2010~2014年高考真题备选题库-第3章 第6节 简单的三角恒等变换

合集下载

第3章 第6节 简单的三角恒等变换

第3章 第6节 简单的三角恒等变换

主干知识 自主排查
[自主诊断] 1 5π θ 1.已知cos θ=-5, 2 <θ<3π,那么sin2=( D ) 10 A. 5 15 C. 5 10 B.- 5
15 D.- 5 5π 5π θ 3π 解析:∵ 2 <θ<3π,∴ 4 <2< 2 .
θ ∴sin2=- 1-cos θ =- 2 1 1+5 15 =- 2 5 .
目录
CONTENTS
1 高考导航 考纲下载
第三章 三角函数、解三角形
2 3 4 5
主干知识 自主排查 核心考点 互动探究
真题演练 明确考向
第六节 简单的三角恒等变换
课时作业
高考导航 考纲下载
能运用公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但 对这三组公式不要求记忆).
主干知识 自主排查

π = 3sin x-6 (x∈R), ∴f(x)的值域为[- 3, 3].

主干知识 自主排查
x 2sin22-1 π 8 4.(2017· 济南模拟)已知f(x)=2tan x- x x ,则f . 的值为________ 12 sin2cos2
α α cos2-sin2 1+sin α+cos α· 1.(1)化简: 2+2cos α

(1)原式=
α α α 2α 2cos + 2sin cos cos -sin · 2 2 2 2
α 2
cos α (0<α<π)=________.
3 3 D. - , 2 2

主干知识 自主排查
π π π 3 解析:∵f(x)=sin x-cos x+6 =sin x-cos xcos +sin xsin =sin x- 6 6 2 cos x

(完整word)高中数学高考总复习简单的三角恒等变换习题及详解

(完整word)高中数学高考总复习简单的三角恒等变换习题及详解

高考总复习高 中 数 学 高 考 总 复习 简 单 的 三 角 恒 等 变 换 习 题 及 详 解一、选择题π π ,x ∈ R ,则函数 f(x) 是()1. (文 )(2010 山·师大附中模考 )设函数 f(x)= cos 2(x + )- sin 2(x + )44A .最小正周期为π的奇函数B .最小正周期为 π的偶函数πC .最小正周期为 2的奇函数πD .最小正周期为 2的偶函数 [答案]Aπ2π[分析]f(x)= cos(2x + 2)=- sin2x 为奇函数,周期T = 2 = π.( 理)(2010 辽·宁锦州 )函数 y = sin 2x + sinxcosx 的最小正周期T = ()π π A . 2π B . πC.2D.3[答案] B[分析]y = sin 2x + sinxcosx = 1- cos2x 12+ sin2x2 = 1+ 2π,∴最小正周期T = π.2 2 sin 2x - 4232. (2010 重·庆一中 )设向量 a = (cos α, 2 )的模为2 ,则 cos2α= ()111 3 A .-4 B .- 2C.2D. 2[答案] B[分析]∵ |a|2= cos 2α+22= cos 2α+ 1= 3,22 4∴ cos 2α=1,∴ cos2α= 2cos 2α- 1=- 1.42α3.已知 tan 2= 3,则 cos α= ()444 3A. 5 B .- 5C.15D .-5[答案]Bα αα α cos 2- sin 222 2含详解答案高考总复习1- tan 2α= 2=1- 9=- 4,应选 B. 1+ tan 2α1+9522C4.在△ABC 中,若 sinAsinB = cos 2 ,则△ABC 是 ()A .等边三角形B .等腰三角形C .直角三角形D .既非等腰又非直角的三角形 [答案]B[ 分析 ] ∵ sinAsinB = cos 2C,211∴ 2[cos(A - B)- cos(A + B)] = 2(1+ cosC), ∴ cos(A - B)-cos( π-C)= 1+ cosC ,∴ cos(A - B)=1,∵- π<A -B<π,∴ A - B = 0,∴△ ABC 为等腰三角形.π5. (2010 ·阳市诊疗绵 )函数 f(x)= 2sin(x - 2) +|cosx|的最小正周期为( )πA. 2B .πC . 2πD . 4π[答案]C[ 分析 ] f(x)=- 2cosx + |cosx|- cosx cosx ≥ 0=,画出图象可知周期为2π.- 3cosx cosx<016. (2010 揭·阳市模考 )若 sinx + cosx = 3, x ∈ (0, π),则 sinx - cosx 的值为 ()17171 17 A .± 3 B .- 3C.3D. 3[答案] D[分析]11 ,∴ sin2x =- 8π 由 sinx + cosx =两边平方得, 1+ 2sinxcosx = <0,∴ x ∈ , π,39 9 2∴ (sinx - cosx)2= 1- sin2x =17且 sinx>cosx ,9∴ sinx -cosx =17,应选 D.3高考总复习7. (文 )在锐角△ABC 中,设 x = sinA ·sinB , y = cosA ·cosB ,则 x , y 的大小关系是 ( )A . x ≤yB . x < yC . x ≥ yD . x >y[答案]Dπ[分析] ∵ π>A + B > ,∴ cos(A + B)<0,即 cosAcosB - sinAsinB < 0,∴ x > y ,故应选 D.2( 理)(2010 皖·南八校 )在△ABC 中,角 A 、B 、 C 的对边分别为 a 、b 、 c ,假如 cos(2B + C)+ 2sinAsinB<0,那么a 、b 、c 知足的关系是 ()A . 2ab>c 2B . a 2+ b 2<c 2C . 2bc>a 2D . b 2+ c 2<a 2[答案]B[ 分析 ] ∵ cos(2B +C)+ 2sinAsinB<0,且 A +B + C = π,∴ cos( π- A +B)+ 2sinA ·sinB<0,∴ cos( π- A)cosB - sin( π- A)sinB + 2sinAsinB<0,∴- cosAcosB + sinAsinB<0 ,即 cos(A + B)>0,π π∴ 0<A + B< ,∴ C> ,22a 2+b 2-c 2由余弦定理得,cosC =<0,2ab∴ a 2+ b 2- c 2<0,故应选 B.8. (2010 ·林省调研吉 )已知 a = (cosx ,sinx),b = (sinx ,cosx),记 f(x)=a ·b ,要获得函数 y = sin 4x - cos 4x 的图象,只要将函数 y = f( x)的图象 ()πA .向左平移 2个单位长度πB .向左平移 4个单位长度πC .向右平移 2个单位长度πD .向右平移 4个单位长度[答案] D[分析]y = sin 4x - cos 4 x =(sin 2x + cos 2x)(sin 2x - cos 2x)=- cos2x ,π π π π将 f( x)= a ·b = 2sinxcosx = sin2x ,向右平移 4 个单位得, sin2 x -4 = sin 2x -2 =- sin - 2x=- cos2x ,故2选 D.高考总复习π 29. (2010 浙·江金华十校模考 )已知向量 a = (cos2α, sin α), b = (1,2sin α- 1), α∈ 4, π,若 a ·b =5,π 则 tan α+4 的值为 ( )12 1 2 A.3 B.7C.7D.3[答案] C[分析]a ·b = cos2α+ 2sin 2α-sin α= 1- 2sin 2α+ 2sin 2α- sin α= 1- sin α=2,∴ sin α= 3,55π∵ <α<π,∴ cos α=- 4,∴ tan α=- 3,454π 1+ tan α 1 .∴ tan α+ ==41- tan α 75π 7π10. (2010 湖·北黄冈模拟 )若 2 ≤ α≤ 2 ,则 1+ sin α+ 1- sin α等于 ()α α A .- 2cos 2 B . 2cos 2α α C .- 2sin 2 D . 2sin 2[答案]C5π7π 5π α 7π[分析] ≤ α≤,∴4≤ ≤4.∵ 2 2 2∴ 1+ sin α+ 1- sin α=1+ 2sinα α 1- 2sin α α2 cos +cos222=α αα α2sin + cos2 +sin - cos2 222αα α α=- (sin + cos )- (sin - cos )2222α=- 2sin 2. 二、填空题π 311. (2010 广·东罗湖区调研 )若 sin 2+ θ= 5,则 cos2θ= ________.[答案] 7 - 25π 3,∴ cos θ= 3,[分析] ∵ sin + θ=25 5∴ cos2θ= 2cos2θ- 1=- 257.高考总复习tanx- tan3 x12. (2010 江·苏无锡市调研 )函数 y=的最大值与最小值的积是 ________.1+ 2tan2x+tan4x[答案]1-16[分析]y=tanx- tan3x tanx 1- tan2x2 4=2 21+ 2tan x+ tan x1+ tan x=tanx1- tan2x=sinxcosx cos2x- sin2x 2·22 2 +22 1+ tan x 1+ tan x cos x+ sin x cos x+ sin x 11=2sin2x·cos2x=4sin4x,1所以最大与最小值的积为-16.13. (2010 ·江杭州质检浙)函数 y= sin(x+ 10°)+ cos(x+ 40°),( x∈R )的最大值是 ________.[答案]1[ 分析 ]y= sinxcos10 °+ cosxsin10 +°cosxcos40 °- sinxsin40 =°(cos10 -°sin40 )sinx°+ (sin10 +°cos40 °)cosx,其最大值为=2+ 2 sin10 °cos40°- cos10°sin40 °=2+ 2sin - 30°= 1.θ14.(文 )如图, AB 是半圆 O 的直径,点 C 在半圆上, CD⊥ AB 于点 D ,且 AD= 3DB ,设∠COD =θ,则 tan22=________.[答案]1 3[分析]3r,∴ OD=r,∴ CD =3CD =3,设 OC= r,∵ AD = 3DB,且 AD+ DB=2r,∴ AD =222 r ,∴ tanθ=OD θ∵ tanθ=2tan2θ3,∴ tan =1- tan2θ23 (负值舍去 ),2θ1∴tan22=3.( 理)3tan12 -°3= ________. 4cos212°- 2 sin12 °[答案]- 43[分析]3tan12 -°3= 3 sin12 -°3cos12 °4cos212°-2 sin12° 2cos24 sin12°cos12° °2 3sin 12°- 60°3.=1=- 4三、解答题15. (文 )(2010 北·京理 )已知函数f(x)=2cos2x + sin 2x - 4cosx.π(1) 求 f(3)的值;(2) 求 f(x)的最大值和最小值.[分析]π 2π π π 3 9 (1) f( )= 2cos+ sin 2- 4cos =- 1+-2=- .333344(2) f(x)=2(2cos 2 x - 1)+(1 -cos 2x)- 4cosx= 3cos 2x - 4cosx - 1= 3(cosx -23)2-73, x ∈ R由于 cosx ∈ [ - 1,1] ,所以当 cosx =- 1 时, f(x)取最大值 6;当 cosx =2时, f(x)取最小值-733.( 理)(2010 广·东罗湖区调研 )已知 a =(cosx +sinx , sinx), b = (cosx - sinx,2cosx),设 f(x)= a ·b. (1) 求函数 f(x)的最小正周期;(2) 当 x ∈ 0,π时,求函数 f(x)的最大值及最小值.2[ 分析 ] (1) f(x)= a ·b = (cosx + sinx) ·(cosx - sinx)+ sinx ·2cosx = cos 2x -sin 2x + 2sinxcosx= cos2x + sin2x = 2222 cos2x + 2 sin2xπ = 2sin 2x +4 .∴ f(x)的最小正周期T = π.πππ 5π(2) ∵ 0≤ x ≤ ,∴ ≤ 2x + ≤ 4,2 4 4π π ππ 5π π∴当 2x +4= 2,即 x =8时, f(x)有最大值2;当 2x + 4= 4 ,即 x =2 时, f(x)有最小值- 1.π 16. (文 )设函数 f(x)= cos 2x + 3 + sin 2x.(1) 求函数 f(x)的最大值和最小正周期;1C1(2) 设 A 、 B 、 C 为△ABC 的三个内角,若 cosB =3, f(2 )=- 4,且 C 为锐角,求 sinA 的值.[分析] (1) f(x)= cos 2x + π π π 1- cos2x 1 - 3+ sin 2x = cos2xcos - sin2xsin + = 2sin2x ,3 3 3 2 2 所以函数 f(x)的最大值为1+ 3,最小正周期为π.2(2) f(C )=1- 3sinC =-1,所以 sinC =3π由于 C 为锐角,所以C = 3,在△ ABC 中, cosB =13,所以 sinB =2 3 2,所以 sinA = sin(B + C)= sinBcosC + cosBsinC=2 2 1 1 ×3 = 22+ 33 × + 26.2 3→ → → →( 理)已知角 A 、B 、 C 为△ABC 的三个内角, OM = (sinB + cosB , cosC), ON = (sinC , sinB - cosB), OM ·ON =1- 5.(1) 求 tan2A 的值;2A(2) 2cos 2- 3sinA - 1的值.求π2sin A +4[分析]→ →(1) ∵OM ·ON = (sinB + cosB)sinC +1cosC(sinB - cosB)= sin(B + C)- cos(B + C) =- 5,∴ sinA + cosA =- 1①5两边平方并整理得: 2sinAcosA =- 24,25∵-24π, π ,25<0,∴ A ∈ 2∴ sinA - cosA = 1-2sinAcosA = 75②联立①②得: sinA = 3,cosA =- 4,∴ tanA =- 3, 5 5 4- 3∴ tan2A =2tanA2=224 .A=- 1-tan 1- 9 7163(2) ∵ tanA =- 4,A2cos 22 - 3sinA - 1 cosA -3sinA 1- 3tanA ∴ π= cosA +sinA =1+ tanA 2sin A +43=1-3× -4 =13.-341+π点之间的距离为2.(1) 求 m 和 a 的值;π(2) 若点 A(x 0, y 0) 是 y = f( x)图象的对称中心,且 x 0∈ 0, 2 ,求点 A 的坐标.[ 分析 ] (1) f(x)= sin 2ax - 3sinaxcosax1- cos2ax3π 1= 2 - 2 sin2ax =- sin 2ax + 6 + 2,由题意知, m 为 f(x)的最大值或最小值,所以 m =- 12或 m =32,π 由题设知,函数f(x)的周期为,∴ a = 2,2所以 m =- 1或 m =3, a = 2. 2 2(2) ∵ f(x)=- sin 4x + π+1,6 2ππ∴令 sin 4x + 6 =0,得 4x +6= k π(k ∈ Z) ,∴ x = k π π-424(k ∈ Z),由 0≤ k π π π(k ∈ Z),得 k = 1 或 k = 2, 4 -24≤2所以点 A 的坐标为5π 1 或 11π1, ,24 224 2 .( 理)(2010 广·东佛山顺德区检测)设向量 a = (sinx,1), b = (1, cosx),记 f(x)= a ·b , f ′ (x)是 f( x)的导函数.(1) 求函数 F(x)= f(x)f ′ (x)+ f 2(x)的最大值和最小正周期;(2) 若 f(x)= 2f ′ (x),求1+ 2sin 2x的值.cos 2x - sinxcosx[ 分析 ] (1) f(x)= sinx +cosx ,∴ f ′( x)= cosx -sinx ,∴ F(x)= f(x)f ′ (x)+ f 2(x) = cos 2x -sin 2x + 1+2sinxcosx= cos2x + sin2x + 1= 1+ 2sin π2x +4 ,π π π∴当 2x + = 2k π+ ,即 x = k π+ (k ∈ Z)时, F( x)max =1 + 2.42 8最小正周期为 T =2π= π.2(2) ∵ f(x)= 2f ′ (x),∴ sinx+ cosx= 2cosx- 2sinx,∴cosx= 3sinx,∴ tanx=1,3∴1+ 2sin2x= 3sin2x+ cos2x= 3tan2x+ 1=2.cos2x-sinxcosx cos2x-sinxcosx1- tanx。

「精选」人教版最新高中数学高考总复习简单的三角恒等变换习题及详解及参考答案-精选文档

「精选」人教版最新高中数学高考总复习简单的三角恒等变换习题及详解及参考答案-精选文档

高中数学高考总复习简单的三角恒等变换习题(附参考答案)一、选择题1.(文)(2010·山师大附中模考)设函数f (x )=cos 2(x +π4)-sin 2(x +π4),x ∈R ,则函数f (x )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数[答案] A[解析] f (x )=cos(2x +π2)=-sin2x 为奇函数,周期T =2π2=π.(理)(2010·辽宁锦州)函数y =sin 2x +sin x cos x 的最小正周期T =( ) A .2πB .πC.π2D.π3[答案] B[解析] y =sin 2x +sin x cos x =1-cos2x 2+12sin2x =12+22sin ⎝⎛⎭⎫2x -π4,∴最小正周期T =π. 2.(2010·重庆一中)设向量a =(cos α,22)的模为32,则cos2α=( ) A .-14B .-12C.12D.32[答案] B[解析] ∵|a |2=cos 2α+⎝⎛⎭⎫222=cos 2α+12=34,∴cos 2α=14,∴cos2α=2cos 2α-1=-12.3.已知tan α2=3,则cos α=( )A.45B .-45C.415D .-35[答案] B[解析] cos α=cos 2α2-sin 2α2=cos 2α2-sin 2α2cos 2α2+sin2α2=1-tan 2α21+tan 2α2=1-91+9=-45,故选B.4.在△ABC 中,若sin A sin B =cos 2C2,则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .既非等腰又非直角的三角形 [答案] B[解析] ∵sin A sin B =cos 2C2,∴12[cos(A -B )-cos(A +B )]=12(1+cos C ), ∴cos(A -B )-cos(π-C )=1+cos C , ∴cos(A -B )=1,∵-π<A -B <π,∴A -B =0, ∴△ABC 为等腰三角形.5.(2010·绵阳市诊断)函数f (x )=2sin(x -π2)+|cos x |的最小正周期为( )A.π2B .πC .2πD .4π[答案] C[解析] f (x )=-2cos x +|cos x |=⎩⎪⎨⎪⎧-cos x cos x ≥0-3cos x cos x <0,画出图象可知周期为2π. 6.(2010·揭阳市模考)若sin x +cos x =13,x ∈(0,π),则sin x -cos x 的值为( )A .±173B .-173C.13D.173[答案] D[解析] 由sin x +cos x =13两边平方得,1+2sin x cos x =19,∴sin2x =-89<0,∴x ∈⎝⎛⎭⎫π2,π, ∴(sin x -cos x )2=1-sin2x =179且sin x >cos x ,∴sin x -cos x =173,故选D. 7.(文)在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x ,y 的大小关系是( ) A .x ≤y B .x <y C .x ≥yD .x >y[答案] D[解析] ∵π>A +B >π2,∴cos(A +B )<0,即cos A cos B -sin A sin B <0,∴x >y ,故应选D.(理)(2010·皖南八校)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,如果cos(2B +C )+2sin A sin B <0,那么a 、b 、c 满足的关系是( )A .2ab >c 2B .a 2+b 2<c 2C .2bc >a 2D .b 2+c 2<a 2[答案] B[解析] ∵cos(2B +C )+2sin A sin B <0,且A +B +C =π, ∴cos(π-A +B )+2sin A ·sin B <0,∴cos(π-A )cos B -sin(π-A )sin B +2sin A sin B <0, ∴-cos A cos B +sin A sin B <0,即cos(A +B )>0, ∴0<A +B <π2,∴C >π2,由余弦定理得,cos C =a 2+b 2-c 22ab <0,∴a 2+b 2-c 2<0,故应选B.8.(2010·吉林省调研)已知a =(cos x ,sin x ),b =(sin x ,cos x ),记f (x )=a ·b ,要得到函数y =sin 4x -cos 4x 的图象,只需将函数y =f (x )的图象( )A .向左平移π2个单位长度B .向左平移π4个单位长度C .向右平移π2个单位长度D .向右平移π4个单位长度[答案] D[解析] y =sin 4x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos2x ,将f (x )=a ·b =2sin x cos x =sin2x ,向右平移π4个单位得,sin2⎝⎛⎭⎫x -π4=sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭⎫π2-2x =-cos2x ,故选D. 9.(2010·浙江金华十校模考)已知向量a =(cos2α,sin α),b =(1,2sin α-1),α∈⎝⎛⎭⎫π4,π,若a ·b =25,则tan ⎝⎛⎭⎫α+π4的值为( ) A.13B.27C.17D.23[答案] C[解析] a ·b =cos2α+2sin 2α-sin α=1-2sin 2α+2sin 2α-sin α=1-sin α=25,∴sin α=35,∵π4<α<π,∴cos α=-45,∴tan α=-34, ∴tan ⎝⎛⎭⎫α+π4=1+tan α1-tan α=17. 10.(2010·湖北黄冈模拟)若5π2≤α≤7π2,则1+sin α+1-sin α等于( ) A .-2cos α2B .2cos α2C .-2sin α2D .2sin α2[答案] C[解析] ∵5π2≤α≤7π2,∴5π4≤α2≤7π4.∴1+sin α+1-sin α =1+2sin α2cos α2+1-2sin α2cos α2=(sin α2+cos α2)2+(sin α2-cos α2)2 =-(sin α2+cos α2)-(sin α2-cos α2)=-2sin α2.二、填空题11.(2010·广东罗湖区调研)若sin ⎝⎛⎭⎫π2+θ=35,则cos2θ=________. [答案] -725[解析] ∵sin ⎝⎛⎭⎫π2+θ=35,∴cos θ=35,∴cos2θ=2cos 2θ-1=-725.12.(2010·江苏无锡市调研)函数y =tan x -tan 3x1+2tan 2x +tan 4x 的最大值与最小值的积是________.[答案] -116[解析] y =tan x -tan 3x 1+2tan 2x +tan 4x =tan x (1-tan 2x )(1+tan 2x )2=tan x 1+tan 2x ·1-tan 2x 1+tan 2x =sin x cos xcos 2x +sin 2x +cos 2x -sin 2x cos 2x +sin 2x=12sin2x ·cos2x =14sin4x , 所以最大与最小值的积为-116. 13.(2010·浙江杭州质检)函数y =sin(x +10°)+cos(x +40°),(x ∈R )的最大值是________. [答案] 1[解析] y =sin x cos10°+cos x sin10°+cos x cos40°-sin x sin40°=(cos10°-sin40°)sin x +(sin10°+cos40°)cos x ,其最大值为(cos10°-sin40°)2+(sin10°+cos40°)2 =2+2(sin10°cos40°-cos10°sin40°) =2+2sin (-30°)=1.14.(文)如图,AB 是半圆O 的直径,点C 在半圆上,CD ⊥AB 于点D ,且AD =3DB ,设∠COD =θ,则tan 2θ2=________.[答案] 13[解析] 设OC =r ,∵AD =3DB ,且AD +DB =2r ,∴AD =3r 2,∴OD =r 2,∴CD =32r ,∴tan θ=CDOD=3,∵tan θ=2tanθ21-tan 2θ2,∴tan θ2=33(负值舍去),∴tan 2θ2=13.(理)3tan12°-3(4cos 212°-2)sin12°=________. [答案] -4 3 [解析] 3tan12°-3(4cos 212°-2)sin12°=3(sin12°-3cos12°)2cos24°sin12°cos12°=23sin (12°-60°)12sin48°=-4 3.三、解答题15.(文)(2010·北京理)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f (π3)的值;(2)求f (x )的最大值和最小值.[解析] (1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1 =3(cos x -23)2-73,x ∈R因为cos x ∈[-1,1],所以当cos x =-1时,f (x )取最大值6;当cos x =23时,f (x )取最小值-73. (理)(2010·广东罗湖区调研)已知a =(cos x +sin x ,sin x ),b =(cos x -sin x,2cos x ),设f (x )=a ·b .(1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的最大值及最小值. [解析] (1)f (x )=a ·b =(cos x +sin x )·(cos x -sin x )+sin x ·2cos x =cos 2x -sin 2x +2sin x cos x =cos2x +sin2x =2⎝⎛⎭⎫22cos2x +22sin2x=2sin ⎝⎛⎭⎫2x +π4. ∴f (x )的最小正周期T =π. (2)∵0≤x ≤π2,∴π4≤2x +π4≤5π4,∴当2x +π4=π2,即x =π8时,f (x )有最大值2;当2x +π4=5π4,即x =π2时,f (x )有最小值-1.16.(文)设函数f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x . (1)求函数f (x )的最大值和最小正周期;(2)设A 、B 、C 为△ABC 的三个内角,若cos B =13,f (C 2)=-14,且C 为锐角,求sin A 的值.[解析] (1)f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x =cos2x cos π3-sin2x sin π3+1-cos2x 2=12-32sin2x , 所以函数f (x )的最大值为1+32,最小正周期为π.(2)f (C 2)=12-32sin C =-14,所以sin C =32,因为C 为锐角,所以C =π3,在△ABC 中,cos B =13,所以sin B =223,所以sin A =sin(B +C )=sin B cos C +cos B sin C =223×12+13×32=22+36. (理)已知角A 、B 、C 为△ABC 的三个内角,OM →=(sin B +cos B ,cos C ),ON →=(sin C ,sin B -cos B ),OM →·ON →=-15.(1)求tan2A 的值;(2)求2cos 2A2-3sin A -12sin ⎝⎛⎭⎫A +π4的值.[解析] (1)∵OM →·ON →=(sin B +cos B )sin C + cos C (sin B -cos B )=sin(B +C )-cos(B +C )=-15,∴sin A +cos A =-15①两边平方并整理得:2sin A cos A =-2425,∵-2425<0,∴A ∈⎝⎛⎭⎫π2,π, ∴sin A -cos A =1-2sin A cos A =75②联立①②得:sin A =35,cos A =-45,∴tan A =-34,∴tan2A =2tan A 1-tan 2A=-321-916=-247. (2)∵tan A =-34,∴2cos 2A2-3sin A -12sin ⎝⎛⎭⎫A +π4=cos A -3sin A cos A +sin A =1-3tan A1+tan A=1-3×⎝⎛⎭⎫-341+⎝⎛⎭⎫-34=13.17.(文)(2010·厦门三中阶段训练)若函数f (x )=sin 2ax -3sin ax cos ax (a >0)的图象与直线y =m 相切,相邻切点之间的距离为π2.(1)求m 和a 的值;(2)若点A (x 0,y 0)是y =f (x )图象的对称中心,且x 0∈⎣⎡⎦⎤0,π2,求点A 的坐标. [解析] (1)f (x )=sin 2ax -3sin ax cos ax =1-cos2ax 2-32sin2ax =-sin ⎝⎛⎭⎫2ax +π6+12, 由题意知,m 为f (x )的最大值或最小值, 所以m =-12或m =32,由题设知,函数f (x )的周期为π2,∴a =2,所以m =-12或m =32,a =2.(2)∵f (x )=-sin ⎝⎛⎭⎫4x +π6+12, ∴令sin ⎝⎛⎭⎫4x +π6=0,得4x +π6=k π(k ∈Z ), ∴x =k π4-π24(k ∈Z ),由0≤k π4-π24≤π2 (k ∈Z ),得k =1或k =2,因此点A 的坐标为⎝⎛⎭⎫5π24,12或⎝⎛⎭⎫11π24,12.(理)(2010·广东佛山顺德区检测)设向量a =(sin x,1),b =(1,cos x ),记f (x )=a ·b ,f ′(x )是f (x )的导函数.(1)求函数F (x )=f (x )f ′(x )+f 2(x )的最大值和最小正周期; (2)若f (x )=2f ′(x ),求1+2sin 2xcos 2x -sin x cos x 的值.[解析] (1)f (x )=sin x +cos x , ∴f ′(x )=cos x -sin x , ∴F (x )=f (x )f ′(x )+f 2(x ) =cos 2x -sin 2x +1+2sin x cos x=cos2x +sin2x +1=1+2sin ⎝⎛⎭⎫2x +π4, ∴当2x +π4=2k π+π2,即x =k π+π8(k ∈Z )时,F (x )max =1+ 2.最小正周期为T =2π2=π.(2)∵f (x )=2f ′(x ),∴sin x +cos x =2cos x -2sin x , ∴cos x =3sin x ,∴tan x =13,∴1+2sin 2x cos 2x -sin x cos x =3sin 2x +cos 2x cos 2x -sin x cos x =3tan 2x +11-tan x =2.。

第三章 第六节 简单的三角恒等变换

第三章  第六节  简单的三角恒等变换

[题组自测 题组自测] 题组自测 1.化简 .
π 2sin4-x+ π 6cos4 -x.
解: =2 =2 =2
π 2sin4 -x+ 1 π 2 sin -x+ 4 2
π 6cos4 -x 3 π cos4 -x 2
(sin2α+cos2α-1)( + - )(sin2α-cos2α+1) - + ) )( 3.(1)化简: 化简: . 化简 ; sin4α (2) 已 知 tan2θ = - 2 2 , π < 2θ < 2π , 化 简 2cos -sinθ-1 - 2 . π + 2sinθ+4
[归纳领悟] 归纳领悟] 三角函数式的化简要遵循“三看”原则. 三角函数式的化简要遵循“三看”原则. (1)一看“ (1)一看“角”,这是最重要的一环,通过看角之间的差 一看 这是最重要的一环, 别与联系,把角进行合理的拆分,从而正确使用公式; 别与联系,把角进行合理的拆分,从而正确使用公式; (2)二看“函数名称” 看函数名称之间的差异, (2)二看“函数名称”,看函数名称之间的差异,从而确 二看 定使用的公式,常见的有“切化弦” 定使用的公式,常见的有“切化弦”; (3)三看“结构特征” 分析结构特征, (3)三看“结构特征”,分析结构特征,可以帮助我们找 三看 到变形的方向,常见的有“遇到分式要通分” 到变形的方向,常见的有“遇到分式要通分”等.

不要求记忆) 二、积化和差与和差化积公式(不要求记忆 积化和差与和差化积公式 不要求记忆 积化和差公式: 积化和差公式: 1 sinαcosβ= [sin(α+β)+sin(α-β)]; =2 + + - ; 1 cosαsinβ= [sin(α+β)-sin(α-β)]; =2 + - - ; 1 cosαcosβ= [cos(α+β)+cos(α-β)]; =2 + + - ; 1 sinαsinβ=- [cos(α+β)-cos(α-β)]. =-2 + - - .

2014高考数学全程特训3.6简单的三角恒等变换

2014高考数学全程特训3.6简单的三角恒等变换

2014高考数学全程特训:第三章 三角函数、三角恒等变换及解三角形第6课时 简单的三角恒等变换1. 函数y =sin 2x -sin2x 的最小正周期为_________.答案:π解析:y =sin 2x -sin2x =1-cos2x 2-sin2x =12-sin2x -12cos2x =12-52sin(2x +φ),其中φ为参数,所以周期T =2πω=2π2=π. 2. 函数y =sin ⎝ ⎛⎭⎪⎫π2+x cos ⎝ ⎛⎭⎪⎫π6-x 的最大值为________. 答案:2+34解析:y =sin ⎝ ⎛⎭⎪⎫π2+x cos ⎝ ⎛⎭⎪⎫π6-x =cosxcos ⎝ ⎛⎭⎪⎫π6-x =32cos 2x +12sinxcosx =32×1+cos2x 2+14sin2x =34+34cos2x +14sin2x =34+12sin ⎝ ⎛⎭⎪⎫2x +π3,所以当sin ⎝⎛⎭⎪⎫2x +π3=1时,函数有最大值为34+12=2+34. 3. 若3sin α+cos α=0,则1cos 2α+sin2α=________. 答案:103解析:3sin α+cos α=0cos α≠0tan α=-13,1cos 2α+sin2α=cos 2α+sin 2αcos 2α+2sin αcos α=1+tan 2α1+2tan α=103. 4. 当0<x <π4时,函数f(x)=cos 2x cosxsinx -sin 2x的最小值是__________. 答案:4解析:f(x)=1-tan 2x +tanx =1-⎝⎛⎭⎪⎫tanx -122+14,当tanx =12时,f(x)的最小值为4. 5. 若sin α+cos αsin α-cos α=12,则tan2α=________. 答案:34解析:由sin α+cos αsin α-cos α=12,得2(sin α+cos α)=sin α-cos α,即tan α=-3.又tan2α=2tan α1-tan 2α=-61-9=34. 6. 函数f(x)=sinx +3cosx 在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为________. 答案:1解析:f(x)=sinx +3cosx =2sin ⎝ ⎛⎭⎪⎫x +π3.∵ x ∈⎣⎢⎡⎦⎥⎤0,π2,∴ x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6,∴ y min=2sin 5π6=1.7. 已知钝角α满足cos α=-35,则tan ⎝ ⎛⎭⎪⎫α2+π4=________. 答案:-3解析:因为cos α=2cos 2α2-1=-35,所以cos 2α2=15.又α∈⎝⎛⎭⎪⎫0,π2,所以cos α2=55,sin α2=255,tan α2=2,所以tan ⎝ ⎛⎭⎪⎫α2+π4=tan α2+11-tan α2=-3. 8. 设△ABC 的三个内角分别为A 、B 、C ,向量m =(3sinA ,sinB),n =(cosB ,3cosA),若n·m =1+cos(A +B),则C 的值为________.答案:23π 解析:m·n =3sinAcosB +3cosAsinB =3sin(A +B)=3sin(π-C)=3sinC.又cos(A +B)=cos(π-C)=-cosC ,故3sinC =1-cosC ,即3sinC +cosC =1,即2sin ⎝⎛⎭⎪⎫C +π6=1,即sin ⎝⎛⎭⎪⎫C +π6=12,由于π6<C +π6<7π6,故只有C +π6=5π6,即C =2π3. 9. 设α、β(0,π),且sin(α+β)=513,tan α2=12,求cos β的值. 答案:-1665解析:∵ tan α=2×121-⎝ ⎛⎭⎪⎫122=43>1, ∴ π4<α<π2,∴ sin α=45,cos α=35. 又β∈(0,π),π4<α+β<3π2,sin(α+β)=513<12,∴ π2<α+β<π,cos(α+β)=-1213,于是cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-1665. 10. 已知函数f(x)=sin 2⎝ ⎛⎭⎪⎫x -π6+cos 2⎝⎛⎭⎪⎫x -π3+sinx ·cosx ,x ∈R . (1) 求f(x)的最大值及取得最大值时的x 的值;(2) 求f(x)在[0,π]上的单调增区间.解:(1) f(x)=1-cos ⎝ ⎛⎭⎪⎫2x -π32+1+cos ⎝ ⎛⎭⎪⎫2x -2π32+12sin2x =1+12(sin2x -cos2x)=22sin ⎝⎛⎭⎪⎫2x -π4+1. 当2x -π4=2k π+π2,即x =k π+3π8,k ∈Z 时,f(x)的最大值为22+1. (2) 由2k π-π2≤2x -π4≤2k π+π2,即k π-π8≤x ≤k π+3π8,k ∈Z .又0≤x≤π,故所求f(x)的增区间为⎣⎢⎡⎦⎥⎤0,3π8,⎣⎢⎡⎦⎥⎤7π8,π. 11. 已知函数f(x)=(2cos 2x -1)sin2x +12cos4x. (1) 求f(x)的最小正周期及最大值;(2) 若α∈⎝ ⎛⎭⎪⎫π2,π,且f(α)=22,求α的值. 解:(1) 因为f(x)=(2cos 2x -1)sin2x +12cos4x =cos2x ·sin2x +12cos4x =12(sin4x +cos4x)=22sin ⎝⎛⎭⎪⎫4x +π4, 所以f(x)的最小正周期为π2,最大值为22. (2) 因为f(α)=22,所以sin ⎝⎛⎭⎪⎫4α+π4=1. 因为α∈⎝ ⎛⎭⎪⎫π2,π,所以4α+π4∈⎝ ⎛⎭⎪⎫9π4,17π4. 所以4α+π4=5π2.故α=9π16.。

第3章---第6节

第3章---第6节



新课标 ·数学(文)(广东专用)
自 主 落 实 · 固 基 础
1.用 cos α 表示 sin ,cos ,tan 2 2 2
2α sin = 2



1-cos α 1+cos α 1-cos α α α 2 2 ,cos2 = ,tan2 = 1+cos α 2 2
.
高 考 体 验 · 明 考 情
2.用 sin α,cos α 表示 tan
典 例 探 究 · 提 知 能
α 2
课 时 知 能 训 练
tan
1-cos α α sin α = = . 2 1+cos α sin α


新课标 ·数学(文)(广东专用)
自 主 落 实 · 固 基 础
3.辅助角公式 asin α+bcos α= 4.“1”的妙用 π sin α+cos α=1, 2α+2sin α=1,1=2cos α-cos 2α, 2=cos cos sin
7π 3π π -2π)+sin(x- + ) 4 4 2 π π π =sin(x- )+sin(x- )=2sin(x- ). 4 4 4 ∴T=2π,f(x)的最小值为-2. 4 4 (2)∵cos(β-α)= ,cos(β+α)=- . 5 5 4 ∴cos βcos α+sin βsin α= , 5 4 cos βcos α-sin βsin α=- , 5 两式相加得 2cos βcos α=0. π π ∵0<α<β≤ ,∴β= . 2 2 π 由(1)知 f(x)=2sin(x- ), 4 π 2 ∴[f(β)]2-2=4sin2 -2=4×( )2-2=0. 4 2 【尝试解答】 (1)∵f(x)=sin(x+

(完整word)高中数学高考总复习简单的三角恒等变换习题及详解.doc

(完整word)高中数学高考总复习简单的三角恒等变换习题及详解.doc

高考总复习高 中 数 学 高 考 总 复习 简 单 的 三 角 恒 等 变 换 习 题 及 详 解一、选择题π π ,x ∈ R ,则函数 f(x) 是()1. (文 )(2010 山·师大附中模考 )设函数 f(x)= cos 2(x + )- sin 2(x + )44A .最小正周期为 π的奇函数B .最小正周期为 π的偶函数πC .最小正周期为 2的奇函数πD .最小正周期为 2的偶函数 [ 答案 ] Aπ2π[ 解析 ] f(x)= cos(2x + 2)=- sin2x 为奇函数,周期 T = 2 = π. ( 理)(2010 辽·宁锦州 )函数 y = sin 2x + sinxcosx 的最小正周期 T = ()π π A . 2π B . πC.2D.3[ 答案 ] B[ 解析 ] y = sin 2x + sinxcosx = 1- cos2x 12+ sin2x2 = 1+ 2π,∴最小正周期 T = π.2 2 sin 2x - 4232. (2010 重·庆一中 )设向量 a = (cos α, 2 )的模为 2 ,则 cos2α= ()111 3 A .- 4 B .- 2C.2D. 2[ 答案 ] B[ 解析 ] ∵ |a|2= cos 2α+ 2 2= cos 2α+ 1= 3,2 2 4∴ cos 2α=1,∴ cos2α= 2cos 2α- 1=- 1.42α3.已知 tan 2= 3,则 cos α= ()444 3A. 5 B .- 5C.15D .- 5[ 答案 ] Bαααα cos2- sin2222含详解答案高考总复习1- tan 2α= 2 =1- 9=- 4,故选 B. 1+ tan 2α 1+ 9522C4.在△ABC 中,若 sinAsinB = cos 2 ,则△ABC 是 ()A .等边三角形B .等腰三角形C .直角三角形D .既非等腰又非直角的三角形 [ 答案 ] B[ 解析 ] ∵ sinAsinB = cos 2C,211∴ 2[cos(A - B)- cos(A + B)] = 2(1+ cosC), ∴ cos(A - B)-cos( π-C)= 1+ cosC ,∴ cos(A - B)=1,∵- π<A -B<π,∴ A - B = 0,∴△ ABC 为等腰三角形.π5. (2010 ·阳市诊断绵 )函数 f(x)= 2sin(x - 2) +|cosx|的最小正周期为( )πA. 2B .πC . 2πD . 4π[ 答案 ] C[ 解析 ] f(x)=- 2cosx + |cosx|- cosx cosx ≥ 0=,画出图象可知周期为2π.- 3cosx cosx<016. (2010 揭·阳市模考 )若 sinx + cosx = 3, x ∈ (0, π),则 sinx - cosx 的值为 ()17171 17 A . ± 3 B .- 3C.3D. 3[ 答案 ] D[ 解析 ]11 ,∴ sin2x =- 8π 由 sinx + cosx = 两边平方得, 1+ 2sinxcosx = <0,∴ x ∈ , π,3 99 2∴ (sinx - cosx)2= 1- sin2x =17且sinx>cosx , 9∴ sinx -cosx =17,故选 D.3高考总复习7. (文 )在锐角△ABC 中,设 x = sinA ·sinB , y = cosA ·cosB ,则 x , y 的大小关系是 ( )A . x ≤yB . x < yC . x ≥ yD . x >y[ 答案 ] Dπ[ 解析 ] ∵ π>A + B > ,∴ cos(A + B)<0,即 cosAcosB - sinAsinB < 0,∴ x > y ,故应选 D.2( 理)(2010 皖·南八校 )在△ABC 中,角 A 、B 、 C 的对边分别为 a 、b 、 c ,如果 cos(2B + C)+ 2sinAsinB<0,那么 a 、 b 、 c 满足的关系是 ()A . 2ab>c 2B . a 2+ b 2<c 2C . 2bc>a 2D . b 2+ c 2<a 2[ 答案 ] B[ 解析 ] ∵ cos(2B +C)+ 2sinAsinB<0,且 A +B + C = π,∴ cos( π- A +B)+ 2sinA ·sinB<0,∴ cos( π- A)cosB - sin( π- A)sinB + 2sinAsinB<0,∴- cosAcosB + sinAsinB<0 ,即 cos(A + B)>0,π π∴ 0<A + B< ,∴ C> ,22a 2+b 2-c 2由余弦定理得,cosC =<0,2ab∴ a 2+ b 2- c 2<0,故应选 B.8. (2010 ·林省调研吉 )已知 a = (cosx ,sinx),b = (sinx ,cosx),记 f(x)=a ·b ,要得到函数 y = sin 4x - cos 4x 的图象,只需将函数 y = f( x)的图象 ()πA .向左平移 2个单位长度πB .向左平移 4个单位长度πC .向右平移 2个单位长度πD .向右平移 4个单位长度[ 答案 ] D[ 解析 ] y = sin 4x - cos 4 x =(sin 2x + cos 2x)(sin 2x - cos 2x)=- cos2x ,π π π π将 f( x)= a ·b = 2sinxcosx = sin2x ,向右平移 4 个单位得, sin2 x -4 = sin 2x -2 =- sin - 2x=- cos2x ,故2 选 D.高考总复习π 29. (2010 浙·江金华十校模考 )已知向量 a = (cos2α, sin α), b = (1,2sin α- 1), α∈ 4, π,若 a ·b =5,π 则 tan α+4 的值为 ( )12 1 2 A.3 B.7C.7D.3[ 答案 ] C[ 解析 ]a ·b = cos2α+ 2sin 2α-sin α= 1- 2sin 2α+ 2sin 2α- sin α= 1- sin α= 2,∴ sin α= 3,5 5 π∵ <α<π,∴ cos α=- 4,∴ tan α=- 3,454π 1+ tan α 1 .∴ tan α+ = =4 1- tan α 75π 7π10. (2010 湖·北黄冈模拟 )若 2 ≤ α≤ 2 ,则 1+ sin α+ 1- sin α等于 ()α α A .- 2cos 2 B . 2cos 2α α C .- 2sin 2 D . 2sin 2[ 答案 ]C5π7π 5π α 7π[ 解析 ] ≤ α≤,∴4≤ ≤4.∵ 2 2 2∴ 1+ sin α+ 1- sin α=1+ 2sin α α 1- 2sin α α2 cos + cos22 2 =α α α α2sin + cos2 +sin - cos2 2 22αα α α=- (sin + cos )- (sin - cos )2222α=- 2sin 2. 二、填空题π 311. (2010 广·东罗湖区调研 )若 sin 2+ θ=5,则 cos2θ= ________. [ 答案 ] 7 - 25π 3,∴ cos θ= 3,[ 解析 ] ∵ sin + θ=2 5 5∴ cos2θ= 2cos2θ- 1=- 257.高考总复习tanx- tan3 x12. (2010 江·苏无锡市调研 )函数 y=的最大值与最小值的积是 ________.1+ 2tan 2x+tan4x[ 答案 ]1 -16[ 解析 ] y=tanx- tan3x tanx 1- tan2x2 4=2 21+ 2tan x+ tan x 1+ tan x=tanx 1- tan2x=sinxcosx cos2x- sin2x2 · 2 2 2 + 2 2 1+ tan x 1+ tan x cos x+ sin x cos x+ sin x 1 1=2sin2x·cos2x=4sin4x,1所以最大与最小值的积为-16.13. (2010 ·江杭州质检浙)函数 y= sin(x+ 10°)+ cos(x+ 40°),( x∈R )的最大值是 ________.[ 答案 ] 1[ 解析 ]y= sinxcos10 °+ cosxsin10 +°cosxcos40 °- sinxsin40 =°(cos10 -°sin40 )sinx°+ (sin10 +°cos40 °)cosx,其最大值为=2+ 2 sin10 °cos40°- cos10°sin40 °=2+ 2sin - 30°= 1.θ14.(文 )如图, AB 是半圆 O 的直径,点 C 在半圆上, CD⊥ AB 于点 D ,且 AD= 3DB ,设∠COD =θ,则 tan22=________.[ 答案 ] 1 3[ 解析 ]3r,∴ OD=r,∴ CD = 3 CD =3,设 OC= r,∵ AD = 3DB,且 AD+ DB=2r,∴ AD =2 2 2 r ,∴ tanθ=OD θ∵ tanθ=2tan2 θ3,∴ tan =1- tan2θ 2 3 (负值舍去 ),2θ1∴tan22=3.( 理)3tan12 -°3= ________. 4cos212 °- 2 sin12 °[ 答案 ] - 4 3[ 解析 ]3tan12 -°3 = 3 sin12 -°3cos12 °4cos212°-2 sin12 ° 2cos24 sin12°cos12° °2 3sin 12 °- 60°3. = 1 =- 4三、解答题15. (文 )(2010 北·京理 )已知函数f(x)=2cos2x + sin 2x - 4cosx.π(1) 求 f(3)的值;(2) 求 f(x)的最大值和最小值.[ 解析 ] π 2π π π 3 9 (1) f( )= 2cos+ sin2- 4cos =- 1+-2=- .3 33344(2) f(x)=2(2cos 2 x - 1)+(1 -cos 2x)- 4cosx= 3cos 2x - 4cosx - 1= 3(cosx -23)2-73, x ∈ R因为 cosx ∈ [ - 1,1] ,所以当 cosx =- 1 时, f(x)取最大值 6;当 cosx =2时, f(x)取最小值-733.( 理)(2010 广·东罗湖区调研 )已知 a =(cosx +sinx , sinx), b = (cosx - sinx,2cosx),设 f(x)= a ·b. (1) 求函数 f(x)的最小正周期;(2) 当 x ∈ 0,π时,求函数 f(x)的最大值及最小值.2[ 解析 ] (1) f(x)= a ·b = (cosx + sinx) ·(cosx - sinx)+ sinx ·2cosx = cos 2x -sin 2x + 2sinxcosx= cos2x + sin2x = 2222 cos2x + 2 sin2xπ = 2sin 2x +4 .∴ f(x)的最小正周期 T = π.πππ 5π(2) ∵ 0≤ x ≤ ,∴ ≤ 2x + ≤ 4 ,2 4 4π π ππ 5π π∴当 2x +4= 2,即 x =8时, f(x)有最大值 2;当 2x + 4= 4 ,即 x =2 时, f(x)有最小值- 1.π16. (文 )设函数 f(x)= cos 2x + 3 + sin 2x.(1) 求函数 f(x)的最大值和最小正周期;1C1(2) 设 A 、 B 、 C 为△ABC 的三个内角,若 cosB =3, f(2 )=-4,且 C 为锐角,求 sinA 的值. [ 解析 ] (1) f(x)= cos 2x + π π π 1- cos2x 1 - 3 + sin 2x = cos2xcos - sin2xsin + = 2 sin2x ,3 3 3 2 2所以函数 f(x)的最大值为1+ 3,最小正周期为π.2(2) f(C )= 1- 3sinC =- 1,所以 sinC = 3π因为 C 为锐角,所以C = 3,在△ ABC 中, cosB =13,所以 sinB =2 3 2,所以 sinA = sin(B + C)= sinBcosC + cosBsinC= 2 2 1 1 × 3 = 22+ 33 × + 26 .2 3→ → → →( 理)已知角 A 、B 、 C 为△ABC 的三个内角, OM = (sinB + cosB , cosC), ON = (sinC , sinB - cosB), OM ·ON =1- 5.(1) 求 tan2A 的值;2A(2) 2cos 2- 3sinA - 1 的值.求π2sin A +4[ 解析 ]→ →(1) ∵OM ·ON = (sinB + cosB)sinC +1cosC(sinB - cosB)= sin(B + C)- cos(B + C) =- 5,∴ sinA + cosA =- 1①5两边平方并整理得: 2sinAcosA =- 24,25∵-24π, π ,25<0,∴ A ∈ 2∴ sinA - cosA = 1-2sinAcosA = 75②联立①②得: sinA = 3,cosA =- 4,∴ tanA =- 3, 5 5 4- 3∴ tan2A =2tanA2=224 . A =- 1-tan 1- 9 7163(2) ∵ tanA =- 4,A2cos 22 - 3sinA - 1 cosA -3sinA 1- 3tanA ∴ π= cosA +sinA =1+ tanA 2sin A +43=1-3× -4 = 13.-341+π点之间的距离为2.(1) 求 m 和 a 的值;π(2) 若点 A(x 0, y 0) 是 y = f( x)图象的对称中心,且 x 0∈ 0, 2 ,求点 A 的坐标. [ 解析 ] (1) f(x)= sin 2ax - 3sinaxcosax1- cos2ax3π 1= 2 - 2 sin2ax =- sin 2ax + 6 + 2,由题意知, m 为 f(x)的最大值或最小值,所以 m =- 12或 m =32,π 由题设知,函数f(x)的周期为,∴ a = 2,2所以 m =- 1或 m =3, a = 2. 2 2(2) ∵ f(x)=- sin 4x + π+1,6 2ππ∴令 sin 4x + 6 =0,得 4x +6= k π(k ∈ Z) ,∴ x = k π π-424(k ∈ Z),由 0≤ k π π π(k ∈ Z),得 k = 1 或 k = 2,4 -24≤2 因此点 A 的坐标为 5π 1 或 11π1 , ,24 2 24 2.( 理)(2010 广·东佛山顺德区检测 )设向量 a = (sinx,1), b = (1, cosx),记 f(x)= a ·b , f ′ (x)是 f( x)的导函数.(1) 求函数 F(x)= f(x)f ′ (x)+ f 2(x)的最大值和最小正周期;(2) 若 f(x)= 2f ′ (x),求1+ 2sin 2x的值.cos 2x - sinxcosx[ 解析 ] (1) f(x)= sinx +cosx ,∴ f ′( x)= cosx -sinx ,∴ F(x)= f(x)f ′ (x)+ f 2(x) = cos 2x -sin 2x + 1+2sinxcosx= cos2x + sin2x + 1= 1+ 2sin π2x +4 ,π π π ∴当 2x + = 2k π+ ,即 x = k π+ (k ∈ Z)时, F( x)max =1 + 2.428最小正周期为 T = 2π= π.2(2) ∵ f(x)= 2f ′ (x),∴ sinx+ cosx= 2cosx- 2sinx,∴cosx= 3sinx,∴ tanx=1,3∴1+ 2sin2x = 3sin2x+ cos2x = 3tan2x+ 1=2.cos2x-sinxcosx cos2x-sinxcosx 1- tanx。

2014届安徽高考数学(文)一轮复习策略指导课件:第三章第六节《简单的三角恒等变换》(新人教A版)

2014届安徽高考数学(文)一轮复习策略指导课件:第三章第六节《简单的三角恒等变换》(新人教A版)

π π π (2)∵cos 2x=sin(2x+ )=2sin(x+ )cos(x+ ), 2 4 4 π π 2sin(x+ )cos(x+ ) sin x+cos x 4 4 ∴原式= = sin x π 2cos( +x)· sin x 4 1 3 1 =1+ =1+(- )= . tan x 4 4
(2012· 天津高考 )已知函数f(x)=sin(2x+ 3 π - )+2cos2x-1,x∈R. 3 (1)求函数f(x)的最小正周期; π π (2)求函数f(x)在区间[- , ]上的最大值和最小值. 4 4
• 从近两年高考看,运用和、差、倍角公式 进行三角函数恒等变形,进而研究三角函 数的性质问题,是各省常考常新的题型, 并多以解答题的形式呈现,常与三角函数 的图象、解三角形相交汇,具有综合性, 试题难度中等,分值12分左右,着重考查 转化思想和计算能力.
• 思想方法之六 用辅助角公式研究三角函 数的性质 π
α cos sin 2 【尝试解答】 原式=( - α sin cos 2 2α 2α cos - sin 2 2 sin α = · α α cos α sin · cos 2 2 2cos α sin α = · =2. sin α cos α
α 2 2sin α 2 )· α 2sin αcos α 2
cos


α
α
2
α
2
α
sin 47°- sin 17° cos 30° (1)(2012· 重庆高考) =( cos 17° 3 A.- 2 1 B.- 2 1 C. 2 3 D. 2
)
π π 12 (2)(2013· 合肥模拟)已知 cos( - α)= , α∈ (0, ),则 4 13 4 cos 2α = ________. π sin( + α) 4

高中数学高考总复习简单的三角恒等变换习题及详解

高中数学高考总复习简单的三角恒等变换习题及详解

高中数学高考总复习简单的三角恒等变换习题及详解一、选择题1.(文)(2010·山师大附中模考)设函数f (x )=cos 2(x +π4)-sin 2(x +π4),x ∈R ,则函数f (x )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数[答案] A[解析] f (x )=cos(2x +π2)=-sin2x 为奇函数,周期T =2π2=π.(理)(2010·辽宁锦州)函数y =sin 2x +sin x cos x 的最小正周期T =( ) A .2πB .πC.π2D.π3[答案] B[解析] y =sin 2x +sin x cos x =1-cos2x 2+12sin2x =12+22sin ⎝⎛⎭⎫2x -π4,∴最小正周期T =π. 2.(2010·重庆一中)设向量a =(cos α,22)的模为32,则cos2α=( ) A .-14B .-12C.12D.32[答案] B[解析] ∵|a |2=cos 2α+⎝⎛⎭⎫222=cos 2α+12=34,∴cos 2α=14,∴cos2α=2cos 2α-1=-12.3.已知tan α2=3,则cos α=( )A.45B .-45C.415D .-35[答案] B[解析] cos α=cos 2α2-sin 2α2=cos 2α2-sin 2α2cos 2α2+sin2α2=1-tan 2α21+tan 2α2=1-91+9=-45,故选B.4.在△ABC 中,若sin A sin B =cos 2C2,则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .既非等腰又非直角的三角形 [答案] B[解析] ∵sin A sin B =cos 2C2,∴12[cos(A -B )-cos(A +B )]=12(1+cos C ), ∴cos(A -B )-cos(π-C )=1+cos C , ∴cos(A -B )=1,∵-π<A -B <π,∴A -B =0, ∴△ABC 为等腰三角形.5.(2010·绵阳市诊断)函数f (x )=2sin(x -π2)+|cos x |的最小正周期为( )A.π2B .πC .2πD .4π[答案] C[解析] f (x )=-2cos x +|cos x |=⎩⎪⎨⎪⎧-cos x cos x ≥0-3cos x cos x <0,画出图象可知周期为2π. 6.(2010·揭阳市模考)若sin x +cos x =13,x ∈(0,π),则sin x -cos x 的值为( )A .±173B .-173C.13D.173[答案] D[解析] 由sin x +cos x =13两边平方得,1+2sin x cos x =19,∴sin2x =-89<0,∴x ∈⎝⎛⎭⎫π2,π, ∴(sin x -cos x )2=1-sin2x =179且sin x >cos x , ∴sin x -cos x =173,故选D. 7.(文)在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x ,y 的大小关系是( )高考总复习含详解答案A .x ≤yB .x <yC .x ≥yD .x >y[答案] D[解析] ∵π>A +B >π2,∴cos(A +B )<0,即cos A cos B -sin A sin B <0,∴x >y ,故应选D.(理)(2010·皖南八校)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,如果cos(2B +C )+2sin A sin B <0,那么a 、b 、c 满足的关系是( )A .2ab >c 2B .a 2+b 2<c 2C .2bc >a 2D .b 2+c 2<a 2[答案] B[解析] ∵cos(2B +C )+2sin A sin B <0,且A +B +C =π, ∴cos(π-A +B )+2sin A ·sin B <0,∴cos(π-A )cos B -sin(π-A )sin B +2sin A sin B <0, ∴-cos A cos B +sin A sin B <0,即cos(A +B )>0, ∴0<A +B <π2,∴C >π2,由余弦定理得,cos C =a 2+b 2-c 22ab <0,∴a 2+b 2-c 2<0,故应选B.8.(2010·吉林省调研)已知a =(cos x ,sin x ),b =(sin x ,cos x ),记f (x )=a ·b ,要得到函数y =sin 4x -cos 4x 的图象,只需将函数y =f (x )的图象( )A .向左平移π2个单位长度B .向左平移π4个单位长度C .向右平移π2个单位长度D .向右平移π4个单位长度[答案] D[解析] y =sin 4x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos2x ,将f (x )=a ·b =2sin x cos x =sin2x ,向右平移π4个单位得,sin2⎝⎛⎭⎫x -π4=sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭⎫π2-2x =-cos2x ,故选D.9.(2010·浙江金华十校模考)已知向量a =(cos2α,sin α),b =(1,2sin α-1),α∈⎝⎛⎭⎫π4,π,若a ·b =25,则tan ⎝⎛⎭⎫α+π4的值为( ) A.13B.27C.17D.23[答案] C[解析] a ·b =cos2α+2sin 2α-sin α=1-2sin 2α+2sin 2α-sin α=1-sin α=25,∴sin α=35,∵π4<α<π,∴cos α=-45,∴tan α=-34, ∴tan ⎝⎛⎭⎫α+π4=1+tan α1-tan α=17. 10.(2010·湖北黄冈模拟)若5π2≤α≤7π2,则1+sin α+1-sin α等于( ) A .-2cos α2B .2cos α2C .-2sin α2D .2sin α2[答案] C[解析] ∵5π2≤α≤7π2,∴5π4≤α2≤7π4.∴1+sin α+1-sin α =1+2sin α2cos α2+1-2sin α2cos α2=(sin α2+cos α2)2+(sin α2-cos α2)2 =-(sin α2+cos α2)-(sin α2-cos α2)=-2sin α2.二、填空题11.(2010·广东罗湖区调研)若sin ⎝⎛⎭⎫π2+θ=35,则cos2θ=________. [答案] -725[解析] ∵sin ⎝⎛⎭⎫π2+θ=35,∴cos θ=35, ∴cos2θ=2cos 2θ-1=-725.12.(2010·江苏无锡市调研)函数y =tan x -tan 3x1+2tan 2x +tan 4x的最大值与最小值的积是高考总复习含详解答案________.[答案] -116[解析] y =tan x -tan 3x 1+2tan 2x +tan 4x =tan x (1-tan 2x )(1+tan 2x )2=tan x 1+tan 2x ·1-tan 2x 1+tan 2x =sin x cos xcos 2x +sin 2x +cos 2x -sin 2x cos 2x +sin 2x=12sin2x ·cos2x =14sin4x , 所以最大与最小值的积为-116. 13.(2010·浙江杭州质检)函数y =sin(x +10°)+cos(x +40°),(x ∈R )的最大值是________. [答案] 1[解析] y =sin x cos10°+cos x sin10°+cos x cos40°-sin x sin40°=(cos10°-sin40°)sin x +(sin10°+cos40°)cos x ,其最大值为(cos10°-sin40°)2+(sin10°+cos40°)2 =2+2(sin10°cos40°-cos10°sin40°) =2+2sin (-30°)=1.14.(文)如图,AB 是半圆O 的直径,点C 在半圆上,CD ⊥AB 于点D ,且AD =3DB ,设∠COD =θ,则tan 2θ2=________.[答案] 13[解析] 设OC =r ,∵AD =3DB ,且AD +DB =2r ,∴AD =3r 2,∴OD =r 2,∴CD =32r ,∴tan θ=CDOD=3,∵tan θ=2tanθ21-tan 2θ2,∴tan θ2=33(负值舍去),∴tan 2θ2=13.(理)3tan12°-3(4cos 212°-2)sin12°=________.[答案] -4 3 [解析] 3tan12°-3(4cos 212°-2)sin12°=3(sin12°-3cos12°)2cos24°sin12°cos12°=23sin (12°-60°)12sin48°=-4 3.三、解答题15.(文)(2010·北京理)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f (π3)的值;(2)求f (x )的最大值和最小值.[解析] (1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1 =3(cos x -23)2-73,x ∈R因为cos x ∈[-1,1],所以当cos x =-1时,f (x )取最大值6;当cos x =23时,f (x )取最小值-73. (理)(2010·广东罗湖区调研)已知a =(cos x +sin x ,sin x ),b =(cos x -sin x,2cos x ),设f (x )=a ·b .(1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的最大值及最小值. [解析] (1)f (x )=a ·b =(cos x +sin x )·(cos x -sin x )+sin x ·2cos x =cos 2x -sin 2x +2sin x cos x =cos2x +sin2x =2⎝⎛⎭⎫22cos2x +22sin2x=2sin ⎝⎛⎭⎫2x +π4. ∴f (x )的最小正周期T =π. (2)∵0≤x ≤π2,∴π4≤2x +π4≤5π4,∴当2x +π4=π2,即x =π8时,f (x )有最大值2;当2x +π4=5π4,即x =π2时,f (x )有最小值-1.16.(文)设函数f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x .高考总复习含详解答案(1)求函数f (x )的最大值和最小正周期;(2)设A 、B 、C 为△ABC 的三个内角,若cos B =13,f (C 2)=-14,且C 为锐角,求sin A 的值.[解析] (1)f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x =cos2x cos π3-sin2x sin π3+1-cos2x 2=12-32sin2x , 所以函数f (x )的最大值为1+32,最小正周期为π.(2)f (C 2)=12-32sin C =-14,所以sin C =32,因为C 为锐角,所以C =π3,在△ABC 中,cos B =13,所以sin B =223,所以sin A =sin(B +C )=sin B cos C +cos B sin C =223×12+13×32=22+36. (理)已知角A 、B 、C 为△ABC 的三个内角,OM →=(sin B +cos B ,cos C ),ON →=(sin C ,sin B -cos B ),OM →·ON →=-15.(1)求tan2A 的值;(2)求2cos 2A2-3sin A -12sin ⎝⎛⎭⎫A +π4的值.[解析] (1)∵OM →·ON →=(sin B +cos B )sin C + cos C (sin B -cos B )=sin(B +C )-cos(B +C )=-15,∴sin A +cos A =-15①两边平方并整理得:2sin A cos A =-2425,∵-2425<0,∴A ∈⎝⎛⎭⎫π2,π, ∴sin A -cos A =1-2sin A cos A =75②联立①②得:sin A =35,cos A =-45,∴tan A =-34,∴tan2A =2tan A 1-tan 2A=-321-916=-247. (2)∵tan A =-34,∴2cos 2A2-3sin A -12sin ⎝⎛⎭⎫A +π4=cos A -3sin A cos A +sin A =1-3tan A1+tan A=1-3×⎝⎛⎭⎫-341+⎝⎛⎭⎫-34=13.17.(文)(2010·厦门三中阶段训练)若函数f (x )=sin 2ax -3sin ax cos ax (a >0)的图象与直线y =m 相切,相邻切点之间的距离为π2.(1)求m 和a 的值;(2)若点A (x 0,y 0)是y =f (x )图象的对称中心,且x 0∈⎣⎡⎦⎤0,π2,求点A 的坐标. [解析] (1)f (x )=sin 2ax -3sin ax cos ax =1-cos2ax 2-32sin2ax =-sin ⎝⎛⎭⎫2ax +π6+12, 由题意知,m 为f (x )的最大值或最小值, 所以m =-12或m =32,由题设知,函数f (x )的周期为π2,∴a =2,所以m =-12或m =32,a =2.(2)∵f (x )=-sin ⎝⎛⎭⎫4x +π6+12, ∴令sin ⎝⎛⎭⎫4x +π6=0,得4x +π6=k π(k ∈Z ), ∴x =k π4-π24(k ∈Z ),由0≤k π4-π24≤π2 (k ∈Z ),得k =1或k =2,因此点A 的坐标为⎝⎛⎭⎫5π24,12或⎝⎛⎭⎫11π24,12.(理)(2010·广东佛山顺德区检测)设向量a =(sin x,1),b =(1,cos x ),记f (x )=a ·b ,f ′(x )是f (x )的导函数.高考总复习含详解答案(1)求函数F (x )=f (x )f ′(x )+f 2(x )的最大值和最小正周期; (2)若f (x )=2f ′(x ),求1+2sin 2xcos 2x -sin x cos x 的值.[解析] (1)f (x )=sin x +cos x , ∴f ′(x )=cos x -sin x , ∴F (x )=f (x )f ′(x )+f 2(x ) =cos 2x -sin 2x +1+2sin x cos x=cos2x +sin2x +1=1+2sin ⎝⎛⎭⎫2x +π4, ∴当2x +π4=2k π+π2,即x =k π+π8(k ∈Z )时,F (x )max =1+ 2.最小正周期为T =2π2=π.(2)∵f (x )=2f ′(x ),∴sin x +cos x =2cos x -2sin x , ∴cos x =3sin x ,∴tan x =13,∴1+2sin 2x cos 2x -sin x cos x =3sin 2x +cos 2x cos 2x -sin x cos x =3tan 2x +11-tan x =2.。

简单的三角恒等变换专题及答案

简单的三角恒等变换专题及答案

简单的三角恒等变换专题及答案简单的三角恒等变换专题一、选择题1.已知sinα=5115,则cos(π-2α)=()。

答案:B。

通过sinα和cos(π-2α)的关系,可以得到cos(π-2α)=-sinα=-(1/5115)。

2.sin70°/(2cos10°-sin20°)的值是()。

答案:C。

通过三角函数的恒等变换,可以将sin70°/(2cos10°-sin20°)化简为sin70°/cos80°,再使用tan的定义式,得到tan70°=sin70°/cos70°=sin70°/sin10°cos80°=sin70°/sin10°sin10°=1/sin10°=3.3.若sin76°=m,用含m的式子表示cos7°为()。

答案:B。

通过三角函数的恒等变换,可以得到cos(π/2-76°)=sin76°=m,即cos14°=m,再通过三角函数的恒等变换,可以得到cos7°=2cos2(7°)-1=2cos2(14°)cos(π/2-14°)-1=2(1-sin2(14°))-1=1-2sin2(14°)=1-2(cos14°)2=1-2m2.4.若cos2α=-2,则sinα+cosα的值为sin(7π/4)()。

答案:B。

通过cos2α的值可以得到sin2α=1-cos2α=3,再通过三角函数的恒等变换,可以得到sinα+cosα=√2sin(π/4+α)=√2sin(π/4+α-2π)=√2sin(7π/4-α)。

5.已知f(x)=2tanx-2/(x+π/12),则f(π/6)的值为()。

答案:D。

第六节 简单的三角恒等变换

第六节 简单的三角恒等变换
2 α α 6 ∴cos <0,故cos =- . 2 2 3
1 3
α 2
1 3
α 2
2 3
又∵α∈(π,2π),∴ ∈ , ,
α 2

2sin 2 35 1 2. 的值为 ( cos10 3 sin10
D)
1 2
A.1
B.-1
C.
1 2
D.-
2sin 2 35 1
答案 A
1 cos 210 cos80 1 cos 20
sin 210
=
sin10 1 (1 2sin 210) sin 210 2 = 2 = . 2sin 10 2
3 sin 15°+cos 15°= 4.
2
.
答案 2
3 sin 15°+cos 15° 解析

=1-cos 2α· cos -sin2α
3 cos 2α 1 cos 2α 1 =1- - = . 2 2 2
考点突破
考点一 化简三角函数式
θ θ (1 sin θ cos θ ) sin cos 典例1 (1)已知0<θ<π,则 2 2 = 2 2cos θ 1 2cos 4 x 2cos 2 x 2 = (2)化简: . 2 2 tan x sin x 4 4
1 2
(2)原式=

2cos 2 x(cos 2 x 1)
2 tan x cos 2 x 4 4
1 2
4cos 2 xsin 2 x 1 = 4sin x cos x 4 4
1 2

高考数学5年真题备考题库 第三章 第6节 简单的三角恒

高考数学5年真题备考题库 第三章 第6节 简单的三角恒

第3章 三角函数、解三角形 第6节 简单的三角恒等变换1.(2014·课标Ⅰ,8,5分)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析:选B 由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin ⎝⎛⎭⎪⎫π2-α,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.2.(2014·江苏,5,5分)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________.解析:由题意可得两个函数图象有一个交点坐标是⎝ ⎛⎭⎪⎫π3,12,所以sin ⎝ ⎛⎭⎪⎫2π3+φ=12,又0≤φ<π,解得φ=π6.答案:π63.(2014·广东,16,12分)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫x +π3 ,x ∈R ,且f ⎝ ⎛⎭⎪⎫5π12=322.(1)求A 的值;(2)若 f (θ)-f (-θ)=3,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫π6-θ.解析:(1)∵f (x )=A sin ⎝ ⎛⎭⎪⎫x +π3,且f ⎝ ⎛⎭⎪⎫5π12=322,∴A sin ⎝⎛⎭⎪⎫5π12+π3=322⇒A sin 3π4=322⇒A =3.(2)由(1)知f (x )=3sin ⎝ ⎛⎭⎪⎫x +π3,∵f (θ)-f (-θ)=3,∴ 3sin ⎝ ⎛⎭⎪⎫θ+π3-3sin ⎝ ⎛⎭⎪⎫-θ+π3=3,展开得3⎝ ⎛⎭⎪⎫12sin θ+32cos θ-3⎝ ⎛⎭⎪⎫32cos θ-12sin θ=3,化简得sin θ=33. ∵θ∈⎝⎛⎭⎪⎫0,π2,∴cos θ=63.∴f ⎝ ⎛⎭⎪⎫π6-θ=3sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π6-θ+π3=3sin ⎝ ⎛⎭⎪⎫π2-θ=3cos θ= 6.4.(2014·湖北,17,11分)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解:(1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温. 由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.在10时至18时实验室需要降温.5.(2013浙江,5分)已知α∈R ,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34D .-43解析:选C 本题考查对任意角三角函数(正弦、余弦、正切)的定义、同角三角函数的基本关系以及二倍角的正弦、余弦、正切公式的理解,考查考生灵活运用公式以及运算的能力.法一:(直接法)两边平方,再同时除以cos 2α,得3tan 2α-8tan α-3=0,tan α=3或tan α=-13,代入tan 2α=2tan α1-tan 2α,得到tan 2α=-34. 法二:(猜想法)由给出的数据及选项的唯一性,记sin α=310,cos α=110,这时sin α+2cos α=102符合要求,此时tan α=3,代入二倍角公式得到答案C. 6.(2013新课标全国Ⅱ,5分)设θ为第二象限角,若tan ⎝ ⎛⎭⎪⎫θ+π4=12,则sin θ+cos θ=________.解析:本题考查同角三角函数关系式以及两角和三角函数公式的基本运用,意在考查考生灵活运用知识解决问题的能力以及合理选取解法的能力.法一:由θ在第二象限,且tan ⎝ ⎛⎭⎪⎫θ+π4=12,因而sin ⎝ ⎛⎭⎪⎫θ+π4=-55,因而sin θ+cos θ= 2 sin ⎝⎛⎭⎪⎫θ+π4=-105.法二:如果将tan ⎝⎛⎭⎪⎫θ+π4=12利用两角和的正切公式展开,则tan θ+11-tan θ=12,求得tan θ=-13.又因为θ在第二象限,则sin θ=110,cos θ=-310,从而sin θ+cos θ=-210=-105. 答案:-1057.(2013四川,5分)设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan2α的值是________.解析:本题考查同角三角函数的基本关系与倍角公式,意在考查考生的运算能力及符号取舍的判断能力.因为sin 2α=-sin α,所以2sin αcos α=-sin α,cos α=-12.又α∈⎝ ⎛⎭⎪⎫π2,π,所以α=2π3,tan 2α=tan 4π3= 3.答案: 38.(2013广东,12分)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,x ∈R .(1)求f ⎝ ⎛⎭⎪⎫-π6的值; (2)若cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,求f ⎝⎛⎭⎪⎫2θ+π3. 解:本题考查特殊角的三角函数值,同角三角函数的基本关系、二倍角公式等基础知识,考查运算求解能力.(1)f ⎝ ⎛⎭⎪⎫-π6=2cos ⎝ ⎛⎭⎪⎫-π6-π12=2cos ⎝ ⎛⎭⎪⎫-π4=2cos π4=1.(2)f (2θ+π3)= 2 cos ⎝ ⎛⎭⎪⎫2θ+π3-π12=2cos ⎝ ⎛⎭⎪⎫2θ+π4=cos 2θ-sin 2θ.因为cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,所以sin θ=-45.所以sin 2θ=2sin θcos θ=-2425,cos 2θ=cos 2θ-sin 2θ=-725.所以f ⎝⎛⎭⎪⎫2θ+π3=cos 2θ-sin 2θ=-725-⎝ ⎛⎭⎪⎫-2425=1725.9.(2013重庆,12分)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2. (1)求C ;(2)设cos A cos B =325,cos α+A cos α+B cos 2α=25,求tan α的值. 解:本题主要考查解三角形问题,意在考查考生对公式的运用能力. (1)因为a 2+b 2+2ab =c 2,由余弦定理有cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.故C =3π4.(2)由题意得sin αsin A -cos αcos A sin αsin B -cos αcos B cos 2α=25. 因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25,tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25. ① 因为C =3π4,所以A +B =π4,所以sin(A +B )=22,因为cos(A +B )=cos A cos B -sin A sin B , 即325-sin A sin B =22, 解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0, 解得tan α=1或tan α=4.10.(2012山东,5分)若θ∈[π4,π2],sin 2θ=378,则sin θ=( )A.35B.45C.74D.34解析:因为θ∈[π4,π2],所以2θ∈[π2,π],所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.11.(2012辽宁,5分)已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1B .-22C.22D .1解析:由sin α-cos α=2sin (α-π4)=2,α∈(0,π),解得α=3π4,所以tan α=tan 3π4=-1.答案:A12.(2012江西,5分)若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.12解析:法一:∵tan θ+1tan θ=1+tan 2θtan θ=4,∴4tan θ=1+tan 2θ, ∴sin 2θ=2sin θcos θ=2sin θcos θsin 2 θ+cos 2 θ=2tan θ1+tan 2θ=2tan θ4tan θ=12. 法二:∵tan θ+1tan θ=sin θcos θ+cos θsin θ=1cos θsin θ=2sin 2θ∴4=2sin 2θ,故sin 2θ=12.答案:D13.(2012江苏,5分)设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.解析:因为α为锐角,cos(α+π6)=45,所以sin(α+π6)=35,sin 2(α+π6)=2425,cos 2(α+π6)=725,所以sin(2α+π12)=sin[2(α+π6)-π4]=22×1725=17250.答案:1725014.(2012广东,12分)已知函数f (x )=2cos(ωx +π6)(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值;(2)设α,β∈[0,π2],f (5α+53π)=-65,f (5β-56π)=1617,求cos(α+β)的值.解:(1)∵f (x )=2cos(ωx +π6),ω>0的最小正周期T =10π=2πω,∴ω=15. (2)由(1)知f (x )=2cos(15x +π6),而α,β∈[0,π2],f (5α+5π3)=-65,f (5β-5π6)=1617,∴2cos[15(5α+5π3)+π6]=-65,2cos[15(5β-5π6)+π6]=1617,即cos(α+π2)=-35,cos β=817,于是sin α=35,cos α=45,sin β=1517,∴cos(α+β)=cos αcos β-sin αsin β=45×817-35×1517=-1385.15.(2011江苏,14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若sin(A +π6)=2cos A ,求A 的值;(2)若cos A =13,b =3c ,求sin C 的值.解:(1)由题设知sin A cos π6+cos A sin π6=2cos A .从而sin A =3cos A ,所以cos A ≠0,tan A = 3. 因为0<A <π,所以A =π3.(2)由cos A =13,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2.故△ABC 是直角三角形,且B =π2.所以sin C =cos A =13.16.(2011辽宁,5分)设sin(π4+θ)=13,则sin2θ=( )A .-79B .-19C.19D.79解析:sin2θ=-cos(π2+2θ)=2sin 2(π4+θ)-1=2×(13)2-1=-79.答案:A17.(2010新课标全国,5分)若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12 C .2D .-2解析:∵cos α=-45且α是第三象限的角,∴sin α=-35,∴1+tanα21-tan α2=cos α2+sinα2cosα2cos α2-sin α2cosα2=cos α2+sinα2cos α2-sinα2=cos α2+sinα22cos α2-sinα2cos α2+sinα2=1+sin αcos2α2-sin2α2=1+sin αcos α=1-35-45=-12.答案:A18.(2010福建,5分)计算sin43°cos13°-cos43°sin13°的结果等于( ) A.12B.33C.22D.32解析:sin43°cos13°-cos43°sin13° =sin(43°-13°)=sin30°=12.答案:A。

第3章 第6节 简单的三角恒等变换

第3章 第6节 简单的三角恒等变换

课时规范练 A 组 基础对点练1.若sin α2=33,则cos α=( ) A .-23 B .-13 C.13D .23解析:由二倍角公式得cos α=1-2sin 2α2=1-2×13=13,选C. 答案:C 2.sin 47°-sin 17°cos 30°cos 17°=( )A .-32 B .-12 C.12 D .32解析:原式=sin (17°+30°)-sin 17°cos 30°cos 17°=sin 17°cos 30°+cos 17°sin 30°-sin 17°cos 30°cos 17°=sin 30°=12.故选C. 答案:C3.(2016·高考山东卷)函数f (x )=(3sin x +cos x )( 3 cos x -sin x )的最小正周期是( ) A.π2 B .π C.3π2D .2π解析:由题意得f (x )=2sin(x +π6)×2cos(x +π6)=2sin(2x +π3).故该函数的最小正周期T =2π2=π.故选B. 答案:B4.(2017·开封模拟)设a =12cos 6°-32sin 6°,b =2tan 13°1-tan 213°,c =1-cos 50°2,则( ) A .c <b <a B .a <b <c C .a <c <bD .b <c <a解析:∵a =sin 30°cos 6°-cos 30°sin 6°=sin 24°,b =tan 26°,c =sin 25°,∴a <c <b . 答案:C5.已知向量a =(cos α,-2),b =(sin α,1),且a ∥b ,则tan ⎝ ⎛⎭⎪⎫α-π4等于( )A .3B .-3 C.13D .-13解析:∵a ∥b ,∴cos α+2sin α=0,∴tan α=-12, ∴tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=-3. 答案:B6.(2017·山东潍坊质检)若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫2π3+2α=( )A .-79 B .79 C .-29D .29解析:由sin ⎝ ⎛⎭⎪⎫π6-α=13得cos ⎝ ⎛⎭⎪⎫π3+α=13,于是cos ⎝ ⎛⎭⎪⎫2π3+2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1=-79.答案:A7.(2017·河北保定模拟)已知cos ⎝ ⎛⎭⎪⎫α+π3=sin ⎝ ⎛⎭⎪⎫α-π3,则tan α的值为( )A .-1B .1 C. 3D .- 3解析:由已知得12cos α-32sin α=12sin α-32cos α,整理得,⎝ ⎛⎭⎪⎫12+32sin α=⎝ ⎛⎭⎪⎫12+32cos α,即 sin α=cos α,故tan α=1. 答案:B8.(2017·广西调研)若θ∈[0,π],cos θ=34,则tan θ2=( ) A.7 B .17 C .7D .77解析:法一 因为θ∈[0,π],所以θ2∈[0,π2],所以cos θ2=cos θ+12=144,所以sin θ2=24,所以tan θ2=77,故选D.法二 由题意得sin θ=74,所以tan θ=73.因为θ∈[0,π],所以θ2∈[0,π2],所以由tan θ=2tan θ21-tan 2 θ2=73,解得tan θ2=77或tanθ2=-7(舍去),故选D. 答案:D9.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( ) A .向右平移π12个单位 B .向右平移π4个单位 C .向左平移π12个单位D .向左平移π4个单位解析:∵y =sin 3x +cos 3x =2cos ⎝ ⎛⎭⎪⎫3x -π4=2cos ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x -π12, ∴将y =2cos 3x 的图象向右平移π12个单位即可得到y =2cos ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x -π12的图象,故选A. 答案:A10.若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是( ) A.π8B .π4C.3π8 D .3π4解析:由f (x )=sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4知f (x )图象的对称轴方程为x =k π2+π8(k ∈Z ),因此在y 轴左侧且离y 轴最近的对称轴方程为x =-3π8.依题意结合图象知,φ的最小正值为3π8,故选C. 答案:C11.(2016·高考浙江卷)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.解析:由于2cos 2x +sin 2x =1+cos 2x +sin 2x =2sin(2x +π4)+1,所以A =2,b =1. 答案:2 112.设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________.解析:由sin 2α=-sin α,得sin 2α+sin α=0, ∴2sin αcos α+sin α=0⇒sin α(2cos α+1)=0. ∵α∈⎝ ⎛⎭⎪⎫π2,π,∴sin α≠0,∴2cos α+1=0⇒cos α=-12,∴sin α=32, ∴tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231-3=3,故应填 3.答案: 313.已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f (π4)=0,其中a ∈R ,θ∈(0,π). (1)求a ,θ的值;(2)若f (α4)=-25,α∈(π2,π),求sin(α+π3)的值.解析:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数,由θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ·(a +2cos 2x ),由f (π4)=0得-(a +1)=0,即a =-1. (2)由(1)得f (x )=-12sin 4x ,因为f (α4)=-12sin α=-25,即sin α=45, 又α∈(π2,π),从而cos α=-35,所以sin(α+π3)=sin αcos π3+cos αsin π3=4-3310.B 组 能力提升练1.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( ) A.π2 B .2π3 C .πD .2π解析:由题意得函数f (x )=2sin(ωx +π6)(ω>0),又曲线y =f (x )与直线y =1相邻交点距离的最小值是π3,由正弦函数的图象知,ωx +π6=π6和ωx +π6=5π6对应的x 的值相差π3,即2π3ω=π3,解得ω=2,所以f (x )的最小正周期是T =2πω=π. 答案:C2.已知sin(π3+α)+sin α=435,则sin(α+7π6)的值是( ) A .-235 B .235 C.45D .-45解析:sin(π3+α)+sin α=435⇒sin π3 cos α+cos π3sin α+sin α=435⇒32sin α+32cos α=435⇒32sin α+12 cos α=45,故sin(α+7π6)=sin αcos 7π6+cos αsin 7π6=-(32sin α+12 cos α)=-45. 答案:D3.(2017·湖南模拟)在△ABC 中,若3(tan B +tan C )=tan B ·tan C -1,则sin 2A =( ) A .-12 B .12 C .-32D .32解析:由两角和的正切公式知tan B +tan C =tan(B +C )(1-tan B ·tan C ),所以3(tan B +tan C )=tan B ·tan C -1=3tan(B +C )(1-tan B ·tan C ),所以tan(B +C )=-33,所以tan A =33,又A ∈(0,π),所以A =π6,所以sin 2A =32,故选D. 答案:D4.(2016·高考江苏卷)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.解析:由sin A =sin(B +C )=2sin B sin C 得sin B cos C +cos B sin C =2sin B sin C ,两边同时除以cos B cos C 得tan B +tan C =2tan B tan C ,令tan B +tan C =2tan B tan C =m ,因为△ABC 是锐角三角形,所以2tan B tan C >2tan B ·tan C ,则tan B tan C >1,m >2.又在三角形中有tan A tan B tan C =-tan(B +C )tan B tan C =-m 1-12m·12m =m 2m -2=m -2+4m -2+4≥2 (m -2)·4m -2+4=8,当且仅当m -2=4m -2,即m =4时取等号,故tan A tan B tan C 的最小值为8. 答案:85.(2017·河南郑州模拟)若tan 20°+m sin 20°=3,则m 的值为________. 解析:由于tan 20°+m sin 20°=3, 可得m =3-tan 20°sin 20°=3cos 20°-sin 20°sin 20°cos 20° =2⎝ ⎛⎭⎪⎫32cos 20°-12sin 20°12sin 40°=4sin (60°-20°)sin 40°=4. 答案:46.(2017·重庆巴蜀中学模拟)已知sin αcos α1-cos 2α=12,tan(α-β)=12,则tan β=________.解析:由已知得sin αcos α1-(1-2sin 2α)=12,即sin αcos α2sin 2α=12,于是sin α=cos α,故tan α=1,于是tan β=tan[α-(α-β)]=tan α-tan (α-β)1+tan α·tan (α-β)=1-121+1×12=13.答案:137.已知α∈(π2,π),且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈(π2,π),求cos β的值.解析:(1)由sin α2+cos α2=62得1+sin α=32,所以sin α=12,因为α∈(π2,π),所以cos α=-32.(2)由题意知α-β∈(-π2,π2),因为sin(α-β)=-35,所以cos(α-β)=45,所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×(-35)=-43+310.8.已知函数f (x )=sin(3x +π4). (1)求f (x )的单调递增区间;(2)若α是第二象限角,f (α3)=45cos(α+π4)cos 2α,求cos α-sin α的值.解析:(1)因为函数y =sin x 的单调递增区间为[-π2+2k π,π2+2k π],k ∈Z .由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z . 所以函数f (x )的单调递增区间为[-π4+2k π3,π12+2k π3],k ∈Z .(2)由已知,有sin(α+π4)=45cos(α+π4)(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45(cos αcos π4-sin αsin π4)·(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角,知α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52.9.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解析:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)法一 三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°·cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin α·cosα-12sin 2α=34sin 2α+34cos 2α=34.法二 三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sinαcos α-12sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.。

第六节(简单的三角恒等变换)

第六节(简单的三角恒等变换)

第六节简单的三角恒等变换[知识能否忆起]半角公式(不要求记忆)1.用cos α表示sin 2α2,cos 2α2,tan 2α2.sin 2α2=1-cos α2;cos 2α2=1+cos α2;tan 2α2=1-cos α1+cos α. 2.用cos α表示sin α2,cos α2,tan α2.sin α2=± 1-cos α2;cos α2=± 1+cos α2; tan α2=± 1-cos α1+cos α.3.用sin α,cos α表示tan α2.tan α2=sin α1+cos α=1-cos αsin α. [小题能否全取]1.(教材习题改编)已知cos α=13,α∈(π,2π),则cos α2等于( )A.63 B .-63 C.33D .-33解析:选B ∵cos α=13,α∈(π,2π),∴α2∈⎝⎛⎭⎫π2,π, ∴cos α2=-1+cos α2=- 1+132=-63.2.已知函数f (x )=cos 2⎝⎛⎭⎫π4+x -cos 2⎝⎛⎭⎫π4-x ,则f ⎝⎛⎭⎫π12等于( ) A.12B .-12C.32D .-32解析:选B f (x )=cos 2⎝⎛⎭⎫π4+x -sin 2⎝⎛⎭⎫x +π4=-sin 2x ,∴f ⎝⎛⎭⎫π12=-sin π6=-12. 3.已知tan α=12,则cos 2α+sin 2α+1cos 2α等于( )A .3B .6C .12D.32解析:选A cos 2α+sin 2α+1cos 2α=2cos 2α+2sin α·cos αcos 2α=2+2tan α=3. 4.sin 20°cos 20°cos 50°=________.解析:sin 20°cos 20°cos 50°=12sin 40°cos 50°=12sin 40°sin 40°=12.答案:125.若1+tan α1-tan α=2 013,则1cos 2α+tan 2α=________.解析:1cos 2α+tan 2α=1+sin 2αcos 2α=(cos α+sin α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2 013.答案:2 013三角恒等变换的常见形式三角恒等变换中常见的三种形式:一是化简;二是求值;三是三角恒等式的证明.(1)三角函数的化简常见的方法有切化弦、利用诱导公式、同角三角函数关系式及和、差、倍角公式进行转化求解.(2)三角函数求值分为给值求值(条件求值)与给角求值,对条件求值问题要充分利用条件进行转化求解.(3)三角恒等式的证明,要看左右两侧函数名、角之间的关系,不同名则化同名,不同角则化同角,利用公式求解变形即可.典题导入[例1] 化简2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x .[自主解答] 原式=-2sin 2x cos 2x +122sin ⎝⎛⎭⎫π4-x cos 2⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x=12(1-sin 22x )2sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x =12cos 22x sin ⎝⎛⎭⎫π2-2x=12cos 2x. 由题悟法三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”; (3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.以题试法1.化简⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·tan α2. 解:法一:原式=⎝ ⎛⎭⎪⎫cos α2sin α2-sin α2cos α2·⎝ ⎛⎭⎪⎫1+sin αcos α·sin α2cos α2=cos 2α2-sin 2α2sin α2·cos α2·cos αcos α2+sin αsinα2cos αcos α2=2cos αsin α·cos ⎝⎛⎭⎫α-α2cos αcosα2 =2cos αsin α·cosα2cos αcosα2=2sin α.法二:原式=1-tan 2α2tan α2·⎝ ⎛⎭⎪⎫1+sin αsin α2cos αcos α2 =2tan α·cos αcos α2+sin αsinα2cos αcosα2 =2cos αsin α·cos α2cos α·cosα2=2sin α.典题导入[例2] (1)(2012·重庆高考)sin 47°-sin 17°cos 30°cos 17°=( )A .-32 B .-12C.12D.32. (2)已知α、β为锐角,sin α=35,cos ()α+β=-45,则2α+β=________.[自主解答] (1)原式=sin (30°+17°)-sin17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.(2)∵sin α=35,α∈⎝⎛⎭⎫0,π2, ∴cos α=45,∵cos(α+β)=-45,α+β∈(0,π),∴sin(α+β)=35,∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=35×⎝⎛⎭⎫-45+45×35=0. 又2α+β∈⎝⎛⎭⎫0,3π2. ∴2α+β=π.[答案] (1)C (2)π由题悟法三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.以题试法2.(2012·广州一测)已知函数f (x )=tan ⎝⎛⎭⎫3x +π4. (1)求f ⎝⎛⎭⎫π9的值;(2)设α∈⎝⎛⎭⎫π,3π2,若f ⎝⎛⎭⎫α3+π4=2,求cos ⎝⎛⎭⎫α-π4的值. 解:(1)f ⎝⎛⎭⎫π9=tan ⎝⎛⎭⎫π3+π4=tan π3+tan π41-tan π3tanπ4=3+11-3=-2- 3.(2)因为f ⎝⎛⎭⎫α3+π4=tan ⎝⎛⎭⎫α+3π4+π4=tan(α+π)=tan α=2, 所以sin αcos α=2,即sin α=2cos α.①又sin 2α+cos 2α=1,② 由①②解得cos 2α=15.因为α∈⎝⎛⎭⎫π,3π2,所以cos α=-55,sin α=-255. 所以cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4=-55×22+⎝⎛⎭⎫-255×22=-31010.典题导入[例3] (2011·四川高考)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.[自主解答] (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.在本例条件不变情况下,求函数f (x )的零点的集合. 解:由(1)知f (x )=2sin ⎝⎛⎭⎫x -π4, ∴sin ⎝⎛⎭⎫x -π4=0,∴x -π4=k π(k ∈Z ), ∴x =k π+π4(k ∈Z ).故函数f (x )的零点的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π4,k ∈Z .由题悟法三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.以题试法3.已知函数f (x )=2cos x cos ⎝⎛⎭⎫x -π6-3sin 2x +sin x cos x . (1)求f (x )的最小正周期;(2)当α∈[0,π]时,若f (α)=1,求α的值.解:(1)因为f (x )=2cos x cos ⎝⎛⎭⎫x -π6-3sin 2x +sin x cos x =3cos 2 x +sin x cos x -3sin 2x +sin x cos x =3cos 2x +sin 2x =2sin ⎝⎛⎭⎫2x +π3, 所以最小正周期T =π.(2)由f (α)=1,得2sin ⎝⎛⎭⎫2α+π3=1, 又α∈[0,π],所以2α+π3∈⎣⎡⎦⎤π3,7π3, 所以2α+π3=5π6或2α+π3=13π6,故α=π4或α=11π12.解决这一类问题的基本途径,同求解其他函数最 值一样,一方面应充分利用三角函数自身的特殊 性(如有界性等),另一方面还要注意将求解三角函 数最值问题转化为求一些我们所熟知的函数(二次 函数等)最值问题.下面介绍几种常见的三角函数最 值的求解策略.1.配方转化策略对能够化为形如y =a sin 2x +b sin x +c 或y =a cos 2x +b cos x +c 的三角函数最值问题,可看作是sin x 或cos x 的二次函数最值问题,常常利用配方转化策略来解决.[典例1] 求函数y =5sin x +cos 2x 的最值.[解] y =5sin x +()1-2sin 2x =-2sin 2x +5sin x +1=-2⎝⎛⎭⎫sin x -542+338. ∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π-π2,k ∈Z 时,y min =-2×8116+338=-6;当sin x =1,即x =2k π+π2,k ∈Z 时,y max =-2×116+338=4. [题后悟道] 这类问题在求解中,要注意三个方面的问题:其一要将三角函数准确变形为sin x 或cos x 的二次函数的形式;其二要正确配方;其三要把握三角函数sin x 或cos x 的范围,以防止出错,若没有特别限制其范围是[-1,1].2.有界转化策略对于所给的三角函数能够通过变形化为形如y =A sin(ωx +φ)等形式的,常常可以利用三角函数的有界性来求解其最值.这是解决三角函数最值问题常用的策略之一.[典例2] (2012·重庆高考改编)设函数f (x )=4cos ⎝⎛⎭⎫ωx -π6sin ωx -cos(2ωx +π),其中ω>0. 求函数y =f (x )的最值. [解] f (x )=4⎝⎛⎭⎫32cos ωx +12sin ωx sin ωx +cos 2ωx=23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx =3sin 2ωx +1, 因为-1≤sin 2ωx ≤1,所以函数y =f (x )的最大值为3+1,最小值为1- 3.[题后悟道] 求解这类问题的关键是先将所给的三角函数化为一个角的三角函数问题,然后利用三角函数的有界性求其最值.3.单调性转化策略借助函数单调性是求解函数最值问题常用的一种转化策略.对于三角函数来说,常常是先化为y =A sin(ωx +φ)+k 的形式,再利用三角函数的单调性求解.[典例3] 函数f (x )=22sin ⎝⎛⎭⎫x +π4-32在⎣⎡⎦⎤π,17π12上的最大值为________,最小值为________. [解析] 由π≤x ≤17π12,得5π4≤x +π4≤5π3.因为f (x )=22sin ⎝⎛⎭⎫x +π4-32在⎣⎡⎦⎤π,5π4上是减函数,在⎣⎡⎦⎤5π4,17π12上是增函数,且f (π)>f ⎝⎛⎭⎫17π12,所以当x =5π4时,f (x )有最小值为22sin ⎝⎛⎭⎫5π4+π4-32=-22-32. 当x =π时,f (x )有最大值-2. [答案] -2 -22-32[题后悟道] 这类三角函数求最值的问题,主要的求解策略是先将三角函数化为一个角的三角函数形式,然后再借助于函数的单调性,确定所求三角函数的最值.4.数形结合转化策略对于形如y =b -sin x a -cos x 的三角函数最值问题来说,常常利用其几何意义,将y =b -sin xa -cos x 视为定点(a ,b )与单位圆上的点(cos x ,sin x )连线的斜率来解决.[典例4] 求函数y =-sin x2-cos x(0<x <π)的最小值.[解] 将表达式改写成y =0-sin x2-cos x ,y 可看成连接点A (2,0)与点P (cos x ,sin x )的直线的斜率.由于点(cos x ,sin x )的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的直线与半圆相切于点B ,则k AB ≤y <0. 可求得k AB =tan 5π6=-33.所以y 的最小值为-33⎝⎛⎭⎫此时x =π3.[题后悟道] 这类三角函数的最值问题,求解策略就是先将函数化为直线斜率的形式,再找出定点与动点满足条件的图形,最后由图形的几何意义求出三角函数的最值.1.在△ABC 中,tan B =-2,tan C =13,则A 等于( )A.π4 B.3π4 C.π3D.π6解析:选A tan A =tan [π-(B +C )]=-tan(B +C )=-tan B +tan C1-tan B tan C =--2+131-(-2)×13=1.故A =π4.2.sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)等于( )A .-sin αB .-cos αC .sin αD .cos α解析:选D 原式=(-sin 2α)·cos 2α(1+cos 2α)·(-sin α)=2sin α·cos α·cos 2α2cos 2α·sin α=cos α.3.(2013·深圳调研)已知直线l: x tan α-y -3tan β=0的斜率为2,在y 轴上的截距为1,则tan(α+β)=( )A .-73B.73C.57D .1解析:选D 依题意得,tan α=2,-3tan β=1,即tan β=-13,tan(α+β)=tan α+tan β1-tan αtan β=2-131+23=1.4.(2012·山东高考)若θ∈⎣⎡⎦⎤π4,π2,sin 2θ=378,则sin θ=( ) A.35B.45C.74D.34解析:选D 因为θ∈⎣⎡⎦⎤π4,π2,所以2θ∈⎣⎡⎦⎤π2,π, 所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.5.(2012·河北质检)计算tan ⎝⎛⎭⎫π4+α·cos 2α2cos 2⎝⎛⎭⎫π4-α的值为( )A .-2B .2C .-1D .1解析:选D tan ⎝⎛⎭⎫π4+α·cos 2α2cos 2⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α·cos 2α2sin 2⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α =cos 2α2sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α =cos 2αsin 2⎝⎛⎭⎫π4+α =cos 2αsin ⎝⎛⎭⎫π2+2α =cos 2αcos 2α=1. 6.定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12B.π6C.π4D.π3解析:选D 依题意有sin αcos β-cos αsin β=sin(α-β)=3314, 又0<β<α<π2,∴0<α-β<π2, 故cos(α-β)=1-sin 2(α-β)=1314, 而cos α=17,∴sin α=437, 于是sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32. 故β=π3. 7.若tan ⎝⎛⎭⎫π4-θ=3,则cos 2θ1+sin 2θ=________. 解析:∵tan ⎝⎛⎭⎫π4-θ=1-tan θ1+tan θ=3, ∴tan θ=-12. ∴cos 2θ1+sin 2θ=cos 2θ-sin 2θsin 2θ+2sin θcos θ+cos 2θ=1-tan 2θtan 2θ+2tan θ+1=1-1414-1+1=3. 答案:38.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________.解析:由(1+3tan α)(1+3tan β)=4,可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),所以α+β=π3. 答案:π39.计算:cos 10°+3sin 10°1-cos 80°=________. 解析:cos 10°+3sin 10°1-cos 80°=2(sin 30°cos 10°+cos 30°sin 10°)2sin 240°=2sin 40°2sin 40°= 2. 答案: 210.已知函数f (x )=sin x +cos x ,f ′(x )是f (x )的导函数.(1)求f ′(x )及函数y =f ′(x )的最小正周期;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数F (x )=f (x )f ′(x )+f 2(x )的值域. 解:(1)由题意可知,f ′(x )=cos x -sin x =-2·sin ⎝⎛⎭⎫x -π4, 所以y =f ′(x )的最小正周期为T =2π.(2)F (x )=cos 2x -sin 2x +1+2sin x cos x=1+sin 2x +cos 2x=1+2sin ⎝⎛⎭⎫2x +π4. ∵x ∈⎣⎡⎦⎤0,π2,∴2x +π4∈⎣⎡⎦⎤π4,5π4, ∴sin ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1. ∴函数F (x )的值域为[0,1+ 2 ].11.已知0<α<π2<β<π,tan α2=12,cos(β-α)=210. (1)求sin α的值;(2)求β的值.解:(1)∵tan α2=12, ∴tan α=2tan α21-tan 2α2=2×121-⎝⎛⎭⎫122=43,由⎩⎪⎨⎪⎧ sin αcos α=43,sin 2α+cos 2α=1,解得sin α=45⎝⎛⎭⎫sin α=-45舍去. (2)由(1)知cos α=1-sin 2α = 1-⎝⎛⎭⎫452=35,又0<α<π2<β<π,∴β-α∈(0,π), 而cos(β-α)=210, ∴sin(β-α)=1-cos 2(β-α)= 1-⎝⎛⎭⎫2102=7210, 于是sin β=sin[α+(β-α)]=sin αcos(β-α)+cos αsin(β-α)=45×210+35×7210=22. 又β∈⎝⎛⎭⎫π2,π,∴β=3π4. 12.已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ).(1)求证:tan(α+β)=2tan α;(2)求f (x )的解析式.解:(1)证明:由sin(2α+β)=3sin β,得sin [(α+β)+α]=3sin [(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)cos α-3cos(α+β)sin α,∴sin(α+β)cos α=2cos(α+β)sin α.∴tan(α+β)=2tan α.(2)由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y1-xy=2x , ∴y =x 1+2x 2,即f (x )=x 1+2x 2.1.(2012·郑州质检)已知曲线y =2sin ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫π4-x 与直线y =12相交,若在y 轴右侧的交点自左向右依次记为P 1,P 2,P 3,…,则|15P P |等于( ) A .πB .2πC .3πD .4π解析:选B 注意到y =2sin ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫π4-x =2sin 2⎝⎛⎭⎫x +π4=1-cos 2⎝⎛⎭⎫x +π4=1+sin 2x ,又函数y =1+sin 2x 的最小正周期是2π2=π,结合函数y =1+sin 2x 的图象(如图所示)可知,|15P P |=2π.2.3-sin 70°2-cos 210°等于( ) A.12B.22 C .2D.32 解析:选C 3-sin 70°2-cos 2 10°=3-cos 20°2-cos 210°=3-(2cos 210°-1)2-cos 210°=2(2-cos 210°)2-cos 210°=2. 3.(2012·江西重点高中模拟)已知函数f (x )=sin ⎝⎛⎭⎫2x +π3+sin ⎝⎛⎭⎫2x -π3+3cos 2x -m ,若f (x )的最大值为1.(1)求m 的值,并求f (x )的单调递增区间;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若f (B )=3-1,且3a =b +c ,试判断三角形的形状.解:(1)f (x )=2sin 2x ·cos π3+3cos 2x -m =sin 2x +3cos 2x -m =2sin ⎝⎛⎭⎫2x +π3-m . 又f (x )max =2-m ,所以2-m =1,得m =1. 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z ) 得到k π-5π12≤x ≤k π+π12(k ∈Z ), 所以f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ). (2)由f (B )=3-1,得2sin ⎝⎛⎭⎫2B +π3-1=3-1,所以B =π6. 又3a =b +c ,则3sin A =sin B +sin C ,3sin A =12+sin ⎝⎛⎭⎫5π6-A ,即sin ⎝⎛⎭⎫A -π6=12, 所以A =π3,C =π2,故△ABC 为直角三角形.1.求证:tan α+1tan ⎝⎛⎭⎫π4+α2=1cos α. 证明:左边=sin αcos α+cos ⎝⎛⎭⎫π4+α2sin ⎝⎛⎭⎫π4+α2=sin αsin ⎝⎛⎭⎫π4+α2+cos αcos ⎝⎛⎭⎫π4+α2cos αsin ⎝⎛⎭⎫π4+α2 =cos ⎝⎛⎭⎫π4+α2-αcos αsin ⎝⎛⎭⎫π4+α2 =cos ⎝⎛⎭⎫π4-α2cos αsin ⎝⎛⎭⎫π4+α2 =sin ⎝⎛⎭⎫π4+α2cos αsin ⎝⎛⎭⎫π4+α2=1cos α=右边. 故原式得证.2.已知f (x )=⎝⎛⎭⎫1+1tan x sin 2x -2sin ⎝⎛⎭⎫x +π4·sin ⎝⎛⎭⎫x -π4. (1)若tan α=2,求f (α)的值;(2)若x ∈⎣⎡⎦⎤π12,π2,求f (x )的取值范围.解:(1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4 =1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎫2x +π2 =12+12(sin 2x -cos 2x )+cos 2x=12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以f (α)=12(sin 2α+cos 2α)+12=35. (2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎫2x +π4+12. 由x ∈⎣⎡⎦⎤π12,π2,得5π12≤2x +π4≤54π. 故-22≤sin ⎝⎛⎭⎫2x +π4≤1,则0≤f (x )≤2+12, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,2+12.。

第六节 简单的三角恒等变换

第六节  简单的三角恒等变换

2
1-
10 6 2 = , 4 4 3sin θ
3π π 3sin 4 -θ+4 =
10 30 = 3× = . 4 4
数学
质量铸就品牌 品质赢得未来
第六节
简单的三角恒等变换
结束
3sin 10° -cos 10° 3 1 3 1 2.解析: - = - = cos 10° sin 170° cos 10° sin 10° sin 10° cos 10° 2sin10° -30° -2sin 20° = = =-4,故选 D. 1 1 sin 20° sin 20° 2 2 答案:D
数学
质量铸就品牌 品质赢得未来
第六节
2
简单的三角恒等变换
结束
1 -2sin xcos x+ 2 2.解:原式= π π 2 2sin4 -xcos 4 -x π cos4 -x
2
1 1-sin22x 2 = π π 2sin4 -xcos4 -x 1 2 cos 2x 2 1 = =2cos 2x. π sin2 -2x
数学
α cos 2
质量铸就品牌 品质赢得未来
第六节
简单的三角恒等变换
结束
考点二 [多角探明] 1.解:(1)由
5π 3 f12 = ,得 2
2π 3 Asin = , 3 2
2π 3 又 sin = ,∴A= 3. 3 2 (2)由(1)得 f(x)=
π 3sinx+4 ,
2
1 1 2 = cos 2xsin 2x + cos 4x = (sin 4x + cos 4x) = 2 2 2
π sin4x+4 ,
π 所以 f(x)的最小正周期为 , 2 2 最大值为 . 2 π 5π 9π 所以 4α+ = .故 α= . 4 2 16

2014高考数学一轮汇总训练《简单的三角恒等变换 》理 新人教A版-推荐下载

2014高考数学一轮汇总训练《简单的三角恒等变换 》理 新人教A版-推荐下载
考什么 能运用两角和与差的正弦、余弦、正切 公式以及二倍角的正弦、余弦和正切公式进 行简单的恒等变换(包括导出积化和差、和 差化积、半角公式,但对这三组公式不要求 记忆).
1.半角公式
(1)用 cos α 表示 sin2 2 ,cos2 2 ,tan2 2 .
α 1-cos α
第六节 简单的三角恒等变换
2
α cos
2
α αα αα
1+tan cos -sin cos +sin
1-tan
2
α
2=
2
α cos
2
αα
cos +sin 2
(2
α αα α
cos -sin cos +sin
=( 2
1+sin α
α
cos2 -sin2
=2
答案:-2
1
[例 1] (1)化简:
(2)已知 0<x< 2 ,化简:
2
α
α 1-cos α
1
cos2α-sin2α 1-tan2α cos 2α=cos2α-sin2α=cos2α+sin2α=1+tan2α.
2.形如 asin x+bcos x 的化简 b
asin x+bcos x= a2+b2sin(x+φ),其中 tan φ=a.
1.(教材习题改编)化简 2+cos 2-sin21的结果是( )
π
α 1+tan
2
1-tan
2
2
α
2 =________.
三角函数式的化简
3
3
lg
cos x·tan x+1-2sin2
( 2)+lg
[自主解答] (1)原式= 2
x
2cos x-
π
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010~2014年高考真题备选题库第3章 三角函数、解三角形 第6节 简单的三角恒等变换1.(2014·课标Ⅰ,8,5分)设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则( ) A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析:选B 由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin ⎝⎛⎭⎫π2-α,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.2.(2014·江苏,5,5分)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________.解析:由题意可得两个函数图象有一个交点坐标是⎝⎛⎭⎫π3,12,所以sin ⎝⎛⎭⎫2π3+φ=12,又0≤φ<π,解得φ=π6. 答案:π63.(2014·广东,16,12分)已知函数f (x )=A sin ⎝⎛⎭⎫x +π3 ,x ∈R ,且f ⎝⎛⎭⎫5π12=322.(1)求A 的值;(2)若 f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ. 解析:(1)∵f (x )=A sin ⎝⎛⎭⎫x +π3,且f ⎝⎛⎭⎫5π12=322, ∴A sin ⎝⎛⎭⎫5π12+π3=322⇒A sin 3π4=322⇒A =3. (2)由(1)知f (x )=3sin ⎝⎛⎭⎫x +π3,∵f (θ)-f (-θ)=3,∴ 3sin ⎝⎛⎭⎫θ+π3-3sin ⎝⎛⎭⎫-θ+π3=3,展开得3⎝⎛⎭⎫12sin θ+32cos θ-3⎝⎛⎭⎫32cos θ-12sin θ=3,化简得sin θ=33.∵θ∈⎝⎛⎭⎫0,π2,∴cos θ=63. ∴f ⎝⎛⎭⎫π6-θ=3sin ⎣⎡⎦⎤⎝⎛⎭⎫π6-θ+π3=3sin ⎝⎛⎭⎫π2-θ=3cos θ= 6. 4.(2014·湖北,17,11分)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解:(1)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3, 又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1. 当t =2时,sin ⎝⎛⎭⎫π12t +π3=1; 当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温. 由(1)得f (t )=10-2sin ⎝⎛⎭⎫π12t +π3, 故有10-2sin ⎝⎛⎭⎫π12t +π3>11, 即sin ⎝⎛⎭⎫π12t +π3<-12. 又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.在10时至18时实验室需要降温. 5.(2013浙江,5分)已知α∈R ,sin α+2cos α=102,则tan 2α=( ) A.43B.34 C .-34D .-43解析:选C 本题考查对任意角三角函数(正弦、余弦、正切)的定义、同角三角函数的基本关系以及二倍角的正弦、余弦、正切公式的理解,考查考生灵活运用公式以及运算的能力.法一:(直接法)两边平方,再同时除以cos 2α,得3tan 2α-8tan α-3=0,tan α=3或tan α=-13,代入tan2α=2tan α1-tan 2α,得到tan 2α=-34. 法二:(猜想法)由给出的数据及选项的唯一性,记sin α=310,cos α=110,这时sin α+2cos α=102符合要求,此时tan α=3,代入二倍角公式得到答案C.6.(2013新课标全国Ⅱ,5分)设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 解析:本题考查同角三角函数关系式以及两角和三角函数公式的基本运用,意在考查考生灵活运用知识解决问题的能力以及合理选取解法的能力.法一:由θ在第二象限,且tan ⎝⎛⎭⎫θ+π4=12,因而sin ⎝⎛⎭⎫θ+π4=-55,因而sin θ+cos θ= 2 sin ⎝⎛⎭⎫θ+π4=-105. 法二:如果将tan ⎝⎛⎭⎫θ+π4=12利用两角和的正切公式展开,则tan θ+11-tan θ=12,求得tan θ=-13.又因为θ在第二象限,则sin θ=110,cos θ=-310,从而sin θ+cos θ=-210=-105.答案:-1057.(2013四川,5分)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________.解析:本题考查同角三角函数的基本关系与倍角公式,意在考查考生的运算能力及符号取舍的判断能力.因为sin 2α=-sin α,所以2sin αcos α=-sin α,cos α=-12.又α∈⎝⎛⎭⎫π2,π,所以α=2π3,tan 2α=tan 4π3=3.答案: 38.(2013广东,12分)已知函数f (x )=2cos ⎝⎛⎭⎫x -π12,x ∈R . (1)求f ⎝⎛⎭⎫-π6的值; (2)若cos θ=35,θ∈⎝⎛⎭⎫3π2,2π,求f ⎝⎛⎭⎫2θ+π3. 解:本题考查特殊角的三角函数值,同角三角函数的基本关系、二倍角公式等基础知识,考查运算求解能力.(1)f ⎝⎛⎭⎫-π6=2cos ⎝⎛⎭⎫-π6-π12= 2cos ⎝⎛⎭⎫-π4=2cos π4=1. (2)f (2θ+π3)= 2 cos ⎝⎛⎭⎫2θ+π3-π12=2cos ⎝⎛⎫2θ+π4=cos 2θ-sin 2θ. 因为cos θ=35,θ∈⎝⎛⎭⎫3π2,2π,所以sin θ=-45. 所以sin 2θ=2sin θcos θ=-2425,cos 2θ=cos 2θ-sin 2θ=-725.所以f ⎝⎛⎭⎫2θ+π3=cos 2θ-sin 2θ=-725-⎝⎛⎭⎫-2425=1725. 9.(2013重庆,12分)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2 +2ab =c 2.(1)求C ;(2)设cos A cos B =325,cos (α+A )cos (α+B )cos 2α=25,求tan α的值. 解:本题主要考查解三角形问题,意在考查考生对公式的运用能力.(1)因为a 2+b 2+2ab =c 2,由余弦定理有cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.故C =3π4.(2)由题意得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos 2=25. 因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25, tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25. ① 因为C =3π4,所以A +B =π4,所以sin(A +B )=22,因为cos(A +B )=cos A cos B -sin A sin B , 即325-sin A sin B =22, 解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0, 解得tan α=1或tan α=4.10.(2012山东,5分)若θ∈[π4,π2],sin 2θ=378,则sin θ=( )A.35B.45C.74D.34解析:因为θ∈[π4,π2],所以2θ∈[π2,π],所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.11.(2012辽宁,5分)已知sin α-cos α=2,α∈(0,π),则tan α=( )A .-1B .-22C.22D .1解析:由sin α-cos α=2sin (α-π4)=2,α∈(0,π),解得α=3π4,所以tan α=tan 3π4=-1.答案:A12.(2012江西,5分)若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.12解析:法一:∵tan θ+1tan θ=1+tan 2 θtan θ=4,∴4tan θ=1+tan 2 θ,∴sin 2θ=2sin θcos θ=2sin θcos θsin 2 θ+cos 2 θ=2tan θ1+tan 2θ=2tan θ4tan θ=12. 法二:∵tan θ+1tan θ=sin θcos θ+cos θsin θ=1cos θsin θ=2sin 2θ∴4=2sin 2θ,故sin 2θ=12.答案:D13.(2012江苏,5分)设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.解析:因为α为锐角,cos(α+π6)=45,所以sin(α+π6)=35,sin 2(α+π6)=2425,cos 2(α+π6)=725,所以sin(2α+π12)=sin[2(α+π6)-π4]=22×1725=17250. 答案:1725014.(2012广东,12分)已知函数f (x )=2cos(ωx +π6)(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值;(2)设α,β∈[0,π2],f (5α+53π)=-65,f (5β-56π)=1617,求cos(α+β)的值.解:(1)∵f (x )=2cos(ωx +π6),ω>0的最小正周期T =10π=2πω,∴ω=15.(2)由(1)知f (x )=2cos(15x +π6),而α,β∈[0,π2],f (5α+5π3)=-65,f (5β-5π6)=1617,∴2cos[15(5α+5π3)+π6]=-65,2cos[15(5β-5π6)+π6]=1617,即cos(α+π2)=-35,cos β=817,于是sin α=35,cos α=45,sin β=1517,∴cos(α+β)=cos αcos β-sin αsin β=45×817-35×1517=-1385.15.(2011江苏,14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若sin(A +π6)=2cos A ,求A 的值;(2)若cos A =13,b =3c ,求sin C 的值.解:(1)由题设知sin A cos π6+cos A sin π6=2cos A .从而sin A =3cos A ,所以cos A ≠0,tan A = 3. 因为0<A <π,所以A =π3.(2)由cos A =13,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2.故△ABC 是直角三角形,且B =π2.所以sin C =cos A =13.16.(2011辽宁,5分)设sin(π4+θ)=13,则sin2θ=( )A .-79B .-19C.19D.79解析:sin2θ=-cos(π2+2θ)=2sin 2(π4+θ)-1=2×(13)2-1=-79.答案:A17.(2010新课标全国,5分)若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12 C .2D .-2解析:∵cos α=-45且α是第三象限的角,∴sin α=-35,∴1+tan α21-tan α2=cos α2+sin α2cos α2cos α2-sin α2cos α2=cos α2+sin α2cos α2-sinα2=(cos α2+sin α2)2(cos α2-sin α2)(cos α2+sin α2)=1+sin αcos 2α2-sin 2α2=1+sin αcos α=1-35-45=-12.答案:A18.(2010福建,5分)计算sin43°cos13°-cos43°sin13°的结果等于( )A.12B.33C.22D.32解析:sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=12.答案:A。

相关文档
最新文档