七年级数学尖子生培优竞赛专题辅导专题06 多边形角的计算
专题06 整式中规律探索的三种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)
专题06整式中规律探索的三种考法类型一、单项式规律性问题例.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2015次跳后它停的点所对应的数为()A.5B.3C.2D.1【答案】C【分析】先根据题意,求出前几次跳到的点的位置,发现这是一个循环,按照3、5、2、1成一个循环,再用解循环问题的方法求解.【详解】解:按照题意,第一次在1这个点,下一次就跳到3,再下一次跳到5,再下一次跳到2,2是偶数了,就逆时针跳一个点,又回到了1这个点,发现这是一个循环,3、5、2、1是一个循环,÷ ,20154=5033∴最后到2这个点.故选:C.【点睛】本题考查找规律,解题的关键是通过前几个数发现这是一个循环问题,利用解循环问题的方法求解.【变式训练1】按上面数表的规律.得下面的三角形数表:【点睛】本题考查了数字的变化类,找出数字的变化规律是解题的关键.类型三、图形类规律探索例.根小棒,搭2020个这样的小正方形需要小棒()根.A.8080B.6066C.6061D.6060【答案】C【分析】通过归纳与总结得出规律:每增加1个正方形,火柴棒的数量增加3根,由此求出第n个图形时需要火柴的根数的代数式,然后代入求值即可.【详解】解:搭2个正方形需要4+3×1=7根火柴棒;搭3个正方形需要4+3×2=10根火柴棒;搭n个这样的正方形需要4+3(n﹣1)=3n+1根火柴棒;∴搭2020个这样的正方形需要3×2020+1=6061根火柴棒;故选C.【点睛】本题考查了图形规律型:图形的变化.解题的关键是发现各个图形的联系,找出其中的规律,有一定难度,要细心观察总结.【变式训练1】下列每一个图形都是由一些同样大小的三角形按一定的规律排列组成的,其中第①个图形中有5个小三角形,第②个图形中有10个小三角形,第③个图形中有16个小三角形,按此规律,则第⑨个图中小三角形的个数是()A.69B.73C.77D.83【答案】B【分析】根据已知图形得出第⑨个图形中三角形的个数的特点,据此可得答案.【详解】解:∵第①个图形中三角形的个数5=1+2×(1-1),第②个图形中三角形的个数10=5+2×1+3,第③个图形中三角形的个数16=5+2×2+3+4,第④个图形中三角形的个数23=5+2×3+3+4+5,第⑤个图形中三角形的个数31=5+2×4+3+4+5+6,……【答案】57【分析】根据每个图形增加三角形的个数,找到规律即可.【详解】解:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…,第n个图形中三角形的个数是1+4(n﹣1)=(4n﹣3)个,当n=15时,4n﹣3=4×15﹣3=57.故答案为:57.【点睛】本题考查了图形的变化规律,解题关键是通过图形数量的变化发现规律,并应用规律解决问题.课后训练20192020)a a -。
部编数学七年级上册专题06整式的加减(11个题型)章末重难点题型(解析版)含答案
专题06 整式的加减(11个题型)章末重难点题型一、经典基础题题型1. 代数式的书写规范问题题型2. 根据要求列代数式题型3.整式的相关概念题型4.利用整式的相关概念求字母的取值题型5.利用同类项的概念求值题型6 . 添括号与去括号题型7. 整式“缺项”及与字母取值无关的问题题型8.整式的加减混合运算题型9.整式的化简求值题型10. 求代数式的值与整体思想题型11.整式的实际应用二、优选提升题题型1. 代数式的书写规范问题【解题技巧】代数式书写规范:①数和字母相乘,可省略乘号,并把数字写在字母的前面;②字母和字母相乘,乘号可以省略不写或用“ · ” 表示. 一般情况下,按26个字母的顺序从左到右来写;③后面带单位的相加或相减的式子要用括号括起来;④除法运算写成分数形式,即除号改为分数线;⑤带分数与字母相乘时,带分数要写成假分数的形式;⑥当“1”与任何字母相乘时,“1”省略不写;当“-1”乘以字母时,只要在那个字母前加上“-”号.例1.(2022·河北保定·七年级期末)将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成_______ ;(2)S÷t应写成_________;(3)123a a b´´-´,应写成______;(4)413x, 应写成______.变式1.(2022·河南信阳·七年级期末)下列各式书写符合要求的是( )A .1a b-¸-B .132xy C .ab ×5D .22x y -变式2.(2022·河南驻马店·七年级期末)下列各式符合代数式书写规范的是( )A .a8B .s tC .m ﹣1元D .125x 【答案】B【分析】本题根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进题型2. 根据要求列代数式【解题技巧】解决此类问题是要理解题意,将字母看作数字表示相应的量,列出代数式,注意代数式的书写规范.例1.(2022·山西临汾·七年级期末)某商品的售价为每件a元,为了参与市场竞争,商店按售价的九折再让利40元销售,此时该商品的售价为___________元.a-【答案】(0.940)【分析】根据题意列出代数式即可.【详解】商品的售价为每件a元,商店按售价的九折再让利40元销售,a-元.现在的售价:(0.940)a-.故答案为:(0.940)【点睛】本题考查了列代数式,读懂题意以及掌握代数式的书写规则是本题的关键.变式1.(2022·山东烟台·期末)阿宜跟同学到西餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为12份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.12-x-y B.12-y C.12-x+y D.12-x【答案】D【分析】根据点的饮料能确定在B和C餐中点了x份意大利面,根据题意可得点A餐12−x.【详解】解:x 杯饮料则在B 和C 餐中点了x 份意大利面,∴点A 餐为12−x ,故选D .【点睛】本题考查列代数式;能够根据题意,以意大利面为依据,准确列出代数式是解题的关键.变式2.(2022·山西·古县教育局教学研究室八年级期末)一辆快递货运车,运送快递到山上的菜鸟驿站,上山的速度是km/h m ,沿原路下山,下山的速度是km/h n ,则这辆快递货运车上山、下山的平均速度是_________km/h .题型3.整式的相关概念(1)代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式.(2)单项式及相关概念:数或字母的积叫单项式。
专题06 角的运算-2021-2022学年七年级数学上学期期末考试好题汇编(北师大版)
专题06 角的运算1.(2021·河北高邑·七年级期中)下列角中,能用1∠,ACB∠,C∠三种方法表示同一个角的是()A.B.C.D.2.(2021·河北·石家庄市第四十二中学七年级期中)钟表盘上指示的时间是11时20分,此刻时针与分针之间的夹角为()A.160︒B.150︒C.140︒D.130︒3.(2021·全国·七年级课时练习)某一时刻从海岛观测站P观测到海面上的两艘轮船,轮船A位于南偏东35︒方向上,轮船B位于北偏西50︒方向上,此时APB∠为().A.95︒B.155︒C.165︒D.175︒4.(2021·全国·七年级专题练习)下列说法中:(1)角的两边越长,角就越大;(2)AOB∠与BOA∠表示同一个角;(3)在角一边的延长线上取一点D;(4)角可以看作由一条射线绕着它的端点旋转而形成的图形.错误的个数是()A.1个B.2个C.3个D.4个5.(2021·黑龙江·哈尔滨市第四十九中学校期中)下列说法中正确的是()=,则点C ①两条射线组成的图形叫做角;②角的大小与边的长短无关;③若线段AC BC是线段AB的中点;④将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.A.1个B.2个C.3个D.4个6.(2021·全国·七年级专题练习)如图,钟表上显示的时间是12:20,此时,时针与分针的夹角是()A.100︒B.110︒C.115︒D.120︒7.(2021·重庆第二外国语学校七年级期中)如图,O为直线AB上一点,OC平分∠∠=︒∠=∠,则DOE,50,4AOD AOC BOD DOE∠的度数为()A.20︒B.18︒C.60︒D.80︒8.(2021·福建省福州第十九中学八年级期中)如图,将一副三角板摆放在直线AB上,∠ECD =∠FDG=90°,∠EDC=45°,设∠GDB=x,则用x的代数式表示∠EDF的度数为()A.x B.x﹣15°C.45°﹣x D.60°﹣x 9.(2021·河北迁安·七年级期中)如图,∠AOB=α,OA1、OB1分别是∠AOM和∠MOB的平分线,OA2、OB2分别是∠A1OM和∠MOB1的平分线,OA3、OB3分别是∠A2OM和∠MOB2的平分线,…,OA n、分别是∠A n-1OM和∠MOB n-1的平分线,则∠A n OB n的度数是()A.anB.12na-C.2naD.2an10.(2021·黑龙江·哈尔滨市第四十七中学七年级期中)如图,直线AB、CD相交于点O,射线O M平分∠AOC,ON∠OM,若∠AOM=35°,则∠CON的度数为()A.45°B.55°C.65°D.7511.(2021·全国·七年级专题练习)已知小岛A位于基地O的东南方向,货船B位于基地O 的北偏东50°方向,那么∠AOB的度数等于_____.12.(2021·辽宁西丰·七年级期末)某校下午放学的时间是4:30,此时时针与分针夹角的度数为______.13.(2021·全国·七年级课时练习)小华家、小明家、小艳家在平面图上的标点分别为A、B、C,小明家在小华家的正东方向,小艳家在小华家南偏西25︒方向,则∠=CAB________︒.14.(2021·河南·永城市教育体育局教研室七年级期末)如图,已知∠AOC = 160°,OD平分∠AOC ,∠AOB是直角,则∠BOD的大小是__________.15.(2021·全国·七年级单元测试)计算:65°19′48″+35°17′6″=___(将计算结果换算成度).16.(2021·陕西神木·七年级期末)如图,已知∠BAE=∠CAF=110°,∠CAE=60°,AD是∠BAF的平分线,则∠BAD的度数为___°.17.(2021·黑龙江·哈尔滨市第四十九中学校八年级期中)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,60AOB ∠=︒,AE 平分BAD ∠交BC 于点E ,连接OE ,则∠BOE 的度数是________.18.(2021·全国·七年级专题练习)计算: (1)23°45′36″+66°14′24″; (2)180°-98°24′30″; (3)15°50′42″×3; (4)88°14′48″÷4.19.(2021·全国·七年级专题练习)计算(1)把26.29°转化为度、分、秒表示的形式; (2)把33°24′36″转化成度表示的形式.20.(2021·辽宁太平·七年级期中)如图,33AOB ∠=︒,48BOC ∠=︒,23COD ∠=︒,OE 平分AOD ∠,求AOE ∠的度数.21.(2021·四川旌阳·七年级期末)已知O 为直线AB 上的一点,COE ∠是直角,OF 平分AOE ∠. (1)如图1,若28COF ∠=︒,则BOE ∠= ︒;(2)当射线OE 绕点O 逆时针旋转到如图2的位置时,∠BOE 与COF ∠之间有何数量关系?请说明理由.(3)在图3中,若65COF ∠=︒,在∠BOE 的内部是否存在一条射线OD ,使得12()2BOD AOF BOE BOD ∠+∠=∠-∠?若存在,请求出BOD ∠的度数;若不存在,请说明理由.22.(2021·辽宁抚顺·七年级期末)如图1,A 、O 、B 三点在同一直线上,∠BOD 与∠BOC 互补.(1)请判断∠AOC 与∠BOD 大小关系,并验证你的结论;(2)如图2,若OM 平分∠AOC ,ON 平分∠AOD ,∠BOD =30°,请求出∠MON 的度数.23.(2021·全国·七年级课时练习)如图,OM 是AOC ∠的平分线,ON 是BOC ∠的平分线. (1)如图1,当AOB ∠是直角,60BOC ∠=︒时, NOC ∠=________,MOC ∠=________ ,MON ∠=________;(2)如图2,当AOB α∠=,60BOC ∠=︒时,猜想:MON ∠与α的数量关系,并说明理由; (3)如图3,当AOB α∠=,BOC β∠= (β为锐角)时,猜想:MON ∠与α、β有数量关系吗?如果有,请写出结论,并说明理由.24.(2021·全国·七年级单元测试)如图1,点O 为直线AB 上一点,过O 点作射线OC ,使∠BOC =120°.将一块直角三角板的直角顶点放在点O 处,边OM 与射线OB 重合,另一边ON 位于直线AB 的下方.(1)将图1的三角板绕点O 逆时针旋转至图2,使边OM 在∠BOC 的内部,且恰好平分∠BOC ,问:此时ON 所在直线是否平分∠AOC ?请说明理由;(2)将图1中的三角板绕点O 以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t 秒,在旋转的过程中,ON 所在直线或OM 所在直线何时会恰好平分∠AOC ?请求所有满足条件的t 值;(3)将图1中的三角板绕点O 顺时针旋转至图3,使边ON 在∠AOC 的内部,试探索在旋转过程中,∠AOM 和∠CON 的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.1.(2021·全国·七年级专题练习)如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒2.(2021·全国·七年级课时练习)将矩形ABCD 沿AE 折叠,得如图所示的图形,已知'70CED ∠=︒,则AED ∠的大小是( ).A .50︒B .55︒C .60︒D .70︒3.(2021·全国·七年级课时练习)己知:2AOB AOM ∠=∠;②12BOM AOB ∠=∠;③12AOM BOM AOB ∠=∠=∠;④AOM BOM AOB ∠+∠=∠,其中能够得到射线OM 是AOB∠的平分线的有( ). A .0个 B .1个C .2个D .3个4.(2021·四川绵阳·七年级期末)如图,在竖直墙角AOB 中,可伸长的绳子CD 的端点C 固定在OA 上,另一端点D 在OB 上滑动,在保持绳子拉直的情况下,30BOE ∠=︒,BDC ∠的平分线DF 与OE 交与点E ,DCO α∠=,当CE DE ⊥时,则2OEC α∠+=( )A .120︒B .135︒C .150︒D .152︒5.(2021·辽宁兴城·七年级期末)如图,已知90AOD ∠=︒,90COB ∠=︒,OE 是COD ∠的平分线.有下列关系式:①AOC BOD ∠=∠;②AOE BOE ∠=∠;③90AOE COE ∠+∠=︒;④180AOB COD ∠+∠=︒,其中一定正确的个数是( ).A .4B .3C .2D .16.(2021·重庆酉阳·七年级期末)如图是一个时钟某一时刻的简易图,图中的12条短线刻度位置是时钟整点时时针(短针)位置,根据图中时针和分针(长针)位置,该时钟显示时间是( )A .1011点B .78点C .56点D .23~点7.(2021·全国·七年级专题练习)如图,点O 为线段AD 外一点,点M ,C ,B ,N 为AD 上任意四点,连接OM ,OC ,OB ,ON ,下列结论不正确的是( )A .以O 为顶点的角共有15个B .若MC CB =,MN ND =,则2CD CN = C .若M 为AB 中点,N 为CD 中点,则()12MN AD CB =- D .若OM 平分AOC ∠,ON 平分BOD ∠,5AOD COB ∠=∠,则()32MON MOC BON ∠=∠+∠8.(2021·全国·七年级专题练习)在锐角AOB ∠内部由O 点引出3种射线,第1种是将AOB ∠分成10等份;第2种是将AOB ∠分成12等份;第3种是将AOB ∠分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .6669.(2021·全国·七年级专题练习)如图,点D 在∠AOB 的平分线OC 上,点E 在OA 上,ED ∠OB ,∠AOB =50°,则∠ODE 的度数是__.10.(2020·浙江杭州·七年级期末)如图,已知AOC Rt ∠=∠,OB 平分AOC ∠,20.5COD ∠=︒,OD 平分∠BOE ,则AOE ∠=_______︒.11.(2021·全国·七年级专题练习)如图,射线OE ,OA ,OD 均在BOC ∠内部,且0180BOC ︒<∠<︒.OE 平分BOC ∠,OD 平分AOC ∠.请从A ,B 两题中任选一题作答.我选择______.A .若30AOC ∠=︒,130BOC ∠=︒,则DOE ∠的度数为______︒.B .若AOB α∠=︒,则DOE ∠的度数为______︒.(用含α的式子表示)12.(2021·黑龙江齐齐哈尔·七年级期末)射线OC 平分∠AOB ,从点O 引出一条射线OD ,使∠AOB =3∠AOD ,若∠COD =20°,则∠AOB 的度数为_____.13.(2021·四川成都·七年级期末)已知OC 是∠AOB 的平分线,∠BOD =13∠COD ,OE 平分∠COD ,设∠AOB =β,则∠BOE =_____.(用含β的代数式表示)14.(2021·江西余干·七年级期末)在同一平面内,90AOB ∠=︒,20AOC ∠=︒,50COD =︒∠,COD ∠至少有一边在AOB ∠内部,则BOD ∠的度数为___.15.(2020·辽宁皇姑·七年级期末)如图,在平面内,点O 是直线AC 上一点,60AOB ∠=,射线OC 不动,射线OA ,OB 同时开始绕点O 顺时针转动,射线OA 首次回到起始位置时两线同时停止转动,射线OA ,OB 的转动速度分别为每秒40和每秒20.若转动t 秒时,射线OA ,OB ,OC 中的一条是另外两条组成角的角平分线,则t =______秒.16.(2020·北京·七年级期末)已知:如图,∠AOB =90°,从点O 出发引射线OC (点C 在∠AOB 的外部),OD 平分∠BOC ,OE 平分∠AOD .(1)若∠BOC =40°,请依题意补全图形,并求∠BOE 的度数;(2)若∠BOC =α(0°< α <180°),请直接写出∠BOE 的度数(用含α的代数式表示).17.(2021·河北·石家庄市第四十二中学七年级期中)已知∠AOB =90°,(1)如图1,OE、OD分别平分∠AOB和∠BOC,若∠EOD=64°,则∠BOC是°;(2)如图2,OE、OD分别平分∠AOC和∠BOC,若∠BOC=40°,求∠EOD的度数(写推理过程).(3)若OE、OD分别平分∠AOC和∠BOC,∠BOC=α(0°<α<180°),则∠EOD的度数是(在稿纸上画图分析,直接填空).18.(2021·辽宁大石桥·八年级期中)已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=______;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当PAB的周长最小时,求∠APB的度数.19.(2021·河北·邯郸市永年区教育体育局教研室七年级期中)(问题)如图①,点C是线段AB上一点,点D,E分别是线段AC,BC的中点,若线段AB=26cm,则线段DE的长为cm.(拓展)在(问题)中,若把条件“如图①,点C 是线段AB 上一点”改为“点C 是直线 AB 上一点”,其余条件不变,则(问题)中DE 的长是否会发生变化?请画出示意图并求解. (应用)(1)如图②,∠AOB =α,点C 在∠AOB 内部,射线OM ,ON 分别平分∠AOC ,∠BOC ,则∠MON 的大小为 (用含字母α的式子表示).(2)如图③,在(1)中,若点C 在∠AOB 外部,且射线OC 与射线OB 在OA 所在直线的同侧,其他条件不变,则(1)中的结论是否成立,若成立,请写出求解过程;若不成立,请说明理由.图①20.(2022·河北·石家庄市第四十二中学八年级期中)已知90AOB ∠=︒,(1)如图1,OE 、OD 分别平分AOB ∠和BOC ∠,若64EOD ∠=︒,则BOC ∠是______︒;(2)如图2,OE 、OD 分别平分AOC ∠和BOC ∠,若40BOC ∠=︒,求EOD ∠的度数(写推理过程).(3)若OE 、OD 分别平分AOC ∠和BOC ∠,(0180)BOC αα∠=︒<<︒,则EOD ∠的度数是________(在稿纸上画图分析,直接填空).21.(2021·河北滦州·七年级期中)已知:如图①所示,OC 是AOB ∠内部一条射线,且OD 平分AOC ∠,OE 平分BOC ∠.(1)若80AOC ∠=︒,50BOC ∠=︒,则EOD ∠的度数是______.(2)若AOC α∠=,BOC β∠=,求EOD ∠的度数,并根据计算结果直接写出EOD ∠与AOB ∠之间的数量关系.(写出计算过程)(3)如图③所示,射线OC 在AOB ∠的外部,且OD 平分AOC ∠,OE 平分BOC ∠.试着探究EOD ∠与AOB ∠之间的数量关系.(写出详细推理过程)22.(2021·全国·七年级期末)已知∠AOB 和∠COD 均为锐角,∠AOB >∠COD ,OP 平分∠AOC ,OQ 平分∠BOD ,将∠COD 绕着点O 逆时针旋转,使∠BOC =α(0≤α<180°) (1)若∠AOB =60°,∠COD =40°, ①当α=0°时,如图1,则∠POQ = ; ②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ 的度数;(2)若∠AOB =m °,∠COD =n °,m >n ,则∠POQ = ,(请用含m 、n 的代数式表示).专题06 角的运算1.(2021·河北高邑·七年级期中)下列角中,能用1∠,ACB∠三种方法表示同一个角∠,C的是()A.B.C.D.【答案】C【分析】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,据此分析即可【详解】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,A、B、D选项中,点C为顶点的角存在多个,故不符合题意故选C【点睛】本题考查了角的表示方法,掌握角的表示方法是解题的关键.角的表示方法有三种:(1)用三个字母及符号“∠”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.2.(2021·河北·石家庄市第四十二中学七年级期中)钟表盘上指示的时间是11时20分,此刻时针与分针之间的夹角为( ) A .160︒ B .150︒ C .140︒ D .130︒【答案】C 【分析】根据钟表的特点,可以计算出钟表上显示11时20分,则此刻时针与分针的夹角的度数. 【详解】解:当钟表上显示11时20分时,分针指着4,时针处于11和12之间,走了11到12之间的13, 由钟表的特点可知,每个大格是30°,如1到2,2到3都是30°,故钟表上显示11时20分,则此刻时针与分针的夹角的度数为:4×30°+30°×23=140°,故答案为:C . 【点睛】本题考查钟面角,解答本题的关键是明确钟面角的特点,求出相应的角的度数.3.(2021·全国·七年级课时练习)某一时刻从海岛观测站P 观测到海面上的两艘轮船,轮船A 位于南偏东35︒方向上,轮船B 位于北偏西50︒方向上,此时APB ∠为( ). A .95︒ B .155︒C .165︒D .175︒【答案】C 【分析】根据题意,作出示意图,进而根据方位角的表示方法可得APB ∠的度数 【详解】如图,依题意35,50APD BPE ∠=︒∠=︒3590(9050)165APB APD CPD CPB ∴∠=∠+∠+∠=︒+︒+︒-︒=︒故选C 【点睛】本题考查了方位角的计算,掌握方位角的表示方法是解题的关键.4.(2021·全国·七年级专题练习)下列说法中:(1)角的两边越长,角就越大;(2)AOB ∠与BOA ∠表示同一个角;(3)在角一边的延长线上取一点D ;(4)角可以看作由一条射线绕着它的端点旋转而形成的图形.错误的个数是( ) A .1个 B .2个C .3个D .4个【答案】B 【分析】由共一个端点的两条射线组成的图形叫做角,角也可以看作由一条射线绕着它的端点旋转而形成的图形,角的大小与角的两边张开的程度有关;根据角的概念、表示及大小逐一进行判断即可. 【详解】(1)角的大小与角的两边张开的程度有关,与角的两边长短无关,故说法错误; (2)AOB ∠与BOA ∠表示同一个角,此说法正确;(3)角的两边是两条射线,射线是向一端无限延伸的,故此说法错误; (4)此说法正确; 所以错误的有2个 故选:B . 【点睛】本题考查了角的概念、角的大小、角的表示等知识,掌握这些知识是关键. 5.(2021·黑龙江·哈尔滨市第四十九中学校期中)下列说法中正确的是( )①两条射线组成的图形叫做角;②角的大小与边的长短无关;③若线段AC BC =,则点C是线段AB的中点;④将一根细木条固定在墙上,至少需要两根钉子,是因为两点确定一条直线.A.1个B.2个C.3个D.4个【答案】B【分析】①根据有公共端点的两条射线组成的图形叫做角,即可判断;②根据角的特点判断即可;③A、B、C三点不一定在一条直线上,即可判断;④根据两点确定一条直线,即可判断.【详解】①有公共端点的两条射线组成的图形叫做角,①不正确,故不符合题意;②角的大小与边的长短无关,②正确,故符合题意;=,则三点不一定在一条直线上,③不正确,故不符合题意;③若线段AC BC④两点确定一条直线,④正确,故符合题意,∴正确的有2个,故选:B.【点睛】本题主要考查角的定义,中点定义以及两点确定一条直线,属于基础题,熟练掌握这些概念是解题的关键.6.(2021·全国·七年级专题练习)如图,钟表上显示的时间是12:20,此时,时针与分针的夹角是()A.100︒B.110︒C.115︒D.120︒【答案】B【分析】根据时针在钟面上每分钟转0.5,分针每分钟转6,然后分别求出时针、分针转过的角度,即可得到答案.【详解】解:∠时针在钟面上每分钟转0.5,分针每分钟转6,∠钟表上12时20分钟时,时针转过的角度为0.52010⨯=,⨯=,分针转过的角度为620120所以12:20时分针与时针的夹角为12010110-=.故选B.【点睛】本题主要考查了钟面角,解题的关键在于能够熟练掌握时针和分针每分钟所转过的角度是多少.7.(2021·重庆第二外国语学校七年级期中)如图,O为直线AB上一点,OC平分,50,4AOD AOC BOD DOE∠∠=︒∠=∠,则DOE∠的度数为()A.20︒B.18︒C.60︒D.80︒【答案】A【分析】根据角平分线的定义得到∠COD,从而得到∠BOD,再根据∠BOD=4∠DOE即可求出结果.【详解】解:∠OC平分∠AOD,∠∠AOC=∠COD=50°,∠∠BOD=180°-2×50°=80°,∠∠BOD=4∠DOE,∠∠DOE=14∠BOD=20°,故选A.【点睛】本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.8.(2021·福建省福州第十九中学八年级期中)如图,将一副三角板摆放在直线AB上,∠ECD =∠FDG=90°,∠EDC=45°,设∠GDB=x,则用x的代数式表示∠EDF的度数为()A.x B.x﹣15°C.45°﹣x D.60°﹣x【答案】C【分析】根据已知条件和平角的定义即可得到结论. 【详解】解:∠∠FDG =90°,∠EDC =45°,∠GDB =x , ∠∠EDF =180°﹣∠CDE ﹣∠GDB ﹣∠FDG =180°﹣45°﹣x ﹣90° =45°﹣x , 故选:C . 【点睛】本题考查了平角的定义,熟练掌握平角的定义是解题的关键.9.(2021·河北迁安·七年级期中)如图,∠AOB =α,OA 1、OB 1分别是∠AOM 和∠MOB 的平分线,OA 2、OB 2分别是∠A 1OM 和∠MOB 1的平分线,OA 3、OB 3分别是∠A 2OM 和∠MOB 2的平分线,…,OA n 、分别是∠A n -1OM 和∠MOB n -1的平分线,则∠A n OB n 的度数是( )A .a nB .12n a - C .2na D .2a n 【答案】C 【分析】由∠AOB =α,OM 是∠AOB 中的一射线,可得∠AOM +∠MOB =α,由OA 1、OB 1分别是∠AOM 和∠MOB 的平分线,可得∠A 1OM =12AOM ∠,∠B 1OM =12BOM ∠,可得∠A 1OB 1=∠A 1OM +∠B 1OM =12AOM∠+12BOM ∠=12α,由OA 2、OB 2分别是∠A 1OM 和∠MOB 1的平分线,可求∠A 2OB 2=∠A 2OM +∠B 2OM =112A OM ∠+112B OM ∠=212α,由OA 3、OB 3分别是∠A 2OM 和∠MOB 2的平分线,可求∠A 3OB 3=∠A 3OM +∠B 3OM =212A OM ∠+212B OM ∠=312α,…,然后根据规律可求∠A n OB n =12n α.【详解】解:∠∠AOB =α,OM 是∠AOB 中的一射线, ∠∠AOM +∠MOB =α,∠OA 1、OB 1分别是∠AOM 和∠MOB 的平分线,∠∠A 1OM =12AOM ∠,∠B 1OM =12BOM ∠ ∠∠A 1OB 1=∠A 1OM +∠B 1OM =12AOM ∠+12BOM ∠=()111222AOM BOM AOB α∠+∠=∠=, ∠OA 2、OB 2分别是∠A 1OM 和∠MOB 1的平分线,∠∠A 2OM =112A OM ∠,∠B 2OM =112B OM ∠, ∠∠A 2OB 2=∠A 2OM +∠B 2OM =112A OM ∠+112B OM ∠=()11112111222AOM B OM AOB α∠+∠=∠=, ∠OA 3、OB 3分别是∠A 2OM 和∠MOB 2的平分线,∠∠A 3OM =212A OM ∠,∠B 3OM =212B OM ∠, ∠∠A 3OB 3=∠A 3OM +∠B 3OM =212A OM ∠+212B OM ∠=()22223111222A OMB OM A OB α∠+∠=∠=, …,∠OA n 、分别是∠A n -1OM 和∠MOB n -1的平分线,∠∠A n OM =112n A OM -∠,∠B n OM =112n B OM -∠, ∠∠A n OB n =∠A n -1OM +∠B n -1OM =112n A OM -∠+112n B OM -∠=()1111111222n n n n n A OM B OM A OB α----∠+∠=∠=, 故选择C .【点睛】本题考查角的和,与角平分线的定义,规律探索,利用角平分线求出∠A 1OB 1,∠A 2OB 2,∠A 3OB 3,找出规律是解题关键.10.(2021·黑龙江·哈尔滨市第四十七中学七年级期中)如图,直线AB 、CD 相交于点O ,射线O M 平分∠AOC ,ON ∠OM ,若∠AOM =35°,则∠CON 的度数为( )A .45°B .55°C .65°D .75【答案】B【分析】根据角平分线的定义、垂线的定义、对顶角和邻补角的定义计算即可;【详解】∠O M 平分∠AOC ,∠AOM =35°,∠35MOC AOM ∠=∠=︒,∠ON ∠OM ,∠90MON ∠=︒,∠903555CON ∠=︒-︒=;故选B .【点睛】本题主要考查了角平分线的定义、垂线的性质和对顶角的定义,准确计算是解题的关键.11.(2021·全国·七年级专题练习)已知小岛A 位于基地O 的东南方向,货船B 位于基地O 的北偏东50°方向,那么∠AOB 的度数等于_____.【答案】85︒【分析】根据方位角的概念,画图正确表示出A ,B 的方位,易得结果.【详解】解:如图:250∠=︒,390240∴∠=︒-∠=︒,∠小岛A 位于基地O 的东南方向∠145∠=︒,13454085AOB ∴∠=∠+∠=︒+︒=︒,故答案为:85︒.【点睛】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A ,B 的方位,注意东南方向是45度是解答此题的关键.12.(2021·辽宁西丰·七年级期末)某校下午放学的时间是4:30,此时时针与分针夹角的度数为______.【答案】45°【分析】根据钟面平均分成12份,可得每份是30°,4点30分时,时针分针相差1.5格,根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:4:30时,时针与分针的夹角的度数是30°×1.5=45°,故答案为:45°.【点睛】本题考查了钟面角,能够正确利用了时针与分针相距的份数乘以每份的度数进行计算是解题的关键.13.(2021·全国·七年级课时练习)小华家、小明家、小艳家在平面图上的标点分别为A 、B 、C ,小明家在小华家的正东方向,小艳家在小华家南偏西25︒方向,则∠=CAB ________︒.【答案】115【分析】由题意,正确的画出方向角,然后进行计算,即可得到答案.【详解】解:根据题意,如图∠9025115CAB ∠=︒+︒=︒.故答案为:115.【点睛】本题考查了方位角,解题的关键是正确的画出图形,从而进行解题.14.(2021·河南·永城市教育体育局教研室七年级期末)如图,已知∠AOC = 160°,OD 平分∠AOC ,∠AOB 是直角,则∠BOD 的大小是__________.【答案】10°【分析】根据角平分线的性质求出∠AOD,再用∠AOB-∠AOD即可求出∠BOD.【详解】解:∠OD平分∠AOC∠∠AOD=∠DOC=160°÷2=80°又∠AOB=90°∠∠DOB=∠AOB-∠AOD=90°-80°=10°故答案为10°【点睛】本题考查角平分线的性质,掌握这一点是解题关键.15.(2021·全国·七年级单元测试)计算:65°19′48″+35°17′6″=___(将计算结果换算成度).【答案】100.615°【分析】先把各度、分、秒相加,再结合度、分、秒的进制是60进行计算解答即可.【详解】65°19′48″+35°17′6″=100°36′54″,∠54÷60=0.9,(36+0.9)÷60=0.615,100+0.615=100.615,∠100°36′54″=100.615°.故答案是:100.615°.【点睛】本题考查角度的计算和度、分、秒的换算.掌握度、分、秒的进制是60是解答本题的关键.16.(2021·陕西神木·七年级期末)如图,已知∠BAE=∠CAF=110°,∠CAE=60°,AD是∠BAF 的平分线,则∠BAD的度数为___°.【答案】80【分析】由∠BAE =110°,∠CAE =60°,可得∠BAC =110°﹣60°=50°,结合∠CAF =110°,可得∠BAF =110°+50°=160°,再由AD 平分∠BAF 即可得∠BAD =80°.【详解】∠∠BAE =110°,∠CAE =60°,∠∠BAC =110°﹣60°=50°,又∠∠CAF =110°,∠∠BAF =110°+50°=160°,又∠AD 是∠BAF 的角平分线,∠∠BAD =12∠BAF =12×160°=80°.故答案为:80.【点睛】本题主要考查了角平分线的定义和几何中角度的计算,解题的关键在于能够熟练掌握角平分线的定义.17.(2021·黑龙江·哈尔滨市第四十九中学校八年级期中)如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,60AOB ∠=︒,AE 平分BAD ∠交BC 于点E ,连接OE ,则∠BOE 的度数是________.【答案】75︒【分析】由矩形的性质得出90BAD ABC ∠=∠=︒,OA OB =,证明AOB ∆是等边三角形,得出AB OB =,60ABO ∠=︒,证明出ABE ∆是等腰三角形,得出AB BE =,因此BE OB =,由等腰三角形的性质即可得出∠BOE 的大小.【详解】 解:四边形ABCD 是矩形,90BAD ABC ∴∠=∠=︒,12OA AC =,12OB BD =,AC BD = , OA OB ∴=,60AOB ∠=︒, AOB ∴∆是等边三角形,AB OB ∴=,60ABO ∠=︒,30OBE =∴∠︒,AE ∵平分BAD ∠,45BAE ∴∠=︒,ABE ∴∆是等腰直角三角形,AB BE ∴=,BE OB ∴= ,()118030752BOE ∠∴=︒-︒=︒ 故答案为:75︒.【点睛】本题考查了矩形的性质、等边三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.18.(2021·全国·七年级专题练习)计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3;(4)88°14′48″÷4.【答案】(1)90°;(2)81°35′30″;(3)47°32′6″;(4)22°3′42″【分析】类比与小数的计算方法,计算度分秒即可,注意满60进一,借一当60.【详解】解:(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=179°59′60″-98°24′30″=81°35′30″;(3)15°50′42″×3=45°150′126″=45°152′6″=47°32′6″;(4)88°14′48″÷4=22°3′42″.【点睛】本题考查了角度的四则运算以及度分秒的换算,注意度分秒之间的换算:1度=60分,1分=60秒.19.(2021·全国·七年级专题练习)计算(1)把26.29°转化为度、分、秒表示的形式; (2)把33°24′36″转化成度表示的形式.【答案】(1)26°17′24″;(2)33.41°【分析】根据度、分、秒之间的换算关系求解.【详解】解:(1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″(2)33°24′36″=33°+24′+36×160'⎛⎫ ⎪⎝⎭=33°+24′+0.6′=33°+24.6′=33°+24.6×160⎛⎫ ⎪⎝⎭°=33.41° 【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.20.(2021·辽宁太平·七年级期中)如图,33AOB ∠=︒,48BOC ∠=︒,23COD ∠=︒,OE 平分AOD ∠,求AOE ∠的度数.【答案】52︒【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得12∠=∠AOE AOD ,进而得到答案.【详解】解:∠33AOB ∠=︒,48BOC ∠=︒,23COD ∠=︒,∠∠AOD =∠AOB +∠BOC +∠COD =33°+48°+23°=104°,∠OE 平分AOD ∠, ∠111045222AOE AOD ∠=∠=⨯︒=︒ . 【点睛】此题主要考查了角平分线的性质,解题的关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.21.(2021·四川旌阳·七年级期末)已知O 为直线AB 上的一点,COE ∠是直角,OF 平分AOE ∠. (1)如图1,若28COF ∠=︒,则BOE ∠= ︒;(2)当射线OE 绕点O 逆时针旋转到如图2的位置时,∠BOE 与COF ∠之间有何数量关系?请说明理由.(3)在图3中,若65COF ∠=︒,在∠BOE 的内部是否存在一条射线OD ,使得12()2BOD AOF BOE BOD ∠+∠=∠-∠?若存在,请求出BOD ∠的度数;若不存在,请说明理由.【答案】(1)56°;(2)∠BOE =2∠COF ,理由见解析;(3)存在,16°【分析】(1)首先根据28COF ∠=︒,COE ∠是直角,求出∠EOF =62°,然后根据OF 平分AOE ∠求出∠AOE =124°,最后根据平角的性质即可求出∠BOE 的度数;(2)首先根据COE ∠是直角,OF 平分AOE ∠表示出∠AOE =180°﹣2∠COF ,然后根据平角的性质即可得到∠BOE 与COF ∠之间的数量关系;(3)首先根据COE ∠是直角,OF 平分AOE ∠求出∠EOF =25°,∠BOE =130°,然后代入12()2BOD AOF BOE BOD ∠+∠=∠-∠求解即可. 【详解】解:(1)∠∠COF =28°,∠COE =90°,∠∠EOF =90°﹣28°=62°,∠OF 平分∠AOE ,∠∠AOE =2∠EOF =124°,∠∠BOE =180°﹣∠AOE =56°;(2)结论:∠BOE =2∠COF ;理由如下:∠∠COE =90°,∠∠EOF =90°﹣∠COF ,∠OF 平分∠AOE ,∠∠AOE =2∠EOF =180°﹣2∠COF ,∠∠BOE =180°﹣∠AOE =180°﹣(180°﹣2∠COF )=2∠COF ;(3)存在;∠∠COF =65°,∠COE =90°,∠EOF =25°,∠OF 平分∠AOE ,∠∠AOF =∠EOF =25°,∠∠BOE =130°,∠2∠BOD +∠AOF =12(∠BOE ﹣∠BOD ),即2∠BOD +25°=12(130°﹣∠BOD ),解得∠BOD =16°.【点睛】此题考查了角平分线的有关运算,平角和直角的性质,解题的关键是正确分析图形中各角之间的关系.22.(2021·辽宁抚顺·七年级期末)如图1,A 、O 、B 三点在同一直线上,∠BOD 与∠BOC 互补.(1)请判断∠AOC与∠BOD大小关系,并验证你的结论;(2)如图2,若OM平分∠AOC,ON平分∠AOD,∠BOD=30°,请求出∠MON的度数.【答案】(1)∠AOC=∠BOD,证明见解析;(2)60°【分析】(1)根据补角的性质即可求解;(2)根据角平分线的定义以及等量关系列出方程求解即可.【详解】解:(1)∠AOC=∠BOD,理由如下:∠A,O,B三点共线,∠∠AOC+∠BOC=180°,∠∠AOC与∠BOC互补,∠∠BOD与∠BOC互补,∠∠AOC=∠BOD;(2)∠∠BOD=30°,∠∠AOC=∠BOD=30°,∠OM平分∠AOC,∠1152AOM AOC=∠=∠,∠∠AOD+∠BOD=180°,∠∠AOD=180°﹣30°=150°,∠ON平分∠AOD,∠1752AON AOD=∠=∠,∠∠MON=∠AON﹣∠AOM=60°.【点睛】本题考查的是角的有关计算和角平分线的定义,正确理解并灵活运用角平分线的定义是解题的关键.23.(2021·全国·七年级课时练习)如图,OM是AOC∠的平分线,ON是BOC∠的平分线.(1)如图1,当AOB ∠是直角,60BOC ∠=︒时, NOC ∠=________,MOC ∠=________ ,MON ∠=________;(2)如图2,当AOB α∠=,60BOC ∠=︒时,猜想:MON ∠与α的数量关系,并说明理由; (3)如图3,当AOB α∠=,BOC β∠= (β为锐角)时,猜想:MON ∠与α、β有数量关系吗?如果有,请写出结论,并说明理由.【答案】(1)30,75︒,45︒;(2)12MON ∠=α,理由见解析;(3)有,12MON ∠=α,理由见解析. 【分析】(1)观察图形,结合角平分线的定义可得11603022NOC BOC ∠∠==⨯︒=︒,09060150AOC AOB B C ∠=∠+∠=︒+︒=︒,111507522MOC AOC ∠∠===︒⨯︒即可求解;(2)观察图形,结合角平分线的定义可得60AOC AOB BOC ∠∠∠α=+=+︒,11603022NOC BOC ∠∠==⨯︒=︒,11303022MON MOC NOC ∠∠∠αα=-=+︒-︒=即可求解;(3)观察图形,结合角平分线的定义可得AOC AOB BOC αβ∠=∠+∠=+,1122NOC BOC β∠=∠=,111()222MON MOC NOC ∠∠∠αββα=-=+-=即可求解;【详解】解:(1)∠ON 平分BOC ∠,∠11603022NOC BOC ∠∠==⨯︒=︒,∠09060150AOC AOB B C ∠=∠+∠=︒+︒=︒, ∠OM 是AOC ∠的平分线,∠111507522MOC AOC ∠∠===︒⨯︒,∠753045MON MOC NOC ∠∠∠=-=︒-=︒︒; 故答案为:30,75︒,45︒;(2)12MON ∠=α.理由:60AOC AOB BOC ∠∠∠α=+=+︒,OM 是AOC ∠的平分线,()1116030222MOC AOC ∠∠αα︒==+=+︒,因为ON 平分BOC ∠, 所以11603022NOC BOC ∠∠==⨯︒=︒,11303022MON MOC NOC ∠∠∠αα=-=+︒-︒=;(3)12MON ∠=α.理由:因为ON 平分BOC ∠,所以1122NOC BOC β∠=∠=,又因为AOC AOB BOC αβ∠=∠+∠=+,OM 是AOC ∠的平分线,所以11()22MOC AOC ∠∠αβ==+,111()222MON MOC NOC ∠∠∠αββα=-=+-=.【点睛】本题主要考查了角平分线的定义及角的运算,解题的关键是掌握角平分线的定义并通过观察图形找到角与角之间的关系.24.(2021·全国·七年级单元测试)如图1,点O 为直线AB 上一点,过O 点作射线OC ,使∠BOC =120°.将一块直角三角板的直角顶点放在点O 处,边OM 与射线OB 重合,另一边ON 位于直线AB 的下方.(1)将图1的三角板绕点O 逆时针旋转至图2,使边OM 在∠BOC 的内部,且恰好平分∠BOC ,问:此时ON 所在直线是否平分∠AOC ?请说明理由;(2)将图1中的三角板绕点O 以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t 秒,在旋转的过程中,ON 所在直线或OM 所在直线何时会恰好平分∠AOC ?请求所有满足条件的t 值;(3)将图1中的三角板绕点O 顺时针旋转至图3,使边ON 在∠AOC 的内部,试探索在旋转过程中,∠AOM 和∠CON 的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.【答案】(1)直线ON 平分∠AOC ,见解析;(2)10秒或40秒或25秒或55秒;(3)不变,30°【分析】(1)直线ON平分∠AOC,设ON的反向延长线为OD,已知OM平分∠BOC,根据角平分线的定义可得∠MOC=∠MOB,又由OM∠ON,根据垂直的定义可得∠MOD=∠MON=90°,所以∠COD=∠BON,再根据对顶角相等可得∠AOD=∠BON,即可∠COD=∠AOD,结论得证;(2)分直线ON平分∠AOC时和当直线OM平分∠AOC时两种情况进行讨论求解即可;(3)设∠AON=x°,则∠CON=60°-x°,∠AOM=90°-x°,即可得到∠AOM-∠CON=30°.【详解】解:(1)直线ON平分∠AOC理由:设ON的反向延长线为OD,∠OM平分∠BOC,∠∠MOC=∠MOB,又∠OM∠ON,∠∠MOD=∠MON=90°,∠∠COD=∠BON,又∠∠AOD=∠BON,∠∠COD=∠AOD,∠OD平分∠AOC,即直线ON平分∠AOC;(2)①当直线ON平分∠AOC时,三角板旋转角度为60°或240°,∠旋转速度为6°/秒,∠t=10秒或40秒;②当直线OM平分∠AOC时,三角板旋转角度为150°或330°,∠t=25秒或55秒,综上所述:t=10秒或40秒或25秒或55秒;(3)设∠AON=x°,则∠CON=60°-x°,∠AOM=90°-x°,。
七年级数学尖子生培优竞赛专题辅导第十五讲 多边形的有关问题(含答案)
第十五讲 多边形的有关问题趣题引路】如图15-1,用黑白两种颜色的正六边形地砖按如下所示的规律,拼成若干个图案. (1)第四个图案中有白色地面砖 块. (2)第n 个图案中有白色地面砖 块. 第一个图案有白砖数6, 6=4×1+2; 第二个图案有白砖数10,10=4×2+2; 第三个图案有白砖数14,14=4×3+2; 第四个图案有白砖数18,18=4×4+2; ……一般地,第n 个图案有白色地砖(4n +2)块.图15-1...知识拓展】1.多边形的基本知识主要是指多边形的边、内外角、对角线、凸多边形、凹多边形等基本概念和多边形内角和定理、外角和定理,其中多边形内、外角和定理是解有关多边形问题的基础.2.多边形的许多性质与问题往往可以利用三角形来解决,将多边形问题转化为三角形问题来解决是解多边形问题的基本策略,从凸n 边形的一个顶点引出的对角线把凸n 边形分成(n -2)个三角形,凸n 边形一共可引出(3)2n n -条对角线. 3.多边形的内角和是随着多边形的边数变化而变化的,但外角和却总是不变的,所以,我们常以外角和的“不变”来制约内角和的“变”,把内角问题转化为外角问题来处理,这也是解多边形相关问题的常用技巧.4.多边形的内角和为(n -2)180°;外角和为360°; 正多边形的每个内角为(2)180n n -,每个外角为360n.一、多边形的内角与外角例1 (2003年全国联赛题)在凸10边形的所有内角中,锐角的个数最多是( )个. A .0 B .1 C .3 D .5解析 由于任何凸多边形的所有外角之和都是360°,故外角中钝角的个数不超过3个.又因为内角与外角互补,因此,内角中锐角最多不能超过3个.实际上,容易构造出内角中有三个锐角的凸10边形.故选C .点评 把内角问题转化为外角问题考虑.例2 一个凸n 边形,除了一个内角外,其余(n -1)个角之和为2002°,求n 的值.解析 本题实际上是求多边形内角和的延伸,要注意n 为自然数且每个内角不大于180°这两个隐含条件.解 设除去的这个内角是x 度,则(n -2)×180°-x °=2002°,那么(n -2)×180°=2002°+x°.显然2002°+x °应是180°的倍数,故x °=158°,这时求得n =14.二、多边形的边例3 (2002年全国竞赛题)若1239A A A A 是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于( )A .B .C .()12a b + D . a b + 解析 此题以正九边形为背景,考察观察能力和构造能力.不必画出完整图形,只需画出有用的局部图形.图15-215解 如图15-2,延长A 1A 2、A 5A 4.相交于点P ,连结A 2A 4,则A 2A 4// A 1A 5,且A 2A 4=A 1A 3=b ,因为正九边形的每一个内角为(92)1801409-⋅=,所以∠A 2A 1A 5=∠A 4A 5A 1(92)18031402-⋅-⨯=60=,故△P A 1A 5和△P A 2A 4均为正三角形.所以A 2P =A 2 A 4=A 1 A 3=b .于是A 1 A 5=A 1 P =A 1 A 2+A 2 P =a +b .选D .例4 (1999年全国联赛题)设有一个边长为1的正三角形,记作A 1[如图15-3(1)].将A 1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A 2,[如图15-3(2)];将A 2的每条边三等分,并重复上述过程,所得到的图形记作A 3[如图15-3(3)];再将A 3的每条边三等分,并重复上述过程,所得到的图形记作A 4,那么,A 4的周长是 .图15-3(1)解析 从基本图形入手计算,寻找规律.解 从A 1开始,每进行一次操作,所得到的图形的周长是原来图形周长的43倍.所以, A 2的周长是4343⨯=;A 3的周长是416433⨯=;A 4的周长是41664339⨯=.三、多边形的对角线问题例5 (1)计算凸十边形所有对角线的条数,以及以凸十边形顶点为顶点的三角形的个数.(2)在凸十边形每个顶点处任意标上一个自然数,在(1)中的三角形,若三个顶点所标三数之和为奇数,则该三角形称为奇三角形;若三数之和为偶数,则称偶三角形,试判断:奇三角形个数是奇数还是偶数,并证明你的结论.解析(1)共有(103)10352-⨯=条对角线,因为边与对角线共有45条,每条属于8个三角形的边,则三角形个数为4581203⨯=个. (2)奇三角形个数是偶数.因为凸十边形每个顶点属于40个三角形,也就是说凸十边形每个顶点所写的数在总和中计算了40次,那么总和应为十顶点所标数和的40倍,则一定是偶数,偶三角顶点之和必为偶数.故奇三角形个数必为偶数.四、多边形的证明问题例6 已知凸六边形的周长等于20,各边长都是整数,且以它的任意三条边为边都不能构成三角形.求证:这样的六边形有无穷多个.解析 由n 边形(n ≥4)的不稳定性知,若存在一个这样的六边形,则必有无穷多个.故下面寻找是否存在六个正整数a 1,a 2,…,a 6(不妨设a 1≤a 2≤…≤a 6),满足(1)12620a a a +++=;(2)12123234345456,,,,a a a a a a a a a a a a a a ≤+≤+≤+≤+≤; (3)123456++a a a a a a ++>.如果这样的六边形存在,则以126a a a ,,,为边长的六边形即符合要求.实际上,对任选三个整数61i j k a a a a ≤≤≤≤,必有i j k a a a +≤,可见此六边形的任意三边不能构成三角形,如121a a ==,32a =,43a =,55a =,68a =,满足上述全部条件.所以,这样的六边形有无穷多个.点评 本题首先证明了这样的六边形存在,然后根据n 边形(n ≥4)的不稳定性,说明这样的六边形有无穷多个.五、多边形中的开放性问题例7 (1999年全国联赛题)在正五边形ABCDE 所在平面内能找到点P ,使得△PCD 与△BCD 的面积相等,并且△ABP 为等腰三角形.这样的不同的点P 的个数为( )A .2B .3C .4D .5解析 可先动手画出简图.由△PCD 与△BCD 的面积相等及等积变换的思想,点点P 应在平行于CD 且与CD 的距离等于B 点到CD 的距离的直线l 上,这样的直线l有两条,且位于CD 的两侧.然后再根据△ABP 为等腰三角形确定点P 的个数.图15-4如图15-4,由S △PCD =S △BCD 知,点P 只能在直线l 1(即直线BE )与直线l 2上,其中l 2与CD 平行且与CD 的距离等于l 1与CD 的距离.在等腰△ABP 中,按其底边可分如下三种情形:(1)当AB 为底边时,AB 的垂直平分线分别与l 1、l 2交于P 1、P 2,则P 1、P 2是符合条件的点. (2)当P A 为底边时,以B 为圆心,BA 为半径作圆,与l 1交于P 3、P 4两点,则P 3、P 4符合条件. (3)当PB 为底边时,只有E 点符合条件.综上所述,共有P 1、P 2、P 3、P 4、E 五个点符合题设全部条件,故应选D .点评 解答这类计数问题,需要分清谁是底,谁是腰,可直接通过作图确定点P 的个数,这里主要应用了交轨法.好题妙解】佳题新题品味例1 一个凸多边形的每一内角都等于140°,那么,从这个多边形的一个顶点出发的对角线的条数有( )A .9条B .8条C .7条D .6条解析 每一内角为140°,得每一外角为40°,360°÷40°=9,即边数为9,故从一个顶点可作对角线9-3=6条,选D .例2 设12n A A A 是一个有n 个顶点的凸多边形,对每一个顶点(1,2,3,,)i A i n ,将构成该角的两边分别反向延长至12,i i A A ,连接12,i i A A ,得到两个角12,i i A A ∠∠(扫描件版本中有错),那么所有这些新得到的角的度数的和是 .解析 注意每一内角与相邻的外角互补即可求. 故:n ×180°-(n -2)·180°=360°.例3 正五边形广场ABCDE 的周长为2000m ,甲、乙两人分别从A 、C 两点同时出发绕广场沿A →B →C →D →E →A 的方向行走,甲的速度为50m/min ,乙的速度为46m/min ,则出发后经过 min ,甲、乙第一次行走在同一条边上.解析 设甲走完x 条边时,两人走在同一条边上,此时甲走了400x m ,乙走了4004636850xx ⨯=m ,甲、乙两人的距离不大于正五边形的边长400m ,所以(368x +800)-400x ≤400.解得x ≥12.5.而x 为整数,取x =13. 所以,甲、乙走了40010450x=min 后走到一条边上.中考真题欣赏例4 (吉林省)如图15-5,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示).(2)设铺地面用瓷砖的总数为y ,请写出y 与(1)中n 的函数关系式(不要求写自变量n 的取值范围). (3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 值. (4)若黑瓷砖每块4元,白瓷砖每块3元,在问题(3)中共需花多少元钱购买瓷砖? (5)是否存在黑瓷砖与白瓷砖块数相等的情况?请通过计算说明,为什么?图15-5解析()()()() 1231n n n n n n n n ⨯⨯⨯+⨯⨯⨯⨯⨯⨯+++: 1 2 3 白砖: 1 2 2334 黑砖:34-1 2 45-2 3 56-3 4-解(1)n +3,n +2.(2)y =(n +3)(n +2). (3)当y =506时,(n +3)(n +2)=506, 解得n 1=20,n 2=-25(舍去). 白色砖数:n (n +1)=20×(20+1)=420. 黑色砖数:506-420=86.(4)共需钱数:86×4+420×3=1604(元)(5)n (n +1)=(n +2)(n +3)-n (n +1),化简得n 2-3n -6=0,解得n .因n 的值不是整数, ∴不存在黑、白瓷砖块数相等的情形.竞赛样题展示例1 (2004年江苏省初中竞赛题)在一个多边形中,除了两个内角外,其内角之和为2002°,则这个多边形的边数为( )A .12B .12或13C .14D .14或15解析 设这个多边形为n (n 为正整数)边形,由题意2002°<(n -2)×180°<2002°+360°,111113159090n <<. 所以,n =14或15.选D .例2 (2002年上海市竞赛题)平面上有7个点,它们之间可以连一些线段,使7点中的任意3点必存在2点有线段相连.问至少要连多少条线段?证明你的结论.解析(1)若7个点中,有一点孤立(即它不与其他点连线),则剩下6点每2点必须连线,此时至少要连65152⨯=条. (2)若7点中,有一点只与另一点连线,则剩下5点每2点必须连线,此时至少要连541112⨯+=条. (3)若每一点至少引出3条线段,则至少要连732⨯条线段.由于线段数为整数,故此时至少要连11条. (4)若每点至少引出2条线段,且确有一点(记为A )只引出2条线段AB 、AC ,则不与A 相连的4点每2点必须连线,要连4362⨯=条.由B 引出的线段至少有2条,即除BA 外还至少有一条.因此,此时至少要连6+2+1=9条.图15-6图15-6给出连9条线的情况.综合(1)~(4),至少要连9条线段,才能满足要求.例3 (第14届希望杯)两条直线上各有n 个点,用这n 对点按如下规则连结线段: ①同直线上的点之间不连结;②连结的任意两条线段可以有共同的端点,但不得有其他的交点. (1)画图说明当n =1,2,3时,连结的线段最多各有多少条?(2)由(1)猜想n (n 为正整数)对点之间连结的线段最多有多少条,证明你的结论. (3)当n =2003时,所连结的线段最多有多少条?图15-7解析 (1)由图15-7可以看出,n =1时,最多可以连结1条线段,n =2时,最多可以连结3条线段,n =3时,最多可以连结5条线段.(2)猜想:对于正整数n ,则n 对点直接连结的直线段最多有2n -1条. 证明 将直线标记为l 1、l 2,它们上面的点从左到右排列分别为123,,,,n A A A A 和123,,,,n B B B B ,设这n 对点之间连结的直线段最多有P n 条,显然,其中必有n n A B 这一条,否则,P n 就不是最多的数. 当在l 1,l 2分别加上第n +1个点时,不妨设这两个点在A n 与B n 的右侧,那么除了原来已经有的P n 条直线段外,还可以连结A n+1B n ,An +1B n +1这两条线段,或连结A n B n +1,A n +1B n +1这两条线段. 所以P n +1≥P n +2.l 2l 1B n+1B i+1B i A n+1A n另一方面,设对于n +1对点有另一种连法:考虑图中以A n +1为端点的线段,若以A n +1为端点的线段的条数大于1,则一定可以找到一个i ≤n ,使得对于任意的j <i ,A n +1B j ,都不在所画的线段中,这时,B i +1,B i +2,...,B n +1,只能与A n +1连结,不妨设A n +1B i +1,A n +1B i +2,…,A n +1B n +1都已连结,此时图中的线段数为P n +1,我们做如下操作:去掉A n +1B i ,连结A n B i +1,得到新的连结图,而新的连结图满足要求且线段总数不变,将此操作一直进行下去,直到与A n +1连结的线段只有一条A n +1B n +1为止.最后图中,与点B n +1相关的线段只剩两条,即A n B n +1,A n +1B n +1,去掉这两条线段,则剩余P n +1-2条线段,而图形恰是n 对点的连结图,所以P n +1-2≤P . 由此我们得到P n +1=P n +2,而P 1=1,P 2=3,所以P n =1+2×(n -1)=2n -1. (3)当n =2003时,P 2003=4005(条).过关检测】A 级1.一个凸n 边形共有54条对角线,则它的内角和是( ) A .1080° B .1440° C .1800° D .1620°2.(1999年全国初中联赛试题)一个凸n 边形的内角和小于1999°,那么n 的最大值是( ) A .11 B .12 C .13 D .143.(第12届“希望杯”邀请赛试题)凸n 边形中有且仅有两个内角为饨角,则n 的最大值是( ) A .4 B .5 C .6 D .74.(美国中小学数学课程标准)如图,用硬纸片剪一个长为16cm 、宽为12cm 的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形来,其中周长最大的是 cm ,周长最小的是 cm .16cm12cm5.如图,ABCD 是凸四边形,AB =2,BC =4,CD =7,则线段AD 的取值范围是 .DC BA6.如图,五边形ABCDE 中,AB=AE ,BC+DE=CD ,∠ABC +∠AED =180°,连接AD . 求证:AD 平分∠CDE .EDBAB 级1.一个凸n(n≥4)边形的每个外角的度数均为相等的奇数,则这样的凸多边形共有()A.4种B.6种C.3种D.2种2.一个凸n边形最小内角为95°,其他内角依次增加10°,则n等于()A.6 B.12 C.4 D.103.如图所示,CD//AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,求∠F的大小.F EDCBA4.若凸4n+2边形A1A2…A4n+2(n为自然数)的每个内角都是30°的整数倍,且∠A1=∠A2=∠A3=90°.求n所有可能的值.5.平面上给出4点,其中任意3点不共线,这4点组成4个三角形.请判断;这4个三角形中最多有几个锐角三角形?证明你的结论.6.已知一个凸n边形各内角度数均相等,且度数是奇数.问这样的多边形有几种?证明你的结论.()。
七年级数学培优竞赛训练 :角 含答案
角【知识纵横】角,既可以用静止的眼光来观察,也可以用运动的眼光来看待.具有公共端点的两条射线组成的图形或一条射线绕着端点从一个位置旋转到另一位置所成的图形,称为角.角也是几何学的基本图形之一,与角相关的知识有:周角、平角、直角、锐角、钝角、角平分线、数量关系角(如余角、补角)、位置关系角(如邻补角、对顶角)等概念及关系.解与角有关的问题,类似于解与线段相关的问题,常常用到重要概念、分类的思想、代数化的观点等知识与方法.【例题求解】例1.如图1 是一个3×3 的正方形,则图中∠1+∠2+∠3+…+∠9 的度数是.思路点拨除∠3=∠5=∠7=45°外,其他各角的度数无法求出,故不能顺序求和.考虑应用加法的交换律、结合律,关键是对图形进行恰当的处理.图1 图2例2.如图2.A、O、B 在一条直线上,∠1 是锐角,则∠1 的余角是( ).1 1 A.∠2 一∠l B.2 23∠2 一21∠1 C.21(∠2 一∠l)D.3(∠2+∠1)思路点拨∠1 的余角表示为90°一∠1,化简这个代数式,直至与选择项相符为止.1例 3.已知∠1 和∠2 互补,∠3 和∠2 互余,求证∠3=2(∠l 一∠2).思路点拨依据互补、互余的概念得到含∠l、∠2、∠3 的两个等式,盯住所要达到的目的,恰当处理两个等式.1 例4.如图3,已知∠AOB 与∠BOC 互为补角,OD 是∠AOB 的平分线,OE 在∠BOC 内,∠BOE= ∠2 EOC,∠DOE= 72°,求∠EOC 的度数.图3思路点拨设∠AOB=x 度,∠BOC= y 度,建立x、y 的方程组,用代数方法解几何问题是一种常用的方法.例 5.(1)如图4,已知∠AOB=90°,∠BOC=30°,OM 平分∠AOC,ON 平分之∠BOC,求∠MON 的度数.(2)如果(1)中∠AOB=α,其他条件不求,求∠MON 的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不求,求∠MON的度数.(4)从(1)、(2)、<3)的结果中能得出什么结论?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4)设计一道以线段为背景的计算题,写出其中的规律,并给出解答.图 4例 6.钟面上从2 点到4 点有几次时针与分针的夹角为60°?分别是几点几分?思路点拨:时钟问题的关键是将时针、分针、秒针转动的速度用角表示出来.时针转动的速度为 0.5°/分,分针为 6°/分,秒针为 360°/分.※巩固训练※1.一个角的补角与这个角的余角的度数比为3:l,则这个角是度.2.钟表时间是2 时15 分时,时针与分针的夹角是.3.由O 点引出的7 条射线如图,若OA⊥OE,OC⊥OC,∠BOC>∠FOC,则图中以O 为顶角的锐角共有个.4.如图,O 是直线AB 上一点,∠AOD=120°,∠AOC=90°,OE 平分∠BOD,则图中彼此互补的角有对.5.如图,∠AOB=180°,OD 是∠COB 的平分线,OE 是∠AOC 的平分线,设∠BOD=α,则与α的余角相等的角是( ).A.∠OOD B.∠ODE C.∠DOA D.∠COA6.如图,在一个正方体的2 个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于( ).A.60°B.75°C.90°D.135°注:解钟表上的问题,常用到以下知识:(1)钟表上相邻两个数宇之间有 5 个小格,每个小格表示 1 分钟,如与角度联系起来,每小格对应 6°.(2)秒钟每分钟转运 360°,分针每分钟转过 6°,时钟每分钟转过 0.5°.(3)画示意图把这类问题看成是行程问题中的追及问题来解决.7.将一长方形纸片按如图的方式折叠,BC、BD 为折痕,则∠CBD 的度数为( ).A.60°B.75°C.90°D.95°18.如图,∠1>∠2,那么∠2 与(∠1 一∠2)之间的关系是( ).2A.互补B.互余C.和为45°D.和为22.5°9.如图,已知A、O、E 三点在一条直线上,OB 平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD 与∠DOE 之间有怎样的关系?说明理由.10.(1)一副三角板由一个等腰直角三角形和一个含30°角的直角三角形组成.利用这副三角板构成15°角的方法很多,请你画出其中三种不同构成的示意图,并在图上作出必要的标注,不写作法.(2)一个长方形和一个正方形摆放如图,试找出除直角外的互余的角和互补的角.111.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ) 的值时,有三15位同学分别算出了23 °、24 °、25 °这三个不同的结果,其中确有一个是正确的答案,则α+β+γ.12.如图,O 是直线AB 上一点,∠AOE=∠FOD=90°,OB 平分∠COD,图中与∠DOE 互余的是,与∠DOE 互补的角是.13.以∠AOB 的顶点O 为端点引射线OC,使∠AOC:∠BOC=5:4,若∠AOB=15°,则∠AOC 的度数是.14.光线以图所示的角度α照射到平面镜I 上,然后在乎面镜I、Ⅱ之间来回反射,已知∠α=60°,∠β=50°,则∠γ=.4 15.若∠β与∠α互补,∠γ与∠α互余,且∠β与∠γ的和是3 1 个平角,则∠β是∠α的( ).A.25倍B.5 倍C.11 倍D.无法确定倍数16.4 点钟后,从时针到分针第二次成90°角,共经过( )分钟(答案四舍五入到整数) .A.60 B.30 C.40 D.3317.如图,从点 O 引出6 条射线OA、OB、OC、OD、OE、OF,且∠AOB=100°,OF 平分∠BOC,∠AOE =∠DOE,∠EOF=140°,求∠COD 的度数.18.过点 O 任作 7 条直线,求证:以 O 为顶点的角中必有一个小于 26°.19.(1)现有一个 19°的“模板”(如图),请你设计一种办法,只用这个“模板”和铅笔在纸上画出 1°的角来.(2)现有一个 17°的“模板”与铅笔,你能否在纸上画出一个 1°的角来?(3)用一个 21°的“模板”与铅笔,你能否在纸上画出一个 1°的角来?对于(2)、(3)两问,如果能,请你简述画法步骤;如果不能,请你说明理由.参考答案。
2022-2023学年七年级数学上学期期末专题06 经典难点之角的双中模型与角的动边(五大考点)
专题06 经典难点之角的双中模型与角的动边(五大考点)一.双中模型1.如图,点O为直线AB上一点,∠AOC=110°,OM平分∠AOC,∠MON=90°(1)求∠BOM的度数;(2)ON是∠BOC的角平分线吗?请说明理由.2.如图,以∠AOB的顶点O为端点画一条射线OC,OM,ON分别是∠AOC和∠BOC的角平分线.(1)如图①,若∠AOC=50°,∠BOC=30°,则∠MON的度数是;(2)如图②,若∠AOB=100°,∠BOC=30°,则∠MON的度数是;(3)根据以上解答过程,完成下列探究:探究一:如图③,当射线OC位于∠AOB内部时,请写出∠AOB与∠MON的数量关系,并证明你的结论;探究二:如图④,当射线OC位于∠AOB外部时,请写出∠AOB与∠MON的数量关系,并证明你的结论.3.如图1,OM是∠BOC的角平分线,ON是∠AOC的角平分线,且∠AOB=76°.(1)求∠MON的度数;(2)当OC在∠AOB内另一个位置时,∠MON的值是否发生变化?若不变化,请你在图2中画图加以说明;(3)由(1)、(2)你发现了什么规律?当OC在∠AOB外的某一个位置时,你发现的规律还成立吗?请你在图3中画图加以说明.4.自点O顺时针做四条射线OA、OB、OC、OD,已知∠AOB=90°,∠AOD和∠BOC的角平分线分别是OM和ON,且∠MON=150°,求∠COD的度数.二.角的动边之求度数5.如图1,将一副三角板的两个锐角顶点放到一块,∠AOB=45°,∠COD=30°,OM,ON分别是∠AOC,∠BOD的角平分线.(1)当∠COD绕着点O逆时针旋转至射线OB与OC重合时(如图2),则∠MON的大小为;(2)如图3,在(1)的条件下,继续绕着点O逆时针旋转∠COD,当∠BOC=10°时,求∠MON 的大小,写出解答过程;(3)在∠COD绕点O逆时针旋转过程中,∠MON=°.6.已知∠AOB=100°,射线OC在∠AOB的内部,射线OE,OF分别是∠AOC和∠COB的角平分线.(1)如图1,若∠AOC=30°,求∠EOF的度数;(2)请从下面A,B两题中任选一题作答,我选择题.A.如图2,若射线OC在∠AOB的内部绕点O旋转,则∠EOF的度数为.B.若射线OC在∠AOB的外部绕点O旋转(旋转中∠AOC、∠BOC均是指小于180°的角),其余条件不变,请借助图3探究∠EOF的大小,直接写出∠EOF的度数.7.(1)已知OA⊥OC,∠BOC=30°,且OD、OE分别为∠AOB、∠BOC的角平分线,请求出∠DOE度数.(2)如果把(1)中“∠BOC=30°”改成“∠BOC=x(0°<x<90°)”,其他条件都不变,则∠DOE度数变化吗?请说明理由.8.如图,已知∠AOB=60°,∠AOC=∠BOC,OD是∠COB的角平分线,求∠COD的度数.9.已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O 处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为°,∠CON的度数为°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为°;(3)请从下列(A),(B)两题中任选一题作答.我选择:.(A)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为°;∠DOC与∠BON的数量关系是∠DOC∠BON(填“>”、“=”或“<”);(B)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为°;∠AOM﹣∠CON的度数为°.三.角的动边之角的数量关系10.如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC=°;(2)如图2,∠COD从第(1)问中的位置出发,绕点O逆时针以每秒4°的速度旋转;当OC 与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.①当OC′平分∠BON′时,求出对应的t的值;②请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.11.如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O处.(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC:∠MOC=2:1,求∠AOC的度数;(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB的角平分线,此时∠AOM与∠NOC满足怎样的数量关系?并说明理由.12.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC.将一直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方.将直角三角板绕着点O按每秒10⁰的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,此时,∠BOC与∠BOE之间有何数量关系?并说明理由.(2)若射线OC的位置保持不变,且∠COE=140°.①则当旋转时间t=秒时,边AB所在的直线与OC平行?②在旋转的过程中,是否存在某个时刻,使得射线OA,OC与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值.若不存在,请说明理由.③在旋转的过程中,当边AB与射线OE相交时(如图3),求∠AOC﹣∠BOE的值.13.如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O处.(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC:∠MOC=2:1,则∠MOC=.(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB对的角平分线;试研究:∠AOM与∠NOC满足的数量关系,并说明理由.(3)将如图1所示的三角板MON绕点O逆时针旋转α°(0°<α<90°)到如图3所示的位置,在∠BON的内部作射线OC使得∠NOC=16∠AON,则∠BOC的度数为(用含α的代数式表示)(请直接写出答案)四.角的动边之存在性14.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t (0≤t ≤15).(1)当t 为何值时,射线OC 与OD 重合;(2)当t 为何值时,射线OC ⊥OD ;(3)试探索:在射线OC 与OD 旋转的过程中,是否存在某个时刻,使得射线OC ,OB 与OD 中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t 的取值,若不存在,请说明理由.15.已知:如图1,点A 、O 、B 依次在直线MN 上,现将射线OA 绕点O 沿顺时针方向以每秒2°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒4°的速度旋转,如图2,设旋转时间为t (0秒≤t ≤90秒).(1)用含t 的代数式表示∠MOA 的度数.(2)在运动过程中,当∠AOB 第二次达到60°时,求t 的值.(3)在旋转过程中是否存在这样的t ,使得射线OB 是由射线OM 、射线OA 、射线ON 中的其中两条组成的角(指大于0°而不超过180°的角)的平分线?如果存在,请直接写出t 的值;如果不存在,请说明理由.16.如图1,∠AOB =120°,∠COE =60°,OF 平分∠AOE(1)若∠COF =20°,则∠BOE = °(2)将∠COE 绕点O 旋转至如图2位置,求∠BOE 和∠COF 的数量关系(3)在(2)的条件下,在∠BOE 内部是否存在射线OD ,使∠DOF =3∠DOE ,且∠BOD =70°?若存在,求∠DOF ∠COF 的值,若不存在,请说明理由.五.新定义17.如图1,射线OC在∠AOB的内部,在∠AOB,∠AOC和∠BOC中,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.(1)一个角的平分线这个角的“巧分线”;(填“是”或“不是”)(2)如图2,若∠AOB=α,且射线OC是∠AOB的“巧分线”,则∠AOC=;(用含α的代数式表示出所有可能的结果)(3)如图3,若∠AOB=60°,且射线OC绕点O从OB位置开始,以每秒10°的速度逆时针旋转,当OC与OB成180°时停止旋转,设旋转的时间为t秒,则当t为何值时,射线OA是∠BOC 的“巧分线”?18.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的奇妙线.(1)一个角的角平分线这个角的奇妙线.(填是或不是)(2)如图2,若∠MPN=60°,射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当∠QPN首次等于180°时停止旋转,设旋转的时间为t(s).①当t为何值时,射线PM是∠QPN的奇妙线?②若射线PM同时绕点P以每秒6°的速度逆时针旋转,并与PQ同时停止旋转.请求出当射线PQ是∠MPN的奇妙线时t的值.19.【阅读理解】射线OC是∠AOB内部的一条射线,若∠COA=13∠AOB,则我们称射线OC是射线OA的“友好线”.例如,如图1,∠AOB=60°,∠AOC=∠COD=∠BOD=20°,则∠AOC=13∠AOB,称射线OC是射线OA的友好线;同时,由于∠BOD=13∠AOB,称射线OD是射线OB的友好线.【知识运用】(1)如图2,∠AOB=120°,射线OM是射线OA的友好线,则∠AOM=°;(2)如图3,∠AOB=180°,射线OC与射线OA重合,并绕点O以每秒2°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒3°的速度顺时针旋转,当射线OD与射线OA 重合时,运动停止;①是否存在某个时刻t(秒),使得∠COD的度数是40°,若存在,求出t的值,若不存在,请说明理由;②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是另一条射线的友好线.(直接写出答案)20.对于同一平面内以O为端点的射线与∠MON,其中∠MON=60°,给出如下定义:OP1,OP2,…,OP n﹣1,OP n是∠MON内或与射线OM,ON重合的n条不同的射线(n≥3),这些射线与射线l 形成的小于平角的角的大小分别为α1,α2,…αn﹣1,αn,若这n条射线满足α1+α2+…+αn﹣1=αn,则称这n条射线为∠MON关于射线l的一个基准射线族,其中αn为该基准射线族的基准角度.(1)如图1,当射线OA与射线l恰为∠MON的两条三等分线时,判断射线OM,OA,ON是否为∠MON关于射线l的一个基准射线族?如果是,求出它的基准角度;如果不是,请说明理由;(2)如图2,∠MON的边ON与射线l重合,固定射线l的位置不动,将∠MON以每秒5°的速度绕着点O逆时针转动一周.当转动时间为t秒时,OP1,OP2,…,OP n﹣1,OP n是∠MON关于射线l的一个基准射线族.①若t=8,求该基准射线族的基准角度αn的最大值;②若n的最大值等于6,直接写出t的取值范围.一.双中模型1.如图,点O为直线AB上一点,∠AOC=110°,OM平分∠AOC,∠MON=90°(1)求∠BOM的度数;(2)ON是∠BOC的角平分线吗?请说明理由.试题分析:(1)根据角的平分线的定义求得∠AOM的度数,然后根据邻补角的定义求得∠BOM的度数;(2)首先根据∠MON=90°,∠AOB=180°,得出∠MOC+∠CON=90°,∠AOM+∠BON=90°,又∠AOM=∠MOC,根据等角的余角相等即可得到ON是∠BOC的角平分线.答案详解:解:(1)∵OM平分∠AOC,∴∠AOM=12∠AOC=55°,∴∠BOM=∠AOB﹣∠AOM=180°﹣55°=125°;(2)ON是∠BOC的角平分线.理由如下:∵∠MON=90°,∠AOB=180°,∴∠MOC+∠CON=90°,∠AOM+∠BON=90°,又由(1)可知∠AOM=∠MOC,∴∠CON=∠BON,即ON是∠BOC的角平分线.2.如图,以∠AOB的顶点O为端点画一条射线OC,OM,ON分别是∠AOC和∠BOC的角平分线.(1)如图①,若∠AOC=50°,∠BOC=30°,则∠MON的度数是40°;(2)如图②,若∠AOB=100°,∠BOC=30°,则∠MON的度数是50°;(3)根据以上解答过程,完成下列探究:探究一:如图③,当射线OC位于∠AOB内部时,请写出∠AOB与∠MON的数量关系,并证明你的结论;探究二:如图④,当射线OC位于∠AOB外部时,请写出∠AOB与∠MON的数量关系,并证明你的结论.试题分析:(1)根据角平分线的定义和角的和差即可得到结论;(2)方法同(1);(3)方法同(1).答案详解:解:(1)∵OM,ON分别是∠AOC和∠BOC的角平分线,∴∠COM=12∠AOC=25°,∠CON=12∠BOC=15°,∴∠MON=∠MOC+∠NOC=40°,所以答案是:40°;(2)∵∠AOB=100°,∠BOC=30°,∴∠AOC=∠AOB﹣∠BOC=70°,∵OM,ON分别是∠AOC和∠BOC的角平分线,∴∠COM=12∠AOC=35°,∠CON=12∠BOC=15°,∴∠MON=∠MOC+∠NOC=50°,所以答案是:50°;(3)探究一:如图③,当射线OC位于∠AOB内部时,∠MON=12∠AOB,证明:∵OM,ON分别是∠AOC和∠BOC的角平分线,∴∠COM=12∠AOC=25°,∠CON=12∠BOC=15°,∴∠MON=∠MOC+∠NOC=12(∠AOC+∠BOC)=12∠AOB;探究二:如图④,当射线OC位于∠AOB外部时,∠MON=12∠AOB,证明:∵OM,ON分别是∠AOC和∠BOC的角平分线,∴∠COM=12∠AOC=25°,∠CON=12∠BOC=15°,∴∠MON=∠MOC﹣∠NOC=12(∠AOC﹣∠BOC)=12∠AOB.3.如图1,OM是∠BOC的角平分线,ON是∠AOC的角平分线,且∠AOB=76°.(1)求∠MON的度数;(2)当OC在∠AOB内另一个位置时,∠MON的值是否发生变化?若不变化,请你在图2中画图加以说明;(3)由(1)、(2)你发现了什么规律?当OC在∠AOB外的某一个位置时,你发现的规律还成立吗?请你在图3中画图加以说明.试题分析:根据题意(1)根据角平分线定义得出结果;(2)利用角平分线性质证明结论,并作出图形;(3)需要分类讨论并通过作图得出结论.答案详解:解:(1)∵OM是∠BOC的角平分线,ON是∠AOC的角平分线,又∵∠AOB=76°,∴2∠COM+2∠CON=76°,∴∠MON=38°.(2)不发生变化,当C在如图点时,仍满足2∠COM+2∠CON=76°,∠MON的值不发生变化.(3)由(1)、(2)发现了OC在∠AOB内任一位置时,∠MON的值不发生变化,当OC在∠AOB外时规律不成立.4.自点O顺时针做四条射线OA、OB、OC、OD,已知∠AOB=90°,∠AOD和∠BOC的角平分线分别是OM和ON,且∠MON=150°,求∠COD的度数.试题分析:分两种情况讨论(1)∠MON包含∠COD;(2)∠MON不包含∠COD可得出正确结论.答案详解:解:(1)如图所示,∵∠AOM+∠BON+90°=∠MON=150°,∠AOD和∠BOC的角平分线分别是OM和ON,∴∠AOM+∠BON=60°=∠MOD+∠NOC,∴∠COD=360°﹣∠MON﹣∠MOD﹣∠NOC=150°(2)∵∠AOM+∠BON=210°﹣∠AOB=120°∴∠AOM+∠BON=120°=∠MOD+∠CON∠COD=∠MON﹣∠MOD﹣∠CON=30°综上所述可知∠COD=150°或30°.二.角的动边之求度数5.如图1,将一副三角板的两个锐角顶点放到一块,∠AOB=45°,∠COD=30°,OM,ON分别是∠AOC,∠BOD的角平分线.(1)当∠COD绕着点O逆时针旋转至射线OB与OC重合时(如图2),则∠MON的大小为37.5°;(2)如图3,在(1)的条件下,继续绕着点O逆时针旋转∠COD,当∠BOC=10°时,求∠MON 的大小,写出解答过程;(3)在∠COD绕点O逆时针旋转过程中,∠MON=37.5或142.5°.试题分析:(1)根据角平分线的定义可以求得∠MON=12(∠AOB+∠COD);(2)根据图示可以求得:∠BOD=∠BOC+∠COD=40°.然后结合角平分线的定义推知∠CON=12∠BOD,∠COM=12∠AOC,即可得到结论;(3)根据(1)、(2)的解题思路即可得到结论.答案详解:解:(1)∵∠AOB=45°,∠COD=30°,OM,ON分别是∠AOC,∠BOD的角平分线,∴∠BON=12∠COD=15°,∠MOB=12∠AOB=22.5°,∴∠MON=37.5°.所以答案是:37.5°;(2)当绕着点O逆时针旋转∠COD,∠BOC=10°时,∠AOC=55°,∠BOD=40°,∴∠BON=12∠BOD=20°,∠MOB=12∠AOC=27.5°,∴∠MON=37.5°;(3)∵∠AOC=∠AOB+∠BOC,∠BOD=∠COD+∠BOC,∵OM,ON分别是∠AOC,∠BOD的角平分线,∠AOB=45°,∠COD=30°,∴∠MOC=12∠AOC=12(∠AOB+∠BOC),∠CON=12∠BOD﹣∠BOC,∴∠MON=12(∠AOB+∠BOC)+12∠BOD﹣∠BOC=12∠AOB+12(∠BOD﹣∠BOC)=12∠AOB+1 2∠COD=37.5°,12α+12β=12(α+β);当∠COD在OA、OB的反向延长线形成的角的内部时,同理,∠MON=142.5°,综上所述:∠MON=37.5°或142.5°,所以答案是:37.5或142.5.6.已知∠AOB=100°,射线OC在∠AOB的内部,射线OE,OF分别是∠AOC和∠COB的角平分线.(1)如图1,若∠AOC=30°,求∠EOF的度数;(2)请从下面A,B两题中任选一题作答,我选择A题.A.如图2,若射线OC在∠AOB的内部绕点O旋转,则∠EOF的度数为50°.B.若射线OC在∠AOB的外部绕点O旋转(旋转中∠AOC、∠BOC均是指小于180°的角),其余条件不变,请借助图3探究∠EOF的大小,直接写出∠EOF的度数.试题分析:(1)先求出∠BOC度数,根据角平分线定义求出∠EOC和∠FOC度数,求和即可得出答案;(2)A.根据角平分线定义得出∠COE=12∠AOC,∠COF=12∠BOC,求出∠EOF=∠EOC+∠FOC=12∠AOB,代入求出即可;B.分两种情况:①射线OE,OF只有1个在∠AOB外面,根据角平分线定义得出∠COE=1 2∠AOC,∠COF=12∠BOC,求出∠EOF=∠FOC﹣∠COE=12∠AOB;②射线OE,OF2个都在∠AOB外面,根据角平分线定义得出∠EOF=12∠AOC,∠COF=12∠BOC,求出∠EOF=∠EOC+∠COF=12(360°﹣∠AOB),代入求出即可.答案详解:解:(1)∵∠AOB=100°,∠AOC=30°,∴∠BOC=∠AOB﹣∠AOC=70°,∵OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=12∠AOC=15°,∠FOC=12∠BOC=35°,∴∠EOF=∠EOC+∠FOC=15°+35°=50°;(2)A.∵OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=12∠AOC,∠FOC=12∠BOC,∴∠EOF=∠EOC+∠FOC=12∠AOB=12×100°=50°;B.①射线OE,OF只有1个在∠AOB外面,如图3①,∠EOF=∠FOC﹣∠COE=12∠BOC−12∠AOC=12(∠BOC﹣∠AOC)=12∠AOB=12×100°=50°.②射线OE,OF2个都在∠AOB外面,如图3②,∠EOF=∠EOC+∠COF=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12(360°﹣∠AOB)=12×260°=130°.故∠EOF的度数是50°或130°.所以答案是:A,50°.7.(1)已知OA⊥OC,∠BOC=30°,且OD、OE分别为∠AOB、∠BOC的角平分线,请求出∠DOE度数.(2)如果把(1)中“∠BOC=30°”改成“∠BOC=x(0°<x<90°)”,其他条件都不变,则∠DOE度数变化吗?请说明理由.试题分析:(1)根据垂直,可得∠AOC的度数,根据角的和差,可得∠AOB,根据角平分线的性质,可得∠BOD、∠BOE,根据角的和差,可得答案;(2)根据垂直,可得∠AOC的度数,根据角的和差,可得∠AOB,根据角平分线的性质,可得∠BOD、∠BOE,根据角的和差,可得答案.答案详解:解:(1)OA⊥OC,∠AOC=90°,∠BOC=30°,∠AOB=∠AOC+∠BOC=90°+30°=120°OD、OE分别为∠AOB、∠BOC的角平分线,∠BOD=12∠AOB=60°,∠BOE=12∠BOC=15°,∠DOE=∠BOD﹣∠BOE=60°﹣15°=45°;(2)∠DOE度数不变OA⊥OC,∠AOC=90°,∠BOC=x,∠AOB=∠AOC+∠BOC=90°+x=90°+x OD、OE分别为∠AOB、∠BOC的角平分线,∠BOD=12∠AOB=45°+x2,∠BOE=12∠BOC=x2,∠DOE=∠BOD﹣∠BOE=(45°+x2)−x2=45°.8.如图,已知∠AOB=60°,∠AOC=∠BOC,OD是∠COB的角平分线,求∠COD的度数.试题分析:首先根据角平分线的定义求得∠BOC的度数,然后根据角平分线的定义求得∠COD的度数.答案详解:解:∵∠AOB=60°,∠AOC=∠BOC,∴∠BOC=12∠AOB=30°,∵OD是∠COB的角平分线,∴∠COD=12∠COB=15°.9.已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O 处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为120°,∠CON的度数为150°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为30°;(3)请从下列(A),(B)两题中任选一题作答.我选择:A(或B).(A)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为30°;∠DOC与∠BON的数量关系是∠DOC=∠BON(填“>”、“=”或“<”);(B)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为150°;∠AOM﹣∠CON的度数为30°.试题分析:(1)利用两角互补,即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;(3)根据直角三角板MON各角的度数以及图中各角的关系即能得出结论.答案详解:解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°.所以答案是:120;150.(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,∠BOC=120°,∴∠BOM=12∠BOC=60°,又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.所以答案是:30°.(3)(A)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.(B)∵MN⊥AB,∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,150∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.所以答案是:A(或B);30;=;150;30.三.角的动边之角的数量关系10.如图1,∠AOB=40°,∠COD=60°,OM、ON分别为∠AOB和∠BOD的角平分线.(1)若∠MON=70°,则∠BOC=40°°;(2)如图2,∠COD从第(1)问中的位置出发,绕点O逆时针以每秒4°的速度旋转;当OC 与OA重合时,∠COD立即反向绕点O顺时针以每秒6°的速度旋转,直到OC与OA互为反向延长线时停止运动.整个运动过程中,∠COD的大小不变,OC旋转后的对应射线记为OC′,OD旋转后的对应射线记为OD′,∠BOD′的角平分线记为ON′,∠AOD′的角平分线记为OP.设运动时间为t秒.①当OC′平分∠BON′时,求出对应的t的值;②请问在整个运动过程中,是否存在某个时间段使得|∠BOP﹣∠MON′|的值不变?若存在,请直接写出这个定值及其对应的t的取值范围(包含运动的起止时间);若不存在,请说明理由.试题分析:(1)根据角平分线的定义结合图形根据已知条件求角的大小;(2)①分类讨论顺时针、逆时针转两种情况,根据角平分线的定义用t表示出角的度数,列出等量关系式求出t;②求出OP与OB重合时t的值,射线OD,OA共线时t的值,射线OD与射线OB重合时t的值,可得结论.答案详解:解:(1)∵OM为∠AOB的角平分线、∠AOB=40°,∴∠MOB=20°.∵∠MON=70°,∴∠BON=∠MON﹣∠MOB=50°.∵ON为∠BOD的角平分线,∴∠BON=∠DON=50°.∴∠CON=∠COD﹣∠DON=10°∴∠BOC=∠DON﹣∠CON=40°.所以答案是:40°.(2)如图①:①逆时针旋转时:当C′在B上方时,根据题意可知,∠BOC′=40°﹣4t,∠BOD′=∠BOD﹣4t=100°﹣4t.∠BON′=12∠BOD′=12(100°−4t)=50°﹣2t,∵OC′平分∠BON′,∴∠BOC′=12∠BON′,即40°﹣4t=12(50°﹣2t),解得:t=5(s).当C′在B下方时,此时C′也在N′下方,此时不存在OC′平分∠BON′.顺时针旋转时:如图②,同理当C′在B下方时,此时C′也在N′下方,此时不存在OC′平分∠BON′.当C′在B上方时,即OC′与OB重合,由题意可求OC′与OB重合用的时间=∠AOC÷4+∠AOB÷6=(∠AOB+∠BOC)÷4+∠AOB÷6=803(s).∴OC′与OB重合之后,∠BOC′=6(t−803)(s).∴∠BOD′=∠BOC′+60°=6(t−803)+60°=6t﹣100°.∴∠BON′=12∠BOD′=12(6t﹣100°)=3t﹣50°,∵OC′平分∠BON′,∴∠BOC′=12∠BON′,∴6(t−803)=12(3t﹣50°),解得:t=30(s)综上所述t的值为5或30.②逆时针旋转时:如图3中,当射线OP在射线OB的上方时,∵∠POB =12(140°﹣4t )﹣40°=30°﹣2t ,∠BON ′=12(100°﹣4t )=50°﹣2t , ∴∠PON ′=∠BON ′﹣∠POB =20°∴|∠BOP ﹣∠MON ′|=|∠BOM +∠PON ′|=40°,当OP 与OB 重合时,12(140°﹣4t )﹣40°=0,解得t =15.∴0≤t ≤15时,|∠BOP ﹣∠MON ′|的值不变,是40°. 当射线OP 返回时与OB 重合时.时间t =20+103=703,当运动到射线OD 与OA 共线时,60°+6(t ﹣20)=180°时,解得t =40, 观察图象可知,703≤t ≤40时,|∠BOP ﹣∠MON ′|的值不变,是40°.当射线OD 运动到与射线OB 共线时,20°+6(t ﹣20)=180°,解得t =1403, 当1403≤t ≤50时,如图4中,同法可得,∠PON ′=20°,∴|∠BOP ﹣∠MON ′|=|∠BOM +∠PON ′|=40°,综上所述,满足条件的t 的值为:0≤t ≤15或703≤t ≤40或1403≤t ≤50.11.如图,已知点O 为直线AB 上一点,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板的一边ON 与射线OB 重合,过点O 在三角板的内部,作射线OC ,使∠NOC :∠MOC =2:1,求∠AOC 的度数;(2)如图2,将三角板绕点O 逆时针旋转一定角度到图2的位置,过点O 在三角板MON 的内部作射线OC ,使得OC 恰好是∠MOB 的角平分线,此时∠AOM 与∠NOC 满足怎样的数量关系?并说明理由.试题分析:(1)根据角的倍分关系,以及角的和差关系即可求解;(2)令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,根据∠AOM+∠MOC+∠BOC=180°即可得到∠AOM与∠NOC满足的数量关系.答案详解:解:(1)∵∠NOC:∠MOC=2:1,∴∠MOC=90°×12+1=30°,∴∠AOC=∠AOM+∠MOC=90°+30°=120°.(2)∠AOM=2∠NOC,令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,∵∠AOM+∠MOC+∠BOC=180°,∴γ+90°﹣β+90°﹣β=180°,∴γ﹣2β=0,即γ=2β,∴∠AOM=2∠NOC.12.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC.将一直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方.将直角三角板绕着点O按每秒10⁰的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,此时,∠BOC与∠BOE之间有何数量关系?并说明理由.(2)若射线OC的位置保持不变,且∠COE=140°.①则当旋转时间t=7或25秒时,边AB所在的直线与OC平行?②在旋转的过程中,是否存在某个时刻,使得射线OA,OC与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值.若不存在,请说明理由.③在旋转的过程中,当边AB与射线OE相交时(如图3),求∠AOC﹣∠BOE的值.试题分析:(1)由∠AOB=90°知∠BOC+∠AOC=90°、∠AOD+∠BOE=90°,根据∠AOD=∠AOC可得答案;(2)①由∠COE=140°知∠COD=40°,分AB在直线DE上方和下方两种情况,根据平行线的性质分别求得∠AOD度数,从而求得t的值;②当OA平分∠COD时∠AOD=∠AOC、当OC平分∠AOD时∠AOC=∠COD、当OD平分∠AOC时∠AOD=∠COD,分别列出关于t的方程,解之可得;③由∠AOC=∠COE﹣∠AOE=140°﹣∠AOE、∠BOE=90°﹣∠AOE得∠AOC﹣∠BOE=(140°﹣∠AOE)﹣(90°﹣∠AOE)=50°.答案详解:解:(1)∠BOC=∠BOE,∵∠AOB=90°,∴∠BOC+∠AOC=90°,∠AOD+∠BOE=90°,∵OA平分∠COD,∴∠AOD=∠AOC,∴∠BOC=∠BOE;(2)①∵∠COE=140°,∴∠COD=40°,如图1,当AB在直线DE上方时,∵AB∥OC,∴∠AOC=∠A=30°,∴∠AOD=∠AOC+∠COD=70°,即t=7;如图2,当AB在直线DE下方时,∵AB∥OC,∴∠COB=∠B=60°,∴∠BOD=∠BOC﹣∠COD=20°,则∠AOD=90°+20°=110°,∴t=360°−110°10=25,所以答案是:7或25;②当OA平分∠COD时,∠AOD=∠AOC,即10t=20,解得t=2;当OC平分∠AOD时,∠AOC=∠COD,即10t﹣40=40,解得t=8;当OD平分∠AOC时,∠AOD=∠COD,即360﹣10t=40,解得:t=32;综上,t的值为2、8、32;③∵∠AOC=∠COE﹣∠AOE=140°﹣∠AOE,∠BOE=90°﹣∠AOE,∴∠AOC﹣∠BOE=(140°﹣∠AOE)﹣(90°﹣∠AOE)=50°,∴∠AOC﹣∠BOE的值为50°.13.如图,已知点O为直线AB上一点,将一直角三角板的直角顶点放在点O处.(1)如图1,将三角板的一边ON与射线OB重合,过点O在三角板的内部,作射线OC,使∠NOC:∠MOC=2:1,则∠MOC=30°.(2)如图2,将三角板绕点O逆时针旋转一定角度到图2的位置,过点O在三角板MON的内部作射线OC,使得OC恰好是∠MOB对的角平分线;试研究:∠AOM与∠NOC满足的数量关系,并说明理由.(3)将如图1所示的三角板MON绕点O逆时针旋转α°(0°<α<90°)到如图3所示的位置,在∠BON的内部作射线OC使得∠NOC=16∠AON,则∠BOC的度数为76α°﹣30°(用含α的代数式表示)(请直接写出答案)试题分析:(1)根据角的倍分关系即可求解;(2)令∠NOC 为β,∠AOM 为γ,∠MOC =90°﹣β,根据∠AOM +∠MOC +∠BOC =180°即可得到∠AOM 与∠NOC 满足的数量关系;(3)根据∠BON =α°,得到∠AON =180°﹣α°,得到∠AOC =210°−76αα°,再根据平角的定义得到∠BOC 的度数.答案详解:解:(1)∵∠NOC :∠MOC =2:1,∴∠MOC =90°×12+1=30°. (2)∠AOM =2∠NOC ,令∠NOC 为β,∠AOM 为γ,∠MOC =90°﹣β, ∵∠AOM +∠MOC +∠BOC =180°, ∴γ+90°﹣β+90°﹣β=180°, ∴γ﹣2β=0,即γ=2β, ∴∠AOM =2∠NOC .(3)∠BOC 的度数为76α°﹣30°.∵∠BON =α°, ∴∠AON =180°﹣α°,∴∠AOC =∠AON +∠NOC =∠AON +16∠AON =76∠AON =210°−76α°, ∴∠BOC =180°﹣∠AOC =76α°﹣30°. 所以答案是:30°;76α°﹣30°.四.角的动边之存在性14.如图,∠AOB =120°,射线OC 从OA 开始,绕点O 逆时针旋转,旋转的速度为每分钟20°;射线OD 从OB 开始,绕点O 逆时针旋转,旋转的速度为每分钟5°,OC 和OD 同时旋转,设旋转的时间为t (0≤t ≤15).(1)当t 为何值时,射线OC 与OD 重合; (2)当t 为何值时,射线OC ⊥OD ;(3)试探索:在射线OC 与OD 旋转的过程中,是否存在某个时刻,使得射线OC ,OB 与OD 中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t 的取值,若不存在,请说明理由.试题分析:(1)根据题意可得,射线OC 与OD 重合时,20t =5t +120,可得t 的值;(2)根据题意可得,射线OC ⊥OD 时,20t +90=120+5t 或20t ﹣90=120+5t ,可得t 的值; (3)分三种情况,一种是以OB 为角平分线,一种是以OC 为角平分线,一种是以OD 为角平分线,然后分别进行讨论即可解答本题.答案详解:解:(1)由题意可得,20t =5t +120 解得t =8,即t =8min 时,射线OC 与OD 重合; (2)由题意得,20t +90=120+5t 或20t ﹣90=120+5t , 解得,t =2或t =14即当t =2min 或t =14min 时,射线OC ⊥OD ; (3)存在,由题意得,120﹣20t =5t 或20t ﹣120=5t +120﹣20t 或20t ﹣120﹣5t =5t , 解得t =4.8或t =487或t =12,即当以OB 为角平分线时,t 的值为4.8min ;当以OC 为角平分线时,t 的值为487min ,当以OD 为角平分线时,t 的值为12min .15.已知:如图1,点A 、O 、B 依次在直线MN 上,现将射线OA 绕点O 沿顺时针方向以每秒2°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒4°的速度旋转,如图2,设旋转时间为t(0秒≤t≤90秒).(1)用含t的代数式表示∠MOA的度数.(2)在运动过程中,当∠AOB第二次达到60°时,求t的值.(3)在旋转过程中是否存在这样的t,使得射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角(指大于0°而不超过180°的角)的平分线?如果存在,请直接写出t的值;如果不存在,请说明理由.试题分析:(1)∠AOM的度数等于OA旋转速度乘以旋转时间;(2)当∠AOB第二次达到60°时,射线OB在OA的左侧,根据∠AOM+∠BON﹣∠MON=60°列方程求解可得;(3)射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角的平分线有三种情况:①OB平分∠AOM时,根据12∠AOM=∠BOM,列方程求解,②OB平分∠MON时,根据∠BOM=12∠MON,列方程求解,③OB平分∠AON时,根据∠BON=12∠AON,列方程求解.答案详解:解:(1)∠MOA=2t°;(2)如图,根据题意知:∠AOM=2t°,∠BON=4t°,当∠AOB第二次达到60°时,∠AOM+∠BON﹣∠MON=60°,即2t+4t﹣180=60,解得:t=40,故t=40秒时,∠AOB第二次达到60°;(3)射线OB 是由射线OM 、射线OA 、射线ON 中的其中两条组成的角的平分线有以下三种情况:①OB 平分∠AOM 时,∵12∠AOM =∠BOM ,∴t =180﹣4t , 解得:t =36;②OB 平分∠MON 时,∵∠BOM =12∠MON ,即∠BOM =90°, ∴4t =90,或4t ﹣180=90, 解得:t =22.5,或t =67.5;③OB 平分∠AON 时,∵∠BON =12∠AON , ∴4t =12(180﹣2t ), 解得:t =18;综上,当t 的值分别为18、22.5、36、67.5秒时,射线OB 是由射线OM 、射线OA 、射线ON 中的其中两条组成的角的平分线.16.如图1,∠AOB =120°,∠COE =60°,OF 平分∠AOE (1)若∠COF =20°,则∠BOE = 40 °(2)将∠COE 绕点O 旋转至如图2位置,求∠BOE 和∠COF 的数量关系(3)在(2)的条件下,在∠BOE 内部是否存在射线OD ,使∠DOF =3∠DOE ,且∠BOD =70°?若存在,求∠DOF ∠COF 的值,若不存在,请说明理由.试题分析:(1)根据∠BOE =∠AOB ﹣∠AOE ,求出∠AOE 即可解决问题;(2)由题意∠AOE =2∠EOF ,可得120°﹣∠BOE =2(60°﹣∠COF )即可推出∠BOE =2∠COF ;(3)存在.∠DOF =3∠DOE ,设∠DOE =α,∠DOF =3α,构建方程求出α,求出∠DOF ,∠COF 即可;答案详解:解:(1)∵∠COE=60°,∠COF=20°,∴∠EOF=60°﹣20°=40°,∵OF平分∠AOE,∴∠AOF=∠EOF=40°,∴∠AOE=80°,∴∠BOE=∠AOB﹣∠AOE=120°﹣80°=40°,所以答案是40;(2)∵∠AOE=2∠EOF,∴120°﹣∠BOE=2(60°﹣∠COF)∴∠BOE=2∠COF;(3)存在.理由如下:∵∠DOF=3∠DOE,设∠DOE=α,∠DOF=3α,∴∠EOF=∠AOF=2α,∠AOD=5α,∵∠AOD+∠BOD=120°,∴5α+70°=120°,∴α=10°,∴∠DOF=30°,∠AOE=40°,∠AOC=60°﹣40°=20°,∴∠COF=40°,∴∠DOF∠COF=34.五.新定义17.如图1,射线OC在∠AOB的内部,在∠AOB,∠AOC和∠BOC中,若其中有一个角的度数是。
人教版七年级数学上册培优讲义《第9讲 角的计算综合》
9.角的计算综合知识目标目标一掌握角的相关概念和基本计算,能由条件作出图形目标二掌握角的分类讨论,并理解分类讨论的原因目标三掌握设元导角的方法,熟练运用方程思想、整体思想解题概念巩固角的相关概念知识导航1、角的定义与表示定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
表示:用三个大写宁母表示:用一个大写字母表示:用数字表示:用希腊字母表示:2、角的度量单位度、分、秒是常用的角的度量单位,它们是60进制的.把一个周角360等分,每一份就是1度的角,记作1°;把1°的角60等分,每一份叫做1分的角,记作1';把1'的角60等分,每一份叫做1秒的角,记作1".1周角:360°,1平角=180°,1°= 60',1'=60''.3、角的平分线从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线,类似的,还有角的三等分线等.4、余角、补角如果两个角的和等于90°,就说这两个角互为余角,即其中一个角是另一个角的余角.两个角互为余角简称两个角互余。
如果两个角的和等于180°,就说这两个角互为补角,即其中一个角是另一个角的补角.两个角互为补角简称两个角互补.同角(或等角)的余角相等.同角(或等角)的补角相等,5、方位角方位角就是用角度和方向表示方位的角,一般是以南、北为主轴线,指出物体所在位置与观测点所连成的射线(观测点为端点),它与主轴线的夹角.如上图,OA 方向表示北偏东30°;OB 方向表示南偏西45°,也称西南方向;类 似的,还有东南、东北、西北方向:OC 方向是南偏东60°,不能说成东偏南30°.例1 (1)(2015洪山区七上期末)如图,已知∠BOC 在∠AOB 的内部,∠AOB 与∠BOC 互余,OD 分∠AOB ,∠AOD =40°.则∠DOC = .(2)如图,∠ADD =∠DOB =∠COE =90°,其中共有互余的角 对.(3)如果一个锐角的余角是这个角的补角的31与12°的和,那么这个锐角的余角与补角的度数分别是多少?练(1) (2015硚口区七上期末)如图.下列描述正确的是()A. 射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射拽OC的方向是东南方向D.射线OD的方向是西偏南15°(2)如图,已知OB、OC、OD为锐角∠AOE内的三条射线,若∠AOE=89°,∠BOD=30°求图中所有锐角的和.模块一角的计算综合题型一角的基本计算例2(1)(2015二中七上期中) 如图,直线AB、CD相交于点O,OE、OF分别平分∠BOD 和∠BOC.若∠DOE=34°,则∠COF= .(2)如图,直线AB、CD相交于点D,∠DOF=90°.OF平分∠AOE,若∠BOD=30°,则∠EOC的度数为多少?练(2015硚口区七上期未)已知:直线AB与直线CD相交于点O,∠BOC=40°.(1)如图1,若∠AOE=90°,求∠COE的度数:(2)如图2,若OF平分∠AOC,求∠DOF的度数.题型二角的分类讨论例3(1)同一平面内,若∠AOB=40°,∠BOC=20°,则∠AOC= .(2)同一平面内,若∠AOB =70°,∠BOC =40°,OD 平分∠AOC ,则∠AOC = .练(2015东西湖区七上期末)已知∠AOB =100°,作射线OC ,若∠BOC =53∠AOB ,射线OM 、ON 分别平分∠AOB 、∠BOC ,则∠MON 的度数为 ..题型三 角的“四象限”讨论例4(2015东湖高新区七上期未)已知,∠AOB =80°,过O 作射线OC (不同于OA 、OB ),∠AOC 、∠BOC 均小于180°,且满足∠AOC =53∠BOC ,求∠AOC . 总结归纳对于一个角如∠AOC ,在不加特殊说明的情况下都是指图中小于180°的角.当一个角 大小未知并且它的某条边的位置不确定时,就存在多种可能性,随着边的位不同,则∠AOC 表示的角也不同,并且分类讨论的分界处就是∠AOC 为180°.因此,对于例4这类问题, 需以∠AOC 、∠BOC 均小于180°为依据来分类讨论,也就是所谓的“四象限”讨论法.练已知∠AOB =120°,过点O 作射线OC ,满足∠AOC =31∠BOC ,求∠AOC 的大小.模块二 设元导角知识导航设元导角一般步骤: ① 设小角,设等角;(设小角便于在图中用字母标示角,设等角能保证立刻在图中用上等角条件)②根据题目条件,用所设字母表示相关角;(相关角包括已知条件中涉及的角和题目所求的角)、③导角目标要明确,注意用完所有已知条件.题型一设元求角──────方程思想例5(1) (2014武昌区七上期末)如图,OE平分∠AOB, OD平分∠AOC,∠DOE=40°,求∠BOC的度数.(2)(2014江汉区七上期末)如图,已知OB平分∠AOC,OD平分∠COE,∠AOD=110°,∠BOE=100°,求∠AOE的度数.练(2015硚口区七上期未)如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,则∠BOE的度数为( ).A. 360°-4αB.180-4αC.αD.270°-3α题型二设而不求——整体思想例6(1)(2015二中七上期末)如图,OB是∠AOC内部一条射线,OM是∠AOB平分线,ON 是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2 B.1:3 C. 2:5.D.1:4(2)同一平面内∠AOB、∠BOC有公共顶点O,OM平分∠AOC,ON平分∠BOC.①如图1,若OC在∠AOB内部,求∠MON与∠AOB的数量关系;②如图2,若OC在∠AOB外部,求∠MON与∠AOB的数量关系.(3) 同一平面内∠AOB、∠COD绕公共顶点O旋转.OM平分∠COD.ON平分∠AOB,已知∠BOD=α,∠AOC=β.①如图Ⅰ.若∠AOB与∠COD无重合的部分.α=130°,β=10°,求∠MON的度数;②如图Ⅱ,若∠AOB与∠COD有重合的部分,α=130°,β=10°,求∠MON的度数;③用含α、β的式子分表示出图Ⅰ与图Ⅱ中的∠MON;④若已知∠AOC=15°,∠MON=65°.分别求出图Ⅰ与图Ⅱ中∠BOD的度数.练(2014 江岸区七上期末)如图.在同一平面内,OA⊥OB于O,射线OM平分∠AOB,从点O 引射线OC,射线ON平分∠BOC.(1) 若∠BOC=30°,请你补全图形,再计算∠MON的度数;(2) 若OA与OB不垂直,∠AOB=α,∠BOC=β(0<β<α<90°).其它条件不变,请你画出大致图形,并直接写出∠MON的度数;(3) 结合上面的计算,观察并继续思考:在同一平面内,∠AOB=α,∠BOC=β,OM平分∠AOB,ON平分∠BOC,你发现∠MON与∠AOC有怎样的数量关系?请你直接写出来.题型三三角板问题45°,45°,90°三角板30°,60°,90°三角板例7如图,将两块三角板的直角顶点重叠在一起.(1) 如图1,若∠AOD=20°,则∠COB=;如图2,若∠AOD=30°,则∠COB=;如图3,若∠AOD=50°,则∠COB=.(2) 如图4,若∠AOD=α,猜想∠COB与α的数量关系(用含α的式子表示∠COB),并证明你的结论.练一副三角板OAC、OBD如图1放置(∠BDO=30°,∠CAO=45°),OM、ON分别平分∠BOA、∠DOC.(1)如网1.求∠MON的度数;(2)将三角扳OBD从图1绕O点顺时针旋转至如图2,则在旋转过程中∠MON如何变化?(3)若三角板OBD从图1绕O点逆时针旋转至如图3,则(2)的结论是否成立?题型四 时钟问题秒、分时针的速度以360度计算 以60格计算 秒针速度 360度/分钟 60格/分钟 分针速度 6度/分钟 1格/分钟时针速度0.5度/分钟121格/分钟关键问题:1、确定分针与时针的初始位置; 2、确定分针与时针的路程差.基本方法:1、分格方法:从格数看,钟面圆周被分成60小格; 2、度数方法:从角度看,钟面圆周一周是360°.例8(1)时钟在2点15分时,钟表上的时针和分针所成的角是多少度? (2)小王下午6点多外出买东西时,看到时钟上时针和分针互相垂直,近7点回到家时, 发 现时钟上时针和分针仍然互相垂直,试估计小王外出用了多长时间?第9讲 角的计算综合[课后作业]1.(1) 一个角的余角等于它的补角的51,则这个角的度数为 ; (2)若∠AOB =50°,∠BOC =20°,则∠AOC = .2.如图,OA 的方向是北偏东15°,OB 的方向是北偏西 40°,OD 是OB 的反向延长线.若OC 是∠AOD 的平分线,则∠BOC 的度数为 ,OC 的方向是 .3.如图所示,直线AB、CD、EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°.求∠DOG的度数.4.(2014武昌区七上期末)如图,已知∠AOC= 2∠BOC,∠AOC的余角比∠BOC小30°.(1)求∠AOC的度数;(2)过点O作射线OD,使得∠AOC= 4∠AOD,请你求出∠COD的度数.5. 以∠AOB的顶点O为端点引射线OC.使得∠AOC:∠BOC=5:4.若∠AOB=30°,则∠AOC 的度数为?6.(2015二中七上期末)已知D是直线上的一点,∠AOB是直角,OE平分∠AOC.(1)在图①中,若∠BOD=28°,求∠AOE的度数:(2)将图①中的∠AOB绕顶点O顺时针旋转至图②的位置.若∠BOD=α,试用含α的式子表示∠AOE,并说明理由:(3)继续旋转AOB至图⑨的位置,若∠BOD=α,其他条件不变,试将图形补充完整,则∠AOE=(用含α的式子表示).7.(2015江岸七上期末)如图,将一副三角板摆放在一起.(1)∠AOC=,射线OA、OB、OC组成所有小于平角的角的和为;(2)反向延长射线OA到D,OE为∠BOD的平分线,OF为∠COD的平分线,请按题意画出图形,并求出∠EOF的度数.8.一副三角板OAB、OCD如图l放置,∠ABO=30°,∠ODC=45°,若OM、ON分别平分∠AOD、∠BOC.(l)求∠MON的度数;(2)将三角板OCD从图1绕O点顺时针旋转如图2,若OD平分∠AOB,求出旋转角α;(3)将三角板OCD从图1绕O点顺时针旋转如图3,若∠AOC=90°,求出旋转角α的度数.9.(1) 如图1,在直线上取点O ,在AB 同侧引射线OC 、OD 、OE 、OF 使∠COE 和∠BOE 互余,射线OF 和OD 分别平分∠COE 和∠BOE ,求证: ∠AOF +∠BOD = 3∠DOF .(2) 如图2,O 是直线AC 上一点.OB 是一一条射线,OD 平分∠AOB ,OE 在∠BOC内.∠BOE =31∠EOC ,∠DOE =60°.求∠EOC 的度数?。
七年级数学尖子生培优竞赛专题辅导专题06多边形角的计算
专题06多边形角的计算专题解读】在几何学习中,我们常常要研究一些变化过程中的不变量.比如,随着多边形边数的变化,英内角和在变化,而外角和则始终保持不变.因此,在分析与解决有关多边形的角的计算题时,我们往往以图形的确泄性分析为抓手,从基本图形的演变入手,在“变”与“不变”中探索规律.在解决问题的具体过程中, 常常化多边形问题为三角形问题.此外,我们还可设立未知数表达相关的呈:,最终建立方程求解问题.思维索引】例1.如图,从四边形ABCD的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形?请画岀示意图,并在图形下方写上剩余部分多边形的内角和.例2.在AABC中,ZC=90%点D, E分别是边AG BC上的点,点F是一动点・设ZFDA=a.乙FEB=B、ZDFE=n.(1)___________________________________________________ 如图1,若点尸在线段AB h,且” = 50。
,贝IJa+0= ________________________________________________ :(2)如图2,若点F在斜边BA的延长线上运动(CE>CD),请直接写出小心”之间的关系_(3)若点F运动到△ABC形外(只需研究图3情形),则小“、B之间有何关系?并说明理由.C图1 C图2图3例3.如图:线段AB、CD相交于点0,连接AD、CB,我们把这个图形称为“8字型]根据三角形内角和容易得到:ZA + ZD=ZC+ZB ・(1)利用“8 字型”:如图(1): ZA+ ZB+ ZC+ ZD+ZE+ ZF= ___________________ :(2)构造“8 字型”:如图(2): ZA+ZB+ZC+ZD+ZE+ZF+ZG= ___________________ :(3)发现“8字型”:如图(3):BE、CD相交于点儿CF为ZBCD的平分线,EF为ZBED的平分2.如图,在IXXBC中,ZC= 50°,按图中虚线将ZQ剪去后,Z1 + Z2等于3.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是线.①图中共有个“8字型”;②若ZB: ZD:ZF=4: 6: x,求x 的值.素养提升1.如图是一个长方形和两个等边三角形,若Z3 = 50%则Z1 + Z2的值是A. 90°B. 100°C. 130°D.A. 230°B. 210°C. 130°D. 310°图2图3第2題图180°A. 360°B. 540°C. 720°D. 900°4. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080%那么原多边形的边数为()A. 7 B・7或8 C・8或9 D・7或8或95.如图,ZA+ZB+ZC+ZD+ZE 为() A. 360° B. 300。
初中奥数培优数学竞赛专题06 有理数的计算
专题06有理数的计算阅读与思考在小学我们已经学会根据四则运算法则对整数和分数进行计算,当引进负数概念后,数集扩大到了有理数范围,我们又学习了有理数的计算,有理数的计算与算术数的计算有很大的不同:首先,有理数计算每一步要确定符号;其次,代数与算术不同的是“字母代数”,所以有理数的计算很多是字母运算,也就是通常说的符号演算.数学竞赛中的计算通常与推理相结合,这不但要求我们能正确地算出结果,而且要善于观察问题的结构特点,将推理与计算相结合,灵活选用算法和技巧,提高计算的速度.有理数的计算常用的技巧与方法有:1.利用运算律.2.以符代数.3.裂项相消.4.分解相约.5.巧用公式等.例题与求解【例1】已知m ,n 互为相反数,a ,b 互为负倒数,x 的绝对值等于3,则2002200123)()()1(-ab x n m x ab n m x ++++++的值等于______________.(湖北省黄冈市竞赛试题)解题思路:利用互为相反数、互为倒数的两个有理数的特征计算.【例2】已知整数d c b a ,,,满足25=abcd ,且d c b a >>>,那么d c b a +++等于()A .0B .10C .2D .12(江苏省竞赛试题)解题思路:解题的关键是把25表示成4个不同的整数的积的形式.【例3】计算:(1);100321132112111+⋅⋅⋅++++⋅⋅⋅++++++(“祖冲之杯”邀请赛试题)(2)199843277777+⋅⋅⋅++++;(江苏省泰州市奥校竞赛试题)(3)9019727185617424163015201941213652211+-+-+-+-.(“希望杯”邀请赛试题)解题思路:对于(1),若先计算每个分母值,则掩盖问题的实质,不妨先从考察一般情形入手;对于(2),由于相邻的后一项与前一项的比都是7,考虑用字母表示和式;(3)中裂项相消,简化计算.【例4】n m ,都是正整数,并且)11)(11()311311)(211)(211(m m A +-⋅⋅⋅+-+-=,11)(11()311)(311)(211)(211(n n B +-⋅⋅⋅+-+-=.(1)证明:m m A 21+=,n n B 21+=;(2)若261=-B A ,求m 和n 的值.(“华罗庚金杯”少年邀请赛试题)解题思路:(1)对题中已知式子进行变形.(2)把(1)中证明得到的式子代入,再具体分析求解.【例5】在数学活动中,小明为了求n 2121212121432+⋅⋅⋅++++的值(结果用n 表示),设计了如图①,所示的几何图形.(1)请你用这个几何图形求n 2121212121432+⋅⋅⋅++++的值.(2)请你用图②,在设计一个能求n 2121212121432+⋅⋅⋅++++的值的几何图形.(辽宁省大连市中考试题)解题思路:求原式的值有不同的解题方法,二剖分图形面积是构造图形的关键.【例6】记,令nS S S T nn +⋅⋅⋅++=21称n T 为n a a a ⋅⋅⋅,,21这列数的“理想数”,已知50021,,a a a ⋅⋅⋅的“理想数”为2004.求50021,,,8a a a ⋅⋅⋅的“理想数”.(安徽省中考试题)解题思路:根据题意可以理解为n S 为各项和,n T 为各项和的和乘以n1.能力训练A 级1.若y x ,互为相反数,n m ,互为倒数.1=a ,201220112)()(mn y x a -++-的值为____________.(湖北省武汉市调考试题)2.若21)1(22)1(1)1(32=+-⨯--⨯-+--M ,则M =___________.(“希望杯”邀请赛试题)3.计算:(1)199919971971751531⨯+⋅⋅⋅+⨯+⨯+⨯=________________;(2)()()()()[]⎪⎭⎫⎝⎛-÷-÷-+--⨯-243431622825.0=__________________.4.将1997减去它的21,再减去余下的31,再减去余下的41,再减去余下的51,⋅⋅⋅,依次类推,直至最后减去余下的19971,最后的答案是_______________.(“祖冲之杯”邀请赛试题)5.右图是一个由六个正方体组合而成的几何体,每个小正方体的六个面上都分别写着-1,2,3,-4,5,6六个数字,那么图中所有看不见的面上的数字和是___________.(湖北省仙桃市中考试题)6.如果有理数c b a ,,满足关系式c b a 0,那么代数式32-c ab acbc 的值()A .必为正数B .必为负数C .可正可负D .可能为0(江苏省竞赛试题)7.已知有理数z y x ,,两两不相等,则z y x -y -,x -z z -y ,y--x xz 中负数的个数是()A .1个B .2个C .3个D .0个或2个(重庆市竞赛试题)8.若a 与)-(b 互为相反数,则abb a 199********2+=()A .0B .1C .-1D .1997(重庆市竞赛试题)9.如果()-12001=+b a ,()1-2002=b a ,则20032003b a +的值是()A .2B .1C .0D .-1(“希望杯”邀请赛试题)10.若d c b a ,,,是互为不相等的整数,且9=abcd ,则d c b a +++等于()A .0B .4C .8D .无法确定11.把511,3.7,216,2.9,4.6分别填在图中五个Ο内,再在每个□中填上和它相连的三个Ο中的数的平均数,再把三个□中的平均数填在△中.找出一种填法,使△中的数尽可能小,并求这个数.(“华罗庚金杯”少年邀请赛试题)12.已知c b a ,,都不等于零,且abcabcc c b b a a +++的最大值为m ,最小值为n ,求)1(1998++n m 的值.B 级1.计算:9897983981()656361()4341(21+•••+++•••++++++=________________.(“五羊杯”竞赛试题)2.计算:109876543222-2-2-2-2-2-2-2-2+=________________.(“希望杯”邀请赛试题)3.计算:293186293142842421(nn n n n n ••+•••+××+×ו•+•••+××+××=____________________.4.据美国詹姆斯·马丁的测算,在近十年,人类的知识总量已达到每三年翻一翻,到2020年甚至要达每73翻番空前速度,因此,基础教育任务已不是“教会一切人一切知识,而是让一切人学会学习”.已知2000年底,人类知识总量a ,假入从2000年底2009年底每3年翻一翻;从2009年底到2019年底每1年翻一番;2020年是每73天翻一翻.(1)2009年底人类知识总量是:__________________;(2)2019年底人类知识总量是:__________________;(3)2020年按365天计算,2020年底类知识总量会是____________________.(北京市顺义区中考试题)5.你能比较20022001和20012002的大小吗?为了解决这个问题,我们首先写出它的一般形式,即比较1+n n 与nn )1(+的大小(n 是自然数),然后我们从分析n=1,n=2,n=3…中发现规律,经归纳、猜想得出结论(1)通过计算,比较下列各组中两数的大小:(在横线上填写“>”“=”“<”)①122__1,②233__2;③344__3;④455__4;⑤••••••566__5(2)从第(1)题的结果中,经过归纳,可以猜想出1+n n与nn )1(+的大小关系是_____________________________________________________________________________;(3)根据以上归纳.猜想得到的一般结论,试比较下列两数的大小20022001_____20012002:.(福建省龙岩市中考试题)6.有2009个数排成一列,其中任意相邻的三个数中,中间的数总等于前后两数的和.若第一个数是1,第二个数是-1,则这个2009个数的和是()A .-2B .-1C .0D .2(全国初中数学竞赛海南省试题)7.如果1332211=++t t t t t t ,那么321321t t t t t t 的值为()A .-1B .1C .1±D .不确定(河北省竞赛试题)8.三进位制数201可用十进制数表示为1910921303212=++×=+×+×;二进制数1011可用十进制法表示为1× 23 + 0× 22 +1× 21+1 = 8 + 0 + 2 +1 = 11.前者按 3 的幂降幂排列,后者按 2 的幂降幂排列,现有三进位制数a = 221,二进位制数b = 10111 ,则a 与b 的大小关系为( ).A .ba >B .ba =C .ba <D .不能确定(重庆市竞赛试题)9.如果有理数d c b a ,,,满足d c b a +>+,则()A .d c b a +>++11-B .2222dc b a +>+C .3333dc b a +>+D .4444dc b a +>+(“希望杯”邀请赛试题)10.有1998个互不相等的有理数,每1997个的和都是分母为3998的既约真分数,则这个1998个有理数的和为()A .1997999B .1997997C .1998998D .1998999(《学习报》公开赛试题)11.观测下列各式:223214111××==,22333241921××==+,22333434136321××==++22333354411004321××==+++...回答下面的问题:(1)猜想33333)1-(321n n ++•••+++=______________.(直接写出你的结果)(2)利用你得到的(1)中的结论,计算3333310099321++•••+++的值.(3)计算①3333100991211++•••++的值;②3333310098642++•••+++的值.专题06有理数的计算例128或-26例2D提示:abcd=5×1×(-1)×(-5),a=-5,b=1,c=-1,d=-5.例3(1)101200提示:2)1(13211+-++++n n n=()12+n n =⎪⎭⎫ ⎝⎛+-1112n n .(2)6771999-提示:设s=1998327777++++ ,则7s=1999327777++++ (3)原式=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+56174217301520151213613211+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-90197219=1+1-1019191814131312121-+-++-+-+ =2-101=1091例4(1)A=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-m m 1131121111311211 =m m m m 1342313221+⨯⨯⨯⨯-⨯⨯⨯ =m m 21+同理B=nn 21+由A-B=m m 21+-n n 21+=n m 2121-=261得13111=-n m ∴m=n n +1313=13-n+⨯131313,又∵m ,n 均为正整数,∴13+n 为13×13的因数,∴13+n=213∴n156,m=12.例5(1)原式=1-n 21,(2)例6由题意知()()()[]n n a a a a a a a a a nT ++++++++++=213212111,即()()[]n n n a a a n a n na nT +++-+-+=-13212311.又[]50049932150024984995005001a a a a a T +++++⨯=∴5004993212498499500a a a a a +++++ =2004×500.故8,1a ,2a ,…,500a 的“理想数“为[]500499321501249849950085015011a a a a a T ++++++⨯=””=[]500200485015011⨯+⨯⨯=2008.A 级1.2提示:原式=()201220112201-+-=1+1=2.2.2提示:M-1+21221=+--,解得M=2.3.(1)5997998;(2)-84.1提示:设a=1997,由题意原式= -⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛---41623122a a a a a a =19961997342312⨯--⨯-*-⨯-a a a a a 5.-13 6.B7.B提示:不妨设x>y>z.8.B 9.D 10.A11.提示:设○内从右到左填的数分别为1a ,2a ,3a ,4a ,5a 则△内填的数为923254321a a a a a ++++.要使△中填的数尽可能小,则5113=a ,2a ,4a 分别为2,9,3,7,而剩下的两个为1a ,5a .12.1998提示:1=x x 时,m=4;1-=xx时,n-4.B 级1.612.5提示:倒叙相加.2.6提示:nn n 2221=-+3.72964 4.(1)a∙32(2)a∙132(3)a∙1825.(1)略(2)当n<3时,()nn n n11+<+;当n≥3时,()nn n n 11+>+(3)>001-00076.A 提示:先写出前面一些数:1,-1,-2,-1,1,2,1,-1,…,经观察发现每6个数为一次循环,又2009=334×6+5.而每一组中1+(-1)+(-2)+(-1)+1+2=0,故这2009个数的和,等于最后五个数之和.为1+(-1)+(-2)+(-1)+1=-2.7.A 8.A 9.A 10A 11.(1)14×π2×(n +1)2(2)原式=14×1002×(100+1)2=25502500(3)①原式=14×100×(100+1)2-14×102×(10+1)2=25499475;②原式=23×(13+23+33+…+493+503)=23×14×502×(50+1)2=13005000.。
七年级数学尖子生培优竞赛专题辅导第十五讲多边形的有关问题(含答案)
趣题引路】如图15-1,用黑白两种颜色的正六边形地砖按如下所示的规律,拼成若干个图案.(1)第四个图案中有白色地面砖________ 块.⑵第n个图案中有白色地而砖___________ 块.第一个图案有白砖数6,第二个图案有白砖数10,第三个图案有白砖数14,第四个图案有白砖数18,6=4x14-2;10=4x2+2;14=4x3 + 2;18=4x4+2;一般地,第“个图案有白色地砖(4“+2)块.知识拓展】1. 多边形的基本知识主要是指多边形的边、内外角、对角线、凸多边形、凹多边形等基本概念和多边形内角和定理、外角和定理,其中多边形内、外角和左理是解有关多边形问题的基础.2. 多边形的许多性质与问题往往可以利用三角形来解决,将多边形问题转化为三角形问题来解决是解多边形问题的基本策略,从凸“边形的一个顶点引出的对角线把凸n边形分成("一2)个三角形,凸“边形一共可引出匕”条对角线.3. 多边形的内角和是随着多边形的边数变化而变化的,但外角和却总是不变的,所以,我们常以外角和的“不变“来制约內角和的“变“,把内角问题转化为外角问题来处理,这也是解多边形相关问题的常用技巧.4. 多边形的内角和为("一2)180。
:外角和为360°;正多边形的每个内角为,每个外角为迸2.n n一、多边形的内角与外角例1 (2003年全国联赛题)在凸10边形的所有内角中,锐角的个数最多是()个.A. 0B. 1C. 3D. 5解析由于任何凸多边形的所有外角之和都是360°,故外角中钝角的个数不超过3个.又因为内角与外角互补,因此,内角中锐角最多不能超过3个.实际上,容易构造出内角中有三个锐角的凸10边形.故选C.点评把内角问题转化为外角问题考虑.第十五讲多边形的有关问丿图15-1例2—个凸〃边形,除了一个内角外,其余(n~l)个角之和为2002°,求"的值.解析本题实际上是求多边形内角和的延伸,要注意"为自然数且每个内角不大于180。
专题06 几何图形初步—角度问题压轴真题(解析版)-初中数学七年级上学期重难点题型必刷题(人教版)
专题06 高分必刷题-几何图形初步—角度问题压轴题真题(解析版)专题简介:本份资料专攻《几何图形初步》这一章中求角度的压轴题,所选题目源自各名校月考、期末试题中的压轴题真题,大都涉及到角度的旋转问题,难度较大,适合于想挑战满分的学生考前刷题使用,也适合于培训机构的老师培训尖子生时使用。
1.(明德)已知120AOB ∠=,60COD ∠=,OE 平分∠BOC .(1)如图①,当∠COD 在∠AOB 的内部时.①若∠AOC =40°,则∠COE =_________;∠DOE =_________.②若∠AOC =α,则∠DOE =_________(用含α的代数式表示);(2)如图②,当∠COD 在∠AOB 的外部时①请写出∠AOC 与∠DOE 的度数之间的关系,并说明理由.②在∠AOC 内部有一条射线OF ,满足∠AOC +2∠BOE =4∠AOF ,写出∠AOF 与∠DOE 的度数之间的关系,并说明理由.【解答】解:(1)①∵∠AOB =120°,∠AOC =40°,∴∠BOC =80°,∵OE 平分∠BOC , ∴∠COE =∠BOC =40°,∵∠COD =60°,∴∠DOE =∠COD ﹣∠COE =60°﹣40°=20°.故答案为:40°,20°.②∵∠AOB =120°,∠AOC =α,∴∠BOC =120°﹣α,∵OE 平分∠BOC ,∴∠COE =∠BOC =60°﹣α,∵∠COD =60°,∴∠DOE =∠COD ﹣∠COE =60°﹣(60°﹣α)=α.故答案为:α.(2)①∵OE 平分∠BOC ,∴∠BOC =2∠COE ,∵∠AOC ﹣∠AOB =∠BOC ,∠DOE ﹣∠COD =∠EOC ,∴∠AOC ﹣∠AOB =2(∠DOE ﹣∠COD ),∵∠AOB =120°,∠COD =60°,∴∠AOC ﹣120°=2(∠DOE ﹣60°),化简得:2∠DOE =∠AOC .②∠DOE ﹣∠AOF =30°,理由如下:∵∠AOC =∠AOB +∠BOC ,∠BOC =2∠BOE ,∠AOC +2∠BOE =4∠AOF ,∴4∠AOF =∠AOB +4∠BOE ,∵∠DOE =∠COD +∠COE ,∠COE =∠BOE ,∴4∠DOE =4∠COD +4∠BOE ,∴4∠AOF ﹣4∠DOE =∠AOB ﹣4∠COD ,∵∠AOB =120°,∠COD =60°,∴4∠AOF ﹣4∠DOE =﹣120°,∴∠DOE ﹣∠AOF =30°.2.(长梅)定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫作这个角的三分钱,显然,一个角的三分线有两条.(1)如图①,已知OC 是∠AOB 的一条三分钱,且BOC AOC ∠>∠,若75AOB AOC ∠=︒∠=, ;(2)如图②,已知90AOB ∠=︒,若OC ,OD 是∠AOB 的两条三分线.①求∠COD 的度数;②在①的基础上,现以O 为中心,将∠COD 顺时针旋转n °得到C OD ''∠.当OA 恰好是C OD ''∠的三分线时,求n 的值.图① 图②【解答】解:(1)已知OC 是∠AOB 的一条三分钱,且∠BOC >∠AOC ,若∠AOB =75°, ∴∠AOC =∠AOB =25°,故答案为:25°.(2)①如图2,∵∠AOB =90°,OC ,OD 是∠AOB 的两条三分线,∴∠COD =∠AOB =30°;②分两种情况:当OA 是∠C 'OD '的三分线,且∠AOD '>∠AOC '时,∠AOC ′=10°, ∴∠DOC '=30°﹣10°=20°,∴∠DOD '=20°+30°=50°;当OA 是∠C ′OD '的三分线,且∠AOD '<∠AOC 时,∠AOC '=20°,∴∠DOC ′=30°﹣20°=10°,∴∠DOD '=10°+30°=40°;综上所述,n =40°或50°.3.(师大)若A 、O 、B 三点共线,∠BOC =50°,将一个三角板的直角顶点放在点O 处(注:∠DOE =90°,∠DEO =30°).(1)如图1,使三角板的短直角边OD 在射线OB 上,则∠COE = ;(2)如图2,将三角板DOE 绕点O 逆时针方向旋转,若OE 恰好平分∠AOC ,则OD 所在射线是∠BOC 的 ;(3)如图3,将三角板DOE 绕点O 逆时针转动到使∠COD =∠AOE 时,求∠BOD 的度数;(4)将图1中的三角板绕点O 以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,OE 恰好与直线OC 重合,求t 的值.【解答】解:(1)∵∠DOE =90°,∠BOC =50°,∴∠COE =40°,故答案为40°;(2)∵OE 平分∠AOC ,∴∠AOE =∠COE ,∵∠COE +DOC =∠DOE =90°,∴∠AOE +∠DOB =90°,∴∠DOC =∠DOB ,∴DO 平分∠BOC ,∴DO 是∠BOC 的角平分线,故答案为:角平分线;(3)∵∠COD =∠AOE ,∠COD +∠DOE +∠AOE =130°,∴5∠COD =40°,∴∠COD =8°,∴∠BOD =58°;(4)当OE 与射线OC 的反向延长线重合时,5t +40=180,∴t =28,当OE 与射线OC 重合时,5t =360﹣40,∴t =64,综上所述:t 的值为28或64.4.(雅礼)如图1,点O 为直线AB 上一点,过点O 作射线OC ,使130BOC ∠=︒。
初一数学下学期培优训练小专题09 多算少算截角后的多边形角度问题
初一数学下学期培优训练小专题09 多算少算截角后的多边形角度问题 1.一个多边形截去一个角后,形成另一个多边形的内角和为2520︒,则原多边形的边数是( ) A .15或17 B .16 C .16或17 D .15或16或172.一个多边形截去一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是( )A .10或11B .11或12或13C .11或12D .10或11或123.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为( )A .14或15B .13或14C .13或14或15D .14或15或164.如图,已知矩形ABCD ,一条直线将该矩形ABCD 分割成两个多边形(含三角形),若这两个多边形的内角和分别为M 和N ,则M N +不可能是( ).A .360︒B .540︒C .720︒D .630︒5. 如图,从△ABC 纸片中剪去△CDE ,得到四边形ABDE ,若∠C=60°.则∠1+∠2等于( )A .240°B .120°C .230°D .200°6.如果一个多边形的边数增加1,则它的内角和将( )A .增加90°B .增加180°C .增加360°D .不变7.粗心的小华在计算一个多边形的内角和时,除了一个内角外其余各内角的和为1900°,则这个多边形是__________边形.8.一个多边形除了一个内角之外,其余各内角的度数和为1510°,则这个多边形的边数为 _____.9.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________.10.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________. 11.一个n 边形,除了一个内角外,其余n 1-()个内角和为2770︒,则这个内角是______度.12.在一个凸n 边形的纸板上切下一个三角形后,剩下一个内角和为1080°的多边形,则n 的值为 .13.从如图的五边形ABCDE 纸片中减去一个三角形,剩余部分的多边形的内角和和是__________14.如图,已知两块三角板如图摆放,点B 和点C 分别在两块三角板的边上,一块三角板的顶点M 在另一块三角板的边上,且37BAC ∠=︒,60E ∠=︒,45F ∠=︒,则ABE EMF FCA ∠+∠+∠=________︒.15.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G =__________.16.如图所示,A B C D E F ∠+∠+∠+∠+∠+∠=______度.17.一个多边形截去一个角后,形成新多边形的内角和为1800°,则原多边形边数为_____.18.看对话答题:小梅说:这个多边形的内角和等于1125°小红说:不对,你少加了一个角问题:(1)他们在求几边形的内角和?(2)少加的那个内角是多少度?19.一个多边形,除一个内角外,其余各内角之和等于2020°,求这个内角的度数及多边形的边数. 20.小李同学在计算一个n边形的内角和时不小心多加了一个内角,得到的内角之和是1380度,则这个多边形的边数n的值是多少?多加的这个内角度数是多少?答案与解析1.一个多边形截去一个角后,形成另一个多边形的内角和为2520 ,则原多边形的边数是()A.15或17B.16C.16或17D.15或16或17【答案】D【分析】因为一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据多边形的内角和即可解决问题.【解析】解:n边形的内角和是(n﹣2)•180°(n≥3且n是整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据题意得(n﹣2)•180°=2520°,解得:n=16,则多边形的边数是15或16或17.故选:D.【点评】本题主要考查了多边形的内角和定理,本题容易出现的错误是:认为截取一个角后角的个数减少1.熟练掌握多边形的内角和定理是解题的关键.2.一个多边形截去一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是()A.10或11 B.11或12或13 C.11或12 D.10或11或12【答案】D【分析】首先求出截角后的多边形边数,然后再根据切去的位置求原来的多边形边数.【解析】解:设截角后的多边形边数为n,则有:(n-2)×180°=1620°,解得:n=11,如图1,从角两边的线段中间部分切去一个角后,在原边数基础上增加一条边,为12边形;如图2,从角的一边中间部分,另一边与另一顶点连结点处截取一个角,边数不增也不减,是11边形;;如图3,从另外两个顶点处切去一个角,边数减少1为10边形∴可得原来多边形的边数为10或11或12:故选D.【点评】本题考查多边形的综合运用,熟练掌握多边形的内角和定理及多边形的剪拼是解题关键.3.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15 B.13或14 C.13或14或15 D.14或15或16【答案】C【分析】一个多边形截去一个角是指可以截去两条边,而新增一条边,得到十四边形;也可以截去一条边,而新增一条边,得到十四边边形;也可以直接新增一条边,变为十四边形.【解析】由一个多边形截去一个角是指可以截去两条边,而新增一条边,得到十四边形;也可以截去一条边,而新增一条边,得到十四边边形;也可以直接新增一条边,变为十四边形.∴则原来的多边形的边数可能为15,14,13故选C.【点评】本题考查了多边形,能够得出一个多边形截一刀后得到的图形有三种情形,是解决本题的关键.4.如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形(含三角形),若这两个多边形的内+不可能是().角和分别为M和N,则M NA.360︒B.540︒C.720︒D.630︒【答案】D【解析】解:如图,一条直线将该矩形ABCD分割成两个多边(含三角形)的情况有以上三种,①当直线不经过任何一个原来矩形的顶点,此时矩形分割为一个五边形和三角形,∴M+N=540°+180°=720°;②当直线经过一个原来矩形的顶点,此时矩形分割为一个四边形和一个三角形,∴M+N=360°+180°=540°;③当直线经过两个原来矩形的对角线顶点,此时矩形分割为两个三角形,∴M+N=180°+180°=360°.故选D.5.如图,从△ABC纸片中剪去△CDE,得到四边形ABDE,若∠C=60°.则∠1+∠2等于()A.240°B.120°C.230°D.200°【答案】A【分析】根据题意可得出∠B+∠A,再根据四边形的内角和定理可求出∠1+∠2.【解析】解:∵∠C=60°,∴∠B+∠A=120°,∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=240°,故选:A.【点评】本题考查了三角形的内角和定理,四边形的内角和定理,三角形的内角和等于180°,解决本题的关键是求出∠B+∠A.6.如果一个多边形的边数增加1,则它的内角和将()A.增加90°B.增加180°C.增加360°D.不变【答案】B【解析】试题解析:设多边形的边数为n,则有:(n+1-2)·180-(n-2)·180=180.故选B.考点:多边形的内角与外角.7.粗心的小华在计算一个多边形的内角和时,除了一个内角外其余各内角的和为1900°,则这个多边形是__________边形.8.一个多边形除了一个内角之外,其余各内角的度数和为1510°,则这个多边形的边数为_____.【答案】11【分析】直接利用多边形内角和公式列出不等式组进行求解即可.【解析】解:设这个多边形边数为n,()<<,︒-⨯︒︒+︒n1510218015101809.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________. 【答案】6【分析】设这个多边形的边数是n ,重复计算的内角的度数是x ,根据多边形的内角和公式(n ﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解.【解析】解:设这个多边形的边数是n ,重复计算的内角的度数是x ,则(n ﹣2)•180°=840°﹣x ,n =6,∴这个多边形的边数是6,故答案为:6.【点评】本题考查了多边形的内角和公式,正确理解多边形角的大小的特点,以及多边形的内角和定理是解决本题的关键.10.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】解:设多边形的边数为n ,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.11.一个n 边形,除了一个内角外,其余n 1-()个内角和为2770︒,则这个内角是______度.【答案】110.【解析】试题解析:设这个内角度数为x ,边数为n ,则(n-2)×180°-x=2770°,180°•n=3130°+x ,∵n为正整数,∴n=18.∴这个内角度数为180°×(18-2)-2770°=110°.考点:多边形内角与外角.12.在一个凸n边形的纸板上切下一个三角形后,剩下一个内角和为1080°的多边形,则n的值为.【答案】7或8或9【分析】根据多边形的内角和公式列方程求出切下一个三角形后多边形的边数,再分新多边形的边数比原多边形的边数增加1,减少1,不变三种情况求解.【解析】解:设切下一个三角形后多边形的边数x,由题意得,(x﹣2)×180°=1080°,解得x=8,所以,n=8﹣1=7,n=8+1=9,或n=x=8.故答案为:7或8或9.【点评】本题主要考查了多边形的内角与外角,难点在于熟悉切下一个三角形后多边形边数与原多边形的边数有三种情况.13.从如图的五边形ABCDE纸片中减去一个三角形,剩余部分的多边形的内角和和是__________【答案】360或540或720.【分析】从一个五边形中剪去一个三角形,得到的可能是四边形、可能是五边形、可能是六边形,再根据多边形的内角和的公式求解.【解析】分三种情况:①若剩余部分的多边形是四边形,则内角和为360°,②若剩余部分的多边形是五边形,则内角和为(52)180540-⨯=,③若剩余部分的多边形是六边形,则内角和为(62)180720-⨯=,故答案为:360 或540或720.【点评】此题考查多边形的内角和公式,多边形的剪切问题,培养空间的想象能力非常重要. 14.如图,已知两块三角板如图摆放,点B 和点C 分别在两块三角板的边上,一块三角板的顶点M 在另一块三角板的边上,且37BAC ∠=︒,60E ∠=︒,45F ∠=︒,则ABE EMF FCA ∠+∠+∠=________︒.【答案】68【分析】延长BE 交AC 于D ,延长CF 交BD 于G , 根据外角的性质得到EGF BDC ACF A ABE ACF ∠∠∠∠∠∠=+=++,根据四边形的内角和和邻补角的定义得到105,ABE EMF FCA A BEM CFM ∠∠∠∠∠∠︒+++=+=于是得到结论.【解析】解:延长BE 交AC 于D ,延长CF 交BD 于G ,BDC A ABE=+,∠∠∠=+=++,EGF BDC ACF A ABE ACF∴∠∠∠∠∠∠∠+∠+∠+∠=︒EGF EMF MEG MFG360,EGF EMF E F∴∠+∠+︒-∠+︒-∠=︒180180360,∴∠+∠=∠+∠EGF EMF E F,E F∠=︒∠=︒60,45,++=+=,∴∠∠+∠∠∠∠︒ABE A FCA EMF BEM CFM105A37,++==∴∠∠∠︒-∠︒ABE EMF FCA A10568.故答案为:68.︒【点评】本题考查了三角形的外角的性质,四边形的内角和,邻补角的定义,熟练掌握三角形的外角的性质是解题的关键.15.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=__________.【答案】540°【分析】连接ED,由三角形内角和可得∠A+∠B=∠BED+∠ADE,再由五边形的内角和定理得出结论.【解析】连接ED,∵∠A+∠B=180°-∠AOB,∠BED+∠ADE=180°-∠DOE,∠AOB=∠DOE,∴∠A+∠B=∠BED+∠ADE ,∵∠CDE+∠DEF+∠C+∠F+∠G=(5-2) ×180°=540°,即∠CDO+∠ADE+BED+∠BEF+∠C+∠F+∠G=540°,∴∠A+∠B+∠C+∠CDO+∠BEF+∠F+∠G=540°.故答案为:540°.【点评】本题考查了三角形的内角和公式,以及多边形的内角和公式,熟记多边形的内角和公式为(n -2)×180°是解答本题的关键.16.如图所示,A B C D E F ∠+∠+∠+∠+∠+∠=______度.【答案】360【分析】根据图示这几个角是一个四边形的四个内角,故360A B C D E F ∠+∠+∠+∠+∠+∠=︒.【解析】解:∵1B C ∠+∠=∠,2A F ∠+∠=∠,12360A B C D E F E D ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒.故答案为:360.【点评】此题主要考查了三角形的外角以及四边形的内角和,正确掌握三角形外角的性质是解题关键.17.一个多边形截去一个角后,形成新多边形的内角和为1800°,则原多边形边数为_____. 【答案】11或12或13【解析】试题分析:一个多边形截去一个顶角后,新的多边形边数比原来的多边形的边数多1,设一个多边形的边数为n,则新多边形的边数为(n+1); 一个多边形截去一个角后,形成新多边形的内角和为1800°,即考点:多边形()121801800n +-⨯=,解得n=11;一个多边形截去一个顶角后,新的多边形边数和原来的多边形的边数一样,设一个多边形的边数为n,则新多边形的边数为n; 一个多边形截去一个角后,形成新多边形的内角和为1800°,即()21801800n -⨯=,解得n=12;一个多边形截去一个顶角后,新的多边形边数比原来的多边形的边数少1,设一个多边形的边数为n,则新多边形的边数为n-1; 一个多边形截去一个角后,形成新多边形的内角和为1800°,即()121801800n --⨯=,解得n=13考点:多边形点评:本题考查多边形,解答本题需要考生掌握多边形的内角和定理,即内角和与多边形边数之间的关系,本题属基础题三、解答题18.看对话答题:小梅说:这个多边形的内角和等于1125°小红说:不对,你少加了一个角问题:(1) 他们在求几边形的内角和?(2) 少加的那个内角是多少度?【答案】(1)他们在求九边形的内角和;(2)少加的那个内角为135度.【分析】先设出少加的内角的度数,再把所求角的度数分成180°与一个正整数的积再减去一个小于180°的角的形式,即可求出少加的内角的度数,再由多边形的内角和定理求解即可.【解析】解:(1)设少加的度数为x °,此多边形为n 边形.∵1125+x =(n -2)×180,∴x =180(n -2)-1125,∵0<x <180,∴0<180(n -2)-1125<180,∴8.25<n<9.25,∴n=9;∴他们在求九边形的内角和;(2)∴x=180(n-2)-1125=135°.∴少加的那个内角的度数是135°.【点评】本题主要考查多边形内角和公式的灵活运用,解题的关键是找到相应度数的等量关系.注意多边形的一个内角一定大于0°,并且小于180度.19.一个多边形,除一个内角外,其余各内角之和等于2020°,求这个内角的度数及多边形的边数.【答案】内角140度;十四边形.【分析】设出相应的边数和未知的那个内角度数,利用内角和公式列出相应等式,根据边数为整数求解即可.【解析】设这个内角度数为x°,边数为n,则(n-2)×180-x=2020,180•n=2380+x,∵n为正整数,∴n=14,∴去掉角度数为180°×(14-2)-2020°=140°,所以这个内角的度数为140度,多边形的边数为14.【点评】本题主要考查多边形内角和公式的灵活运用,解题的关键是找到相应度数的等量关系.注意多边形的一个内角一定大于0度,并且小于180度.20.小李同学在计算一个n边形的内角和时不小心多加了一个内角,得到的内角之和是1380度,则这个多边形的边数n的值是多少?多加的这个内角度数是多少?【答案】这个多边形的边数n的值是9,多加的这个内角度数是120°.【分析】根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角和是180°的倍数,然后求出多边形的边数以及多加的外角的度数即可得解.【解析】解:设多边形的边数为n,多加的外角度数为α,则(n﹣2)•180°=1380°﹣α,∵1380°=7×180°+120°,内角和应是180°的倍数,∴同学多加的一个外角为120°,∴这是7+2=9边形的内角和,答:这个多边形的边数n的值是9,多加的这个内角度数是120°.【点评】多边形内角和、边角的关系一定要熟悉.会应用即可.。
七年级数学培优竞赛训练 :角 含答案
角【知识纵横】角,既可以用静止的眼光来观察,也可以用运动的眼光来看待.具有公共端点的两条射线组成的图形或一条射线绕着端点从一个位置旋转到另一位置所成的图形,称为角.角也是几何学的基本图形之一,与角相关的知识有:周角、平角、直角、锐角、钝角、角平分线、数量关系角(如余角、补角)、位置关系角(如邻补角、对顶角)等概念及关系.解与角有关的问题,类似于解与线段相关的问题,常常用到重要概念、分类的思想、代数化的观点等知识与方法.【例题求解】例1.如图1 是一个3×3 的正方形,则图中∠1+∠2+∠3+…+∠9 的度数是.思路点拨除∠3=∠5=∠7=45°外,其他各角的度数无法求出,故不能顺序求和.考虑应用加法的交换律、结合律,关键是对图形进行恰当的处理.图1 图2例2.如图2.A、O、B 在一条直线上,∠1 是锐角,则∠1 的余角是( ).1 1 A.∠2 一∠l B.2 23∠2 一21∠1 C.21(∠2 一∠l)D.3(∠2+∠1)思路点拨∠1 的余角表示为90°一∠1,化简这个代数式,直至与选择项相符为止.1例 3.已知∠1 和∠2 互补,∠3 和∠2 互余,求证∠3=2(∠l 一∠2).思路点拨依据互补、互余的概念得到含∠l、∠2、∠3 的两个等式,盯住所要达到的目的,恰当处理两个等式.1 例4.如图3,已知∠AOB 与∠BOC 互为补角,OD 是∠AOB 的平分线,OE 在∠BOC 内,∠BOE= ∠2 EOC,∠DOE= 72°,求∠EOC 的度数.图3思路点拨设∠AOB=x 度,∠BOC= y 度,建立x、y 的方程组,用代数方法解几何问题是一种常用的方法.例 5.(1)如图4,已知∠AOB=90°,∠BOC=30°,OM 平分∠AOC,ON 平分之∠BOC,求∠MON 的度数.(2)如果(1)中∠AOB=α,其他条件不求,求∠MON 的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不求,求∠MON的度数.(4)从(1)、(2)、<3)的结果中能得出什么结论?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4)设计一道以线段为背景的计算题,写出其中的规律,并给出解答.图 4例 6.钟面上从2 点到4 点有几次时针与分针的夹角为60°?分别是几点几分?思路点拨:时钟问题的关键是将时针、分针、秒针转动的速度用角表示出来.时针转动的速度为 0.5°/分,分针为 6°/分,秒针为 360°/分.※巩固训练※1.一个角的补角与这个角的余角的度数比为3:l,则这个角是度.2.钟表时间是2 时15 分时,时针与分针的夹角是.3.由O 点引出的7 条射线如图,若OA⊥OE,OC⊥OC,∠BOC>∠FOC,则图中以O 为顶角的锐角共有个.4.如图,O 是直线AB 上一点,∠AOD=120°,∠AOC=90°,OE 平分∠BOD,则图中彼此互补的角有对.5.如图,∠AOB=180°,OD 是∠COB 的平分线,OE 是∠AOC 的平分线,设∠BOD=α,则与α的余角相等的角是( ).A.∠OOD B.∠ODE C.∠DOA D.∠COA6.如图,在一个正方体的2 个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于( ).A.60°B.75°C.90°D.135°注:解钟表上的问题,常用到以下知识:(1)钟表上相邻两个数宇之间有 5 个小格,每个小格表示 1 分钟,如与角度联系起来,每小格对应 6°.(2)秒钟每分钟转运 360°,分针每分钟转过 6°,时钟每分钟转过 0.5°.(3)画示意图把这类问题看成是行程问题中的追及问题来解决.7.将一长方形纸片按如图的方式折叠,BC、BD 为折痕,则∠CBD 的度数为( ).A.60°B.75°C.90°D.95°18.如图,∠1>∠2,那么∠2 与(∠1 一∠2)之间的关系是( ).2A.互补B.互余C.和为45°D.和为22.5°9.如图,已知A、O、E 三点在一条直线上,OB 平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD 与∠DOE 之间有怎样的关系?说明理由.10.(1)一副三角板由一个等腰直角三角形和一个含30°角的直角三角形组成.利用这副三角板构成15°角的方法很多,请你画出其中三种不同构成的示意图,并在图上作出必要的标注,不写作法.(2)一个长方形和一个正方形摆放如图,试找出除直角外的互余的角和互补的角.111.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ) 的值时,有三15位同学分别算出了23 °、24 °、25 °这三个不同的结果,其中确有一个是正确的答案,则α+β+γ.12.如图,O 是直线AB 上一点,∠AOE=∠FOD=90°,OB 平分∠COD,图中与∠DOE 互余的是,与∠DOE 互补的角是.13.以∠AOB 的顶点O 为端点引射线OC,使∠AOC:∠BOC=5:4,若∠AOB=15°,则∠AOC 的度数是.14.光线以图所示的角度α照射到平面镜I 上,然后在乎面镜I、Ⅱ之间来回反射,已知∠α=60°,∠β=50°,则∠γ=.4 15.若∠β与∠α互补,∠γ与∠α互余,且∠β与∠γ的和是3 1 个平角,则∠β是∠α的( ).A.25倍B.5 倍C.11 倍D.无法确定倍数16.4 点钟后,从时针到分针第二次成90°角,共经过( )分钟(答案四舍五入到整数) .A.60 B.30 C.40 D.3317.如图,从点 O 引出6 条射线OA、OB、OC、OD、OE、OF,且∠AOB=100°,OF 平分∠BOC,∠AOE =∠DOE,∠EOF=140°,求∠COD 的度数.18.过点 O 任作 7 条直线,求证:以 O 为顶点的角中必有一个小于 26°.19.(1)现有一个 19°的“模板”(如图),请你设计一种办法,只用这个“模板”和铅笔在纸上画出 1°的角来.(2)现有一个 17°的“模板”与铅笔,你能否在纸上画出一个 1°的角来?(3)用一个 21°的“模板”与铅笔,你能否在纸上画出一个 1°的角来?对于(2)、(3)两问,如果能,请你简述画法步骤;如果不能,请你说明理由.参考答案。
初中数学竞赛第十四讲多边形的边角与对角线(含答案)
第十四讲 多边形的边角与对角线边、角、对角线是多边形中最基本的概念,求多边形的边数、内外角度数、对角线条数是解与多边形相关的基本问题,常用到三角形内角和、多边形内、外角和定理、不等式、方程等知识.多边形的内角和定理反映出一定的规律性:(n -2)×180°随n 的变化而变化;而多边形的外角和定理反映出更本质的规律;360°是一个常数,把内角问题转化为外角问题,以静制动是解多边形有关问题的常用技巧.将多边形问题转化为三角形问题来处理是解多边形问题的基本策略,连对角线或向外补形、对内分割是转化的常用方法,从凸n 边形的一个顶点引出的对角线把凸n 边形分成)2(-n 个多角形,凸n 边形一共可引出2)3(-n n 对角线. 例题求解【例1】在一个多边形中,除了两个内角外,其余内角之和为2002°,则这个多边形的边数是 .(第17届江苏省竞赛题)思路点拨 设除去的角为°,y °,多边形的边数为n ,可建立关于x 、y 的不定方程;又0°<x<180°,0°<y<180°,又可得到关于n 的不等式.故有两种解题途径,注意n 为自然数的隐含条件.链接 世界上的万事万物是一个不断地聚合和分裂的过程,点是几何学最原始的概念,点生线、线生面、面生体,几何元素的聚合不断产生新的图形,另一方面,不断地分割已有的图形可得到新的几何图形,发现新的几何性质,多边形可分成三角形,三角形可以合成其他 一些几何图形.【例2】 在凸10边形的所有内角中,锐角的个数最多是( )A .0B .1C .3D .5 (2003年全国初中数学竞赛题)思路点拨 多边形的内角和是随着多边形的边数变化而变化的,而外角和却总是不变的,因此,可把内角为锐角的个数讨论转化为外角为钝角的个数的探讨.【例3】 如图,已知在△ABC 中,AB =AC ,AD ⊥BC 于D ,且AD=BC=4,若将此三角形沿AD 剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中直角),并分别写出所拼四边形的对角线的长. (2002年鸟鲁木齐市中考题)B CD A思路点拨 把动手操作与合情想象相结合,解题的关键是能注意到重合的边作为四边形对角线有不同情形.注 教学建模是当今教学教育、考试改革最热门的一个话题,简单地说,“数学建模”就是通过数学化(引元、画图等)把实际问题特化为一个数学问题,再运用相应的数学知识方法(模型)解决问题.本例通过设元,把“没有重叠、没有空隙”转译成等式,通过不定方程求解.【例4】 在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正四边形,正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由. (2003年陕西省中考题)思路点拨 本例主要研究两个问题:①如果限用一种正多边形镶嵌,可选哪些正多边形;②选用两种正多边形镶嵌,既具有开放性,又具有探索性.假定正n 边形满足铺砌要求,那么在它的顶点接合的地方,n 个内角的和为360°,这样,将问题的讨论转化为求不定方程的正整数解.【例5】 如图,五边形ABCDE 的每条边所在直线沿该边垂直方向向外平移4个单位,得到新的五边形A'B'C'D'E'.(1)图中5块阴影部分即四边形AHA'G 、BFB'P 、COC'N 、DMD'L 、EKE'I 能拼成一个五边形吗?说明理由.(2)证明五边形A'B'C'D'E'的周长比五边形ABCD 正的周长至少增加25个单位.(第14届江苏省竞赛题)思路点拨 (1)5块阴影部分要能拼成一个五边形须满足条件:,A'GB'; B'PC';C'ND';D'LE';E'IA'三点分别共线;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周长等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I ,用圆的周长逼近估算.学历训练1.如图,用硬纸片剪一个长为16cm、宽为12cm的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形来,其中周长最大的是㎝,周长最小的是cm.(选6《荚国中小学数学课程标准》)2.如图,∠1+∠2+∠3+∠4+∠5+∠6= .3.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,则线段AD的取值范围是.4.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:(1)第4个图案中有白色地面砖块;(2)第n个图案中有白色地面砖块.(2003年江西省中考题)5.凸n边形中有且仅有两个内角为钝角,则n的最大值是( )A.4 B.5 C.6 D.7. (第12届“希望杯”邀请赛试题) 6.一个凸多边形的每一内角都等于140°,那么,从这个多边形的一个顶点出发的对角线的条数是( )A.9条B.8条C.7条D.6条7.有一个边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,则需要这种瓷砖( )A.216块B.288块C.384块D.512块. (第14届“希望杯”邀请赛试题) 8.已知△ABC是边长为2的等边三角形,△ACD是一个含有30°角的直角三角形,现将△ABC和△ACD拼成一个凸四边形ABCD.(上海市闵行区中考题)(1))画出四边形ABCD;(2)求出四边形ABCD的对角线BD的长.9.如图,四边形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度数.(2003年北京市竞赛题)10.如图,在五边形A1A2A3A4A5中,B l是A1的对边A3A4的中点,连结A1B1,我们称A1B1是这个五边形的一条中对线,如果五边形的每条中对线都将五边形的面积分成相等的两部分,求证:五边形的每条边都有一条对角线和它平行.(2003年安徽省中考题)11.如图,凸四边形有个;∠A+∠B+∠C+∠D+∠E+∠F+∠G= .(重庆市竞赛题)12.如图,延长凸五边形A1A2A3A4A5的各边相交得到5个角,∠B1,∠B2,∠B3,∠B4,∠B5,它们的和等于;若延长凸n边形(n≥5)的各边相交,则得到的n个角的和等于.(第12届“希望杯”邀请赛试题)13.设有一个边长为1的正三角形,记作A1(图a),将每条边三等分,在中间的线段上向外作正三角形,去掉中间的线段后所得到的图形记作A 2(图b),再将每条边三等分,并重复上述过程,所得到的图形记作A3(图c);再将每条边三等分,并重复上述过程,所得到的图形记作A4,那么,A4的周长是;A4这个多边形的面积是原三角形面积的倍.(全国初中数学联赛题)14.如图,六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA—CD=3,则BC+DC= .(北京市竞赛题)(第14题) (第16题) (第17题)15.在一个n边形中,除了一个内角外,其余(n一1)个内角的和为2750°,则这个内角的度数为( )A.130°D.140° C .105°D.120°16.如图,四边形ABCD中,∠BAD=90°,AB=BC=23,AC=6,AD=3,则CD的长为( ) A.4 B.42C.32D.3 3(第16届江苏省竞赛题)注按题中的方法'不断地做下去,就会成为下图那样的图形,它的边界有一个美丽的名称——雪花曲线或科克曲线(瑞典数学家),这类图形称为“分形”,大量的物理、生物与数学现象都导致分形,分形是新兴学科“混沌”的重要分支.17.如图,设∠CGE=α,则∠A+∠B+∠C+∠D+∠C+∠F=( )A.360°一αB.270°一αC.180°+αD.2α. (山东省竞赛题)18.平面上有A、B,C、D四点,其中任何三点都不在一直线上,求证:在△ABC、△ABD、△ACD、△BDC中至少有一个三角形的内角不超过45°.19.一块地能被n块相同的正方形地砖所覆盖,如果用较小的相同正方形地砖,那么需n+76块这样的地砖才能覆盖该块地,已知n及地砖的边长都是整数,求n.(上海市竞赛题)20.如图,凸八边形ABCDEFGH的8个内角都相等,边AB、BC、CD、DE、EF、FG的长分别为7,4,2,5,6,2,求该八边形的周长.21.(2003年淄博市中考题)如图l是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A、B、C、D各点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形ABCD中,AB=6,CD=15,那么BC、AD取多长时,才能实现上述的折叠变化?22.一个凸n边形由若干个边长为1的正方形或正三角形无重叠、无间隙地拼成,求此凸n 边形各个内角的大小,并画出这样的凸n边形的草图.。
第06讲 多边形和圆的初步认识(6类热点题型讲练)(解析版)--初中数学北师大版7年级上册
第06讲多边形和圆的初步认识(6类热点题型讲练)1.掌握多边形和正多边形的定义;2.掌握多边形的角平分线的规律;3.掌握圆的相关计算问题.知识点01多边形三角形、四边形、五边形、六边形等都是多边形,它们都是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.【说明】(1)内角:多边形相邻两边组成的角叫多边形的内角.(2)外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.(3)连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.(4)各边相等,各角也相等的多边形叫做正多边形,所以正多边形同时具有各边相等,各角相等的性质.知识点02多边形的对角线顶点3456n 从一个顶点出发的对角线的条数0123n-3对角线的总条数02592)3(-nn 分割成三角形的个数0234n-3知识点03圆(1)圆上任意两点A,B间的部分叫做圆弧,简称弧,记作A,读作“圆弧AB”或“弧AB”;(2)圆的周长公式:rCπ2=;圆的面积公式:2rSπ=.题型01多边形的概念与分类【典例1】(2023秋·全国·八年级专题练习)下列图形中,不是多边形的是()A.B.C.D.【答案】C【分析】根据多边形的定义,逐项判断,即可求解.【详解】解:A、该图形是由4条线段首尾顺次连接而成的封闭图形,所以它是多边形.故本选项不符合题意;B、该图形是由5条线段首尾顺次连接而成的封闭图形,所以它是多边形.故本选项不符合题意;C、该图形是由线段、曲线首尾顺次连接而成的封闭图形,所以它不是多边形.故本选项符合题意;D、该图形是由5条线段首尾顺次连接而成的封闭图形,所以它是多边形.故本选项不符合题意;故选:C.【点睛】本题主要考查了多边形,熟练掌握由()3n n≥条线段首尾顺次连接而成的封闭图形是多边形是解题的关键.【变式1】(2023春·全国·八年级专题练习)如图所示的图形中,属于多边形的有()A.3个B.4个C.5个D.6个【答案】A【分析】根据多边形定义,逐个验证即可得到答案.【详解】解:所示的图形中,第一个是三角形、第二个是四边形、第三个是圆、第四个是正六边形、第五个是正方体,∴属于多边形的有第一个、第二个、第四个,共有3个,故选:A.【点睛】本题考查多边形定义,熟记多边形定义是解决问题的关键.【变式2】(2023春·七年级单元测试)下列判断:(1)各边长相等的多边形是正多边形;(2)各角都相等的多边形是正多边形;(3)等边三角形是正多边形:(4)长方形是正多边形.其中正确的有()A.1个B.2个C.3个D.4个【答案】A【分析】各个角都相等,各个边都相等的多边形叫做正多边形.依据正多边形的概念进行判断即可.【详解】解:(1)菱形各边相等,但不是正四边形,故说法错误;(2)长方形各角都相等,但不是正四边形,故说法错误;(3)等边三角形三条边都相等,三个角都相等,是正多边形,故说法正确;(4)长方形的四个角相等,但长与宽不一定相等,所以不一定是正多边形,故说法错误.故正确的有:1个.故说:A.【点睛】本题考查了正多边形的概念,各个角都相等,各个边都相等的多边形叫做正多边形.题型02多边形对角线的条数问题【典例2】(2023秋·八年级课时练习)已知过多边形的某一个顶点可以作2023条对角线(不是一共有2023条对角线),则这个多边形的边数是()A.2023B.2024C.2025D.2026【答案】Dn-条对角线进行求解即可.【分析】根据从n边形的一个顶点出发可以引()3【详解】解:设这个多边形的边数为n.n-=,根据题意,得32023n=.解得2026题型03对角线分成三角形个数问题(1)从四边形的一个顶点出发,可以引1条对角线,将四边形分成故答案为:1,2,2;(2)从五边形的一个顶点出发,可以引2条对角线,将五边形分成故答案为:2,3,5;(3)从六边形的一个顶点出发,可以引3条对角线,将六边形分成题型04用七巧板拼图形A .21dm4B .23dm8C .3123218÷⨯=(平方分米)答:阴影部分的面积为23dm 8.故选:B .【答案】34/0.75【分析】根据七巧板中各部分面积的关系可得小三角形的面积为大正方形的三角形的面积的2倍,即可求解.【详解】∵图2是由边长为2的正方形分割制作的七巧板拼摆成的,∴大正方形面积4=,由图形可知,阴影部分面积为小三角形的面积与平行四边形的面积之和,即【答案】32【分析】利用七巧板的各边之间的关系即可求出积.【详解】由图可知“小狐狸”图案中阴影部分面积为图形∵正方形ABCD 的边长为∴AE DE DF FC ===∴ADC EDF S S S =-= 故答案为:32.题型05平面镶嵌【典例5】(2023春·广东佛山·八年级校考期末)在平面图形正三角形、正六边形、正四边形、正五边形中,能单独镶嵌平面的有()种图形.A .1B .2C .3D .4.B...【点睛】本题考查了图形的密铺,一种图形能够密铺,则拼在同一顶点处的几个角恰好组成一个周角.题型06圆的周长和面积问题πB.4A.22R【答案】C【分析】根据图形的特征,四边形内角和为的面积.【详解】解:因为四边形内角和为【答案】4π【分析】根据铁环从原点O沿数轴滚动一周(无滑动)到达点【详解】∵铁环从原点O沿数轴滚动一周(无滑动)到达点【答案】大蚂蚁和小蚂蚁爬的路程一样长,见解析【分析】利用圆的周长公式分别求出大、小蚂蚁爬行的路程,然后比较即可.【详解】解:大圆的周长∴大圆的周长=两个小圆的周长和,一、单选题1.(2023秋·全国·八年级专题练习)五边形经过一个顶点可以引()条对角线.A.0B.1C.2D.3【答案】Cn-,进行计算即可.【分析】根据从一个n边形一个顶点出发,可以连的对角线的条数是3-=,【详解】解∶532∴五边形经过一个顶点可以引2条对角线.故选∶C.【点睛】此题主要考查了多边形的对角线,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以n-.连的对角线的条数是32.(2023秋·河南周口·八年级校联考阶段练习)已知,一个多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则这个多边形的边数是()A .5B .9C .8D .6【答案】D 【分析】设此多边形有n 条边,根据题意可得()23n n =-,解方程,即可求解.【详解】解:设此多边形有n 条边,由题意,得()23n n =-,解得6n =,故选:D .【点睛】本题考查了多边形对角线条数问题,熟练掌握从n 边形的一个顶点出发的对角线条数为()3n -条,是解题的关键.3.(2023春·河南南阳·七年级统考期末)有足够多的如下4种边长相等的正多边形瓷砖图案进行平面镶嵌,则不能铺满地面的是()A .①②④B .①②C .①④D .②③【答案】D 【分析】只需要计算各个选项中的一个顶点处的角是否能组合成一个周角即可得出答案.【详解】解:A 、若有一个正三角形、两个正方形、一个正六边形,则在一个顶点处的角的和为60902120360︒+︒⨯+︒=︒,能铺满地面,故①②④的正多边形瓷砖图案可以进行平面镶嵌;B 、若有三个正三角形、两个正方形,则在一个顶点处的角的和为603902360︒⨯+︒⨯=︒,能铺满地面,故①②的正多边形瓷砖图案可以进行平面镶嵌;C 、若有两个正三角形、两个正六边形,则在一个顶点处的角的和为6021202360︒⨯+︒⨯=︒,能铺满地面,故①④的正多边形瓷砖图案可以进行平面镶嵌;D 、由于正五边形的内角为108︒,正方形的内角为90︒,在一个顶点处不能构成一个周角,故不能铺满地面,故②③的正多边形瓷砖图案不可以进行平面镶嵌;故选:D .【点睛】本题考查了平面镶嵌,解决此类问题的关键是明确一个顶点处的角是否能组合成一个周角.4.(2023秋·河南南阳·七年级校联考期末)七巧板被西方人称为“东方魔板”.如图的两幅图是由同一副七巧板拼成的.已知七巧板拼成的正方形的边长为4cm ,则“一帆风顺”图中阴影部分的面积为()A.28cm B.4cm【答案】C【分析】首先确定阴影部分的三角形在七巧板中所属的部分,再根据这个三角形与正方形边长的关系求出这个三角形的边长,便可以根据三角形的面积公式进行解答.【详解】由图可知“一帆风顺”图中阴影部分是正方形右下角的等腰直角三角形,A.54B.44C.35【答案】C【分析】根据一个n边形的对角线条数为()32n n-进行求解即可.【详解】解:一个四边形共有2条对角线,一个五边形共有一个十边形共有()10103352⨯-=条对角线,故C正确.故选:C.【点睛】本题主要考查了对角线条数问题,解题的关键是熟练掌握一个二、填空题【答案】猫和老鼠同时到达【分析】利用圆的周长公式即可求解.【详解】解:以AB为直径的半圆的长是:11.(2023春·上海·八年级专题练习)从一个多边形一边上的一点(不是顶点)出发,分别连接这个点与各个顶点,可以把这个多边形分割成若干个三角形,请你观察下图,并完成后面的填空.当多边形的边数是4时,可以把多边形分割成_______个三角形;当多边形的边数是5时,可以把多边形分割成_______个三角形;当多边形的边数是6时,可以把多边形分割成_______个三角形;……你能看出多边形边数与分割成的三角形的个数之间有什么规律吗?【答案】3,4,5,规律:多边形的边数比分割成的三角形的个数多1【分析】由相应图形得到分成的三角形的个数和多边形的边数的关系的规律即可.【详解】由图中可以看出:四边形被分为3个三角形,五边形被分为4个三角形,六边形被分成5个三角形,那么n 边形被分为(n -1)个三角形.∵n -(n -1)=1,∴多边形的边数比分割成的三角形的个数多1.【点睛】解决本题的难点是得到分成的三角形的个数和多边形的边数的关系.12.(2023秋·全国·八年级课堂例题)(1)如图①,O 为四边形ABCD 内一点,连接OA OB OC OD ,,,,可以得到几个三角形?它与边数有何关系?(2)如图②,点O 在五边形ABCDE 的边AB 上(不与端点重合),连接OC OD OE ,,,可以得到几个三角形?它与边数有何关系?(3)如图③,过点A 作六边形ABCDEF 的对角线,可以得到几个三角形?它与边数有何关系?(4)若是任意一个n (4n ≥,且n 为整数)边形,上述三种情况分别可以将n 边形分割成多少个三角形?【答案】(1)4个,它与边数相等.(2)4个,它等于边数减1.(3)4个,它等于边数减2.(4)若点在n 边形内部,则可以将n 边形分割成n 个三角形;若点在n 边形的边上(不与端点重合),则可以将n 边形分割成()1n -个三角形;若点为n 边形的顶点,则可以将n 边形分割成()2n -个三角形.【分析】(1)根据图形,求解即可;(2)依据题中的图形,求解即可;(3)依据题中的图形,求解即可;(4)根据前面三种情况求解即可.【详解】解:(1)由图形可得,可以得到4个三角形,它与边数相等;(2)可以得到4个三角形,它等于边数减1;(3)可以得到4个三角形,它等于边数减2;(4)由前面的性质可得,若点在n 边形内部,则可以将n 边形分割成n 个三角形;若点在n 边形的边上(不与端点重合),则可以将n 边形分割成()1n -个三角形;若点为n 边形的顶点,则可以将n 边形分割成()2n -个三角形.【点睛】此题考查了多边形的性质,解题的关键是理解题意,掌握多边形的有关性质.13.(2023春·广西百色·八年级统考期末)观察探究及应用;(1)观察下列图形并完成填空.如图①一个四边形有2条对角线;(2)分析探究:由凸n 边形的一个顶点出发,可做______条对角线,一个凸n 边形有(3)应用:一个凸十二边形有______条对角线.【答案】(1)9,14(2)()3n -,()132n n -(3)54【分析】(1)分别通过计数可得答案;(2)先探究从三角形到六边形的一个顶点出发作的对角线的数量,得到每种图形的对角线的总数量,再总。
2020-2021学年浙教版七年级上册第六章角的计算专题培优(附答案)
2020-2021学年浙教版七年级上册第六章角的计算专题培优班级姓名学号基础巩固1.若射线OC在∠AOB的内部,则下列给出的条件中,不能得出OC是∠AOB的平分线的是().A.∠AOC = ∠BOCB.∠AOC + ∠BOC = ∠AOBC.∠AOB = 2∠AOCD.∠BOC = 12∠AOB2.若∠β= n,且∠β既有余角,又有补角,则n的取值范围是().A.n = 90°B.n = 180°C.90° < n < 180°D.0° < n < 90°3.用两把角度分别为30°,60°,90°和45°,45°,90°的三角尺画角,不可能画出的角度是().A.125°B.105°C.75°D.15°4.若∠1,∠2互为余角,且∠1 > ∠2,则∠2的补角是()A.2(∠1 - ∠2)B.2(∠1 + ∠2)C.2∠1 + ∠2D.∠1 + 2∠25.将长方形纸条折成如图所示的形状,BC为折痕.若∠DBA = 70°,则∠ABC = _________ .6.如图所示,∠AOB = 40°,∠AOC = 90°,OD平分∠BOC,则∠AOD的度数是 _________ .7.如图所示,将长方形纸片沿AC折痕对折,使点B落在点B′处,CF是∠B′CE的平分线,则∠ACF + ∠B的度数为 _________ .8.如图所示,在∠AOB的内部有3条射线OC,OD,OE,若∠AOC= 50°,∠BOE= 1n∠BOC,∠BOD = 1n∠AOB,则∠DOE = _________ °(用含n的代数式表示).9.如图所示,已知A,O,E三点在同一条直线上,OB平分∠AOC,∠AOB+ ∠DOE= 90°.问:∠COD与∠DOE之间有怎样的关系?请说明理由.10.钟面角是指时钟的时针与分针所成的角.如图所示,在钟面上,点O为钟面的圆心,图中的圆我们称之为钟面圆.为便于研究,我们规定:钟面圆内OA表示时针,OB表示分针,它们所成的钟面角为∠AOB.(注:本题中所提到的角都不小于0°,且不大于180°;本题中所指的时刻都介于0点整到12点整之间)(1)时针每分钟转动的角度为_________ °,分针每分钟转动的角度为_________ °.(2)5点整,钟面角∠AOB = _________ °,钟面角与此相等的整点还有: _________ 点.(3)如图所示,设OC指向12点方向,在图中画出6点15分时0A,0B的大概位置,并求出此时∠AOB的度数.11.定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的“三分线”,显然,一个角的“三分线”有两条,例如:如图1所示,若∠BOC = 2∠AOC,则OC是∠AOB的一条“三分线”.(1)已知:如图1所示,OC是∠AOB的一条“三分线”,且∠BOC> ∠AOC,若∠AOB= 60°.求∠AOC的度数.(2)已知:∠AOB = 90°,如图2所示,若OC,OD是∠AOB的两条“三分线”.①求∠COD的度数.②现以点O为中心,将∠COD顺时针旋转n°得到∠C′OD′,当OA恰好是∠C′OD′的“三分线”时,求n的值.拓展提优1.如图所示,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,那么乙的航向不能是().A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°2.下列关系式中,正确的是().A.35.5° = 35°5′B.35.5° = 35°50′C.35.5° < 35°5′D.35.5 > 35°5′3.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是().A.∠NOQ = 42°B.∠NOP = 132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补4.已知∠AOB = 70°,以O为端点作射线OC,使∠AOC = 42°,则∠BOC的度数为().A.28°B.112°C.28°或112°D.68°5.如图所示,将一副三角尺叠放在一起,使直角的顶点重合于点O,则∠AOC + ∠DOB等于().A.90°B.120°C.160°D.180°6.计算:45°39′ + 65°41′ = _________ .7.如图所示,A,O,B三点在同一条直线上,且点O在点A与点B之间,另外四个点C,D,E,F在点A,O,B上方依次分布,且∠BOD = ∠COE = ∠DOF = ∠AOE.若∠BOC = 26°,则∠COD的度数等于 _________ .8.如图所示,在正方形ABCD中,E为DC边上的一点,沿线段BE对折后,若∠ABF比∠EBF大15°,则∠EBF的度数是 _________ .9.如图所示,OM是∠AOB的平分线,OP是∠MOB内的一条射线.已知∠AOP比∠BOP大30°,则∠MOP的度数是 _________ .10.罗盘、又叫罗经仪、它是古代中国人智慧的结品,它的基本作用是定向,爱动脑筋的英黄在研究罗盘剧自义了一个简易的罗盘玩具,如图所示,其中,相邻同心圆之间的距离都相等、周边均匀标注了度数、圆心为点O,电子蚂蚁A的位置如图所示.(1)电子蚂蚁B做于点O南偏东60°方向、OB = 20A,标出点B的位置,∠AOB _________ (2)若OC平分∠AOB、请标出射线OC.(3)电子蚂蚁D位于点B的正西方向,恰位于点O的南偏西60°方向,请标出点D的位置、11.如图1所示,将笔记本活页一角向内折叠,使角的顶点A落在A′处,BC为折痕.(1)若∠1 = 30°,求∠A′BD的度数.(2)将图1的另一角斜折过去,使BD边与BA′重合,折痕为BE,点D的对应点为D′,如图2所示,若∠1 = 30°,求∠2以及∠CBE的度数.(3)将图1的另一角斜折过去,使BD边落在∠1内部,折痕为BE,点D的对应点为D′.如图3所示,若∠1 = 40°,设∠A′BD′ = α,∠EBD = β,请直接回答:①a,β的取值范围.②a与β之间的数量关系.12.【问题提出】已知∠AOB= 70°,∠AOD= 12∠AOC,∠BOD= 3∠BOC(∠BOC< 45°),求∠BOC的度数.【问题思考】聪明的小明用分类讨论的方法解决.(1)当射线OC在∠AOB的内部时,若射线OD在∠AOC内部,如图1所示,可求∠BOC的度数,解答过程如下:当射线OC在∠AOB的内部时,若射线OD在∠AOB外部,如图2所示,请你求出∠BOC的度数.【问题延伸】(2)当射线OC在∠AOB的外部时,请你画出图形,并求∠BOC的度数.【问题解决】综上所述,∠BOC的度数分别是 _________ .冲刺重高1.已知锐角a,钝角β,赵、钱、孙、李四位同学分别计算14(α + β)的结果,分别为68.5°,22°,51.5°,72°,其中只有一个答案是正确的,那么这个正确的答案是()A.68.5°B.22°C.51.5°D.72°2.甲、乙两人各用一张如图1所示的正方形纸片ABCD折出一个45°的角,两人的做法如下:甲:如图2所示,将纸片沿对角线AC折叠,使点B落在点D上,则∠1 = 45°.乙:如图3所示,将纸片沿AM,AN折叠,分别使点B,D落在对角线AC上的一点P,则∠MAN = 45°.对于两人的做法,下列判断中,正确的是().图1 图2 图3A.甲、乙都对B.甲对乙错C.甲错乙对D.甲、乙都错3.如图所示为一个3 × 3的正方形网格,则图中∠1 + ∠2 + ∠3 + … + ∠9的度数是 _________ .第3题第4题4.如图所示,∠AOE = 90°,∠BOD = 45°,则不大于90°的角有 _________ 个,它们的度数之和是 _________ .5.在日常生活中,我们几乎每天都要看钟表,它的时针和分针如同兄弟俩在赛跑,其中蕴涵着丰富的数学知识.(1)如图1所示,上午8:00这一时刻,时钟上分针与时针所夹的角等于 _________ .(2)请在图2中大致画出8:20这一时刻时针和分针的位置,思考并回答:从上午8:00到8:20,时钟的分针转过的度数是 _________ ,时钟的时针转过的度数是 _________ .(3)“元旦”这一天,某中学七年级部分学生上午八点多集中在学校门口准备去步行街进行公益服务,临出发时,组长一看表,时针与分针正好是重合的.下午两点多他们回到学校,进校门时,组长看见表的时针与分针方向相反,正好成一条直线,那么你知道他们去步行街进行公益服务共用了多少时间吗?通过计算加以说明.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题06 多边形角的计算专题解读】在几何学习中,我们常常要研究一些变化过程中的不变量.比如,随着多边形边数的变化,其内角和在变化,而外角和则始终保持不变.因此,在分析与解决有关多边形的角的计算题时,我们往往以图形的确定性分析为抓手,从基本图形的演变入手,在“变”与“不变”中探索规律.在解决问题的具体过程中,常常化多边形问题为三角形问题.此外,我们还可设立未知数表达相关的量,最终建立方程求解问题.思维索引】例1.如图,从四边形ABCD 的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形?请画出示意图,并在图形下方写上剩余部分多边形的内角和.DCBA例2.在△ABC 中,∠C =90°,点D ,E 分别是边AC ,BC 上的点,点F 是一动点.设∠FDA =α,∠FEB =β,∠DFE =n .(1)如图1,若点F 在线段AB 上,且n =50°,则α+β=;(2)如图2,若点F 在斜边BA 的延长线上运动(CE >CD ),请直接写出n 、a 、β之间的关系;(3)若点F 运动到△ABC 形外(只需研究图3情形),则n 、a 、β之间有何关系?并说明理由.图1ABCD E图2FEDC BA图3例3.如图:线段AB 、CD 相交于点O ,连接AD 、CB ,我们把这个图形称为“8字型”.根据三角形内角和容易得到:∠A +∠D =∠C +∠B .(1)利用“8字型”:如图(1):∠A +∠B +∠C +∠D +∠E +∠F =; (2)构造“8字型”:如图(2):∠A +∠B +∠C +∠D +∠E +∠F +∠G =;(3)发现“8字型”:如图(3):BE 、CD 相交于点A ,CF 为∠BCD 的平分线,EF 为∠BED 的平分线.①图中共有个“8字型”;②若∠B :∠D :∠F =4:6:x ,求x 的值.OABCD图1ABC DEF图2GABC DEF图3GFE D CBA素养提升1.如图是一个长方形和两个等边三角形,若∠3=50°,则∠1+∠2的值是 ( )A .90°B .100°C .130°D .180°第1题图321第2题图ACB 12第5题图ABC DE第6题图ABCDEFO2.如图,在△ABC 中,∠C =50°,按图中虚线将∠C 剪去后,∠1+∠2等于 ( )A .230°B .210°C .130°D .310°3.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是 ( ) A .360°B .540°C .720°D .900°4.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或95.如图,∠A +∠B +∠C +∠D +∠E 为 ( )A .360°B .300°C .220°D .180°6.如图,已知∠BOF =120°,则∠A +∠B +∠C +∠D +∠E +∠F = .7.如图的七边形ABCDEFG 中,AB 、ED 的延长线相交于O 点.若图中∠1+∠2+∠3+∠4=220°,则∠BOD 的度数为.第7题图AB C DEFGO4321 第8题图B'A'HABC EFG第9题图AB CDEF第10题图A 2A 1OBA8.将六边形ABCDEF 沿直线GH 折叠,使A 、B 落在六边形CDEFGH 内部,若∠C +∠D +∠E +∠F =510°,则∠A ′KF +∠B ′JC =.9.如图,在同一平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,则∠AEB +∠CED -∠BEC =.10.如图,已知∠AOB =7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A =90°-7°=83°.当∠A <83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠BA 1A =∠A 2AO .若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A =76°.若光线从A 点出发后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值是.11.已知,在△ABC 和△DEF 中,∠A =40°,∠E +∠F =100°,将△DEF 如图1和图2摆放,使得∠D 的两条边分别经过点B 和点C .(1)当将△DEF 如图1摆放时,则∠ABD +∠ACD =.(2)当将△DEF 如图2摆放时,请求出∠ABD +∠ACD 的度数,并说明理由.(3)能否将△DEF 摆放到某个位置时,使得BD 与CD 同时平分∠ABC 和∠ACB ,请说出理由.ABCDEF图1AB EFDC图212.(1)在图甲中,猜想:∠A 1+∠B 1+∠C 1+∠A 2+∠B 2+∠C 2= ,并说明理由.(2)如果把图甲称为2环三角形,它的内角和为∠A 1+∠B 1+∠C 1+∠A 2+∠B 2+∠C 2;把图乙成为2环四边形,它的内角和为∠A 1+∠B 1+∠C 1+∠D 1+∠A 2+∠B 2+∠C 2+∠D 2;把图丙成为2环五边形,它的内角和为∠A 1+∠B 1+∠C 1+∠D 1+∠E 1+∠A 2+∠B 2+∠C 2+∠D 2+∠E 2.请你猜一猜,2环n 边形的内角和是多少?(只要直接写出结论)图甲A 2A 1B 2B 1C 2C 1图乙A 2A 1B 2B 1C 2C 1D 2D 1E 2E 1C 2D 1D 2C 1B 1B 2A 1A 2图丙E 2E 11D 2C 1C 2B 1B 2A 1A 2图丁F 1F 213.(1)如图1,AD 与BC 相交于E ,连接AB 、CD ,若AF 、CF 分别平分∠BAD 、∠BCD ,∠ABC =36°,∠ADC =16°,试求∠F 的度数;(2)如图2,直线AF 平分∠NAD ,CF 平分∠MCB ,若∠ABC =36°,∠ADC =16°,试求∠F 的度数; (3)在图3中,直线AF 平分∠NAD ,CF 平分∠MCB ,猜想∠F 与∠B 、∠D 的关系,直接写出结论,无需说明理由;(4)在图4中,AF 平分∠BAD ,CF 平分∠MCB ,猜想∠F 与∠B 、∠D 的关系,直接写出结论,无需说明理由.图1FE DCBAN MA BDE F图2图3F A NMC ED BBDEC MAF图414.(1)如图1,已知直线PQ 与直线EF 交于点N ,则∠PME 、∠P 、∠MEF 、∠PNE 之间有何数量关系?并说明理由;(2)根据(1)的结论求图2中∠P +∠F +∠Q +∠M +∠N +∠E 的度数. 拓展延伸一:如图3,若平面内有点12345678,,,,,,,P P P P P P P P ,连接132435PP P P P P 、、、465768P P P P P P 、、、7182P P P P 、,求68123457PP P P P P P P ∠+∠+∠+∠+∠+∠+∠+∠的度数是多少?拓展延伸二:若平面内有n 个点1234n P P P P P ⋯⋯、、、、、,且将这个点围成的多边形是凸多边形,连接132435112n n PP P P P P P P P P -⋯⋯、、、、、,则12341n n P P P P P P -∠+∠+∠+∠+⋅⋅⋅⋅⋅⋅∠+∠+的度数是多少?(请用含n 的代数式表示)图1NMFEQP图2TFEMQP图3P 8P 7P 6P 54P 3P 2P 1专题06多边形角的计算思维索引】例1.180°;360°;540°;例2.(1)140°; (2)β-α-n =90°; (3)α+n -β=90°. 例3.(1)360° (2)540° (3)①6个; ②x =5. 素养提升】1.B ; 2.A ; 3.D ; 4.D ; 5.D ; 6.240°; 7.40°; 8.60°; 9.24°; 10.6°; 11.(1)240°; (2)40°; (3)不能; 12.(1)360°; (2)360°(n 一2);13.(1)26°; (2)26°; (3)∠F =180°-12 (∠B +∠D ); (4)∠F =90°+12 (∠B +∠D );14.(1)∠PME =∠P +∠MEF +∠PNE ; (2)∠P +∠F +∠Q +∠M +∠N +∠E =360°; 拓展延伸一:∠P 1+∠P 2+∠P 3+∠P 4+∠P 5+∠P 6+∠P 7+∠P 8=720°. 拓展延伸二:∠P 1+∠P 2+∠P 3+∠P 4+…+∠P n -1+∠P n =(n -4)180°.。