1988年普通高等学校招生全国统一考试理科数学试题及答案
1988年全国普通高等学校招生统一考试(上海卷)
1988年全国普通高等学校招生统一考试上海 物理试题一、考生注意:1.全卷共七大题,在120分钟内完成。
2.第五、六、七题要求写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案,而未写出主要演算过程的,不能得分。
有数字计算的问题,答案中必须明确写出数值和单位。
(一)、(32分)每小题4分.每小题只有一个正确答案,把正确答案前面的字母填写在题后的方括号内。
选对的得4分:选错的或不答的;得0分;选了两个或两个以上的,得4分.填写在方括号外的字母,不作为选出的答案。
(1)关于光电效应的下列说法中,正确的是(A )光电子的最大初动能随着入射光强度的增大而增大。
(B )只要入射光的强度足够大或照射的时间足够长,就一定能产生光电效应。
(C )任何一种金属都有一个极限频率,低于这个频率的光不能产生光电效应。
(D )在光电效应中,光电流的强度与入射光强度无关。
(2)如图1,两个平面镜互成直角,入射光线AB 经过两次反射后的反射光线为CD 。
今以两面镜的交线为轴,将镜转动10º,两平面镜仍保持直角,在入射光AB 保持不变的情况下,经过两次反射后,反射光线为C ′D ′,则C ′D ′与CD(A )不相交,同向平行。
(B )不相交,反向平行。
(C )相交成20º角。
(D )相交成40º角。
(3)位于载流长直导线近旁的两根平行铁轨A 和B ,与长直导线平行且在同一水平面上,在铁轨A 、B 上套有两段可以自由滑动的导体CD 和EF ,如图2所示,若用力使导体EF 向右运动,则导体CD 将 (A )保持不动。
(B )向右运动。
(C )向左运动。
(D )先向右运动,后向左运动。
(4) 一矩形线圈,绕与匀强磁场垂直的中心轴OO ′按顺时针方向旋转。
引出线的两端各与互相绝缘的半圆铜环连接,两个半圆环分别与固定电刷A 、B 滑动接触,电刷间接有电阻R ,如图3所示。
在线圈转动的过程中,通过R 的电流(A )大小和方向都不断变化 (B )大小和方向都不变(C )大小不断变化,方向从A B R →→。
1998年全国统一高考数学试卷(理科)
1998年全国统一高考数学试卷(理科)一、选择题(共15小题,每小题4分,满分60分)1.(4分)(2008•陕西)sin330°等于()A .B.C.D.2.(4分)函数y=a|x|(a>1)的图象是()A .B.C.D.3.(4分)曲线的极坐标方程ρ=4cosθ化为直角坐标方程为()A .(x+2)2+y2=4B.(x﹣2)2+y2=4C.(x+4)2+y2=16D.(x﹣4)2+y2=164.(4分)两条直线A1x+B1y+C1=0,A2x+B2y+C2=0垂直的充要条件是()A .A1A2+B1B2=0B.A1A2﹣B1B2=0C.D.5.(4分)函数f(x)=(x≠0)的反函数f﹣1(x)=()A .x(x≠0)B.(x≠0)C.﹣x(x≠0)D.﹣(x≠0)6.(4分)若点P(sinα﹣cosα,tanα)在第一象限,则在[0,2π)内α的取值范围是()A.* B.C.D.7.(4分)已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为()A .120°B.150°C.180°D.240°8.(4分)复数﹣i的一个立方根是i,它的另外两个立方根是()A .i B.﹣iC.±i D.±i9.(4分)如果棱台的两底面积分别是S,S′,中截面的面积是S0,那么()A .2B.S0=C.2S0=S+S′D.S02=2S'S10.(4分)向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系如图,那么水瓶的形状是图中的()A .B.C.D.11.(4分)3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有()A .90种B.180种C.270种D.540种12.(4分)(2014•邯郸一模)椭圆=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的()A .7倍B.5倍C.4倍D.3倍13.(4分)(2007•崇文区二模)球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过这3个点的小圆的周长为4π,那么这个球的半径为()A .4B.2C.2 D.14.(4分)一个直角三角形三内角的正弦值成等比数列,其最小内角是()A .arccos B.arcsin C.arccos D.arcsin15.(4分)在等比数列{a n}中,a1>1,且前n 项和S n 满足S n=,那么a1的取值范围是()A .(1,+∞)B.(1,4)C.(1,2)D.(1,)二、填空题(共4小题,每小题5分,满分20分)16.(5分)(2014•云南一模)已知圆C过双曲线﹣=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是_________.17.(5分)(x+2)10(x2﹣1)的展开式中x10的系数为_________(用数字作答).18.(5分)如图,在直四棱柱A1B1C1D1﹣ABCD中,当底面四边形ABCD满足条件_________时,有A1C⊥B1D1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)19.(5分)(2010•江西模拟)关于函数f(x)=4sin(x∈R),有下列命题:①由f(x1)=f(x2)=0可得x1﹣x2必是π的整数倍;②y=f(x)的表达式可改写为y=4cos;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x=﹣对称.其中正确的命题的序号是_________.(把你认为正确的命题序号都填上)三、解答题(共6小题,满分70分)20.(10分)在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,A﹣C=.求sinB的值.以下公式供解题时参考:sinθ+sin∅=2sin cos,sinθ﹣sin∅=2cos sin,cosθ+cos∅=2cos cos,cosθ﹣cos∅=﹣2sin sin.21.(12分)如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A,B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.22.(12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计).23.(12分)已知如图,斜三棱柱ABC﹣A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(1)求侧棱A1A与底面ABC所成角的大小;(2)求侧面A1ABB1与底面ABC所成二面角的大小;(3)求顶点C到侧面A1ABB1的距离.24.(12分)设曲线C的方程是y=x3﹣x,将C沿x轴、y轴正向分别平行移动t、s单位长度后得曲线C1.(1)写出曲线C1的方程;(2)证明曲线C与C1关于点A(,)对称;(3)如果曲线C与C1有且仅有一个公共点,证明s=﹣t且t≠0.25.(12分)已知数列{b n}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{b n}的通项b n;(2)设数列{a n}的通项a n=log a(1+)(其中a>0,且a≠1),记S n是数列{a n}的前n项和.试比较S n与log a b n+1的大小,并证明你的结论.1998年全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,每小题4分,满分60分)1.(4分)(2008•陕西)sin330°等于()A .B.C.D.考点:运用诱导公式化简求值.分析:根据330°=360°﹣30°,由诱导公式一可得答案.解答:解:∵故选B.点评:本题主要考查根据三角函数的诱导公式进行化简求值的问题.属基础题.对于三角函数的诱导公式一定要强化记忆.2.(4分)函数y=a|x|(a>1)的图象是()A .B.C.D.考点:指数函数的图像与性质.专题:数形结合.分析:可以先由函数的解析式判断函数是偶函数,图象关于y 轴对称,再考虑x≥0时,函数是指数函数,据它的图象特征,从而选出正确的答案.解答:解:法一:由题设知y=,又a>1.由指数函数图象易知答案为B.法二:因y=a|x|是偶函数,又a>1.所以a|x|≥1,排除AC.当x≥0,y=a x,由指数函数图象知选B点评:本题考查指数函数的图象特征.3.(4分)曲线的极坐标方程ρ=4cosθ化为直角坐标方程为()A .(x+2)2+y2=4B.(x﹣2)2+y2=4C.(x+4)2+y2=16D.(x﹣4)2+y2=16考点:简单曲线的极坐标方程.专题:计算题.分析:先将原极坐标方程ρ=4cosθ两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行判断.解答:解:将原极坐标方程ρ=4cosθ,化为:ρ2=4ρcosθ,化成直角坐标方程为:x2+y2﹣4x=0,即y2+(x﹣2)2=4.故选B .点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.4.(4分)两条直线A1x+B1y+C1=0,A2x+B2y+C2=0垂直的充要条件是()A .A1A2+B1B2=0B.A1A2﹣B1B2=0C.D.考点:两条直线垂直的判定.专题:常规题型;计算题.分析:两条直线A1x+B1y+C1=0,A2x+B2y+C2=0垂直,就是两条直线的方向向量的数量积为0,求解即可得到选项.解答:解:直线A1x+B1y+C1=0的方向向量为(﹣B1,A1),直线A2x+B2y+C2=0的方向向量为(﹣B2,A2),两条直线A1x+B1y+C1=0,A2x+B2y+C 2=0垂直,就是两条直线的方向向量的数量积为0,即:(﹣B1,A1)(﹣B2,A2)=0 可得A1A2+B1B2=0故选A.点评:本题考查两条直线垂直的判定,考查逻辑思维能力,是基础题.5.(4分)函数f(x)=(x≠0)的反函数f﹣1(x)=()A .x(x≠0)B.(x≠0)C.﹣x(x≠0)D.﹣(x≠0)考点:反函数.专题:计算题.分析:先求出函数f(x )=的值域y≠0,再由函数y=解出x后,将x与y互换位置即可得到答案.解答:由y=得x=且y≠0,所以反函数f﹣1(x)=且x≠0 故选则B点评:本题主要考查反函数的求法,属于基础题.6.(4分)若点P(sinα﹣cosα,tanα)在第一象限,则在[0,2π)内α的取值范围是()A.* B.C.D.考点:正弦函数的单调性;象限角、轴线角;正切函数的单调性.专题:计算题.分析:先根据点P(sinα﹣cosα,tanα)在第一象限,得到sinα﹣cosα>0,tanα>0,进而可解出α的范围,确定答案.解答:解:∵故选B.点评:本题主要考查正弦、正切函数值的求法.考查基础知识的简单应用.7.(4分)已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为()A .120°B.150°C.180°D.240°考点:扇形面积公式;旋转体(圆柱、圆锥、圆台).专题:计算题.分析:圆锥的全面积是底面积的3倍,那么母线和底面半径的比为2,求出侧面展开图扇形的弧长,可求其圆心角.解答:解:圆锥的全面积是底面积的3倍,那么母线和底面半径的比为2,设圆锥底面半径为1,则圆锥母线长为2,圆锥的侧面展开图扇形的弧长是圆锥底面周长为2π,该圆锥的侧面展开图扇形的圆心角:π,即180°故选C.点评:本题考查圆锥的侧面展开图,及其面积等知识,考查空间想象能力,是基础题.8.(4分)复数﹣i的一个立方根是i,它的另外两个立方根是()A .i B.﹣iC.±i D.±i考点:复数乘法的棣莫弗公式;复数代数形式的混合运算.专题:计算题.分析:先把复数化简成标准的三角形式,再利用棣莫弗定理,求其立方根.解答:解:∵﹣i=cos+isin,其立方根是cos+isin ,k∈0,1,2,即i,﹣﹣i,﹣i,故选D.点评:本题考查复数的三角形式,棣莫弗定理得应用.9.(4分)如果棱台的两底面积分别是S,S′,中截面的面积是S0,那么()A .2B.S0=C.2S0=S+S′D.S02=2S'S考点:棱台的结构特征.专题:计算题;综合题.分析:棱台不妨看做三棱台,利用相似的性质,面积之比是相似比的平方,化简即可.解答:解:不妨设棱台为三棱台,设棱台的高为2r,上部三棱锥的高为a,根据相似比的性质可得:消去r,然后代入一个方程,可得2故选A.点评:本题考查棱台的结构特征,结论可作公式应用,是基础题.10.(4分)向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系如图,那么水瓶的形状是图中的()A .B.C.D.考点:函数的图象;旋转体(圆柱、圆锥、圆台).专题:数形结合.分析:本题利用排除法解.从所给函数的图象看出,V不是h的正比例函数,由体积公式可排除一些选项;从函数图象的单调性及切线的斜率的变化情况看,又可排除一些选项,从而得出正确选项.解答:解:如果水瓶形状是圆柱,V=πr2h,r不变,V是h的正比例函数,其图象应该是过原点的直线,与已知图象不符.故D错;由已知函数图可以看出,随着高度h的增加V也增加,但随h变大,每单位高度的增加,体积V的增加量变小,图象上升趋势变缓,其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小.故A、C错.故选:B.点评:本题主要考查知识点:旋转体(圆柱、圆锥、圆台)等简单几何体和函数的图象,属于基础题.本题还可从注水一半时的状况进行分析求解.11.(4分)3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有()A .90种B.180种C.270种D.540种考点:组合及组合数公式.专题:计算题;综合题.分析:三所学校依次选1名医生、2名护士,同一个学校没有顺序,可得不同的分配方法数.解答:解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.故选D.点评:不同考查组合及组合数公式,考查计算能力,是基础题.12.(4分)(2014•邯郸一模)椭圆=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的()A .7倍B.5倍C.4倍D.3倍考点:椭圆的简单性质.专题:计算题.分析:由题设知F1(﹣3,0),F2(3,0),由线段PF1的中点在y轴上,设P(3,b),把P(3,b)代入椭圆=1,得.再由两点间距离公式分别求出|P F1|和|P F2|,由此得到|P F1|是|P F2|的倍数.解答:解:由题设知F1(﹣3,0),F2(3,0),如图,∵线段PF1的中点M在y轴上,∴可设P(3,b),把P(3,b)代入椭圆=1,得.∴|PF1|=,|PF2|=..故选A.点评:本题考查椭圆的基本性质和应用,解题时要注意两点间距离公式的合理运用.13.(4分)(2007•崇文区二模)球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过这3个点的小圆的周长为4π,那么这个球的半径为()A .4B.2C.2 D.考点:球面距离及相关计算.专题:计算题.分析:解法一:利用大小排除,解法二:这三个点满足等边三角形,即可求解角的大小,进而求解R,解法三:因为正三角形ABC的外径r=2,故可以得到高,D是BC的中点.在△OBC中,又可以得到角以及边与R的关系,在Rt△ABD中,再利用直角三角形的勾股定理,即可解出R.解答:解法一:过O作OO′⊥平面ABC,O′是垂足,则O′是△ABC的中心,则O′A=r=2,又因为∠AOC=θ=,OA=OC知OA=AC<2O′A.其次,OA是Rt△OO′A的斜边,故OA>O′A.所以O′A<OA<2O′A.因为OA=R,所以2<R<4.因此,排除A、C、D,得B.解法二:在正三角形ABC中,应用正弦定理,得AB=2rsin60°=2.因为∠AOB=θ=,所以侧面AOB是正三角形,得球半径R=OA=AB=2.解法三:因为正三角形ABC的外径r=2,故高AD=r=3,D是BC的中点.在△OBC中,BO=CO=R,∠BOC=,所以BC=BO=R,BD=BC=R.在Rt△ABD中,AB=BC=R,所以由AB2=BD2+AD2,得R2=R2+9,所以R=2.故选B.点评:本题考查学生的空间想象能力,以及对球的性质认识及利用,是基础题.14.(4分)一个直角三角形三内角的正弦值成等比数列,其最小内角是()A .arccos B.arcsin C.arccos D.arcsin考点:等比数列的性质;同角三角函数基本关系的运用.专题:计算题;压轴题.分析:设Rt△ABC中,C=,则A与B互余且A为最小内角.根据等比数列的性质得sin2B=sinA,求的sinA,进而求的A .解答:解:设Rt△ABC中,C=,则A与B互余且A为最小内角.又由已知得sin2B=sinA,即cos2A=sinA,1﹣sin 2A=sinA,解得sinA=或sinA=(舍).故选B点评:本题主要考查了等比数列的性质和同角三角函数基本关系的应用.属基础题.15.(4分)在等比数列{a n}中,a 1>1,且前n项和S n满足S n=,那么a1的取值范围是()A(1,+∞)B(1,4)C(1,2)D(1,)....考点:极限及其运算.专题:计算题;压轴题.分析:在等比数列{a n}中,S n=,由题意可知,=,再由a1>1,|q|<1能够推导出a1的取值范围.解答:解:由题意知S n==,∴a12=1﹣q,∵a1>1,|q|<1,∴1<a12<2,∴.故选D.点评:本题考查数列的极限及其应用,解题时要注意掌握极限的逆运算.二、填空题(共4小题,每小题5分,满分20分)16.(5分)(2014•云南一模)已知圆C过双曲线﹣=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是.考点:双曲线的简单性质.专题:计算题.分析:由双曲线的几何性质易知圆C过双曲线同一支上的顶点和焦点,所以圆C的圆心的横坐标为4.故圆心坐标为(4,±).由此可求出它到双曲线中心的距离.解答:解:由双曲线的几何性质易知圆C过双曲线同一支上的顶点和焦点,所以圆C的圆心的横坐标为4.故圆心坐标为(4,±).∴它到中心(0,0)的距离为d==.故答案为:.点评:本题考查双曲线的性质和应用,解题时注意圆的性质的应用.17.(5分)(x+2)10(x2﹣1)的展开式中x10的系数为179(用数字作答).考点:二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求出第r+1项,令r=0,2得展开式系数.解答:解:(x+2)10(x2﹣1)=x2(x+2)10﹣(x+2)10∴(x+2)10(x2﹣1)的展开式中x10的系数是(x+2)10展开式的x8的系数﹣x10的系数∵(x+2)10展开式的通项为T r+1=C10r x10﹣r2r=2r C10r x10﹣r∴令r=0,2分别得x10,x8的系数为1,180故展开式中x10的系数为180﹣1=179,故答案为179点评:二项展开式的通项公式是解决二项展开式的特定项问题的工具.18.(5分)如图,在直四棱柱A1B1C1D1﹣ABCD中,当底面四边形ABCD满足条件AC⊥BD时,有A1C⊥B1D1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)考点:空间中直线与直线之间的位置关系.专题:压轴题;开放型.分析:根据题意,由A1C⊥B1D1,结合直棱柱的性质,分析底面四边形ABCD得到BD⊥AC,进而验证即可得答案.解答:解:∵四棱柱A1B1C1D1﹣ABCD是直棱柱,∴B1D1⊥A1A,若A1C⊥B1D1则B1D1⊥平面A1AC1C∴B1D1⊥AC,又由B1D1∥BD,则有BD⊥AC,反之,由BD⊥AC亦可得到A1C⊥B1D1故答案为:BD⊥AC.点评:本题主要通过开放的形式来考查线线,线面,面面垂直关系的转化与应用.19.(5分)(2010•江西模拟)关于函数f(x)=4sin(x∈R),有下列命题:①由f(x1)=f(x2)=0可得x1﹣x2必是π的整数倍;②y=f(x)的表达式可改写为y=4cos;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x=﹣对称.其中正确的命题的序号是②.(把你认为正确的命题序号都填上)考点:三角函数的周期性及其求法;命题的真假判断与应用;运用诱导公式化简求值;正弦函数的对称性.专题:计算题;压轴题.分析:首先根据函数求出最小正周期,然后根据诱导公式求出对称中心,然后根据图象分别求出最大值和最小值,最后综合判断选项.解答:解:函数f(x)=4sin的最小正周期T=π,由相邻两个零点的横坐标间的距离是=知①错.利用诱导公式得f(x)=4cos=4cos=4cos,知②正确.由于曲线f(x)与x轴的每个交点都是它的对称中心,将x=代入得f(x)=4sin≠0,因此点(,0)不是f(x)图象的一个对称中心,故命题③错误.曲线f(x)的对称轴必经过图象的最高点或最低点,且与y轴平行,而x=﹣时y=0,点(﹣,0)不是最高点也不是最低点,故直线x=﹣不是图象的对称轴,因此命题④不正确.故答案为:②点评:本题考查三角函数的周期性及其求法,诱导公式的利用,以及正弦函数的对称性问题,属于基础题.三、解答题(共6小题,满分70分)20.(10分)在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,A﹣C=.求sinB的值.以下公式供解题时参考:sinθ+sin∅=2sin cos,sinθ﹣sin∅=2cos sin,cosθ+cos∅=2cos cos,cosθ﹣cos∅=﹣2sin sin.考点:正弦定理的应用;三角函数中的恒等变换应用.分析:先根据正弦定理将边的关系转化为角的正弦的关系,再经过和差化积和诱导公式转化即可求出的余弦和正弦值,再由正弦的二倍角公式可得答案.解答:解:由正弦定理和已知条件a+c=2b得sinA+sinC=2sinB.由和差化积公式得2sin cos=2sinB.由A+B+C=π得sin=cos,又A﹣C=得cos=sinB,所以cos=2sin cos.因为0<<,cos≠0,所以sin=,从而cos=所以sinB=.点评:本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.21.(12分)如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A,B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.考点:轨迹方程.专题:应用题.分析:方法一:由抛物线的定义知该曲线段是一段抛物线,建立适当的坐标系,依据题意求参数值.用定义法写出抛物线的方程.方法二:建立相应的坐标系,设出曲线段C上的任意一点的坐标(x,y),依据题意曲线段C上的任一点到l2的距离与到点N的距离相等得出方程整理即得抛物线的方程.解答:解:法一:如图建立坐标系,以l1为x轴,MN的垂直平分线为y轴,点O为坐标原点.依题意知:曲线段C是以点N为焦点,以l2为准线的抛物线的一段,其中A,B分别为C的端点.设曲线段C的方程为y2=2px(p>0),(x A≤x≤x B,y>0),其中x A,x B分别为A,B的横坐标,p=|MN|.所以M(,0),N(,0).由|AM|=,|AN|=3得(x A+)2+2px A=17,①(x A﹣)2+2px A=9.②由①,②两式联立解得x A=.再将其代入①式并由p>0解得因为△AMN是锐角三角形,所以>x A,故舍去所以p=4,x A=1.由点B在曲线段C上,得x B=|BN|﹣=4.综上得曲线段C的方程为y2=8x(1≤x≤4,y>0).解法二:如图建立坐标系,分别以l1、l2为x、y轴,M为坐标原点.作AE⊥l1,AD⊥l2,BF⊥l2,垂足分别为E、D、F.设A(x A,y A)、B(x B,y B)、N(x N,0).依题意有x A=|ME|=|DA|=|AN|=3,y A=|DM|=,由于△AMN为锐角三角形,故有x N=|ME|+|EN|=|ME|+=4x B=|BF|=|BN|=6.设点P(x,y)是曲线段C上任一点,则由题意知P属于集合{(x,y)|(x﹣x N)2+y2=x2,x A≤x≤x B,y>0}.故曲线段C的方程为y2=8(x﹣2)(3≤x≤6,y>0).点评:考查利用坐标法求轨迹方程,以及抛物线的定义,本题主要是训练利用符号语言进行运算的能力.22.(12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计).考点:基本不等式在最值问题中的应用.专题:压轴题.分析:先将实际问题转化成数学中的函数的最值问题,再利用基本不等式求.解答:解法一:设y为流出的水中杂质的质量分数,则y=,其中k>0为比例系数.依题意,即所求的a,b值使y值最小.根据题设,有4b+2ab+2a=60(a>0,b>0),得b=(0<a<30).①于是y====≥=,当a+2=时取等号,y达到最小值.这时a=6,a=﹣10(舍去).将a=6代入①式得b=3.故当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小.解法二:依题意,即所求的a,b的值使ab最大.由题设知4b+2ab+2a=60(a>0,b>0),即a+2b+ab=30(a>0,b>0).因为a+2b≥2,所以+ab≤30,当且仅当a=2b时,上式取等号.由a>0,b>0,解得0<ab≤18.即当a=2b时,ab取得最大值,其最大值为18.所以2b2=18.解得b=3,a=6.故当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小.点评:本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.23.(12分)已知如图,斜三棱柱ABC﹣A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(1)求侧棱A1A与底面ABC所成角的大小;(2)求侧面A1ABB1与底面ABC所成二面角的大小;(3)求顶点C到侧面A1ABB1的距离.考点:棱柱的结构特征.专题:计算题;证明题;综合题;转化思想.分析:(1)要求侧棱A1A与底面ABC所成角的大小;必须先找出线面角,就是∠A1AC;(2)要求侧面A1ABB1与底面ABC所成二面角的大小;利用三垂线定理作出角,即作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB.所以∠A1ED是面A1ABB1与面ABC所成二面角的平面角.求解即可;(3)求顶点C到侧面A1ABB1的距离,可以应用等体积法求解,也可以直接作出距离解三角形即可.解答:(1)解:如图作A1D⊥AC,垂足为D,由面A1ACC1⊥面ABC,得A1D⊥面ABC,所以∠A1AD为A1A与面ABC所成的角.因为AA1⊥A1C,AA1=A1C,所以∠A1AD=45°为所求.(2)解:作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB.所以∠A1ED是面A1ABB1与面ABC所成二面角的平面角.由已知,AB⊥BC,得ED∥BC.又D是AC的中点,BC=2,AC=2,所以DE=1,AD=A1D=,tan∠A1ED==.故∠A1ED=60°为所求.(3)解法一:由点C作平面A1ABB1的垂线,垂足为H,则CH的长是C到平面A1ABB1的距离.连接HB,由于AB⊥BC,得AB⊥HB.又A1E⊥AB,知HB∥A1E,且BC∥ED,所以∠HBC=∠A1ED=60°所以CH=BCsin60°=为所求.解法二:连接A1B.根据定义,点C到面A1ABB1的距离,即为三棱锥C﹣A1AB的高h.由得,即所以为所求.点评:本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.24.(12分)设曲线C的方程是y=x3﹣x,将C沿x轴、y轴正向分别平行移动t、s单位长度后得曲线C1.(1)写出曲线C1的方程;(2)证明曲线C与C1关于点A(,)对称;(3)如果曲线C与C1有且仅有一个公共点,证明s=﹣t且t≠0.考点:曲线与方程;函数的图象.专题:压轴题;函数的性质及应用.分析:(1)将C沿x轴、y轴正向分别平行移动t、s单位长度后,x变为x﹣t,y变为y﹣s,(2)在曲线C上任取一点B1(x1,y1),利用中点公式求出它关于点A的对称点B2,证明点B2在曲线C1上,同样证明,在曲线C1上的点关于点A的对称点在曲线C上.(3)曲线C与C1有且仅有一个公共点,即方程组有唯一解,对应的一元二次方程的判别式等于0,解答:(1)解:曲线C1的方程为y=(x﹣t)3﹣(x﹣t)+s.(2)证明:在曲线C上任取一点B1(x1,y1).设B2(x2,y2)是B1关于点A的对称点,则有,,所以x1=t﹣x2,y1=s﹣y2.代入曲线C的方程,得x2和y2满足方程:s﹣y2=(t﹣x2)3﹣(t﹣x2),即y2=(x2﹣t)3﹣(x2﹣t)+s,可知点B2(x2,y2)在曲线C1上.反过来,同样可以证明,在曲线C1上的点关于点A的对称点在曲线C上.因此,曲线C与C1关于点A对称.(3)证明:因为曲线C与C1有且仅有一个公共点,所以,方程组有且仅有一组解.消去y,整理得3tx2﹣3t2x+(t3﹣t﹣s)=0,这个关于x的一元二次方程有且仅有一个根.所以t≠0并且其根的判别式△=9t4﹣12t(t3﹣t﹣s)=0,即所以且t≠0.点评:本小题主要考查函数图象、方程与曲线,曲线的平移、对称和相交等基础知识,考查运动、变换等数学思想方法以及综合运用数学知识解决问题的能力.25.(12分)已知数列{b n}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{b n}的通项b n;(2)设数列{a n}的通项a n=log a(1+)(其中a>0,且a≠1),记S n是数列{a n}的前n项和.试比较S n与log a b n+1的大小,并证明你的结论.考点:等差数列的通项公式;数列的求和;数学归纳法.专题:计算题;证明题;压轴题.分析:(1)根据数列{b n}是等差数列,建立b1与d的方程组,解之即可;(2)因此要比较S n与log a b n+1的大小,可先比较(1+1)(1+)(1+)与的大小,利用用数学归纳法证明此式,当a>1时,S n>log a b n+1,当0<a<1时,S n<log a b n+1.解答:解:(1)设数列{b n}的公差为d,由题意得解得所以b n=3n﹣2.(2)由b n=3n﹣2,知S n=log a(1+1)+log a(1+)++log a(1+)=log a[(1+1)(1+)(1+)],log a b n+1=log a.因此要比较S n与log a b n+1的大小,可先比较(1+1)(1+)(1+)与的大小.取n=1有(1+1)>,取n=2有(1+1)(1+)>,由此推测(1+1)(1+)(1+)>.①若①式成立,则由对数函数性质可断定:当a>1时,S n>log a b n+1.当0<a<1时,S n<log a b n+1.下面用数学归纳法证明①式.(ⅰ)当n=1时已验证①式成立.(ⅱ)假设当n=k(k≥1)时,①式成立,即(1+1)(1+)(1+)>.那么,当n=k+1时,(1+1)(1+)(1+)(1+)>(1+)=(3k+2).因为==,所以(3k+2)>.因而(1+1)(1+)(1+)(1+)>.这就是说①式当n=k+1时也成立.由(ⅰ),(ⅱ)知①式对任何正整数n都成立.由此证得:当a>1时,S n>log a b n+1.当0<a<1时,S n<log a b n+1.点评:本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳、推理能力以及用数学归纳法进行论证的能力.。
1998年高考数学试题及答案(全国理)-推荐下载
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
1998年全国高考数学试题及答案
1998年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟. 第Ⅰ卷(选择题共65分)一、 选择题:本大题共15小题;第(1) (10)题每小题4分,第(11) (15)题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合M={x │0≤x<2},集合N={x │x 2-2x-3<0},集合M ∩N 为 (A){x │0≤x<1} (B){x │0≤x<2} (C){x │0≤x ≤1} (D){x │0≤x ≤2} [Key] B(2)如果直线ax+2y+2=0与直线3x-y-2=0平行,那么系数a 为32)(23)(6)(3)(D C B A ---[Key] B(3)函数)x 31x 21(tg y -=在一个周期内的图象是[Key] A(4)已知三棱锥D-ABC 的三个则面与底面全等,且AB=AC=3,BC=2,则BC 为棱,以面BCD 与面BCA 为面的二面角的大小是32)D (2)C (31arccos)B (33arccos)A (ππ[Key] C(5)函数x2cos )x 23sin(y +-π=的最小正周期是 ππππ4)D (2)C ()B (2)A ([Key] B(6)满足arccos(1-x)≥arccosx 的x 的取值范围是]1,21)[(]21,0)[(]0,21)[(]21,1)[(D C B A --[Key] D(7)将y=2x 的图象(A)先向左平行移动1个单位 (B)先向右平行移动1个单位 (C)先向上平行移动1个单位 (D)先向下平行移动1个单位 再作关于直线y=x 对称的图象,可得到函数y=log 2(x+1)的图象.[Key] D(8)长方体一个顶点上三条棱的长分别是3,4,5,且它的八个顶点都在同一个球面上,这个球的表面积是ππππ200)(50)(225)(220)(D C B A[Key] C(9)曲线的参数方程⎪⎩⎪⎨⎧-=-=2111t y tx (t 是参数,t ≠0),它的普通方程是 11)(1)1(1)()1()2()(1)1()1)((2222+-=--=--==--x xy D x y C x x x y B y x A[Key] B(10)函数y=cos 2x-3cosx+2的最小值为6)(41)(0)(2)(D C B A -[Key] B(11)椭圆C 与14)2(9)3(22=-+-y x 椭圆关于直线x+y=0对称,椭圆C 的方程是 (A) 19)3(4)2(22=+++y x(B) 14)3(9)2(22=-+-y x (C) 14)3(9)2(22=+++y x (D) 19)3(4)2(22=-+-y x[Key] A(12)圆台上、下底面积分别为π、4π,侧面积为6π,这个圆台的体积是337)(637)(32)(332)(ππππD C B A[Key] D(13)定义在区间(-∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合.设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b); ②f(b)-f(-a)<g(a)-g(-b); ③f(a)-f(-b)>g(b)-g(-a); ④f(a)-f(-b)<g(b)-g(-a), 其中成立的是(A)①与④ (B)②与③ (C)①与③ (D)②与④ [Key] C(14)不等式组⎪⎩⎪⎨⎧+->+->x x x x x 22330的解集是 (){}20<<x x A (){}5.20<<x x B (){}60<<x x C (){}30<<x x D[Key] C(15)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有 (A)150种 (B)147种 (C)144种 (D)141种[Key] D(16)已知92⎪⎪⎭⎫ ⎝⎛-xx a 的展开式中x 3的系数为49,常数a 的值为_________. [Key] 4(17)已知直线的极坐标方程22)4sin(=+πθρ则极点到该直线的距离是_______。
1988年全国普通高等学校招生统一考试
1988年全国普通高等学校招生统一考试物理一、(24分)每小题2分.本题中每小题给出的几个说法中,有一个是正确的.把正确的说法选出来,并将正确说法前的字母填写在题后方括号内.填写在方括号外的字母,不作为选出的答案.答错的,不答的,都得0分.(2)一个人站在阳台上,以相同的速度v0分别把三个球竖直向上抛出、竖直向下抛出、水平抛出,不计空气阻力,则三球落地时的速率,A.上抛球最大.B.下抛球最大.C.平抛球最大.D.三球一样大.(3)两物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示.对物体A施以水平的推力F,则物体A对物体B的作用力等于(4)单色光从真空射入玻璃时,它的A.波长变长,波速变小.B.波长变短,波速变大.C.波长变长,波速变大.D.波长变短,波速变小.(5)原子的核式结构学说,是卢瑟福根据以下哪个实验或现象提出来的?A.光电效应实验.B.氢原子光谱实验.C.α粒子散射实验.D.天然放射现象.(6)将一物体以某一初速竖直上抛,在下列四幅图中,哪一幅能正确表示物体在整个运动过程中的速率v与时间t的关系(不计空气阻力)?(7)在水平放置的光滑绝缘杆ab上,挂有两个金属环M和N,两环套在一个通电密绕长螺线管的中部,如图所示.螺线管中部区域的管外磁场可以忽略.当变阻器的滑动接头向左移动时,两环将怎样运动?A.两环一起向左移动.B.两环一起向右移动.C.两环互相靠近.D.两环互相离开.(8)把两根同种材料的电阻丝分别连在两个电路中.甲电阻丝长为l,直径为d;乙电阻丝长为2l,直径为2d.要使两电阻丝消耗的功率相等.加在两电阻丝上的电压比应满足(9)要使LC振荡电路的周期增大一倍.可采用的办法是:A.自感系数L和电容C都增大一倍.B.自感系数L和电容C都减小一半.C.自感系数L增大一倍,而电容C减小一半.D.自感系数L减小一半,而电容C增大一倍.(10)在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量m1和m2的木块,m1>m2,如图所示.已知三角形木块和两物体都是静止的,则粗糙水平面对三角形木块A.有摩擦力的作用,摩擦力的方向水平向右.B.有摩擦力的作用,摩擦力的方向水平向左.C.有摩擦力的作用,但摩擦力的方向不能确定,因为m1、m2、θ1、θ2的数值并未给出.D.以上结论都不对.(11)两个球形行星A和B各有一卫星a和b,卫星的圆轨道接近各自行星的表面.如果两行星质量之比MA/MB=p,两行星半径之比RA/RB=q,则两卫星周期之比Ta/Tb为(12)图中S为三相交流电源.连在电路中的各电阻丝B1、B2、B3、B4的阻值都相同.变压器都是电压比为2∶1的降压变压器.这些电阻丝,按消耗功率大小的顺序排列(从大到小)应为A.B1B2B3B4.B.B4B3B2B1.C.B4B2B3B1.D.B3B1B4B2.二、(24分)每小题3分.本题中每小题给出的几个说法中,有一个或几个是正确的,把正确的说法全选出来,并将正确说法前的字母填写在题后方括号内.每小题,全部选对的,得3分;选对但不全的,得1分;有选错的,得0分;不答的,得0分.填写在方括号外的字母,不作为选出的答案.(1)下列核反应方程中,哪些是平衡的?(2)在有关布朗运动的说法中,正确的是:A.液体的温度越低,布朗运动越显著.B.液体的温度越高,布朗运动越显著.C.悬浮微粒越小,布朗运动越显著.D.悬浮微粒越大,布朗运动越显著.(3)下列哪些现象说明光具有波动性?A.光的干涉.B.光的衍射.C.光的反射.D.光电效应.(4)图表示的是透镜成像实验的装置.A.如透镜是凸透镜,则不论物体放在透镜左方何处,只要把光屏移到适当位置,一定能在屏上得到物体的像.B.如透镜是凸透镜,则不论物体放在透镜左方何处,去掉光屏而用眼睛从右向左沿主轴直接观察,一定看不到物体的像.C.如透镜是凹透镜,则不论物体放在透镜左方何处,只要把光屏移到适当位置,一定能在屏上得到物体的像.D.如透镜是凹透镜,则不论物体放在透镜左方何处,去掉光屏而用眼睛从右向左沿主轴直接观察,一定能看到物体的像.(5)两块平行金属板带等量异号电荷,要使两板间的电压加倍,而板间的电场强度减半,采用的办法有A.两板的电量加倍,而距离变为原来的4倍.B.两板的电量加倍,而距离变为原来的2倍.C.两板的电量减半,而距离变为原来的4倍.D.两板的电量减半,而距离变为原来的2倍.(6)如图所示,闭合矩形线圈abcd从静止开始竖直下落,穿过一个匀强磁场区域,此磁场区域竖直方向的长度远大于矩形线圈bc边的长度.不计空气阻力,则A.从线圈dc边进入磁场到ab边穿出磁场的整个过程,线圈中始终有感生电流.B.从线圈dc边进入磁场到ab边穿出磁场的整个过程中,有一个阶段线圈的加速度等于重力加速度.C.dc边刚进入磁场时线圈内感生电流的方向,与dc边刚穿出磁场时感生电流的方向相反.D.dc边刚进入磁场时线圈内感生电流的大小,与dc边刚穿出磁场时感生电流的大小一定相等.(7)设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示.已知一离子在电场力和洛仑兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零.C 点是运动的最低点.忽略重力,以下说法中正确的是:A.这离子必带正电荷.B.A点和B点位于同一高度.C.离子在C点时速度最大.D.离子到达B点后,将沿原曲线返回A点.(8)一物体放在光滑水平面上,初速为零.先对物体施加一向东的恒力F,历时1秒钟;随即把此力改为向西,大小不变,历时1分钟;接着又把此力改为向东,大小不变,历时1秒钟;如此反复,只改变力的方向,共历时1分钟.在此1分钟内.A.物体时而向东运动,时而向西运动,在1分钟末静止于初始位置之东.B.物体时而向东运动,时而向西运动,在1分钟末静止于初始位置.C.物体时而向东运动,时而向西运动,在1分钟末继续向东运动.D.物体一直向东运动,从不向西运动,在1分钟末静止于初始位置之东.三、(15分)每小题3分.把答案填写在题中横线上空白处,不要求写出演算过程.(1)如图所示电路中,R0是已知的,要使AB间的总电阻恰等于R0,则R1= .(2)有一真空容器,在室温下容器内的气压为10-3帕.估算该容器内1厘米3气体中的分子数.估算取1位有效数字即可.答: .1标准大气压=1×105帕.阿伏伽德罗常数N=6×1023摩-1.(3)一均匀木杆,每米重10牛,支点位于离木杆的左端点0.3米处.现将一重量为11牛的物体挂在木杆的左端点上.设在木杆的右端点施一大小为5.0牛的竖直向上的力,恰能使木杆平衡,则木杆的长度L= 米.(4)绳上有一简谐横波向右传播,当绳上某质点A向上运动到最大位移时,在其右方相距0.30米的质点B刚好向下运动到最大位移.已知波长大于0.15米,则该波的波长等于多少米? 答: .(5)在厚度为d、折射率为n的大玻璃板的下表面,紧贴着一个半径为r的圆形发光面.为了从玻璃板的上方看不见圆形发光面,可在玻璃板的上表面贴一块纸片,所贴纸片的最小面积为.四、(12分)(1)右图是测定电流表内电阻实验的电路图.电流表的内电阻约在100欧左右,满偏电流为500微安.用电池作电源.1.(2分)实验室中配有的可变电阻为:A.电阻箱,阻值范围为0~10欧.B.电阻箱,阻值范围为0~9999欧.C.电位器,阻值范围为0~200欧.D.电位器,阻值范围为0~20千欧.在上述配有的可变电阻中,电路图中的R应选用,R'应选用.(填写字母代号) 2.(2分)某学生进行的实验步骤如下:①先将R的阻值调到最大,合上K1,调节R的阻值,使电流表的指针偏转到满刻度.②合上K2,调节R′和R的阻值,使电流表的指针偏转到满刻度的一半.③记下R′的阻值.指出上述实验步骤中有什么错误.答: .3.(2分)如果按正确实验步骤测得的R′值为100欧,已知电流表的满偏电流为500微安,现在要把它改装成量程为2伏特的伏特表,则应串联的分压电阻为欧.4.(3分)由以下四种说法中选出正确说法,并将正确说法前的字母填在题后方括号内.A.上述电流表内电阻的测得值比其真实值小,这一因素使得用上述改装成的伏特表测定电压时,其读数比伏特表两端的实际电压小.B.上述电流表内电阻的测得值比其真实值大,这一因素使得用上述改装成的伏特表测定电压时,其读数比伏特表两端的实际电压小.C.上述电流表内电阻的测得值比其真实值小,这一因素使得用上述改装成的伏特表测定电压时,其读数比伏特表两端的实际电压大.D.上述电流表内电阻的测得值比其真实值大,这一因素使得用上述改装成的伏特表测定电压时,其读数比伏特表两端的实际电压大.(2)(3分)有一架托盘天平,没有游码,最小砝码为100毫克.用这架天平称量一个物体,当右盘中加上36.20克砝码时,天平指针向左偏1.0小格,如图中实箭头所示.如果在右盘中再加上100毫克的砝码,天平指针则向右偏1.5小格,如图中虚箭头所示.这个物体的质量可读为克.五、(7分)用细线悬挂一质量为M的木块,木块静止,如下左图所示.现有一质量为m的子弹自左方水平地射穿此木块,穿透前后子弹的速度分别为v0和v.求木块能摆到的最大高度.(设子弹穿过木块的时间很短,可不计)六、(9分)一圆筒形气缸静置于地面上,如上右图所示.气缸筒的质量M,活塞(连同手柄)的质量为m,气缸内部的横截面积为S.大气压强为p0.平衡时气缸内的容积为V.现用手握住活塞手柄缓慢向上提.设气缸足够长,在整个上提过程中气体温度保持不变,并不计气缸内气体的重量及活塞与气缸壁间的摩擦.求将气缸刚提离地面时活塞上升的距离.七、(9分)N个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图所示(图中只画出了六个圆筒,作为示意).各筒和靶相间地连接到频率为υ、最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间及圆筒与靶间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差V1-V2=-U.为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.1988年全国普通高等学校招生统一考试物理参考答案一、全题24分,每小题2分.答错的,不答的,都给0分.(1)A.(2)D.(3)B.(4)D.(5)C.(6)B.(7)C.(8)C.(9)A.(10)D.(11)A.(12)B.二、全题24分,每小题3分.每小题,全部选对的,得3分;选对但不全的,得1分;有选错的,给0分;不答的,给0分.(1)B,C.(2)B,C.(3)A,B.(4)D.(5)C.(6)B,C.(7)A,B,C.(8)D.三、全题15分,每小题3分.答案正确的,按下列答案后面方括号内的分数给分;答错的,不答的,都给0分.(2)3×106(3分).答案为2×106也算对,给3分.(3)1.8(3分).(4)0.6米,0.2米(答出两个正确答案的给3分;只答出一个正确答案的给1分).四、全题12分,每小题按下列答案后面方括号内的分数给分;答错的,不答的,都给0分.(1) 1.D(1分),B(1分).2.合上K2后,不应再调节R的阻值(2分).3.3900(2分).4.A(3分).(2)36.24(3分).(答数不是36.24的都给0分)五、射穿过程中,水平方向动量守恒,可得mv0=MV+mv.(1)射穿后,木块在摆动过程中机械能守恒,可得评分标准:本题共7分.列出(1)式给3分;列出(2)式给3分;得出(3)式给1分.六、设气缸内气体原来的压强为p1,后来的压强为p2,则p1S=p0S+mg.(1)p0S=p2S+Mg.(2)由玻意耳-马略特定律可知p1V=p2(V+xS), (3)其中x为活塞上升的距离.由(1),(2),(3)式可得评分标准:本题共9分.列出(1)式给2分;列出(2)式给2分;列出(3)式给3分;得出(4)式再给2分.七、为使正离子获得最大能量,要求离子每次穿越缝隙时,前一个圆筒的电势比后一个圆筒的电势高U,这就要求离子穿过每个圆筒的时间都恰好等于交流电的半个周期.由于圆筒内无电场,离子在筒内做匀速运动.设v n为离子在第n个圆筒内的速度,则有将(3)代入(2),得第n个圆筒的长度应满足的条件为:n=1,2,3……N.打到靶上的离子的能量为:评分标准:本题共9分.列出(1)式给2分;列出(2)式给3分;得出(4)式再给2分;得出(5)式给2分.。
1988年试题全国高考数学试题及参考答案
1988年试题(理工农医类)一、本题每一个小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,把你认为正确的结论的代号写在题后的括号内.(A)1 (B)-1 (C)I (D)-i【】[Key]一、本题考查基本概念和基本运算.(1)B(2)设圆M的方程为(x-3)2+(y-2)2=2,直线L的方程为x+y-3=0,点P的坐标为(2,1),那么(A)点P在直线L上,但不在圆M上(B)点P在圆M上,但不在直线L上(C)点P既在圆M上,又在直线L上(D)点P既不在圆M上,也不在直线L上【】[Key] (2)C(3)集合{1,2,3}的子集总共有(A)7个 (B)8个(C)6个 (D)5个【】[Key] (3)B(A)10 (B)5【】[Key] (4)A(5)在的展开式中,x6的系数是【】(6)函数y=cos4x-sin4x的最小正周期是(A)π(B)2π【】[Key] (6)A(7)方程的解集是【】[Key] (7)C(A)圆(B)双曲线右支(C)抛物线(D)椭圆【】[Key] (8)D(9)如图,正四棱台中,A'D'所在的直线与BB'所在的直线是(A)相交直线(B)平行直线(C)不互相垂直的异面直线(D)互相垂直的异面直线【】【】[Key] (10)D(11)设命题甲:△ABC的一个内角为60°.命题乙:△ABC的三个内角的度数成等差数列.那么(A)甲是乙的充分条件,但不是必要条件(B)甲是乙的必要条件,但不是充分条件(C)甲是乙的充要条件(D)甲不是乙的充分条件,也不是乙的必要条件【】[Key] (11)C(12)复平面内,若复数z满足│z+1│=│z-i│,则z所对应的点Z的集合构成的图形是(A)圆(B)直线(C)椭圆(D)双曲线【】[Key] (12)B(13)如果曲线x2-y2-2x-2y-1=0经过平移坐标轴后的新方程为那么新坐标系的原点在原坐标系中的坐标为(A)(1,1) (B)(-1,-1)(C)(-1,1) (D)(1,-1)【】[Key] (13)D(14)假设在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有2件次品的抽法有【】[Key] (14)B上),点D是点C在面β上的射影,点E是棱AB上满足∠CEB为锐角的任意一点,那么(A)∠CEB>∠DEB(B)∠CEB=∠DEB(C)∠CEB<∠DEB(D)∠CEB与∠DEB的大小关系不能确定【】[Key] (15)A二、只要求直接写出结果.(5)已知等比数列{a n}的公比q>1,并且a1=b(b≠0),求[Key] 二、本题考查基础知识和基本运算,只需要写出结果.[Key] 三、本题主要考查三角公式和进行三角式的恒等变形的能力.解法一:解法二:解法三:解法四:四、如图,正三棱锥S-ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.[Key] 四、本题主要考查空间想象能力、体积计算等知识和推理能力.解法一:连接AE,因为△SBC和△ABC都是边长为a的正三角形,并且SE和AE分别是它们的中线,所以SE=AE,从而△SEA为等腰三角形,由于D是SA的中点,所以ED⊥SA.作DF⊥SE,交SE于点F.考虑直角△SDE的面积,得到所求的旋转体的体积是以DF为底面半径,分别以SF和EF为高的两个圆锥的体积的和,即解法二:连结BD.因为BD是正三角形SBA的中线,所以BD⊥SA.连结CD,同理CD⊥SA.于是SA⊥平面BDC,所以SA⊥DE.作DF⊥SE,交SE于点F.在直角△SDE中,SD2=SF·SE,所求的旋转体的体积为[Key] 五、本题主要考查对数函数的性质,以及运用重要不等式解决问题的能力.解法一:情形1∶0<a<1.情形2∶a>1.解法二:当t>0时,由重要不等式可得当且仅当t=1时取“=”号.当0<a<1时,y=log a x是减函数,当a>1时,y=log a x是增函数,解法三:因为t>0,又有当且仅当t=1时取“=”号,当且仅当t=1时取“=”号.以下同解法二.六、给定实数a,a≠0,且a≠1设函数证明(1)经过这个函数图象上任意两个不同的点的直线不平行于x轴;(2)这个函数的图象关于直线y=x成轴对称图形.[Key] 六、本题主要考查考生在正确理解数学概念(函数的图象的概念,轴对称图形的概念等)的基础上进行推理的能力,以及灵活运用学过的代数和解析几何的知识(互为反函数的图象之间的关系,两条直线平行的条件等)解决问题的能力.证法一:(1)设M1(x1,y1),M2(x2,y2)是这个函数图象上任意两个不同的点,∵a≠1,且x1≠x2,∴y2-y1≠0.因此,M1M2不平行于x轴.即,由此得a=1,与已知矛盾,于是由②式得证法二:(1)设M1(x1,y1),M2(x2,y2)是这个函数的图象上任意两个不同的点,则x1≠x2.假如直线M1M2平行于x轴,那么y1=y2,即亦即(x1-1)(ax2-1)=(x2-1)(ax1-1),整理得a(x1-x2)=x1-x2,因为x1≠x2,所以a=1,这与已知矛盾.因此M1M2不平行于x轴.(2)先求所给函数的反函数:由得y(ax-1)=x-1,即(ay-1)x=y-1.即ax-a=ax-1,由此得a=1,与已知矛盾,所以ay-1≠0.因此得到由于函数y=f(x)的图象和它的反函数y=f-1(x)的图象关于直线y=x对证法三:(1)任取一条与x轴平行的直线L,则l的方程为y=c(c为常数).考虑L与所给函数的图象是否相交以及交点数目的情况.将②代入①得c(ax-1)=x-1,即(ca-1)x=c-1. ③从而直线L与所给函数的图象无交点.这说明原方程组恰有一个解,从而直线L与所给函数的图象恰有一个交点.综上述,平行于x轴的直线与所给函数的图象或者不相交,或者恰有一个交点.因此,经过这个函数图象上任意两个不同的点的直线不平行于x轴.(2)同证法一或证法二.[Key] 七、本题主要考查考生利用方程研究曲线性质的能力,以及综合运用学过的代数知识(一元二次方程的判别式,根与系数的关系,解二元二次方程组,解不等式等)去解题的能力.解法一:假定椭圆上有符合题意的四个点,则这四个点的坐标都应满足下面的椭圆方程:又这四个点的坐标应满足下面的抛物线方程y2=2px,从而它们都是下面的方程组的解:将②式代入①式,得由于上述方程组有4个不同的实数解,所以方程③的判别式应大于零,整理得 3p2-4p+1>0,由已知,椭圆上的点的横坐标都大于零,所以方程③的两个根应都为正数,于是得 7p-4<0,解此不等式得由④、⑤以及已知条件得一次项系数7p-4<0,所以x1,x2都为正数.把x1及x2分别代入②中,可解得显然y1,y2,y3,y4两两不相等.由于(x1,y1)适合②式和③式,从而也适合①式,因此点M1(x1,y1)是符合题意的点.同理M2(x1,y2),M3(x2,y3),M4(x2,y4)都是符合题意的点,并且它们是互不相同的.解法二:椭圆上有四个点符合题意的充要条件是方程组有四个不同的实数解.所以原方程组有四个不同的实数解,当且仅当方程③有两个不相等的正根.而这又等介于在p>0的条件下,解此不等式组,得到解法三:易求出所给椭圆的方程为假定这个椭圆上有符合题意的四个点,则这些点的坐标应是下述方程组的解:把②式化简得y2=2px.以下同解法一.。
1998年全国高考数学试题及答案解析
第 1 页 共 10 页 1998年普通高等学校招生全国统一考试
数学
(理工农医类)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.
第Ⅰ卷(选择题共65分)
一、 选择题:本大题共15小题;第(1) (10)题每小题4分,第(11) (15)题每小题5分,共65分,
在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合M={x │0≤x<2},集合N={x │x 2-2x-3<0},集合M ∩N 为
(A){x │0≤x<1} (B){x │0≤x<2}
(C){x │0≤x ≤1} (D){x │0≤x ≤2}
[Key] B
(2)如果直线ax+2y+2=0与直线3x-y-2=0平行,那么系数a 为
32
)(23
)(6)(3)(D C B A ---
[Key] B
(3)函数
)x 31x 21(tg y -=在一个周期内的图象是
[Key] A
(4)已知三棱锥D-ABC 的三个则面与底面全等,且AB=AC=3,BC=2,则BC 为棱,以面BCD 与面BCA 为面的二面角的大小是
32)D (2)C (31
arccos )B (33
arccos )A (ππ
[Key] C
(5)函数x 2cos )x 23sin(y +-π=的最小正周期是
ππππ
4)D (2)C ()B (2)A (
[Key] B。
1988年全国高考数学(理科)试题
1988年普通高等学校招生全国统一考试理科数学说明:共七道大题,满分120分.一、选择题:(本题满分45分)本题共15个小题,每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把你认为正确的结论的代号写在题后的括号内.每小题选对得3分,不选或选错一律得0分. 1.21()1i i -+的值等于 A.1 B.-1C. iD.i -2.设圆M 的方程为22(3)(2)2x y -+-=,直线l 的方程为30x y +-=,点P 的坐标为(2,1),那么A.点P 在直线l 上,但不在圆M 上B.点P 在圆M 上,但不在直线l 上C.点P 既在圆M 上,又在直线l 上D.点P 既不在圆M 上,也不在直线l 上 3.集合{}1,2,3的子集总共有A.7个B.8个C.6个D.5个4.已知双曲线221205x y -=,那么它的焦距是A.105.在10(x 的展开式中, 6x 的系数是A. 61027C -B. 41027CC. 6109C -D. 4109C6.函数cos 4sin 4y x x =-的最小正周期是 A. π B. 2π C.2πD. 4π7.方程224cos 30x x -+=的解集是A. (1),6k x x k k z ππ⎧⎫=+-⋅∈⎨⎬⎩⎭B. (1),3k x x k k z ππ⎧⎫=+-⋅∈⎨⎬⎩⎭C. 2,6x x k k z ππ⎧⎫=±∈⎨⎬⎩⎭D. 2,3x x k k z ππ⎧⎫=±∈⎨⎬⎩⎭8.极坐标方程432cos ρθ=-所表示的曲线是A. 圆B.双曲线右支C.抛物线D.椭圆9.如图,正四棱台中, 11A D 所在的直线与1BB 所在的直线是 A.相交直线 B.平行直线C.不互相垂直的异面直线D.互相垂直的异面直线10.1tan(arctan arctan 3)5+的值等于A. 4B. 14C. 18 D. 811.设命题甲: ABC ∆的一个内角为60°.命题乙: ABC ∆的三个内角的度数成等差数列.那么A.甲是乙的充分条件,但不是必要条件B.甲是乙的必要条件,但不是充分条件C.甲是乙的充要条件D.3甲不是乙的充分条件,也不是乙的必要条件12.复平面内,若复数z 满足1z z i +=-,则z 所对应的点z 的集合构成的图形是 A.圆B.直线C.椭圆D.双曲线13.如果曲线222210x y x y ----=经过平移坐标轴后的新方程为221x y ''-=那么新坐标系的原点在原坐标系中的坐标为A. 1,1()B. (1,1)--C. (1,1)-D. (1,1)-14.假设在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有2件次品的抽法有A.233197C C 种B.233231973197C C C C +种C.55200197C C -种D.5142003197C C C - 种 15.如图,二面角AB αβ--的平面角是锐角, C 是面α内的一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上 满足CEB ∠为锐角的任意一点,那么A. CEB DEB ∠>∠B. CEB DEB ∠=∠B A CDA 1C 1 B 1D 1 A B CD E αβC. CEB DEB ∠<∠D. CEB DEB ∠∠,的大小关系不能确定二、(本题满分20分)本题共5个小题,每个小题满分4分,只要求直接写出结果.1.i 的模与辐角的主值. 2.解方程:192327x x ---⋅=.3.已知3sin 5θ=-,732ππθ<<,求tan 2θ的值.4.如图,已知四棱锥S ABCD -的底面是边长为1的正方形,侧棱SB 垂直于底面,并且SB =用α表示ASD ∠,求sin α的值. 5.已知等比数列{}n a 的公比1q >,并且1(0)a b b =≠,123678lim nn n a a a a a a a a →∞++++=++++ 三、(本小题满分10分) 已知tan x a =,求3sin sin 33cos cos3x xx x ++的值.四、(本小题满分10分)如图,正三棱锥S ABC -的侧面是边长为a 的正三角形D 是SA 的中点,E 是BC 的中点,求SDE ∆绕直线SE 旋转一周所得到的旋转体的体积.五、(本小题满分11分)设0a >,1a ≠,比较1log 2a t 与1log 2a t +的大小,并证明你的结论.六、(本小题满分12分)给定实数a ,0a ≠,且1a ≠设函数11x y ax -=-,1(,)x R x a∈≠证明(1)(2)这个函数的图象关于直线y x =成轴对称图形. 七、(本小题满分12分) 如图,直线l 的方程为2p x =-,其中0p >;椭圆的中心为(2,0)2pD +,焦点在x 轴上,长轴长为2,短轴长为1,它的一个顶点为(,0)2pA ,问p 在哪个范围内取值时,椭圆上有四个不同的点,它们中每一个点到点A 的距离等于该点到直线的距离.ABCDSC D。
1988年(高考数学试题文理科)
一九八八年(理科)一.(本题满分45分)本题共有15个小题,每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个结论是正确的,把你认为正确结论的代号写在题后的圆括号内。
每一个小题选对得3分;不选或选错一律得0分。
(1)2i 1i 1⎪⎭⎫⎝⎛+-的值等于 ( B )(A )1 (B )-1 (C )i (D)-i(2)设圆M 的方程为(x-3)2+(y-2)2=2,直线L 的方程为x+y-3=0,点P 的坐标为(2,1),那么 ( C ) (A )点P 在直线L 上,但不在圆M 上。
(B )点P 在圆M 上,但不在直线L 上。
(C )点P 既在圆M 上,又在直线L 上。
(D )点P 既不在直线L 上,也不在圆M 上。
(3)集合{1,2,3}的子集共有 ( B ) (A )7个 (B )8个 (C )6个 (D )5个(4)已知双曲线方程15y 20x 22=-,那么它的焦距是 ( A )(A )10 (B )5 (C )15 (D )152(5)在10)3x (-的展开式中,x 6的系数是 ( D )(A )610C 27- (B )410C 27 (C )610C 9- (D )410C 9 (6)函数x sin x cos y 44-=的最小正周期是 ( A ) (A )π (B )π2 (C )2π (D )π4(7)方程03x cos 34x cos 42=+-的解集是 ( C ) (A )}Z k ,6)1(k x |x {k ∈π⋅-+π= (B )}Z k ,3)1(k x |x {k ∈π⋅-+π= (C )}Z k ,6k 2x |x {∈π±π= (D )}Z k ,3k 2x |x {∈π±π= (8)极坐标方程θ-=ρcos 234所表示的曲线是 ( D )(A )圆 (B )双曲线右支 (C )抛物线 (D )椭圆(9)如图,正四棱台中,D A ''所在的直线与B B '所在的直线是(A )相交直线 ( C )(B )平行直线(C )不互相垂直的异面直线 (D )互相垂直的异面直线(10))3arctg 51arctg (tg +的值等于 ( D ) (A )4 (B )21 (C )81 (D )8(11)设命题甲:△ABC 的一个内角为600。
1998全国高考理科数学试题
1998年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试120分钟.第Ⅰ卷(选择题共65分)一.选择题:本大题共15小题;第1—10题每小题4分,第11— 15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) sin600º的值是 ( )(A)21 (B) -21 (C)23 (D) -23 (2) 函数y =a |x |(a >1)的图像是 ( )(3) 曲线的极坐标方程ρ=4sin θ化成直角坐标方程为 ( )(A) x 2+(y +2)2=4 (B) x 2+(y -2)2=4 (C) (x -2)2+y 2=4(D) (x +2)2+y 2=4(4) 两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是 ( )(A) A 1A 2+B 1B 2=0 (B) A 1A 2-B 1B 2=0 (C)12121-=B B A A (D)12121=A A B B (5) 函数f (x )=x1( x ≠0)的反函数f -1(x )= ( )(A) x (x ≠0)(B)x1(x ≠0) (A ) (B ) (C ) (D )111(C) -x (x ≠0) (D) -x1(x ≠0) (6) 已知点P (sin α-cos α,tg α)在第一象限,则在)20[π,内α的取值是 ( )(A) (432ππ,)∪(45ππ,) (B) (24ππ,)∪(45ππ,)(C) (432ππ,)∪(2345ππ,) (D) (24ππ,)∪(ππ,43)(7) 已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( )(A) 120º(B) 150º(C) 180º(D) 240º(8) 复数-i 的一个立方根是i ,它的另外两个立方根是 ( ) (A)2123±i (B) -2123±i (C) ±2123+i (D) ±2123-i (9) 如果棱台的两底面积分别是S ,S ′,中截面的面积是S 0,那么 ( )(A) 2S S S '+=0(B) S 0=S S ' (C) 2 S 0=S +S ′(D) S S S '=22(10) 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图像如下图所示,那么水瓶的形状是( )(11) 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有()hVH(A) 90种 (B) 180种 (C) 270种 (D) 540种(12) 椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|P F 1|是|P F 2|的( )(A) 7倍(B) 5倍(C) 4倍(D) 3倍(13) 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过这3个点的小圆的周长为4π,那么这个球的半径为( )(A) 43(B)23(C) 2(D)3(14) 一个直角三角形三内角的正弦值成等比数列,其最小内角为 ( )(A) arccos215- (B) arcsin215-(C) arccos251- (D) arcsin251- (15) 在等比数列{a n }中,a 1>1,且前n 项和S n 满足∞→n lim S n =11a ,那么a 1的取值范围是( )(A)(1,+∞)(B)(1,4)(C) (1,2)(D)(1,2)第Ⅱ卷(非选择题共85分)二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.设圆过双曲线116922=-y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是_________17.(x +2)10(x 2-1)的展开式中x 10的系数为____________(用数字作答)18.如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件____________时,有A 1 C ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)19.关于函数f (x )=4sin(2x +3π)(x ∈R ),有下列命题: ①由f (x 1)= f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos(2x -6π); ③y =f (x )的图像关于点(-6π,0)对称; ④y =f (x )的图像关于直线x =-6π对称.其中正确的命题的序号是_______ (注:把你认为正确的命题的序号都.填上.)三、解答题:本大题共6小题;共69分.解答应写出文字说明,证明过程或演算步骤.(20)(本小题满分10分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,设a +c =2b ,A -C=3π.求sin B 的值.以下公式供解题时参考: sin θ+sin ϕ =2sin2ϕθ+cos2ϕθ-,sin θ-sin ϕ=2cos 2ϕθ+sin 2ϕθ-,cos θ+cos ϕ=2cos 2ϕθ+cos 2ϕθ-,cos θ-cos ϕ=-2sin 2ϕθ+sin 2ϕθ-.(21)(本小题满分11分)如图,直线l 1和l 2相交于点M ,l 1 ⊥l 2,点N ∈l 1.以A , B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM |=17,|AN |=3,且|BN |=6.建立适当的坐标系,求曲线段C 的方程.(22)(本小题满分12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出.设箱体的长度为a 米,高度为b 米.已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60平方米.问当a ,b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的面积忽略不计).(23)(本小题满分12分)已知斜三棱柱ABC -A 1 B 1 C 1的侧面A 1 ACC 1与底面ABC 垂直,∠ABC =90º,BC =2,AC=23,且AA 1 ⊥A 1C ,AA 1= A 1 C .Ⅰ.求侧棱A 1A 与底面ABC 所成角的大小;Ⅱ.求侧面A 1 ABB 1 与底面ABC 所成二面角的大小; Ⅲ.求顶点C 到侧面A 1 ABB 1的距离. (24)(本小题满分12分)设曲线C 的方程是y =x 3-x ,将C 沿x 轴、y 轴正向分别平行移动t 、s 单位长度后得曲线C 1.Ⅰ.写出曲线C 1的方程; Ⅱ.证明曲线C 与C 1关于点A (3t ,2s)对称; Ⅲ.如果曲线C 与C 1有且仅有一个公共点,证明s =43t -t 且t ≠0.(25)(本小题满分12分)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. Ⅰ.求数列{b n }的通项b n ; Ⅱ.设数列{a n }的通项a n =log a (1+nb 1)(其中a >0,且a ≠1),记S n 是数列{a n }的前n 项和.试比较S n 与31log a b n +1的大小,并证明你的结论.1998年普通高等学校招生全国统一考试数学试题(理工农医类)参考答案一、选择题(本题考查基本知识和基本运算.)1.D 2.B 3.B 4.A 5.B 6.B 7.C 8.D 9.A 10.B11.D 12.A 13.B 14.B 15.D二、填空题(本题考查基本知识和基本运算.)16.31617.179 18.AC ⊥BD ,或任何能推导出这个条件的其他条件.例如ABCD 是正方形,菱形等 19.②,③三、解答题20.本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.解:由正弦定理和已知条件a +c =2b 得 sin A +sin C =2sin B .由和差化积公式得2sin 2C A +cos 2CA -=2sinB . 由A +B +C =π 得 sin 2C A +=cos 2B,又A -C =3π 得 23cos 2B =sin B , 所以23cos 2B =2sin 2B cos 2B .因为0<2B <2π,cos 2B≠0, 所以sin2B =43, 从而cos2B =4132sin 12=-B 所以sinB=83941323=⨯. 21.本小题主要考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想.考查抛物线的概念和性质,曲线与方程的关系以及综合运用知识的能力.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点. 依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点.设曲线段C 的方程为y 2=2px (p >0),(x A ≤x ≤x B ,y >0),其中x A ,x B 分别为A ,B 的横坐标,p =|MN |. 所以 M (2p -,0),N (2p,0). 由|AM |= 17 ,|AN |=3 得(x A +2p )2+2px A =17, ① (x A -2p)2+2px A =9. ②由①,②两式联立解得x A =p4.再将其代入①式并由p >0解得 ⎩⎨⎧==⎩⎨⎧==.2,2;1,4AA x p x p 或 因为ΔAMN 是锐角三角形,所以2p> x A ,故舍去⎩⎨⎧==22A x p 所以p =4,x A =1.由点B 在曲线段C 上,得x B =|BN |-2p=4. 综上得曲线段C 的方程为y 2=8x (1≤x ≤4,y >0).解法二:如图建立坐标系,分别以l 1、l 2为x 、y 轴,M 为坐标原点. 作AE ⊥ l 1,AD ⊥ l 2,BF ⊥ l 2,垂足分别为E 、D 、F . 设A (x A ,y A )、B (x B ,y B )、N (x N ,0). 依题意有x A =|ME |=|DA |=|AN |=3, y A =|DM |=2222=-DA AM ,由于ΔAMN 为锐角三角形,故有 x N =|ME |+|EN | =|ME |+22AE AN -=4x B =|BF |=|BN |=6.设点P (x ,y )是曲线段C 上任一点,则由题意知P 属于集合{(x ,y )|(x -x N )2+y 2=x 2,x A ≤x ≤x B ,y >0}.故曲线段C 的方程为y 2=8(x -2)(3≤x ≤6,y >0).22.本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.解法一:设y 为流出的水中杂质的质量分数,则y =abk,其中k >0为比例系数.依题意,即所求的a ,b 值使y 值最小.根据题设,有4b +2ab +2a =60(a >0,b >0),得 b =a a+-230(0<a <30). ① 于是 y =abk=aa a k+-230226432+-+-=a a k⎪⎭⎫ ⎝⎛+++-=264234a a k≥()2642234+⋅+-a a k18k =, 当a +2=264+a 时取等号,y 达到最小值. 这时a =6,a =-10(舍去). 将a =6代入①式得b =3.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 解法二:依题意,即所求的a ,b 的值使ab 最大. 由题设知 4b +2ab +2a =60(a >0,b >0), 即 a +2b +ab =30(a >0,b >0). 因为 a +2b ≥2ab 2, 所以 ab 22+ab ≤30, 当且仅当a =2b 时,上式取等号. 由a >0,b >0,解得0<ab ≤18.即当a =2b 时,ab 取得最大值,其最大值为18. 所以2b 2=18.解得b =3,a =6.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小.23.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.Ⅰ.解:作A 1D ⊥AC ,垂足为D ,由面A 1ACC 1⊥面ABC ,得A 1D ⊥面ABC , 所以∠A 1AD 为A 1A 与面ABC 所成的角. 因为AA 1⊥A 1C ,AA 1=A 1C , 所以∠A 1AD =45º为所求.Ⅱ.解:作DE ⊥AB ,垂足为E ,连A 1E ,则由A 1D ⊥面ABC ,得A 1E ⊥AB . 所以∠A 1ED 是面A 1ABB 1与面ABC 所成二面角的平面角. 由已知,AB ⊥BC ,得ED ∥BC . 又D 是AC 的中点,BC =2,AC =23, 所以DE =1,AD =A 1D =3, tg ∠A 1ED =DEDA 1=3. 故∠A 1ED =60º为所求.Ⅲ.解法一:由点C 作平面A 1ABB 1的垂线,垂足为H ,则CH 的长是C 到平面A 1ABB 1的距离.连结HB ,由于AB ⊥BC ,得AB ⊥HB . 又A 1E ⊥AB ,知HB ∥A 1E ,且BC ∥ED , 所以∠HBC =∠A 1ED =60º 所以CH =BC sin60º=3为所求. 解法二:连结A 1B .根据定义,点C 到面A 1ABB 1的距离,即为三棱锥C -A 1AB 的高h . 由ABC A AB A C V V --=11锥锥得D A S h S ABC B AA 131311∆∆=, 即 322312231⨯⨯=⨯h 所以3=h 为所求.24.本小题主要考查函数图像、方程与曲线,曲线的平移、对称和相交等基础知识,考查运动、变换等数学思想方法以及综合运用数学知识解决问题的能力.Ⅰ.解:曲线C 1的方程为y =(x -t )3-(x -t )+s .Ⅱ.证明:在曲线C 上任取一点B 1(x 1,y 1).设B 2(x 2,y 2)是B 1关于点A 的对称点,则有2221t x x =+, 2221s y y =+. 所以 x 1=t -x 2, y 1=s -y 2.代入曲线C 的方程,得x 2和y 2满足方程:s -y 2=(t -x 2)3-(t -x 2),即 y 2=(x 2-t )3-(x 2-t )+ s ,可知点B 2(x 2,y 2)在曲线C 1上.反过来,同样可以证明,在曲线C 1上的点关于点A 的对称点在曲线C 上.因此,曲线C 与C 1关于点A 对称.Ⅲ.证明:因为曲线C 与C 1有且仅有一个公共点,所以,方程组⎪⎩⎪⎨⎧+---=-=st x t x y x x y )()(33 有且仅有一组解.消去y ,整理得3tx 2-3t 2x +(t 3-t -s )=0,这个关于x 的一元二次方程有且仅有一个根.所以t ≠0并且其根的判别式Δ=9t 4-12t (t 3-t -s )=0.即 ⎩⎨⎧=--≠.0)44(,03s t t t t所以 t t s -=43且 t ≠0. 25.本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳、推理能力以及用数学归纳法进行论证的能力.解:Ⅰ.设数列{b n }的公差为d ,由题意得⎪⎩⎪⎨⎧=-+=.1452)110(1010,111d b b 解得⎩⎨⎧==.3,11d b 所以 b n =3n -2.Ⅱ.由b n =3n -2,知S n =log a (1+1)+ log a (1+41)+…+ log a (1+231-n ) = log a [(1+1)(1+41)……(1+231-n )], 31log a b n +1= log a 313+n . 因此要比较S n 与31log a b n +1的大小,可先比较(1+1)(1+41)……(1+231-n )与313+n 的大小.取n =1有(1+1)>3113+⋅,取n =2有(1+1)(1+41)>3123+⋅, ……由此推测(1+1)(1+41)……(1+231-n )>313+n . ① 若①式成立,则由对数函数性质可断定:当a >1时,S n >31log a b n +1. 当0<a <1时,S n <31log a b n +1. 下面用数学归纳法证明①式.(ⅰ)当n =1时已验证①式成立.(ⅱ)假设当n =k (k ≥1)时,①式成立,即(1+1)(1+41)……(1+231-k )>313+k . 那么,当n =k +1时,(1+1)(1+41)……(1+231-k )(1+()2131-+k )>313+k (1+131+k )=13133++k k (3k +2). 因为()[]333343231313+-⎥⎦⎤⎢⎣⎡+++k k k k ()()()()22313134323+++-+=k k k k ()013492>++=k k , 所以13133++k k (3k +2)>().1134333++=+k k 因而(1+1)(1+41)……(1+231-k )(1+131+k )>().1133++k 这就是说①式当n=k +1时也成立.由(ⅰ),(ⅱ)知①式对任何正整数n 都成立. 由此证得:当a >1时,S n >31log a b n +1. 当0<a <1时,S n <31log a b n +1.。
(详细解析)1998年全国高考理科数学试题及其解析
1998年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试120分钟.第Ⅰ卷(选择题共65分)一.选择题:本大题共15小题;第1—10题每小题4分,第11— 15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的1.sin 600︒的值是A .21 B .12- C .23 D .【答案】D【解析】sin 600sin(720120)sin(120)sin120sin(18060)︒=︒-︒=-︒=-︒=-︒-︒sin 60=-︒=.2.函数(1)xy a a =>的图像是【答案】B【解析】函数为偶函数,当0x ≥时,xy a =为增函数,且过点(0,1),B 正确.3.曲线的极坐标方程4sin ρθ=化成直角坐标方程为 A .22(2)4x y ++= B .22(2)4x y +-= C .22(2)4x y -+= D .22(2)4x y ++=【答案】B【解析】由已知得4yρρ=⨯,即224x y y +=,化为标准方程为22(2)4x y +-=.4.两条直线1112220,0A x B y C A x B y C ++=++=垂直的充要条件是 A .12120A A B B += B .12120A A B B -= C .12121-=B B A A D .12121=A A B B 【答案】A【解析】①若一条直线的斜率不存在,则另一条直线一定与x 轴垂直,满足12120A A B B +=; ②若两条直线斜率均存在,则121212,A A k k B B =-=-,有121k k =-,即1212()1A AB B --=-,所以12120A A B B +=.5.函数1()(0)f x x x=≠的反函数1()f x -= A .(0)x x ≠ B .1(0)x x ≠ C .(0)x x -≠ D .1(0)x x-≠【答案】B 【解析】1()f x x =为反比例函数,所以反函数11()(0)f x x x-=≠.6.已知点(sin cos ,tan )P ααα-在第一象限,则在)20[π,内α的取值是 A .35()()244ππππ,, B .5()()424ππππ,,C .353(,)()2442ππππ,D .3()(,)424ππππ, 【答案】B【解析】点P 在第一象限,则sin cos 0,tan 0ααα->>,即s i n c o s ,t a n 0ααα>>,α为第一象限或第三象限的角,若α为第一象限的角,则由sin cos αα>得tan 1α>,所以()42ππα∈,;若α为第三象限的角,则0t a n 1α<<,结合正切函数图象可得5()4παπ∈,.7.已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为 A .120º B .150º C .180º D .240º 【答案】C【解析】由题设得22S rl S rππ==侧底,得2l r =,扇形的圆心角为22rr ππ=.8.复数i -的一个立方根是i ,它的另外两个立方根是A 12iB .12i ±C .12iD .12i 【答案】D【解析】设33x i i =-=,则3322()()0x i x i x xi i -=-++=,解方程220x xi i ++=得122x i =±-.9.如果棱台的两底面积分别是,S S ',中截面的面积是0S ,那么A .=B .0S =C .02S S S '=+D .S S S '=22【答案】A【解析】设两底和中截面的半径分别为,r r '和0r ,则22200,,S r S r S r πππ''===,所以0r r r '===,又02r r r '=+,则=10.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图像如下图所示,那么水瓶的形状是【答案】B【解析】在函数图象中,取水深2Hh =时,注水量02V V V '=>,即水深至一半时,实际注水量大于水瓶总水量的一半,只有B 正确.【难度】较难.11.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有A .90种B .180种C .270种D .540种 【答案】D【解析】先分配医生有336A =种分法;再分配护士有22264290C C C =种分法,不同的分配方法有540种.12.椭圆221123x y +=的焦点为1F 和2F ,点P 在椭圆上.如果线段1PF 的中点在y 轴上,那么1PF 是2PF 的A .7倍B .5倍C . 4倍D .3倍 【答案】A【解析】线段1PF 的中点在y 轴上,则2PF x ⊥轴,有221123B y c +=,2y PF P ==,所以122PF a PF =-=1PF 是2PF 的7倍.13.球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过这3个点的小 圆的周长为4π,那么这个球的半径为A .B .C .2D .3 【答案】B【解析】设球的半径为R ,球面上3个点为,,A B C ,则ABC ∆为等边三角形,小圆的半径为2r =,所以AB =R ==14.一个直角三角形三内角的正弦值成等比数列,其最小内角为A .1arccos 2B .1arcsin 2C .1arccos 2D .1arcsin 2【答案】B【解析】不妨设A B C <<,则2C π=,且sin sin sin 1A B C <<=,所以2sin sin A B =,2sin sin ()2A A π=-,化简得2sin sin 10A A +-=,解得sin A =,则1arcsin2A =.15.在等比数列{}n a 中,11a >,且前n 项和n S 满足11lim n x S a →∞=,那么1a 的取值范围是 A .(1,)+∞ B .(1,4) C .(1,2) D. 【答案】D【解析】显然公比01q <<,由题设得111lim 11n x a S q a →∞==<-,可知10q -<<,而 211(1,2)a q =-∈,所以1(1a ∈.第Ⅱ卷(非选择题共85分)二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.设圆过双曲线116922=-y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 . 【答案】316 【解析】根据题设,顶点、焦点和圆心在此双曲线的同一支上,设00(,)P x y ,则200531674,29x y +⨯===,故163OP ==.17.102(2)(1)x x +-的展开式中10x 的系数为 (用数字作答). 【答案】179【解析】10(2)x +的通项公式为101102r rr r T C x -+=⋅⋅,故10x 的系数为22010102179C C ⋅-=.18.如图,在直四棱柱1111A BC D ABCD -中,当底面四边形ABCD满足条件 时,有111AC B D ⊥.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)【答案】AC BD ⊥,或任何能推导出这个条件的其他条件.例如ABCD 是正方形,菱形等【解析】连接,AC BD ,则11//BD B D ,由于1AA BD ⊥,所以要使111AC B D ⊥,只需1AC BD ⊥,只需BD ⊥平面1A AC ,也即BD AC ⊥.19.关于函数()4sin(2)()3f x x x R π=+∈,有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍; ②()y f x =的表达式可改写为()4cos(2)6f x x π=-;③()y f x =的图像关于点(,0)6π-对称;④()y f x =的图像关于直线6x π=-对称.其中正确的命题的序号是 .(注:把你认为正确的命题的序号都.填上.) 【答案】②③ 【解析】12x x -必是2π的整数倍,①错误;()4sin(2)4cos[(2)]323f x x x πππ=+=-+4cos(2)6x π=-;()y f x =的图像的对称点的横坐标满足2()3x k k Z ππ+=∈,即26x k ππ=⋅-,当0k =时,对称点为(,0)6π-,③正确,④不正确.三、解答题:本大题共6小题;共69分.解答应写出文字说明,证明过程或演算步骤.20.(本小题满分10分)在ABC ∆中,,,a b c 分别是角,,A B C 的对边,设2,3a cb A C π+=-=.求sin B 的值.以下公式供解题时参考:sin sin 2sincos,sin sin 2cossin2222θϕθϕθϕθϕθϕθϕ+-+-+=-=,cos cos 2cos cos ,cos cos 2sin sin 2222θϕθϕθϕθϕθϕθϕ+-+-+=-=-.【解】本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.由正弦定理和已知条件2a c b +=得sin sin 2sin A C B +=.由和差化积公式得2sin cos sin 22A C A CB +-=. 由A BC π++=得sin cos 22A C B+=,又3A C π-=得sin 22BB =,所以2sin cos 2222B B B =.因为0,cos 0222B B πθ<<≠,所以sin 2B =,从而cos 2B ==所以sin B ==21.(本小题满分11分)如图,直线1l 和2l 相交于点M ,12l l ⊥,点1N l ∈.以,A B 为端点的曲线段C 上的任一点到2l 的距离与到点N 的距离相等.若AMN ∆为锐角三角形,3AM AN ==,且6BN =.建立适当的坐标系,求曲线段C 的方程.【解】本小题主要考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想.考查抛物线的概念和性质,曲线与方程的关系以及综合运用知识的能力.解法一:如图建立坐标系,以1l 为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.依题意知:曲线段C 是以点N 为焦点,以2l 为准线的抛物线的一段,其中,A B 分别为C 的端点.设曲线段C 的方程为22(0),(,0)A B y px p x x x y =>≤≤>,其中,A B x x 分别为,A B 的横坐标,p MN =.所以(,0),(,0)22p pM N -.由3AM AN ==得2()2172A A p x px ++=, ① 2()292A A px px -+=. ②由①,②两式联立解得4A x p =,再将其代入①式并由0p >解得⎩⎨⎧==⎩⎨⎧==.2,2;1,4AA x p x p 或 因为AMN ∆是锐角三角形,所以2A px >,故舍去2,2.A p x =⎧⎨=⎩ 所以4,1A p x ==.由点B 在曲线段C 上,得42B px BN =-=. 综上得曲线段C 的方程为28(14,0)y x x y =≤≤>.解法二:如图建立坐标系,分别以12,l l 为,x y 轴,M 为坐标原点.作122,,AE l AD l BF l ⊥⊥⊥,垂足分别为,,E D F . 设(,),(,),(,0)A A B B N A x y B x y N x . 依题意有3A x ME DA AN ====,A y DM ===由于AMN ∆为锐角三角形,故有4N x ME EN ME =+==6B x BF BN ===.设点(,)P x y 是曲线段C 上任一点,则由题意知P 属于集合{}222(,)(),,0NA B x y x xy x x x x y -+=≤≤>|.故曲线段C 的方程为28(2)(36,0)y x x y =-≤≤>.22.(本小题满分12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱.污水从A 孔流入,经沉淀后从B 孔流出.设箱体的长度为a 米,高度为b 米.已知流出的水中该杂质的质量分数与,a b 的乘积ab 成反比.现有制箱材料60平方米.问当,a b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(,A B 孔的面积忽略不计).【解】本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识. 解法一:设y 为流出的水中杂质的质量分数,则ky ab=,其中0k >为比例系数.依题意,即所求的,a b 值使y 值最小.根据题设,有42260(0,0)b ab a a b ++=>>, 得30(030)2ab a a-=<<+. ① 于是26464303234(2)222k k k k y a a ab a a a a a====--+--+++++18k ≥=, 当6422a a +=+时取等号,y 达到最小值.这时6a =,10a =-(舍去). 将6a =代入①式得3b =.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 解法二:依题意,即所求的,a b 的值使ab 最大.由题设知42260(0,0)b ab a a b ++=>>,即230(0,0)a b ab a b ++=>>. 因为22a b +≥30ab ≤,当且仅当2a b =时,上式取等号. 由0,0a b >>,解得018ab <≤.即当2a b =时,ab 取得最大值,其最大值为18. 所以2218b =.解得3,6b a ==.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小.23.(本小题满分12分)已知斜三棱柱111ABC A B C -的侧面11A ACC 与底面ABC 垂直,90,ABC BC ∠=︒=2,AC =,且1111,AA AC AA AC ⊥=. (Ⅰ)求侧棱1A A 与底面ABC 所成角的大小;(Ⅱ)求侧面11A ABB 与底面ABC 所成二面角的大小; (Ⅲ)求顶点C 到侧面11A ABB 的距离.【解】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.(Ⅰ)作1A D AC ⊥,垂足为D ,由面11A ACC ⊥面ABC ,得1A D ⊥面ABC ,所以1A AD ∠为1A A 与面ABC 所成的角. 因为1111,AA AC AA AC ⊥=, 所以145A AD ∠=︒为所求.(Ⅱ)作DE AB ⊥,垂足为E ,连1A E ,则由1A D ⊥面ABC ,得1A E AB ⊥. 所以1A ED ∠是面11A ABB 与面ABC 所成二面角的平面角. 由已知,AB BC ⊥,得//ED BC .又D 是AC 的中点,2,BC AC ==所以11,DE AD AD ===,11tan A DA ED DE∠== 故160A ED ∠=︒为所求.(Ⅲ)解法一:由点C 作平面11A ABB 的垂线,垂足为H ,则CH 的长是C 到平面11A ABB 的距离.连结HB ,由于AB BC ⊥,得AB HB ⊥.又1A E AB ⊥,知1//HB A E ,且//BC ED , 所以160HBC A ED ∠=∠=︒.所以sin 60CH BC =︒= 解法二:连结1A B .根据定义,点C 到面11A ABB 的距离,即为三棱锥1C A AB -的高h . 由ABC A AB A C V V --=11锥锥得D A S h S ABC B AA 131311∆∆=,即322312231⨯⨯=⨯h .所以3=h 为所求.24.(本小题满分12分)设曲线C 的方程是3y x x =-,将C 沿x 轴、y 轴正向分别平行移动,t s 单位长度后得曲线1C .(Ⅰ)写出曲线1C 的方程;(Ⅱ)证明曲线C 与1C 关于点(,)22t sA 对称;(Ⅲ)如果曲线C 与1C 有且仅有一个公共点,证明34t s t =-且0t ≠.【解】本小题主要考查函数图像、方程与曲线,曲线的平移、对称和相交等基础知识,考查运动、变换等数学思想方法以及综合运用数学知识解决问题的能力. (Ⅰ)曲线1C 的方程为3()()y x t x t s =---+.(Ⅱ)证明:在曲线C 上任取一点111(,)B x y .设222(,)B x y 是1B 关于点A 的对称点,则有2221t x x =+,2221sy y =+. 所以1212,x t x y s y =-=-.代入曲线C 的方程,得2x 和2y 满足方程:3222()()s y t x t x -=---, 即3222()()y x t x t s =---+,可知点222(,)B x y 在曲线1C 上.反过来,同样可以证明,在曲线1C 上的点关于点A 的对称点在曲线C 上. 因此,曲线C 与1C 关于点A 对称.(Ⅲ)证明:因为曲线C 与1C 有且仅有一个公共点,所以,方程组33,()().y x x y x t x t s ⎧=-⎪⎨=---+⎪⎩ 有且仅有一组解.消去y ,整理得22333()0tx t x t t s -+--=, 这个关于x 的一元二次方程有且仅有一个根.所以0t ≠并且其根的判别式43912()0t t t t s ∆=---=.即⎩⎨⎧=--≠.0)44(,03s t t t t所以t t s -=43且0t ≠.25.(本小题满分12分)已知数列{}n b 是等差数列,112101,145b b b b =++⋅⋅⋅+=. (Ⅰ)求数列{}n b 的通项n b ; (Ⅱ)设数列{}n a 的通项1log (1)n a na b =+(其中0a >,且1a ≠),记n S 是数列{}n a 的前n 项和.试比较n S 与11log 3a nb +的大小,并证明你的结论.【解】本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳、推理能力以及用数学归纳法进行论证的能力.(Ⅰ)设数列{}n b 的公差为d ,由题意得⎪⎩⎪⎨⎧=-+=.1452)110(1010,111d b b 解得⎩⎨⎧==.3,11d b 所以32n b n =-.(Ⅱ)由32n b n =-,知11log (11)log (1)log (1)432n a a a S n =++++⋅⋅⋅++- 11log [(11)(1)(1)]432a n =++⋅⋅⋅+-,11l o g l o 13a nb += 因此要比较n S 与11log 3a n b +的大小,可先比较11(11)(1)(1)432n ++⋅⋅⋅+-与313+n 的大小. 取1n =有11+>取2n =有1(11)(1)4++>……由此推测11(11)(1)(1)432n ++⋅⋅⋅+>- ① 若①式成立,则由对数函数性质可断定:当1a >时,11log 3n a n S b +>. 当01a <<时,11log 3n a n S b +<.下面用数学归纳法证明①式. (ⅰ)当1n =时已验证①式成立.(ⅱ)假设当(1)n k k =≥时,①式成立,即11(11)(1)(1)432k ++⋅⋅⋅+>-. 那么,当1n k =+时,1111(11)(1)(1)(1))4323(1)231k k k ++⋅⋅⋅++>+-+-+2)k =+.因为)()()()()332323234313231k k k k k ⎤+-+++-=⎥+⎣⎦()013492>++=k k ,2)k +>=因而111(11)(1)(1)(1)43231k k ++⋅⋅⋅++>-+ 这就是说①式当1n k =+时也成立.由(ⅰ),(ⅱ)知①式对任何正整数n 都成立. 由此证得:当1a >时,11log 3n a n S b +>. 当01a <<时,11log 3n a n S b +<.。
(详细解析)1998年全国高考理科数学试题及其解析(可打印修改)
1998年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试120分钟.第Ⅰ卷(选择题共65分)一.选择题:本大题共15小题;第1—10题每小题4分,第11— 15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的1.的值是sin 600︒A .B .C .D .2112-23【答案】D【解析】sin 600sin(720120)sin(120)sin120sin(18060)︒=︒-︒=-︒=-︒=-︒-︒sin 60=-︒=2.函数的图像是(1)xy a a =>【答案】B【解析】函数为偶函数,当时,为增函数,且过点,B 正确.0x ≥xy a =(0,1)3.曲线的极坐标方程化成直角坐标方程为4sin ρθ=A . B .22(2)4x y ++=22(2)4x y +-=C .D .22(2)4x y -+=22(2)4x y ++=【答案】B【解析】由已知得,即,化为标准方程为.4yρρ=⨯224x y y +=22(2)4x y +-=4.两条直线垂直的充要条件是1112220,0A x B y C A x B y C ++=++=A .B .C .D .12120A A B B +=12120A A B B -=12121-=B B A A 12121=A A B B 【答案】A【解析】①若一条直线的斜率不存在,则另一条直线一定与轴垂直,满足x ;12120A A B B +=②若两条直线斜率均存在,则,有,即,121212,A A k k B B =-=-121k k =-1212(1A AB B --=-所以.12120A A B B +=5.函数的反函数1()(0)f x x x=≠1()f x -=A . B . C .D .(0)x x ≠1(0)x x≠(0)x x -≠1(0)x x-≠【答案】B 【解析】为反比例函数,所以反函数.1()f x x =11()(0)f x x x-=≠6.已知点在第一象限,则在内的取值是(sin cos ,tan )P ααα-)20[π,αA .B .35()()244ππππU ,,5()()424ππππU ,,C .D .353(,)()2442ππππU ,3((,)424ππππU ,【答案】B【解析】点在第一象限,则,即,P sin cos 0,tan 0ααα->>sin cos ,tan 0ααα>>为第一象限或第三象限的角,若为第一象限的角,则由得,ααsin cos αα>tan 1α>所以;若为第三象限的角,则,结合正切函数图象可得(42ππα∈,α0tan 1α<<.5()4παπ∈,7.已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为A .120ºB .150ºC .180ºD .240º【答案】C【解析】由题设得,得,扇形的圆心角为.22S rl S rππ==侧底2l r =22rr ππ=8.复数的一个立方根是,它的另外两个立方根是i -iA B . C . D .12i ±12i 12i +12i -【答案】D【解析】设,则,解方程得33x i i =-=3322()()0x i x i x xi i -=-++=220x xi i ++=.12x i =9.如果棱台的两底面积分别是,中截面的面积是,那么,S S '0SA .B .C .D .=+0S =02S S S '=+SS S '=220【答案】A【解析】设两底和中截面的半径分别为和,则,所以,r r '0r 22200,,S r S r S r πππ''===,则0r r r '===02r r r '=+=+=10.向高为的水瓶中注水,注满为止,如果注水量与水深的函数关系的图像如下图H V h 所示,那么水瓶的形状是【答案】B【解析】在函数图象中,取水深时,注水量,即水深至一半时,实际2Hh =02V V V '=>注水量大于水瓶总水量的一半,只有B 正确.【难度】较难.11.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有A .90种 B .180种 C .270种 D .540种【答案】D【解析】先分配医生有种分法;再分配护士有种分法,不同的分配方336A =22264290C C C =法有540种.12.椭圆的焦点为和,点在椭圆上.如果线段的中点在轴上,221123x y +=1F 2F P 1PF y 那么是的1PF 2PF A .7倍 B .5倍 C . 4倍 D .3倍【答案】A【解析】线段的中点在轴上,则轴,有,,1PF y 2PF x ⊥221123By c +=2y PF P ==所以,是的7倍.122PF a PF =-=1PF 2PF 13.球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过这3个点的小61圆的周长为,那么这个球的半径为4πA .B .C .2D .3【答案】B【解析】设球的半径为,球面上3个点为,则为等边三角形,小圆的半R ,,A B C ABC ∆径为,所以2r=AB =R ==14.一个直角三角形三内角的正弦值成等比数列,其最小内角为A .B .C .D .arcsin arcsin【解析】不妨设,则,且,所以A B C <<2C π=sin sin sin 1A B C <<=,2sin sin A B =,化简得,解得(负值舍去),2sin sin ()2A A π=-2sin sin 10A A +-=sin A =则.A =15.在等比数列中,,且前项和满足,那么的取值范围是{}n a 11a >n n S 11lim n x S a →∞=1a A . B . C .D .(1,)+∞(1,4)(1,2)【答案】D【解析】显然公比,由题设得,可知,而01q <<111lim 11n x a S q a →∞==<-10q -<<,所以.211(1,2)a q =-∈1a ∈第Ⅱ卷(非选择题共85分)二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.设圆过双曲线的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双116922=-y x 曲线中心的距离是 .【答案】316【解析】根据题设,顶点、焦点和圆心在此双曲线的同一支上,设,则00(,)P x y ,故.200531674,29x y +⨯===163OP ==17.的展开式中的系数为(用数字作答).102(2)(1)x x +-10x【解析】的通项公式为,故的系数10(2)x +101102r rr r T C x -+=⋅⋅10x 为.2210102179C C ⋅-=18.如图,在直四棱柱中,当底面四边形满足条件 时,1111A B C D ABCD -ABCD有.(注:填上你认为正确的一种条件即可,不必111A C B D ⊥考虑所有可能的情形.)【答案】,或任何能推导出这个条件的其他条件.例如AC BD ⊥是正方形,菱形等ABCD 【解析】连接,则,由于,所以要,AC BD 11//BD B D 1AA BD ⊥使,只需,只需平面,也即111A C B D ⊥1A C BD ⊥BD ⊥1A AC .BD AC ⊥19.关于函数,有下列命题:()4sin(2)()3f x x x R π=+∈①由可得必是的整数倍;12()()0f x f x ==12x x -π②的表达式可改写为;()y f x =()4cos(26f x x π=-③的图像关于点对称;()y f x =(,0)6π-④的图像关于直线对称.()y f x =6x π=-其中正确的命题的序号是 .(注:把你认为正确的命题的序号都填上.)【答案】②③【解析】必是的整数倍,①错误;12x x -2π()4sin(24cos[(2323f x x x πππ=+=-+;的图像的对称点的横坐标满足,即4cos(26x π=-()y f x =2()3x k k Z ππ+=∈,当时,对称点为,③正确,④不正确.26x k ππ=⋅-0k =(,0)6π-三、解答题:本大题共6小题;共69分.解答应写出文字说明,证明过程或演算步骤.20.(本小题满分10分)在中,分别是角的对边,设.求的ABC ∆,,a b c ,,A B C 2,3a cb A C π+=-=sin B 值.以下公式供解题时参考:,sin sin 2sincos,sin sin 2cossin2222θϕθϕθϕθϕθϕθϕ+-+-+=-=cos cos 2cos cos ,cos cos 2sin sin2222θϕθϕθϕθϕθϕθϕ+-+-+=-=-.【解】本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.由正弦定理和已知条件得.2a c b +=sin sin 2sin A C B +=由和差化积公式得.2sin cos sin 22A C A CB +-=由得,A BC π++=sin cos 22A C B+=又.3A C π-=sin 2B B =2sin cos 222B B B =因为,所以,从而0,cos 0222B B πθ<<≠sin 2B =cos 2B ==所以.sin B ==21.(本小题满分11分)如图,直线和相交于点,,点.以为端点的曲线段上的任1l 2l M 12l l ⊥1N l ∈,A B C一点到的距离与到点的距离相等.若为锐角三角形,2l N AMN ∆,且.建立适当的坐标系,求曲线段3AM =6BN =的方程.C 【解】本小题主要考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想.考查抛物线的概念和性质,曲线与方程的关系以及综合运用知识的能力.解法一:如图建立坐标系,以为轴,的垂直平分线为轴,点为坐标原点.1l x MN y O依题意知:曲线段是以点为焦点,以为准线的抛C N 2l 物线的一段,其中分别为的端点.,A B C 设曲线段的方程为C ,22(0),(,0)A B y px p x x x y =>≤≤>其中分别为的横坐标,.所以.,A B x x ,A B p MN =(,0),(,0)22p pM N -由得, ①3AM =2(2172A A p x px ++=.②2(292A A px px -+=由①,②两式联立解得,再将其代入①式并由解得4A x p =0p >⎩⎨⎧==⎩⎨⎧==.2,2;1,4A A x p x p 或因为是锐角三角形,所以,故舍去AMN ∆2A px >2,2.A p x =⎧⎨=⎩所以.4,1A p x ==由点在曲线段上,得.B C 42B px BN =-=综上得曲线段的方程为.C 28(14,0)y x x y =≤≤>解法二:如图建立坐标系,分别以为轴,为坐标原点.12,l l ,x y M 作,垂足分别为.122,,AE l AD l BF l ⊥⊥⊥,,E D F 设.(,),(,),(,0)A A B B N A x y B x y N x 依题意有,3A x ME DA AN ====A y DM ==由于为锐角三角形,故有AMN∆4N x .6B x BF BN ===设点是曲线段上任一点,则由题意知属于集合(,)P x y C P .{}222(,)(),,0NA B x y x xy xx x x y -+=≤≤>|故曲线段的方程为.C 28(2)(36,0)y x x y =-≤≤>22.(本小题满分12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱.污水从孔流入,经沉淀后从孔流出.设箱体的长度为米,高度为米.已知流出的水中A B a b 该杂质的质量分数与的乘积成反比.现有制箱材料60平方米.问当各为多少,a b ab ,a b 米时,经沉淀后流出的水中该杂质的质量分数最小(孔的面,A B 积忽略不计).【解】本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.解法一:设为流出的水中杂质的质量分数,则,其中为比例系数.依题意,y ky ab=0k >即所求的值使值最小.,a b y 根据题设,有,42260(0,0)b ab a a b ++=>>得. ①30(030)2ab a a-=<<+于是26464303234(2)222k k k k y a a ab a a a a a====--+--+++++,18k ≥=当时取等号,达到最小值.这时,(舍去).6422a a +=+y 6a =10a =-将代入①式得.6a =3b =故当为6米,为3米时,经沉淀后流出的水中该杂质的质量分数最小.a b 解法二:依题意,即所求的的值使最大.,a b ab 由题设知,即.42260(0,0)b ab a a b ++=>>230(0,0)a b ab a b ++=>>因为2,当且仅当时,上式取等2a b +≥30ab +≤2a b =号.由,解得.0,0a b >>018ab <≤即当时,取得最大值,其最大值为18.2a b =ab 所以.解得.2218b =3,6b a ==故当为6米,为3米时,经沉淀后流出的水中该杂质的质量分数最小.a b 23.(本小题满分12分)已知斜三棱柱的侧面与底面垂直,111ABC A B C -11A ACC ABC 90,ABC BC ∠=︒=,且.2,AC =1111,AA A C AA A C ⊥=(Ⅰ)求侧棱与底面所成角的大小;1A A ABC(Ⅱ)求侧面与底面所成二面角的大小;11A ABB ABC (Ⅲ)求顶点到侧面的距离.C 11A ABB 【解】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.(Ⅰ)作,垂足为,由面面,得面,1A D AC ⊥D 11A ACC ⊥ABC 1A D ⊥ABC 所以为与面所成的角.1A AD ∠1A A ABC 因为,1111,AA A C AA A C ⊥=所以为所求.145A AD ∠=︒(Ⅱ)作,垂足为,连,则由面,得.DE AB ⊥E 1A E 1A D ⊥ABC 1A E AB ⊥所以是面与面所成二面角的平面角.1A ED ∠11A ABB ABC 由已知,,得.AB BC ⊥//ED BC又是的中点,D AC 2,BC AC ==所以.11,DE AD A D ===11tan A DA ED DE∠==故为所求.160A ED ∠=︒(Ⅲ)解法一:由点作平面的垂线,垂足为,则的长是到平面C 11A ABB H CH C 的距离.11A ABB连结,由于,得.HB AB BC ⊥AB HB ⊥又,知,且,1A E AB ⊥1//HB A E //BC ED 所以.160HBC A ED ∠=∠=︒所以sin 60CH BC =︒=解法二:连结.1A B 根据定义,点到面的距离,即为三棱锥的高.C 11A ABB 1C A AB -h 由得,即.ABC A AB A C V V --=11锥锥D A S h S ABC B AA 131311∆∆=322312231⨯⨯=⨯h 所以为所求.3=h 24.(本小题满分12分)设曲线的方程是,将沿轴、轴正向分别平行移动单位长度后C 3y x x =-C x y ,t s 得曲线.1C (Ⅰ)写出曲线的方程;1C (Ⅱ)证明曲线与关于点对称;C 1C (,)22t sA (Ⅲ)如果曲线与有且仅有一个公共点,证明且.C 1C 34t s t =-0t ≠【解】本小题主要考查函数图像、方程与曲线,曲线的平移、对称和相交等基础知识,考查运动、变换等数学思想方法以及综合运用数学知识解决问题的能力.(Ⅰ)曲线的方程为.1C 3()()y x t x t s =---+(Ⅱ)证明:在曲线上任取一点.设是关于点的对称点,则C 111(,)B x y 222(,)B x y 1B A 有,.2221t x x =+2221sy y =+所以.1212,x t x y s y =-=-代入曲线的方程,得和满足方程:,C 2x 2y 3222()()s y t x t x -=---即,可知点在曲线上.3222()()y x t x t s =---+222(,)B x y 1C 反过来,同样可以证明,在曲线上的点关于点A 的对称点在曲线上.1C C 因此,曲线与关于点A 对称.C 1C (Ⅲ)证明:因为曲线与有且仅有一个公共点,所以,方程组C 1C 33,()().y x x y x t x t s ⎧=-⎪⎨=---+⎪⎩有且仅有一组解.消去,整理得,y 22333()0tx t x t t s -+--=这个关于的一元二次方程有且仅有一个根.x 所以并且其根的判别式.即0t ≠43912()0t t t t s ∆=---=⎩⎨⎧=--≠.0)44(,03s t t t t 所以且.t t s -=430t ≠25.(本小题满分12分)已知数列是等差数列,.{}n b 112101,145b b b b =++⋅⋅⋅+=(Ⅰ)求数列的通项;{}n b n b (Ⅱ)设数列的通项(其中,且),记是数列{}n a 1log (1)n a na b =+0a >1a ≠n S 的前项和.试比较与的大小,并证明你的结论.{}n a n nS 11log 3a nb +【解】本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳、推理能力以及用数学归纳法进行论证的能力.(Ⅰ)设数列的公差为,由题意得解得{}n b d ⎪⎩⎪⎨⎧=-+=.1452)110(1010,111d b b ⎩⎨⎧==.3,11d b 所以.32n b n =-(Ⅱ)由,知32n b n =-11log (11)log (1log (1432n a a a S n =++++⋅⋅⋅++- ,11log [(11)(1)(1432a n =++⋅⋅⋅+-.11log log 3a n ab +=因此要比较与的大小,n S 11log 3a n b +可先比较与的大小.11(11)(1(1)432n ++⋅⋅⋅+-313+n 取有1n =11+>取有2n =1(11)(1)4++>……由此推测 ①11(11)(1(1)432n ++⋅⋅⋅+>-若①式成立,则由对数函数性质可断定:当时,.1a >11log 3n a n S b +>当时,.01a <<11log 3n a n S b +<下面用数学归纳法证明①式.(ⅰ)当时已验证①式成立.1n =(ⅱ)假设当时,①式成立,即.(1)nk k =≥11(11)(1(1)432k ++⋅⋅⋅+>-那么,当时,1n k=+1111(11)(1)(1)(1)4323(1)231k k k ++⋅⋅⋅++>+-+-+.2)k=+因为)()()()()332323234313231k k k k k ⎤+-+++-=⎥+⎦,()013492>++=k k.2)k +>=因而111(11)(1)(1)43231k k ++⋅⋅⋅++>-+这就是说①式当时也成立.1n k =+由(ⅰ),(ⅱ)知①式对任何正整数都成立.n 由此证得:当时,.1a >11log 3n a n S b +>当时,.01a <<11log 3n a n S b +<。
1998年普通高等学校招生全国统一考试数学试题及答案(理)
1998年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试120分钟.第Ⅰ卷(选择题共65分)一.选择题:本大题共15小题;第1—10题每小题4分,第11— 15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) sin600º的值是 ( )(A)21 (B) -21 (C)23 (D) -23 (2) 函数y =a |x |(a >1)的图像是 ( )(3) 曲线的极坐标方程ρ=4sin θ化成直角坐标方程为 ( )(A) x 2+(y +2)2=4 (B) x 2+(y -2)2=4 (C) (x -2)2+y 2=4(D) (x +2)2+y 2=4(4) 两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是 ( )(A) A 1A 2+B 1B 2=0 (B) A 1A 2-B 1B 2=0 (C)12121-=B B A A (D)12121=A A B B (5) 函数f (x )=x1( x ≠0)的反函数f -1(x )= ( )(A) x (x ≠0)(B)x 1(x ≠0) (C) -x (x ≠0)(D) -x1(x ≠0)(A ) (B ) (C ) (D )(6) 已知点P (sin α-cos α,tg α)在第一象限,则在)20[π,内α的取值是 ( )(A) (432ππ,)∪(45ππ,) (B) (24ππ,)∪(45ππ,) (C) (432ππ,)∪(2345ππ,) (D) (24ππ,)∪(ππ,43) (7) 已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为 ( ) (A) 120º(B) 150º(C) 180º(D) 240º(8) 复数-i 的一个立方根是i ,它的另外两个立方根是 ( )(A)2123±i (B) -2123±i (C) ±2123+i (D) ±2123-i (9) 如果棱台的两底面积分别是S ,S ′,中截面的面积是S 0,那么(A) 2S S S '+=0(B) S 0=S S ' (C) 2 S 0=S +S ′(D) S S S '=22(10) 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图像如下图所示,那么水瓶的形状是( )(11) 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( )(A) 90种(B) 180种(C) 270种(D) 540种h VH 0(12) 椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|P F 1|是|P F 2|的( )(A) 7倍(B) 5倍(C) 4倍(D) 3倍(13) 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过这3个点的小圆的周长为4π,那么这个球的半径为( )(A) 43(B)23(C) 2(D)3(14) 一个直角三角形三内角的正弦值成等比数列,其最小内角为 ( )(A) arccos215- (B) arcsin215-(C) arccos251- (D) arcsin251- (15) 在等比数列{a n }中,a 1>1,且前n 项和S n 满足∞→n lim S n =11a ,那么a 1的取值范围是 ( ) (A)(1,+∞) (B)(1,4) (C) (1,2)(D)(1,2)第Ⅱ卷(非选择题共85分)二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.设圆过双曲线116922=-y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是_________17.(x +2)10(x 2-1)的展开式中x 10的系数为____________(用数字作答)18.如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件____________时,有A 1 C ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)19.关于函数f (x )=4sin(2x +3π)(x ∈R ),有下列命题:①由f (x 1)= f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos(2x -6π); ③y =f (x )的图像关于点(-6π,0)对称; ④y =f (x )的图像关于直线x =-6π对称.其中正确的命题的序号是_______ (注:把你认为正确的命题的序号都.填上.)三、解答题:本大题共6小题;共69分.解答应写出文字说明,证明过程或演算步骤.(20)(本小题满分10分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,设a +c =2b ,A -C=3π.求sin B 的值. 以下公式供解题时参考: sin θ+sin ϕ =2sin2ϕθ+cos2ϕθ-,sin θ-sin ϕ=2cos 2ϕθ+sin 2ϕθ-,cos θ+cos ϕ=2cos 2ϕθ+cos 2ϕθ-,cos θ-cos ϕ=-2sin 2ϕθ+sin 2ϕθ-.(21)(本小题满分11分)如图,直线l 1和l 2相交于点M ,l 1 ⊥l 2,点N ∈l 1.以A , B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM |=17,|AN |=3,且|BN |=6.建立适当的坐标系,求曲线段C 的方程.(22)(本小题满分12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出.设箱体的长度为a 米,高度为b 米.已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60平方米.问当a ,b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的面积忽略不计). (23)(本小题满分12分)已知斜三棱柱ABC -A 1 B 1 C 1的侧面A 1 ACC 1与底面ABC垂直,∠ABC =90º,BC =2,AC=23,且AA 1 ⊥A 1C ,AA 1= A 1 C .Ⅰ.求侧棱A 1A 与底面ABC 所成角的大小;Ⅱ.求侧面A 1 ABB 1 与底面ABC 所成二面角的大小; Ⅲ.求顶点C 到侧面A 1 ABB 1的距离. (24)(本小题满分12分)设曲线C 的方程是y =x 3-x ,将C 沿x 轴、y 轴正向分别平行移动t 、s 单位长度后得曲线C 1. Ⅰ.写出曲线C 1的方程; Ⅱ.证明曲线C 与C 1关于点A (3t ,2s)对称; Ⅲ.如果曲线C 与C 1有且仅有一个公共点,证明s =43t -t 且t ≠0.(25)(本小题满分12分)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. Ⅰ.求数列{b n }的通项b n ; Ⅱ.设数列{a n }的通项a n =log a (1+nb 1)(其中a >0,且a ≠1),记S n 是数列{a n }的前n 项和.试比较S n 与31log a b n +1的大小,并证明你的结论.1998年普通高等学校招生全国统一考试数学试题(理工农医类)参考答案一、选择题(本题考查基本知识和基本运算.)1.D 2.B 3.B 4.A 5.B 6.B 7.C 8.D 9.A 10.B 11.D 12.A 13.B 14.B 15.D二、填空题(本题考查基本知识和基本运算.)16.31617.179 18.AC BD ,或任何能推导出这个条件的其他条件.例如ABCD 是正方形,菱形等 19.②,③三、解答题20.本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.解:由正弦定理和已知条件a +c =2b 得 sin A +sin C =2sin B .由和差化积公式得2sin 2C A +cos 2CA -=2sinB . 由A +B +C =π 得 sin 2C A +=cos 2B,又A -C =3π 得 23cos 2B=sin B ,所以23cos 2B =2sin 2B cos 2B. 因为0<2B <2π,cos 2B≠0, 所以sin2B =43, 从而cos2B =4132sin 12=-B 所以sinB=83941323=⨯. 21.本小题主要考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想.考查抛物线的概念和性质,曲线与方程的关系以及综合运用知识的能力.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点. 设曲线段C 的方程为y 2=2px (p >0),(x A ≤x ≤x B ,y >0),其中x A ,x B 分别为A ,B 的横坐标,p =|MN |. 所以 M (2p -,0),N (2p ,0).由|AM |= 17 ,|AN |=3 得(x A +2p )2+2px A =17, ① (x A -2p)2+2px A =9. ②由①,②两式联立解得x A =p4.再将其代入①式并由p >0解得 ⎩⎨⎧==⎩⎨⎧==.2,2;1,4A A x p x p 或 因为ΔAMN 是锐角三角形,所以2p> x A ,故舍去⎩⎨⎧==22Ax p所以p =4,x A =1.由点B 在曲线段C 上,得x B =|BN |-2p=4. 综上得曲线段C 的方程为y 2=8x (1≤x ≤4,y >0).解法二:如图建立坐标系,分别以l 1、l 2为x 、y 轴,M 为坐标原点. 作AE ⊥ l 1,AD ⊥ l 2,BF ⊥ l 2,垂足分别为E 、D 、F . 设A (x A ,y A )、B (x B ,y B )、N (x N ,0). 依题意有x A =|ME |=|DA |=|AN |=3, y A =|DM |=2222=-DAAM,由于ΔAMN 为锐角三角形,故有 x N =|ME |+|EN | =|ME |+22AE AN -=4x B =|BF |=|BN |=6.设点P (x ,y )是曲线段C 上任一点,则由题意知P 属于集合{(x ,y )|(x -x N )2+y 2=x 2,x A ≤x ≤x B ,y >0}.故曲线段C 的方程为y 2=8(x -2)(3≤x ≤6,y >0).22.本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.解法一:设y 为流出的水中杂质的质量分数,则y =abk,其中k >0为比例系数.依题意,即所求的a ,b 值使y 值最小.根据题设,有4b +2ab +2a =60(a >0,b >0),得 b =a a+-230(0<a <30). ① 于是 y =abk=aa a k+-230226432+-+-=a a k⎪⎭⎫ ⎝⎛+++-=264234a a k≥()2642234+⋅+-a a k18k =, 当a +2=264+a 时取等号,y 达到最小值. 这时a =6,a =-10(舍去). 将a =6代入①式得b =3.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 解法二:依题意,即所求的a ,b 的值使ab 最大. 由题设知 4b +2ab +2a =60(a >0,b >0),即 a +2b +ab =30(a >0,b >0). 因为 a +2b ≥2ab 2, 所以 ab 22+ab ≤30, 当且仅当a =2b 时,上式取等号. 由a >0,b >0,解得0<ab ≤18.即当a =2b 时,ab 取得最大值,其最大值为18. 所以2b 2=18.解得b =3,a =6.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小.23.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.Ⅰ.解:作A 1D ⊥AC ,垂足为D ,由面A 1ACC 1⊥面ABC ,得A 1D ⊥面ABC , 所以∠A 1AD 为A 1A 与面ABC 所成的角. 因为AA 1⊥A 1C ,AA 1=A 1C , 所以∠A 1AD =45º为所求.Ⅱ.解:作DE ⊥AB ,垂足为E ,连A 1E ,则由A 1D ⊥面ABC ,得A 1E ⊥AB . 所以∠A 1ED 是面A 1ABB 1与面ABC 所成二面角的平面角. 由已知,AB ⊥BC ,得ED ∥BC . 又D 是AC 的中点,BC =2,AC =23, 所以DE =1,AD =A 1D =3, tg ∠A 1ED =DEDA 1=3. 故∠A 1ED =60º为所求.Ⅲ.解法一:由点C 作平面A 1ABB 1的垂线,垂足为H ,则CH 的长是C 到平面A 1ABB 1的距离. 连结HB ,由于AB ⊥BC ,得AB ⊥HB . 又A 1E ⊥AB ,知HB ∥A 1E ,且BC ∥ED , 所以∠HBC =∠A 1ED =60º所以CH =BC sin60º=3为所求. 解法二:连结A 1B .根据定义,点C 到面A 1ABB 1的距离,即为三棱锥C -A 1AB 的高h . 由ABC A AB A C V V --=11锥锥得D A S h S ABC B AA 131311∆∆=, 即 322312231⨯⨯=⨯h 所以3=h 为所求.24.本小题主要考查函数图像、方程与曲线,曲线的平移、对称和相交等基础知识,考查运动、变换等数学思想方法以及综合运用数学知识解决问题的能力.Ⅰ.解:曲线C 1的方程为y =(x -t )3-(x -t )+s .Ⅱ.证明:在曲线C 上任取一点B 1(x 1,y 1).设B 2(x 2,y 2)是B 1关于点A 的对称点,则有2221t x x =+, 2221sy y =+. 所以 x 1=t -x 2, y 1=s -y 2.代入曲线C 的方程,得x 2和y 2满足方程:s -y 2=(t -x 2)3-(t -x 2),即 y 2=(x 2-t )3-(x 2-t )+ s , 可知点B 2(x 2,y 2)在曲线C 1上.反过来,同样可以证明,在曲线C 1上的点关于点A 的对称点在曲线C 上. 因此,曲线C 与C 1关于点A 对称.Ⅲ.证明:因为曲线C 与C 1有且仅有一个公共点,所以,方程组⎪⎩⎪⎨⎧+---=-=st x t x y xx y )()(33有且仅有一组解.消去y ,整理得3tx 2-3t 2x +(t 3-t -s )=0, 这个关于x 的一元二次方程有且仅有一个根. 所以t ≠0并且其根的判别式Δ=9t 4-12t (t 3-t -s )=0.即 ⎩⎨⎧=--≠.0)44(,03s t t t t所以 t t s -=43且 t ≠0. 25.本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳、推理能力以及用数学归纳法进行论证的能力.解:Ⅰ.设数列{b n }的公差为d ,由题意得⎪⎩⎪⎨⎧=-+=.1452)110(1010,111d b b 解得⎩⎨⎧==.3,11d b 所以 b n =3n -2.Ⅱ.由b n =3n -2,知S n =log a (1+1)+ log a (1+41)+…+ log a (1+231-n ) = log a [(1+1)(1+41)……(1+231-n )], 31log a b n +1= log a 313+n . 因此要比较S n 与31log a b n +1的大小,可先比较(1+1)(1+41)……(1+231-n )与313+n 的大小.取n =1有(1+1)>3113+⋅,取n =2有(1+1)(1+41)>3123+⋅, ……由此推测(1+1)(1+41)……(1+231-n )>313+n . ① 若①式成立,则由对数函数性质可断定:当a >1时,S n >31log a b n +1. 当0<a <1时,S n <31log a b n +1. 下面用数学归纳法证明①式.(ⅰ)当n =1时已验证①式成立.(ⅱ)假设当n =k (k ≥1)时,①式成立,即(1+1)(1+41)……(1+231-k )>313+k . 那么,当n =k +1时,(1+1)(1+41)……(1+231-k )(1+()2131-+k )>313+k (1+131+k ) =13133++k k (3k +2). 因为()[]333343231313+-⎥⎦⎤⎢⎣⎡+++k k k k ()()()()22313134323+++-+=k k k k ()013492>++=k k , 所以13133++k k (3k +2)>().1134333++=+k k 因而(1+1)(1+41)……(1+231-k )(1+131+k )>().1133++k 这就是说①式当n=k +1时也成立.由(ⅰ),(ⅱ)知①式对任何正整数n 都成立.由此证得:当a >1时,S n >31log a b n +1. 当0<a <1时,S n <31log a b n +1.。
1988年普通高等学校招生全国统一考试理科数学试题及答案
1988年普通高等学校招生全国统一考试理科数学试题及答案一.(本题满分45分)本题共有15个小题,每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个结论是正确的,把你认为正确结论的代号写在题后的圆括号内每一个小题选对得3分;不选或选错一律得0分(1)2i 1i 1⎪⎭⎫ ⎝⎛+-的值等于 ( B )(A )1 (B )-1 (C )i (D)-i(2)设圆M 的方程为(x-3)2+(y-2)2=2,直线L 的方程为x+y-3=0,点P 的坐标为(2,1),那么 ( C ) (A )点P 在直线L 上,但不在圆M 上 (B )点P 在圆M 上,但不在直线L 上 (C )点P 既在圆M 上,又在直线L 上 (D )点P 既不在直线L 上,也不在圆M 上(3)集合{1,2,3}的子集共有 ( B ) (A )7个 (B )8个 (C )6个 (D )5个(4)已知双曲线方程15y 20x 22=-,那么它的焦距是 ( A ) (A )10 (B )5 (C )15 (D )152(5)在10)3x (-的展开式中,x 6的系数是 ( D )(A )610C 27- (B )410C 27 (C )610C 9- (D )410C 9(6)函数x sin x cos y 44-=的最小正周期是 ( A ) (A )π (B )π2 (C )2π(D )π4 (7)方程03x cos 34x cos 42=+-的解集是 ( C )(A )}Z k ,6)1(k x |x {k∈π⋅-+π= (B )}Z k ,3)1(k x |x {k ∈π⋅-+π= (C )}Z k ,6k 2x |x {∈π±π= (D )}Z k ,3k 2x |x {∈π±π=(8)极坐标方程θ-=ρcos 234所表示的曲线是 ( D )(A )圆 (B )双曲线右支 (C )抛物线 (D )椭圆(9)如图,正四棱台中,D A ''所在的直线与B B '所在的直线是 (A )相交直线 ( C )(B )平行直线(C )不互相垂直的异面直线 (D )互相垂直的异面直线(10))3arctg 51arctg(tg +的值等于 ( D )(A )4 (B )21 (C )81(D )8(11)设命题甲:△ABC 的一个内角为600命题乙:△ABC 的三内角的度数成等差数列数列那么( C )(A )甲是乙的充分条件,但不是必要条件 (B )甲是乙的必要条件,但不是充分条件 (C )甲是乙的充要条件(D )甲不是乙的充分条件,也不是乙的必要条件(12)在复平面内,若复数z 满足|i z ||1z |-=+,则z 所对应的点Z 的集合构成的图形是 ( B )(A )圆 (B )直线 (C )椭圆 (D )双曲线(13)如果曲线x 2-y 2-2x-2y-1=0经过平移坐标轴后的新方程为1y x 22='-',那么新坐标系的原点在原坐标系中的坐标为 ( D )(A )(1,1) (B )(-1,-1) (C )(-1,1) (D )(1,-1)(14)假设在200件产品中有3件次品,现在从中任意抽取5件,其中至少有2件次品的抽法有 ( B )(A )319723C C 种 (B )219733319723C C C C +种 (C )51975200C C -种 (D )4197135200C C C -种(15)已知二面角β--αAB 的平面角是锐角,C 是平面α内一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任一点,那么 ( A )(A )∠CEB>∠DEB (B )∠CEB=∠DEB (C )∠CEB<∠DEB(D )∠CEB 与∠DEB 的大小关系不能确定二.(本题满分20分)本题共5小题,每一个小题满分4分只要求直接写出结果(1)求复数i 3-的模和辐角的主值'Cα C A E D β B[答]模:2;复角主值:π611(只答对一个值的给2分) (2)解方程.27329x 1x=⋅---[答]x=-2(直接答-2也算对)(3)已知2tg ,273,53sin θπ<θ<π-=θ求的值 [答]-3(4)如图,四棱锥S-ABCD 的底面是边长为1的正方形,侧棱SB 垂直于底面,并且SB=3,用α表示∠ASD ,求αsin 的值[答]55 (5)已知等比数列}a {n 的公比q>1,并且a 1=b(b ≠0)求.a a a a a a a a limn 876n321n ++++++∞→[答]1三.(本题满分10分)已知,a tgx =求x3cos x cos 3x3sin x sin 3++的值解:xcos x 2cos 2x cos 2xcos x 2sin 2x sin 2x 3cos x cos x cos 2x 3sin x sin x sin 2x 3cos x cos 3x 3sin x sin 3++=++++=++)3a (2a)3x tg (2tgx )2x (sec 2tgx xcos 2)x cos 21(tgx )x 2cos 1(x cos 2x cos x sin 4x sin 2222222+=+=+=+=++=四.(本题满分10分)S-ABC 的侧面是边长为a 的正三角形,D 是SA 的中点,E 是BC 的中点,求△SDE 绕直线SE 旋转一周所得的旋转体的体积解:连结AE ,因为△SDE 和△ABC 都是边长为a 的正三角形,并且SE 和AE 分别是它们的中线,所以SE=AE ,从而△SDE 为等腰三角形,由于D 是SA 的中点,所以ED ⊥SA DF ⊥SE ,交SE 于点F 考虑直角△SDE 的面积,得到,DE SD 21DF SE 21⋅=⋅所以,S α B AC DSD FA C E B.a 66a 23a222a DF ,,a 22)2a (a 43SD SE DE ,a 23)2a (a BE SB SE ,.SE DEa 21SE DE SD DF 22222222=⋅==-=-==-=-=⋅=⋅=所以易知 所求的旋转体的体积是以DF 为底面半径,分别以SF 和EF 为高的两个圆锥的体积的和,即.a 363a 236a 31SE )a 66(31EF )a 66(31SF )a 66(3132222π=⋅⋅π=⋅⋅π=⋅⋅π+⋅⋅π五.(本题满分11分)设21t log t log 21,0t ,1a ,0a a a +>≠>与比较的大小,并证明你的结论 解:当t>0时,由重要不等式可得t 21t ≥+,当且仅当t=1时取“=”号.t l o g 2121t l o g ,t l o g 21t l o g ,1t a a a a =+=+=∴即时t log 2121t log ,t log 21t log ,x log y ,1a .t log 2121t log ,t log 21t log x log y ,1a 0.t 21t ,1t a a a aa a a a a a >+>+=><+<+=<<>=≠即所以是增函数时当即所以是减函数时当 六.(本题满分12分)本题共2小题,第(1)小题满分4分,第(2)小题满分8分.给定实数).a1x ,R x (1ax 1x y ,1a ,0a ,a ≠∈--=≠≠且设函数且 证明:(1)经过这个函数图象上任意两个不同的点的直线不平行于x 轴;(2)这个函数的图象关于直线y=x 成轴对称图形解:(1)设M 1(x 1,y 1),M 2(x 2,y 2)是这个函数图象上任意两个不同的点,则x 1≠x 2,且.0y y ,x x ,1a ,)1ax )(1ax ()1a )(x x ()1ax )(1ax ()x x ()x x (a )1ax )(1ax ()1ax x x ax (1ax x x ax 1ax 1x 1ax 1x y y 122112121212121211211221112212≠-∴≠≠----=-----=--+---+--=-----=-且从而直线M 1M 2的斜率,0x x y y k 1212≠--=因此,直线M 1M 2不平行于x 轴(2)设点P )y ,x (''是这个函数图象上任意一点,则,111)1(,1,01)2(,1)1(,1)1()1(),(),()1(11,1-'-'=='=-'-'=-''-'=-'''''=''-'-'='≠'x a x a a y y a y y a x x x a y x y P x y y x P x a x y a x 得代入则假如即式得由的坐标为的对称点关于直线易知点且,,1,1与已知矛盾由此得即=-'=-'a x a a x a成轴对称图形线这个函数的图象关于直因此在已知函数的图象上这说明点式得于是由x y x y P y a y x y a ='''-'-'='≠-'∴,,),(.11)2(.01(注:对(1)也可用反证法或考察平行x 轴的直线y=c 与所给函数的图象是否相交及交点数目的情况由其无交点或恰有一交点,从而得证对(2)也可先求反函数,由反函数与原函数相同证明其图象关于y=x 对称 七.(本题满分12分)如图,直线L 的方程为2px -=,其中p >0;椭圆的中心为 D )0,2p2(+,焦点在x 轴上,长半轴长为2,短半轴长为1,它的 一个顶点为A 0,2p(问p 在哪个范围内取值时,椭圆上有四个不同的点,它们中每一个点到点A 的距离等于该点到直线L 的距离解:假定椭圆上有符合题意的四点,则这四个点的坐标都应满足下面的椭圆方程:,1y 4)]2p2(x [22=++- 又这四个点的坐标应满足下面的抛物线方程y 2=2px,从而椭圆上有四点符合题意的充要条件是下面的方程组有四个不同的实数解:⎪⎩⎪⎨⎧==++-)2(.px 2y )1(,1y 42p 2(x [222 将(2)式代入(1)式,得)3(.0p 24p x )4p 7(x ,4px 82p2(x [222=++-+=++-即Y L所以原方程组有4个不同的实数解,当且仅当方程(3)有两个不相等的正根而这又等价于310,,0.047,024,0)24(4)47(222<<>⎪⎪⎪⎩⎪⎪⎪⎨⎧<->+>+--=∆p p p p pp p p 得到解此不等式组的条件下在所以,所求的p 的取值范围为.31p 0<<。
1988年高考数学 理工农医类、全国卷 真题
1988年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)一、本题每一个小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,把你认为正确的结论的代号写在题后的括号内.()(A)1(B)-1(C)I(D)-i(2)设圆M的方程为(x-3)2+(y-2)2=2,直线L的方程为x+y-3=0,点P的坐标为(2,1),那么()(A)点P在直线L上,但不在圆M上(B)点P在圆M上,但不在直线L上(C)点P既在圆M上,又在直线L上(D)点P既不在圆M上,也不在直线L上(3)集合{1,2,3}的子集总共有()(A)7个(B)8个(C)6个(D)5个()(A)10(B)5(5)在的展开式中,x6的系数是()(6)函数y=cos4x-sin4x的最小正周期是()(A)π(B)2π(7)方程的解集是()()(A)圆(B)双曲线右支(C)抛物线(D)椭圆(9)如图,正四棱台中,A'D'所在的直线与BB'所在的直线是()(A)相交直线(B)平行直线(C)不互相垂直的异面直线(D)互相垂直的异面直线()【】(11)设命题甲:△ABC的一个内角为60°.命题乙:△ABC的三个内角的度数成等差数列.那么()(A)甲是乙的充分条件,但不是必要条件(B)甲是乙的必要条件,但不是充分条件(C)甲是乙的充要条件(D)甲不是乙的充分条件,也不是乙的必要条件(12)复平面内,若复数z满足│z+1│=│z-i│,则z所对应的点Z的集合构成的图形是()(A)圆(B)直线(C)椭圆(D)双曲线(13)如果曲线x2-y2-2x-2y-1=0经过平移坐标轴后的新方程为那么新坐标系的原点在原坐标系中的坐标为()(A)(1,1)(B)(-1,-1)(C)(-1,1)(D)(1,-1)(14)假设在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有2件次品的抽法有()(15)如图,二面角αˉABˉβ的平面角是锐角,C是面α内的一点(它不在棱AB上),点D是点C在面β上的射影,点E是棱AB上满足∠CEB为锐角的任意一点,那么()(A)∠CEB>∠DEB(B)∠CEB=∠DEB(C)∠CEB<∠DEB(D)∠CEB与∠DEB的大小关系不能确定二、只要求直接写出结果.(5)已知等比数列{an}的公比q>1,并且a1=b(b≠0),求四、如图,正三棱锥S-ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.六、给定实数a,a≠0,且a≠1设函数证明(1)经过这个函数图象上任意两个不同的点的直线不平行于x轴;(2)这个函数的图象关于直线y=x成轴对称图形.1988年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)参考答案一、选择题.(1)B(2)C(3)B(4)A(5)D(6)A(7)C(8)D(9)C(10)D(11)C(12)B(13)D(14)B(15)A二、填空题.三、本题主要考查三角公式和进行三角式的恒等变形的能力.解法一:解法二:解法三:解法四:四、本题主要考查空间想象能力、体积计算等知识和推理能力.解法一:连接AE,因为△SBC和△ABC都是边长为a的正三角形,并且SE和AE分别是它们的中线,所以SE=AE,从而△SEA为等腰三角形,由于D是SA的中点,所以ED⊥SA.作DF⊥SE,交SE于点F.考虑直角△SDE的面积,得到所求的旋转体的体积是以DF为底面半径,分别以SF和EF为高的两个圆锥的体积的和,即解法二:连结BD.因为BD是正三角形SBA的中线,所以BD⊥SA.连结CD,同理CD⊥SA.于是SA⊥平面BDC,所以SA⊥DE.作DF⊥SE,交SE于点F.在直角△SDE中,SD2=SF·SE,所求的旋转体的体积为五、本题主要考查对数函数的性质,以及运用重要不等式解决问题的能力.解法一:情形1∶0<a<1.情形2∶a>1.解法二:当t>0时,由重要不等式可得当且仅当t=1时取“=”号.当0<a<1时,y=logax是减函数,当a>1时,y=logax是增函数,解法三:因为t>0,又有当且仅当t=1时取“=”号,当且仅当t=1时取“=”号.以下同解法二.六、本题主要考查考生在正确理解数学概念(函数的图象的概念,轴对称图形的概念等)的基础上进行推理的能力,以及灵活运用学过的代数和解析几何的知识(互为反函数的图象之间的关系,两条直线平行的条件等)解决问题的能力.证法一:(1)设M1(x1,y1),M2(x2,y2)是这个函数图象上任意两个不同的点,∵a≠1,且x1≠x2,∴y2-y1≠0.因此,M1M2不平行于x轴.即,由此得a=1,与已知矛盾,于是由②式得证法二:(1)设M1(x1,y1),M2(x2,y2)是这个函数的图象上任意两个不同的点,则x1≠x2.假如直线M1M2平行于x轴,那么y1=y2,即亦即(x1-1)(ax2-1)=(x2-1)(ax1-1),整理得a(x1-x2)=x1-x2,因为x1≠x2,所以a=1,这与已知矛盾.因此M1M2不平行于x轴.(2)先求所给函数的反函数:由得y(ax-1)=x-1,即(ay-1)x=y-1.即ax-a=ax-1,由此得a=1,与已知矛盾,所以ay-1≠0.因此得到由于函数y=f(x)的图象和它的反函数y=f-1(x)的图象关于直线y=x对证法三:(1)任取一条与x轴平行的直线L,则l的方程为y=c(c为常数).考虑L与所给函数的图象是否相交以及交点数目的情况.将②代入①得c(ax-1)=x-1,即(ca-1)x=c-1.③从而直线L与所给函数的图象无交点.这说明原方程组恰有一个解,从而直线L与所给函数的图象恰有一个交点.综上述,平行于x轴的直线与所给函数的图象或者不相交,或者恰有一个交点.因此,经过这个函数图象上任意两个不同的点的直线不平行于x轴.(2)同证法一或证法二.七、本题主要考查考生利用方程研究曲线性质的能力,以及综合运用学过的代数知识(一元二次方程的判别式,根与系数的关系,解二元二次方程组,解不等式等)去解题的能力.解法一:假定椭圆上有符合题意的四个点,则这四个点的坐标都应满足下面的椭圆方程:又这四个点的坐标应满足下面的抛物线方程y2=2px,从而它们都是下面的方程组的解:将②式代入①式,得由于上述方程组有4个不同的实数解,所以方程③的判别式应大于零,整理得3p2-4p+1>0,由已知,椭圆上的点的横坐标都大于零,所以方程③的两个根应都为正数,于是得7p-4<0,解此不等式得由④、⑤以及已知条件得一次项系数7p-4<0,所以x1,x2都为正数.把x1及x2分别代入②中,可解得显然y1,y2,y3,y4两两不相等.由于(x1,y1)适合②式和③式,从而也适合①式,因此点M1(x1,y1)是符合题意的点.同理M2(x1,y2),M3(x2,y3),M4(x2,y4)都是符合题意的点,并且它们是互不相同的.解法二:椭圆上有四个点符合题意的充要条件是方程组有四个不同的实数解.所以原方程组有四个不同的实数解,当且仅当方程③有两个不相等的正根.而这又等介于在p>0的条件下,解此不等式组,得到解法三:易求出所给椭圆的方程为假定这个椭圆上有符合题意的四个点,则这些点的坐标应是下述方程组的解:把②式化简得y2=2px.。
1988年全国统一高考数学试卷(理科)
1988年全国统一高考数学试卷(理科)一、选择题(共15小题,每小题3分,满分45分) 1.(3分)(2008•海淀区一模)的值等于( )A . 1B . ﹣1C . iD . ﹣i 2.(3分)设圆M 的方程为(x ﹣3)2+(y ﹣2)2=2,直线L 的方程为x+y ﹣3=0,点P 的坐标为(2,1),那么( ) A . 点P 在直线L 上,但不在圆M 上 B . 点P 在圆M 上,但不在直线L 上C .点P 既在圆M 上,又在直线L 上 D . 点P 既不在直线L 上,也不在圆M 上 3.(3分)集合{1,2,3}的子集共有( ) A . 7个 B . 8个 C . 6个 D . 5个4.(3分)已知双曲线方程,那么双曲线的焦距是( ) A . 10 B . 5C .D .5.(3分)在的展开式中,x 6的系数是( )A . ﹣27C 106B . 27C 104 C . ﹣9C 106D . 9C 104 6.(3分)(2012•北京模拟)函数y=cos 4x ﹣sin 4x 的最小正周期是( ) A . B . π C . 2π D . 4π7.(3分)方程的解集是( )A .B .C .D .8.(3分)极坐标方程所表示的曲线是( )A . 圆B . 双曲线右支C .抛物线 D . 椭圆9.(3分)如图,正四棱台中,A'D'所在的直线与BB'所在的直线是( )A . 相交直线B . 平行直线C . 不互相垂直的异面直线D . 互相垂直的异面直线10.(3分)的值等于( ) A .4 B .C .D . 811.(3分)设命题甲:△ABC 的一个内角为60°,命题乙:△ABC 的三内角的度数成等差数列.那么( ) A . 甲是乙的充分条件,但不是必要条件 B . 甲是乙的必要条件,但不是充分条件 C . 甲是乙的充要条件 D . 甲不是乙的充分条件,也不是乙的必要条件 12.(3分)在复平面内,若复数z 满足|z+1|=|z ﹣i|,则z 所对应的点Z 的集合构成的图形是( ) A . 圆 B . 直线 C . 椭圆 D . 双曲线 13.(3分)如果曲线x 2﹣y 2﹣2x ﹣2y ﹣1=0经过平移坐标轴后的新方程为x'2﹣y'2=1,那么新坐标系的原点在原坐标系中的坐标为( ) A . (1,1) B . (﹣1,﹣1) C . (﹣1,1) D . (1,﹣1) 14.(3分)(2007•杭州一模)假设在200件产品中有3件次品,现在从中任意抽取5件,其中至少有2件次品的抽法有( ) A . C 32C 1973种 B . C 32C 1973+C 33C 1972种 C . C 2005﹣C 1975种 D . C 2005﹣C 31C 1974种15.(3分)已知二面角α﹣AB ﹣β的平面角是锐角,C 是平面α内一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任一点,那么( )A . ∠CEB >∠DEB B . ∠CEB=∠DEBC . ∠CEB <∠DEBD . ∠CEB 与∠DEB 的大小关系不能确定二、解答题(共5小题,满分0分) 16.(20分)四棱锥S ﹣ABCD 的底面是边长为1的正方形,侧棱SB 垂直于底面,并且SB=,用α表示∠ASD ,求sinα的值.17.(10分)已知tgx=a,求的值.18.(10分)如图,正三棱锥S﹣ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.19.(12分)给定实数a,a≠0,且a≠1,设函数y=(x∈R,且x≠).证明:(1)经过这个函数图象上任意两个不同的点的直线不平行于x轴;(2)这个函数的图象关于直线y=x成轴对称图形.20.(12分)某中学在一次健康知道竞赛活动中,抽取了一部分同学测试的成绩,绘制的成绩统计图如图所示,请结合统计图回答下列问题:(1)本次测试中,抽取了的学生有多少人?(2)若这次测试成绩80分以上(含80分)为优秀,则请你估计这次测试成绩的优秀率不低于百分之几?.21.(11分)21、设的大小,并证明你的结论.1988年全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分) 1.(3分)(2008•海淀区一模)的值等于( )A . 1B . ﹣1C .i D . ﹣i考点: 复数代数形式的混合运算. 专题: 计算题.分析: 根据复数的计算方法,可得的值,进而可得=(﹣i )2,可得答案.解答:解:根据复数的计算方法,可得==﹣i ,则=(﹣i )2=﹣1,故选B .点评: 本题考查复数的混合运算,解本题时,注意先计算括号内,再来计算复数平方.2.(3分)设圆M 的方程为(x ﹣3)2+(y ﹣2)2=2,直线L 的方程为x+y ﹣3=0,点P 的坐标为(2,1),那么( ) A . 点P 在直线L 上,但不在圆M 上 B . 点P 在圆M上,但不在直线L 上 C . 点P 既在圆M 上,又在直线L 上 D . 点P 既不在直线L 上,也不在圆M 上考点: 点与圆的位置关系. 分析: 点P 代入直线方程和圆的方程验证即可. 解答: 解:点P 坐标代入直线方程和圆的方程验证,点P 的坐标为(2,1),适合L 的方程,即2+1﹣3=0;点P 的坐标为(2,1),满足圆M 的方程,即(2﹣3)2+(1﹣2)2=2.显然A 、B 、D 不正确. 选项C 正确. 故选C .点评: 本题是基础题,考查点的坐标适合方程. 3.(3分)集合{1,2,3}的子集共有( ) A . 7个 B . 8个 C . 6个 D . 5个考点: 子集与真子集. 分析: 集合{1,2,3}的子集是指属于集合的部分或所有元素组成的集合,包括空集. 解答: 解:集合{1,2,3}的子集有:∅,{1},{2},{3},{1,2}…{1,2,3}共8个. 故选B .点评: 本题考查集合的子集个数问题,对于集合M 的子集问题一般来说,若M 中有n 个元素,则集合M 的子集共有2n 个.4.(3分)已知双曲线方程,那么双曲线的焦距是()A.10 B.5C.D.考点:双曲线的简单性质.专题:计算题.分析:根据题设条件求出c2,然后求出c,就能得到双曲线的焦距2c.解答:解:c2=25,c=5,∴双曲线的焦距2c=10.故选A.点评:本题比较简单,解题时注意不要和椭圆弄混了.5.(3分)在的展开式中,x6的系数是()A.﹣27C106B.27C104C.﹣9C106D.9C104考点:二项式定理的应用.专题:计算题.分析:利用二项展开式的通项公式求出第r+1项,令x的指数为6求出x6的系数.解答:解:展开式的通项为令10﹣r=6得r=4∴展开式中x6的系数是9C104故选项为D点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(3分)(2012•北京模拟)函数y=cos4x﹣sin4x的最小正周期是()A.B.πC.2πD.4π考点:同角三角函数基本关系的运用.分析:观察题目条件,思路是降幂,先用平方差公式,再逆用二倍角公式,式子变为能判断周期等性质的形式,即y=Asin(ωx+φ)的形式.解答:解:∵y=cos4x﹣sin4x=cos2x﹣sin2x=cos2x,∴T=π,故选B点评:对于和式的整理,基本思路是降次、消项和逆用公式,本题就是逆用余弦的二倍角公式.另外还要注意切割化弦,变量代换和角度归一等方法.7.(3分)方程的解集是()A.B.C.D.考点:正弦函数的图象.分析:令t=cosx代入后转化为一元二次方程后即可解.解答:解:令t=cosx则可转化为:4t2﹣4t+3=0∴t=∴cosx=∴x=±故选C.点评:本题主要考查解关于三角函数的二次方程问题.一般通过换元法转化为一元二次方程的问题后再处理.8.(3分)极坐标方程所表示的曲线是()A.圆B.双曲线右支C.抛物线D.椭圆考点:简单曲线的极坐标方程.分析:圆锥曲线的统一的极坐标方程是,其中e表示曲线的离心率,欲判断极坐标方程所表示的曲线,只须将它化成统一的形式后看其离心率即可.解答:解:∵,∴,∴其离心率e=,是椭圆.故选D.点评:本题主要考查了圆锥曲线的统一的极坐标方程,属于基础题.9.(3分)如图,正四棱台中,A'D'所在的直线与BB'所在的直线是()A.相交直线B.平行直线C.不互相垂直的D.互相垂直的异面直线异面直线考点:空间中直线与直线之间的位置关系.分析:首先由“直线平行于平面,则该直线与平面内任一直线异面”判定A'D'与BB′异面;然后通过A'D'与BB′的夹角是等腰梯形的内角,确定A'D'与BB′不垂直.解答:解:在正四棱台中,A'D'∥B′C′,又A'D'⊄平面BCC′B′,所以A'D'∥平面BCC′B′,又BB′⊂平面BCC′B′,所以A'D'与BB′异面;又因为四边形BCC′B′是等腰梯形,所以BB′与B′C′不垂直,即BB′与A'D'不垂直.故选C.点评:本题考查异面直线的定义及其夹角.10.(3分)的值等于()A.4B.C.D.8考点:反三角函数的运用.专题:计算题.分析:应用两角和的正切公式直接化简,以及公式tg(arctgx)=x直接求解即可.解答:解:=故选D.点评:本题考查反三角函数的运算,两角和的正切公式,是基础题.11.(3分)设命题甲:△ABC的一个内角为60°,命题乙:△ABC的三内角的度数成等差数列.那么()A.甲是乙的充分条件,但不是必要条件B.甲是乙的必要条件,但不是充分条件C.甲是乙的充要条件D.甲不是乙的充分条件,也不是乙的必要条件考点:等差关系的确定.分析:根据三角形内角和180°,△ABC的一个内角为60°,另外两个角的和是120°,满足等差中项的特点,△ABC的三内角的度数成等差数列,等差中项是60°.解答:解:∵△ABC的一个内角为60°,∴另外两个角的和是120°,∴三个角满足等差数列;∵△ABC的三内角的度数成等差数列,∴等差中项是60°,故选C点评:本小题主要考查等差数列、充要条件等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.可以列表复习等差数列和等比数列的概念、有关公式和性质.以便利于区分等差和等比.12.(3分)在复平面内,若复数z满足|z+1|=|z﹣i|,则z所对应的点Z的集合构成的图形是()A.圆B.直线C.椭圆D.双曲线考点:复数的代数表示法及其几何意义.分析:本题考查的是复数的模的几何意义.|z1﹣z2|表示点Z1到Z2距离.先明确几何意义,再数形结合就可以给出解答.解答:解:|z+1|,|z﹣i|的几何意义分别是点Z到﹣1所对应的点A(﹣1,0)和点Z到i所对应的点B(0,1)的距离.由|ZA|=|ZB|,则点Z的轨迹是线段AB的垂直平分线.点评:本题考查的是复数的模的几何意义.注意掌握|z1﹣z2|表示点Z1到Z2距离.13.(3分)如果曲线x2﹣y2﹣2x﹣2y﹣1=0经过平移坐标轴后的新方程为x'2﹣y'2=1,那么新坐标系的原点在原坐标系中的坐标为()A.(1,1)B.(﹣1,﹣1)C.(﹣1,1)D.(1,﹣1)考点:函数的图象与图象变化.分析:先将方程x2﹣y2﹣2x﹣2y﹣1=0配方,再看此方程可由什么样的平移方式得到新方程为x'2﹣y'2=1,从而新坐标系的原点在原坐标系中的坐标.解答:解:将方程x2﹣y2﹣2x﹣2y﹣1=0配方得:(x﹣1)2﹣(y+1)2=1,其中心在(1,﹣1),故新坐标系的原点在原坐标系中的坐标为(1,﹣1),故选D.点评:本题主要考查了函数的图象的图象变化,属于基础题.14.(3分)(2007•杭州一模)假设在200件产品中有3件次品,现在从中任意抽取5件,其中至少有2件次品的抽法有()A.C32C1973种B.C32C1973+C33C1972种C.C2005﹣C1975种D.C2005﹣C31C1974种考点:组合及组合数公式.专题:计算题;压轴题.分析:根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,由组合数公式分别求得两种情况下的抽法数,进而相加可得答案.解答:解:根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,“有2件次品”的抽取方法有C32C1973种,“有3件次品”的抽取方法有C33C1972种,则共有C32C1973+C33C1972种不同的抽取方法,故选B.点评:本题考查组合数公式的运用,解题时要注意“至少”“至多”“最少”“最少”等情况的分类讨论.15.(3分)已知二面角α﹣AB﹣β的平面角是锐角,C是平面α内一点(它不在棱AB上),点D是点C在面β上的射影,点E是棱AB上满足∠CEB为锐角的任一点,那么()A.∠CEB>∠DEBB.∠CEB=∠DEBC.∠CEB<∠DEBD.∠CEB与∠DEB的大小关系不能确定考点:三垂线定理.专题:作图题;综合题;压轴题.分析:作出图形,利用三垂线定理和直角三角形,推出∠CEB、∠DEB的正切值的大小,推出结论.解答:解:过C向AB做垂线交AB于F,连接DF,因为CD⊥AB又CF⊥AB,所以AB⊥面CDF,所以CF垂直于AB在直角三角形CDF中,CF为斜边DF为直角边,所以CF>DF易知tan∠CEF=tan∠DEB=由CF>DF知,∠CEB>∠DEB故选A.点评:本题考查三垂线定理,考查学生逻辑思维能力,是基础题.二、解答题(共5小题,满分0分)16.(20分)四棱锥S﹣ABCD的底面是边长为1的正方形,侧棱SB垂直于底面,并且SB=,用α表示∠ASD,求sinα的值.考点:三垂线定理.专题:作图题;证明题.分析:利用三垂线定理说明DA⊥SA,求出SD,解三角形SAD,即可得到sinα的值.解答:解:因为SB垂直于底面ABCD,所以斜线段SA在底面上的射影为AB,由于DA⊥AB 所以DA⊥SA从而连接BD,易知BD=由于SB⊥BD,所以因此,点评:本题考查三垂线定理,考查学生分析问题解决问题的能力,是基础题.17.(10分)已知tgx=a,求的值.考点:三角函数中的恒等变换应用.分析:先用和差化积公式再根据二倍角公式即可化简求值.解答:解:==点评:本题主要考查三角函数的和差化积公式和二倍角公式.三角函数中公式比较多,一定要熟练记忆,能够灵活运用.18.(10分)如图,正三棱锥S﹣ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.考点:旋转体(圆柱、圆锥、圆台);棱锥的结构特征.专题:计算题.分析:连接AE,说明ED⊥SA,作DF⊥SE,交SE于点F.所求的旋转体的体积是以DF为底面半径,分别以SF和EF为高的两个圆锥的体积的和,求出DF,然后求出几何体的体积.解答:解:连接AE,因为△SDE和△ABC都是边长为a的正三角形,并且SE和AE分别是它们的中线,所以SE=AE,从而△SEA为等腰三角形,由于D是SA的中点,所以ED⊥SA.作DF⊥SE,交SE于点F.考虑直角△SDE的面积,得到,所以,,.所求的旋转体的体积是以DF为底面半径,分别以SF和EF为高的两个圆锥的体积的和,即.点评:本题是基础题,考查空间想象能力,圆锥的体积的求法,考查计算能力以及发现问题解决问题的能力.19.(12分)给定实数a,a≠0,且a≠1,设函数y=(x∈R,且x≠).证明:(1)经过这个函数图象上任意两个不同的点的直线不平行于x轴;(2)这个函数的图象关于直线y=x成轴对称图形.考点:反函数.专题:证明题.分析:(1)欲证经过这个函数图象上任意两个不同的点的直线不平行于x轴,设M1(x1,y1),M2(x2,y2)是这个函数图象上任意两个不同的点,可通过证明任意两个不同的点的直线的斜率恒不为0得到;(2)要证这个函数的图象关于直线y=x成轴对称图形,设点P(x',y')是这个函数图象上任意一点,证明其对称点(y',x')也在此函数的图象上即可.解答:解:(1)设M1(x1,y1),M2(x2,y2)是这个函数图象上任意两个不同的点,则x1≠x2,且=,∵a≠1,且x1≠x2,∴y2﹣y1≠0.从而直线M1M2的斜率,因此,直线M1M2不平行于x轴.(2)设点P(x',y')是这个函数图象上任意一点,则x'≠,且y'=(1)易知点P(x',y')关于直线y=x的对称点P'的坐标为(y',x')由(1)式得y'(ax'﹣1)=x'﹣1,即x'(ay'﹣1)=y'﹣1,(2),即ax'﹣a=ax'﹣1,由此得a=1,与已知矛盾,∴这说明点P'(y',x')在已知函数的图象上,因此,这个函数的图象关于直线y=x成轴对称图形.点评:本题主要考查了等价转化能力和数式的运算能力,属于中档题.对(1)也可用反证法或考查平行x轴的直线y=c与所给函数的图象是否相交及交点数目的情况.由其无交点或恰有一交点,从而得证.对(2)也可先求反函数,由反函数与原函数相同证明其图象关于y=x对称).20.(12分)某中学在一次健康知道竞赛活动中,抽取了一部分同学测试的成绩,绘制的成绩统计图如图所示,请结合统计图回答下列问题:(1)本次测试中,抽取了的学生有多少人?(2)若这次测试成绩80分以上(含80分)为优秀,则请你估计这次测试成绩的优秀率不低于百分之几?.考点:频率分布直方图.专题:压轴题;图表型.分析:(1)由频数直方图的意义,将各组人数相加可得共抽取的学生人数,即答案;(2)读直方图可得:这次测试成绩80分以上的人数,除以总人数即可得优秀率,即答案.解答:解:(1)由频数直方图可知:本次测试中,抽取了的学生有2+3+41+4=50人;(2)这次测试成绩80分以上(含80分)的人数为41+4=45,则优秀率为=90%.故答案为:(1)50人;(2)90%.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(11分)21、设的大小,并证明你的结论.考点:对数的运算性质;对数值大小的比较.专题:压轴题.分析:先判断与的大小,再由对数函数的单调性可得到答案.解答:解:当t>0时,由基本不等式可得,当且仅当t=1时取“=”号∴t≠1时,当0<a<1时,y=log a x是单调减函数,∴,即当a>1时,y=log a x是单调增函数,∴>,即>点评:本题主要考查对数函数的单调性,即当底数大于1时函数单调递增,当底数大于0小于1时函数单调递减.。
1988-1998年高考理科数学试题参考答案
S FAC ED 1988年普通高等学校招生全国统一考试理科数学参考答案 满分120分,120分钟一、(本题满分45分)BCBAD ACDCD CBDBA 二、(本题满分20分)1.2;116π 2. 2x =- 3.-3 4.555. 1.三、(本题满分10分) 解:3sin sin 33cos cos3x xx x ++2sin sin sin 32cos cos cos3x x x x x x ++=++ 2sin 2sin 2cos 2cos 2cos 2cos x x x x x x +=+ 22sin 4sin cos 2cos (1cos 2)x x xx x +=+ 22tan (12cos )2cos x x x+=2tan (sec 2)2x x =+ 22tan (tan 3)(3)22x a x a =+=+.四、(本题满分10分)解:连接AE ,SE .∵△SBC 和△ABC 都是边长为a 的正三 角形,E 是BC 的中 点,∴SE 和AE 分别是它们的中线,且SE =AE ,∴△SAE 为等腰三角形.∵D 是SA 的中点,∴DE ⊥SA .由已知条件及上述解析得:在正△SBC 中有,cos302SE SB a =︒=; 在等腰△SAE 中有,2DE a ==. 作DF ⊥SE ,交SE 于点F ,则1122SDE S SE DF SD DE ∆=⋅=⋅,∴6a SD DE DF SE ⋅===. 所求的旋转体的体积是以DF 为底面半径,分别以SF 和EF 为高的两个圆锥的体积的和,即2211))33V SF EF ππ=⋅⋅+⋅⋅旋转体22311()3636236a SE a ππ=⋅⋅=⋅=. 五、(本题满分11分) 解:∵0t >,∴12t +≥当且仅当1t =时“=”成立.1log log 2a a t = ∵当01a <<时,函数log a y x =是减函数,∴1log log 2aa t +≤ 11log log 22a a t t +≤;∵当1a >时,函数log a y x =是增函数,∴1log log 2aa t +≥ 11log log 22a a t t +≥.综上可得:当01a <<时,11log log 22a a t t +≤;当1a >时,11log log 22aa t t +≥. 六、(本题满分12分)本题共2小题,第(1)小题满分4分,第(2)小题满分8分. 解:(1)设11122212(,),(,)()M x y M x y x x ≠函数图象上任意两个不同的点,则l DA y xO 2121211111x x y y ax ax ---=--- 12211211211(1)(1)(1)ax x x ax ax x x ax ax ax --+---+=-- 2121212121()()()(1)(1)(1)(1)(1)a x x x x x x a ax ax ax ax -----==----, ∴1a ≠,且12x x ≠,∴210y y -≠.∴直线12M M 的斜率21210y y k x x -=≠-,∴直线12M M 不平行于x 轴.(2)设点(,)P x y ''是函数图象上任意一点,则1x a '≠,且11x y ax '-'='-,点(,)P x y ''关于直线y x =的对称点为(,)P y x ''',11111111x y x ax ax x ay a a ax '--'''--'-'===''---'-,∴点(,)P y x '''在已知函数图象上,即函数的图象关于直线y x =成轴对称图形. 七、(本题满分12分)解:由已知条件知椭圆方程为22[(2)]214px y -++=; 以l 为准线、点A为焦点的抛物线方程为22y px =. 椭圆上有四点符 合题意的充要条 件是下面的方程组有四个不同的实数解:222[(2)]21,(1)42.(2)p x y y px ⎧-+⎪⎪+=⎨⎪=⎪⎩ 将(2)式代入(1)式,得2[(2)]842px px -++=,即22(74)204p x p x p +-++=.(3)∴原方程组有4个不同的实数解,当且仅当方程(3)有两个不相等的正根,∴2220,(74)4(2)0,420,4740.P p p p p p p >⎧⎪⎪∆=--+>⎪⎨⎪+>⎪⎪-<⎩ ∴103p <<∴p 的取值范围为.31p 0<<.B 1D 1C 1N A C MD OA 11989年普通高等学校招生全国统一考试理科数学参考答案 满分120分,120分钟一、选择题(本题满分36分,共12个小题)ADCAB CDDCD AC 二、填空题(本题满分24分,共6个小题,每一个小题满分4分) 13.7{|2,(21),}1212x x k x k k Z ππππ=+=++∈或 或{|(1),}43kx x k k Z πππ=+-+∈14.(,1)(4,)-∞-+∞ 15.(1,1)-16. -2 17.必要,必要(注:仅答对一个结果的,只给2分) 18.233 三、解答题(本题满分60分,共6个小题.) 19.(本小题满分8分)证明:3sinsin322322cos cos 22x xx x tg tg x x-=- 33sin cos cos sin22223cos cos22x x x x x x -=sin 3cos cos22xx x =2sin cos cos 2x x x =+. 20.(本小题满分10分)解:(Ⅰ)连接1AO ,则1AO ⊥底面ABCD .作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N .连接1A M ,1A N ,则由三垂线定理得1A M ⊥AB ,1A N ⊥AD . ∵∠1A AM =∠1A AN , ∴Rt △1A NA ≌Rt △1A MA ,∴1A M =1A N ,∴OM ON =∴点O 在∠BAD 的平分线上. (Ⅱ)∵AM =1AA ,232133cos =⋅=π ∴AO =AM .2234csc=π 又在Rt △1AOA 中,2221199922AO AA AO =-=-=.∴1A O =∴平行六面体的体积54V =⋅ 21.(本小题满分10分) 解(一):圆的标准方程为:1)2()2(22=-+-y x ,它关于x 轴对称的圆的方程为: 1)2()2(22=++-y x . 设光线l 所在的直线方程为: )3(3+=-x k y .由题意知,l 是圆1)2()2(22=++-y x 的切线, ∴11552=++kk , 解得34k =-, 或43k =-∴l 的方程为:3430x y +-=或4330x y ++=. 解(二):圆的标准方程为:1)2()2(22=-+-y x .设光线l 所在的直线方程为: )3(3+=-x k y .由题意知0≠k ,于是l 与x 轴的交点为)0,)1(3(kk +-.由于入射角等于反射角,所以反射光线l '的斜率为k -,∴直线l '的方程为:))1(3(kk x k y ++-=,即 0)1(3=+++k y kx . 由于l '与已知圆相切,所以11552=++kk ,解得3443-=-=k k 或. ∴l 的方程为:3430x y +-=或4330x y ++=. 点评 本题难度不大,但涉及的知识面较广,属跨学科问题. 22.(本小题满分12分) 解:由对数函数的性质可知,原方程的解x 应满足22222(),(1)0,(2)0.(3)x ak x a x ak x a ⎧-=-⎪->⎨⎪->⎩当(1),(2)同时成立时,(3)显然成立,因此只需解222(),(1)0,(2)x ak x a x ak ⎧-=-⎨->⎩ 由(1)得22(1).(4)k x a k =+ 当0k =时,由0a >知(4)无解,因而原方程无解.当0k ≠时,(4)的解是2(1).(5)2a k x k+=把(5)代入(2),得212k k k+>, 解得10 1.k k -∞<<-<<或综合得,当k 在集合(,1)(0,1)-∞-内取值时,原方程有解. 23.(本小题满分10分) 解:假设存在,,a b c 使题设的等式成立,则当n =1,2,3时有24,4344,9310.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得3,11,10a b c ===.①由上可知,当n =1,2,3时,下面等式成立:2221223(1)n n ⋅+⋅+++2(1)(31110)12n n n n +=++.②记2221223(1)n S n n =⋅+⋅+++. 假设当n k =时上式成立,即2(1)(31110)12k k k S k k +=++.∴21(1)(2)k k S S k k +=+++ 22(1)(31110)(1)(2)12k k k k k k +=+++++2(1)(2)(35)(1)(2)12k k k k k k +=+++++2(1)(2)(351224)12k k k k k ++=+++2(1)(2)[3(1)11(1)10]12k k k k ++=++++.也就是说,当1n k =+时等式成立.综上所述,当3,11,10a b c ===时,题设的等式对一切自然数n 成立. 24.(本小题满分10分) 解:(1)∵()f x 是以2为周期的函数, ∴当k Z ∈时,2k 也是()f x 的周期又∵当k x I ∈时,02(1,1]x k I -∈=-, ∴2()(2)(2)f x f x k x k =-=-. ∴对k Z ∈,当k x I ∈时,2()(2)f x x k =-. (2)对自然数k ,且k x I ∈时,由(1)的结论可得方程2(2)x k ax -=,即22(4)40x k a x k -++=.上述方程在区间k I 上恰有两个不相等的实根的充要条件是a 满足22(4)16(8)0,121[42121[42k a k a a k k k a k k a ⎧⎪∆=+-=+>⎪⎪-<+⎨⎪⎪+≥+⎪⎩,即(8)0,(1)2,(2)2,(3)a a k a a +>⎧+≤- 由(1)知0a >,或8a k <-. 当0a >时,22a a +>-, ∴由(2),(32a ≤-,即2(8)(2),20,a a k a a ⎧+≤-⎨->⎩ 解得1021a k <≤+.当8a k <-时,2280a k +<-<,2a <+无解,综上所述,a 应满足1021a k <≤+.∴故所求集合1|021k M a a k ⎧⎫=<≤⎨⎬+⎩⎭.1990年普通高等学校招生全国统一考试数学(理工农医类)参考答案 满分120分,120分钟 一、选择题: 共45分.1-5 ABDCC 6-10 BADBD 10-15 CBBCD 二、填空题: 共15分. 16.165y =± 17.20- 18.2 19.12+ 20.75 三、解答题. 21.(本小题满分8分)小题考查等差数列、等比数列的概念和运用方程(组)解决问题的能力.解法一:设四个数依次为,,a d a a d -+,2()a d a +,则由已知条件得 2()16,12.a d a d a a a d ⎧+-+=⎪⎨⎪++=⎩消去d ,整理得213360a a -+=, 解得 124,9a a ==.代入③式得 124,6d d ==-.从而得所求四个数为0,4,8,16或15,9,3,1. 解法二:设四个数依次为,,12,16x y y x --,则由已知条件得2122,(1)(16)(12).(2)x y y y x y +-=⎧⎨-=-⎩ 由(1)式得 312x y =-. (3)将(3)式代入(2)式得2(16312)(12)y y y -+=-,整理得 213360y y -+=. 解得 124,9y y ==.代入(3)式得120,15x x == .从而得所求四个数为0,4,8,16或15,9,3,1. 22.(本小题满分10分)本小题考查三角公式以及三角函数式的恒等变形和运算能力. 解:由已知得sin sin 3cos cos 4αβαβ+=+,即2sincos32242cos cos22αβαβαβαβ+-=+-, ∴3tan 24αβ+=, ∴22tan2tan()1tan 2αβαβαβ++=+- 2322447314⨯==⎛⎫- ⎪⎝⎭. 23.(本小题满分10分)本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力.解: ∵SB =BC,且E 是SC 的中点,∴BE 是等腰三角形SBC 的边SC 的中线, ∴SC ⊥BE . 又已知SC ⊥DE, BE ∩DE =E, ∴SC ⊥面BDE, ∴SC ⊥BD.又∵SA ⊥底面ABC, BD 在底面ABC 上, ∴SA ⊥BD.而SC ∩SA =S,∴BD ⊥面SAC. ∵DE =面SAC ∩面BDE, DC =面SAC ∩面BDC, ∴BD ⊥DE,BD ⊥DC.∴∠EDC 是所求的二面角的平面角. ∵SA ⊥底面ABC,∴SA ⊥AB,SA ⊥AC . 设SA =a ,则AB= a ,. 又∵AB ⊥BC,∴AC =.在R t SAC ∆中SA tg ACS AC ∠== ∴∠ACS =30°.又已知DE ⊥SC,所以∠EDC =60°, 即所求的二面角等于60°. 24.(本小题满分10分)本小题考查复数与解方程等基本知识以及综合分析能力. 解法一:设(,R)z x yi x y =+∈,代入原方程得222x y xyi a -+=,即22,(1)0. (2)x y a xy ⎧-+=⎪⎨=⎪⎩由(2)式得0x =或0y =. ①若0x =,则方程(1)为2y a -+=,即220(0)y y a y ++=<, ……(3) 或220(0)y y a y -+=≥.……(4) 由(3)得2(1)1(0)y a y +=-<,当01a ≤≤时,1y =-1y =-, 当1a >时无解.由(4)得2(1)1(0)y a y -=-≥,当01a ≤≤时,1y =,或1y = 当1a >时无解.综上可得,当01a ≤≤时,(1z i =±+,或(1z i =±-当1a >时无解.②若0y =,则方程(1)为2x a +=,即2(1)1(0)x a x +=+≥, ……(5) 或2(1)1(0)x a x -=+<.………(6) ∵0a ≥,∴解(5)得1x =- 解(6)得1x =综上可得,1z =±.③若0x =且0y =,则方程(1)为0a =,当0a =时,0x =,0y =是其解;当0a ≠时无解.当0a =时,0z =是其解;当0a ≠时无解.显然,当0a =时,0z =包含在上述两种情况之中.综上可得,实数解为(1z =±; 当01a ≤≤时,(1z i =±,或(1z i =±,当1a >时无纯虚数解. 25.(本小题满分10分)本小题考查椭圆的性质,距离公式,最大值知识以及分析问题的能力.解:设所求椭圆的直角坐标方程是22221(0)x y a b a b+=>>,则 222222314c a b b e a a a -⎛⎫⎛⎫===-= ⎪ ⎪⎝⎭⎝⎭,即 2a b =,∴椭圆的方程可变形为222214x y b b+=,设椭圆上的点(,)x y 到点P 的距离为d ,则22232d x y ⎛⎫=+- ⎪⎝⎭22234()2b y y ⎛⎫=-+- ⎪⎝⎭2213432y b ⎛⎫=-+++ ⎪⎝⎭,其中b y b -≤≤.若102b <<,则当y b =-时,2d 有最大值,且2372b ⎛⎫--= ⎪⎝⎭,解之得3122b =>,与102b <<相矛盾,舍去若12b ≥,则当12y =-时,2d 有最大值,且2437b +=,解之得1b =, ∴2,1a b ==,∴所求椭圆的直角坐标方程是2214x y +=. 当12y =-时,x =∴所求的点的坐标是12⎛⎫- ⎪⎝⎭.26.(本小题满分12分)本题考查对数函数,指数函数,数学归纳法,不等式的知识以及综合运用有关知识解决问题的能力.(Ⅰ)解: ∵()f x 当(,1]x ∈-∞时有意义, ∴12(1)0x x x n n a +++-+>,即121x x xn a n n n ⎡⎤-⎛⎫⎛⎫⎛⎫>-+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,(,1]x ∈-∞.∵(1,2,,1)xk k n n ⎛⎫-=- ⎪⎝⎭在(,1]-∞上都是增函数,∴121()x x xn g x n n n ⎡⎤-⎛⎫⎛⎫⎛⎫=-+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦在(,1]-∞上是增函数,∴max 121()(1)n g x g n n n -⎛⎫==-+++ ⎪⎝⎭1(1)2n =--,∴1(1)2a n >--,即a 的取值范围为1(1),2n ⎛⎫--+∞ ⎪⎝⎭. (Ⅱ) 要证2()(2)f x f x <,即12(1)2lg x x x n n an+++-+22212(1)lg x x x n n a n+++-+<.,只需证明212(1)xx x n n a ⎡⎤+++-+⎣⎦22212(1)x x x n n n a ⎡⎤<+++-+⎣⎦.当01a <<时,2a a <.∴当01a <<,0x ≠时,由柯西不等式得22212(1)xx x n n n a ⎡⎤+++-+⎣⎦ 222212(1)x x x n n n a ⎡⎤>+++-+⎣⎦()()222222(111)12x x n a ⎡⎤=++++++⎢⎥⎣⎦ 212(1)xx x n n a ⎡⎤≥+++-+⎣⎦, ∴当01a <<,0x ≠时,22212(1)xx x n n n a ⎡⎤+++-+⎣⎦212(1)x x x n n a ⎡⎤>+++-+⎣⎦.当1a =,0x ≠时,1(1,2,,)x k k n ≠=,22212(1)x x x n n n a ⎡⎤+++-+⎣⎦ 22212(1)x x x n n n ⎡⎤>+++-+⎣⎦212(1)xx x n n ⎡⎤>+++-+⎣⎦. 综上可得,当01a <≤,0x ≠时,有22212(1)xx x n n n a ⎡⎤+++-+⎣⎦212(1)xx xn n a ⎡⎤>+++-+⎣⎦,即22212(1)x x x n n an+++-+212(1)x x x n n a n ⎡⎤+++-+>⎢⎥⎣⎦,12(1)2lg x x x n n a n+++-+22212(1)lg x x x n n a n+++-+<,∴2()(2)f x f x <,(0,1]a ∈,0x ≠.注:可用数学归纳法证明.1991年普通高等学校招生全国统一考试数学(理工农医类)参考解答本试卷共120分.考试时间120分钟. 一、选择题.本题考查基本知识和基本运算.每小题3分,满分45分.1-15 ADBBA DADCC ACBCD二、填空题.本题考查基本知识和基本运算.每小题3分,满分15分.16.4π17.()2,0- 18.31419.1+510 20.23a π三、解答题21. (本小题满分8分)本小题考查三角函数式的恒等变形及三角函数的性质. 解:22sin 2sin cos 3cos y x x x x =++212sin cos 2cos x x x =++sin 2cos 22x x =++224x π⎛⎫=++ ⎪⎝⎭.当22()42x k k Z πππ+=-∈,即3()8x k k Z ππ=-∈时y 取得最小值2使取最小值的x 的集合为3()8x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭. 22. (本小题满分8分)本小题考查复数基本概念和运算能力. 解:∵ 1z i =+,∴ 2361z z z -++2(1)3(1)631112i i i i i i+-++-===-+++,∴1i -的模为22)1(1-+=2,辐角的主值74π, ∴所给复数的模为2,辐角的主值74π. 23. (本小题满分10分)本小题考查直线与直线,直线与平面,平面与平面的位置关系,以及逻辑推理和空间想象能力.满分10分.解:如图,连接,,,,EG FG EF BD AC ,,EF BD 分别交AC 于H ,O .∵ABCD 是正方形,,E F 分别为AB 和AD 的中点,∴EF ∥BD ,H 为AO 的中点. BD 不在平面EFG 上.否则,平面EFG 和平面A B C D 重合,从而点G 在平面的ABCD 上,与题设矛盾. ∴BD ∥平面EFG ,∴BD 到平面EFG 的距离就是点B 到平面EFG 的距离.∵BD ⊥AC ,∴EF ⊥HC .∵CG ⊥平面ABCD ,∴EF ⊥CG , ∴EF ⊥平面HCG .∴ 平面EFG ⊥平面HCG ,HG 是这两个垂直平面的交线.作OK ⊥HG 交HG 于点K ,则OK ⊥平面EFG ,∴线段OK 的长就是点B 到平面EFG 的距离.∵ 正方形ABCD 的边长为4,CG =2, ∴AC =42,HO =2,HC =32. ∴ 在Rt △HCG 中,HG=由于Rt △HOK 和Rt △HCG 有一个锐角是公共的,∴ Rt △HOK ∽△HCG .∴ OK =111122222=⨯=⋅HG GC HO ,即 点B 到平面EFG 的距离为11112.注:未证明“BD 不在平面EFG 上”不扣分. 24. (本小题满分10分)本小题考查函数单调性的概念,不等式的证明,以及逻辑推理能力.证法一:在(),-∞+∞上任取12,x x 且12x x <,则332112()()f x f x x x -=- 22121122()()x x x x x x =-++21212213())24x x x x x ⎡⎤⎛⎫=-++ ⎪⎢⎥⎝⎭⎣⎦.∵12x x <,∴120x x -<,且212213)024x x x ⎛⎫++> ⎪⎝⎭(否则,120x x ==,与题设不符).∴21()()0f x f x -<,即21()()f x f x <. ∴函数3()1f x x =-+在(),-∞+∞上是减函数.证法二:在(),-∞+∞上任取12,x x ,且12x x <,则332112()()f x f x x x -=-= 22121122()()x x x x x x -++. ∵12x x <,∴120x x -<.∵12,x x 不同时为零,∴ x 21+x 22>0.又 ∵2222121212121()2x x x x x x x x +>+≥≥-, ∴ 2211220x x x x ++>,∴21()()0f x f x -<,即21()()f x f x <. ∴函数3()1f x x =-+在(),-∞+∞上是减函数.25. (本小题满分12分)本小题考查对数、数列、解不等式等基本知识,以及分析问题的能力.满分12分.解:利用对数换底公式,原不等式左端化为∵231log 4log 12log (2)log n n a a a a x x x n x --+++-1log 2log 4log (2)log n a a a a x x x x -=-+++- 112(2)log n a x -⎡⎤=-++-⎣⎦1(2)log 3n a x --=,∴原不等式可化为21(2)1(2)log log ()33n na a x x a ---->-.①(1)当n 为奇数时,1(2)03n-->, 不等式①等价于2l o g l o g ()a a x x a >-. ② ∵1a >,∴②式等价于220,0,x x a x x a >⎧⎪->⎨⎪>-⎩20,0x x x x a >⎧⎪⇔>⎨⎪--<⎩⇔x x ⎧><<∵102<, 2411a ++>24a=a ,∴,不等式②的解集为12⎭. (2)当n 为偶数时,1(2)03n--<, 不等式①等价于2log log ()a a x x a <-. ③∵a >1,∴③式等价于220,0,,x x a x x a >⎧⎪->⎨⎪<-⎩20,0,x x x x a >⎧⎪⇔>⎨⎪-->⎩x x ⎧>⎪⇔⎨<⎪⎩ 或x x ⎧>⎪⎨>⎪⎩∵,,a a a a =>++<+-24241102411∴不等式③的解集为⎫+∞⎪⎪⎝⎭. 综合得:当n 为奇数时,原不等式的解集是12⎫+⎪⎪⎭; 当n 为偶数时,原不等式的解集是⎫+∞⎪⎪⎝⎭. 26. (本小题满分12分)本小题考查双曲线性质,两点距离公式,两直线垂直条件,代数二次方程等基本知识,以及综合分析能力.解:设双曲线的方程为22221x y a b-=,焦点为12(,0),(,0)F c F c -.由题意知,直线PQ 的方程为)y x c =-. 将直线方程代入双曲线方程得()2222315x x c a b --=,即 22222222(53)6(53)0b a x a cx a b a c -+-+=.① ∵,P Q 是右焦点的直线与双曲线的两个交点,∴22530b a -≠.设1122(,),(,)P x y Q x y ,则12,x x 方程①的两个根,且21222222212226,5353.53a c x x b a a b a c x x b a ⎧+=-⎪⎪-⎨+⎪=-⎪-⎩∵OP OQ ⊥,∴1212OP OQ y yk k x x ⋅=⋅121==-,即2121283()30x x x x c c -++=,∴2222222222253683305353a b a c a c c b a b a+-⋅+⋅+=--,即2222(3)(3)0a b a b +-=.∵230a +≠,∴223b a =,∴2c a =,且12212,9.4x x a a x x +=-⎧⎪⎨=-⎪⎩∵4PQ =,∴221212()()x x y y -+-2212123()()5x x x x =-+-2212128()416165x x x x a ⎡⎤=+-==⎣⎦. ∴21a =,23b =.∴所求双曲线方程为x 2-2213y x -=.1992年普通高等学校招生全国统一考试数学(理工农医类)参考答案本试卷共120分.考试时间120分钟. 一、选择题:本题考查基本知识和基本运算.共54分.1-18 ADDBD BBCDD BBADD CAC 二、填空题:本题考查基本知识和基本运算.共15分. 19.1x =- 20.41 21.1281522.()1124222=--y x 23.1613三、解答题24. (本小题满分9分)本小题考查复数相等的条件及解方程的知识.满分9分. 解:设(,R)z x yi x y =+∈,则已知方程可变形为.()()3()13x yi x yi i x yi i +---=+,即223313x y y ix i +--=+.根据复数相等的定义,得⎩⎨⎧=-+=-.13,3322y y x x 解得1,0x y =-=或3y =. ∴1z =-或13z i =-+.25. (本小题满分10分)本小题主要考查三角函数和角公式等基础知识及运算能力.满分10分. 解:∵432παβπ<<<, ∴30,42ππαβπαβ<-<<+<,又∵ 123cos(),sin()135αβαβ-=+=-,∴ ()sin αβ-=513==,()cos αβ+=45=-,∴]sin 2sin ()()ααβαβ=-++ sin()cos()cos()sin()αβαβαβαβ=-++-+ =655653131254135-=⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯. 26. (本小题满分10分)本小题考查空间图形的线面关系,空间想象能力和逻辑思维能力.满分10分.解:设经过b 与a 平行的平面为α,经过a 和1AA 的平面为β,c αβ=,则c ∥a .∴b ,c 所成的角等于θ,且1AA ⊥c . ∵1AA ⊥b ,1AA ⊥c , ∴1AA ⊥α.∴β⊥α.在平面β内作EG c ⊥,垂足为G ,则1EG AA =.且EG α⊥. 连结FG ,则EG FG ⊥.在Rt △EFG 中,222EF EG FG =+. ∴1AG A E m ==,1EG AA d ==, ∴ 在△AFG 中,2222cos FG m n mn θ=+-.∴22222cos EF d m n mn θ=++-. 如果点F (或E )在点A (或1A )的另一侧,则22222cos EF d m n mn θ=+++.∴EF 27. (本小题满分10分)本小题考查数列、不等式及综合运用有关知识解决问题的能力.满分12分.解:(Ⅰ)由已知条件得()()31121131212,12121120,213131130,2a a d S a d S a d ⎧=+=⎪⎪⨯-⎪=+⋅>⎨⎪⎪⨯-=+⋅<⎪⎩即 111122,2110,60,a d a d a d =-⎧⎪+>⎨⎪+<⎩ ∴ 2470,30,d d +>⎧⎨+<⎩解得 2437d -<<-. (Ⅱ)解法一:由(Ⅰ)知0d <, ∴{}n a 单调递减.由已知条件得11313713()1302a a S a +==<,即70a <;112126712()6()02a a S a a +==+>,即670a a +>,∴60a >. ∴在1212,,,S S S 中6S 的值最大.(Ⅱ)解法二:()d n n na S n 211-+= ()()d n n d n 121212-+-=22124124=552222d d n d d ⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦. ∵0d <,∴ 224521⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--d n 最小时,n S 最大.当2437d -<<-时, 124136522d ⎛⎫<-< ⎪⎝⎭,∵ 正整数6n =时224521⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--d n 最小,∴6S 最大.解法三:由(Ⅰ)知0d <, ∴{}n a 单调递减.∵ 12130,0,S S >⎧⎨<⎩∴111211120,21312130.2a d a d ⨯⎧+>⎪⎪⎨⨯⎪+<⎪⎩∴1150,260,d a d a d ⎧+>->⎪⎨⎪+<⎩即670,0.a a >⎧⎨<⎩ ∴在1212,,,S S S 中6S 的值最大.28. (本小题满分12分)本小题考查椭圆性质、直线方程等知识,以及综合分析能力.证法一:设,A B 的坐标分别为11(,)x y 和22(,)x y .∵线段AB 的垂直平分线与x 轴相交, ∴ AB 不平行于y 轴,即12x x ≠. 又交点为0(,0)P x ,∴ PA PB =,即2222101202()()x x y x x y -+=-+. ① ∵ ,A B 在椭圆上,∴ 2122221x a b b y -=,2222222x ab b y -=.将上式代入①,得()22222102122()a b x x x x x a--=- . ② ∵12x x ≠,∴2212022x x a b x a+-=⋅. ③ ∵12,a x a a x a -≤≤-≤≤,且12x x ≠,∴1222a x x a -≤+≤,∴22220a b a b x a a---<<. 证法二:设,A B 的坐标分别为11(,)x y 和22(,)x y .0(,0)P x 在AB 的垂直平分线上,以点P为圆心,PA r =为半径的圆P 过,A B 两点,∴圆P 的方程为2220()x x y r -+= ,与椭圆方程联立,消去y 得2222202()b x x x r b a--=-,∴02222002222=+-+--b r x x x x ab a .① ∵,A B 是椭圆与圆P 的交点, ∴12,x x 为方程①的两个根,且2120222a x x x a b+=-.∵12,a x a a x a -≤≤-≤≤,且12x x ≠,∴1222a x x a -≤+≤,即2022222a a x a a b -<<-a ,∴ 22220a b a b x a a---<<.1993年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 一、选择题:本题考查基本知识和基本运算.每小题4分,满分68分.1-17 ACBBA DCABD CADDA CB 二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分.18.6322+ 19.{k ||k |>31} 20.100 21)1 22.1760 23. 30 三、解答题 24. (本小题满分10分)本小题考查函数的奇偶性、对数函数的性质、不等式的性质和解法等基本知识及运算能力.解 (Ⅰ)由已知函数知011>-+x x , 解得-1<x <1; ∴()f x 的定义域为(1,1)-. (Ⅱ) ∵ ()1log 1a xf x x--=+ ()1log 1a x f x x +=-=--,∴ f (x )为奇函数. (Ⅲ)由(Ⅰ)知,()f x 的定义域为(1,1)-,∴当1a >时,由1log 01axx+>-得 111>-+xx,解得01x <<; 当01a <<时,由1log 01axx+>-得 1011x x+<<-,解得10x -<<.综上所述,当1a >时,()0f x >的x 取值范围(0,1);当01a <<时,()0f x >的x 取值范围(1,0)-.25. (本小题满分12分)本小题考查观察、分析、归纳的能力和数学归纳法. 解:由123482448809254981S S S S ====,,,, … ,猜想()()()N n n n S n ∈+-+=2212112. 下面用数学归纳法证明如下:①当1n =时,98313221=-=S ,等式成立.②设当n k =时等式成立,即()()2221121k k S k +-=+. ()()()221321218++++=+k k k S S k k ()()()()()222232121812112+++++-+=k k k k k ()()()()()222232121832]112[+++++-+=k k k k k ()()()()()()22222321218323212+++++-++=k k k k k k ()()()()()222223212123212+++-++=k k k k k ()()2232132+-+=k k ()()22]112[1]112[++-++=k k 由此可知,当1n k =+时等式也成立. 根据①②可知,等式对任何n N ∈都成立. 26. (本小题满分12分)本小题考查直线与平面的平行、垂直和两平面垂直的基础知识,及空间想象能力和逻辑思维能力.证法一:(Ⅰ)设α∩γ=AB ,β∩γ=AC . 在γ内任取一点P ,并在γ内作直线PM ⊥AB ,PN ⊥AC 交AB ,AC 于点,M N .∵γ⊥α,∴PM ⊥α. 而 a ⊂α,∴PM ⊥a . 同理PN ⊥a .又 PM ⊂γ,PN ⊂γ, ∴ a ⊥γ.(Ⅱ)在直线a 上任取点Q ,过b 与Q 作一平面交α于直线1a ,交β于直线2a . ∵b ∥α,∴b ∥1a . 同理b ∥2a . ∴ 1a ∥2a . ∵12a a Q =,∴1a 与2a 重合.又 1a ⊂α,2a ⊂β,∴1a ,2a 都是α、β的交线,即都重合于a . ∵b ∥1a ,∴ b ∥a . 而a ⊥γ,∴b ⊥γ.证法二:(Ⅰ)在a 上任取一点P ,过P 作直线a '⊥γ.∵α⊥γ,P ∈α,∴a '⊂α. 同理a '⊂β.∴ a '是α,β的交线,即a '重合于a . 又a '⊥γ,∴ a ⊥γ.(Ⅱ)于α内任取不在a 上的一点,过b 和该点作平面与α交于直线c .同理过b 作平面与β交于直线d .∵b ∥α,b ∥β.∴b ∥c ,b ∥d . 又 c ⊄β,d ⊂β,∴c 与d 不重合,且c ∥d .∴c ∥β.∵c ∥β,c ⊂α,α∩β=a ,∴c ∥a .∵b ∥c ,a ∥c ,b 与a 不重合(b ⊄α,a ⊂α),∴b ∥a . 而a ⊥γ,∴b ⊥γ.27. (本小题满分12分)解法一:如图,以MN 所在直线为x 轴,MN 的垂直平分线为y 轴建立直角坐标系,设以,M N 为焦点且过点P 的椭圆方程为12222=+by a x ,且焦点为(,0),(,0)(0)M c N c c ->.由tan ,tan 22PMN MNP ∠=∠=-知,直线PM 和直线PN 的斜率分别为1,22,直线方程分别为1(),2()2y x c y x c =+=-. 由1(),22()y x c y x c ⎧=+⎪⎨⎪=-⎩解得54,33x c y c ==,即 54,33P c c ⎛⎫⎪⎝⎭. 在PMN ∆中,|MN |=2c ,MN 上的高为点P 的纵坐标,∴214421233MNP S c c c ∆=⋅⋅==,∴ c =P 点坐标为⎪⎪⎭⎫ ⎝⎛332635,. 由椭圆过点P 得2a PM PN =+==, ∴a =.∴222153344b a c =-=-=, ∴所求椭圆方程为1315422=+y x . 解法二:同解法一得23=c ,P 点的坐标为⎪⎪⎭⎫⎝⎛332635,.∵ 点P 在椭圆上,且222a b c =+,∴ 13322363522222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛b b ,即 423830b b --=,解得23b =,或213b =- (舍去).∴222154a b c =+=,∴所求椭圆方程为1315422=+y x . 说明:本小题主要考查坐标系、椭圆的概念和性质、直线方程以及综合应用能力.本题也可用正弦定理求解.28. (本小题满分12分)本小题考查复数的基本概念和运算,三角函数式的恒等变形及综合解题能力. 解法一:()()[][]44sin cos 1sin cos 1θθθθωi i ++-+--=()()θθθθ4sin 4cos 14sin 4cos 1i i ++----= θθθθθθ2cos 2sin 22cos 22cos 2sin 22sin 222i i ++=()θθθ4cos 4sin 2tg i +=.∴tg2sin 4cos4i ωθθθ=⋅+tg2θ==332tg ±=θ.∵ πθ<<0,∴57112,,,6666ππππθ=,即 511,,,121212πππ. ∴当12πθ=时,cos sin 333i ππω⎫=+⎪⎝⎭,得 arg 32ππω=<,适合题意.当712πθ=时,77cos sin cos sin 333333i i ππππω⎫⎫=+=+⎪⎪⎝⎭⎝⎭,得arg 32ππω=<,适合题意.当512πθ=时,55cos sin 333i ππω⎫=-+⎪⎝⎭22cos sin 333i ππ⎫=+⎪⎝⎭, 2arg 32ππω=>,不适合题意,舍去.当1112πθ=时,1111cos sin 333i ππω⎫=-+⎪⎝⎭22cos sin 366i ππ⎫=+⎪⎝⎭, 2arg 32ππω=>,不适合题意,舍去.综上可得12πθ=或127πθ=.解法二:θθ4sin 4cos 4i z +=. 记θϕ4=,得()()ϕϕsin cos 44i z z -==.ϕϕϕϕωsin cos 1sin cos 1i i +++-=()ϕϕϕϕcos sin cos 1sin i ++=()ϕϕϕcos sin 2tg i +=.∵ 33=ω,2arg πω<,∴t g ,(1)2tg sin 0,(2)2tg cos 0.(3)2ϕϕϕϕϕ⎧=⎪⎪⎪⋅>⎨⎪⎪⋅≥⎪⎩当(1)成立时,(2)恒成立,所以θ应满足(ⅰ) ⎪⎪⎩⎪⎪⎨⎧≥=<<04cos 332tg 0θθπθ,或(ⅱ) ⎪⎪⎩⎪⎪⎨⎧≤-=<<04cos 332tg 0θθπθ,解(ⅰ)得12πθ=或127πθ=.(ⅱ)无解.综合(ⅰ)、(ⅱ) 12πθ=或127πθ=.1994年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟. 一、选择题(本题考查基本知识和基本运算) 1-15 CDDAB DBAAC CBDBC 二、填空题(本题考查基本知识和基本运算) 16.-189 17.223,(2)1x x y =-+= 18.43- 19. π322 20.()121n a a a n+++三、解答题 21.(本小题满分11分)本小题考查共轭复数、复数的三角形式等基础知识及运算能力.解:(1)∵1z i =+,∴()223413(1)4z z i i ω=+-=+++-23(1)41i i i =+--=--,∴ω的三角形式是⎪⎭⎫ ⎝⎛+ππ45sin 45cos 2i .(2) ∵1z i =+,∴()()()()1111112222++-+++++=+-++i i b i a i z z b az z()()()()221a b a i a a b i i i+++==+-+=-,∴21,()1,a a b +=⎧⎨-+=-⎩解得⎩⎨⎧=-=.2,1b a 22.(本小题满分12分)本小题考查三角函数基础知识、三角函数性质及推理能力. 证明:121212sin sin tan tan cos cos x x x x x x +=+121212sin cos cos sin cos cos x x x x x x +=()2121cos cos sin x x x x +=()()()1212122sin cos cos x x x x x x +=++-, ∵12,0,2x x π⎛⎫∈ ⎪⎝⎭,且12x x ≠, ∴()122sin 0x x +>,12cos cos 0x x >,且()120cos 1x x <-<, ∴()()12120cos cos x x x x <++-()121cos x x <++,∴()()1212122sin tan tan 1cos x x x x x x ++>++12122124sin cos 222cos 2x x x x x x ++⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=+⎛⎫ ⎪⎝⎭122tan 2x x +⎛⎫= ⎪⎝⎭,∴12121(tan tan )tan 22x x x x ++>,即 []12121()()()22x x f x f x f ++>. 23.(本小题满分12分)本小题考查空间线面关系、正棱柱的性质、空间想象能力和逻辑推理能力.(1)证明:∵A 1B 1C 1-ABC 是正三棱柱, ∴四边形B 1BCC 1是矩形.连接B 1C 交BC 1于E ,则B 1E =EC . 连接DE .在△AB 1C 中,∵AD =DC ,∴DE ∥AB 1. 又AB 1⊄平面DBC 1,DE ⊂平面DBC 1,∴AB 1∥平面DBC 1.(2)解:作DF ⊥BC ,垂足为F ,则DF ⊥面B 1BCC 1,连结EF ,则EF 是ED 在平面B 1BCC 1上的射影. ∵AB 1⊥BC 1,由(1)知AB 1∥DE ,∴DE ⊥BC 1,则BC 1⊥EF ,∴∠DEF 是二面角的平面角α. 设AC =1,则DC =21.∵△ABC 是正三角形,∴在Rt △DCF 中, DF =DC ·sin C =43,CF =DC ·cos C =41.取BC 中点G .∵EB =EC ,∴EG ⊥BC .在Rt △BEF 中,EF 2=BF ·GF ,又BF =BC -FC =43,GF =41, ∴EF 2=43·41,即EF =43. ∴tg ∠DEF =14343==EF DF. ∴∠DEF =45°. ∴二面角α为45°. 24.(本小题满分12分)本小题考查直线与抛物线的基本概念和性质,解析几何的基本思想方法以及综合运用知识解决问题的能力.解法一:依题设抛物线C 的方程可写为22(0)y px p =>,且x 轴和y 轴不是所求直线,又l 过原点,因而可设l 的方程为 (0)y kx k =≠). ① 设A ',B '分别是A , B 关于l 的对称点, 因而A 'A ⊥l ,直线 A 'A 的方程为()11+-=x ky ② 由①,②联立解得AA '与l 的交点M 的坐标为⎪⎭⎫ ⎝⎛+-+-11122k k k ,.又M 为AA '的中点,从而点A '的坐标为222112111A k x k k '-⎛⎫=-+= ⎪++⎝⎭, 2222011A k k y k k '-⎛⎫=+=- ⎪++⎝⎭.③ 同理得点B '的坐标为2161B kx k '=+, ()22811B k y k '-=+.④又A ',B '均在抛物线22(0)y px p =>上,由③得112122222+-⋅=⎪⎭⎫ ⎝⎛+-k k p k k , 由此知k ≠±1,即1242-=k kp . ⑤ 同理由④得()11621182222+⋅=⎪⎪⎭⎫ ⎝⎛+-k k p k k , 即 ()()kk k p 112222+-=. 从而 1242-k k=()()kk k 112222+-,整理得210k k --=,解得.25125121-=+=k k , 但当251-=k 时,由③知055<-='A x ,这与A '在抛物线y 2=2px (p >0)上矛盾,故舍去2512-=k .设251+=k ,则直线l 的方程为x y 251+=.将251+=k 代入⑤,求得552=p .所以直线方程为x y 251+=.抛物线方程为x y 5542=.解法二:设点A 、B 关于l 的对称点分别为A '(x 1、y 1)、B '(x 2,y 2),则 |OA '|=|OA |=1,|OB '|=|OB |=8.设由x 轴正向到OB '的转角为α,则 228cos ,8sin x y αα==. ① 因为A ',B '为A ,B 关于直线l 的对称点,而∠BOA 为直角,故∠B 'OA '为直角,因此1cos sin 2x παα⎛⎫=-= ⎪⎝⎭,1sin cos 2y παα⎛⎫=-=- ⎪⎝⎭ ②由题意知x 1>0,x 2>0,故α为第一象限角.因为A ',B '都在抛物线y 2=2px 上,将①、②代入得22cos 2sin ,64sin 16cos p p αααα==,∴338sin cos αα=,即2sin cos αα=,解得52cos 51sin ==αα,. 将52cos 51sin ==αα,代入 2cos 2sin p αα=得552sin 2cos 2==ααp , ∴抛物线C 的方程为x y 5542=. 因为直线l 平分∠B 'OB ,故l 的斜率1tan tan 2224k παπαα⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦251sin 1cos 2cos 12sin +=-=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=ααπαπα,∴直线l 的方程为x y 215+=.25.(本小题满分14分)本小题考查等差数列、等比数列、数列极限等基础知识考查逻辑推理能力和分析问题与解决问题的能力.解:(1)由题意,当n =1时有122a +==12a =. 当n =2时有222a +==,整理得(a 2-2)2=16.由20a >,解得26a =. 当n =3时有322a +,整理得()23264a -=.由30a >,解得310a =. ∴该数列的前3项为2,6,10. (2)解法一:由(1)猜想数列{}n a 有通项公式42n a n =-.下面用数学归纳法证明数列{}n a 的通项公式是42()n a n n N =-∈ .①当n =1时,因为4×1-2=2,又在(1)中已求出12a =,所以上述结论成立. ②假设n =k 时结论成立,即有42k a k =-. 222k a k +==,即22k S k =.又由题意有=122k a ++==,整理得221144160k k a a k ++-+-=.由10k a +>,解得142k a k +=+,即14(1)2k a k +=+-.这就是说,当n =k +1时,上述结论成立. 根据①、②,上述结论对所有的自然数n 成立.解法二:由已知条件得()N n S a n n ∈=+222, 整理得21(2)8n n S a =+,由此得2111(2)8n n S a ++=+,∴2211111(2)(2)88n n n n n a S S a a +++=-=+-+,即11()(4)0n n n n a a a a +++--=.由题意知 10n n a a ++>, ∴14n n a a +-=.∴数列{}n a 为等差数列,其中a 1=2,公差d =4,且a n =a 1+(n -1)d =2+4(n -1), ∴{}n a 通项公式为42n a n =-. (3)解:令1n n c b =-,则 ⎪⎪⎭⎫ ⎝⎛-+=++22111n n n n n a a a ac⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛--+=112121121221n n n n 121121+--=n n , 1212n n b b b n c c c +++-=+++ 11111=13352121n n ⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1211+-=n .∴()12lim n n b b b n →∞+++-1lim 1121n n →∞⎛⎫=-= ⎪+⎝⎭.1995年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟. 一、选择题(本题考查基本知识和基本运算) 1-15 CBCBD DBCAD BCADA 二、填空题(本题考查基本知识和基本运算) 16.{x |-2<x <4} 17.3237 18. 43-19.4 20.144 三、解答题 21.(本小题满分7分)本小题主要考查复数基本概念和几何意义,以及运算能力. 解:设Z 1,Z 3对应的复数分别为z 1,z 3,依题设得]4sin 4[cos 2121⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=ππi z z ()⎪⎪⎭⎫ ⎝⎛-+=i i 22223121i 213213-++=. ⎪⎭⎫ ⎝⎛+=4sin 4cos 2123ππi z z=()⎪⎪⎭⎫⎝⎛++i i 22223121i 231231++-=. 22.(本小题满分10分)本小题主要考查三角恒等式和运算能力. 解:原式1cos 401cos100=22-︒+︒+cos 20sin 50+︒︒cos100cos 40sin70sin 30=1+22︒-︒︒-︒+︒+︒︒-=70sin 2130sin 70sin 4343=.23.(本小题满分12分)本小题主要考查空间线面关系、圆柱性质、空间想象能力和逻辑推理能力.解:(1)根据圆柱性质,DA ⊥平面ABE . ∵EB ⊂平面ABE ,∴DA ⊥EB .∵AB 是圆柱底面的直径,点E 在圆周上, ∴AE ⊥EB . 又AE ∩AD =A , ∴EB ⊥平面DAE . ∵AF ⊂平面DAE , ∴EB ⊥AF . 又AF ⊥DE ,且 EB ∩DE =E ,∴AF ⊥平面DEB . ∵DB ⊂平面DEB , ∴AF ⊥DB .(2)解:过点E 作EH ⊥AB ,H 是垂足,连接DH .根据圆柱性质,平面ABCD ⊥平面ABE ,AB 是交线.且EH 平面ABE , ∴EH ⊥平面ABCD . 又DH 平面ABCD ,∴DH 是ED 在平面ABCD 上的射影,从而∠EDH 是DE 与平面ABCD 所成的角. 设圆柱的底面半径为R ,则DA =AB =2R , ∴32R V π=圆柱,.32312EH R S AD V ABE ABE D ⋅=⋅=∆-由π3=-ABE D V V :圆柱,得R EH =,可知H 是圆柱底面的圆心,且R AH =,R AH DA DH 522=+=,∴5arctg EHDHarcctg EDH ==∠, 24.(本小题满分12分)本小题主要考查运用所学数学知识和方法解决实际问题的能力,以及函数的概念、方程和不等式的解法等基础知识和方法. 解:(1)由 Q P =有()2840500)8(1000--=-+x t x ,即0)280644)808(522=+-+-+t t x t x (.当判别式0168002≥-=∆t ,即0t ≤≤时,。
1998年普通高等学校招生全国统一考试数学试卷(全国卷.理)
1998年普通高等学校招生全国统一考试(理工农医类)数学第I卷一、选择题:本大题共15小题;第(1)-(10)题每小题4分,第(11)-(15)题每小题5分,共65分。
在每小题给出的四项选项中,只有一项是符合题目要求的。
1.sin600°的值是A.1/2 B.-1/2 C./2 D.- /22.函数y=a|x|(a>1)的图象是3.曲线的极坐标方程ρ=4sinθ化成直角坐标方程式为A.x2+(y+2)2=4 B.x2+(y-2)2=4C.(x-2)2+y2=4 D.(x+2)2+y2=44.两条直线A1x+B1y+C1=0,A2x+B2y+C2=0垂直的充要条件是A.A1A2+B1B2=0 B.A1A2-B1B2=0C.A1A2/B1B2=-1 D.B1B2/A1A2=15.函数f(x)=1/x(x≠0)的反函数f-1(x)=A.x(x≠0) B.1/x(x≠0)C.-x(x≠0) D.-1/x(x≠0)6.已知点P(sinα-cosα,tgα)在第一象限,则[0,2π]内α的取值范围是A.(π/2,3π/4)∪(π,5π/4) B.(π/4,π/2)∪(π,5π/4)C.(π/2,3π/4)∪(5π/2,3π/2) D.(π/4,π/2)∪(3π/4,π)7.已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面积展开图扇形的圆心角为A.120° B.150° C.180° D.240°8.复数-i的一个立方根是i,它的另外两个立方根是A./2±(1/2)i B.- /2±(1/2)iC.±/2+(1/2)i D.±/2-(1/2)i9.如果棱台的两底面积分别是S,S',中截面的面积是S0,那么A.2 = + B.S0=C.2S0=S+S' D.S02=2S'S10.向高为H的水瓶中注水,注满为止,如果注水量V与深h的函数关系的图象如右图所示,那么水瓶的形状是11.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1988年普通高等学校招生全国统一考试理科数学试题及答案一.(本题满分45分)本题共有15个小题,每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个结论是正确的,把你认为正确结论的代号写在题后的圆括号内每一个小题选对得3分;不选或选错一律得0分(1)2i 1i 1⎪⎭⎫ ⎝⎛+-的值等于 ( B )(A )1 (B )-1 (C )i (D)-i(2)设圆M 的方程为(x-3)2+(y-2)2=2,直线L 的方程为x+y-3=0,点P 的坐标为(2,1),那么 ( C ) (A )点P 在直线L 上,但不在圆M 上(B )点P 在圆M 上,但不在直线L 上(C )点P 既在圆M 上,又在直线L 上(D )点P 既不在直线L 上,也不在圆M 上(3)集合{1,2,3}的子集共有 ( B ) (A )7个 (B )8个 (C )6个 (D )5个(4)已知双曲线方程15y 20x 22=-,那么它的焦距是 ( A )(A )10 (B )5 (C )15 (D )152(5)在10)3x (-的展开式中,x 6的系数是 ( D )(A )610C 27- (B )410C 27 (C )610C 9- (D )410C 9(6)函数x sin x cos y 44-=的最小正周期是 ( A ) (A )π (B )π2 (C )2π(D )π4(7)方程03x cos 34x cos 42=+-的解集是 ( C ) (A )}Z k ,6)1(k x |x {k ∈π⋅-+π= (B )}Z k ,3)1(k x |x {k ∈π⋅-+π= (C )}Z k ,6k 2x |x {∈π±π= (D )}Z k ,3k 2x |x {∈π±π= (8)极坐标方程θ-=ρcos 234所表示的曲线是 ( D )(A )圆 (B )双曲线右支 (C )抛物线 (D )椭圆 (9)如图,正四棱台中,D A ''所在的直线与B B '所在的直线是 (A )相交直线 ( C ) (B )平行直线(C )不互相垂直的异面直线 (D )互相垂直的异面直线(10))3arctg 51arctg (tg +的值等于 ( D ) (A )4 (B )21 (C )81 (D )8 (11)设命题甲:△ABC 的一个内角为600命题乙:△ABC 的三内角的度数成等差数列数列那么( C )(A )甲是乙的充分条件,但不是必要条件(B )甲是乙的必要条件,但不是充分条件(C )甲是乙的充要条件(D )甲不是乙的充分条件,也不是乙的必要条件(12)在复平面内,若复数z 满足|i z ||1z |-=+,则z 所对应的点Z 的集合构成的图形是 ( B ) (A )圆 (B )直线 (C )椭圆 (D )双曲线'C(13)如果曲线x 2-y 2-2x-2y-1=0经过平移坐标轴后的新方程为1y x 22='-',那么新坐标系的原点在原坐标系中的坐标为 ( D )(A )(1,1) (B )(-1,-1) (C )(-1,1) (D )(1,-1) (14)假设在200件产品中有3件次品,现在从中任意抽取5件,其中至少有2件次品的抽法有 ( B )(A )319723C C 种 (B )219733319723C C C C +种 (C )51975200C C -种 (D )4197135200C C C -种(15)已知二面角β--αAB 的平面角是锐角,C 是平面α内一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任一点,那么 ( A ) (A )∠CEB>∠DEB (B )∠CEB=∠DEB (C )∠CEB<∠DEB (D )∠CEB 与∠DEB 的大小关系不能确定二.(本题满分20分)本题共5小题,每一个小题满分4分只要求直接写出结果(1)求复数i 3-的模和辐角的主值α C A E D β B[答]模:2;复角主值:π611(只答对一个值的给2分) (2)解方程.27329x 1x =⋅---[答]x=-2(直接答-2也算对) (3)已知2tg ,273,53sin θπ<θ<π-=θ求的值[答]-3(4)如图,四棱锥S-ABCD 的底面是边长为1的正方形,侧棱SB 垂直于底面,并且SB=3,用α表示∠ASD ,求αsin 的值[答]55 (5)已知等比数列}a {n 的公比q>1,并且a 1=b(b ≠0)求.a a a a a a a a limn 876n321n ++++++∞→[答]1三.(本题满分10分)已知,a tgx =求x3cos x cos 3x3sin x sin 3++的值解:xcos x 2cos 2x cos 2xcos x 2sin 2x sin 2x 3cos x cos x cos 2x 3sin x sin x sin 2x 3cos x cos 3x 3sin x sin 3++=++++=++)3a (2a)3x tg (2tgx )2x (sec 2tgx x cos 2)x cos 21(tgx )x 2cos 1(x cos 2x cos x sin 4x sin 2222222+=+=+=+=++=四.(本题满分10分)S α B A C D如图,正三棱锥S-ABC 的侧面是边长为a 的正三角形,D 是SA 的中点,E 是BC 的中点,求△SDE 绕直线SE 旋转一周所得的旋转体的体积解:连结AE ,因为△SDE 和△ABC 都是边长为a 的正三角形,并且SE和AE 分别是它们的中线,所以SE=AE ,从而△SDE 为等腰三角形,由于D 是SA 的中点,所以ED ⊥SA 作DF ⊥SE ,交SE 于点F 考虑直角△SDE 的面积,得到,DE SD 21DF SE 21⋅=⋅所以,.a 66a 23a222a DF ,,a 22)2a (a 43SD SE DE ,a 23)2a (a BE SB SE ,.SE DEa 21SE DE SD DF 22222222=⋅==-=-==-=-=⋅=⋅=所以易知 所求的旋转体的体积是以DF 为底面半径,分别以SF 和EF 为高的两个圆锥的体积的和,即.a 363a 236a 31SE )a 66(31EF )a 66(31SF )a 66(3132222π=⋅⋅π=⋅⋅π=⋅⋅π+⋅⋅π五.(本题满分11分)设21t log t log 21,0t ,1a ,0a aa +>≠>与比较的大小,并证明你的结论 解:当t>0时,由重要不等式可得t 21t ≥+,当且仅当t=1时取“=”号.t l o g 2121t l o g,t l o g 21t l o g,1t a aaa=+=+=∴即时 S D F A C E Bt log 2121t log ,t log 21t log ,x log y ,1a .t log 2121t log ,t log 21t log x log y ,1a 0.t 21t ,1t a a a aa a a a a a >+>+=><+<+=<<>=≠即所以是增函数时当即所以是减函数时当 六.(本题满分12分)本题共2小题,第(1)小题满分4分, 第(2)小题满分8分.给定实数).a1x ,R x (1ax 1x y ,1a ,0a ,a ≠∈--=≠≠且设函数且 证明:(1)经过这个函数图象上任意两个不同的点的直线不平行于x 轴;(2)这个函数的图象关于直线y=x 成轴对称图形解:(1)设M 1(x 1,y 1),M 2(x 2,y 2)是这个函数图象上任意两个不同的点,则x 1≠x 2,且.0y y ,x x ,1a ,)1ax )(1ax ()1a )(x x ()1ax )(1ax ()x x ()x x (a )1ax )(1ax ()1ax x x ax (1ax x x ax 1ax 1x 1ax 1x y y 122112121212121211211221112212≠-∴≠≠----=-----=--+---+--=-----=-且从而直线M 1M 2的斜率,0x x y y k 1212≠--=因此,直线M 1M 2不平行于x 轴 (2)设点P )y ,x (''是这个函数图象上任意一点,则,111)1(,1,01)2(,1)1(,1)1()1(),(),()1(11,1-'-'=='=-'-'=-''-'=-'''''=''-'-'='≠'x a x a a y y a y y a x x x a y x y P x y y x P x a x y a x 得代入则假如即式得由的坐标为的对称点关于直线易知点且,,1,1与已知矛盾由此得即=-'=-'a x a a x a成轴对称图形线这个函数的图象关于直因此在已知函数的图象上这说明点式得于是由x y x y P y a y x y a ='''-'-'='≠-'∴,,),(.11)2(.01(注:对(1)也可用反证法x 轴的直线y=c 与所给函数的图象是否相交及交点数目的情况由其无交点或恰有一交点,从而得证对(2)也可先求反函数,由反函数与原函数相同证明其图象关于y=x 对称)七.(本题满分12分)如图,直线L 的方程为2px -=,其中p >0;椭圆的中心为 D )0,2p 2(+,焦点在x 轴上,长半轴长为2,短半轴长为1,它的 一个顶点为A 0,2p (问p 在哪个范围内取值时,椭圆上有四个不同的点,它们中每一个点到点A 的距离等于该点到直线L 的距离解:假定椭圆上有符合题意的四点,则这四个点的坐标都应满足下面的椭圆方程:,1y 4)]2p2(x [22=++- 又这四个点的坐标应满足下面的抛物线方程y 2=2px,从而椭圆上有四点符合题意的充要条件是下面的方程组有四个不同的实数解:⎪⎩⎪⎨⎧==++-)2(.px 2y )1(,1y 42p 2(x [222 YL将(2)式代入(1)式,得)3(.0p 24p x )4p 7(x ,4px 8)]2p2(x [222=++-+=++-即所以原方程组有4个不同的实数解,当且仅当方程(3)有两个不相等的正根而这又等价于310,,0.047,024,0)24(4)47(222<<>⎪⎪⎪⎩⎪⎪⎪⎨⎧<->+>+--=∆p p p p pp p p 得到解此不等式组的条件下在所以,所求的p 的取值范围为.31p 0<<。