睛】本题考查用基本不等式求最值.基本不等式求最值的条件:一正二定三相等.其中定值常常需要我们配凑出,而“1”的代换是常用的配凑法.15.在ABC V 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若1cos sin 2b A B =,且a =6bc +=,则ABC V 面积为___.【答案】【解析】 【分析】由题意首先求得角A 的大小,然后结合余弦定理和三角形面积公式整理计算即可求得最终结果. 【详解】由题意可得:1cos sin 2ab A a B =,1sin cos sin sin 2a B A A B ∴=,1tan 2A a ∴==3A π∴=. 利用余弦定理有:()2222221cos 222b c a bc b c a A bc bc +--+-===,结合a =6b c +=可得:8bc =,则11sin 8222ABC S bc A ∆==⨯⨯=故答案为【点睛】本题考查了三角形面积公式的应用,余弦定理的应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.16.已知31()(1)x f x x e -+=+⋅,2()(1)g x x a =++,若12,x x R ∃∈,使得21()()f x g x ≥成立,则实数a 的取值范围是__________. 【答案】27,e ⎛⎤-∞ ⎥⎝⎦【解析】 【分析】将题设中12,x x R ∃∈,使得21()()f x g x ≥成立可转化为max min ()()f x g x ≥,进而求出参数a . 【详解】213121()3(1)(1)(1)(2)x x x f x x ex e x e x -+-+-+=+-+=+-',则可知()f x 在(),2-∞单调递增,在()2,+∞,单调递减.故max 27()(2)f x f e ==. 2()(1)g x x a =++在(),1-∞-单调递减,在()1,+-∞,单调递增.故min ()(1)g x g a =-=. 12,x x R ∃∈,使得21()()f x g x ≥成立,则max min ()()f x g x ≥,所以27a e≤. 【点睛】本题解题的关键是将存在性问题转化为最值问题求解. 常见的存在性问题有:(1)()a f x ≤有解,则max ()a f x ≤.(2)()a f x ≥有解,则min ()a f x ≥.三、解答题17.已知数列{}n a 是递减的等比数列,24a =,且2a ,32a ,43a +成等差数列. (1)求数列{}n a 的通项公式; (2)若216log n n b a ⎛⎫=⎪⎝⎭,求数列21n n b b +⎧⎫⎨⎬⎩⎭前n 项和n S . 【答案】(1)412-⎛⎫= ⎪⎝⎭n n a ,(2)n S =32342(1)(2)n n n +-++ 【解析】 【分析】(1)由2a ,32a ,43a +成等差数列求出公比q 后,可得{}n a 的通项公式;(2)由(1)计算出n b n =,因此用裂项相消法求数列21n n b b +⎧⎫⎨⎬⎩⎭的和.【详解】(1)设数列{}n a 的公比为q ,由234,2,3a a a +成等差数列得32443a a a =++,又24a =,所以216443q q =++,即241670q q -+=,解得12q =或72q =(舍去), 故242211422n n n n a a q---⎛⎫⎛⎫=⋅=⨯= ⎪⎪⎝⎭⎝⎭,即数列{}n a 的通项公式为412-⎛⎫= ⎪⎝⎭n n a .(2)216log n n b n a ⎛⎫==⎪⎝⎭,211111(2)22n n b b n n n n +⎛⎫==- ⎪++⎝⎭, 1111111111232242352n S ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L 112n n ⎛⎫⨯- ⎪+⎝⎭111112212n n ⎛⎫=⨯+-- ⎪++⎝⎭32342(1)(2)n n n +=-++. 【点睛】本题考查求等比数列的通项公式,考查等差数列的性质,考查裂项相消法求数列的和,在用裂项相消法求数列和时,要注意相消的项是连续相消还是间隔相消.18.四棱锥P ABCD -中,底面ABCD 为直角梯形,//AB CD ,90BAD ∠=︒,22CD AB ==,PA ⊥平面ABCD ,2PA AD ==,M 为PC 中点.(1)求证:平面PBC ⊥平面BMD ; (2)求点B 到平面PCD 的距离. 【答案】(1)见证明;(2)1 【解析】【分析】(1)根据题意,求得3BD =,cos cos 3BDC DBA ∠=∠=,再利用余弦定理求出 3?2BC PD ,==,PCD ∆,PCB ∆是等腰三角形,最后得出PC ⊥平面MDB 得证;(2) 取PD 中点N ,证明//BM AN ,再证明AN ⊥平面PCD ,故BM ⊥平面PCD ,然后求得BM 的长即可.【详解】(1)在直角梯形中,3BD =,cos cos 3BDC DBA ∠=∠=, 在BCD ∆中,由余弦定理3BC =,3PB =,2PD =,PCD ∆,PCB ∆是等腰三角形, 所以PC MD ⊥,PC MB ⊥,PC ⊥平面MDB ,则平面PBC ⊥平面BDM . (2)取PD 中点N ,连接AN ,MN ,ANMB 为平行四边形,所以//BM AN ,1BM AN ==,由PA AD =,所以AN PD ⊥,又由于CD ⊥平面PAD ,所以CD AN ⊥,所以AN ⊥平面PCD ,所以BM ⊥平面PCD ,所以B 到平面PCD 的距离为1.【点睛】本题主要考查了立体几何的综合知识,垂直关系是解题的关键,属于中档题.19.峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以[100,300),[300500),,[500700),,[700900),,[9001100),,[]11001300,(单位:度)分组的频率分布直方图如下图:若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表:(1)估计所抽取的 50户的月均用电量的众数和平均数(同一组中的数据用该组区间的中点值作代表); (2)(i )将“一般用户”和“大用户”的户数填入下面22⨯的列联表:(ii )根据(i )中的列联表,能否有99%的把握认为 “用电量的高低”与“使用峰谷电价”有关?附:()22()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)众数600度,平均数640度(2)(i )见解析;(ii )不能有99%的把握认为 “用电量的高低”与“使用峰谷电价”有关. 【解析】【分析】(1)由频率分布直方图计算出众数与平均数 (2)完善列表联并计算出是否有关【详解】(1)根据频率分布直方图的得到100度到300度的频率为: 10.0012000.00152000.00122000.00062000.00022000.1-⨯-⨯-⨯-⨯-⨯=,估计所抽取的50户的月均用电量的众数为:500+700=6002(度); 估计所抽取的50户的月均用电量的平均数为:(2000.00054000.0016000.00158000.001210000.000612000.0002)200640=⨯+⨯+⨯+⨯+⨯+⨯⨯=x (度)(2)依题意,22⨯列联表如下2K的观测值250(2510510)400 6.349 6.6353515302063k ⨯⨯-⨯==≈<⨯⨯⨯ 所以不能有99%的把握认为 “用电量的高低”与“使用峰谷电价”有关.【点睛】本题考查了频率分布直方图,并完善列表联计算线性相关性,较为基础,需要掌握解题方法20.设椭圆22221(0)x y a b a b+=>>的左焦点为1F ,离心率为12,1F 为圆M :222150x y x ++-=的圆心.(1)求椭圆的方程;(2)已知过椭圆右焦点2F 的直线l 交椭圆于,A B 两点,过2F 且与l 垂直的直线1l 与圆M 交于,C D 两点,求四边形ABCD 面积的取值范围. 【答案】(1)22143x y +=;(2)⎡⎣ 【解析】试题分析:(Ⅰ)由题意求得a ,b 的值即可确定椭圆方程;(Ⅱ)分类讨论,设直线l 代入椭圆方程,运用韦达定理和弦长公式,可得|AB|,根据点到直线的距离公式可求出|CD|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围 试题解析: (1)由题意知12c a =,则2a c =, 圆M 的标准方程为()22116x y ++=,从而椭圆的左焦点为()110F -,,即1c =, 所以2a =,又222b a c =-,得b =所以椭圆的方程为:22143x y +=.(2)可知椭圆右焦点()210F ,. (ⅰ)当l 与x 轴垂直时,此时k 不存在,直线l :1x =,直线1:0l y =, 可得:3AB =,8CD =,四边形ACBD 面积为12.(ⅱ)当l 与x 轴平行时,此时=0k ,直线:0l y =,直线1:1l x =, 可得:4AB =,CD =,四边形ACBD面积为.(iii )当l 与x 轴不垂直时,设l 的方程为()1y k x =- ()0k ≠,并设()11,A x y ,()22,B x y .由()221,1,43y k x x y ⎧=-⎪⎨+=⎪⎩得()22224384120k x k x k +-+-=.显然0∆>,且2122843k x x k +=+, 212241243k x x k -=+.所以()212212143k AB x k +=-=+.过2F 且与l 垂直的直线()11:1l y x k =--,则圆心到1l,所以CD ==故四边形ACBD 面积:12S AB CD ==可得当l 与x 轴不垂直时,四边形ACBD 面积的取值范围为(12,).综上,四边形ACBD 面积的取值范围为12⎡⎣.21.已知函数()()21ln (0)2a f x x x x a =--+>. (1)讨论()f x 的单调性;(2)若1a e <<,试判断()f x 的零点个数.【答案】(1)当1a =时,()f x 在()0,∞+上是增函数, 当01a <<,()f x 在()0,1上是增函数,在11,a ⎛⎫⎪⎝⎭上是减函数,在1,a ⎛⎫+∞ ⎪⎝⎭上是增函数, 当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上是增函数,在1,1a ⎛⎫ ⎪⎝⎭上是减函数,在()1,+∞上是增函数; (2)1 【解析】 【分析】(1)对()f x 求导后对a 进行分类讨论,找到()0f x '>和()0f x '<的区间,即为()f x 的单调区间. (2)由(1)可知1a e <<时,()f x 有极大值1f a ⎛⎫⎪⎝⎭和极小值()1f ,研究他们的正负,并且找到令()0f x >的点,根据零点存在定理,找出零点个数.【详解】(1)函数()f x 的定义域为()0,+∞,()()()()11111x ax f x a x x x--=--+=',令()0f x '=,则11x =,21x a=, (i )若1a =,则()0f x '≥恒成立,所以()f x 在()0,+∞上是增函数, (ii )若01a <<,则11a>, 当()0,1x ∈时,()0f x '>,()f x 是增函数,当11,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 是减函数, 当1,x a ⎛⎫∈+∞⎪⎝⎭时,()0f x '>,()f x 是增函数, (iii )若1a >,则101a<<, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 是增函数, 当1,1x a ⎛⎫∈⎪⎝⎭时,()0f x '<,()f x 是减函数, 当()1,x ∈+∞时,()0f x '>,()f x 是增函数, 综上所述:当1a =时,()f x 在()0,+∞上是增函数, 当01a <<,()f x 在()0,1上是增函数,在11,a ⎛⎫ ⎪⎝⎭上是减函数,在1,a ⎛⎫+∞ ⎪⎝⎭上是增函数,当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上是增函数,在1,1a ⎛⎫⎪⎝⎭上是减函数,在()1,+∞上是增函数; (2)当1a e <<时,()f x 在10,a ⎛⎫⎪⎝⎭上是增函数,在1,1a⎛⎫ ⎪⎝⎭上是减函数,在()1,+∞上是增函数,所以()f x 的极小值为()110f =-<,()f x 的极大值为2111111ln ln 1222a a f a a a aa a ⎛⎫⎛⎫=--+=--- ⎪ ⎪⎝⎭⎝⎭, 设()1ln 122a g a a a=---,其中()1,a e ∈, ()()2222211112102222a a a g a a a a a--+='=+-=>, 所以()g a 在()1,e 上是增函数, 所以()()e 1e 2022eg a g <=--<,因为()()2114414ln494ln4ln40222a f =--+>⨯-+=+>, 所以有且仅有1个()01,4x ∈,使()00f x =. 所以当1a e <<时,()f x 有且仅有1个零点.【点睛】本题考查利用导数求函数的单调区间,极值、最值,以及函数的图像和零点问题,涉及分类讨论的数学思想,题目比较综合,属于难题.22.在平面直角坐标系xOy 中,已知曲线1C 的参数方程为32cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以坐标原点O 为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2ρ=. (1)设点,M N 分别为曲线1C 与曲线2C 上的任意一点,求||MN 的最大值;(2)设直线1cos :sin x t l y t αα=-+⎧⎨=⎩(t 为参数)与曲线1C 交于,P Q 两点,且||1PQ =,求直线l 的普通方程.【答案】(1)7;(2) 70y -+=70y += 【解析】 【分析】(1)将曲线1C 和2C 都化成普通方程后,可知||MN 的最大值是圆心距加上两个圆的半径;(2) 将直线l 的参数方程代入22(3)4x y -+=中后,利用韦达定理以及参数的几何意义可得弦长||PQ ,代入已知||1PQ =,可解得斜率,再由点斜式可得直线l 的方程.【详解】解:(1)由32cos 2sin x y ϕϕ=+⎧⎨=⎩得2222(3)(2cos )(2sin )4x y ϕϕ-+=+=,所以曲线1C 普通方程为22(3)4x y -+=,圆心()13,0C ,半径1=2r .曲线2C 的直角坐标方程为224x y +=,圆心()20,0C ,半径22r =.∴max 1212||||3227MN C C r r =++=++=.(2)将直线l 的参数方程代入22(3)4x y -+=中,得22(cos 4)(tsin )4t αα-+=, 整理得28cos 120t t α-+=,∴264cos 480α∆=->.设,P Q 两点对应的参数分别为12,t t ,则128cos t t α+=,1212t t =. 由||1PQ =及参数t 的几何意义, 得121t t -===,解得7cos 8α=±,满足>0∆,所以sin α==∴直线l 的斜率为tan 7α=或tan 7α=-,由点斜式得01)y x -=+或01)y x -=+, ∴直线l70y -=70y ++=.【点睛】本题考查了参数方程和极坐标方程化直角坐标方程,直线参数方程的几何意义,直线的点斜式方程,属于中档题.23.已知函数()|||1|f x x a x =++-.(1)当3a =时,求不等式()9f x x ≥+的解集;(2)若()|4|f x x ≤-的解集包含[]0,2,求实数a 的取值范围. 【答案】(1) 11,[7,)3⎛⎤-∞-⋃+∞ ⎥⎝⎦(2) []3,1-- 【解析】 分析】(1)分3段解不等式后,结果求并集可得;(2)转化为()|4|f x x ≤-在[0,1]和(1,2]上都恒成立可得.【详解】解:(1)当3a =时,22,3()314,3122,1x x f x x x x x x --≤-⎧⎪=++-=-<<⎨⎪+≥⎩当3x ≤-时,由229x x --≥+,得113x ≤-;当31x -<<时,由49x ≥+,得5x ≤-,无解;当1x ≥时,由229x x +≥+,得7x ≥.综上,()9f x x ≥+的解集为11,[7,)3⎛⎤-∞-⋃+∞ ⎥⎝⎦.(2)()|4|f x x -„等价于|||4||1|x a x x +---„.当[]0,1x ∈时,|||4||1|4(1)3x a x x x x +---=---=„, ∴33a x a --≤≤-,则有30a --≤,31a -≥,得32a -≤≤.当(1,2]x ∈时,|||4||1|4(1)52x a x x x x x +---=---=-„, ∴2552x x a x -≤+≤-, ∴535ax x a-⎧⎪⎨⎪+⎩„„对任意的(1,2]x ∈恒成立, ∴52352aa -⎧⎪⎨⎪+⎩……得31a --剟.综上,实数a 的取值范围为[3,2][3,1]-⋂--=[]3,1--.【点睛】本题考查了绝对值不等式的解法,绝对值不等式在闭区间上恒成立问题,属于中档题.。

河北省衡水中学高三高考押题(二)理数试题及答案

河北省衡水中学高三高考押题(二)理数试题及答案

河北衡水中学高考押题试卷理数试卷(二)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|60,}A x x x x Z =--<∈,{|||,,}B z z x y x A y A ==-∈∈,则集合A B I =( ) A .{0,1} B .{0,1,2} C .{0,1,2,3} D .{1,0,1,2}- 2.设复数z 满足121z i i +=-+,则1||z=( )A .15C .5D .253.若1cos()43πα+=,(0,)2πα∈,则sin α的值为( )A.46- B .46+ C.718D .3 4.已知直角坐标原点O 为椭圆:C 22221(0)x y a b a b+=>>的中心,1F ,2F 为左、右焦点,在区间(0,2)任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O :2222x y a b +=-没有交点”的概率为( )A.4 B .44- C.2 D .22- 5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率2]e ∈时,对应双曲线的渐近线的夹角的取值范围为( ) A .[0,]6πB .[,]63ππ C.[,]43ππ D .[,]32ππ6.某几何体的三视图如图所示,若该几何体的体积为32π+,则它的表面积是( )A.313(3)2222π+++ B .3133()22242π+++ C.13222π+ D .13224π+ 7.函数sin ln ||y x x =+在区间[3,3]-的图象大致为( )A .B .C .D . 8.二项式1()(0,0)nax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( )A .4B .8 C.12 D .169.执行下图的程序框图,若输入的0x =,1y =,1n =,则输出的p 的值为( )A.81 B .812 C.814 D .81810.已知数列11a =,22a =,且222(1)n n n a a +-=--,*n N ∈,则2017S 的值为( )A .201610101⨯-B .10092017⨯ C.201710101⨯- D .10092016⨯ 11.已知函数()sin()f x A x ωϕ=+(0,0,||)2A πωϕ>><的图象如图所示,令()()'()g x f x f x =+,则下列关于函数()g x 的说法中不正确的是( )A. 函数()g x 图象的对称轴方程为()12x k k Z ππ=-∈B .函数()g x 的最大值为22C. 函数()g x 的图象上存在点P ,使得在P 点处的切线与直线:31l y x =-平行 D .方程()2g x =的两个不同的解分别为1x ,2x ,则12||x x -最小值为2π 12.已知函数32()31f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( ) A .(,2)-∞- B .(2,2)- C.(2,)+∞D .(2,0)(0,2)-U第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分13.向量(,)a m n =r ,(1,2)b =-r ,若向量a r ,b r 共线,且||2||a b =r r,则mn 的值为 .14.设点M 是椭圆22221(0)x y a b a b+=>>上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M与y 轴相交于不同的两点P 、Q ,若PMQ ∆为锐角三角形,则椭圆的离心率的取值范围为 .15.设x ,y 满足约束条件230,220,220,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则y x 的取值范围为 .16.在平面五边形ABCDE 中,已知120A ∠=︒,90B ∠=︒,120C ∠=︒,90E ∠=︒,3AB =,3AE =,当五边形ABCDE 的面积[63,93)S ∈时,则BC 的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,112a=,121n n S S -=+*(2,)n n N ≥∈. (1)求数列{}n a 的通项公式;(2)记12log n n b a =*()n N ∈求11{}n n b b +的前n 项和n T .18.如图所示的几何体ABCDEF 中,底面ABCD 为菱形,2AB a =,120ABC ∠=︒,AC 与BD 相交于O 点,四边形BDEF 为直角梯形,//DE BF ,BD DE ⊥,222DE BF a ==,平面BDEF ⊥底面ABCD .(1)证明:平面AEF ⊥平面AFC ; (2)求二面角E AC F --的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关? (3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.20. 已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且过点23)22P ,动直线l :y kx m -+交椭圆C 于不同的两点A ,B ,且0OA OB ⋅=u u u r u u u r(O 为坐标原点) (1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由.21. 设函数22()ln f x a x x ax =-+-()a R ∈. (1)试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x x h +>.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C :3cos ,2sin x t y tαα=+⎧⎨=+⎩(t 为参数,0a >),在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C :4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围; (2)当3a =时,两曲线相交于A ,B 两点,求||AB .23. 选修4-5:不等式选讲. 已知函数()|21||1|f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++.参考答案及解析一、选择题1-5:BCAAD 6-10:AABCC 11、12:CD二、填空题e << 15.27[,]5416. 三、解答题17.解:(1)当2n =时,由121n n S S -=+及112a =, 得2121S S =+,即121221a a a +=+,解得214a =.又由121n n S S -=+,① 可知121n n S S +=+,② ②-①得12n n a a +=,即11(2)2n n a n a +=≥. 且1n =时,2112a a =适合上式,因此数列{}n a 是以12为首项,12为公比的等比数列,故12n n a =*()n N ∈ (2)由(1)及12log n n b a =*()n N ∈,可知121log ()2nn b n ==,所以11111(1)1n n b b n n n n +==-++, 故2231111n n n n T b b b b b b +=+++=L 11111[(1)()()]2231n n -+-++-=+L 1111n n n -=++. 18.解:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF I 平面ABCD BD =, 因此AC ⊥平面BDEF ,从而AC EF ⊥. 又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =,2DE BF ==,120ABC ∠=︒,可知22426AF a a a =+=,2BD a =,22426EF a a a =+=,224823AE a a a =+=,从而222AF FE AE +=,故EF AF ⊥. 又AF AC A =I ,所以EF ⊥平面AFC . 又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA u u u r ,OB uuu r ,OG u u u r的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图示),则(0,0,0)O ,(3,0,0)A a ,(3,0,0)C a -,(0,,22)E a a -,(0,,2)F a a ,所以(0,,22)(3,0,0)AE a a a =--=u u u r(3,,22)a a a --,(3,0,0)(3,0,0)AC a a =--=u u u r (23,0,0)a -,(0,,2)(0,,22)EF a a a a =--u u u r(0,2,2)a a =-. 由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为(0,2,2)EF a a =-u u u r. 设平面AEC 的法向量为(,,)n x y z =r,则0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r即3220,0,x y z x ⎧--+=⎪⎨=⎪⎩即22,0,y z x ⎧=⎪⎨=⎪⎩令2z =,得4y =, 所以(0,4,2)n =r.从而cos ,n EF <>=r u u u r 3||||63n EF n EF a⋅==⋅r u u u rr u u u r . 故所求的二面角E AC F --的余弦值为33.19.解:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B的人数约有1480044825⨯=.(2)这100名学生成绩的平均分为1(321005690780370260)100⨯+⨯+⨯+⨯+⨯91.3=,因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个,B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3.则03473117(0)33C C P C ξ===,124731128(1)55C C P C ξ===, 214731114(2)55C C P C ξ===,30473114(3)165C C P C ξ===. 因此可得ξ的分布列为:则728144()0123335555165E ξ=⨯+⨯+⨯+⨯1211=. 20.解:(1)由题意可知2c a =,所以222222()a c a b ==-,即222a b =,① 又点23,22P 在椭圆上,所以有2223144a b+=,② 由①②联立,解得21b =,22a =,故所求的椭圆方程为2212x y +=. (2)设1122(,),(,)A x y B x y ,由0OA OB ⋅=u u u r u u u r,可知12120x x y y +=.联立方程组22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩ 消去y 化简整理得222(12)4220k x kmx m +++-=,由2222168(1)(12)0k m m k ∆=--+>,得2212k m +>,所以122412kmx x k +=-+,21222212m x x k -=+,③又由题知12120x x y y +=, 即1212()()0x x kx m kx m +++=,整理为221212(1)()0k x x km x x m ++++=.将③代入上式,得22222224(1)01212m km k km m k k-+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322m k -=. 21. 解:(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-=222(2)()x ax a x a x a x x--+-=. 因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③若0a <时,当(0,)2ax ∈-时,'()0f x <,函数()f x 单调递减,当(,)2ax ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+=2(2)ln x a x a x +--(0)x >,所以'()2(2)a h x x a x=+--=22(2)(2)(1)x a x a x a x x x +---+=.所以当(0,)2ax ∈时,'()0h x <;当(,)2a x ∈+∞时,'()0h x >;当2a x =时,'()02ah =. 欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2''()20ah x x=+>,即'()h x 单调递增,故只需证明1222x x a+>. 设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)ln ,(2)ln ,x a x a x m x a x a x m ⎧+--=⎨+--=⎩ 两式相减并整理得1212(ln ln )a x x x x -+-=22121222x x x x -+-, 从而221212121222ln ln x x x x a x x x x -+-=-+-, 故只需证明2212121212122222(ln ln )x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-. 因为1212ln ln 0x x x x -+-<,所以(*)式可化为12121222ln ln x x x x x x --<+, 即11212222ln 1x x x x x x -<+. 因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈. 记22()ln 1t R t t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增.又(1)0R =,因此()0R t <,(0,1)t ∈, 故22ln 1t t t -<+,(0,1)t ∈得证, 从而12'()02x x h +>得证.22.解:(1)曲线1C :3cos ,2sin ,x t y t αα=+⎧⎨=+⎩消去参数t 可得普通方程为222(3)(2)x y a -+-=. 曲线2C :4sin ρθ=,两边同乘ρ.可得普通方程为22(2)4x y +-=.把22(2)4y x -=-代入曲线1C 的普通方程得:222(3)4136a x x x =-+-=-,而对2C 有222(2)4x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时,a 的取值范围为[1,5].(2)当3a =时,曲线1C :22(3)(2)9x y -+-=, 两曲线交点A ,B 所在直线方程为23x =. 曲线22(2)4x y +-=的圆心到直线23x =的距离为23d =, 所以482||2493AB =-=. 23. 解:(1)因为()|21||1|f x x x =-++=3,1,12,1,213,.2x x x x x x ⎧⎪-<-⎪⎪-+-≤≤⎨⎪⎪>⎪⎩ 所以作出图象如图所示,并从图可知满足不等式()3f x ≤的解集为[1,1]-.(2)证明:由图可知函数()y f x =的最小值为32,即32m =. 所以2232a b +=,从而227112a b +++=, 从而221411a b +=++2222214[(1)(1)]()71a b a a b ++++=++2222214(1)[5()]711b a a b ++++≥++218[577+=. 当且仅当222214(1)11b a a b ++=++时,等号成立, 即216a =,243b =时,有最小值, 所以221418117a b +≥++得证.。

河北省衡水市2024高三冲刺(高考数学)苏教版真题(押题卷)完整试卷

河北省衡水市2024高三冲刺(高考数学)苏教版真题(押题卷)完整试卷

河北省衡水市2024高三冲刺(高考数学)苏教版真题(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,,,恒成立,则的最大值为()A.B.C.D.第(2)题一组数据,,…,满足(),若去掉,后组成一组新数据,则新数据与原数据相比,下列说法正确的是()A.方差变小B.平均数变大C.极差变大D.中位数变小第(3)题为圆()内异于圆心的一点,则直线与该圆的位置关系为()A.相离B.相交C.相切D.相切或相离第(4)题若函数既有极大值也有极小值,则()A.B.C.D.第(5)题设,,,则()A.B.C.D.第(6)题已知圆半径是1,直线与圆相切于点,过点的直线与圆交于,两点,且点与点在直线的两侧,点为中点,若,则的最大值为()A.B.C.D.第(7)题已知函数()在有且仅有三个零点,则的取值范围是()A.B.C.D.第(8)题已知是椭圆的左焦点,直线与交于、两点,则周长为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题若非零函数对任意实数x,y均有,且当时.则().A.B.对任意实数x,都有C.为是增函数D .当时,对时恒有,则实数第(2)题已知红箱内有6个红球、3个白球,白箱内有3个红球、6个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依此类推,第次从与第k次取出的球颜色相同的箱子内取出一球,然后再放回去.记第次取出的球是红球的概率为,则下列说法正确的是()A.B.C.第5次取出的球是红球的概率为D.前3次取球恰有2次取到红球的概率是第(3)题已知函数,则真命题有()A.函数的最小正周期为B .函数的图像关于点中心对称C .是函数图像的一条对称轴D.将函数的图像向右平移个单位后得到函数的图像三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题过抛物线的焦点F作直线,交抛物线于A,B两点,若|FA|=3|FB|,则直线的倾斜角为___________.第(2)题函数的最小正周期是_____,值域是________.第(3)题已知直线和曲线相切于点,则____________;若关于的方程恰有一个实数解,则实数取值的集合为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,正四棱柱的底面边长为1,高为2,点是棱上一个动点(点与均不重合).(1)当点是棱的中点时,求证:直线平面;(2)当平面将正四棱柱分割成体积之比为的两个部分时,求线段的长度.第(2)题某中学对该校学生的学习兴趣和预习情况进行长期调查,学习兴趣分为兴趣高和兴趣一般两类,预习分为主动预习和不太主动预习两类,设事件A:学习兴趣高,事件B:主动预习.据统计显示,,,.(1)计算和的值,并判断A与B是否为独立事件;(2)为验证学习兴趣与主动预习是否有关,该校用分层抽样的方法抽取了一个容量为的样本,利用独立性检验,计算得.为提高检验结论的可靠性,现将样本容量调整为原来的倍,使得能有99.5%的把握认为学习兴趣与主动预习有关,试确定的最小值.附:,其中.0.100.050.0100.0050.001k 2.706 3.841 6.6357.87910.828第(3)题圆心为的圆与抛物线相交于A,B,C,D四个点.(1)求圆的半径r的取值范围;(2)当四边形ABCD面积最大时,求对角线AC与BD的交点P的坐标.第(4)题已知等差数列的公差,且,的前项和为.(1)求的通项公式;(2)若,,成等比数列,求的值.第(5)题已知函数和有相同的最小值.(1)求a;(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.。

2020届河北省衡水密卷新高考押题模拟考试(二)理科数学

2020届河北省衡水密卷新高考押题模拟考试(二)理科数学

2020届河北省衡水密卷新高考押题模拟考试(二)理科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:在每小题给出的四个选项中,只有一项是符合要求的.1.已知集合{|110}A x x =-<„,集合{|lg 1}B x x =„,则A B =I ( ) A. {|110}x x -≤< B. {|110}x x -≤≤ C. {|010}x x << D. {|010}x x <≤【答案】C 【解析】 【分析】对集合B 内的不等式进行计算,然后根据交集运算得到答案. 【详解】集合B 中,解不等式1lg x ≤,得010x <≤, 所以集合{}=010B x x <≤ 而集合{|110}A x x =-<„ 所以A B =I {|010}x x <<, 故选C 项.【点睛】本题考查对数不等式的计算,集合交集的运算,属于简单题.2.在复平面内,复数z 满足(1)4z i -=,则复数z 在复平面内对应的点在( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】 【分析】对条件中的式子进行计算化简,得到复数z ,从而得到其在复平面对应的点的坐标,得到答案. 【详解】由(1)4z i -=,得4221z i i==+- 所以z 在复平面对应的点为()2,2,所以对应的点在第一象限. 故选A 项.【点睛】本题考查复数的计算,复平面的相关概念,属于简单题.3.已知两个单位向量a r 和b r 的夹角为120︒,k ∈R ,则||ka b +r r 的最小值为( )A.34B.2C. 1D.32【答案】B 【解析】 【分析】对||ka b +r r平方,然后将单位向量a r 和b r的模长和夹角带入,得到关于k 的函数,然后得到其最小值,从而得到答案.【详解】()2222||=2ka b k a a b b ++⋅+r r r r r r因为a r 和b r是单位向量,且夹角为120︒所以()2222||=2ka b k a ka b b ++⋅+r r r r r r2222cos ,a a b b a k k b =++r r r r r r21k k =-+21324k ⎛⎫=-+ ⎪⎝⎭34≥,所以||ka b +r r2≥,所以||ka b +r r 【点睛】本题考查向量模长的表示,求模长的最小值,属于简单题,4.已知tan α=2παπ<<,则sin cos αα-=( )A.12 B.12- C.12-+ D.12- 【答案】A 【解析】∵tan 2πααπ=<<∴23πα=∴1sin 2αα==-∴sin cos αα-=故选A5.已知:6log 5a =,0.3b π=,1ln 2c =,则下列结论正确的是( ) A. a b c << B. b a c <<C. c b a <<D. c a b <<【答案】D 【解析】 【分析】分别将,,a b c 与特殊值0,1进行比较,然后判断出其大小关系,得到答案.【详解】因为()6log 501a =∈,,()0.31+b π=∈∞,,()1ln ,02c =∈-∞所以c a b <<, 故选D 项.【点睛】本题考查比较指数值和对数值的大小,属于简单题.6.执行如图所示程序框图,若输入的4k =,则输出的s =( )A.34B.45C.56D.67【答案】C 【解析】 【分析】根据程序框图的要求,得到每次循环对应的,s n 的值,再根据判断语句,结束循环,输出s 的值,得到答案. 【详解】根据程序框图的循环语句可知第一次循环,4,0,0k n s ===,此时n k ≤,1n =,112s =⨯; 第二次循环,14,1,12k n s ===⨯,此时n k ≤,2n =,11+1223s =⨯⨯;第三次循环,114,2,+1223k n s ===⨯⨯,此时n k ≤,3n =,111++122334s =⨯⨯⨯;第四次循环,1114,3,++122334k n s ===⨯⨯⨯,此时n k ≤,4n =,1111+++12233445s =⨯⨯⨯⨯; 第五次循环,11114,3,+++12233445k n s ===⨯⨯⨯⨯,此时n k ≤,5n =,11111++++1223344556s =⨯⨯⨯⨯⨯;第六次循环,4,5k n ==,不满足n k ≤,循环停止, 输出11111++++1223344556s =⨯⨯⨯⨯⨯ 11111111111223344556=-+-+-+-+- 5=6故选C 项.【点睛】本题考查根据输入值求程序框图的输出值,裂项相消求数列的和,属于简单题.7.已知函数()sin f x x x =-,则不等式2(1)(33)0f x f x -++>的解集是 A. (,4)(1,)-∞-+∞U B. (,1)(4,)-∞-+∞U C. (1,4)- D. (4,1)- 【答案】C 【解析】 【分析】由题意,根据函数的解析式,求解函数()f x 是定义域上的单调递增函数,且为奇函数,把不等式转化为21(33)x x ->-+,进而借助一元二次不等式的解法,即可求解.【详解】由题意,函数()sin f x x x =-,则()1cos 0f x x '=-≥,所以函数()f x 是定义域上的单调递增函数,又由()()sin()(sin )f x x x x x f x -=---=--=-,即函数()f x 定义域上的奇函数, 又由不等式2(1)(33)0f x f x -++>可转化为 2(1)(33)[(33)]f x f x f x ->-+=-+即21(33)x x ->-+,即2340x x --<,解得14x -<<, 即不等式的解集为(1,4)-,故选C.【点睛】本题主要考查了函数的单调性和奇偶性的应用问题,其中解答中根据函数的解析式利用导数求得函数的单调性和奇偶性,把不等式转化为一元二次不等式2340x x --<是解答的关键,着重考查了转化思想,以及分析问题和解答问题的能力,属于基础题.8.如图,在正方形区域内任取一点,则此点取自阴影部分的概率是( )A.21B.()2421π-C.)2421π+D.16【答案】B 【解析】 【分析】利用定积分先求出阴影部分的面积,再由几何概型的计算公式计算即可.【详解】阴影部分的面积()()440cos sin sin cos 21S x x dx x x ππ=-=+=⎰,正方形面积为24π,所以所求概率为)22421214ππ=.【点睛】本题主要考查与面积有关的几何概型.9.已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中错误的是 A. 函数()f x 的值域与()g x 的值域相同B. 若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点C. 把函数()f x 的图像向右平移2π个单位,就可以得到函数()g x 的图像 D. 函数()f x 和()g x 在区间(,4π-)4π上都是增函数【答案】C 【解析】 【分析】先求出()f x 的导数,结合解析式的特点来判断.【详解】()sin g x cosx x =+,所以选项A 正确;由极值点定义可知选项B 正确;把()f x 的图像向右平移2π个单位,得到()sin()sin cos 22y cos x x x x ππ=-+-=-与()g x 不相等;故选C. 【点睛】本题主要考查三角函数的图像和性质.三角函数的图像变换主要平移方向和系数的影响.10.杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列。

河北省衡水中学2024届高三下学期新高考数学押题卷数学(二)

河北省衡水中学2024届高三下学期新高考数学押题卷数学(二)

河北省衡水中学2024届高三下学期新高考数学押题卷数学(二)一、单选题1.已知集合{0M x x =<∣或2},{2}x N >=,则()M N ⋃=R ð( )A .{02}xx <<∣ B .{02}xx ≤<∣ C .{04}xx ≤<∣ D .{04}xx <<∣ 2.若1iiz a +=+为纯虚数,R a ∈,则1z +=( ) ABC .2D .33.“角,αβ的终边在同一条直线上”是“()sin 0αβ-=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.在ABC V 中,D 是BC 的中点,直线l 分别与,,AB AD AC 交于点,,M E N ,且43AB A M =u u u r u u u u r ,2,AE ED AC AN λ==u u u r u u u r u u u r u u u r,则λ=( )A .85B .53C .74D .525.8(1的展开式中2x 的系数是( ) A .70-B .70C .1-D .16.已知点()()0,1,A B ,动点P 满足120APB ∠=o ,若点P的轨迹与直线y b +有两个公共点,则b 的值可以是( ) A1 B .45-C .65D1- 7.已知双曲线2222:1(0,0)x y E a b a b-=>>的右焦点为F ,过点F 作直线l 与渐近线0bx ay -=垂直,垂足为点P ,延长PF 交E 于点Q .若3FQ PF =u u u r u u u r,则E 的离心率为( ) A .65B .54C .43D8.已知函数()()ln ,0,1,0,ln 2,0.x x x f x x x x x ⎧>⎪=-=⎨⎪--<⎩若关于x 的方程()1f x ax =-有5个不同的实数根,则a 的取值范围是( )A .()1,+∞B .()2,+∞C .()1,eD .()2,2e二、多选题9.已知函数()cos (0,0π)f x x x ωω=><<,则下列结论正确的是( ) A .若()f x 单调递减,则1ω≥ B .若()f x 的最小值为1-,则1ω> C .若()f x 仅有两个零点,则5722ω<≤ D .若()f x 仅有两个极值点,则23ω<≤10.已知抛物线2:2(0)E x py p =>的焦点为F ,准线为l ,过点F 且与坐标轴不垂直的直线与E 交于,A B 两点,过AB 的中点M 作y 轴的平行线交l 于点N .设MN 的中点为P ,直线,,PA AB PB 的斜率分别为123,,k k k ,则( )A .点P 在E 上B .过点P 且与E 相切的直线m 与直线AB 平行C .3AB PF =D .1322k k k +=11.已知正三棱柱111ABC A B C -的棱长均为2,M 为棱1CC 上靠近点C 的四等分点,N 为棱AC 的中点,则( )A .平面BMN ⊥平面1A BNB .直线MN 与1BC 所成角的正切值为3C .点N 到平面1A BMD .以M 为球心,2为半径的球面与该棱柱的棱公共点的个数为6三、填空题12.分子是1的分数叫做单位分数,古代埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫做埃及分数.从1111,,,,34515L 这13个分数中,取出3个不同的分数组成空间直角坐标系内的一个点的坐标,则满足这3个分数的和为12的不同对应点的个数是.(用数字作答)13.如图,已知正四面体ABCD 的棱长为2,,M N 分别为棱,BC AD 的中点.若该正四面体有一内接圆锥NO ,其中N 为圆锥的顶点,底面圆心O 在线段MN 上,则该圆锥体积的最大值为.14.已知()f x 是定义在R 上的函数,且对任意的x ∈R ,同时满足下列条件:①()()()221x f x f x a a +-≤-;②()()()441x f x f x a a +-≥-,其中a 是大于1的常数.记()()x g x f x a =-,且对任意的x ∈R ,存在常数()*l l ∈N ,恒有()()g x l g x +=,则l 的一个值是;若()01f a =+,则()2g k =()k ∈N .(用a 表示)四、解答题15.记各项均为正数的数列{}n a 的前n 项和为n S12n a -与32n a +的等差中项. (1)求{}n a 的通项公式;(2)设211n n n n a b S S ++={}n b 的前n 项和为n T ,证明:42n T n -<. 16.如图,在六棱锥P ABCDEF -中,平面ABCDEFPA ⊥平面,ABCDEF G 为棱PE 上一点,且2PG GE =.(1)证明:FG P 平面PAC ;(2)若1PA =,求平面DFG 与平面PCF 夹角的余弦值. 17.已知函数()log (0a axf x a x =>且1)a ≠. (1)当2a =时,判断()f x 的单调性; (2)若()1f x ≥-恒成立,求a 的值.18.已知甲口袋有()*1,m m m ≥∈N 个红球和2个白球,乙口袋有()*1,n n n ≥∈N 个红球和2个白球,小明从甲口袋有放回地连续摸球2次,每次摸出一个球,然后再从乙口袋有放回地连续摸球2次,每次摸出一个球. (1)当4,2m n ==时,(i )求小明4次摸球中,至少摸出1个白球的概率;(ii )设小明4次摸球中,摸出白球的个数为X ,求X 的数学期望;(2)当m n =时,设小明4次摸球中,恰有3次摸出红球的概率为P ,则当m 为何值时,P 最大?19.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为()12,,1,1F F M 是C 上一点,且点M到点12,F F 的距离之和为(1)求C 的方程;(2)斜率为12的直线l 与C 交于,A B 两点,则MAB △的外心是否在一条定直线上?若在,求出该直线的方程;若不在,请说明理由.。

河北衡水中学2019届高考押题模拟试卷(二)数学(理)含答案

河北衡水中学2019届高考押题模拟试卷(二)数学(理)含答案

绝密★启封前河北衡水中学2019届高考押题模拟试卷(二)理科数学全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试卷和草稿纸上无效。

3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试卷和草稿纸上无效。

考生必须保持答题卡的整洁。

考试结束后,只需上交答题卡。

参考公式:球的体积公式其中是球半径.锥体的体积公式锥体,其中是锥体的底面积,是锥体的高.台体的体积公式台体,其中分别是台体上、下底面的面积,是台体的高.第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,每小题只有一个正确答案)在每小题给出的四个选项中,只有一项是最符合题目要求的,选出正确的选项并将该选项在答题卡上涂黑。

1.设集合A = {0<4|2x x x -},B = {0|≥y y },则=B AA. φB. (0, 4)C. (4,-∞)D. (0,- ∞)2.设i 是虚数单位,复数iia +-1为纯虚数,则实数a 的值为 A.1 B.-1 C.21D.-2 3.下列三个命题: ①x> 2是x 1 <21的充分不必要条件; ②设R b a ∈,,若6≠+b a ,则3≠a 或3≠b ;③命题p : R x ∈∃0,使得0<1020++x x ,则R x q ∈∀⌝:,都有012≥++x x其中真命题序号是A.①②B.②③C.①③D.②③4.等比数列{n a }的前n 项和为n S ,己知9,10523=+=a a a S ,则1a =5.一个几何体的三视图如右图所示,已知这个几何体的体积为310,则h ,为A.23B. 3C. 33D. 35 6. 在矩形ABCD 中,||,300AC AD AC ABC =⋅=∠,则 =⋅AB AC A. 10 B. 12 C. 14 D. 167.若n dx x =⎰)2(20,则n y x )1()1(8++y 的展开式中22y x 的系数是A.56B.84C.112D.16S8.某算法的程序框图如图所示,其中输入的变量x 在1,2, 3...,36这36个整数中等可能随机产生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

衡水中学2014年高考压轴卷二
数学试卷(理)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.
第Ⅰ卷(选择题 共60分)
注意事项:
一. 选择题:(每小题5分,共60分.下列每小题所给出选项只有一
项是符合题意,请将正确答案的序号填涂在答题卡上.) 1. 已知集合()ln 2105x A x
x ⎧⎫-⎪⎪
=<⎨⎬-⎪⎪⎩⎭
,412,12x B x y y ⎧⎫=<<<<⎨⎬⎩⎭则
A B U =( )
A. ()1,12
B.()1,6
C. ()2,5
D. ()4,5
2. 已知复数2
1z i
=
-+,则( ) A.z 的实部为1 B. z 的虚部为i - C. z 的虚部为1- D. z 的共轭复数为1i + 3.下面四个命题中的真命题是( )
A.命题“2x ∀≥,均有2320x x -+≥”的否定是:“2x ∃<,使得2320x x -+<”
B.命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”
C.采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5、16、27、38、49的同学均被选出,则该班人数可能为60
D. 在某项测量中,测量结果X 服从正态分布()()21,0N σσ>,若X 在()0,1内取值的概率
为0.4,则X 在()0,2内取值的概率为0.8
4. 下图是一个算法的流程图,最后输出的x = ( )
A. 4-
B. 7-
C.10-
D. 13-
5.已知等差数列{}n a 单调递增且满足1104a a +=,则8a 的取值范围是( ) A. ()2,+∞ B. (),2-∞ C.()2,4 D. ()4,+∞
6.一个几何体的三视图如图所示,其中正视图是正三角形,则该几何体的外接球的表面积为 ( ) A. 643π B. 483
π
C.163π
D. 83π
7.设10e x <<,记()()()()ln ln ,lg lg ,ln lg ,lg ln a x b x c x d x ====则,,,a b c d 的大小关系 ( )
A. a b c d <<<
B. c d a b <<<
C. c b d a <<<
D. b d c a <<< 8.已知函数()()sin 2f x x φ=+,其中φ为实数,若()6f x f π⎛⎫

⎪⎝⎭
对x R ∈恒成立且()2f f ππ⎛⎫
< ⎪⎝⎭
,则下列结论正确的是 ( ) A.11112
f π⎛⎫
=-
⎪⎝⎭
B.7105f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭
C. ()f x 是奇函数
D. 0,
6π⎡⎤
⎢⎥⎣⎦
是()f x 的单调递增区间 9.已知2F 、1F 是双曲线()22
2210,0y x a b a b
-=>>的上、下焦点,点2F 关于渐近线的对称点
恰好落在以1F 为圆心,1OF 为半径的圆上,则双曲线的离心率为( )
A. 32
10. 某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,3件展品所选用的展既不在两端又不相邻,且3件展品所选用的展台之间间隔不超过2个展台,则不同的展出方法种数为( )
A. 60
B.54
C. 48
D. 42
11.平面直角坐标系中,O 为坐标原点,动点B ,C 分别在x 轴和y 轴上,且BC =过,,O B C 三点的动圆扫过的区域边界所代表的曲线为C .已知P 是直线:34200l x y -+=上的动点,,PM PN 是曲线C 的两条切线,,M N 为切点,那么四边形PMON 面积的最小值是( )
A. 20
B. 16
C. 12
D. 8
12. 已知定义在R 上的可导函数()f x 满足:()()'0f x f x +<,则()221
m m f m m e
-+-与()1f 的
大小关系是 ( ) A.
()()221
1m m f m m f e
-+-> B.
()()221
1m m f m m f e
-+-< C.
()()221
1m m f m m f e
-+-= D. 不确定
第Ⅱ卷(非选择题 共90分)
二、填空题:(本大题共4小题,每小题5分,共20分.)
13.已知2a =u u r ,4b =r , a r 和b r 的夹角为3
π
,以a r ,b r 为邻边作平行四边形,则该四边形
的面积为 .
14.设n S 是等差数列{}n a 的前项n 和,()5285S a a =+,
且3a 、5a 是首项为2的等比数列{}n b 的相邻两项,则2b = .
15.已知点F 为抛物线2
8y x =-的焦点,O 为原点,点P 是抛物线准线上一动点,A 在抛物线上,且4AF =,则PA PO +的最小值是 .
16. 数列{}n a 的通项为()()121cos
12
n
n n a n π
=--⋅+,前n 项和为n S ,则60S = . 三、解答题
17.(本小题满分12分)
已知向量cos ,12x m ⎛⎫=- ⎪⎝⎭u r ,23,cos 22x x n ⎫=⎪⎭
r ,设函数()1f x m n =⋅+u r r
(1)求函数()f x 的单调递增区间;
(2)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且满足226cos a b ab C +=,2sin 2sin sin C A B =,求()f C 的值.
18.(本小题满分12分)
如图,在三棱锥P ABC -中,PA ⊥底面ABC ,AC BC ⊥,H 为PC 的中点,M 为AH 中点,2PA AC ==,1BC =.
(1)求证:AH ⊥平面PBC ;
(2)求PM 与平面AHB 成角的正弦值;
(3)在线段PB 上是否存在点N ,使得//MN 平面ABC ,若存在,请说明点N 的位置,若不存在,请说明理由.
19.(本小题满分12分)
某花店每天以每支10元的价格从农场购进若干支玫瑰花,并开始以每支20元的价格出售,已知该花店的营业时间为8小时,若前7小时内所购进的玫瑰花没有售完,则花店对没卖出的玫瑰花以每支5元的价格低价处理完毕(根据经验,1小时内完全能够把玫瑰花处理完毕,且处理完毕后,当天不再购进玫瑰花).该花店统计了100天内玫瑰花在每天的前7小时内的需求量n (单位:支,*n N ∈)(由于某种原因需求量频数表中的部分数据被污损而无法看清),制成如下表格(注:*,x y N ∈:视频率为概率) (1)若花店一天购进16支玫瑰花,X 表示当天的利润(单位:元),求X 的分布列及数学期望;
(2)若花店每天购进16支玫瑰花所获得的平均利润比每天购进17求.
20.(本小题满分12分)
已知椭圆2222:1(0)x y C a b a b +=>>的离心率1
2
e =,椭圆C 上一点到点()1,0Q 的距离的最
大值为3,
(1)求椭圆C 的方程;
(2),A B 为椭圆上的两个动点,AOB ∆3M 为AB 的中点,判断2
2
4AB OM +是否为定值,并求OA OB +的最大值.
21.(本小题满分12分) 已知()ln f x x x =,()21122
g x x =
+ (1)设()()()F x f x g x =+,求函数()F x 的图像在1x =处的切线方程; (2)求证:()
()f x e
g x ≥对任意的()0,x ∈+∞恒成立
(3)若*,,a b c R ∈,且222
3a b c ++=,求证:()
()
()
2
2
2
61
1
1
a b c b c c a a b a b c ++++
+
≤+++.
请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分. 作答时请在答题卡涂上题号.
22(本小题满分10分)选修4-1:几何证明选讲
如图,AB 、CD 是圆的两条平行炫,//BE AC ,BE 交CD 于E 、交圆于F ,过点A 的切线交DC 的延长线于P ,1PC ED ==,2PA =.
(1)求AC 的长;
(2)试比较BE 与EF 的长度关系.
23. (本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xoy 中,直线经过点()1,0P -,其倾斜角为α,以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xoy 取相同的长度单位,建立极坐标系.设曲线C 的极坐标方程为26cos ρρθ+5=0-
(1)若直线l 与曲线C 有公共点,求α的取值范围; (2)设(),M x y 为曲线C 上任意一点求x y +的取值范围.
24.(本小题满分10分)选修4-5:不等式选讲
已知函数()f x x a =-
(1)当2a =时,解不等式()41f x x ≥--;
(2)若()1f x ≤的解集为
{}
02x x ≤≤,
()110,02a m n m n
+=>>,,求证:24m n +≥.。

相关文档
最新文档