Biogenesis of MiRNA-195 and its role in biogenesis, the cell cycle, and apoptosis (1)
miRNA对心肌细胞肥大的调控作用及在心肌肥厚发病中的分子生物学作用机制研究进展
山东医药2020年第60卷第24期miRNA对心肌细胞肥大的调控作用及在心肌肥厚发病中的分子生物学作用机制研究进展朱贲贲,白在先,杨鹏杰内蒙古医科大学附属人民医院,呼和浩特010020摘要:心肌肥厚是由多种因素引起的心肌组织超负荷的适应性反应,为了维持心脏稳态及预防病理性心肌肥厚需要严格控制心肌细胞和非心肌细胞的信号通路。
微小RNA(miRNA)是真核生物中发现的一类内源性的具有调控功能的非编码RNA,长度为19~25个核昔酸。
miRNA可通过调节细胞代谢、增殖、免疫反应等参与调节心肌肥厚的发生发展。
miRNA影响心肌肥厚的分子生物学机制是多途径的,其参与miRNA正调控或负调控心肌肥厚都是多方面、多靶点的。
关键词:微小RNA;心肌肥厚;心肌细胞;miRNA再表达疗法;miRNA抑制疗法doi佛0.3969/j.issn.1002-266X.2020.24.030中图分类号:R541文献标志码:A文章编号心肌肥厚是由多种因素引起的心肌组织超负荷的适应性反应,可分为生理性和病理性。
生理性心肌肥厚常见于儿童、运动员以及妊娠期妇女,疾病进展缓慢且具有可逆性。
病理性心肌肥厚多是由高血压、心肌梗死等引起的,是心脑血管事件的独立危险因素。
持续的病理性心肌肥厚最终可导致扩张性心肌病、心力衰竭和猝死。
微/J、RNA(miRNA)是真核生物中发现的一类内源性的具有调控功能的非编码RNA,长度为19~25个核昔酸。
miRNA存在多种形式,最原始的Pri-miRNA,长度为300~1000个碱基。
Pri-miRNA经过一次加工后,成为Pre-miRNA 即microRNA前体,长度为70~90个碱基。
miRNA 在调控发育过程中具有抑制靶mRNA转录、翻译或者通过剪切靶mRNA促进其降解等重要作用。
近年来,因miRNA在生物过程中的调节作用及其在各类疾病(视网膜病症、神经退行性疾病、心血管疾病和癌症等)发生发展中的作用而被广泛研究[1]0在心血管系统中,miRNA控制各种细胞(如心肌细胞、内皮细胞、平滑肌细胞和成纤维细胞等)的功能,并在肌肥厚、心肌梗死、心肌纤维化、心力衰竭、心律失常、炎症反应和动脉粥样硬化等疾病中起至关重要的作用。
microRNA在结直肠癌转移中作用机制的研究进展
microRNA在结直肠癌转移中作用机制的研究进展蔡彦韬【摘要】The metastasis of tumor cells is a pathological process that comprises multiple factors. microRNA is one of the important parts taking part in the regulation of the process. Complication of metastasis is the major cause of death in colorectal cancer (CRC). Nowadays research of microRNA in metastisis of CRC still remains inefficient and anti-apoptotis,epithelial-mesenchymal transition,gain of invation as well as angiogenesis is known to be the major regulation method,positive or negative. This review explores recent development in the role of microRNA and its mechanism of CRC metastases which may provide new insights that could be of therapeutic consequence.%肿瘤细胞转移是由多种因子参与的复杂生物学行为,microRNA (miRNA)作为其中的重要因子,参与转移过程中的调控.结直肠癌患者中,转移引起的并发症是其主要死因.miRNA在结直肠癌转移中作用的研究目前尚处于起步阶段,目前已知其参与抗凋亡、上皮细胞间质化、瘤细胞增值侵袭及新生血管生成等步骤的调控,发挥促进或抑制结直肠癌细胞转移效应.本文就近年miRNA在结直肠癌的转移各通路中的作用与机制的研究进展进行综述,旨在就miRNA在临床诊断治疗的科研提供依据与思路.【期刊名称】《复旦学报(医学版)》【年(卷),期】2013(040)001【总页数】5页(P97-101)【关键词】microRNA (miRNA);结直肠癌;转移【作者】蔡彦韬【作者单位】复旦大学附属华山医院普外科上海200040【正文语种】中文【中图分类】R730.6结直肠癌(colorectal carcinoma,CRC)是最常见的消化道肿瘤之一,死亡率位居恶性肿瘤第2位,超过50%的CRC患者最终死于肿瘤远处转移相关的并发症。
microRNAs在双相情感障碍中作用机制的研究进展
microRNAs 在双相情感障碍中作用机制的研究进展王海明杨康张跃坤佟靓吴昊赵青枫*(昆明医科大学附属精神卫生中心,云南省精神病医院,云南昆明650224)双相情感障碍是一种临床上常见的精神科疾患,给患者、家庭及社会带来了沉重的负担。
双相情感障碍病因不明,目前一般认为与遗传、社会心理和生物学因素有关,三者相互作用。
目前双相情感障碍的神经病理学或病理生理学尚无一致意见,且广泛接受的动物行为模型也没有建立,这些均增加了双相情感障碍发病机制研究和治疗的难度。
近年来有研究表明,microRNAs (miRNAs ,是一类由内源基因编码的长度约为22个核苷酸的非编码单链RNA 分子)在细胞分化凋亡、生物发育等方面起重要作用,且广泛参与疾病的发生发展过程,也在神经精神疾病发生、发展过程中有重要作用。
有研究发现,大量miRNAs 在脑中表达,其中一些特异性的miRNAs 在大脑中的表达对中枢神经系统发育、神经元分化、神经元可塑性等方面发挥重要作用,且miRNAs 与众多中枢神经系统疾病,如神经退行性疾病、精神分裂症、双相情感障碍等的发生、发展相关,其中部分miRNAs 的分布和功能异常与双相情感障碍的病理生理机制及治疗相关。
随着转化医学的发展,这些miRNAs 可能成为双相情感障碍诊断的标记物或治疗靶点。
1miRNAs 的生物合成及功能与表观遗传表观遗传学是一门研究生命有机体发育与分化过程中导致基因发生表观遗传改变的新兴学科,其主要内容包括:DNA 甲基化、染色质重塑和微小RNA (miRNA )。
可以通过几个miRNAs 的组合来微妙调控基因表达[1]。
miRNAs 在进化过程中高度保守,能通过与靶基因mRNA 特异性的碱基互补配对,引起靶基因mRNA 的降解或者抑制其翻译,负责调控靶基因的表达[2,3],广泛参与调控神经发育、细胞增殖与分化、细胞凋亡等生命过程。
细胞核内编码miRNAs 的基因转录产生初始miRNAs (primiRNAs ),经核酸酶Drosha 剪切形成miRNAs 前体(pre-miRNAs ),并在另一种核酸酶Dicer 的剪切下形成双链miRNAs ,其中一条为成熟miRNAs 。
生命的分子机器及其调控网络
An autoinhibitory mechanism modulates 侯法建 MAVS activity 研究员,博士生导师 in antiviral innate immune response.
Structure of the SPRY domain of 陈勇 Ash2L and its 研究员,研究组长,博士生导师 interactions with RbBP5 and DPY30, Cell Res
The same pocket in menin binds 雷鸣 both MLL and 研究员,副所长,研究组长,博士生导师,国家蛋白 JUND but has opposite effects on transcription
Structure of the mitochondrial 周界文 uncoupling protein 研究员,研究组长,博士生导师 determined by NMR molecular fragment sea Nucleation of microtubule assembly 郑诣先by a g-tubulin-containing 研究员 ring complex.
Premature Termination Codons Are 程红Recognized 研究员,研究组长,博士生导师 in the Nucleus in A Reading-Frame Dependent Ma
Minor type IV collagen α 5 chain 葛高翔 promotes cancer 研究员,博士生导师 progression through discoidin domain rece
Subunits beta gamma of heterotrimeric 吴殿青 G protein 研究员,研究组长,博士生导师 activate beta 2 isoform of phospholipase C
miRNA-自噬轴在运动性心肌肥大中的作用机制
miRNA-自噬轴在运动性心肌肥大中的作用机制张钧摘要:心脏肥大是心脏受到生理或病理刺激而引起细胞和分子层面发生一系列变化的结果,运动性心肌肥大是心脏对长期运动产生的适应性变化。
随着分子生物学相关研究的深入,运动性心肌肥大的形成不再认为仅仅是血流动力负荷所引起的细胞体积、结构和功能的改变。
近年来的研究发现,miRNA和自噬被认为是调控运动性心肌肥大形成的重要因素。
基于此,本文以心肌细胞自噬和miRNA为切入点,综述近年来运动诱导的心肌生理性肥大过程中自噬与miRNA发挥作用的机制,为进一步阐明运动性心肌肥大的机制提供依据遥关键词:miRNA;自噬;运动;心肌肥大中图分类号:G804文献标志码:A文章编号:1()06—1207(2021)01—0062—07DOI:10.12064/ssr.20210109Mechanism of MicroRNA-autophagy in Exercise Induced Cardiac HypertrophyZHANG Jun(Shanghai Normal University,Shanghai200234,China)Abstract:Cardiac hypertrophy is the result of a series of cellular and molecular changes caused byphysiological or pathological stimulation to the heart.Exercise-induced cardiac hypertrophy(ECH)isan adaptive change of the heart to the long-term exercise.However,with the development of molecular biology technology,the mechanisms of ECH is no longer considered as the change of cardiomyocytes volume,structure and function merely caused by hemodynamic load.Recent studies havefound that miRNA and autophagy are important in regulating the formation of ECH.Therefore,thispaper reviews the studies on the mechanism of autophagy and miRNA in exercise-induced cardiac hypertrophy in recent years,so as to provide reference for further clarifying the mechanism of exercise-induced cardiac hypertrophy.Key Words:microRNA;autophagy;exercise;cardiac hypertrophy心肌组织包括心肌细胞和间质两部分,心肌细胞是高度分化的终末细胞,其收缩蛋白以琢-肌球蛋白为主,一般不能增殖,只有细胞体积的肥大0心肌细胞能够对外界刺激做出适应性反应,如不同程度或形式的损伤、应激,或由长期运动训练、怀孕、机体自然生长等引起的生理性血流超负荷刺激,都会使心脏产生肥厚性的增长,此时其表型改变,体积增大[1-2]0—直以来,运动性心肌肥大被认为是一种生理性结构肥大,是长期的运动训练导致机体在代谢方面发生的变化,表现为促进心肌细胞增殖与肥大、抑制心肌间质纤维化、心肌血管再生等一系列的变化,心脏产生适应性增大0其不仅能促进心脏功能的提高,而且有利于心脏健康0但由于运动性心肌肥大发生、发展过程具有复杂性,因此迄今为止,其具体的机制尚未被完全阐明0随着分子生物学技术的发展,学者们在该领域的相关研究不断深入,研究认为:运动性心肌肥大的发生已不仅仅是血流动力学作用下所引起的心肌细胞结构与大小的改变,神经体液因素也能够通过各种信号转导,调节应答基因转录,促进心肌细胞的翻译、合成,而形成心肌肥厚0当前,关于运动性心肌肥大的研究,在基因层面和信号传导通路方面已取得了许多重要进展0已有研究表明,细胞自噬是基于溶酶体的一种胞内降解途径,对维持细胞和生物体的稳收稿日期:2020-06-17基金项目:国家自然科学基金(31571223)。
miR-195对肺癌A549细胞生物学行为的调控作用
miR-195对肺癌A549细胞生物学行为的调控作用王依;詹蓉;高建生;张冬英;刘华【摘要】目的:探讨微小RNA(miR)-195对肺癌细胞株A549生长、凋亡及迁移等生物学行为的影响和其相关作用机制.方法:对体外培养的A549细胞转染miR-195 mimics,分别采用CCK-8法和流式细胞术检测细胞活力、周期分布及凋亡情况;Transwell实验检测细胞的迁移能力;Western blot检测相关调控因子cyclinD1、CDK2、Bcl-2和p-Rb/Rb的蛋白水平;双萤光素酶报告基因分析法预测及验证其可能的靶基因.结果:在A549细胞中过表达miR-195可显著抑制细胞活力并引起细胞周期阻滞,同时细胞迁移率降低,而细胞凋亡率显著上升(P<0.05);此外,细胞中cyclin D1、CDK2、Bcl-2及p-Rb的蛋白水平均显著下降(P<0.05).双萤光素酶报告基因分析显示MYB可能是miR-195的靶基因,且在过表达miR-195的A549细胞中回补MYB可部分逆转miR-195对细胞活力、凋亡及迁移的影响.结论:miR-195可靶向MYB抑制肺癌A549细胞的生长和迁移,并促进其凋亡.%AIM: To investigate the regulatory effects of microRNA(miR)-195 on the biological behaviors, such as viability,apoptosis and migration, of lung cancer A549 cells, and to explore the related mechanisms.METH-ODS:After miR-195 mimics were transfected into the A549 cells,the cell viability, cell cycle distribution and apoptosis were measured by CCK-8 assay and flow cytometry.Transwell assay was used to detect cell migrationability.Furthermore, the protein levels of cyclin D1,CDK2,Bcl-2 and p-Rb/Rb were determined by Western blot.Dual-luciferase reporter as-say was used to screen and identify the possible target genes of miR-195.RESULTS: Over-expression of miR-195 in the A549 cells inhibited the cell viability andinduced cell cycle arrest,accompanied with the decrease in the cell migration a-bility and the increase in the apoptoticrate(P<0.05).Furthermore,the protein levels of cyclin D1,CDK2,Bcl-2 and p-Rb were significantly decreased(P<0.05).Dual-luciferase reporter assay demonstrated that MYB was a potential target gene of miR-195.Over-expression of MYB in the A549 cells partially reversed the effects of miR-195 on the cell viability, apoptosis and migration.CONCLUSION: miR-195 inhibits lung cancer A549 cell growth and migration, and promotes cell apoptosis by targeting MYB gene.【期刊名称】《中国病理生理杂志》【年(卷),期】2018(034)003【总页数】6页(P458-463)【关键词】微小RNA-195;肺癌;细胞活力;细胞凋亡;细胞迁移;MYB基因【作者】王依;詹蓉;高建生;张冬英;刘华【作者单位】广东药科大学附属第一医院干保科,广东广州510080;广东药科大学附属第一医院干保科,广东广州510080;广东药科大学附属第一医院干保科,广东广州510080;广东药科大学附属第一医院干保科,广东广州510080;广东药科大学附属第一医院干保科,广东广州510080【正文语种】中文【中图分类】R734.2;R730.23肺癌是一种常见的恶性肿瘤,具有较高的发病率和死亡率,不仅病理过程复杂,且目前传统的放化疗及手术治疗效果并不理想[1]。
Argonaute蛋白在植物逆境胁迫响应中的功能
中国农业科技导报,2021,23(2):17-26Journal of Agricultural Science and TechnologyArgonaute蛋白在植物逆境胁迫响应中的功能蒲伟军,谭冰兰,朱莉”(中国农业科学院生物技术研究所,北京100081)摘要:Argonaute(AGO)蛋白是生物体中普遍存在的一类相对分子质量较大(约105)、成员数量众多的蛋白,该家族在不同物种中高度保守,由可变N端、PAZ、MID和PIWI等结构域组成。
AGOs通过与不同的sRNA形成复合体参与植物生长发育、形态建成、细胞增殖凋亡、病毒防御、逆境响应等多种生物过程。
综述了植物AGO家族的结构特点、分类、作用模式及其生物学功能,尤其在逆境胁迫响应中的功能,分析了存在的问题,并对发展趋势进行展望,旨在为今后深入研究植物AGO功能提供理论参考。
关键词:Argonaute蛋白;sRNA;胁迫响应;生物学功能doi:10.13304/j.nykjdb.2020.0670中图分类号:Q78文献标识码:A文章编号:1008-0864(2021)02-0017-10Progress on the Biological Functions of Argonaute Proteinsin Response to Stress in PlantsPU Weijun,TAN Binglan,ZHU Li*(Biotechnology Research Institute,Chinese Academy of Agricultural Sciences,Beijing100081,China)Abstract:Argonaute(AGO)proteins are large relative molecular weight(about105)and numerous members that are ubiquitous in organisms.They are highly conserved among different species and composed of domains including variable N terminus,PAZ,MID and PIWI,etc..AGO proteins were involved in many important biological processes such as plant growth and development,morphogenesis,cell proliferation and apoptosis,virus defense,and stress response through forming complex with different kinds of sRNA.This review mainly focused on the structural characteristics,classification,action patterns and biological functions of the AGO protein family in plants,especially their functions in response to biotic and abiotic stress,as well as the existing problems and prospects of the research,in order to provide a theoretical reference for future study on AGO function in plants.Key words:argonaute proteins;small RNAs(sRNAs);stress response;biological functionArgonaute(AGO)蛋白是一类RNA结合蛋白,在sRNA介导的基因沉默中起关键作用。
MiR-195在胰腺癌中的表达和功能的初步研究
独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。
对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
学位论文作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
保密□,在年解密后适用本授权书。
本论文属于不保密□。
(请在以上方框内打“√”)学位论文作者签名:指导教师签名:日期:年月日日期:年月日目录一、英文缩略词 (1)二、摘要中文摘要 (3)英文摘要 (5)三、论文前言 (7)材料和方法 (9)结果 (23)讨论 (30)四、综述 (34)参考文献 (42)五、致谢 (48)英文缩略词表英文缩写英文全称中文名称miR-195mimic miR-195mimic miR-195模拟物PC Pancreatic cancer胰腺癌RNA Ribonucleic acid核糖核酸AMP Ampicillin氨苄青霉素mRNA messenger RNA信使RNACDK4cyclin-dependent kinase4周期蛋白依赖性激酶4HCC miRNA Hepatocellular carcinomamicroRNA肝细胞癌微小RNABSA Bovine serum AGPumin牛血清白蛋白DEPC Diethyl pyrocarbonate焦碳酸二乙酯FCS fetal calf serum胎牛血清PBS Phosphate-buffered saline磷酸盐缓冲溶液DNA Deoxyribonucleic acid脱氧核糖核酸PCR Polymerase chain reaction聚合酶链反应2dH2O Water distillated two times双蒸水GFP GreenfluorescentProtein绿色荧光蛋白DMSO Dimethyl sulfoxide二甲基亚砜RT-PCR Reverse transcription-PCR逆转录PCR Western Blot Western Blot免疫印迹法M Mole摩尔L Litre升nM nanomole纳摩尔g Gram克µL Microlitre微升µg Microgram微克mL Millilitre毫升mg Milligram毫克h Hour小时ng Nanogram纳克min Minute分钟MiR-195在胰腺癌中的表达和功能的初步研究华中科技大学同济医学院附属同济医院肝病研究所硕士研究生:张玉南导师:赵秋教授中文摘要背景和目的胰腺癌(Pancreatic carcinoma,PC)是最致命的恶性肿瘤之一,是全球癌症相关死亡的第四大原因。
细胞代谢中的自噬途径与外泌体-细胞生物学论文-生物学论文
细胞代谢中的自噬途径与外泌体-细胞生物学论文-生物学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:在真核生物中,细胞可以通过自噬(autophagy)和外泌体(exosome)的分泌两种方式来对外界刺激做出应答从而维持细胞内稳态。
自噬是溶酶体依赖性细胞组分降解的过程,其能被氧化应激、饥饿或蛋白质聚集等因素导发生。
除了自噬途径,细胞还可以通过分泌外泌体来调节细胞的生命活动,新的研究表明自噬与外泌体发生有同样的分子机理。
本文综述了自噬与外泌体发生的过程以及两者之间的联系。
关键词:自噬; 外泌体; 内涵体; 自噬内涵体; 溶酶体;Abstract:Eukaryote cells can respond to extracellular stimuli via autophagy and exosome secretion to maintain intracellular homeostasis. Autophagy is a process of intracellular components degradation via lysosomal-dependent pathway, which can be induced by oxidative stress, starvation and protein aggregation. In addition toautophagy, cells can regulate cellular metabolism by secreting exosomes. Recent studies show that autophagy share common molecular mechanism with exosome biogenesis. This review summarized the processes of autophagy and exosome biogenesis, and the interaction between them.Keyword:autophagy; exosome; endosome; amphisome; lysosome;内膜系统是指在结构、功能,甚至生物发生方面彼此相关的、由单层膜包被的细胞器或细胞结构,主要包括内质网(endoplasmic reticulum,ER)、高尔基体、溶酶体、内涵体和分泌囊泡。
miRNA(医学免疫学)
Kim and Nam 2006
miRNA profile in colon cancer stem cells VS non-stem cells
Fang and Zhou 2012 Oncology Reports
Today’s topics
What is miRNA? How are miRNAs discovered? How are miRNAs synthesized in vivo? How many miRNAs are there? Where are miRNAs located in the genome? When and where are miRNAs expressed? How miRNAs regulate gene expression? What genes do miRNAs regulate? What regulate miRNAs? What are the general functions of miRNAs? Is there any therapeutic application?
Mechanism of function
Up-regulation VS down regulation Transcription level VS post-transcription level Cleavage VS translational repression Translational repression at the initiation step Translational repression post-initiation
Discovery of miRNA
“Attempted to overexpress chalcone synthase (CHS) in pigmented petunia petals by introducing a chimeric petunia CHS gene. Unexpectedly, the introduced gene created a block in anthocyanin biosynthesis.”
外泌体在肿瘤微环境中的调控作用及其在肿瘤进展中的作用
外泌体在肿瘤微环境中的调控作用及其在肿瘤进展中的作用徐敏;戈伟;尹竺晟【摘要】肿瘤微环境是影响肿瘤生长与转移的关键因素,外泌体可以通过多种途径参与肿瘤微环境的调控.外泌体是由多种类型活细胞分泌的纳米级囊泡小体,广泛地分布于外周血、唾液、尿液、腹水、胸水、乳汁等多种体液中.外泌体中含有大量功能性蛋白质、mRNA、miRNA、DNA片段等多种生物活性物质,这些生物活性物质可在细胞之间穿梭并介导细胞间的物质转运与信息交流,进而影响细胞的生理功能.越来越多的证据证明了肿瘤细胞分泌的外泌体在肿瘤微环境的调控中发挥了重要作用.肿瘤细胞分泌的外泌体可以促进肿瘤血管生成、诱导肿瘤相关纤维细胞的分化、参与肿瘤微环境的免疫调控以及肿瘤转移前微环境的调控,进而在肿瘤的进展中发挥重要作用.此外,外泌体在肿瘤缺氧微环境中也发挥重要作用,本文就肿瘤细胞分泌的外泌体在肿瘤微环境中的调控及其在肿瘤进展中的作用加以综述.【期刊名称】《中国医药导报》【年(卷),期】2016(013)017【总页数】4页(P29-32)【关键词】肿瘤微环境的调控;外泌体;血管生成;转移前微环境;肿瘤进展【作者】徐敏;戈伟;尹竺晟【作者单位】武汉大学人民医院肿瘤Ⅱ科,湖北武汉430060;武汉大学人民医院肿瘤Ⅱ科,湖北武汉430060;武汉大学人民医院肿瘤Ⅱ科,湖北武汉430060【正文语种】中文【中图分类】R730.22肿瘤微环境是肿瘤一个重要的特征,其在肿瘤的发生、进展中发挥着至关重要的作用,很多因素都参与了肿瘤微环境的调控。
近年来,外泌体在肿瘤微环境中的作用受到越来越多的关注,已有很多学者致力于这方面的研究。
外泌体是一类由多种类型活细胞分泌的,直径为30~100 nm的囊泡小体,其广泛分布于外周血、唾液、尿液、脑脊液、乳汁等体液中。
外泌体中含有许多生物活性物质,如蛋白质、mRNA、microRNA、DNA片段等,这些生物活性物质可在细胞间相互传递,进而调节细胞的生理功能。
血清miRNA-195作为帕金森病潜在生物学标记物的初步研究
血清miRNA-195作为帕金森病潜在生物学标记物的初步研究作者:陈子旋朱丽娜刘雯解孝艳杨厉颖周静雯徐将刘姜冰王英歌唐向明来源:《中西医结合心血管病电子杂志》2020年第18期【摘要】背景近年来有研究表明血清微小RNA(microRNA,miRNA)可作为疾病生物学标志物,有助于疾病的发病风险评估、早期诊断以及监测治疗效果和预后。
本研究对一种血清miRNA与帕金森病(PD)相关性进行探究,力求寻找PD早期诊断可能的生物学标志物。
目的研究末梢血清miRNA作为帕金森病生物标志物的潜力。
方法采集36例PD患者和36例健康体检者血清标本,通过RT-qPCR检测血清内miR-195的表达。
收集211例PD患者和113例健康人临床资料进行统计分析。
结果与健康体检者相比,PD患者血清miR-195表达水平明显上调。
临床统计资料分析显示吸烟、糖尿病与PD发病呈负相关,高血压可能与PD发病呈正相关,PD病人伴有外周血红细胞及血红蛋白量降低。
【关键词】帕金森病(PD);血清;miRNA;生物标记物;危险因素【中图分类号】R37 【文献标识码】A 【文章编号】ISSN.2095.6681.2020.18..02帕金森病(Parkinson's disease,PD)是一种常见于中老年人的神经系统退行性病变,以脑内黑质多巴胺能神经元进行性缺失为病理特征。
PD临床运动症状有静止性震颤、运动迟缓、肌强直以及姿势步态障碍等,非运动症状包括认知障碍、嗅觉丧失、便秘等。
多数患者的非运动症状较运动症状出现早,PD的诊断主要依赖于临床运动症状。
影像学早期无典型特征[1],缺乏特异性生物学标志物,导致PD早期诊断困难。
所以寻找特异性较高的生物学标记物是PD早期诊断的重要问题。
为寻找PD早期诊断的生物学标记物,大量学者对脑脊液,血浆,血清,唾液,尿液,皮肤等组织标本进行基因测序,发现血清中循环RNA作为生物学标记物具有优势。
尽管大量研究对PD患者血清中miRNA进行探索,结果却存在异质性。
miR-195在子宫内膜癌组织中的表达及其临床意义
miR-195在子宫内膜癌组织中的表达及其临床意义张玉虹,孙喜斌,石克威,马会,于治芳(河北北方学院附属第一医院,河北张家口075000)[摘要]目的探讨微小RNA-195(miR-195)在子宫内膜癌组织中的表达情况及其与子宫内膜癌患者临床病理特征的关系。
方法收集2012年1月—2017年1月河北北方学院附属第一医院收治的64例子宫内膜癌患者手术切除的子宫内膜癌组织和64例因子宫肌瘤行子宫全切术患者的正常子宫内膜组织,采用实时荧光定量聚合酶链反应检测子宫内膜癌组织和正常子宫内膜组织中miR-195的表达量,分析m i R-195表达量与子宫内膜癌患者临床病理特征的关系。
结果子宫内膜癌组织和正常子宫内膜组织中miR-195的表达量分别为0.42±0.12和1.05±0.18,子宫内膜癌组织中miR-195表达量明显低于正常子宫内膜组织(P<0.05);子宫内膜癌组织中miR-195表达量与患者FIGO分期、肌层浸润深度和淋巴结转移有关(P均<0.05),与患者年龄、肿瘤组织学类型及分化程度无关(P均〉0.05)o结论miR-195在子宫内膜癌中具有抑癌基因的特性,其作为抑癌基因可能参与了子宫内膜癌的发生、发展过程。
[关键词]子宫内膜癌;miR-195;FIGO分期;肌层浸润深度;淋巴结转移doi:10.3969/j.issn.1008-8849.2020.35.012[中图分类号]R737.33[文献标识码]B子宫内膜癌为女性生殖道恶性肿瘤,好发于围绝经期和绝经后女性,近年来其发病呈现出低龄化趋势[1_2]o目前子宫内膜癌的发病机制仍然不明,对该病进行分子机制的研究越来越受到妇科肿瘤医生的重视。
微小RNA(miRNA)是一类存在于真核生物体内的非编码短链RNA小分子,其在多种肿瘤中均存在异常表达,与肿瘤细胞的生长增殖、侵袭迁移、转移、凋亡密切相关[3_410miR-195是由人类17号染色体的基因间隔区序列偏弱的miRNA,位于染色体17pl3.1,其与肿瘤发生过程关系密切,在乳腺、肝脏、膀胱、胃肠道等脏器的癌组织中发现miR-195表达下调,但是关于miR-195在子宫内膜癌中的表达情况研究较少。
细胞外miRNA的发现、来源及其生物学功能综述-病理学论文-基础医学论文-医学论文
细胞外miRNA的发现、来源及其生物学功能综述-病理学论文-基础医学论文-医学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——miRNA 是一类长度为18 ~ 22 个核苷酸的非蛋白编码的单链小分子RNA,广泛存在于真菌、细菌、病毒、植物、哺乳动物等生物体内.miRNA 通过调控基因的表达参与细胞的早期发育、细胞增殖、细胞代谢、细胞凋亡等重要的生命过程.近几年,多种生物体液中发现了能稳定存在的miRNA.血浆、尿液或其他体液中细胞外miRNA 的异常表达与包括肿瘤在内许多种疾病有着密切关系.然而,目前有关miRNA 进入体液的具体分子机制尚不清楚.本文仅就细胞外miRNA 的发现、来源及其生物学功能方面做一综述.一、细胞外miRNA 的发现最早发现在生物体液中存在miRNA 的是Chim及其研究团队.2008 年,Chim 等[1]在研究中发现,孕期女性的血浆中有来自胎盘的miRNA,确认了孕体血浆中157 种miRNA,其中17 种miRNA 在血浆中的浓度是孕妇外周血细胞的10 倍以上并且在产后孕妇血浆中无法检测到.同年,Lawrie 等[2]在弥散性 B 细胞淋巴瘤患者的血浆中检出miR-155、miR-210 和miR-21a 这三种肿瘤相关的miRNA 表达水平比正常对照组有升高,并据此提出将循环miR-NA 作为疾病甚至肿瘤诊断标志物的设想.随后,Weber 等[3]在血浆、唾液、泪液、尿液、羊膜液、初乳、乳汁、支气管液、脑脊液、腹膜液、胸膜液、精液共12种正常人体液中检测miRNA 的存在,结果显示miRNA 在以上12 种体液中都得以检出,说明miR-NA 存在于人体多种体液之中.Zhang 等[4]以身体健康的中国人( 主食为稻米) 为研究对象在其血清与血浆中检测到了外源性的植物miRNA,同时在其他动物的血清中也检测到了植物miRNA.二、细胞外miRNA 的来源与运送途径在生物体内的过程( 一) 细胞外miRNA 的来源血细胞与血浆完全接触,即使很小的血细胞数的变动或者细胞溶血的发生都会改变血浆miRNA 的水平,许多被认为可以作为肿瘤标志物的循环miRNA 在血细胞中的呈现高表达,因此,可以将血细胞认为是血浆中细胞外miRNA 的主要来源[5].然而,最近一项研究将AGO1 和AGO2( Argonaute) 相关的血浆miRNA 与全血细胞miRNA 进行对比分析,结果显示在正常情况下血浆miRNA 也可以来自其他组织器官[6].某些组织特异性的miRNA,如miR-122( 肝脏) 、miR-133a( 肌肉) 、miR-208a( 心脏) 以及miR-124( 脑) 都已经在血浆中被检出.肿瘤也能向血液中释放miRNA.在肿瘤的不同阶段都可以在血液循环中发现多种肿瘤组织特异性miRNA.并且肿瘤向其他细胞一样可以分泌包含miRNA 的微囊泡( microvesicles,MVs) .Mitchell等[7]将人前列腺癌细胞种植在小鼠体内,发现来自于人前列腺癌的异种移植物可进入种植小鼠的体内循环,证实了体液中的miRNA 不仅来源于宿主细胞( 小鼠) ,还有一部分是由肿瘤细胞分泌.Zhang 等[4]研究发现人工喂以稻米、小麦、马铃薯等植物的小鼠在喂食后血清中植物miR-168a 至少是喂食前的3 倍,并且在肝脏、胃肠等脏器中发现该miRNA 水平皆有明显增高,而在肾脏等其他器官中并未检测到此种变化,说明植物miRNA 通过哺乳动物的摄食行为进入机体内部,通过胃肠道进入血液,这是目前发现的唯一的外源性植物miRNA 进入机体的方式,也是细胞外miRNA 的来源之一.( 二) 细胞外miRNA 的稳定性研究者将核糖核酸酶加入新鲜人血清后检测miRNA 的量并不会减少,说明血浆miRNA 可在富核糖核酸酶的环境中较为稳定地存在.向血清中加入外源性成熟miR-NA 则发现外源性miRNA 在核糖核酸酶的作用下迅速降解.而在加有核糖核酸酶抑制剂的血清中外源性miRNA 则不会降解.这也揭示了miRNA 本身并不具有对核糖核酸酶的抗性,为研究者进一步探索miRNA 在体液中的存在形式提供了思路.( 三) 细胞外miRNA 在生物体内的运送过程在体液中发现miRNA 之前,研究人员在细胞培养基中已经发现释放到细胞外的胞外体( exosome) 中含有miRNA.机体中的miRNA 可以通过囊化进入MVs 从而到达细胞外.而后,Hunter 等人在提纯的人外周血MVs 中检测出了miRNA,进一步证实了膜-囊泡结构保护miRNA 的假设[8].Gibbing 等[9]研究发现miRNA 包裹入胞外体可能不是一个随机,而是由特异性蛋白控制的; RNA 导的沉默复合体中的一个组分GW182 在胞外体中表达极其丰富.而GW182 是miRNA 与Ago2 相互作用发挥功能所必须的.胞外体被包裹进入MVB 与神经酰胺有关.胞外体中含有大量的鞘磷脂及神经酰胺,而神经酰胺的合成受到中性鞘磷脂酶2 ( neutralsphingomyelinase 2,nSMase2 ) 的控制.另有研究表明含有miRNA 的胞外体进入MVs,并由神经酰胺触发释放到细胞外.过表达nSMase2 可以增加细胞外miRNA 的分泌,而使用特异性小干扰RNA 或化学物质抑制nSMase2 的酶活性则明显降低miRNA 的分泌水平( Kosaka 等. 2010) .然而,Galas 等[10]研究显示MVs 包裹并不是miRNA 进入细胞外的唯一途径.在人工培养细胞的培养液中收集的miRNA 大多数并不是来自于脱落囊泡和胞外体.同年,两篇研究性文章各自证实了大部分细胞外miRNA 不仅和膜-囊泡结构无关而且AGO 蛋白有关.在去除细胞碎片的血浆中只有很小一部分的miRNA 与MVs相关,90% ~95% 的miRNA 是以和AGO 蛋白结合的形式存在( Arroyo 等. 2011) .正常条件下人工培养的细胞所分泌的miRNA 99% 左右与膜囊并无关系,而是同AGO 蛋白结合( Turchinovich 等. 2011) .外源性miRNA 由于其发现尚存在较大争议,目前也没有更多研究阐述其在生物体内的详细的转运过程.miRNA 进入受体细胞的方式仍不清楚,目前认为MVs 可由内吞、内化等方式被受体细胞接受,而由MVs 包裹的miRNA 很可能借由这些过程进入受体细胞.三、细胞外miRNA 的生物学作用( 一) 内源性细胞外miRNA 的生物学作用1. 胞外体介导的细胞间通讯: Zhang 等[11]研究发现MVs 中的miRNA 由循环进入靶细胞作为内源性miRNA 调节多种靶基因或者信号.用人微血管内皮细胞系( HMEC-1) 作为受体细胞,含有来源于THP-1 细胞FITC 标记的miR-150 的MVs 能够进入HMEC-1 细胞,miR-150 表达水平明显升高.这一结果表明miRNA 可以通过MVs 传递到远处靶细胞.miRNA-150 过表达后,293T 细胞的培养上清中的MVs 能使HMEC-1 细胞中c-Myb 蛋白的表达明显降低,HMEC-1 细胞的迁移能力增加.沉默THP-1 细胞内miR-150 的表达,则发现缺乏miR-150的MVs 并不影响HMEC-1 细胞中的c-Myb 蛋白表达及HMEC-1 细胞的迁移能力.采用Dil-C16 标记THP-1 细胞来源的MVs 经尾静脉注射给C57BL /6小鼠,血管内皮层中miR-150 表达水平明显升高.动脉粥样硬化患者血浆中分离出的MVs 中miR-150水平较正常人升高,而这种患者的MVs 可以使HMEC-1 细胞中c-Myb 蛋白的表达明显降低,促进HMEC-1 细胞的迁移.这些结果表明病理状态下MV 中携带的分泌性miRNA 可以到达受体细胞和组织发挥功能.Pegtel 等[12]研究发现胞外体miRNA 可以促进病毒感染.用EB 病毒转化来源于B 淋巴样干细胞的胞外体,通过体外共同培养实验病毒miRNA 通过分泌的胞外体传递到未感染的细胞,并使EVB-miR-NA 的靶基因CXCL 的表达呈现出剂量依赖性抑制.进一步对EB 病毒负荷增加的人群的外周血进行分析发现,EB 病毒DNA 仅存在于循环 B 细胞中,而EB 病毒miRNA 却在B 细胞及非B 细胞同时出现,这也提示了循环miRNA 可以进行细胞间的传递.Mittelbrunn 等[13]研究发现胞外体miRNA 也参与免疫应答的调控.J77 T 细胞、Raji B 细胞及原代的树突状细胞分泌的胞外体中含有miRNA,经抗原刺激可以导免疫突触的形成,促进miRNA 从T 细胞向抗原递呈细胞( antigen presenting cell,APC) 的单向性转移.而miRNA-335 可以抑制APC 中SOX4mRNA 的翻译,进一步证实了转移到APC 中的miR-NA 在受体细胞中是有生物学功能的,揭示了由胞外体介导的抗原驱动的单向性细胞间miRNA 的转移机制,而miRNA 这种在免疫细胞之间的转移则可能会在免疫细胞之间信号传递,甚至在在免疫反应中调节基因表达.此外,研究表明在体外miR-133b 可以通过胞外体由间充质干细胞转移到星形胶质细胞和神经细胞.肿瘤细胞分泌的miRNA 可能会影响周围正常细胞的表达谱,从而影响肿瘤进展,但尚未在体内试验进行验证.2. 特异的循环miRNA 表达谱可作为肿瘤及其他疾病的新型生物标记物: 已有研究报道某些生理病理条件下可能会得到较为独特的循环miRNA 谱.由于细胞外miRNA 可在血浆、血清中稳定存在,可考虑以不同血清miRNA 作为不同疾病的标记物.Chen 等[14]将11 个非小细胞肺癌患者( non-smallcell lung cancer,NSCLC) 的血清进行汇集测序,并与正常人的血清miRNA 进行对比,发现NSCLC 患者的血清出现63 种不存在于比正常人血清中的miR-NA,而28 种正常人血清miRNA 也未能在NSCLC 患者的血清中检出.NSCLC 患者的血清miRNA 表达谱同时与血细胞miRNA 表达谱进行比较,发现两者共有的miRNA 有57 种.而76 种miRNA 仅在NSCLC 患者的血清中检出,这一结果同正常人血清miRNA 与血细胞miRNA 表达谱的比较结果差异较大.他们进一步对结肠癌和糖尿病患者的血清miRNA 进行了测序,发现在结肠癌患者血清中发现了69 种正常血清中为检测到的miRNA,值得注意的是许多miRNA,如mi-134、mi-221等在肺癌和结肠癌患者血清中都有发现,并且不存于正常人血清中,这一结果提示血清中可能存在某些肿瘤相关miRNA.( 二) 外源性细胞外miRNA 的生物学作用Zhang 等[4]发现外源性的植物miR-168a 可以被小鼠消化道吸收,进入血循环及胃、小肠、肝脏等多种脏器,与靶基因低密度脂蛋白受体衔接蛋白1( low-density lipoprotein receptor adapter protein 1,LDLRAP1) 结合,从而抑制其在肝脏中的表达,减缓低密度脂蛋白从血浆中的清除.在人类小肠上皮细胞Caco-2 中高表达miR168a,并用Caco-2 的MV 处理HepG2,结果发现HepG2 细胞中miR-168a 水平也有升高,而LDLRAP1 的蛋白水平降低.这一研究结果表明外源性植物miRNA 可以通过哺乳动物的摄食行为进入其体内,调控靶基因表达从而影响摄食者的生理功能.四、结语与展望目前研究已经证实细胞外miRNA 能够在血清中稳定存在,并且广泛存在于人体12 种体液中.细胞外miRNA 由体内细胞分泌或通过摄食行为由胃肠道吸收,进入循环中,被靶细胞摄取,调节靶基因或信号,起到了细胞间的通信作用.然而,还有许多关于细胞外miRNA 的问题需要进行进一步的研究: miRNA 是否由细胞选择性分泌,具体是如何进行分拣进入微囊泡中或与AGO 等蛋白结合? 循环miRNA 如何被靶细胞识别并摄取? 什么机制触发了miRNA 由远端部位的释放? 此外,研究miR-NA 的终极目标在于对人类疾病的预测、预后以及治疗上的价值.尽管目前这一研究领域仍处于探索阶段,但相信其在细胞间通信以及疾病的诊断和治疗都将产生重大影响.参考文献1 Chim S,Shing T,Hung EC,et al. Detection and character-ization of placental microRNAs in maternal plasma. ClinChem,2008,54482 ~ 490.2 Lawrie CH,Gal S,Dunlop HM,et al. Detection of elevatedlevels of tumour-associated microRNAs in serum of patientswith diffuse large B-cell lymphoma. Br J Haematol,2008,141672 ~ 675.3 Weber JA,Baxter DH,Zhang S,et al. The microRNA spec-trum in 12 body fluids. Clin Chem,2010,561733 ~ 1741.4 Zhang L,Hou D,Chen X,et al. Exogenous plant MIR168aspecifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res,2012,22 107 ~ 126.5 Pritchard CC,Kroh E,Wood B,et al. Blood cell origin ofcirculating microRNAs: a cautionary note for cancer biomar-ker studies. Cancer Prev Res ( Phila) ,2012,5492 ~ 497.6 Turchinovich A,Burwinkel B. Distinct AGO1 and AGO2 as-sociated microRNA profiles in human cells and blood plas-ma. RNA Biol,2012,91066 ~ 1075.7 Mitchell PS,Parkin RK,Kroh EM,et al. Circulating microR-NAs as stable blood -based markers for cancer detection.Proc Natl Acad Sci USA,2008,10510513 ~ 10518.8 Hunter MP,Ismail N,Zhang X,et al. Detection of microRNAexpression in human peripheral blood microvesicles. PLoSOne,2008,33694 ~ 3705.9 Gibbings DJ,Ciaudo C,Erhardt M,et al. Multivesicularbodies associate with components of microRNA effectorcomplexes and modulate microRNA activity. Nat Cell Biol,2009,111143 ~ 1149.10 Wang K,Zhang S,WeberJ,et al. Export of microRNAs andmicroRNA-protective protein by mammalian cells. NucleicAcids Res,2010,387248 ~ 7259.11 Li J,Zhang Y,Liu Y,et al. Microvesicle-mediated transferof microRNA-150 from monocytes to endothelial cells pro-motes angiogenesis. J Biol Chem,2013,288 23586 ~23596.12 Pegtel DM,Cosmopoulos K,Thorley-Lawson DA,et al.Functional delivery of viral microRNAs via exosomes. ProcNatl Acad Sci USA,2010,1076328 ~ 6333.13 Mittelbrunn M,Gutierrez-Vazquez C,Villarroya-Beltri C,etal. Unidirectional transfer of microRNA-loaded exosomesfrom T cells to antigen-presenting cells. Nat Commun,2011,2282 ~ 292.14 Chen X,Ba Y,Ma L,et al. Characterization of microRNAsin serum: a novel class of biomarkers for diagnosis of canc-er and other diseases. Cell Res,2008,18997 ~ 1006.。
miRNA-195的作用机制及与心血管疾病的关系
miRNA-195的作用机制及与心血管疾病的关系王文峰;罗玉梅;万新红【摘要】microRNA-195(miRNA-195)是microRNA-15/16/195/424/497家族中的重要成员,通过与其靶基因结合,降解靶mRNA或抑制蛋白质翻译而调控基因的表达,从而在心血管病理、生理过程中起了十分重要的调控作用,尤其是心血管重塑、心力衰竭等。
研究miRNA-195参与心血管疾病发生的机制可能为治疗心血管疾病提供新的思路和方法,目前对miRNA-195的作用机制尚未完全阐明,本文就近年来miRNA-195的作用机制以及与心血管疾病的关系作一综述。
【期刊名称】《中国医药指南》【年(卷),期】2013(000)004【总页数】4页(P70-73)【关键词】microRNA-195;心血管疾病;综述【作者】王文峰;罗玉梅;万新红【作者单位】广东医学院深圳市龙岗区人民医院心血管内科,广东深圳 518172;广东医学院深圳市龙岗区人民医院心血管内科,广东深圳 518172;广东医学院深圳市龙岗区人民医院心血管内科,广东深圳 518172【正文语种】中文【中图分类】R714.252小分子RNA包括microRNA(简称miRNA)、siRNA、shortRNA等。
MicroRNA是小分子RNA中的一种,广泛存在于动物、植物、微生物和病毒中[1]。
miRNA大多是基因组的非编码区产生的一些小RNA分子,长度为18~23个核苷酸,参与调控多种水平的基因表达,其调控方式是结合到靶mRNA上,降解靶mRNA或者阻断靶mRNA的翻译过程[2]。
自1993年Lee和2000年Reinhart等在研究线虫的发育调控过程中发现了小分子RNA(microRNA,miRNA)Lin-4和Lin-7以来[3-5],有关miRNA的研究迅速成为生命科学领域研究的热点。
目前在人类已经发现了1000多个miRNA,据推测,人类基因组中约30%基因受miRNA调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J BIOCHEM MOLECULAR TOXICOLOGYVolume25,Number6,2011 Biogenesis of MiRNA-195and Its Role in Biogenesis,the Cell Cycle,and ApoptosisJun-Feng He1Yu-Mei Luo,1Xin-Hong Wan,1Deqian Jiang21Department of Cardiology,Shenzhen Longgang District People’s Hospital,Guang Dong Medicine College,Shenzhen,518172,People’s Republic of China;E-mail:hjf5529406@2Department of Cardiology,the Second Xiangya Hospital,Central South University,Changsha,410011,Hunan,People’s Republic of China Received24February2011;revised30March2011;accepted16April2011ABSTRACT:microRNA-195(miR-195)is an important member of the micro-15/16/195/424/497family,and which is activated in multiple diseases,such as can-cers,heart failure,and schizophrenia.Mir-195regu-lates a plethora of target proteins,which are involved in the cell cycle,apoptosis,proliferation.WEE1,CDK6, and Bcl-2are confirmed target genes of miR-195that are involved in miR-195-mediated cell-cycle and apop-tosis effects.However,the mechanism of miR-195ac-tion is not completely understood.This review summa-rizes recent the research progress regarding the roles of miR-195in the cell cycle and in apoptosis.C 2011 Wiley Periodicals,Inc.J Biochem Mol Toxicol25:404–408, 2011;View this article online at .DOI10:1002/jbt.20396KEYWORDS:microRNA-195,biogenesis,cell cycle, apoptosisMiRNA BIOGENESIS AND MECHANISMMicroRNAs(miRNAs),which are approximately 21nucleotides in length,are a recently discovered class of endogenous,small,noncoding RNAs that regulate about30%of the encoding genes of the human genome. MiRNAs occurs naturally and downregulate pro-tein levels by posttranscriptional regulation of target mRNAs.MiRNA genes exist in the introns of protein-coding genes,in introns and exons of noncoding genes,or even in the3 -UTR of protein-coding genes.MiRNAs are transcribed by RNA pol II or RNA pol III as mono-or polycistronic primary miRNAs(pri-miRNA)tran-scripts,often containing thousands of nucleotides that form hairpins(stem-loops)[1],pri-miRNAs are pro-Correspondence to:Xin-Hong Wan.c 2011Wiley Periodicals,Inc.cessed in the nucleus by the Drosha-DGCR8complex (in human)or Drosha-Pasha(in Drosophila and C.ele-gans)to produce∼70nt-long precursor miRNAs(pre-miRNAs).Pre-miRNAs are then transported to the cy-toplasm by exportin-5and Ran-GTP.In the cytoplasm,pre-miRNAs and mirtrons share the same processing pathway.Another RNAase III-like endonuclease Dicer processes∼70nt pre-miRNAs into mature∼22nt miRNA duplexes,which are des-ignated miRNA/miRNA*.The next step is loading of one of the two strands of this duplex onto the RISC (RNA-induced silencing complex),to form miRISC. Only the miRNA is successfully incorporated into the miRISC(miRNP),whereas the miRNA*is eliminated and degraded.Residues2–8at the5 end of the miRNA play a pivotal role in the specificity of the interaction miRNA with mRNA.This region is called the“seed.”The miRISC complex binds via the seed region to the 3 untranslated region(3 -UTR)of target mRNAs,and this imperfect match leads to translational inhibition without influencing mRNA integrity.Biogenesis of miRNA-195The miRNA-195sequence was predicted based on homology to a verified miRNA from mouse[2] and was later verified in human[3].The hsa-miR-195gene is located from6881953bp to6862065bp on the chromosome17p13.1[4](Figure1),with in-tron7and on the opposite strand of an mRNA gene AK098506(/ cgi-bin/miRGen/v3),which may encode a hypothet-ical protein LOC284112(/ cgi-bin/source/sourceResult).The function of this pro-tein is currently unknown.MiR-195is aberrantly expressed in multiple types of diseases including human breast cancer[5],glioblas-toma multiforme[6],gastric cancer[7],human hepa-tocellular carcinoma[8],adrenocortical adenomas[9],404Volume25,Number6,2011BIOGENESIS AND ROLES OF miRNA-195405FIGURE1.Location of Hsa-miR-195on chromosome17p13.1.chronic lymphocytic leukemia[10],bladder cancer[11], schizophrenia[12–15],and cardiac hypertrophy[16,17] (Table1).The expression of miR-195varies with differ-ent stages of diseases[16–19].MicroRNAs binded to the3 -UTR region of the target mRNA and downregulate protein levels by translational repression or by mRNA degradation mechanisms.In Table2,we summarize some important miR-195targets and the respective regulatory mecha-nisms.Multiple studies have shown that miR-195pre-vents cell proliferation,promotes apoptosis in diverse cancers and in cardiovascular diseases[8,20,21].The roles of miR-195targets in cell cycle regulation and their aberrant expression in various cancers suggest that they belong to a novel class of tumor suppressor gene depending on the targets they regulate.The Roles of miRNA-195in the Cell CycleMany studies have indicated that miRNA-195has a regulatory function in the cell-cycle,especially with re-spect to cell proliferation.Mitotic cell cycle progression is accomplished through a set sequence of events,DNA replication(S phase)and mitosis(M phase)are sepa-rated temporally by gaps known as G1and G2phases. The expression and activation of cyclin-dependent ki-nases(CDKs)and of cyclin determine whether cells proceed through G1into S phase,and from G2into M phase,This sequence of events is regulated by mecha-nisms that are conserved in more complex eukaryotes. Many transcription factors,such as WEE1and E2F3,af-fect the regulation of the cell cycle.Joglekar et ed an antisense miR-195-specific inhibitor in regenerating pancreatic cells and found that miR-195reduced the number of hormone-producing cells during pancreas development[19].Ichimi et al.showed that significant decreases in cell growth occurred in miR-195-trans-fectants[11].Van Rooij et al.reported that6week-old miR-195transgenic mice(Tg mice)displayed thinning of left ventricular walls[17].The Role of miR-195in the G2/M Transition WEE1is well characterized as a cell-cycle check-point kinase that regulates the entry into mitosis in dividing cells.Three inhibitory kinases,WEE1,WEE2, and MYT1regulate G2CycB/CDK complex activity in mammalian cells.However,WEE1is the only one of these kinases that negatively regulates CycB/CDK [24,25].Qi et al.found that miR-195overexpression in hESCs directly or indirectly acts on targets that nor-mally inhibit the rate of the cell cycle at the G2/M transition[20].They identified potential targets usingJ Biochem Molecular Toxicology DOI10:1002/jbt406HE ET AL.Volume25,Number6,2011TABLE1.Disordered Expression of mi-195in Different DiseasesDisease Type Reference Upregulation/Downregulation Breast cancer[5]UpregulationMCF-7cells[22]UpregulationU251R[6]UpregulationGastric cancer[7]Downregulation Chronic lymphocytic leukemia[10]Upregulation Adrenocortical adenomas[9]Upregulation Human hepatocellular carcinoma cells[8]Downregulation Bladder cancer[11]Downregulation Placentae with severe pre-eclampsia[23]Upregulation Schizophrenia[12–15]Upregulation Cardiac hypertrophy[16,17]Upregulation Different stages of pancreatic regeneration and development[19]Upregulation Irreversible growth arrest states in WI-38humanfibroblasts[18]UpregulationTargetscan and found that WEE1contains two pre-dicted miR-195binding sites in its3 UTR.They used a luciferase assay in an HCT116Dicer hypomorphic cell line and found that overexpression of miR-195results in a reduction of luciferase activity in the WEE13 UTR re-porter construct and that mutations in the WEE13 UTR relieve the repression of luciferase activity mediated by miR-195.In addition,they showed that miR-195regu-lates the hESC cell cycle by repressing WEE1levels. Reduction of miR-195levels in hESCs results in atten-uated cell division.The Role of miR-195in the G1/S TransitionXu et al.showed that miR-195may block the G1/S transition in hepatocellular carcinoma cells(HCCs)by repressing Rb-E2F signaling through targeting multi-ple molecules,including cyclin D1,CDK6,and E2F3[8]. Cyclin D1,CDK6,and E2F3are part of the G1/S transi-tion pathway.They promote the G1into S phase transi-tion via the Rb-E2F signaling pathway.Silencing these factors induces cell cycle arrest in G1phase.Xu et al. constructed expression vectors pc3-miR-195,pc3-gab-CCND1,pc3-gab-CDK6,and pc3-gab-E2F3and tested the affects between miR-195and the expressed factors. MiR-195directly inhibits the expression of the cyclin D1,CDK6,and E2F3through their3 UTRs,but miR-195overexpression caused a reduction only in the level of CDK6mRNA but not in the levels of cyclin D1or E2F3mRNA.Together these data indicate that inhibi-tion of miR-195promotes G1/S transition.The Role of miRNA-195in ApoptosisLiu et al.showed that microRNA-195promotes apoptosis and suppresses tumorigenicity of human col-orectal cancer cells[21].The process of programmed cell death is generally characterized by distinct mor-phological characteristics and energy-dependent bio-chemical mechanisms.Inappropriate apoptosis,either too little or too much,is a factor in many human condi-tions including neurodegenerative diseases,ischemic damage,autoimmune disorders and many types of cancer[28].Liu et al.constructed an miR-195expression plasmid and a reporter plasmid of luciferase inserted into the3 UTR of Bcl-2.When both were transfected into the human CRC cell lines HT29and LoVo,miR-195suppressed the activity of the luciferase reporter. This result further proved that the apoptosis promot-ing effect of miR-195occurs mainly through inhibition of Bcl-2expression.CONCLUSIONS AND PERSPECTIVESHere,we have summarized our current under-standing of miR-195,which is a member of the micro-15/16/195/424/497family of miRNAs.Numerous studies have suggested that miR-195promotes cell di-vision and apoptosis while inhibiting cell proliferation. The main pathophysiological changes in hypertension and cancer are cell proliferation.In transgenic mice,a 25-fold expression of miR-195induced cardiac growth with disorganization of cardiomyocytes and heart fail-ure[17].The mechanism of miR-195in cardiovascu-lar diseases is not completely understood.To explore whether miR-195had potential therapeutic effect in cardiovascular diseases and at which level of miR-195 would inhibit the incorrect proliferation.Different lev-els of mimics of miR-195was given to spontaneously hypertensive rats treated with or without captopril(80 mg/kg/day),the degree of myocardial hypertrophy and vascular proliferation and its molecular mecha-nism would be observed.From this experiment,we could know whether miR-195had potential therapeu-tic effect in cardiovascular diseases and at which level of miR195would inhibit the incorrect proliferation.J Biochem Molecular Toxicology DOI10:1002/jbtVolume25,Number6,2011BIOGENESIS AND ROLES OF miRNA-195407TABLE2.miR-195TargetsmRNA Validated by Function ReferenceWEE1Luciferase reporter assay,real-time PCR,western blot,immunostaining Protein-tyrosine kinase activity,proteinserine/threonine kinase activity,transferase activity,nucleotidebinding,ATP binding,proteinbinding,mitosis,protein amino acid phosphorylation,nucleus,cell cycle, regulation of progression throughcell cycle,cell division[20]CDK6Luciferase reporter assay,real-time PCR,western blot,immunohistochemistryPositive regulation of G1/S[8]Bcl-2Luciferase reporter assay,real-time PCR,western blot Mitochondrion,negative regulation ofcell proliferation,endoplasmicreticulum,apoptosis,regulation of apoptosis,release of cytochrome cfrom mitochondria,cytosol,mitochondrial outer membrane,protein binding,integral tomembrane,humoral immuneresponse,nucleus,membrane,identical protein binding,regulationof progression through cell cycle, antiapoptosis[21]BNDF Luciferase reporter assay,miRNAs microarray,solutionhybridization,ISH withLNA-modifiedoligonucleotides,immunoassay,chromatinimmunoprecipitation,neuronal transduction Axon target recognition,negativeregulation of neuroblastproliferation,growth factor activity, regulation of metabolism, mechanoreceptor differentiation,dendrite morphogenesis,positiveregulation of neuron differentiation,protein binding,extracellular space, cytoplasmic membrane-boundvesicle,regulation of retinalprogrammed cell death,neuron recognition,feeding behavior,nervous system development,antiapoptosis[15]ADP ribosylation factor-like2(Arl2)Luciferin-luciferase ATP assay,luciferase reporter assay,real-time PCR,western blotModulates cellular ATP levels[26]FMS-like tyrosine kinase3(FLT3)Luciferase reporter assay Extracellular space,protein binding,protein serine/threonine kinaseactivity,integral to membrane,lymphocyte differentiation[2]Further research is required to understand the reg-ulation of miR-195expression to detect gene networks that are regulated by this microRNA and to develop potent miR-195-based therapeutics.REFERENCES1.Choudhuri S.Small noncoding RNAs:biogenesis,func-tion,and emerging significance in toxicology.J Biochem Mol Toxicol2010;24(3):195–216.J Biochem Molecular Toxicology DOI10:1002/jbt408HE ET AL.Volume25,Number6,2011gos-Quintana M,Rauhut R,Meyer J,Borkhardt A,Tuschl T.New microRNAs from mouse and human.RNA 2003;9(2):175–179.ndgraf P,Rusu M,Sheridan R,Sewer A,Iovino N,Aravin A,Pfeffer S,Rice A,Kamphorst AO,Landthaler M,Lin C,Socci ND,Hermida L,Fulci V,Chiaretti S,Fo`a R, Schliwka J,Fuchs U,Novosel A,M¨uller RU,Schermer B, Bissels U,Inman J,Phan Q,Chien M,Weir DB,Choksi R, De Vita G,Frezzetti D,Trompeter HI,Hornung V,Teng G, Hartmann G,Palkovits M,Di Lauro R,Wernet P,Macino G,Rogler CE,Nagle JW,Ju J,Papavasiliou FN,Benzing T, Lichter P,Tam W,Brownstein MJ,Bosio A,Borkhardt A, Russo JJ,Sander C,Zavolan M,Tuschl T.A mammalian microRNA expression atlas based on small RNA library sequencing.Cell2007;129(7):1401–14.4.Flavin RJ,Smyth PC,Laios A,O’Toole SA,Barrett C,Finn SP,Russell S,Ring M,Denning KM,Li J,Aherne ST, Sammarae DA,Aziz NA,Alhadi A,Sheppard BL,Lao K, Sheils OM,O’Leary JJ.Potentially important microRNA cluster on chromosome17p13.1in primary peritoneal carcinoma.Mod Pathol2009;22(2):197–205.5.Heneghan HM,Miller N,Lowery AJ,Sweeney KJ,Newell J,Kerin MJ.Circulating microRNAs as novel minimally invasive biomarkers for breast cancer.Ann Surg2010;251(3):499–505.6.Ujifuku K,Mitsutake N,Takakura S,Matsuse M,SaenkoV,Suzuki K,Hayashi K,Matsuo T,Kamada K,Nagata I, Yamashita S.miR-195,miR-455–3p and miR-10a*are im-plicated in acquired temozolomide resistance in glioblas-toma multiforme cells.Cancer Lett2010;296(2):241–248.7.Guo J,Miao Y,Xiao B,Huan R,Jiang Z,Meng D,WangY.Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues.J Gastroen-terol Hepatol2009;24(4):652–657.8.Xu T,Zhu Y,Xiong Y,Ge YY,Yun JP,Zhuang SM.MicroRNA-195suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells.Hepatology2009;50(1):113–121.9.Soon PSH,Tacon LJ,Gill AJ.Bambach CP,Sywak MS,Campbell PR,Yeh MW,Wong SG,Clifton-Bligh RJ, Robinson BG,Sidhu SB.miR-195and miR-483–5p iden-tified as predictors of poor prognosis in adrenocortical cancer.Clin Cancer Res2009;15(24):7684–7692.10.Zanette DL,Rivadavia F,Molfetta GA,Barbuzano FG,Proto-Siqueira R,Falc˜a o RP,Zago MA,Silva-Jr.WA.miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukaemia.Braz J Med Biol Res 2007;40(11):1435–1440.11.Ichimi T,Enokida H,Okuno Y,Kunimoto R,ChiyomaruT,Kawamoto K,Kawahara K,Toki K,Kawakami K, Nishiyama K,Tsujimoto G,Nakagawa M,Seki N.Identi-fication of novel microRNA targets based on microRNA signatures in bladder cancer.Int J Cancer2009;125(2):345–352.12.Guo AY,Sun J,Jia P,Zhao Z.A novel microRNAand transcription factor mediated regulatory network in schizophrenia.BMC Syst Biol2010;4:10.13.Dinan TG.MicroRNAs as a target for novel antipsy-chotics:a systematic review of an emergingfield.Int J Neuropsychopharmacol2010;13(3):395–404.14.Mellions N,Huang HS,Baker SP,Galdzicka M,GinnsE,Akbarian S.Molecular determinants of dysregu-lated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia.Biol Psychiatry 2009;65(12):1006–1014.15.Mellios N,Huang HS,Grigorenko A,Rogaev E,AkbarianS.A set of differentially expressed miRNAs,including miR-30a-5p,act as post-transcriptional inhibitors BDNF in prefrontal cortex.Hum Mol Genet2008;17(19);3030–3042.16.Busk PK,Cirera S.MicroRNA profiling in early hyper-trophic growth of the left ventricle in rats.Biochem Bio-phys Res Commun2010;396(4):989–993.17.van Rooij E,Sutherland LB,Liu N,Williams AH,McAnally J,Gerard RD,Richardson JA,Olson EN.A sig-nature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure.Proc Natl Acad Sci U S A2006;103(48):18255–18260.18.Maes OC,Sarojini H,Wang E.Stepwise up-regulationof microRNA expression levels from replicating to re-versible and irreversible growth arrest states in WI-38 humanfibroblasts.J Cell Physiol2009;221(1):109–119. 19.Joglekar MV,Parekh VS,Mehta S,Bhonde RR,HardikarAA.MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neuro-genin3.Dev Biol2007;311(2):603–612.20.Qi J,Yu J-Y,Shcherbata HR,Mathieu J,Wang AJ,SealS,Zhou W,Stadler BM,Bourgin D,Wang L,Nelson A, Ware C,Raymond C,Lim LP,Magnus J,Ivanovska I, Diaz R,Ball A,Cleary MA,Ruohola-Baker H.microRNAs regulate human embryonic stem cell division.Cell Cycle 2009;8(22):3729–3741.21.Liu L,Chen L,Xu Y,Li R,Du X.microRNA-195pro-motes apoptosis and suppresses tumorigenicity of hu-man colorectal cancer cells.Biochem Biophys Res Com-mun2010;400(2):236–240.22.Zhang H,Su SB,Zhou QM,Lu YY.Differential expressionprofiles of microRNAs between breast cancer cells and mammary epithelial cells.Ai Zheng2009;28(5):493–499.23.Hu Y,Li P,Hao S,Liu L,Zhao J,Hou Y.Differentialexpression of microRNAs in the placenta of Chinese pa-tients with severe pre-eclampsia.Clin Chem Lab Med 2009;47(8):923–929.24.Tominaga Y,Li C,Wang RH,Deng CX.Murine Wee1plays a critical role in cell cycle regulation and pre-implantation stages of embryonic development.Int J Biol Sci2006;2:161–170.25.Price DM,Jin Z,Rabinovitch S,Campbell SD.Ectopicexpression of the Drosophila Cdk1inhibitory kinases, Wee1and Myt1,interferes with the second mitotic wave and disrupts pattern formation during eye development.Genetics2002;161:721–731.26.Nishi H,Ono K,Iwanaga Y,Horie T,Nagao K,TakemuraG,Kinoshita M,Kuwabara Y,Mori RT,Hasegawa K, Kita T,Kimura T.MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2in neona-tal rat cardiac myocytes.J Biol Chem2010;285(7):4920–4930.27.Gao XN,Lin J,Li YH,Wang LL,Yu L.Construction ofFLT33 -UTR-luciferase reporter vector and evaluation of its activity.Zhongguo Shi Yan Xue Za Zhi2010;18(3):694–697.28.Elmore S.Apoptosis:a review of programmed cell death.Toxicol Pathol.2007;35(4):495–516.J Biochem Molecular Toxicology DOI10:1002/jbt。