立体几何中的轨迹问题(微专题)(共16张)
立体几何中的轨迹问题答案
立体几何中的轨迹问题【判断轨迹】一、点线面中的轨迹问题1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是一条直线解:设l 与l '是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A .2.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是(除去两点的圆)3.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是四个点 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .二、柱体中的轨迹问题1.正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是线段B 1C .2.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).3.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能圆或圆的一部分lABCα4.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是轨迹的图形是一个平行四边形 .三、锥体中的轨迹问题1.若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )2.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.答案 线段MN (M 、N 分别为SC 、CD 的中点)3..如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.5.四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )【轨迹中计算问题】1.A C PABP A BPA B CPABCD P A BC D.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是,它的长度为. 3 —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6.4。
立体几何中的动点轨迹问题
同理,在平面 AA1D1D 内满足条件的点的轨迹长度为52π.在平面 A1B1C1D1 内满足条件 的点的轨迹为以 A1 为圆心,A1F 为半径的14圆弧,长度为 2π×4×14=2π.同理,在平 面 ABCD 内满足条件的点的轨迹为以 A 为圆心,AE 为半径的圆弧,长度为 2π×3×14 =32π.故轨迹的总长度为52π+52π+2π+32π=172π.
的长度最小.因为 B1N1=D1N1= 5,B1D1=2 2,所以△B1N1D1 的边 B1D1 上的高为
52- 22= 3,则 S△B1N1D1=12×2 2× 3= 6,则当 B1N⊥D1N1 时,B1N 最
小,即 B1Nmin=2S△DB1N1N1 1D1=2
6=2 5
530.
总结 提炼
与平行有关的轨迹问题的解题策略 (1)线面平行转化为面面平行得轨迹; (2)平行时可利用法向量垂直关系求轨迹.
模型 3 动点保持等距关系
3 (2023·湖北联考节选)已知正方体 ABCD-A1B1C1D1 的棱长为 3,P 为正方体表 53
面上的一个动点,A1P=2 3,则点 P 的轨迹长度为___2__π__.
【解析】 如图,点 P 的轨迹一部分是在平面 ABB1A1,A1B1C1D1, ADD1A1 三个面内以 2 3为半径,圆心角为π6的三段圆弧,另一部分是 在平面 BCC1B1,CDD1C1,ABCD 三个面内以 3为半径,圆心角为π2 的三段圆弧.故点 P 的轨迹的长度为112×2π×2 3×3+14×2π× 3×3=523π.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9
配套精练
2 . 如 图 , 正 方 体 ABCD - A1B1C1D1 的 棱 长 为 2 , E , F 分 别 为
立体几何中的轨迹问题汇总
例析空间中点的轨迹问题的转化求空间图形中点的轨迹既是中学数学学习中的一个难点,又是近几年高考的一个热点,这是一类立体几何与解析几何的交汇题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面的轨迹问题来处理的基本思想。
一.轨迹为点例1已知平面βα||,直线α⊂l ,点P l ∈,平面βα,之间的距离为8,则在β内到P 点的距离为10且到直线l 的距离为9的点的轨迹是 ( )A .一个圆 B.两条直线 C.两个点 D.四个点解析:设Q 为β内一动点,点P 在β内射影为O ,过O, l 的平面与β的交线为l ', PQ=10,∴OQ==-228106点Q 在以O 为圆心6为半径圆上,过Q 作QM l '⊥于M ,又 点Q 到直线l 的距离为9∴QM=178922=-则点Q 在以l '平行距离为17的两条平行线上 两条平行线与圆有四个交点∴这样的点Q 有四个,故答案选D 。
点评:本题以空间图形为背景,把立体几何问题转化到平面上,再用平面几何知识解决,要熟记一些平面几何点的轨迹。
二. 轨迹为线段例2. 如图,正方体1111ABCD A BC D -中,点P 在侧面11BCC B 及其边界上运动,并且总保持1AP BD ⊥,则动点P 的轨迹是( )。
βαlMOQPA. 线段1B CB.线段1BCC. 1BB 中点与1CC 中点连成的线段D. BC 中点与11B C 中点连成的线段解:连结11,,AB AC B C ,易知111BD A AB ⊥所以11111,,AB BD AC BD B C BD ⊥⊥⊥,所以1BD ⊥面1ABC ,若P ∈1B C ,则AP ⊂平面1ABC ,于是1BD AP ⊥,因此动点P 的轨迹是线段1B C 。
评注:本题是由线面垂直的性质从而求出点P 的轨迹。
例3 已知圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周),若MP AM ⊥,则点P 的轨迹是________。
最新立体几何中的轨迹问题(总结+讲义+练习)
立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC∴AC ⊥平面EFG ,∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为233的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .1AC C 1AEC C 1A AB1A 1(1)(2)(3)(4)DDA .B .C .D . A【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线 变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线). (2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A . (3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6. 【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )BABCDAB1A lAB Cα A B CD D 1 C 1B 1A 1 M PABCDD 1 C 1 B 1 A 1 M N3 323P A BC D立体几何中的轨迹问题(教师版)1.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB与到直线B1C1的距离相等,则动点P所在曲线的形状为(D).2.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为2:1,则动点P所在曲线的形状为(B).A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分3.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为1:2,则动点P所在曲线的形状为(C).A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分4.在正方体ABCD-A1B1C1D1中,E为AA1的中点,点P在其对角面BB1D1D内运动,若EP总与直线AC成等角,则点P的轨迹有可能是(A).A.圆或圆的一部分B.抛物线或其一部分C.双曲线或其一部分D.椭圆或其一部分简析由条件易知:AC是平面BB1D1D的法向量,所以EP与直线AC成等角,得到EP与平面BB1D1D 所成的角都相等,故点P的轨迹有可能是圆或圆的一部分.5a,定点M在棱AB上(但不在端点A,B上),点P是平面ABCD内的动点,且点P P到点M的距离的平方差为a2,则点P的轨迹所在曲线为(A).A.抛物线B.双曲线C.直线D.圆连结PE.则PE2=a2+PF2,又PE2-PM2=a2,所以PM2=PF2,从而PM=PF,故点P到直线AD与到点M的距离相等,故点P的轨迹是以M为焦点,AD为准线的抛物线.6P在侧面BCC1B1及其边界上运动,总有1,则动点P的轨迹为的轨迹为_______________.答案线段MN(M、N分别为SC、CD8.若A、B P C(不同于A、B,则动点C在平面内的轨迹是________.(除去两点的圆)A—BCD的侧面ABC内一动点P到底面BCD的距离与到棱AB的距离相等,则动点P的轨迹与组成的图形可能是:(D)A A AP PP PB C B C B C B C A B C D简析 动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在∠ABC 的内角平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在∠ABC 的内角平分线与AB 之间的区域内.只能选D . 10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆 B .椭圆 C .双曲线 D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利 用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 简析以B 为圆心,半径为33且圆心角为π2的圆弧,长度为36π. 12.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 . 提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.简析 由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即1843163⨯⨯=ππ.14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠,可得CPB tan PB CB PA AD APD tan ∠===∠,即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=,即|1y|1x2-=+,化简得0y2yx22=+-故动点P的轨迹为双曲线,选B.20.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线分析:由于线段AB是定长线段,而△ABP的面积为定值,所以动点P到线段AB的距离也是定值.由此可知空间点P在以AB为轴的圆柱侧面上.又P在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB是平面的斜线段),得到的切痕是椭圆.P的轨迹就是圆柱侧面与平面a的交线.21.如图,动点P在正方体1111ABCD A B C D-的对角线1BD上.过点P作垂直于平面11BB D D的直线,与正方体表面相交于M N,.设BP x=,MN y=,则函数()y f x=的图象大致是()分析:将线段MN投影到平面ABCD内,易得y为x一次函数.22.已知异面直线a,b成︒60角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程.图5简析:如图5,易知线段AB的中点P在公垂线段MN的中垂面α上,直线'a、'b为平面α内过MN的中点O分别平行于a、b的直线,'a'AA⊥于'A,'b'BB⊥于'B,则P'B'AAB=⋂,且P也为'B'A的中点.由已知MN=2,AB=4,易知,2AP,1'AA==得32'B'A=.则问题转化为求长等于32的线段'B'A的两个端点'A、'B分别在'a、'b上移动时其中点P的轨迹.现以'OB'A∠的角平分线为x轴,O为原点建立如图6所示的平面直角坐标系.A BCDMNPA1 B1C1D1yxOyxOyxOyxO图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是 ( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分5a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD内的动点,且点P P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( ) A .抛物线 B .双曲线 C .直线 D .圆A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与组成的图形可能是( )A A AB C B C B C B CA B C DA B C D 7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆 B .不完整的圆 C .抛物线 D .抛物线的一部分10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线 13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.16.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.17.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 .A BC D MNP A 1B 1C 1D 1 yxOyOxOyx O19.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.。
立体几何中的轨迹问题(详细版)
立体几何中的轨迹问题高考数学有一类学科内的综合题,它们的新颖性、综合性,值得我们重视,在知识网络交汇点处设计试题是高考命题改革的一个方向,以空间问题为为背景的轨迹问题作为解析几何与立体几何的交汇点,由于知识点多,数学思想和方法考查充分,求解比较困难.通常要求学生有较强的空间想象能力,以及能够把空间问题转化到平面上,再结合解析几何方法求解,以下精选几个问题来对这一问题进行探讨,旨在探索题型规律,揭示解题方法。
一、用空间运动的观点来得到点的轨迹。
例1:直线PA 是平面M 的一条斜线,斜足为A ,动直线PB 过点P 且与直线PB 垂直,且交平面M 于点B ,求动点B 的轨迹.解:先探讨直线PB 的运动轨迹,由于直线PB 始终与PA 垂直,可知PB 的运动轨迹应是直线PA 的垂直平面N 。
再结合点B 一定在平面M 内,所以点B 的轨迹应该是两个平面的交线,所以点B 的轨迹是一条直线.针对以上解法,我们对这一问题作一深层次的探讨:若直线PA 与平面M 成α角,直线PB 始终与直线PA 成β角,再来求点B 的轨迹。
由上述解法可知,我们只要得到直线PB 的空间轨迹,再来考察该轨迹与平面M 的交线即可。
由简单的模型模拟即可知,直线PB 的轨迹是一个圆锥面,再用一个平面截圆锥面,这一知识在平面解析几何中圆锥曲线的来历中有提到,即所得曲线可能是圆、椭圆、抛物线、双曲线。
因此,我们在以下命题:直线PA 是平面M 的一条斜线,且与平面M 成α角,斜足为A ,动直线PB 过点P 且与直线PB 成β角,交平面M 于点B,求动点B 的轨迹。
结论: (1)若α=90°,β≠90°,则动点B 的轨迹是一个圆; (2)若α≠90°,β=90°,动点B 的轨迹是一条直线;(3)若α≠90°,β≠90°,则①若90°〉α〉β,则轨迹是椭圆; ②若α=β,则轨迹是抛物线; ③若α<β,则轨迹是双曲线。
2024年高考数学复习拓展考点精讲精练讲义 26 立体几何中的轨迹问题含详解
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展26立体几何中的轨迹问题(精讲+精练)一、立体几何中的轨迹问题立体几何轨迹问题是以空间图形为素材,去探究符合一定条件的点的运动轨迹,处于解析几何和立体几何的交汇处,要求学生有较强的空间想象能力、数学转化和化归能力,以及对解析几何和立体几何知识的全面掌握.常见的轨迹类型有直线、圆雉曲线、球面、椭球面.二、常用的解决策略(1)定义法:借助圆雉曲线的定义判断.(2)坐标法:建立合适的坐标系,用方程来表示所求点的轨迹,借助方程来判断轨迹形状.(3)交轨法:运动的点同时在两个空间几何体上,如平面与圆雉、圆柱、球相交,球与球相交,等等.(4)平面化:把空间几何关系转化到同一平面内,进而探究平面内的轨迹问题,使问题更易解决.空间问题平面化也是解决立体几何题目的一般性思路.三、轨迹是圆锥曲线的原理剖析令平面与轴线的夹角为θ0<θ<90°,圆雉的母线与轴的夹角为()090<<αα,如图②.(1)当<αθ时,截口曲线为椭圆;(2)当=αθ时,截口曲线为抛物线;(3)当>αθ时,截口曲线为双曲线.图②我们再从几何角度来证明.(1)如图③,在圆锥内放两个大小不同的球,使它们分别与截面切于点12,F F .在截口曲线上任取一点P ,过点P 作圆雉的母线,分别与两球切于点12,Q Q .由球的性质可知2112,PQ PF PQ PF ==,于是121212PF PF PQ PQ Q Q +=+=为定值,这样截口曲线上的任一点P 到两个定点12,Q Q 的距离之和为常数,由椭圆的定义知,截口曲线是椭圆.一、知识点梳理(2)如图④,在互相倒置的两个圆雉内放两个大小不同的球,使它们分别与圆雉的侧面、截面相切,两个球分别与截面切于点12,F F .在截口曲线上任取一点P ,过点P 作圆雉的母线,分别与两球切于点12,Q Q .由球的性质可知1122,PQ PF PQ PF ==,于是121212PF PF PQ PQ Q Q -=-=为定值,这样截口曲线上的任一点P 到两个定点12,Q Q 的距离之差的绝对值为常数,由双曲线的定义知,截口曲线是双曲线.(3)如图⑤,用平行于母线OM 且垂直于轴截面OMN 的平面β去截圆雉.在圆雉内放一个球,使它和圆雉的侧面与截面β相切,球与截面切于点F .设α为球与圆雉相切时切点构成的圆所在的平面,记l ⋂=αβ.在截口曲线上任取一点P ,作直线与球相切于点T ,连结PT ,有PF PT =.在母线OM 上取点,A B (B 为OM 与球的切点),使得AB PT =.过点P 作//PQ AB ,有点Q 在l 上,且FQ AB PF ==.另一方面,因为平面OMN 与α垂直,那么l ⊥平面OMN ,有l AB ⊥,所以l PQ ⊥.于是截口曲线是以点F 为焦点,l 为准线的抛物线.1.平行、垂直有关的的轨迹问题①平行有关的轨迹问题的解题策略二、题型精讲精练1.线面平行转化为面面平行得轨迹;2.平行时可利用法向量垂直关系求轨迹.②垂直有关的轨迹问题的解题策略1.可利用线线线面垂直,转化为面面垂直,得交线求轨迹;2.利用空间坐标运算求轨迹;3.利用垂直关系转化为平行关系求轨迹.【典例1】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是()A Ba C .2D .2【典例2】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是()A .点1B B .线段1B CC .线段11B C D .平面11B BCC 【答案】B【分析】如图,连接1AC ,证明1BC ⊥1B Q ,又1BC ⊥1B C ,即得解.【详解】如图,连接1AC ,因为111111111111,,,,BC AQ BC A B AQ A B A AQ A B ⊥⊥=⊂ 平面11A B Q ,所以1BC ⊥平面11A B Q ,又1B Q ⊂平面11A B Q ,所以1BC ⊥1B Q ,又1BC ⊥1B C .所以点Q 在线段1B C 上.故选:B2.距离、角度有关的的轨迹问题①距离有关的轨迹问题的解题策略1.距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹;2.利用空间坐标计算求轨迹.②角度有关的轨迹问题的解题策略1.直线与面成定角,可能是圆锥侧面;2.直线与定直线成等角,可能是圆锥侧面;3.利用空间坐标系计算求轨迹.【典例3】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是()如图示,过P 作PE ⊥以D 为坐标原点建立空间直角坐标系2211x y -=+,平方得:【典例4】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为()A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【答案】D【分析】根据题设分析可知:Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,应用数形结合,结合平面与双锥面相交所成曲线的性质判断Q 所在轨迹的形状.【详解】由题设,Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,如下图示:当P 是边11C D 上移动过程中,只与下方锥体有相交,Q 点轨迹为抛物线;当P 是边11C D 上移动过程中,与上方锥体也有相交,Q 点轨迹为双曲线;故选:D3.翻折有关的的轨迹问题①翻折有关的轨迹问题的解题策略1.翻折过程中寻找不变的垂直的关系求轨迹2.翻折过程中寻找不变的长度关系求轨迹3.可以利用空间坐标运算求轨迹【典例5】1822年,比利时数学家Dandelin 利用圆锥曲线的两个内切球,证明了用一个平面去截圆锥,可以得到椭圆(其中两球与截面的切点即为椭圆的焦点),实现了椭圆截线定义与轨迹定义的统一性.在生活中,有一个常见的现象:用手电筒斜照地面上的篮球,留下的影子会形成椭圆.这是由于光线形成的圆锥被地面所截产生了椭圆的截面.如图,在地面的某个占1A 正上方有一个点光源,将小球放置在地面,使得1AA 与小球相切.若15A A =,小球半径为2,则小球在地面的影子形成的椭圆的离心率为()A .23B .45C .13D .25【答案】A【分析】设21A F x =,从而可得15AA =,122A A x =+,23AA x =+,利用勾股定理可得10x =,再由离心率的定义即可求解.【详解】在21Rt AA A 中,设21A F x =,2DA x∴=15AA =,122A A x =+,23AA x =+,2225(2)(3)x x ∴++=+,10x ∴=,∴长轴长12212A A a ==,6a =,624c =-=则离心率23c e a ==.故选:A 【题型训练2-刷模拟】1.平行、垂直有关的的轨迹问题一、单选题1.(2023·全国·高三专题练习)正四棱锥S ABCD -的底面边长为2,高为2,E 是边BC 的中点,动点P 在表面上运动,并且总保持PE AC ⊥,则动点P 的轨迹的周长为()A .62+B .62-C .4D .51+2.(2023·安徽滁州·安徽省定远中学校考模拟预测)在正四棱柱1111ABCD A B C D -中,1AB =,14AA =,E 为1DD 中点,P 为正四棱柱表面上一点,且11C P B E ⊥,则点P 的轨迹的长为()A .52+B .222+C .252+D .132+3.(2023·江西赣州·统考二模)在棱长为4的正方体1111ABCD A B C D -中,点P 满足14AA AP =,E ,F 分别为棱BC ,CD 的中点,点Q 在正方体1111ABCD A B C D -的表面上运动,满足1//AQ 面EFP ,则点Q 的轨迹所构成的周长为()A .5373B .237C .7373D .83734.(2023·全国·高三专题练习)如图所示,正方体1111ABCD A B C D -的棱长为2,E ,F 分别为1AA ,AB 的中点,点P 是正方体表面上的动点,若1//C P 平面1CD EF ,则P 点在正方体表面上运动所形成的轨迹长度为()A .25+B .225+C .225+D .2225+BBA.点P可以是棱1C.点P的轨迹是正方形6.(2023·全国·高三专题练习)已知棱长为MP平面ABD表面上,且//二、填空题8.(2023·河南·校联考模拟预测)已知正方体则点P的轨迹长度为9.(2023春·四川绵阳内切球O的球面上的动点,2.距离、角度有关的的轨迹问题一、单选题二、填空题3.翻折有关的的轨迹问题一、单选题A .523πB .453π2.如图,正方形ABCD 的边长为2,E 为BC 的中点,将①四棱锥P AECD -的体积最大值为255AB=,上一动点,现将AED ....【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展26立体几何中的轨迹问题(精讲+精练)一、立体几何中的轨迹问题立体几何轨迹问题是以空间图形为素材,去探究符合一定条件的点的运动轨迹,处于解析几何和立体几何的交汇处,要求学生有较强的空间想象能力、数学转化和化归能力,以及对解析几何和立体几何知识的全面掌握.常见的轨迹类型有直线、圆雉曲线、球面、椭球面.二、常用的解决策略(1)定义法:借助圆雉曲线的定义判断.(2)坐标法:建立合适的坐标系,用方程来表示所求点的轨迹,借助方程来判断轨迹形状.(3)交轨法:运动的点同时在两个空间几何体上,如平面与圆雉、圆柱、球相交,球与球相交,等等.(4)平面化:把空间几何关系转化到同一平面内,进而探究平面内的轨迹问题,使问题更易解决.空间问题平面化也是解决立体几何题目的一般性思路.三、轨迹是圆锥曲线的原理剖析令平面与轴线的夹角为θ0<θ<90°,圆雉的母线与轴的夹角为()090<<αα,如图②.(2)当<αθ时,截口曲线为椭圆;(2)当=αθ时,截口曲线为抛物线;(3)当>αθ时,截口曲线为双曲线.图②我们再从几何角度来证明.(1)如图③,在圆锥内放两个大小不同的球,使它们分别与截面切于点12,F F .在截口曲线上任取一点P ,过点P 作圆雉的母线,分别与两球切于点12,Q Q .由球的性质可知2112,PQ PF PQ PF ==,于是121212PF PF PQ PQ Q Q +=+=为定值,这样截口曲线上的任一点P 到两个定点12,Q Q 的距离之和为常数,由椭圆的定义知,截口曲线是椭圆.一、知识点梳理(2)如图④,在互相倒置的两个圆雉内放两个大小不同的球,使它们分别与圆雉的侧面、截面相切,两个球分别与截面切于点12,F F .在截口曲线上任取一点P ,过点P 作圆雉的母线,分别与两球切于点12,Q Q .由球的性质可知1122,PQ PF PQ PF ==,于是121212PF PF PQ PQ Q Q -=-=为定值,这样截口曲线上的任一点P 到两个定点12,Q Q 的距离之差的绝对值为常数,由双曲线的定义知,截口曲线是双曲线.(3)如图⑤,用平行于母线OM 且垂直于轴截面OMN 的平面β去截圆雉.在圆雉内放一个球,使它和圆雉的侧面与截面β相切,球与截面切于点F .设α为球与圆雉相切时切点构成的圆所在的平面,记l ⋂=αβ.在截口曲线上任取一点P ,作直线与球相切于点T ,连结PT ,有PF PT =.在母线OM 上取点,A B (B 为OM 与球的切点),使得AB PT =.过点P 作//PQ AB ,有点Q 在l 上,且FQ AB PF ==.另一方面,因为平面OMN 与α垂直,那么l ⊥平面OMN ,有l AB ⊥,所以l PQ ⊥.于是截口曲线是以点F 为焦点,l 为准线的抛物线.1.平行、垂直有关的的轨迹问题①平行有关的轨迹问题的解题策略二、题型精讲精练1.线面平行转化为面面平行得轨迹;2.平行时可利用法向量垂直关系求轨迹.②垂直有关的轨迹问题的解题策略1.可利用线线线面垂直,转化为面面垂直,得交线求轨迹;2.利用空间坐标运算求轨迹;3.利用垂直关系转化为平行关系求轨迹.【典例1】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是()A Ba C .2D .2【典例2】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是()A .点1B B .线段1B CC .线段11B C D .平面11B BCC 【答案】B【分析】如图,连接1AC ,证明1BC ⊥1B Q ,又1BC ⊥1B C ,即得解.【详解】如图,连接1AC ,因为111111111111,,,,BC AQ BC A B AQ A B A AQ A B ⊥⊥=⊂ 平面11A B Q ,所以1BC ⊥平面11A B Q ,又1B Q ⊂平面11A B Q ,所以1BC ⊥1B Q ,又1BC ⊥1B C .所以点Q 在线段1B C 上.故选:B2.距离、角度有关的的轨迹问题①距离有关的轨迹问题的解题策略1.距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹;2.利用空间坐标计算求轨迹.②角度有关的轨迹问题的解题策略1.直线与面成定角,可能是圆锥侧面;2.直线与定直线成等角,可能是圆锥侧面;3.利用空间坐标系计算求轨迹.【典例3】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是()如图示,过P 作PE ⊥以D 为坐标原点建立空间直角坐标系2211x y -=+,平方得:【典例4】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为()A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【答案】D【分析】根据题设分析可知:Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,应用数形结合,结合平面与双锥面相交所成曲线的性质判断Q 所在轨迹的形状.【详解】由题设,Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,如下图示:当P 是边11C D 上移动过程中,只与下方锥体有相交,Q 点轨迹为抛物线;当P 是边11C D 上移动过程中,与上方锥体也有相交,Q 点轨迹为双曲线;故选:D3.翻折有关的的轨迹问题①翻折有关的轨迹问题的解题策略1.翻折过程中寻找不变的垂直的关系求轨迹2.翻折过程中寻找不变的长度关系求轨迹3.可以利用空间坐标运算求轨迹【典例5】1822年,比利时数学家Dandelin 利用圆锥曲线的两个内切球,证明了用一个平面去截圆锥,可以得到椭圆(其中两球与截面的切点即为椭圆的焦点),实现了椭圆截线定义与轨迹定义的统一性.在生活中,有一个常见的现象:用手电筒斜照地面上的篮球,留下的影子会形成椭圆.这是由于光线形成的圆锥被地面所截产生了椭圆的截面.如图,在地面的某个占1A 正上方有一个点光源,将小球放置在地面,使得1AA 与小球相切.若15A A =,小球半径为2,则小球在地面的影子形成的椭圆的离心率为()A .23B .45C .13D .25【答案】A【分析】设21A F x =,从而可得15AA =,122A A x =+,23AA x =+,利用勾股定理可得10x =,再由离心率的定义即可求解.【详解】在21Rt AA A 中,设21A F x =,2DA x∴=15AA =,122A A x =+,23AA x =+,2225(2)(3)x x ∴++=+,10x ∴=,∴长轴长12212A A a ==,6a =,624c =-=则离心率23c e a ==.故选:A 【题型训练2-刷模拟】1.平行、垂直有关的的轨迹问题一、单选题1.(2023·全国·高三专题练习)正四棱锥S ABCD -的底面边长为2,高为2,E 是边BC 的中点,动点P 在表面上运动,并且总保持PE AC ⊥,则动点P 的轨迹的周长为()A .62+B .62-C .4D .51+【答案】A【分析】由题意,动点P 的轨迹为过E 且垂直AC 的平面与正四棱锥S ABCD -的交线,再根据线面垂直的性质求解即可.【详解】如图,设,AC BD 交于O ,连接SO ,由正四棱锥的性质可得,SO ⊥平面ABCD ,因为AC ⊂平面ABCD ,故SO AC ⊥.又BD AC ⊥,SO BD O ⋂=,SO BD ⊂,平面SBD ,故AC ⊥平面SBD .由题意,PE AC ⊥则动点P 的轨迹为过E 且垂直AC 的平面与正四棱锥S ABCD -的交线,即如图EFG ,则AC ⊥平面EFG .由线面垂直的性质可得平面//SBD 平面EFG ,又由面面平行的性质可得//EG SB ,//GF SD ,//EF BD ,又E 是边BC 的中点,故,,EG GF EF 分别为,,SBC SDC BCD 的中位线.由题意222,226BD SB SD ===+=,故()16622622EG EF GF ++=++=+.即动点P 的轨迹的周长为62+.故选:A2.(2023·安徽滁州·安徽省定远中学校考模拟预测)在正四棱柱点,P 为正四棱柱表面上一点,且A .52+B .2因为11AC ⊂平面1B A 1111ED B D D ⋂=,则取1CC 中点F ,连接而11D C ⊥平面1BCC 又1,B F FE ⊂平面1B故选:D4.(2023·全国·高三专题练习)如图所示,正方体P 是正方体表面上的动点,若1C P A .25+B .2【答案】B【分析】要满足1//C P 平面CD 中点G ,11A B 的中点H ,连结迹为三角形1C HG ,求出周长即可【详解】取1BB 的中点G ,A 正方体1111ABCD A B C D -的棱长为因为,F H 为分别为11,AB A B 的中点,BB的中点A.点P可以是棱1C.点P的轨迹是正方形【答案】B【分析】如图,取棱BC的中点必过D点,进而取A D中点F【点睛】关键点点睛:本题解题的关键在于取棱的性质求解点P 轨迹即可求解6.(2023·全国·高三专题练习)已知棱长为表面上,且//MP 平面1ABD ,则动点A .22B .【详解】E 、F 、G 、M 分别是1AA 、11A D 、1B C 1AD ,//EM AB ,所以//EF 平面1ABD 1ABD //平面EFGM ,故点P 的轨迹为矩形12G =,所以22MG =,所以1EFGM S =⨯【点睛】本题考查面面平行的判定和面面平行的性质,以及正方体的截面问题,属综合中档题二、填空题【答案】10【分析】先推出BC ⊥,,EF CF AC ,推出BC 【详解】因为AB 是圆柱下底面圆又BC AD ⊥,AC AD 设过A 的母线与上底面的交点为因为⊥AE 平面ABC ,因为AE AC A = ,所以点D 在平面ACE 依题意得5AE =,OA 所以矩形AEFC 的面积为1DD ⊥平面ABCD ,AC ⊂平面ABCD ,则1DD AC ⊥11,,DD BD D DD BD =⊂∩平面1BDD ,于是AC ⊥平面则1AC BD ⊥,同理11⊥AB BD ,而1,,AC AB A AC AB = 令1BD 交平面1AB C 于点E ,由11B AB C B ABC V V --=,得13S 311【答案】3305π【分析】由题意画出图形,得BN ⊥平面DCP ,所以【详解】如图所示,在1BB 上取点P ,使得12BP PB =,连接112NC NB =Q ,CP BN∴⊥又DC ⊥平面11BCC B ,DC BN∴⊥又DC CP C Ç=Q ,DC ⊂平面DCP ,CP ⊂平面BN ∴⊥平面DCP又点M 是棱长为32的正方体1111ABCD A B C D -DCP 与球O 的截面圆周.2.距离、角度有关的的轨迹问题一、单选题故选:C2.(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P -ABCD 的底面正方形边长为则动点Q 形成轨迹的周长为(A .2π11根据等体积法得(143ABCD PAB S S +△∴11344423263PE ⎛⎫+⨯⨯⨯⨯=⨯ ⎪⎝⎭【详解】,取AD 的中点H ,连接EH ,则1//EH AA .1111ABCD A B C D -中,1AA ⊥底面ABCD ,所以EH ⊥底面ABCD.EFH 为EF 与底面ABCD 所成的角,则60EFH ∠=︒.设正方体的棱长为a ,因为该正方体外接球的表面积为12π,22233π12π2a a ⎛⎫==⎪ ⎪⎝⎭,解得2a =,12AA a ===,从而23HF =,的轨迹为以H 为圆心,23为半径的圆在正方形ABCD 区域内的部分,如图中,23HG HM ==,3AH AHG πAHG ∠=,【点睛】本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题7.(2022秋·河南·高三期末)棱长为1的正方体11ABCD A B C -则下面结论正确的有()①若点E 满足1AE B C ⊥,则动点E 的轨迹是线段;②若点E 满足130EA C ∠=,则动点E 的轨迹是椭圆的一部分;若130EA C ∠= ,则E 在以1AC 为轴,母线所在直线为平面1BC 与圆锥的轴1AC 因为11//,A B CD 所以1A E 与CD 所成的角等于当E 为1BC 中点时,1B E tan EA B ∠二、填空题8.(2023春·湖南长沙·高三校联考阶段练习)则正方体表面到P 点距离为5的点的轨迹总长度为【答案】35π2⎛⎫+ ⎪⎝⎭【分析】根据以P 为球心,5为半径的球与正方体表面的交线长度来求得轨迹总长度【详解】以P 为球心,5为半径的球与正方体表面的交线长度即为所求,在平面11ABB A 和平面11ADD A 上轨迹是以圆心角为π2的两段弧,弧长为在平面1111D C B A 上的轨迹是以A 在平面ABCD 上的轨迹是以A 为圆心,因此,轨迹的总长度为352⎛+ ⎝故答案为:35π2⎛⎫+ ⎪⎝⎭9.(2023·全国·高三专题练习)已知三棱锥到底面ABC 的距离为4,且三棱锥【答案】43π【分析】设ABC 直角边的边长为得出球心O 到底面ABC 的距离连接,,OD OG OH ,则有OG OH =2GH a =,5GD a =且GH GD ⊥设O 到平面DCHG 的距离为:d 则在三棱锥O DGH -中,有O GDH V -所以11113232GH GD d OG ⨯⨯⨯⨯=⨯⨯3.翻折有关的的轨迹问题一、单选题A .523πB .453π【答案】D设三棱锥S ABC -外接球的球心为,,O SAC BAC 的中心分别为易知1OO ⊥平面2,SAC OO ⊥平面BAC ,且12,,,O O O①四棱锥P AECD -的体积最大值为255③,EP CD 与平面PAD 所成角的正弦值之比为④三棱锥P AED -的外接球半径有最小值A .①③B .②③【答案】C取PA中点为G,则,GF EC平行且相等,四边形所以,点F的轨迹与点G的轨迹完全相同,过,H G的轨迹是H以为圆心,55HG=中点F的轨迹长度为55π.②错误;由四边形ECFG是平行四边形知//ECAB=,上一动点,现将AED....。
2023高考一轮热题---立体几何中的轨迹问题
19立体几何中的轨迹问题【题型一】由动点保持平行性求轨迹【典例分析】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是( )AB C D【提分秘籍】基本规律1.线面平行转化为面面平行得轨迹2.平行时可利用法向量垂直关系求轨迹【变式演练】1.在三棱台111A B C ABC −中,点D 在11A B 上,且1//AA BD ,点M 是三角形111A B C 内(含边界)的一个动点,且有平面//BDM 平面11A ACC ,则动点M 的轨迹是( )A .三角形111ABC 边界的一部分 B .一个点C .线段的一部分D .圆的一部分2.已知正方体1111ABCD A B C D −的棱长为2,E 、F 分别是棱1AA 、11A D 的中点,点P 为底面ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A 1BC D3.在棱长为2的正方体1111ABCD A B C D −中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111D C B A 内一点(含边界),若//AP 平面BDEF ,则Р点的轨迹长为( )A .1BC .2D .【题型二】动点保持垂直性求轨迹【典例分析】在正方体1111ABCD A B C D −中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是( )A .点1B B .线段1BC C .线段11B CD .平面11B BCC【提分秘籍】基本规律1.可利用线线线面垂直,转化为面面垂直,得交线求轨迹2.利用空间坐标运算求轨迹3.利用垂直关系转化为平行关系求轨迹【变式演练】1.在正方体1111ABCD A B C D −中,点P 在侧面11BCC B 及其边界上运动,且保持1AP BD ⊥,则动点P 的轨迹为 A .线段1CBB .线段1BC C .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段2.在棱长为1的正方体1111ABCD A B C D −中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥.给出下列说法:①点P 可以是棱1BB 的中点;②线段MP 的最大值为34; ③点P 的轨迹是正方形;④点P 轨迹的长度为2其中所有正确说法的序号是________.3.如图,在正方体1111ABCD A B C D −中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,则下列说法不正确的是( )A .1A F 与1D E 不可能平行B .1A F 与BE 是异面直线C .点F 的轨迹是一条线段D .三棱锥1F ABD −的体积为定值【题型三】由动点保持等距(或者定距)求轨迹【典例分析】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是( )A .直线B .椭圆C .抛物线D .双曲线【提分秘籍】基本规律1.距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹2.利用空间坐标计算求轨迹【变式演练】1.如图,在四棱锥P ABCD −中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为正方形ABCD 内(包括边界)的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为( )A .B .C .D .2.如图,在棱长为4的正方体ABCD A B C D ''''−中,E 、F 分别是AD 、A D ''的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A B C D ''''上运动,则线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体的体积为( )A .43π B .23π C .6π D .3π 3.四棱锥P ﹣OABC 中,底面OABC 是正方形,OP ⊥OA ,OA =OP =a .D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE =a 时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是( )A .B .C .D .6【题型四】由动点保持等角(或定角)求轨迹【典例分析】正方体1111ABCD A B C D −中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为( )A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【提分秘籍】基本规律1. 直线与面成定角,可能是圆锥侧面。
高考专题 立体几何中轨迹、翻折、探索性问题
12
解析:如图所示,连接 AC1 交平面 A1BD 于 O,连接 EO, 由题意可知 AC1⊥平面 A1BD, 所以∠AEO 是 AE 与平面 A1BD 所成的角,所以∠AEO=α.
返回导航
13
由 sin α=255可得 tan α=2,即AEOO=2. 在四面体 A-A1BD 中,BD=A1D=A1B=2 6, AB=AD=AA1=2 3,所以四面体 A-A1BD 为正三棱锥,O 为△BDA1 的重心,
返回导航
17
∴平面 BCE∥平面 MND,即平面 MND 为平面 α, 则点 G 到平面 DMN 的距离 d 即为点 G 到直线 DQ 的距离, ∵D→G=0, 33,- 36,D→Q=(0,-2 3,- 6), ∴D→G·D→Q=-2+2=0,即 DG⊥DQ, ∴点 G 到直线 DQ 的距离 d=|D→G|=1, ∴截面圆的半径 r= 22-12= 3,∴球被平面 α 截得的截面圆周长为 2πr=2 3π, 即平面 α 截点 P 的轨迹所形成的图形的周长为 2 3π.
返回导航
19
解: (1)证明:在△ABD 中,由余弦定理得,BD= AB2+AD2-2AB·ADcos A= 4+1-2×2×1×12= 3,
∴AD2+BD2=AB2,得 AD⊥DB,翻折后有 A′D⊥DB, 又平面 A′BD⊥平面 BCD,且平面 A′BD∩平面 BCD=DB, 根据平面与平面垂直的性质定理可得 A′D⊥平面 BCD, 又∵BC⊂平面 BCD,∴A′D⊥BC. 在平行四边形 ABCD 中,AD⊥DB,BC∥AD,∴BC⊥DB, ∵A′D∩DB=D,∴BC⊥平面 A′DB, ∵BC⊂平面 A′BC,∴平面 A′BC⊥平面 A′BD.
返回导航
15
立体几何中的轨迹问题(详细版)
立体几何中的轨迹问题高考数学有一类学科内的综合题,它们的新颖性、综合性,值得我们重视,在知识网络交汇点处设计试题是高考命题改革的一个方向,以空间问题为为背景的轨迹问题作为解析几何与立体几何的交汇点,由于知识点多,数学思想和方法考查充分,求解比较困难。
通常要求学生有较强的空间想象能力,以及能够把空间问题转化到平面上,再结合解析几何方法求解,以下精选几个问题来对这一问题进行探讨,旨在探索题型规律,揭示解题方法。
一、用空间运动的观点来得到点的轨迹。
例1:直线PA 是平面M 的一条斜线,斜足为A ,动直线PB 过点P 且与直线PB 垂直,且交平面M 于点B ,求动点B 的轨迹。
解:先探讨直线PB 的运动轨迹,由于直线PB 始终与PA 垂直,可知PB 的运动轨迹应是直线PA 的垂直平面N 。
再结合点B 一定在平面M 内,所以点B 的轨迹应该是两个平面的交线,所以点B 的轨迹是一条直线。
针对以上解法,我们对这一问题作一深层次的探讨:若直线PA 与平面M 成α角,直线PB 始终与直线PA 成β角,再来求点B 的轨迹。
由上述解法可知,我们只要得到直线PB 的空间轨迹,再来考察该轨迹与平面M 的交线即可。
由简单的模型模拟即可知,直线PB 的轨迹是一个圆锥面,再用一个平面截圆锥面,这一知识在平面解析几何中圆锥曲线的来历中有提到,即所得曲线可能是圆、椭圆、抛物线、双曲线。
因此,我们在以下命题:直线PA 是平面M 的一条斜线,且与平面M 成α角,斜足为A ,动直线PB 过点P 且与直线PB 成β角,交平面M 于点B ,求动点B 的轨迹。
结论: (1)若α=90°,β≠90°,则动点B 的轨迹是一个圆; (2)若α≠90°,β=90°,动点B 的轨迹是一条直线;(3)若α≠90°,β≠90°,则①若90°>α>β,则轨迹是椭圆; ②若α=β,则轨迹是抛物线; ③若α<β,则轨迹是双曲线。
立体几何中的轨迹问题探求
中学 数学 月刊
・ 5 ・ 3
立 体 几 何 中 的 轨 迹 问题 探 求
赵 加营 ( 苏省宿 迁 中学 江 2 30 ) 2 8 0
立体几 何 中也 会 遇 到 与 解 析 几 何 一 样 探 求 满 足条件 的动 点轨 迹 问题 , 这类 问题 以 立 体 图形 为 载体 , 将立 体几 何 与 解 析几 何 以及 代 数 知识 交 汇 于一 体 , 有较 强 的探索性 、 放性 、 具 开 创新 性. 处 理 这类 问题 的关键 是依 据立 体几 何 中点线 面关 系
ADD 内 , 平面 A D A 而 C n A D 所 DD A 一A , 以点 P 的轨迹是 线段 AD .
由已知条件, F 一( P 。 . 得P 。 - M) 一1 在  ̄
・
5 4・
中学 数学 月刊
21 0 2年第 7期
△P EF 中 , F。 雎 一 E 一 1 所 以 P 一 P 一 F。 , F
以B 为 焦 点 、 线 B 为 准 线 的双 曲 线 在 侧 面 直 C
面 内的轨迹 是 (
) .
( A)一条 线段 , 要去掉 两个 点 但 ( 一个圆, B) 但要 去 掉两个 点
B 内的部 分 ; 0< < 1时 , P的轨迹 是 以 C 当 点 B 为 焦点 、 直线 B C为 准线 的椭 圆在侧 面 B 内 C
于 A 和 B 的动点 , P 且 C 上 A 那 么 动 点 C 在 平 C,
图 1
B 的 中点 为顶 点 的抛物 线在侧 面 B 内的部分 B。 C。
( C 点) 过 1 .
拓 展 若 点 P到直 线A 的距 离是 点 P到 B 直线 B C的距离 的 , 当 > 1 , P的轨迹 是 则 时 点
立体几何中的轨迹问答(归纳讲义理解练习)
立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC ∴AC ⊥平面EFG , ∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .DDA .B .C .D .A若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233 的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线).(2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A .(3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6.【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面PAB ,BC ⊥面PAB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是()A .圆B .不完整的圆C .抛物线D .抛物线的一部分分析:∵AD ⊥面PAB ,BC ⊥平面PAB ∴AD ∥BC 且AD ⊥PA ,CB ⊥PBBABCD1AC C 1AE C C 1A AB1A 1(1)(2)(3)(4)C C 1A lAB Cα A B C D D 1C 1B 1A 1M PABCDD 1 C 1B 1A 1MN 3323PABCD∵∠APD =∠CPB ∴tanAPD =tanCPB ∴AD PA =CB PB∴PB =2PA在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )立体几何中的轨迹问题(教师版)1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为(D ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分 简析本题主要考查点到直线距离的概念,线面垂直及抛物线的定义.因为B 1C 1面AB 1,所以PB 1就是P 到直线B 1C 1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D .2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为(B ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分3.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为1:2,则动点P所在曲线的形状为(C).A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分4.在正方体ABCD-A1B1C1D1中,E为AA1的中点,点P在其对角面BB1D1D内运动,若EP总与直线AC成等角,则点P的轨迹有可能是(A).A.圆或圆的一部分B.抛物线或其一部分C.双曲线或其一部分D.椭圆或其一部分简析由条件易知:AC是平面BB1D1D的法向量,所以EP与直线AC成等角,得到EP与平面BB1D1D 所成的角都相等,故点P的轨迹有可能是圆或圆的一部分.5.已知正方体的棱长为a,定点M在棱AB上(但不在端点A,B上),点P是平面ABCD 内的动点,且点P到直线的距离与点P到点M的距离的平方差为a2,则点P的轨迹所在曲线为(A).A.抛物线B.双曲线C.直线D.圆简析在正方体中,过P作PF AD,过F作FE A1D1,垂足分别为F、E,连结PE.则PE2=a2+PF2,又PE2-PM2=a2,所以PM2=PF2,从而PM=PF,故点P到直线AD与到点M的距离相等,故点P的轨迹是以M为焦点,AD为准线的抛物线.6.在正方体中,点P在侧面BCC1B1及其边界上运动,总有AP BD1,则动点P的轨迹为__________.简析在解题中,我们要找到运动变化中的不变因素,通常将动点聚焦到某一个平面.易证BD1面ACB1,所以满足BD1AP的所有点P都在一个平面ACB1上.而已知条件中的点P是在侧面BCC1B1及其边界上运动,因此,符合条件的点P在平面ACB1与平面BCC1B1交线上,故所求的轨迹为线段B1C.本题的解题基本思路是:利用升维,化“动”为“静”,即先找出所有点的轨迹,然后缩小到符合条件的点的轨迹.7.在正四棱锥S-ABCD中,E是BC的中点,点P在侧面SCD内及其边界上运动,总有PE AC,则动点P 的轨迹为_______________.答案线段MN(M、N分别为SC、CD的中点)8.若A、B为平面的两个定点,点P在外,PB,动点C(不同于A、B)在内,且PC AC,则动点C在平面内的轨迹是________.(除去两点的圆)9.若三棱锥A—BCD的侧面ABC内一动点P到底面BCD的距离与到棱AB的距离相等,则动点P的轨迹与ABC组成的图形可能是:(D)A A AB C B C B C B CA B C D简析动点P在侧面ABC内,若点P到AB的距离等于到棱BC的距离,则点P在的内角平分线上.现在P到平面BCD的距离等于到棱AB的距离,而P到棱BC的距离大于P到底面BCD的距离,于是,P到棱AB的距离小于P到棱BC的距离,故动点P只能在的内角平分线与AB之间的区域内.只能选D.10.已知P是正四面体S-ABC的面SBC上一点,P到面ABC的距离与到点S的距离相等,则动点P的轨迹所在的曲线是(B).A.圆B.椭圆C.双曲线D.抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体的棱长为1,在正方体的侧面上到点A距离为的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.简析以B为圆心,半径为且圆心角为的圆弧,长度为.12.已知长方体中,,在线段BD、上各有一点P、Q,PQ上有一点M,且,则M点轨迹图形的面积是.提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体中,长为2的线段MN的一个端点在上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积. 简析由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的,即.14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) A .一个圆B .两条平行直线C .四个点D .两个点简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠, 可得CPB tan PB CBPA AD APD tan ∠===∠,即得2ADCB PA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=,即|1y |1x 2-=+,化简得0y 2y x 22=+- 故动点P 的轨迹为双曲线,选B .20.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线分析:由于线段AB 是定长线段,而△ABP 的面积为定值,所以动点P 到线段AB 的距离也是定值.由此可知空间点P 在以AB 为轴的圆柱侧面上.又P 在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB 是平面的斜线段),得到的切痕是椭圆.P 的轨迹就是圆柱侧面与平面a 的交线 .21.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )分析:将线段MN 投影到平面ABCD 内,易得y 为x 一次函数.22.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.ABC D MNP A 1B 1C 1D 1 yxOyxOyxOyx O图5简析:如图5,易知线段AB 的中点P 在公垂线段MN 的中垂面α上,直线'a 、'b 为平面α内过MN 的中点O 分别平行于a 、b 的直线,'a 'AA ⊥于'A ,'b 'BB ⊥于'B ,则P 'B 'A AB =⋂,且P 也为'B 'A 的中点.由已知MN=2,AB=4,易知,2AP ,1'AA ==得32'B 'A =.则问题转化为求长等于32的线段'B 'A 的两个端点'A 、'B 分别在'a 、'b 上移动时其中点P 的轨迹.现以'OB 'A ∠的角平分线为x 轴,O 为原点建立如图6所示的平面直角坐标系.图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB与到直线B1C1的距离相等,则动点P所在曲线的形状为()A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分2.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为2:1,则动点P所在曲线的形状为()A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分3.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为1:2,则动点P所在曲线的形状为()A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分4.在正方体ABCD-A1B1C1D1中,E为AA1的中点,点P在其对角面BB1D1D内运动,若EP总与直线AC成等角,则点P的轨迹有可能是()A.圆或圆的一部分B.抛物线或其一部分C.双曲线或其一部分D.椭圆或其一部分5.已知正方体的棱长为a,定点M在棱AB上(但不在端点A,B上),点P是平面ABCD 内的动点,且点P到直线的距离与点P到点M的距离的平方差为a2,则点P的轨迹所在曲线为()A.抛物线B.双曲线C.直线D.圆6.若三棱锥A—BCD的侧面ABC内一动点P到底面BCD的距离与到棱AB的距离相等,则动点P的轨迹与ABC组成的图形可能是()A A AB C B C B C B CA B C DA B C D7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( ) A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体中,点P 在侧面BCC 1B 1及其边界上运动,总有APBD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面SCD 内及其边界上运动,总有PE AC ,则动点P 的轨迹为_______________. 16.若A 、B 为平面的两个定点,点P 在外,PB,动点C (不同于A 、B )在内,且PC AC ,则动点C 在平面内的轨迹是________. 17.已知正方体的棱长为1,在正方体的侧面上到点A 距离为的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 18.已知长方体中,,在线段BD 、上各有一点P 、Q ,PQ 上有一点M ,且,则M 点轨迹图形的面积是 .19.已知棱长为3的正方体中,长为2的线段MN 的一个端点在上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段ABABC D MNP A 1B 1C 1D 1 yxOyxOyxOyx O中点的轨迹方程.。
立体几何中的轨迹问
汇报人:XX
• 轨迹问题基本概念与性质 • 平面内轨迹问题探讨 • 空间中轨迹问题探讨 • 立体几何中轨迹应用举例 • 求解立体几何中轨迹问题的方法与
技巧 • 总结与展望
01
轨迹问题基本概念与性质
轨迹定义及分类
轨迹定义
在平面或空间中,一个点按照某 种规律运动所形成的图形或路径 。
解方程或不等式,得到动点的 轨迹方程或轨迹范围。
综合法
结合观察法和解析法的优点,先 通过观察判断轨迹的大致形状或轨迹范围。
最后根据题目要求,对轨迹方程 或轨迹范围进行化简、变形等处
理。
06
总结与展望
立体几何中轨迹问题重要性
揭示空间形态的本质
轨迹问题作为立体几何的重要组成部分,有助于深入揭示空间形态 的本质和内在规律。
轨迹分类
根据点的运动规律和所形成的图 形,轨迹可分为直线、圆、椭圆 、双曲线、抛物线等。
轨迹方程求解方法
直接法
定义法
根据已知条件,直接列出动点的坐标所满 足的方程。
利用平面几何或立体几何中的定义,如两 点间距离公式、点到直线距离公式等,求 出轨迹方程。
相关点法
参数法
若动点$P$的运动规律与已知点$P_1$相关 ,则可通过找出$PP_1$之间的关系,进而 求出动点的轨迹方程。
拓展应用领域
随着科技的进步和社会的发展,轨迹问题的应用领域也将 不断拓展,如虚拟现实、增强现实等新兴技术领域,为轨 迹问题的研究提供新的思路和方法。
跨学科交叉研究
立体几何中的轨迹问题与物理学、化学、生物学等其他学 科有着密切的联系,未来可能会出现更多跨学科交叉研究 的成果,推动相关领域的共同发展。
THANK YOU
立体几何中地轨迹问题
例析空间中点的轨迹问题的转化求空间图形中点的轨迹既是中学数学学习中的一个难点,又是近几年高考的一个热点,这是一类立体几何与解析几何的交汇题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面的轨迹问题来处理的基本思想。
一.轨迹为点例1已知平面βα||,直线α⊂l ,点P l ∈,平面βα,之间的距离为8,则在β内到P 点的距离为10且到直线l 的距离为9的点的轨迹是 ( )A .一个圆 B.两条直线 C.两个点 D.四个点解析:设Q 为β内一动点,点P 在β内射影为O ,过O, l 的平面与β的交线为l ', PQ=10,∴OQ==-228106点Q 在以O 为圆心6为半径圆上,过Q 作QM l '⊥于M ,又 点Q 到直线l 的距离为9∴QM=178922=-则点Q 在以l '平行距离为17的两条平行线上 两条平行线与圆有四个交点∴这样的点Q 有四个,故答案选D 。
点评:本题以空间图形为背景,把立体几何问题转化到平面上,再用平面几何知识解决,要熟记一些平面几何点的轨迹。
二. 轨迹为线段例2. 如图,正方体1111ABCD A BC D -中,点P 在侧面11BCC B及其边界上运动,并且总保持1AP BD ⊥,则动点P 的轨迹是( )。
βαlMOQPA. 线段1B CB.线段1BCC. 1BB 中点与1CC 中点连成的线段D. BC 中点与11B C 中点连成的线段解:连结11,,AB AC B C ,易知111BD A AB ⊥所以11111,,AB BD AC BD B C BD ⊥⊥⊥,所以1BD ⊥面1ABC ,若P ∈1B C ,则AP ⊂平面1ABC ,于是1BD AP ⊥,因此动点P 的轨迹是线段1B C 。
评注:本题是由线面垂直的性质从而求出点P 的轨迹。
例3 已知圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周),若MP AM ⊥,则点P 的轨迹是________。
专题22立体几何中的轨迹问题-1
专题22 立体几何中的轨迹问题【题型归纳目录】题型一:由动点保持平行求轨迹题型二:由动点保持垂直求轨迹题型三:由动点保持等距(或定长)求轨迹题型四:由动点保持等角(或定角)求轨迹题型五:投影求轨迹题型六:翻折与动点求轨迹【典例例题】题型一:由动点保持平行求轨迹例1.(多选题)(2022·广东梅州·高一期末)1.如图,已知正方体1111ABCD A B C D -的棱长为2,点M 为1CC 的中点,点P 为正方形1111D C B A 上的动点,则( )A .满足MP //平面1BDA 的点PB .满足MP AM ^的点PC .存在点P ,使得平面AMP 经过点BD .存在点P 满足5PA PM +=例2.(多选题)(2022·重庆南开中学模拟预测)2.已知正四棱锥P ABCD -的侧面是边长为6的正三角形,点M 在棱PD 上,且2PM MD =,点Q 在底面ABCD 及其边界上运动,且//MQ 面PAB ,则下列说法正确的是( )A .点Q 的轨迹为线段B .MQ 与CD 所成角的范围为,32ππ⎡⎤⎢⎣⎦C .MQD .二面角M AB Q --例3.(多选题)(2022·全国·高一单元测试)3.已知正方体1111ABCD A B C D -的边长为2,M 为1CC 的中点,P 为侧面11BCC B 上的动点,且满足//AM 平面1A BP ,则下列结论正确的是( )A .1AM B M^B .1//CD 平面1A BPC .AM 与11A B 所成角的余弦值为23D .动点P 例4.(多选题)(2022·江苏扬州·高一期末)4.如图,正方体1111ABCD A B C D -的棱长为2,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且满足1//B F 平面1A BE ,则下列结论中正确的是( )A .平面1A BE 截正方体1111ABCD ABCD -所得截面面积为92B .点F 的轨迹长度为4πC .存在点F ,使得11B F CD ^D .平面1A BE 与平面11CDDC 所成二面角的正弦值为13例5.(2022·湖南师大附中三模)5.已知棱长为3的正四面体ABCD ,E 为AD 的中点,动点P 满足2PA PD =,平面a 经过点D ,且平面//a 平面BCE ,则平面a 截点P 的轨迹所形成的图形的周长为 .例6.(2022·山西·太原五中高一阶段练习)6.如图,在正四棱锥S ABCD -中,E 是BC 的中点,P 点在侧面SCD V 内及其边界上运动,并且总是保持PE ∥平面SBD .则动点P 的轨迹与SCD V 组成的相关图形最有可能是图中的( )A .B .C .D .例7.(2022·安徽省宣城中学高二期末)7.已知正方体1111ABCD A B C D -的棱长为2,E F 、分别是棱1AA 、11A D 的中点,点P 为底面四边形ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A .2BCD .例8.(2022·河南安阳·高二期末(理))8.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1//A F 平面1AD E ,下面说法中正确的是 (将所有正确的序号都填上)①存在一点F ,使得11//A F D E ;②存在一点F ,使得1A F BE ^;③点F 的轨迹是一条直线;④三棱锥1F AD E -的体积是定值.【方法技巧与总结】(1)线面平行转化为面面平行得轨迹(2)平行时可利用法向量垂直关系求轨迹题型二:由动点保持垂直求轨迹例9.(2022·湖北·高一期末)9.直四棱柱1111ABCD A B C D -的底面是边长为13AA =,点M 为1CC 的中点,点O 为1A M 的中点,则点O 到底面ABCD 的距离为 ;若P 为底面ABCD 内的动点,且1A P PM ^,则动点P 的轨迹长度为 .例10.(2022·湖南·雅礼中学二模)10.已知菱形ABCD 的各边长为2,60D Ð=o .如图所示,将ACB △沿AC 折起,使得点D 到达点S 的位置,连接SB ,得到三棱锥S ABC -,此时3SB =.则三棱锥S ABC -的体积为,E 是线段SA 的中点,点F 在三棱锥S ABC -的外接球上运动,且始终保持EF AC ^,则点F 的轨迹的周长为.例11.(2022·四川雅安·高一期末)11.点M 是棱长为2的正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为BC 边上中点,若1AM B N ^,则动点M 的轨迹的长度为 .例12.(多选题)(2022·湖北孝感·高二期末)12.如图,已知正方体ABCD —1111D C B A 的棱长为1,P 为正方形底面ABCD 内一动点,则下列结论正确的有( )A .三棱锥1B -11A D P 的体积为定值B .存在点P ,使得11D P AD ^C .若11D P B D ^,则P 点在正方形底面ABCD 内的运动轨迹是线段ACD .若点P 是AD 的中点,点Q 是1BB 的中点,过P ,Q 作平面α垂直于平面11ACC A ,则平面α截正方体111ABCD A B C D -的截面周长为例13.(多选题)(2022·全国·高二专题练习)13.已知棱长为4的正方体1111ABCD A B C D -中,14AM AB =uuuu r uuu r ,点P 在正方体的表面上运动,且总满足0MP MC ⋅=uuu r uuu u r,则下列结论正确的是( )A .点P 的轨迹所围成图形的面积为5B .点P 的轨迹过棱11A D 上靠近1A 的四等分点C .点P 的轨迹上有且仅有两个点到点C 的距离为6D .直线11B C 与直线MP 所成角的余弦值的最大值为35例14.(2022·全国·高一专题练习)14.在正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,并且总保持1AP BD ^,则动点P 的轨迹是 ( )A .线段1BC B .线段1BC C .1BB 中点与1CC 中点连成的线段D .CB 中点与11B C 中点连成的线段例15.(2022·河南许昌·三模(文))15.如图,在体积为3的三棱锥P-ABC 中,PA ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ^,则点M 的轨迹长度的最大值为( )A .3B .6C .D .例16.(2022·浙江·杭州市富阳区场口中学高二期末)16.如图,在直三棱柱111ABC A B C -中,ABC V 是边长为2的正三角形,13AA =,N 为棱11A B 上的中点,M 为棱1CC 上的动点,过N 作平面ABM 的垂线段,垂足为点O ,当点M 从点C 运动到点1C 时,点O 的轨迹长度为( )A .π2B .πC .3π2D 例17.(2022·浙江·高二阶段练习)17.已知正四棱锥S ABCD -AC ,DB 交于点O ,SO ^平面ABCD ,1SO =,E 为BC 的中点,动点P 在该棱锥的侧面上运动,并且PE AC ^,则点P 轨迹长度为( )A .1B C D .2例18.(2022·云南·昆明一中高三阶段练习(理))18.已知四面体ABCD ,2AB BC CD DA BD =====,二面角A BD C --为60°,E 为棱AD 中点,F 为四面体ABCD 表面上一动点,且总满足BD EF ^,则点F 轨迹的长度为.【方法技巧与总结】(1)可利用线线线面垂直,转化为面面垂直,得交线求轨迹(2)利用空间坐标运算求轨迹(3)利用垂直关系转化为平行关系求轨迹题型三:由动点保持等距(或定长)求轨迹例19.(2022·四川成都·高二期中(理))19.如图,已知棱长为2的正方体A ′B ′C ′D ′-ABCD ,M 是正方形BB ′C ′C 的中心,P 是△A ′C ′D 内(包括边界)的动点,满足PM =PD ,则点P 的轨迹长度为 .例20.(多选题)(2022·山东·模拟预测)20.如图,正方体1111ABCD A B C D -的棱长为2,点M 是其侧面11ADD A 上的一个动点(含边界),点P 是线段1CC 上的动点,则下列结论正确的是( )A .存在点P ,M ,使得平面11B D M 与平面PBD 平行B .存在点P ,M ,使得二面角--M DC P 大小为23πC .当P 为棱1CC 的中点且PM =时,则点M 的轨迹长度为23πD .当M 为1A D 中点时,四棱锥M ABCD -例21.(多选题)(2022·福建·莆田二中模拟预测)21.在棱长为1的正方体1111ABCD A B C D -中,点M 是11A D 的中点,点P ,Q ,R 在底面四边形ABCD 内(包括边界),1PB ∥平面1MC D R 到平面11ABB A 的距离等于它到点D 的距离,则( )A .点PB .点QC .PQ 12-D .PR 例22.(2022·江西·模拟预测(理))22.已知正方体1111ABCD A B C D -的棱长为3,点P 在11A C B △的内部及其边界上运动,且DP P 的轨迹长度为( )AB .2πC .D .3π例23.(多选题)(2022·辽宁·高一期末)23.如图,正方体1111ABCD A B C D -棱长为2,点M 是其侧面11ADD A 上的动点(含边界),点P 是线段1CC 上的动点,下列结论正确的是( )A .存在点P ,M ,使得平面11B D M 与平面PBD 平行B .当点P 为1CC 中点时,过1A PD ,,点的平面截该正方体所得的截面是梯形C .过点A ,P ,M 的平面截该正方体所得的截面图形不可能为五边形D .当P 为棱1CC 的中点且PM =时,则点M 的轨迹长度为2π3例24.(2022·河南安阳·模拟预测(文))24.在四边形ABCD 中,//BC AD ,12AB BC CD AD ===,P 为空间中的动点,2PA PB AB ===,E 为PD 的中点,则动点E 的轨迹长度为( )A B C D 例25.(2022·四川达州·高二期末(理))25.正方体1111ABCD A B C D -的棱长为1,点P 在正方体内部及表面上运动,下列结论错误的是( )A .若点P 在线段1D C 上运动,则AP 与1AB 所成角的范围为ππ,32⎡⎤⎢⎥⎣⎦B .若点P 在矩形11BDD B 内部及边界上运动,则AP 与平面11BDD B 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦C .若点P 在11D B C △内部及边界上运动,则AP D .若点P 满足1AP =,则点P 轨迹的面积为π2例26.(2022·江西省乐平中学高一期末)26.已知正方体1111ABCD A B C D -1,,B D C 的平面为a ,点P 是平面a内的动点,1A P =P 的轨迹长度等于( )A .πB C D .2π【方法技巧与总结】(1)距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹(2)利用空间坐标计算求轨迹参考答案:1.AD【分析】利用线面平行的判定定理可以证得点P 的轨迹,进而判断A ;建立空间直角坐标系,得到(2,0,0)A ,(0,2,1)M ,P 为正方形1111D C B A 上的点,可设(,,2)P x y ,且02x ££,02y ££,进而对BCD 各个选项进行计算验证即可判断并得到答案.【详解】对于A ,取11B C 的中点Q ,11D C 的中点N ,又点M 为1CC 的中点,由正方体的性质知1//MQ A D ,//NQ BD ,MQ NQ Q =I ,1A D BD D Ç=,所以平面//MQN 平面1BDA ,又MP Ì平面MQN ,MP \∥平面1BDA ,故点P 的轨迹为线段NQ ==A 正确;对B ,方法一:在平面11BCC B 中过M 作ME AM ^,交11B C 于E ,设1C E x =,则3AM =,ME =,AE ==由222AM ME AE +=,可解得12x =,同理,在平面11DCC D 中过M 作MF AM ^,交11D C 于F ,可得112C F =,因为ME MF M =I ,所以AM ^平面MEF ,因为MP AM ^,所以MP Ì平面MEF ,所以点P 的轨迹为线段EF ,故B 不正确;方法二:以D 为原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,则(2,0,0)A ,(0,2,1)M ,设(,,2)P x y ,且02x ££,02y ££,(2,,2)AP x y =-uuu r ,(,2,1)MP x y =-uuu r ,(2,2,1)AM =-uuuu r ()22212230AM MP x y x y ⋅=-+-+=-+-=uuuu r uuu r ,即32y x =+,又02x ££,02y ££,则点P 的轨迹为线段EF ,30,,22E æöç÷èø,1,2,22F æöç÷èø且EF ==B 错误;对于C ,方法一:取1DD 中点G ,连接,AG MG ,正方体中,易得//AB MG ,所以平面ABM 截正方体的截面为平面ABMG ,显然P Ï平面ABMG ,故不存在点P ,使得平面AMP 经过点B ,故C 错误;方法二:设(,,2)P x y ,且02x ££,02y ££,若平面AMP 经过点B ,则DP aDA bDB cDM =++uuu r uuu r uuu r uuuu r ,且1a b c ++=,又(,,2),(2,0,0),(2,2,0),(0,2,1)DP x y DA DB DM ====uuu r uuu r uuu r uuuu r ,所以()()()(),,22,0,02,2,00,2,1x y a b c =++,即()(),,222,22,x y a b b c c =++,因此222221x a b y b c c a b c =+ìï=+ïí=ïï++=î,从而2x =-,不合题意,所以不存在点P ,使得平面AMP 经过点B ,故C 错误;对于D ,方法一:延长1CC 至M ¢,令11C M C M ¢=,则MP M P ¢=,所以PA PM PA PM AM ¢¢+=+³,因为4AM ¢==>,所以存在点P 满足5PA PM +=,故D 正确.方法二:点M 关于平面1111D C B A 的对称点的为(0,2,3)M ¢,三点共线时线段和最短,故4PA PM AM ==¢³>+,故存在点P 满足5PA PM +=,故D 正确.故选:AD.2.ACD【分析】作出与面PAB 平行且过MQ 的平面,即可得出点Q 的轨迹判断A ,当点Q 在E 处时,异面直线所成角小于3π可判断B ,当MQ NE ^时求出MQ 可判断C ,作出二面角的平面角求正切值判断D 即可.【详解】对于A ,取点N ,E ,使得2AN ND =,2BE EC =,连接,ME NE ,MN ,如图,由线段成比例可得//,//MN PA NE AB ,PA Ì平面PAB ,MN Ë平面PAB ,所以//MN 平面PAB ,同理可得//NE 平面PAB ,又,NE MN Ì平面MNE ,MN NE N Ç=,所以平面//MNE 平面PAB ,故当点Q ME Î时,总有//MQ 面PAB ,所以点Q 的轨迹为线段,故A 正确;对于B ,由//CD NE 知MQ 与CD 所成角即为MQ 与NE 所成角,在MEN V 中,1π2,6,33MN PA NE AB MNE PAB ====Ð=Ð=,由余弦定理可得ME =1cos 2MEN Ð==>,可知π3MEN Ð<,即Q 运动到E 点时,异面直线所成的角小于π3,故B 错误;对于C ,当MQ NE ^时,MQ 最小,此时πsin 23MQ MN =⋅==C 正确;对于D ,二面角M AB Q --即平面MAB 与底面ABCD 所成的锐角,连接,AC BD 相交于O ,连接PO ,取点H ,使得2OH HD =,连接MH ,过H 作HG AB ^于G ,连接MG ,如图,由正四棱锥可知,^PO 面ABCD ,由2OH HD =,2PM MD =知//MH PO,1133MH PO \==´HG AB ^可得//HG AD ,556GH AD \==,MH ^Q 面ABCD ,AB MH \^,又HG AB ^,HG MH H =I ,AB \^平面MHG ,AB MG \^,MGH \Ð即为二面角的平面角,tan MH MGH GH \Ð==故D 正确.故选:ACD3.BCD 【分析】建立空间直角坐标系,利用空间夹角公式、空间向量数量积的运算性质逐一判断即可.【详解】如图建立空间直角坐标系,设正方体棱长为2,则1(0,0,2),(0,2,2),(0,0,0),(2,1,0),(,,0)A A B M P x y ,所以1(0,2,2),(,,0),(2,1,2)A B BP x y AM =--==-uuur uuu r uuuu r ,由//AM 平面1A BP ,得1AM a A B bBP =+uuuu r uuur uuu r ,即022122bx a by a +=ìï-+=íï-=-î,化简可得:320x y -=,所以动点P 在直线320x y -=上,对于选项A :11(2,1,2),(2,1,0),221(1)(2)030AM B M AM B M =-=-⋅=´+´-+-´=¹uuuu r uuuu r uuuu r uuuu r ,所以AM uuuu r 与1B M uuuur 不垂直,所以A 选项错误;对于选项B :111//,CD A B A B Ì平面11,A BP CD Ë平面1A BP ,所以1//CD 平面1A BP ,B 选项正确;对于选项C:11112(0,0,2),cos ,3A B AM A B >=-<==uuuu r uuuu r uuuu r ,C 选项正确;对于选项D :动点P 在直线320x y -=上,且P 为侧面11BCC B 上的动点,则P 在线段1PB 上,14,2,03P æöç÷èø,所以1PB ==D 选项正确;故选:BCD.4.AC【分析】取CD 中点G ,连接BG 、EG ,计算截面1A EGB 的面积后判断A 的正误,取11C D 中点M ,1CC 中点N ,则点F 的运动轨迹为线段MN ,故可判断B 的正误,取MN 的中点F ,则可判断11B F CD ^,故可判断C 的正误,而11B FC Ð即为平面1B MN 与平面1,CDD C 所成二面角,计算其正弦值后可判断D 的正误.【详解】取CD 中点G ,连接BG 、EG ,则等腰梯形1A EGB 为截面,而1A E GB ==,1A B EG ==故梯形1A EGB92=,A 正确;取11C D 中点M ,1CC 中点N ,连接11,,,,B M B N MN NE MG ,则1111//,=NE A B NE A B ,故四边形11A B NE 为平行四边形,则得11//B N A E ,而1B N Ë平面1A BE ,1A E Ì平面1A BE ,故1B N //平面1A BE ,同理1//B M 平面1A BE ,而111=B N B M B I ,11,B N B M Ì平面1B MN ,故平面1//B MN 平面1A BE ,∴点F 的运动轨迹为线段MNB 错误;取MN 的中点F,则11B N B M ==,∴1B F MN ^,∵1//MN CD ,∴11B F CD ^,C 正确;因为平面1//B MN 平面1A BE 且1MN C F ^,1MN B F ^,∴11B FC Ð即为平面1B MN 与平面1CDDC所成二面角,11111sin B C B FC B F Ð===,D 错误.故选:AC.5.【分析】设BCD △的外心为O ,以O 为坐标原点可建立空间直角坐标系,设(),,P x y z ,根据2PA PD =可求得P点轨迹是以G æççè为球心,2为半径的球;延长,,AB AF AC 到点,,M Q N ,使得AB BM =,AF FQ =,AC CN =,由面面平行的判定可证得平面//BCE 平面MND ,则平面MND 为平面a ,可知点G 到平面DMN 的距离d 即为点G 到直线DQ 的距离,由向量坐标运算可知DG DQ ^,得到1d =,由此可求得截面圆半径,利用圆周长的求法可求得结果.【详解】设BCD △的外心为O ,BC 的中点为F ,过O 作BC 的平行线,则以O 为坐标原点,可建立如图所示空间直角坐标系,BCD QV 为等边三角形,3BC =,23OD DF \==OA \=,(A \,()D,0,F æöç÷ç÷èø,设(),,P x y z ,由2PA PD =得:((2222224x y z x y z ⎡⎤++=++⎢⎥⎣⎦,整理可得:2224x y z ææ++=ççççèè,\动点P的轨迹是以G æççè为球心,2为半径的球;延长,,AB AF AC 到点,,M Q N ,使得AB BM =,AF FQ =,AC CN =,则//CE DN ,//BE MD ,又,DN MD Ì平面MND ,,CE BE Ë平面MND ,//CE \平面MND ,//BE 平面MND ,由CE BE E =∩,,CE BE Ì平面BCE ,\平面//BCE 平面MND ,即平面MND 为平面a ,则点G 到平面DMN 的距离d 即为点G 到直线DQ的距离,DG æ=ççèuuur Q,(0,DQ =-uuur ,220DG DQ \⋅=-+=uuur uuur ,即DG DQ ^,\点G 到直线DQ 的距离1d DG ==uuur ,\截面圆的半径r ==\球被平面a截得的截面圆周长为2r π=,即平面a 截点P的轨迹所形成的图形的周长为.故答案为:.【点睛】关键点点睛:本题考查立体几何中的动点轨迹相关问题的求解,解题关键是能够利用空间向量法求得动点所满足的轨迹方程,从而确定动点轨迹为球,利用平面截球所得截面圆周长的求法可求得结果.6.A【分析】先分别取CD 、S C 的中点M 、N ,再证明面EMN ∥面SBD ,可知当P 在MN 上移动时,PE Ì面EMN ,能够保持PE ∥平面SBD ,进而得到选项A 符合题意.【详解】分别取CD 、S C 的中点M 、N ,连接MN ,ME ,NE ,又∵E 是BC 的中点,∴EM BD ∥,EN SB ∥,又∵,EM EN Ë面SBD ,,BD SB Ì面SBD , ∴EM ∥面SBD ,EN ∥面SBD ,又∵EM EN E =I , ,EM EN Ì平面EMN ,∴面EMN ∥面SBD ,∴当P 在MN 上移动时,PE Ì面EMN ,此时能够保持PE ∥平面SBD ,则动点P 的轨迹与SCD V 组成的相关图形是选项A故选:A .7.B【分析】取BC 的中点G ,连接11,,G D G AD A ,易证1//AD 平面BEF ,1//GD 平面BEF ,从而得到平面1//AD G 平面BEF ,即可得到P 的轨迹为线段AG ,再求其长度即可.【详解】取BC 的中点G ,连接11,,G D G AD A ,如图所示:E F 、分别是棱1AA 、11A D 的中点,所以1//EF AD ,又因为EF Ì平面BEF ,1AD Ë平面BEF ,所以1//AD 平面BEF .因为1//FD BG ,1=FD BG ,所以四边形1FBGD 为平行四边形,所以1//FB GD .又因为FB Ì平面BEF ,1GD Ë平面BEF ,所以1//GD 平面BEF .因为111GD AD D =I ,所以平面1//AD G 平面BEF .因为点P 为底面四边形ABCD 内(包括边界)的一动点,直线1D P 与平面BEF 无公共点,所以P 的轨迹为线段AG =故选:B8.①②④【分析】取11B C 的中点G ,1BB 的中点H ,连接1A G ,1A H ,GH ,由面面平行的性质可判断①③④,由线面垂直的性质可判断②,【详解】如图,取11B C 的中点G ,1BB 的中点H ,连接1A G ,1A H ,GH ,则平面1//AGH 平面1AD E ,所以点F 在线段GH 上运动,即点F 的轨迹是线段GH ,故③错误.当点F 位于点H 时,11//A F D E ,故①正确.取AD 的中点N ,BC 的中点M ,连接1A N ,MN ,1B M ,则BE ^平面11A B MN ,设11GH B M F Ç=,则11A F BE ^,所以存在一点F 使得1A F BE ^,故②正确.平面1//AGH 平面1AD E ,所以点F 到平面1AD E 的距离是定值,所以三棱锥1F AD E -的体积是定值,故④正确.故答案为:①②④9.942π【分析】结合图像,根据正方形的性质即可求出点到平面的距离,再利用直径所对圆周角为直角的性质,将其迁移到空间中,得到P 点轨迹,即为以OP 的长为半径的球与平面ABCD 相交所截得的圆,再根据勾股定理,即可求解.【详解】解:由点O 为1A M 的中点可得,点O 到平面1111D C B A 的距离是点M 到平面1111D C B A 距离的一半,则点O 到平面1111D C B A 的距离为34,故点O 到平面ABCD 的距离为39344-=;1A P PM ^Q ,点O 为1A M 的中点,111524OP A M \===,设以O 为球心,OP 的长为半径的球与平面ABCD 所截得的圆的半径为r ,则3r ==,则动点P 的轨迹即为以正方形ABCD 的中心为圆心,3ABCD 内的圆弧,如图,R 为QP 中点,所以HR QP ^,所以cos RH QHR QH Ð===,所以23QHP QHR πÐ=Ð=,P 点轨迹所形成的圆弧长为32423πππæö´-´=ç÷èø.故答案为:94;2π.10.【分析】取AC 中点M ,由题可得AC ^平面SMB ,进而可得三棱锥S ABC -的高3sin 2h SBM SB Ð=⋅=,利用锥体体积公式可得三棱锥的体积,设点F 轨迹所在平面为a ,则F 轨迹为平面a 截三棱锥的外接球的截面圆,利用球的截面性质求截面圆半径即得.【详解】取AC 中点M ,则,,AC BM AC SM BM SM M ^^=I ,∴AC ^平面SMB ,SM MB ==,又3SB =,∴30SBM MSB ÐÐ==o ,则三棱锥S ABC -的高3sin 2h SBM SB Ð=⋅=,三棱锥S ABC -体积为213232V =´=作EH AC H ^于,设点F 轨迹所在平面为a ,则平面a 经过点H 且AC a ^,设三棱锥S ABC -外接球的球心为,,O SAC BAC V V 的中心分别为12,O O ,易知1OO ^平面2,SAC OO ^平面BAC ,且12,,,O O O M 四点共面,由题可得1121602OMO O MO ÐÐ==o,113O M SM =解Rt 1OO M △,得11OO M =,则三棱锥S ABC -外接球半径r =,易知O 到平面a 的距离12d MH ==,故平面a 截外接球所得截面圆的半径为1r ==∴截面圆的周长为12l r π=,即点F ..11【分析】分别取1DD 、1CC 的中点G 、H ,连接BH 、AG 、GH ,证明A 、B 、G 、H 四点共面,并计算出球心到平面ABGH 的距离,可计算得出截面圆的半径,利用圆的周长公式可求得结果.【详解】如图,正方体1111ABCD A B C D -的内切球O 的半径1R =,由题意,分别取1DD 、1CC 的中点G 、H ,连接BH 、AG 、GH ,在正方体1111ABCD A B C D -中,四边形ABHG 为平行四边形,所以A 、B 、G 、H 四点共面,则CH BN =,1BC BB =,1190C CB B BN Ð=Ð=o,所以,1BCH B BN @△△,所以,1BNB BHC Ð=Ð,1B N BH \^,AB ^Q 平面11BB C C ,1B N Ì平面11BB C C ,1AB B N \^,AB BH B =Q I ,1B N \^平面BAGH ,所以,动点M 的轨迹就是平面BAGH 截内切球O 的交线, 取1BB 的中点E ,连接,EG BD ,则四边形BEGD 为平行四边形,易知点O 为EG 的中点,过点E 在平面11BB C C 内作EF BH ^,AB ^Q 平面11BB C C ,EF Ì平面11BB C C ,则EF AB ^,AB BH B =Q I ,EF \^平面BAGH ,sin sin EBF BHC Ð=Ð=,所以,sin EF BE EBF =Ð=因为点O 为EG 的中点,则O 到平面BAGH 的距离为d =,截面圆的半径r ==所以动点M 的轨迹的长度为截面圆的周长2r π=【点睛】关键点点睛:本题解题关键是确定出M 的轨迹是平面BAGH 截内切球O 的交线,在利用球中的勾股定理即可解决.12.ACD【分析】结合选项逐个求解,体积问题利用锥体体积公式可得,垂直问题利用向量求解,截面周长根据截面形状可求.【详解】对于A ,P 为正方形底面ABCD 时,三棱锥111P A B D -的高不变,底面积也不变,所以体积为定值,所以A 正确;对于B ,以D 为坐标原点,建立如图所示的空间直角坐标系,设(),,0P x y ,则()()10,0,1,1,0,0D A ,()1,,1D P x y =-uuuu r ,()11,0,1AD =-uuuu r;若11D P AD ^,则110D P AD ⋅=uuuu r uuuu r,即1x =-,与题意矛盾,所以B 不正确;对于C ,()11,1,1DB =uuuu r,由11D P B D ^得1x y +=,所以P 的轨迹就是线段AC ,所以C 正确;对于D ,因为1,BD AC BD AA ^^,所以BD ^平面11ACC A ;因为平面a ^平面11ACC A ,所以//BD 平面a ;以BD 为参照线作出平面a 与正方体各个侧面的交线,如图,易知每个侧面的交线均相等,,所以截面周长为D 正确.故选:ACD.【点睛】正方体中的动点问题,可以借助空间向量来处理,把位置关系,角度关系转化为向量运算.13.ACD【分析】首先根据动点P 满足的条件及正方体的结构特征得到动点P 的轨迹,然后利用轨迹的特征判断选项A ,B ,C ,对于选项D ,将线线角转化为线面角,运用线面角的定义找出线面角进行求解.【详解】如图,过点M 作1//MF AA ,在AD 上取一点N ,使MN MC ^,连接,NC EC FC ,,过点N 作1//NE AA ,连接EF ,易知//MF NE ,\ ,,,E F M N 四点共面;又MF MC ^Q ,MN MF M =I ,MC \^面MNEF ,即点P 的轨迹为矩形MNEF (不含点M ),设AN x =,则MN =又5MC ==QNC ==222MN MC NC \+= 解得 34x =,即34AN =54MN \=, NC =对于A ,矩形MNEF 的面积为:5454S MN MF =⋅=´=,A 正确;对于B ,134A E AN ==,B 错误;对于C ,CF ==在Rt CMN V 中,C 到MN 的距离范围是:5æççèMN \上存在一点到点C 的距离为6;在Rt CMF V 中,C 到MF 的距离范围是:(MF \上存在一点到点C 的距离为6;但在Rt CNE V 、Rt CEF V 中不存在到点C 的距离为6的点,C 正确;对于D ,直线11B C 与直线MP 所成的最小角就是直线11B C 与平面MNEF 所成的角,11//B C BC Q \直线11B C 与平面MNEF 所成的即是直线BC 与平面MNEF 所成的角,延长,NM CB 交于点G ,则MGB Ð即是直线BC 与平面MNEF 所成的角,//AN GB Q AN AMGB MB \= 94GB \= 在Rt MGC V 中,4sin 5MC MGC GC Ð== 3cos 5MGC \Ð=,D 正确;故选:ACD.【点睛】本题考查动点轨迹,点、线、面位置关系,线线角、线面角以及几何体中一些线段的最值,考查了空间想象能力、逻辑思维能力、运算求解能力,属于难题.14.A【分析】1BD ^平面1ACB ,又点P 在侧面11BCC B 及其边界上运动,故点P 的轨迹为面1ACB 与面11BCC B 的交线1CB .【详解】连接111,,,,AC BD B C BA AB ,因为1,^^DD AC AC BD ,且1DD BD D =I ,所以AC ^平面1BDD ,1BD Ì平面1BDD ,所以1AC BD ^,因为11111,A D AB A B B A ^^,且1111A D A B A =I ,所以1AB ^平面11BA D ,1BD Ì平面11BA D ,所以11^AB BD ,且1AB AC A =I ,所以1BD ^平面1ACB ,AP Ì平面1ACB ,所以1BD AP ^,点P 的轨迹为面1ACB 与面11BCC B 的交线1CB ,故选:A.15.A【分析】根据题意可知,点M 的轨迹为Rt ABC △斜边上的高线,即可根据等面积法以及基本不等式求出点M 的轨迹长度的最大值.【详解】如图所示: ,因为PA ,PB ,PC 两两垂直,所以AP ^平面PCB ,即有^AP BC ,而AM BC ^,所以^BC 平面APM ,即BC PM ^,故点M 的轨迹为Rt ABC △斜边上的高线PD .因为三棱锥P-ABC 的体积为3,所以111332PB PC ´´´´=,即18PB PC ´=,由等积法可得,3PD ==£=,当且仅当PB PC ==故选:A .16.B【分析】根据条件先判断出点O 的轨迹为圆的一部分,再由弧长公式求解即可.【详解】取AB 中点P ,连接PC ,C 1N ,如图,因为PC ⊥AB ,PN ⊥AB ,且PN ∩PC =P ,所以AB ⊥平面1PCC N ,AB Ì平面ABM ,所以平面ABM ⊥平面1PCC N ,平面ABM ∩平面1PCC N = PM ,过N 作NO ⊥PM ,NO Ì平面1PCC N ,所以NO ⊥平面ABM ,当点M 从点C 运动到点C 1时,O 点是以PN 为直径的圆Q (部分),如图,当M 运动到点1C 时,O 点到最高点,此时11π3,3PC CC CPC ==Ð=,所以π6OPQ Ð=,从而2π3OQP Ð=,所以弧长2π3π32l =⋅=,即点O 的轨迹长度为π.故选: B 17.B【分析】取,,SC CD OC 的中点分别为,,G F H ,利用线面垂直的判定定理可得AC ^平面EFG ,进而可得点P 轨迹为折线,EG GF ,结合条件即得.【详解】取,,SC CD OC 的中点分别为,,G F H ,连接,,,EF EG FG GH ,则GH SO ,EF BD ∥,又SO ^平面ABCD ,BD AC ^,∴GH ^平面ABCD ,EF AC ^,∴GH AC ^,又EF GH H Ç=,∴AC ^平面EFG ,因为动点P 在该棱锥的侧面上运动,并且PE AC ^,故点P 轨迹为折线,EG GF ,由题可知1SO =,1,OB SB SA ===∴EG GF ==,故点P 故选:B.18【分析】取BD 中点O ,易知AOC Ð是二面角A BD C --的平面角,由线面垂直的判定可得BD ^平面AOC ,即有AOC Ð是二面角A BD C --的平面角,取CD ,OD 中点M ,N ,利用线面平行、面面平行的判定有面//AOC 面EMN ,进而有BD ^平面EMN ,即可知F 轨迹.【详解】取BD 中点O ,易得BD AO ^,BD CO ^,AO CO O =I ,所以BD ^平面AOC ,则AOC Ð是二面角A BD C --的平面角,即60AOC Ð=°,又AO CO ==AC =CD ,OD 中点M ,N ,所以//EM AO ,AO Ì面AOC ,EM Ë面AOC ,故//EM 面AOC ,又//MN CO ,同理://MN 面AOC ,而EM MN M Ç=,,EM MN Ì面EMN ,所以面//AOC 面EMN ,则BD ^平面EMN ,因为F 为四面体ABCD 表面上一动点,且总满足BD EF ^,所以点F 轨迹是△EMN19【分析】利用空间直角坐标系可知,平面A ′C ′D 内的P 满足0x y z +-=, PM =PD 的P 满足23x y z ++=,则可得32333x y x z -ì=ïïí+ï=ïî,P 是△A ′C ′D 内(包括边界),则302x ££,点P 的轨迹线段12PP .【详解】如图建立空间直角坐标系,则()()()()0,0,0,2,0,2,0,2,2,1,2,1D A C M ¢¢()()2,0,2,0,2,2DA DC ¢¢==uuur uuuu r设平面DA C ¢¢的法向量(),,n x y z =r则有220220x z y z +=ìí+=î,令1x =,则1,1y z ==-则()1,1,1n r=-设(),,P x y z ,则(),,DP x y z =uuu r∵n DP ^r uuu r,则0x y z +-=又∵PM =PD=整理得:23x y z ++=联立方程230x y z x y z ++=ìí+-=î,则32333x y x z -ì=ïïí+ï=ïî可得023********x x x ìï-íï+ïî,可得302x ££当0x =时,()10,1,1P ,当32x =时,233,0,22P æöç÷èø在空间中,满足PM =PD 的P 为过MD 的中点且与MD 垂直的平面a两个平面的公共部分为直线,即点P 的轨迹为a I 平面A ′C ′D 12PP =.20.ACD【分析】当M 为1AA 中点,P 为1CC 中点时,即可判断A 选项;由二面角--M DC P 的平面角为1ÐMDD 即可判断B 选项;取1DD 中点E ,先求出点M 在侧面11AA D D 内运动轨迹为以E 为圆心半径为2的劣弧,即可判断C 选项;先求出四棱锥M ABCD -外接球的半径,再将外接球的内接正四面体补成正方体即可判断D 选项.【详解】对于A 选项,当M 为1AA 中点,P 为1CC 中点时,易得11//BD B D ,又BD Ì平面PBD ,11B D Ë平面PBD ,则11//B D 平面PBD ,同理可得1//MB 平面PBD ,又1111MB B D B Ç=,则平面11B D M 与平面PBD 平行,故A 正确;对于B 选项,因为CD ^平面11ADD A ,DM Ì平面11ADD A ,则CD DM ^,又1CD DD ^,可知二面角--M DC P 的平面角为1ÐMDD ,显然其范围为0,2π⎡⎤⎢⎥⎣⎦,故B 错误;对于C 选项,取1DD 中点E ,连接,,PE ME PM ,则PE ^平面11,^AA D D PE ME ,则2===ME ,则点M 在侧面11AA D D 内运动轨迹为以E 为圆心半径为2的劣弧,分别交AD 、11A D 于2M 、1M ,则1123Ð=Ð=M ED M ED π,则123Ð=M EM π,劣弧21M M 的长为2233ππ´=.故C 正确;对于D 选项,当M 为1A D 中点时,易知AMD V 为等腰直角三角形,AM DM ^,又AB ^平面11ADD A ,则AB DM ^,又,AB AM Ì平面ABM ,AB AM A =I ,则DM ^平面ABM ,则DM BM ^,又DC BC ^,可知四棱锥M ABCD-外接球的球心即为BD 的中点,所以四棱锥M ABCD -,设四棱锥M ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体的面对角线,故正,正方体的体对角线为外接球的直径,所以223ö⋅=÷÷ø,得2163x =,所以正四面体的表面积为2142x ´⋅=D 正确.故选:ACD.21.BCD【分析】对于A ,取BC 的中点N ,连接AN ,1B N ,根据面面平行的判定可证得平面1//ANB 平面1DMC ,从而得点P 的轨迹为线段AN ,解三角形计算可判断;对于B ,连接DQ ,由勾股定理得12DQ =,从而有点Q 的轨迹是以点D 为圆心,以12为半径的14圆,由圆的周长计算可判断;对于C ,过点D 作'DP AN ^于'P ,交点Q 的轨迹于'Q ,此时''P Q 的长度就是PQ 长度的最小值,由三角形相似计算得'DP ,由此可判断;对于D ,由已知得点R 到直线AB 的距离等于它到点D 的距离,根据抛物线的定义知点R 的轨迹是以点D 为焦点,以AB 为准线的抛物线,以AD 的中点为坐标原点O ,过点O 且垂直于AD 的直线为x 轴建立平面直角坐标系,则抛物线的方程为22x y =,设与直线AN 平行且与抛物线相切的直线l 的方程为:2+0x y n -=, 联立22+02x y n x y -=ìí=î,整理得()2244+2+0y n y n -=,由0D =,解得14n =-,再根据平行线间的距离可求得PR 长度的最小值.【详解】解:对于A ,取BC 的中点N ,连接AN ,1B N ,则1//AN MC ,11//AB DC ,所以//AN平面1DMC ,1//AB 平面1DMC ,又//AN 平面1DMC ,1//AB 平面1DMC ,1AN AB A =I ,所以平面1//ANB 平面1DMC ,又点P 在底面四边形ABCD 内(包括边界),1PB ∥平面1MC D ,所以点P 的轨迹为线段AN ,因为AN ===,所以点PA 不正确;对于B ,连接DQ ,因为Q 在底面ABCD上,1D Q =2==,解得12DQ =,所以点Q 的轨迹是以点D 为圆心,以12为半径的14圆,如下图所示,所以点Q 的轨迹的长度为112424ππ´´´=,故B 正确;对于C ,过点D 作'DP AN ^于'P ,交点Q 的轨迹于'Q ,此时''P Q 的长度就是PQ 长度的最小值,而'',B AP D BAN ADP Ð=ÐÐ=Ð,所以'ABN DP A V :V ,所以'AD DPAN AB='1DP =,解得'DP =,所以''''12P Q DP DQ =-=,所以PQ12,故C 正确;对于D ,因为点R 到平面11ABB A 的距离等于它到点D 的距离,由正方体的特点得点R 到直线AB 的距离等于点R 到平面11ABB A 的距离,所以点R 到直线AB 的距离等于它到点D 的距离,根据抛物线的定义知点R 的轨迹是以点D 为焦点,以AB 为准线的抛物线,以AD 的中点为坐标原点O ,过点O 且垂直于AD 的直线为x 轴建立平面直角坐标系,如下图所示,则102D æöç÷èø,,102A æö-ç÷èø,,()10N ,,直线AB 的方程为12y =-,直线AN 的方程为210x y --=,则抛物线的方程为22x y =,设与直线AN 平行且与抛物线相切的直线l 的方程为:2+0x y n -=,联立22+02x y n x y -=ìí=î,整理得()2244+2+0y n y n -=,()22Δ4+2160n n =-=,解得14n =-,所以直线l 的方程为:1204x y --=,则直线AN 与直线l 的距离为:d ==,所以PR,故D 正确,故选:BCD.。