[2002年][高考真题][全国卷][数学文][答案]
2002年全国卷高考理科数学试题及答案
2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟. (1)圆1)1(22=+-y x的圆心到直线3y x =的距离是(A )21 (B )23 (C )1 (D )3(2)复数3)2321(i +的值是(A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是 (A ))45,()2,4(ππππ (B )),4(ππ(C ))45,4(ππ(D ))23,45(),4(ππππ(5)设集合},412|{Z k k x x M ∈+==,},214|{Z k kx x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53-(8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+kyx 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xxx f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.(17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++na a a aADE参考答案 一、选择题二、填空题(13)2 (14)1 (15)1008 (16)27三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα 0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α∴6πα=∴33=αtg(18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22==)20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I ) 21)22( 2+-=a MN所以,当22=a 时,22=MN即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有31464621)46()46(cos 22-=⋅⋅-+=α故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故 112222=--mymx将x y 2±=代入112222=--mymx ,并解得222251)1(mm m x--=,因012>-m所以0512>-m解得55||0<<m即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则 301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b x b b n n n ++⨯=+⨯=-+所以)94.094.094.01(94.0211nn n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=nx x 94.0)06.030(06.0⨯-+=当006.030≥-x,即8.1≤x 时3011=≤≤≤+b b b n n当006.030<-x ,即8.1>x 时数列}{n b 逐项增加,可以任意靠近06.0x06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x ,即6.3≤x 万辆综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤.(ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k ka a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a ank k nk k nk k。
2002年高考.广东、河南、江苏卷数学试题及解答
2002年全国普通高等学校招生考试(广东、江苏、河南卷)数学试题 及解答一、选择题(每小题5分,12个小题共计60分)1.函数f(x)=sin2x cosx的最小正周期为(2002年广东、江苏、河南(1)5分) A.π2 B.π C.2π D.4π C2.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离为(2002年广东、江苏、河南(2)5分) A.12 B.32 C.1 D. 3A3.不等式(1+x)(1-|x|)>0的解集是(2002年广东、江苏、河南(3)5分)A.{x|0≤x <1}B.{x|x <0且x ≠-1}C.{x|-1<x <1}D.{x|x <1且x ≠-1}D4.在(0,2π)内,使sinx >cosx 成立的x 的取值范围是(2002年广东、江苏、河南(4)5分) A.(π4,π2)∪(π,5π4) B.(π4,π) C.(π4,5π4) D.(π4,π)∪(5π4,3π2) C5.集合M ={x|x =k 2+14,k ∈Z},N ={x|x =k 4+12,k ∈Z},则(2002年广东、江苏、河南(5)5分) A.M =N B.M ⊂N C.N ⊂M D.M ∩N =φB6.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是(2002年广东、江苏、河南(6)5分) A.34 B.45 C.35 D.-35 C7.函数f(x)=x|x +a|+b 是奇函数的充要条件是(2002年广东、江苏、河南(7)5分)A.ab =0B.a +b =0C.a =bD.a 2+b 2=0D8.已知0<x <y <a <1,则有(2002年广东、江苏、河南(8)5分)A.log a (xy)<0B.0<log a (xy)<1C.1<log a (xy)<2D.log a (xy)>2D9.函数y =1-1x -1(2002年广东、江苏、河南(9)5分) A.在(-1,+∞)内单调递增B.在(-1,+∞)内单调递减C.在(1,+∞)内单调递增D.在(1,+∞)内单调递减C10.极坐标方程ρ=cos θ与ρcos θ= 12的图形是(2002年广东、江苏、河南(10)5分) A. B. C. D.B11.从正方体的6个面中选取3个,其中有2个面不相邻的选法共有(2002年广东、江苏、河南(11)5分)A.8种B.12种C.16种D.20种B12.据2002年3月9日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95 933亿元,比上年增长7.3%”,如果“十·五”期间(2001年~2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为(2002年广东、江苏、河南(12)5分)A.115 000亿元B.120 000亿元C.127 000亿元D.135 000亿元C二、填空题(每小题4分,共计16分)13.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k =______1_______.(2002年广东、江苏、河南(13)4分)14.(x 2+1)(x -2)7的展开式中x 3项的系数是____1 008_____.(2002年广东、江苏、河南(14)4分)15.已知sin α=cos2α(α∈(π2,π)),则tan α=____- 33_____.(2002年广东、江苏、河南(15)4分) 16.已知函数f(x)=x 21+x 2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=____72____(2002年广东、江苏、河南(16)4分)三、解答题(6各小题共计74分,解答应写出文字说明,证明过程或演算步骤)17.已知复数z =1+i ,求实数a,b 使得az +2b z -=(a +2z)2.(2002年广东、江苏、河南(17)12分) 本题主要考查复数的基础知识和基本运算技能。
2002年全国高考文科数学试题(北京卷)
«« ★启用前2002年普通高等学校招生全国统一考试数学(文史类)(溜(卷)本试卷分第I卷(选样題)和第11卷(非选择題)两部分c第I卷丨至2页。
第U卷3 至9员,共150分.考试时间120分钟<第丨卷(迭择眩共60分)注意事项;I .衿第I卷前•号生务必将自己的姓名.准考证号•考试科目用铅笔涂写在答題卡上r 2•侮小題选出咨案百•用铅笔把答越K上对应题日的裕案标号涂黑■如需改动•用橡皮擦干净后•冉选涂其它答案•不ft|答It试題卷上3.号试结東•监占人将本试卷和答题卡一并收同:巧是符合■目要求的.(1)満足条件WU-ll = M,2.3i的集合M的个数是(A) 4 (B) 3 (C) 2 (0) I(2)任平面直角坐标系中•已知两点4(ca^.sin8(r),B(eo62(r,Mn2(y).则.4BI的值是(A)寺(B)亨(O (D) 1(3)下列四个旳数中•以穴为最小正周期•且在区间(歩“上为城函数的是•才公式:已角旳散怖枳化和彫公戌恋a心戶=t 7“ O ♦ /J) ♦ FW1< 口■ B)• g own p = *1iin( a ♦月)■ *m( a - .rt> aco 0 ■ g・I<Y*( o ♦ 3> ♦•*«(a■ P〉! >in own^3 ■ £、a * >?)- 2(o ■ 3)J一・迭择《L匸大题共12小題•毎小聽5疋棱台・叫台的僻血枳公式= 1 (r* ♦ r)/<* 上.下敲历聘来M友示餅高球体的休机公式V jt 二—吊Kt 的半栓共60分在每小■绐出的四个送项中•只有一(4)(D) r = - c*r(A) y = c<»x在下列四个止方体中.能得岀AB L(A)(B)(C)(D)(5) 64个直轻都为亍的球,记它们的体枳之和为心•我面积之和为.5 —个直径为。
2002年全国卷高考理科数学试题及标准答案
2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A)21 (B )23 (C)1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B)i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A)}10|{<≤x x (B )0|{<x x 且}1-≠x(C )}11|{<<-x x (D )1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B)),4(ππ (C))45,4(ππ (D))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A)N M = (B )N M ⊂ (C )N M ⊃ (D)∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A)0 (B)1 (C )2 (D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C)53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B )︒60 (C)︒45 (D)︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B)0≤b (C)0>b (D)0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B)12种 (C)16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A)115000亿元 (B)120000亿元 (C )127000亿元 (D)135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是。
2002年全国统一高考文科数学试卷
第1页(共14页) 2002年全国统一高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)直线(1)10a x y +++=与圆2220x y x +-=相切,则a 的值为( )A .1-B .2-C .1 D2.(5分)复数31()2的值是( ) A .1- B .1 C .i - D .i3.(5分)不等式(1)(1||)0x x +->的解集是( )A .{|01}x x <„B .{|0x x <且1}x ≠-C .{|11}x x -<<D .{|1x x <且1}x ≠-4.(5分)函数x y a =在[0,1]上的最大值与最小值的和为3,则(a = )A .12B .2C .4D .145.(5分)在(0,2)π内,使sin cos x x >成立的x 的取值范围是( )A .(4π,)(2ππ⋃,5)4π B .(4π,)π C .(4π,5)4π D .(4π,5)(4ππ⋃,3)2π 6.(5分)设集合1{|24k M x x ==+,}k Z ∈,1{|42k N x x ==+,}k Z ∈,则( ) A .M N = B .M N ⊂ C .M N ⊃ D .M N =ΦI 7.(5分)椭圆2255x ky +=的一个焦点是(0,2),那么k 等于( )A .1-B .1 CD.8.(5分)一个圆锥和一个半球有公共底面,如果圆锥的体积与半球的体积恰好相等,则圆锥轴截面顶角的余弦值是( )A .34B .43C .35-D .359.(5分)已知01x y a <<<<,则有( )A .log ()0a xy <B .0log ()1a xy <<C .1log ()2a xy <<D .log ()2a xy >10.(5分)函数2([0,))y x bx c x =++∈+∞是单调函数的充要条件是( )A .0b …B .0b „C .0b >D .0b <。
2002年高考全国卷理科数学试题及标准答案
普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第I I卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A )21 (B )23 (C)1 (D)3 (2)复数3)2321(i +的值是 (A)i - (B)i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A)}10|{<≤x x (B)0|{<x x 且}1-≠x(C)}11|{<<-x x (D)1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A))45,()2,4(ππππ (B)),4(ππ (C ))45,4(ππ (D))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A )N M = (B )N M ⊂ (C)N M ⊃ (D)∅=N M (6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B)1 (C)2 (D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A)43 (B)54 (C )53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B)︒60 (C)︒45 (D )︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B )0≤b (C)0>b (D )0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A)8种 (B)12种 (C)16种 (D)20种(12)据 3月5日九届人大五次会议《政府工作报告》:“ 国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间( - )每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C)127000亿元 (D)135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是 (16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.。
2002年高考试题数学文科-(全国卷)
2002年普通高等学校招生全国统一考试(数学)文及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 A .1,1-B .2.2-C .1D .1-2.复数3)2321(i +的值是 A .i -B .iC .1-D .13.不等式0|)|1)(1(>-+x x 的解集是 A .}10|{<≤x x B .0|{<x x 且}1-≠x C .}11|{<<-x xD .1|{<x x 且}1-≠x4.函数xa y =在]1,0[上的最大值与最小值这和为3,则a = A .21B .2C .4D .41 5.在)2,0(π内,使x x cos sin >成立的x 的取值范围是A .)45,()2,4(ππππB .),4(ππC .)45,4(ππD .)23,45(),4(ππππ6.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则A .N M =B .N M ⊂C .N M ⊃D .∅=N M7.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k A .1-B .1C .5D .5-8.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 A .43B .54C .53D .53-9.10<<<<a y x ,则有 A .0)(log <xy aB .1)(log 0<<xy aC .2)(log 1<<xy aD .2)(log >xy a10.函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 A .0≥b B .0≤bC .0>bD .0<b11.设)4,0(πθ∈,则二次曲线122=-θθtg y ctg x 的离心率取值范围A .)21,0(B .)22,21( C .)2,22(D .),2(+∞12.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 A .8种 B .12种 C .16种 D .20种第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.13.据新华社2002年3月12日电,1985年到2000年间.我国农村人均居住面积如图所示,其中,从 年2000年的五年间增长最快. 14.函数xxy +=12(),1(+∞-∈x )图象与其反函数图象的交点为 15.72)2)(1(-+x x 展开式中3x 的系数是16.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为)1,2(. 能使这抛物线方程为x y 102=的条件是第 (要求填写合适条件的序号) 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω(1)求这段时间的最大温差; (2)写出这段时间的函数解析式;18.甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米. (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇?19.四棱锥ABCD P -的底面是边长为a 的正方形,⊥PB 平面ABCD .(1)若面PAD 与面ABCD 所成的二面角为︒60,求这个四棱锥的体积;(2)证明无论四棱锥的高怎样变化.面PAD 与面PCD 所成的二面角恒大于︒9020.设函数1|2|)(2+-+=x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值.21.已知点P 到两定点)0,1(-M 、)0,1(N 距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程. 22.(本小题满分12分,附加题满分4分)(I )给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明; (II )试比较你剪拼的正三棱锥与正三棱柱的体积的大小; (III )(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分) 如果给出的是一块任意三角形的纸片(如图3),要求剪栟成一个直三棱柱,使它的全面积与给出的三角形的面积相等.请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DCCBCBBCDADB二、填空题(13)1995 (14))1,1(),0,0( (15)1008 (16)②⑤ 三、解答题(17)解:(1)由图示,这段时间的最大温差是201030=-℃ (2)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期∴614221-=⋅ωπ,解得8πω= 由图示,10)1030(21=-=A 20)3010(21=+=b这时,20)8sin(10++=ϕπx y将10,6==y x 代入上式,可取43πϕ= 综上,所求的解析式为20)438sin(10++=ππx y (]14,6[∈x )(18)解:(1)设n 分钟后第1次相遇,依题意,有7052)1(2=+-+n n n n ,整理得0140132=-+n n ,解得7=n ,20-=n (舍)第1次相遇是在开始后7分钟.(2)设n 分钟后第2次相遇,依题意,有70352)1(2⨯=+-+n n n n ,整理得0420132=-+n n ,解得15=n ,28-=n (舍) 第2次相遇是在开始后15分钟.(19)解(1)∵⊥PB 平面ABCD ,∴BA 是PA 在面ABCD 上的射影,∴DA PA ⊥ ∴PAB ∠是面PAD 与面ABCD 所成二面角的平面角,︒=∠60PAB 而PB 是四棱锥ABCD P -的高,a tg AB PA 360=︒⋅=∴3233331a a a V ABCD P =⋅⋅=- (2)证:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形.作DP AE ⊥,垂足为E ,连结EC ,则CDE ADE ∆≅∆.∴EC AE =,︒=∠90CED ,故CFA ∠是面PAD 与面PCD 所成的二面角的平面角. 设AC 与DB 相交于点O ,连结EO ,则AC EO ⊥.a AD AE OA a =<<=22在△AEC 中,0)2)(2(2)2(cos 2222<-+=⋅⋅-+=∠AEOA AE OA AE EC AE OA EC AE AEC 所以,面PAD 与面PCD 所成的二面角恒大于︒90(20)解:(I )3)2(=f ,7)2(=-f ,由于)2()2(f f ≠-,)2()2(f f -≠- 故)(x f 既不是奇函数,也不是偶函数.(2)⎪⎩⎪⎨⎧<+-≥-+=2123)(22x x x x x x x f由于)(x f 在),2[+∞上的最小值为3)2(=f ,在)2,(-∞内的最小值为43)21(=f 故函数)(x f 在),(∞-∞内的最小值为43 (21)解:设P 的坐标为),(y x ,由题意有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++,整理得01622=+-+x y x因为点N 到PM 的距离为1,2||=MN所以︒=30PMN ,直线PM 的斜率为33±直线PM 的方程为)1(33+±=x y 将)1(33+±=x y 代入01622=+-+x y x 整理得0142=+-x x 解得32+=x ,32-=x则点P 坐标为)31,32(++或)31,32(+--)31,32(--+或)31,32(---直线PN 的方程为1-=x y 或1+-=x y .(22)解(I )如图1,沿正三角形三边中点连线折起,可拼得一个正三棱锥.如图2,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的41,有一组对角为直角,余下部分按虚线折起,可成一个缺上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱锥的上底.(II )依上面剪拼方法,有锥柱V V >.推理如下:设给出正三角形纸片的边长为2,那么,正三棱锥与正三棱柱的底面都是边长为1的正三角形,其面积为43.现在计算它们的高: 36)2332(12=⋅-=锥h ,633021=︒=tg h 柱. 02422343)9663(43)31(>-=⋅-=⋅=-锥柱锥柱-h h V V所以锥柱V V >.(III )如图3,分别连结三角形的内心与各顶点,得三条线段,再以这三条线段的中点为顶点作三角形.以新作的三角形为直棱柱的底面,过新三角形的三个顶点向原三角形三边作垂线,沿六条垂线剪下三个四边形,可心拼成直三棱柱的上底,余下部分按虚线折起,成为一个缺上底的直三棱柱,即可得到直三棱柱.。
2002年高考.上海卷.文科数学试题及答案
2002年全国普通高等学校招生统一考试(上海卷)数学试卷(文史类)一. 填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1. 若1)3(,=+∈i z C z 且(i 为虚数单位),则=z 。
2. 已知向量和的夹角为120,且a b a b a ⋅-==)2(,5||,2||则= 。
3. 方程12)321(log 3+=⨯-x x的解x= 。
4. 若正四棱锥的底面边长为cm 32,体积为34cm ,则它的侧面与底面所成的二面角的大小是 。
5. 在二项式nx )31(+和nx )52(+的展开式中,各项系数之和分别记为n a 、n b ,n 是正整数,则nn nn n b a b a 432lim--∞→= 。
6. 已知圆1)1(22=-+y x 和圆外一点)0,2(-P ,过点P 作圆的切线,则两条切线夹角的正切值是 。
7. 在某次花样滑冰比赛中,发生裁判受贿事件,竞赛委员会决定将裁判由原来的9名增至14名,但只任取其中7名裁判的评分作为有效分,若14名裁判中有2人受贿,则有效分中没有受贿裁判的评分的概率是 (结果用数值表示) 8. 抛物线)1(4)1(2-=-x y 的焦点坐标是 。
10. 设函数x x f 2sin )(=,若)(t x f +是偶函数,则t 的一个可能值是 。
11. 若数列}{n a 中,211,3n n a a a ==+且(n 是正整数),则数列的通项=n a 。
12. 已知函数)(x f y =(定义域为D ,值域为A )有反函数)(1x f y -=,则方程0)(=x f 有解x=a ,且x x f >)()(D x ∈的充要条件是)(1x fy -=满足 。
二. 选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分。
2002年高考全国卷理科数学试题及答案
0.06
bn 1 bn
b1
30 奎奎奎奎奎
当 30 x 0 ,即 x 1.8时 0.06
数列{bn
}
逐项增加,可以任意靠近
x 0.06
因nlim此,bn如果nli要m求[0汽.x0车6 保(有30量不0超.x0过6)
0.94 n
1]
60 万辆,即
x 0.06
bn 60 ( n 1,2,3, )
x 则 0.06
2
24
2
(ii)当 x a 时,函数 f (x) x2 x a 1 (x 1 )2 a 3
2
4
若 a 1 ,则函数 f (x) 在 ( , a]上的最小值为 f ( 1 ) 3 a ,且 f ( 1 ) f (a)
2
24
2
若 a 1 ,则函数 f (x) 在[a, ) 上单调递增,从而函数 f (x) 在[a, ) 上的最小值为 2
f (a) a2 1.
综上,当 a
1 时,函数 f (x) 的最小值为 3 a
2
4
当 1 a 1 时,函数 f (x) 的最小值为 a 2 1
2
2
当 a 1 时,函数 f (x) 的最小值为 3 a .
2
4
(22)解(I)由 a1 2 ,得 a2 a12 a1 1 3
由 a2 3 ,得 a a2 2 2a 1 4
(A)0
(B)1
(C) 2
(D)2
(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个
圆锥轴截面顶角的余弦值是
3 (A) 4
(B)
4 5
(C) 3 5
(D) 3 5
(8)正六棱柱 ABCDEF A1B1C1D1E1F1 的底面边长为 1,侧棱长为 2 ,则这个棱柱侧
2002年全国卷高考理科数学试题与答案
2002 年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第 I 卷 (选择题 )和第 II 卷 (非选择题 ) 两部分.第 I 卷 1至2页.第 II 卷 3至 9页.共 150分.考试时间 120分钟.第Ⅰ卷 (选择题共60 分 )一、选择题:本大题共 12 小题,每小题5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第 I 卷 (选择题 ) 和第 II卷 (非选择题 )两部分.第 I 卷 1至2页.第 II 卷3 至 9页.共 150 分.考试时间 120 分钟.(1)圆 ( x 1) 2y 21 的圆心到直线 y3x 的距离是3(A )1( B ) 3(C )1(D ) 322(2)复数 (13 i )3 的值是22(A ) i( B ) i (C ) 1(D )1(3)不等式 (1 x)(1 | x |) 0 的解集是(A ) { x | 0 x 1}( B ) { x | x 0 且 x 1}(C ) { x | 1 x 1}( D ) { x | x 1且 x1}(4)在 (0,2 ) 内,使 sin x cosx 成立的 x 的取值范围是(A )( ,2)( ,5)(B ) (, ) (C ) ( ,5)(D )(,)(5,3) 4444 444 2(5)设集合 M { x | xk 1, k Z},N{ x | xk 1,kZ} ,则2442(A )MN(B )MN(C )MN(D )MN(6)点 P(1,0) x t 2 R )上的点的最短距离为到曲线(其中参数 ty2t(A )0(B ) 1(C ) 2(D )2( 7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )3(B )4(C )3(D )34555(8)正六棱柱ABCDEF A 1 B 1C 1 D 1E 1 F 1 的底面边长为 1,侧棱长为2 ,则这个棱柱侧面对角线 E 1 D 与 BC 1 所成的角是(A ) 90(B ) 60(C ) 45(D ) 30(9)函数 y x 2bx c ([0, ) )是单调函数的充要条件是(A ) b 0( B ) b 0( C ) b( D ) b 0(10)函数 y11的图象是x 1yyyy1111-1O1O1x-1OxOxx(A)(B)(C)(D)(11)从正方体的 6 个面中选取 3 个面,其中有 2 个面不相邻的选法共有(A )8种(B )12 种(C )16 种 (D )20 种(12)据 2002 年 3 月 5 日九届人大五次会议《政府工作报告》 :“ 2001 年国内生产总值达到95933 亿元,比上年增长 7.3%”,如果“十 ?五”期间( 2001 年- 2005 年)每年的国内生产总值都按此年增长率增长,那么到“十 ?五”末我国国内年生产总值约为 (A ) 115000 亿元 ( B ) 120000 亿元 ( C ) 127000 亿元( D ) 135000 亿元第 II 卷(非选择题共 90 分 )二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中横线.(13 )函数 y a x在 [0,1] 上的最大值与最小值这和为3,则 a =(14 )椭圆 5x 2ky 25 的一个焦点是 (0,2) ,那么 k(15 ) ( x21)( x 2) 7 展开式中 x 3 的系数是(16 )已知 f ( x)x 2,那么 f (1) f (2) f ( 1)f (3) f (1)f (4)f ( 1) =1 x 2234三、解答题:本大题共6 小题,共74 分,解答应写出文字说明、证明过程或演算步骤.(17 )已知 sin 22sin 2 coscos 21,(0, ) ,求 sin、 tg的值2(18 )如图,正方形 ABCD 、 ABEF 的边长都是 1,而且平面 ABCD 、 ABEF 互相垂直 点M 在 AC 上 移 动 , 点 N 在 BF 上 移 动 , 若 CM BN aC( 0a 2 )(1)求 MN 的长;DP(2) a 为何值时, MN 的长最小;MBQ(3)当 MN 的长最小时,求面 MNA 与面 MNB 所成二面角的E大小N(19)设点 P 到点 ( 1,0) 、 (1,0) 距离之差为 2m ,到 x 、 y 轴的A F距离之比为 2,求 m 的取值范围(20)某城市 2001 年末汽车保有量为 30 万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60 万辆,那么每年新增汽车数量不应超过多少辆?(21)设 a 为实数,函数 f (x)x 2| x a | 1 , xR(1)讨论 f (x) 的奇偶性;(2)求 f ( x) 的最小值(22)设数列 {a n } 满足: aa2na1 , n 1,2,3,n 1 nn(I )当 a 1 2 时,求 a 2 , a 3 , a 4 并由此猜测 a n 的一个通项公式;(II )当 a 1 3 时,证明对所的 n 1 ,有(i ) a nn 2(ii )11 11 11 a 11 a2 1 a 31 a n2参考答案 一、选择题题号1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCBBCBABBC二、填空题 (13) 2(14)1(15) 1008(16)72三、解答题(17)解:由 sin 2 2sin 2 coscos2 1,得 4 sin 2 cos 2 2sin cos 22cos 22 cos 2 (2 sin 2 sin 1) 02 cos 2 (2 sin1)(sin1)∵(0, )2∴ sin 1 0 , cos 2∴ 2sin10 ,即 sin1 2∴6∴ tg33(18)解( I )作 MP ∥ AB 交BC 于点 P ,NQ ∥ AB 交BE 于点 Q ,连结 PQ ,依题意可得 MP ∥NQ ,且 MP NQ ,即 MNQP 是平行四边形∴ MN PQ由已知 CM BN a , CB ABBE1∴ ACBF2 , CP BQ2 a2MNPQ(1 CP)2 BQ 2 (1a )2 (a)222(a2 ) 2 1 ( 0 a2)2 2(II )由( I )MN(a 2 )2122所以,当 a22时, MN22即当M、N分别为 AC、 BF 的中点时, MN 的长最小,最小值为2 2(III )取MN的中点G,连结AG、BG,∵ AM AN,BM BN,G为MN的中点∴ AG MN,BG MN ,即AGB即为二面角的平面角又AG BG 6,所以,由余弦定理有4( 6 )2(6 )21cos441663244故所求二面角为arccos13(19)解:设点P的坐标为( x, y),依题设得| y |2 ,即 y 2 x ,x 0| x |因此,点 P( x, y) 、 M (1,0) 、 N (1,0) 三点不共线,得||PM ||PN || |MN |2∵||PM ||PN|| 2 | m | 0∴0 | m | 1因此,点 P 在以 M 、N为焦点,实轴长为 2 | m |的双曲线上,故x2y21m21m2将 y2x 代入x2y 21,并解得m 2 1 m22m 2 (2 )2x1 m,因 1 m1 5m2所以 1 5 m 2解得 0 | m |55即 m 的取值范围为 (5,0)(0, 5 )55(20)解:设 2001 年末汽车保有量为 b 1 万辆, 以后各年末汽车保有量依次为 b 2 万辆, b 3 万辆,⋯,每年新增汽车x 万辆,则b 1 30 , b 2 b 1 0.94 x对于 n 1 ,有bn 1b n 0.94 xb n 1 0.942 (1 0.94)x所以 b n1b10.94 n x (1 0.94 0.942b 1 0.94 n 1 0.94 n x0.06 x(30x ) 0.94 n0.060.06当 30x 0 ,即 x 1.8 时0.06b n 1bnb 130当 30x0 ,即 x1.8时0.06x数列 { b n } 逐项增加,可以任意靠近0.06xxlim b nlim [ (30) 0.94n 1]nn0.060.0660 万辆,即因此,如果要求汽车保有量不超过0.94 n )x0.06b n 60 ( n 1,2,3, )则 x60 ,即 x 3.6 万辆0.06综上,每年新增汽车不应超过3.6 万辆(21)解:( I )当 a0 时,函数 f ( x) ( x) 2 | x | 1f ( x)此时, f (x) 为偶函数当 a 0 时, f (a)a 2 1, f ( a)a 22 | a |1,f (a) f ( a) , f (a)f ( a)此时 f (x) 既不是奇函数,也不是偶函数(II )(i )当 x a 时, f ( x) x 2x a 1 ( x1 )2 a 3124当 af (x) 在 (, a] 上单调递减,从而函数f ( x) 在 ( , a] 上的最小值为,则函数2f ( a) a 21.若 a1 ,则函数 f (x) 在 ( , a] 上的最小值为f (1)22(ii )当 xa 时,函数 f ( x) x 2 x a 1( x 1 )223 a ,且 f ( 1) f ( a) . 4 23a4若 a1 ,则函数 f ( x) 在 ( , a] 上的最小值为 f (1 )3 a ,且 f ( 1) f (a)2 2 4 2若 a1 ,则函数 f (x) 在 [ a,) 上单调递增,从而函数f (x) 在 [ a,) 上的最小值为2f ( a) a 21.综上,当 a1时,函数 f (x) 的最小值为 3a2 411 当a时,函数 f ( x) 的最小值为 a 2 121 2 3当 a 的最小值为a .时,函数 f ( x)42(22)解( I )由 a 12 ,得 a2a 2a1 1 31由 a 2 3 ,得 a 3 a 2 22a 2 1 4 由 a 34 ,得 a 423a 3 1 5a 3由此猜想 a n 的一个通项公式: a nn1 ( n 1)(II )(i )用数学归纳法证明:①当 n1时, a 1 3 1 2 ,不等式成立.②假设当 nk 时不等式成立,即 a kk2 ,那么a k 1 a k (a kk) 1 (k 2)( k 2 k ) 1 2k 5 k 3 . 也就是说,当 n k 1时, a k 1 (k 1) 2据①和②,对于所有n 1,有 a nn 2 .(ii )由 a n 1 a n ( a n n) 1及( i ),对 k 2 ,有a kak 1(ak 1k 1) 1a k 1 (k 1 2 k 1) 1 2a k 1 1⋯⋯ak2k 1 a2k 22 1 2k 1( a 1) 111于是11 1 , k 21 a k 1 a 1 2k 1n11 1n1 1 n1 2 2 1k 11 a k1 a 11 a 1 k2 2 k 1 1 a 1 k 1 2k 11 a 11 3 2。
2002年高考.全国卷.理科数学试题及答案
第 2页 (共 8页)
(17)已知 sin 2 2 sin 2 cos cos 2 1, (0, ) ,求 sin 、 tg 的值 2
(18)如图,正方形 ABCD 、ABEF 的边长都是 1,而且平面 ABCD 、ABEF 互相垂直 点
M 在 AC 上 移 动 , 点 N 在 BF 上 移 动 , 若 CM BN a
(III)取 MN 的中点 G ,连结 AG 、 BG , ∵ AM AN , BM BN , G 为 MN 的中点
∴ AG MN , BG MN ,即 AGB 即为二面角的平面角
又 AG BG
6
,所以,由余弦定理有
4
cos
(
6 )2 4
(
6 )2 4
1 1
2 6 6
3
44
故所求二面角为 arccos 1 3
也就是说,当 n k 1时, ak1 (k 1) 2
据①和②,对于所有 n 1,有 an n 2 .
(ii)由 an1 an (an n) 1及(i),对 k 2 ,有
ak ak1 (ak1 k 1) 1
ak1 (k 1 2 k 1) 1 2ak1 1
(6)点
P(1,0)
到曲线
x
t2
(其中参数 t
R
)上的点的最短距离为
y 2t
第 1页 (共 8页)
(A)0
(B)1
(C) 2
(D)2
(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个
圆锥轴截面顶角的余弦值是
(A) 3 4
(B) 4 5
(C) 3 5
(D) 3 5
(19)解:设点 P 的坐标为 (x, y) ,依题设得 | y | 2 ,即 y 2x , x 0 ) 、 N (1,0) 三点不共线,得
2002全国高考数学试题(广东)
广东普通高等学校招生统一考试数 学 试 题2002.7说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.参考公式:三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[sin(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=正棱台、圆台的侧面积公式S 台侧=21(c ′+c )l 其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式V 台体 =h S S S S )(31+'+'其中S ′、S 分别表示上、下底面积,h 表示高.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式31--x x >0的解集为 A .{x|x<1} B .{x|x>3} C .{x|x<1或x>3} D .{x|1<x<3}2.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是 A.3π B.33π C.6π D.9π3.极坐标方程ρ2cos2θ=1所表示的曲线是A .两条相交直线B .圆C .椭圆D .双曲线4.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是A .(0,21) B.(0,21] C.(21,+∞) D.(0,+∞) 5.已知复数z=i 62+,则argZ1是A .3π B.35πC.6π D.611π6.函数y=2-x+1(x>0)的反函数是A .y=log211-x ,x∈(1,2) B.y=-log211-x ,x∈(1,2)C.y=log211-x ,x∈(1,2)D.y=-log211-x ,x∈(1,2]7.若0<α<β<4π,sinα+cosα=a,sinβ+cosβ=b,则 A .a>b B.a<b C.ab<1 D.ab>2 8.在正三棱柱ABC —A 1B1C1中,若AB=2BB1,则AB 1与C1B所成的角的大小为A .60° B.90° C.45° D.120° 9.设f(x)、g(x)都是单调函数,有如下四个命题①若f(x)单调递增,g(x)单调递增,则f(x)-g(x)单调递增; ②若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递增; ③若f(x)单调递减,g(x)单调递增,则f(x)-g(x)单调递减; ④若f(x)单调递减,g(x)单调递减,则f(x)-g(x)单调递减 其中,正确的命题是A . ①③ B.①④ C.②③ D.②④10.对于抛物线y2=4x上任意一点Q ,点P (a ,0)都满足|PQ|≥|a|,则a 的取值范围是 A .(-∞,0) B .(-∞,2) C .[0,2] D .(0,2)11.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜 记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则A .P 3>P 2>P 1 B.P 3>P 2=P 1C.P 3=P2>P1 D.P 3=P 2=P 112.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为A .26 B.24 C.20 D.19第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛人员的组 成共有 种可能(用数字作答).14.双曲线116922=-y x 的两个焦点为F1、F2,点P 在双曲线上,若PF1⊥PF2,则点P 到x轴的距离为 .15.设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q= .16.圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为 .三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)求函数y=(sinx+cosx)2+2cos2x的最小正周期. 18.(本小题满分12分)已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk =2550. (Ⅰ)求a及k的值;(Ⅱ)求)111(lim 21nn S S S +++∞→ 19.(本小题满分12分)如图,在底面是直角梯形的四棱锥S—ABCD 中,∠ABC=90°,SA⊥面ABCD ,SA =AB =BC=1,AD=21. (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. 20.(本小题满分12分)设计一幅宣传画,要求画面面积为4840 cm 2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm空白,左、右各留5cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?如果要求λ∈]43,32[,那么λ为何值时,能使宣传画所用纸张面积最小?21.(本小题满分14分)已知椭圆1222=+y x 的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相 交于A 、B 两点,点C 在右准线l 上,且BC∥x 轴 求证直线AC 经过线段EF 的中点.22.(本小题满分14分) 设f(x)是定义在R 上的偶函数,其图象关于直线x=1对称 对任意x1,x2∈[0,21],都有f(x1+x2)=f(x1)·f(x2),且f (1)=a>0. (Ⅰ)求f)41(),21(f ;(Ⅱ)证明f(x)是周期函数; (Ⅲ)记an=f(2n+n21),求)(ln lim n n a ∞→.参考答案一、选择题1.C 2.A 3.D 4.A 5.B 6.A 7.B 8.B 9.C 10.B 11.D 12.D 二、填空题13.4900 14.51615.1 16.2n (n -1) 三、解答题17.解:y=(sinx+cosx)2+2cos2x=1+sin2x+2cos2x=sin2x+cos2x+2 5分=2)42sin(2++πx 8分所以最小正周期T=π. 10分 18.解:(Ⅰ)设该等差数列为{an},则a 1=a,a2=4,a3=3a,Sk=2550. 由已知有a +3a =2×4,解得首项a 1=a=2,公差d =a 2-a1=2. 2分 代入公式S k=k·a1+d k k ⋅-2)1(得255022)1(2=⋅-+⋅k k k ∴k2+k-2550=0解得k =50,k =-51(舍去)∴a =2,k =50. 6分 (Ⅱ)由d n n a n S n ⋅-+⋅=2)1(1得S n=n(n+1), )11-1()31-21()21-11( )1(132121111121++++=+++⨯+⨯=+++n n n n S S S n111+-=n 9分 1)111(lim )111(lim 21=+-=+++∴∞→∞→n S S S n n n 12分19.解:(Ⅰ)直角梯形ABCD 的面积是M 底面=AB AD BC ⋅+)(21=43125.01=⨯+ 2分 ∴四棱锥S —ABCD 的体积是414313131=⨯⨯=⨯⨯=底面M SA V 4分(Ⅱ)延长BA 、CD 相交于点E ,连结SE ,则SE 是所求二面角的棱 6分 ∵AD∥BC,BC=2AD∴EA=AB=SA,∴SE⊥SB∵SA⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线.又BC⊥EB,∴BC⊥面SEB ,故SB 是SC 在面SEB 上的射影, ∴CS ⊥SE,所以∠BSC是所求二面角的平面角 10分 ∵SB=SB BC BC AB SA ⊥==+,1,222∴tg∠BSC=22=SB BC 即所求二面角的正切值为2212分 20.解:设画面高为xcm,宽为λxcm ,则λx2=4840 1分 设纸张面积为S ,则有S=(x+16)(λx+10)=λx2+(16λ+10)x+160, 3分 将x=λ1022代入上式得S=5000+44)58(10λλ+5分当8)185(85,5==λλλ即时,S 取得最小值,此时,高:x=884840=λc m,宽:λx=558885=⨯cm 8分 如果λ∈[43,32],可设433221≤≤λλ ,则由S 的表达式得S(λ1)-S(λ2)=44)5858(102211λλλλ--+=)58)((104421121λλλλ-- 10分由于058,85322121 λλλλ-≥故 因此S(λ1)-S(λ2)<0,所以S (λ)在区间[43,32]内单调递增. 从而,对于λ∈[43,32],当λ=32时,S (λ)取得最小值答:画面高为88cm、宽为55cm 时,所用纸张面积最小;如果要求λ∈[43,32],当λ=32时,所用纸张面积最小. 12分21.证明:依设,得椭圆的半焦距c=1,右焦点为F (1,0),右准线方程为x=2,点E 的坐标为(2,0),EF 的中点为N (23,0) 3分若AB 垂直于x 轴,则A (1,y1),B(1,-y1),C(2,-y1), ∴AC 中点为N (23,0),即AC 过EF 中点N. 若AB 不垂直于x 轴,由直线AB 过点F ,且由BC ∥x 轴知点B 不在x 轴上,故直线AB 的方程为y=k(x-1),k≠0.记A (x1,y1)和B(x2,y2),则C (2,y2)且x1,x2满足二次方程1)1(2222=-+x k x 即(1+2k2)x2-4k2x+2(k2-1)=0,∴x1+x2=22212221)1(2,214kk x x k k +-=+ 10分 又x21=2-2y21<2,得x1-23≠0, 故直线AN ,CN 的斜率分别为k1=32)1(2231111--=-x x k x y )1(2232222-=-=x k y k ∴k1-k2=2k·32)32)(1()1(1121-----x x x x∵(x1-1)-(x2-1)(2x1-3)=3(x1+x2)-2x1x2-4 =0)]21(4)1(412[2112222=+---+k k k k∴k1-k2=0,即k1=k2,故A 、C 、N 三点共线.所以,直线AC 经过线段EF 的中点N. 14分 22.(Ⅰ)解:因为对x1,x2∈[0,21],都有f(x1+x2)=f(x1)·f(x 2), 所以22)]41([)41()41()4141()21()]21([)21()21()2121()1(]1,0[,0)2()2()22()(f f f f f f f f f f x xf x f x x f x f =⋅=+==⋅=+=∈≥⋅=+=f(1)=a>0, 3 分∴4121)41(,)21(a f a f == 6分(Ⅱ)证明:依题设y=f(x)关于直线x=1对称, 故f(x)=f(1+1-x), 即f(x)=f(2-x),x∈R又由f(x)是偶函数知f(-x)=f(x),x∈R , ∴f(-x)=f(2-x),x∈R ,将上式中-x以x代换,得f(x)=f(x+2),x∈R这表明f(x)是R 上的周期函数,且2是它的一个周期. 10分 (Ⅲ)解:由(Ⅰ)知f(x)≥0,x∈[0,1] ∵]21)1(21[)21()21(nn n f n n f f ⋅-+=⋅= nnf n f n f n f nn f n f )]21([)21()21()21( ]21)1[()21(=⋅⋅⋅==⋅-⋅=21)21(a f = ∴n a nf 21)21(= 12分∵f(x)的一个周期是2∴f(2n+n 21)=f(n21),因此a n =n a 210)ln 21(lim )(ln lim ==∴∞→∞→a na n n n 14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2002年普通高等学校招生全国统一考试数学(文史类)第Ⅰ卷(选择题共60分)试卷类型:A参考公式:三角函数的积化和差公式 正棱台、圆台的侧面积公式 )sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若直线0201)1(22=-+=+++x y x y x a 与圆相切,则a 的值为A .1,-1B .2,-2C .1D .-12.复数3)2321(i +的值是A .-iB .iC .-1D .13.不等式0|)|1)(1(>-+x x 的解集是 A .}10|{<≤x x B .}10|{-≠<x x x 且C .{11|<<-x x }D .}11|{-≠<x x x 且4.函数]1,0[在xa y =上的最大值与最小值的和为3,则a =A .21 B .2 C .4 D .41 5.在(π2,0)内,使x x cos sin >成立的x 取值范围为A .)45,()2,4(ππππ B .),4(ππC .)45,4(ππ D .)23,45(),4(ππππS 台侧=l c c )(21+'其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 球的体积公式334R V π=球其中R 表示球的半径6.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则 A .M =NB .N M ⊂C .N M ⊃D .=N M ø7.椭圆5522=+ky x 的一个焦点是(0,2),那么k =A .-1B .1C .5D .5-8.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是A .43B .54 C .53 D .53-9. 已知,10<<<<a y x 则有 A .0)(log <xy a B .1)(log 0<<xy aC .2)(log 1<<xy aD .2)(log >xy a10.函数)),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是A .b ≥0B .b ≤0C .b>0D .b<011.设)4,0(πθ∈,则二次曲线122=-θθtg y ctg x 的离心率的取值范围为A .)21,0(B .)22,21(C .)2,22(D .),2(+∞12.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 A .8种 B .12种 C .16种 D .20种第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.据新华社2002年3月12日电,1985年到2000 年间,我国农村人均居住面积如图所示,其中, 从 年到 年的五年间增长最快. 14.函数)),1((12+∞-∈+=x xxy 图象与其反函数图象的交点坐标为 .15.72)2)(1(-+x x 的展开式中x 3项的系数是 .16.对于项点在原点的抛物线,给出下列条件:①焦点在y 轴上 ②焦点在x 轴上; ③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为x y 102=的条件是 .(要求填写合适条件的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω. (Ⅰ)求这段时间的最大温差;(Ⅱ)写出这段曲线的函数解析式. 18.(本小题满分12分)甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m.(Ⅰ)甲、乙开始运动后几分钟相遇?(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇? 19.(本小题满分12分)四棱锥P —ABCD 的底面是边长为a 的正方形,PB ⊥面ABCD.(Ⅰ)若面PAD 与面ABCD 所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90° 20.(本小题满分12分) 设函数.,1|2|)(2R x x x x f ∈--+= (Ⅰ)判断函数)(x f 的奇偶数;(Ⅱ)求函数)(x f 的最小值.21.(本小题满分14分)已知点P到两个定点M(-1,0)、N(1,0)距离的比为2,点N到直线PM的距离为1.求直线PN的方程.22.(本小题满分12分,附加题满分4分)(Ⅰ)给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明;(Ⅱ)试比较你剪拼的正三棱锥与正三棱柱的体积的大小;(Ⅲ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分.)如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.数学试题(文史类)参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答末改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.A卷选择题答案:一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分.1.D 2.C 3.D 4.B 5.C 6.B7.B 8.C 9.D 10.A 11.D 12.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.13.1995 2000 14.(0,0),(1,1) 15.1 008 16.②,⑤三、解答题17.本小题主要考查正弦函数的基本概念、基本性质等基础知识,考查读图识图能力和基本的运算技能.满分12分.解:(Ⅰ)由图示,这段时间的最大温差是30-10=20(℃). (2)分(Ⅱ)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期的图象, .8,614221πωωπ=-=⋅∴解得 (5)分由图示,.20)1030(21,10)1030(21=+==-=b A (7)分这时.20)8sin(10++=ϕπx y将.43,10,6πϕ===可取代入上式y x ………10分 综上,所求的解析式为].14,6[,20)438sin(10∈++=x x y ππ ………12分18.本小题主要考查等差数列求和等知识,以及分析和解决问题的能力.满分12分.解:(Ⅰ)设n 分钟后第1次相遇,依题意,有 7052)1(2=+-+n n n n (3)分 整理得 .0140132=-+n n 解得 20,7-==n n (舍去). 第1次相遇是在开始运动后7分钟. (6)分 (Ⅱ)设n 分钟后第2次相遇,依题意,有.70352)1(2⨯=+-+n n n n (9)分 整理得 .0706132=⨯-+n n解得 28,15-==n n (舍去).第2次相遇是在开始运动后15分钟. ………12分 19.本小题考查线面关系和二面角的概念,以及空间想象能力和逻辑推理能力.满分12分.(Ⅰ)解:⊥PB 面ABCD∴BA 是PA 在面ABCD 上的射影.又DA ⊥AB ,∴PA ⊥DA ,∴∠PAB 是面PAD 与面ABCD 所成的二面角的平面角, ∠PAB=60°. …………3分而PB 是四棱锥P —ABCD 的高,PB=AB ·tg60°=3a ,3233331a a a V =⋅=∴锥. (6)分(Ⅱ)证:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形. 作AE ⊥DP ,垂足为E ,连结EC ,则△ADE ≌△CDE , CEA CED CE AE ∠=∠=∴故,90, 是面PAD 与面PCD 所成的二面角的平面角. (8)分设AC 与DB 相交于点O ,连结EO ,则EO ⊥AC , .22a AD AE OA a =<<=∴………10分在.0)2)(2(2)2(cos ,2222<-+=⋅⋅-+=∠∆AE OA AE OA AE EC AE OA EC AE AEC AEC 中所以,面PAD 与面PCD 所成的二面角恒大于90°. ………12分 20.本小题主要考查函数的概念、函数的奇偶性和最小值等基础知识,考查运算能力的逻辑思维能力.满分12分.解:(Ⅰ).7)2(,3)2(=-=f f由于),2()2(),2()2(f f f f -≠-≠-故)(x f 既不是奇函数,也不是偶函数. (4)分(Ⅱ)⎪⎩⎪⎨⎧<+-≥-+=.2,1,2,3)(22x x x x x x x f (6)分由于),2[)(+∞在x f 上的最小值为)2,(,3)2(-∞=在f 内的最小值为.43)21(=f (10)分故函数),()(+∞-∞在x f 内的最小值为.43………12分21.本小题主要考查直线方程、点到直线的距离等基础知识,以及运算能力.满分14分.解:设点P 的坐标为(x ,y ),由题设有,2||||=PN PM 即.)1(2)1(2222y x y x +-⋅=++整理得 .01622=+-+x y x ① (4)分因为点N 到PM 的距离为1,|MN|=2,所以33,30±=∠的斜率为直线PM PMN, 直线PM 的方程为).1(33+±=x y ② (8)分将②式代入①式整理得.0142=+-x x解得32,32-=+=x x .代入②式得点P 的坐标为);31,32()31,3,2(+--++或 ).31,32()31,32(----+或 ………12分 直线PN 的方程为11+-=-=x y x y 或.………14分22.本小题主要考查空间想象能力、动手操作能力、探究能力和灵活运用所学知识解决现实问题的能力.满分12分,附加题4分. 解:(I )如图1,沿正三角形三边中点连线折起,可拼得一个正三棱锥. ………4分 如图2,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的41,有一组对角为直角.余下部分按虚线折起,可成为一个缺上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底. ………8分 (Ⅱ)依上面剪拼的方法,有V 柱>V 锥. ………9分 推理如下:设给出正三角形纸片的边长为2,那么,正三棱锥与正三棱柱的底面都是边长为1的正三角形,其面积为.43现在计算它们的高:.633021,36)2332(12===⋅-= tg h h 柱锥,02432243)6396(43)31(<-=⋅-=⋅-=-∴柱锥柱锥h h V V所以,V 柱>V 锥. ………12分(Ⅲ)(附加题,满分4分)如图3,分别连结三角形的内心与各顶点,得到三条线段,再以这三条线段的中点为顶点作三角形.以新作的三角形为直三棱柱的底面,过新三角形的三个顶点向原三角形三边作垂线,沿六条垂线剪下三个四边形,可以拼接成直三棱柱的上底,余下部分按虚线折起,成为一个缺上底的直三棱柱,即可得到直三棱柱模型.注:考生如有其他的剪拼方法,可比照本标准评分.-。