数字推理经典记忆
关于数字推理总结摘记
关于数字推理总结摘记一、常见、易被忽视的数列:1、质数列:(质数——只有1和其本身两个约数)2,3,5,7,11,13,17,19,23,29,31,37,41,43……例:6 8 11 16 23 ( )A. 32B.34C.36D.381,1,2,3,4,7,()A、4B、6C、10D、12选B 两两相加组成质数列3,7,22,45,()A、58B、73C、94D、116选D 2^2-1 3^2-2 5^2-3 7^2-4 (11^2-5)2、合数列:(合数——除开1和质数外的数)4、6、8、9、10、12、14、15、16、18、20……行测考试做题时间很关键。
要做好行测尤其是数列部分需要技巧,但大家往往忽视了基本功。
为什么有些人看到数列题就很快得出答案?个人觉得是他们对数字的敏感。
这里面有天赋的成分,但刻苦训练也是可以锻炼出这种敏感的。
故熟练掌握各种基本数列很重要。
拿指数数列来说,必须熟记1—10的平方、立方,2、3、4、5的N次方。
只有这样,你才能在看到9时立刻想到9=3平方或9=2立方+1。
对这几个数字,必须是熟记。
5的立方谁不会算?可是数列题不是叫你算5的立方是多少的,当4、28、16、126这样的数列放在你面前时,忽增忽减看似毫无规律,你会想到这里有5的立方吗?所以必须熟记。
熟到不能再熟。
以下是把大家最爱问的、经常不会做的题目整理在一起,总结的数列常见方法。
分组法相邻项为一组,各组规律相同。
或差为常数、或和为常数。
4,3,1,12,9,3,17,5(A)A12 B13 C14 D154.5,3.5,2.8,5.2,4.4,3.6,5.7,( A)A.2.3 B.3.3 C.4.3 D.5.3拆分相加(乘)法把一个多位数每个位上的数字分别相加或相乘得到一个新数,再看规律。
这类题变型比较多,所以写出例题解答过程。
87 57 36 19 ( ) 1 A. 17 B.15 C.12 D.10选D8×7+1=57 5×7+1=36 3×6+1=19 1×9+1=10 0×1+1=1256 ,269 ,286 ,302 ,() A.254 B.307 C.294 D.316 选B2+5+6=13 256+13=269 2+6+9=17 269+17=2862+8+6=16 286+16=302 ?=302+3+2=307隔项法奇数项和偶数项分别组成新的数列0,12,24,14,120,16,( ) A:280 B:32 C:64 D:336 选D 奇数项为 0,24,120,?0=13-1 24=33-3 120=53-5 ?=73-7三项相加法这种题其实比较简单,但大家也容易疏忽。
公考数字推理攻略汇总
公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式(后一项与前一项的差 d 为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1) 后面的数字与前面数字之间的差等于一个常数。
如7,11,15,( 19 ) (2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
如7,11,16,22,( 29 )(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
如7,11,13,14,( 14.5 )(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
【例题】7,11,6,12,( 5 )(5) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。
【例题】7,11,16,10,3,11,(20 )备考规律二:等比数列及其变式(后一项与除以前一项的倍数 q 为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。
【例题】4,8,16,32,( 64 )(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。
【例题】4,8,24,96,( 480 )(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘 2【例题】4,8,32,256,( 4096 )(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为 3 的n 次方。
【例题】2,6,54,1428,( 118098 )(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。
【例题】2,-4,-12,48,(240 )备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1) “平方数”的数列【例题】1,4,9,16,25,36 ,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数【例题】 0,3,8,15,24,(35 )【例题变形】2,5,10,17,26,(37 )(3) 每一个平方数加去一个数值,而这个数值本身就是有一定规律的。
行测速算技巧之数字推理
行测速算技巧之数字推理解答数字推理首要依托的是日常平凡堆集的数字敏感度,可以在甫一接触标题问题的时辰便可以对号入坐,找到纪律。
有一些数字推理标题问题中的纪律不是很较着,能够需求将良多种纪律套入验证。
如许,疾速计较验证就成了疾速解答这类数字推理标题问题的关头。
那末,进修领会一些关于四则运算的小技能,对到达我们的目标长短常有帮忙的。
乘法速算:1、十位数是1的两位数相乘方式:乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:15×1715+7=225×7=35---------------255即15×17=255诠释:15×17=15×(10+7)=15×10+15×7=150+(10+5)×7=150+70+5×7=(150+70)+(5×7)为了进步速度,谙练今后可以直接用“15+7”,而不消“150+70”。
2、个位是1的两位数相乘方式:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最初添上1。
例:51×3150×30=150050+30=80------------------1580由于1×1=1,所今后一名必然是1,在得数的前面添上1,即1581。
数字“0”在不谙练的时辰作为助记符,谙练后便可以不利用了。
3、十位不异个位分歧的两位数相乘方式:被乘数加入乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加入去。
例:43×46(43+6)×40=19603×6=18----------------------19784、首位不异,两尾数和即是10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
例:56×54(5+1)×5=30--6×4=24----------------------3024“--”代表十位和个位,由于两位数的首位相乘得数的前面是两个零,请年夜家大白,不要忘了,这点是很轻易被疏忽的。
行测数字推理秒杀口诀
行测数字推理秒杀口诀
题型一、和倍问题。
问题描述:已知两数之和及倍数关系,可快速得出这两数。
秒杀公式:大+小=和;大=倍×小,则:小=和÷(倍+1);大=倍×小=和-小。
题型二、差倍问题。
问题描述:已知两数之差及倍数关系,可快速得出这两数。
秒杀公式:大-小=差;大=倍×小,则:小=差÷(倍-1);大=倍×小=差+小。
题型三、和差问题。
问题描述:已知两数之和及两数之差,可快速得出这两数。
秒杀公式:大+小=和;大-小=差;则:大=(和+差)÷2;小=(和-差)÷2。
题型四、日期问题。
问题描述:若2017年7月10日星期三,则2018年8月10日星期几。
秒杀公式:平年:365=52×7+1 平过1;闰年:366=52×7+2 闰过2。
题型五、植树问题。
问题描述:在一个路段上植树,植树方式不同,棵数和段数的关系不同。
秒杀公式:①不封闭路段:两端植:棵数=段数+1;一端植:棵数=段数,②两端都不植:棵数=段数-1;③封闭路线:棵数=段数。
公务员行测数字推理必知的30个规律
公务员行测数字推理必知的30个规律一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。
【例】1、4、3、1、1/5、1/36、( )92 124 262 343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。
【例】1/16 2/13 2/5 8/7 4 ()3三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。
【例】33、32、34、31、35、30、36、29、( )A. 33B. 37C. 39四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。
取尾数列一般具有相加取尾、相乘取尾两种形式。
【例】6、7、3、0、3、3、6、9、5、( )五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。
【例】448、516、639、347、178、( )六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。
对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。
【例】0、9、26、65、124、( )A. 165B. 193C. 217七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。
【例】118、60、32、20、( )八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。
【例】0、6、24、60、120、( )九、当题干和选项都是整数,且数字大小波动很大时,往往是两项推一项的乘法或者乘方的递推数列。
数字推理(看过)
数字推理一、数字推理解答的关键点1、数字敏感:1---21的平方1-----11的立方1----5的1-5次幂2的1-10次幂分别为2、4、8、16、32、64、128、256、512、1024 21的平方441 11的三次幂是1331 5的5次幂是31252、数列敏感:(1)1、2、3、4、5 自然数列(2)2、3、5、7、11 质数列(3)2、3、5、8、12、后项减前项是自然数列(4)2、3、5、8、13 和数列---两项相加得出第三项(5)4、6、8、9、10、12 合数列(有的数除了1和它本身以外,还能被别的整数整除,这种数就叫合数) 3、三种思维模式:(1)横向递推---(2)纵向延伸--- 1/9 ,1,7,36()---将各个数变成幂的形式(3)构建网络数字推理主要考察的就是 A 位置关系 B 四则运算4、四种常用方法(1)逐差法----(2)逐商法----(3)局部分析法----16、17、3、0、3、3、6、9、5、(4)--该数列从标红出考虑,后项由前两项相加得到,所以再次观察,两项加合之后,尾数即为该数列排列方式(4)整体分析法-----只有在前面三种方法都无法得到规律的情况下才能使用二、古典型数字推理主要类型及特点(一)等差数列题型:例1、22,25,28,31,34,(37)例2、253,264,275,286,(297)例3、28,46,68,94,124,(158)(差值为18、22、26、30、34,并以4为差递增,二级等差)例4、105,117,135,159,189,(225)(二级等差)例5、18,25,50,97,170,(273)(三级等差)例6、18,23,40,75,134,(223)(三级等差)例7、20,23,32,59,(140)(差是3的级数)例8、25,26,34,61,125,(250)(差值依次是1、2、3、4、5的3次方)总结:1、基本类型:一级等差;二级等差;三级等差2、变式:某级差为基本数列---例题73、重点:三级等差和等差变式为重点4、特点:一般为单向递增一般会给出5项或者4项以上一般来讲,变化不大(也就是说数列中前后项的数值变化幅度不大)逐差法非常重要练习1. 102,96,108,84,132,()(差依次为-6、12、-24、48、…绝对值在翻倍)A.36B.64C.70D.722.67 75 59 91 27 ()(差值依次为8、-16、32、-64、…绝对值在翻倍)A.155B.147C.136D.1283.( ) 40 23 14 9 6(倒过来二级差值为2的级数)A、81B、73C、58D、524.0,6,24,60,120,()(二级等差)A.186B.210C.220D.2265.2, 6,20,50,102,()(二级等差)A.140B.160C.182D.2006.3,8,9,0,-25,-72,()(后一个数和前一个数的差组成一个新数列5,1,-9,-25,-47这个新数列的后一个数和前一个数的差再组成一个新数列-4,-10,-16,-22可以看出这个数列第五个应该是-28则上面那个数列的-47后面那个数应该是-75则你要的那个数是-147)A.-147B.-144C.-132D.-1217.2,10 ,19,30,44,62,( )(三级等差)A、83B、84C、85D、868、( ) 36 19 10 5 2 (做一次差后的新数列是等比数列)A.77B.69C.54D.489.1,2,6,33,289,()(做一次差后的新数列是i^2)A.3414B.5232C.6353D.715110.-1.5,2,1,9,一1,( )(做两次差后的新数列是等比数列)A.10B.4C.25D.8(二)等比数列题型:例1、3,6,12,24,(48)例2、2,6,18,54,(162)例3、1,2,8,64,(1024)(后项除前项的商为2的级数)例4、1,1,2,6,24,(120)(后项除前项的商为整数列)例5、2,5,11,23,47,(95)(后项与前项的差为等比数列)例6、3,7,16,35,(74)(二级做差为等比/3*2+1、7*2+2、16*2+3、35*2+4)例7、2,1,5,16,53,(175)(3×前第一项+前第二项=后项,3×1+2=5、3×5+1=16、3×16+5=53)例8、2,1,3,7,24,(103)(1×1+2=3、2×3+1=7、3×7+3=24、4×24+7=103) 总结:1、重点:变式、倍数变化2、特点:一般是单向递增的一般来讲变化稍大(与等差数列相比)一般从大数入手逐商法也很重要练习:1.11 13 28 86 346 ( ) (1×11+2=13、2×13+2=28、3×28+2=86、4×86+2=346、5×346+2=)A、1732B、1728C、1730D、1352.()13.5 22 41 81(前项*2-7(5、3、2、1)=后项/[后项+1]÷2+0(1、2、3、)=前项)A.10.25B.7.25C.6.25D.3.253.1 2 5 12 29 ()(2×2+1=5、5×2+1=12、12×2+5=29、29×2+12=70)A、82B、70C、48D、624.1,4,9,22,53,()(4×2+1=9、9×2+4=22、22×2+9=53、53×2+22=128)A.89B.82C.128D.755.2,6,30,210,2310,()(前后项做商后的新数列是质数列)A.30160B.30030C.40300D. 321606.1,4,12,32,80,()(2i-1*i)A.162B.182C.192D.2127.2,3,7,25,121,()(3=2*2-1,7=3*3-2,25=7*4-3,121=25*5-4,721=121*6-5)A.256B.512C.600D.7218.2,17,69,139,()(前项*8(4、2、1)+1=后项)A.417B.280C.140D.141(三)和数列题型:例1、2,3,5,8,13,(21)(后项为前两项之和)例2、1,2,4,7,13,24,(44)(前三项之和为第四项)例3、1,1,2,4,8,16,(32)(每项等于之前所有项之和)例4、6,5,10,14,23,(36)(前两项之和减一)例5、1,2,4,5,10,14,(25)(前两项之和加一、前两项之和减一、往复循环)例6、1,2,6,16,44,(120)(前两项之和乘以二)例7、1,1,2,3,4,7,6,(5)?(显然从第6个数字开始没有规律,那么将前5个数字列为一组,第6个数字是7,7=4+3,第7个数字是6,6=4+2,则可推测第8个数字是4+1=5。
数字推理的十大规律
数字推理的十大规律数字推理是通过对数字、数字关系、数字规律等进行分析、推理来解决问题的一种思维方式。
数字推理可以应用于数学、逻辑、信息处理、统计学等领域。
在数字推理中,存在着一些常见的规律,通过了解这些规律,我们可以更好地进行数字推理。
下面是数字推理中的十大常见规律:1. 自然数规律自然数规律是最基本的数字规律之一。
自然数由1开始依次递增,其中包含了所有整数。
我们可以通过对自然数序列的观察,进一步推导出一些数学规律。
例如,自然数序列的平方数规律:1, 4, 9, 16, 25, ...,可以看出平方数是自然数序列的某种特殊规律。
2. 等差数列规律等差数列是一种特殊的数字序列,其中相邻的数字之间的差值是相等的。
等差数列常用于数学题目、数列的求和问题等。
例如,2, 5, 8, 11, 14, ...,可以看出每个数字都比前一个数字增加了3。
3. 等比数列规律等比数列是一种特殊的数字序列,其中相邻的数字之间的比值是相等的。
等比数列常用于数学问题中,比如指数增长、连续复利等。
例如,2, 6, 18, 54, ...,可以看出每个数字都是前一个数字乘以3。
4. 斐波那契数列规律斐波那契数列是一个非常特殊的数列,其中每个数字都是前两个数字之和。
斐波那契数列在自然界中广泛存在,如植物的叶子排列、兔子繁殖等。
例如,1, 1, 2, 3, 5, 8, 13, ...,可以看出每个数字都是前两个数字之和。
5. 奇偶数规律奇偶数规律是数字推理中的一种常见规律。
奇数是整数中不能被2整除的数,偶数则是能被2整除的数。
例如,1, 3, 5, 7, 9, ...是奇数序列;2, 4, 6, 8, 10, ...是偶数序列。
6. 质数规律质数是只能被1和自身整除的自然数。
质数规律在密码学、因数分解等领域有重要应用。
例如,2, 3, 5, 7, 11, ...,可以看出每个数字都是质数。
7. 素数规律素数是指除了1和本身外没有其他除数的数,素数可以是质数或者合数。
数字推理全方法介绍(绝对经典)
数字推理全方法介绍写在前面的话1、希望能给数字推理比较弱的同学帮助2、做数推,重点不是怎么做,而是:“你怎么会想到这种做法?思路在哪?突破口呢?”3、只要你认真看完这个帖子,你的数字推理一定会有进步4、例子来源于真题5、觉得好一定要顶,让更多的人能来交流言归正传(一)等差、倍数关系介绍要学会观察变化趋势(1)数变化很大,一般和乘法和次方有关。
如:2,5,13, 35,97 ()-------------A*2+1 3 9 27 81=B又如:1,1,3,15,323,()---------------数跳很大,考虑是次方和乘法。
此题-------------(A+B)^2-1 =c再如:1 ,2 ,3 ,35 ()------------(a*b)^2-1=c0.4 1.6 8 56 560 ()--------4 5 7 10倍,倍数成二级等差A、2240B、3136C、4480D、784009国考真题14 20 54 76 ()A.104 B.116 C.126 D1449+525-549+5…(2)数差(数跳不大,考虑是做差)等差数列我就不说了,很简单下面说下数字变化不大,但是做差没规律怎么办?一般三种可以尝试的办法(1)隔项相加、相减(2)递推数列(3)自残(一般用得很少,真题里我好像没见过?也许是我忘了吧)09真题1,1,3,5,11,()A.8 B.13 C.21 D.32满足C-A=2 4 8 16-3,7,14,15,19,29,()A 35B 36C 40D 42------------------------------满足A+C=11 22 33 44 5521,37,42,45,62,()A 57B 69C 74D 8721+3*7=4237+4*2=4542+4*5=6245+6*2=57(3)倍数问题(二)三位数的数字推理的思路(1)数和数之间的差不是很大的时候考虑做差(2)很多三位数的数字推理题都用“自残法”如:252,261,270,279,297,()252+2+5+2=261261+2+6+1=270270+2+7+0=27909国考真题153, 179, 227, 321, 533, ( )A.789B.919C.1079D.1229150+3170+9200+27….左边等差,右边等比(三)多项项数的数字推理多项项数的数推”比如:5,24,6,20,(),15,10,()上面个数列有8项,我习惯把项数多余6项的数列叫做“多项数列”。
行测考试数字推理快速秒杀三招
数字推理,是数学运算的一部分,虽然2011年的国考和省考都没有考数字推理,但是在湖南的选调生考试、村官考试、两院考试以及一些事业单位的招考中还是会经常考到,那么如何在事业单位招考中快速突破数字推理,专家将结合部分真题给广大的考生朋友,介绍一下数字推理快速秒杀的技巧。
第一招:看趋势。
拿到题目以后,用2秒钟迅速判断数列中各项的趋势,例如:是越来越大,还是越来越小,还是有大有小。
通过判断走向,找出该题的突破口。
有规律找规律,没有规律做差。
【例1】(2011年湖南两院)7,9,12,17,24,( )A.27B.30C.31D.35【答案】D【解析】本题属于多级数列。
先看趋势,越来越大,规律不明显,两两做差,得到质数数列2,3,5,7,(11),所以选择D选项。
【例2】(2007应届生)14 ,6 ,2 ,0 ,( )A.-2B.-1C. 0D.1【答案】B【解析】本题属于多级数列。
题目中的一先看趋势,越来越小,也就是趋势是递减的,是一致的。
对于这类递减的数列,我们通常的做法是从相邻两项的差或做商入手,很明显,这道题目不能从做商入手(因为14/6不是整数),那么,我们就作差,相邻两项的差为8,4,2成等比数列,因此,0减去所求项应等于1,故所求项等于-1,所以选择B选项。
利用数列的趋势,可以迅速判断出应该采取的方法,所以,趋势就是旗帜,趋势就是解题的命脉。
第二招,看特殊数字。
比如质数、平方数、立方数等。
一些数字推理题目中出现的数距离这些特殊的数字非常近,因此当出现某个整数的平方或者立方周围的数字时,我们可以从这些特殊数字入手,进而找出原数列的规律。
【例3】(2011湖南选调)61,59,53,47,43,( ),37A.42B.41C.39D.38【答案】B【解析】本题属于质数数列。
递减的质数数列,所以选择B选项。
【例4】(2011湖南选调)0,9,26,65,124,( )A.186B.199C.215D.217【答案】D【解析】本题属于幂次修正数列。
数字推理规律
数字推理规律数字推理规律1.熟记各种数字的运算关系。
如各种数字的平⽅、⽴⽅以及它们的邻居,做到看到某个数字就有感觉。
这是迅速准确解好数字推理题材的前提。
常见的需记住的数字关系如下:(1)平⽅关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-12 1,12-14413-169,14-196,15-225,16-256,17-289,18-324,19 -361,20-400(2)⽴⽅关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开⽅关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。
所以,对这些平⽅⽴⽅后的数字,及这些数字的邻居(如,64,63,65等)要有⾜够的敏感。
当看到这些数字时,⽴刻就能想到平⽅⽴⽅的可能性。
熟悉这些数字,对解题有很⼤的帮助,有时候,⼀个数字就能提供你⼀个正确的解题思路。
如216 ,125,64()如果上述关系烂熟于胸,⼀眼就可看出答案但⼀般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,⼀般这种题5秒内搞定。
2.熟练掌握各种简单运算,⼀般加减乘除⼤家都会,值得注意的是带根号的运算。
根号运算掌握简单规律则可,也不难。
3.对中等难度以下的题,建议⼤家练习使⽤⼼算,可以节省不少时间,在考试时有很⼤效果。
⼆、规律按数字之间的关系,可将数字推理题分为以下⼗种类型:1.和差关系。
⼜分为等差、移动求和或差两种。
(1)等差关系。
这种题属于⽐较简单的,不经练习也能在短时间内做出。
建议解这种题时,⽤⼝算。
12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。
数字推理重点标记
30天行测大冲刺-第1日数字推理简为教育一、几种基础数列(1)自然数数列:1,2,3,4,5,6,7,8,9,10(2)平方数列:1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361(3)立方数列:1,8,27,64,125,216,343,512,729(4)幂次方数列:1,4,27,256,3125(5)质数列: 2,3,5,7,11,13,17 ,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97 n2+n+41 (n≤39)(6)合数列: 4,6,8,9,10,12,14,15,16请牢记以上数列,今后才能保持一定的数学敏感度。
二、几种思路(一)、先来看下面几道题:1、 2 , 12, 36, 80,()A .100B .125C .150D .1751^2+1^3=22^2+2^3=123^2+3^3=364^2+4^3=805^2+5^3=150。
选择C2、(),4,18,48,100。
A -16B -8C -4D 02^3-2^2=43^3-3^2=184^3-4^2=485^3-5^2=100所以1^3-1^2=0.选择D3、0 , 2, 10, 30,()A .68B .74C .60D .700^3+0=01^3+1=22^3+2=103^3+3=304^3+4=68.选A=======做完了以上三道题目,再来看这三个数列(1)1,2,3,4,5,6(2)1,4,9,16,25,36(3)1,8,27,64,125,216非常简单的3个数列,甚至可以说是我们平时直接忽略的数列,稍微经过演变,就可以生出很多种变化来。
(1)+(2)=2,6,12,20,30,42(1)+(3)=2,10,30,68,130,222(2)+(3)=2,12,36,80,150,252(3)-(2)=0,4,18,48,100,180(二)同样是几道题:1、 5, 13, 37, 109,()A 136B 231C 325D 408答案:C分析:方法一5*3-2=1313*3-2=3737*3-2=109109*3-2=325方法二:求差得到一个新的数列。
行测——数字推理
37+4*2=45
42+4*5=62
45+6*2=57
(4)、-3,-1,8,9,73,()
A 125 B 134 C 148 D 154
-3)^2+(-1)=8
-1)^2+8=9
8^2+9=73
9^2+73=154
(5)、0,-1,-1,2,19,()
4*3-1=11
3*11-1=32
11*32-1=351
(31)、32,81,64,25,(),1 A.0 B.6 C.1 D.7
2^5
3^4
4^3
5^2
6^1=6
7^0
(32)、7,8,9,24,100,(216) A.190 B.216 C.153 D.200
能被1,2,3,4,5,6整除
A,133/60 B137/60 C107/60 D147/60
B-A=1/2 1/3 1/4 1/5
(1)、3,5,8,13,20,(31) A.28 B.31 C.32 D.33
做差得到:2,3,5,7,11
(2)、8,12,16,18,20,(24) A.22 B.24 C.26 D.28
23+12=35
35-29=6
2008—3--6
(17)、7,8,6,8,8,4,(2) A.2 B.3 C.6 D.8
A*B取个位得到C
(18)、35,44,53,80,(71) A.71 B.91 C.102 D.99
3+5=4+4=5+3=8+0=7+1=8
数字推理知识点归纳总结
数字推理知识点归纳总结一、数字推理的基本概念数字推理是通过对数字和逻辑推理来解决问题的一种方法。
它包括数字的运算、逻辑关系、数列、概率统计等内容。
数字推理在数学学科中占据着重要的地位,它不仅可以帮助我们解决问题,还可以培养我们的逻辑思维能力。
1.数字的运算数字的运算是数字推理中最基本的内容。
它包括加减乘除以及一些复杂的数学运算。
通过数字的运算,我们可以得出一些数学结论,解决一些实际问题。
例如:如果有一个装满水的容器,里面有2升水,小张往里加了4升水后,容器里面有多少水?答案:容器里面有6升水。
2.逻辑关系逻辑关系是数字推理中非常重要的一个内容。
它指的是数字之间的一些规律和关系。
通过对数字之间的逻辑关系进行分析,我们可以找到一些规律,进而解决问题。
例如:1、3、5、7、9……这个数列中的下一个数是多少?答案:下一个数是11。
3.数列数列是数字推理中非常常见的内容。
它指的是一组数字按照一定的规律排列而成的序列。
通过对数列的规律进行分析,我们可以找到一些数学结论。
例如:1、2、4、8、16……这个数列中的下一个数是多少?答案:下一个数是32。
4.概率统计概率统计是数字推理中的另一个重要内容。
它指的是通过概率和统计的方法解决问题。
通过对数据的概率和统计进行分析,我们可以得出一些结论,解决一些实际问题。
例如:抛掷一枚硬币,正面朝上的概率是多少?答案:正面朝上的概率是0.5。
二、数字推理的解题方法数字推理是一个相对复杂的知识点,为了解决数字推理问题,我们需要掌握一些解题方法。
1.观察规律观察规律是解决数字推理问题的最基本的方法。
通过对数字之间的规律进行观察和分析,我们可以找到一些规律,进而解决问题。
例如:对于一个数列1、4、9、16、25……,我们可以通过观察规律发现,这个数列是每个数的平方,因此下一个数是36。
2.利用数学公式利用数学公式是解决数字推理问题的另一个重要方法。
通过对数学公式的应用,我们可以快速解决一些数字推理问题。
数字推理知识点总结
数字推理知识点总结一、数列与数学式1.1 数列的概念数列是按照一定的规律排列的一组数字。
数列中的每个数字称为项,根据项的位置可以分为首项、公差、末项等。
数列可以是等差数列、等比数列、Fibonacci数列等。
在数字推理中,理解数列的规律可以帮助我们预测下一个数字或者找出特定位置的数字。
1.2 数学式的推理数学式是用来表示数学关系的符号语言,包括代数式、方程式、函数式等。
在数字推理中,我们可以通过观察数学式的规律来进行推理。
例如,如果给出一个方程式和几个已知的解,我们可以推断出其他解的特点。
1.3 数学式的应用数学式不仅可以用来解决数字推理问题,还可以用来描述自然现象、物理规律、经济关系等各种实际问题。
熟练掌握数学式的应用可以帮助我们更好地理解和应用数字推理知识。
二、逻辑推理2.1 逻辑概念逻辑是研究思维过程中的推断、判断和演绎的一门学科。
在数字推理中,逻辑推理是非常重要的。
逻辑推理可以帮助我们从已知条件中得出结论,理解数学问题的本质。
2.2 逻辑推理规则在逻辑推理中,常用的规则包括假言推理、析取三段论、推理法则等。
这些规则可以帮助我们理清数字与数字之间的关系,从而解决数字推理问题。
2.3 逻辑推理的应用逻辑推理的应用不仅局限于解决数学问题,在日常生活和工作中也有很多实际的应用。
通过逻辑推理,我们可以更好地分析和解决问题,提高工作效率和推论能力。
三、数字之间的关系3.1 数字之间的规律数字之间的规律是数字推理的基础。
通过观察数字之间的关系,我们可以找出数字之间的规律,从而做出推断或者解决问题。
3.2 数字之间的计算在数字推理中,常常需要进行数字之间的计算。
熟练掌握加减乘除等基本运算,以及一些数学技巧和公式,可以帮助我们更好地进行数字推理。
3.3 数字之间的转化数字之间可以通过转化和变换得出新的数字关系。
例如,将十进制数转化为二进制数、将分数约分化简等。
在数字推理中,灵活掌握数字之间的转化关系可以提高解题效率。
公务员考试行测数字推理必知的30个规律
公务员考试行测数字推理必知的30个规律公务员考试中,数字推理是一个非常重要的考试科目。
数字推理是指通过对数字、图形、文字等信息的分析和推理,得出正确的结论。
在数字推理中,有很多规律需要掌握。
本文将介绍公务员考试行测数字推理必知的30个规律。
一、数字规律1. 数字序列规律数字序列规律是指在一组数字中,数字之间的关系所遵循的规律。
常见的数字序列规律有等差数列、等比数列、斐波那契数列等。
2. 数字排列规律数字排列规律是指在一组数字中,数字的排列顺序所遵循的规律。
常见的数字排列规律有逆序、顺序、交替等。
3. 数字替换规律数字替换规律是指在一组数字中,数字被替换成其他数字的规律。
常见的数字替换规律有加减乘除、平方、开方等。
4. 数字组合规律数字组合规律是指在一组数字中,数字之间的组合所遵循的规律。
常见的数字组合规律有排列组合、加减乘除等。
二、图形规律图形旋转规律是指在一组图形中,图形的旋转方向和角度所遵循的规律。
常见的图形旋转规律有顺时针旋转、逆时针旋转等。
6. 图形翻转规律图形翻转规律是指在一组图形中,图形的翻转方向和方式所遵循的规律。
常见的图形翻转规律有水平翻转、垂直翻转等。
7. 图形平移规律图形平移规律是指在一组图形中,图形的平移方向和距离所遵循的规律。
常见的图形平移规律有水平平移、垂直平移等。
8. 图形缩放规律图形缩放规律是指在一组图形中,图形的缩放比例所遵循的规律。
常见的图形缩放规律有放大、缩小等。
9. 图形填充规律图形填充规律是指在一组图形中,图形的填充方式和颜色所遵循的规律。
常见的图形填充规律有交替填充、渐变填充等。
三、文字规律10. 文字替换规律文字替换规律是指在一组文字中,文字被替换成其他文字的规律。
常见的文字替换规律有字母替换、数字替换等。
文字排列规律是指在一组文字中,文字的排列顺序所遵循的规律。
常见的文字排列规律有逆序、顺序、交替等。
12. 文字组合规律文字组合规律是指在一组文字中,文字之间的组合所遵循的规律。
数字推理十大题型秒杀技巧
数字推理十大题型秒杀技巧
1. 数字推理里的等差数列题型,那简直就是送分题呀!比如说1,3,5,7,这不是很明显的等差数列嘛,公差为2,下一个数不就是9 嘛!
2. 等比数列题型,哇塞,一旦发现规律就超简单的!像2,4,8,16,这倍数关系多明显呀,下一个肯定是 32 啦!
3. 平方数列题型,这可得瞪大眼睛找呀!像 1,4,9,16,不就是平方数嘛,下一个就是 25 咯!
4. 立方数列题型,这个有点难度哦,但找到了就很有成就感呀!比如1,8,27,64,那下一个就是 125 呀!
5. 组合数列题型,就像玩拼图一样有趣呢!比如奇数项和偶数项各有规律,找到就轻松解题啦!
6. 数字拆分题型,把数字拆开来分析,哎呀,真的很有意思!像34 可以拆成 3 和 4 嘛,然后再找规律。
7. 分数数列题型,这可不能被分数吓到呀!比如1/2,2/3,3/4,那下一个不就是 4/5 嘛!
8. 根式数列题型,虽然看着有点复杂,但找到了根号里的规律就迎刃而解啦!
9. 周期数列题型,就像循环播放的音乐一样有规律呀!比如1,2,
3,1,2,3,那下一个当然还是 1 啦!
10. 递推数列题型,一环扣一环的,多有意思呀!像前面两个数相加等于后面一个数,找到这个关系就好办啦!
我觉得呀,掌握了这些数字推理的秒杀技巧,就像是拥有了一把打开数字世界大门的钥匙,能让我们在数字的海洋里畅游无阻!。
数字推理口诀
数字推理口诀
整体观察分AB,线性趋势明走A,
增幅一般做加减,做差不会超三级,减幅同样此道理,典型数列熟记心。
增幅较大做乘除,做商同样不超三。
增幅很大想幂次,常用幂数要熟悉。
线性趋势弱走B,要找视觉冲击点,何为此点如何找,特殊数字勿放过。
列长项多6以上,考虑分组或隔项。
摇摆数列忽大小,基本思路是隔项,若要见到双括号,一定隔项成规律。
摇摆双括同时出,义无反顾找隔项。
整数分数混着搭,提示要做乘除法。
全是分数先约分,能划一时先划一,突破口在固定数,分子、母与项有关。
正负交叠要做商,肯定没错不夸张。
根数整数混搭时,先将整数化根数,号外数字移号里,此为一定是药方。
遇到根数加减式,平方差公式帮忙。
递推数列很难做,五则运算和乘方。
看到纯小数数列,整、小部分分开想。
似连续而不连贯,考虑质数或合数。
数字很大3位上,考虑微观是抓手。
数列如有公约数,约去公因是正法。
相邻项有公约数,因式分解可办好。
以上方法皆受挫,除3 除 5看余数。
如若还是想不出,蒙猜办法可帮忙。
选项整数小数混,小数多半是答案。
数项负数选项同,负数多半是选择。
另外直猜接近值,肯定八九不离十。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题 目A B C D 1 1 2 3 6 12 (B)20241836
1+2=3,1+2+3=6, 1+2+3+6=12,……
22,2,3,6,15 (B)30451824二次数列(等比加等差):后项除以前一项:得到, 1 , 1.5 , 2 , 2.5 , 3 38,14,26,50,(B)7698100104
后项=前项*2-2
42, 6, 13, 39, 15, 45, 23
(D)
46666869
每两项一组 , 均为等比
59,15,22,28,33,39,
55(B)
60616658
每两项一组 , 均为等差
6(D ),853,752,561,154235952358352每个数的前两位的差等于第三位,所以符合的应该是D
75, 9, 15, 17, ( A)21243234
均为奇数
81, 3, 15 ( C)4648255256
1、均为奇数;
2、2^1-1=1;2^2-1=3;2^4-1=15;2^8-1=255
95, 13, 137, 23,(D
)
85869197
均为质数
1020,22,25,30,37,
(C)
39454851差是:2,3,5,7,11均为质数
118,17,24,37,(A)48505369
3、4、5、6、7、8的平方+1、-1
12-7,0,1,2,9(D)12182428
-2、-1、0……的3次方+1
1363, 26, 7 , 0, -2, -9, (D)-18-20-26-28 N的3次方-1,N分别取 4,3,2,1,-1,-2 ,-3
140,6,24,60,120,(C)275279210226
分别为1、2、3、4……的三次方减去本身
150 , 10, 24, 68, (B)96120194254 1^3-1=0;2^3+2=10;3^3-3=24;4^3+4=68;5^3-5=120
161/2,1/9,1/28,(A)1/651/321/561/48
分母为1、2、3、4的三次方+1
173,7,16,107,(A )1707170410861072四个选项也比较大,但可以看出这些数和一些数的乘方离得较远,但我们发现16与107的积和1707相近,相差5,往前推发现,前两项的积减去5就等于后
一项
181,32,81,64,25,(B),
1
561012
数字由小到大再到小,考虑使用乘方规律。
底数分别是1,2,3,4,5,6,7对应的指数分别是6,5,4,3,2,1,0
19-2,-8,0,64,(D )64128156250 1,2,3,4、5立方的各项,对应乘以另一个数列-2,-1,0,1、2所得
202,3,13,175,(B )30625306513075930952
四个选项的数字很大,必用乘方规律。
可以看出175的平方是30625,但不适用前面项,又知30651比175的平方大26,恰好是前一项13的2倍。
前项的2倍
加上后项的平方等于第三项
211,7,8,57(C)123122121120
1^2+7=8;7^2+8=57;8^2+57=121
224,12,8,10,(C)68924 1、4+8=12,12-4=8,8+2=10,10-1=9其中8,4,2,1成等比;2、前2项相加/2 =
后一项
232,12,30,(D)50657556约2 数列为1,6 ,15;1*1=1 2*3=6 3*5=15 4*7=28
241, 2,8,28,(C)55667788
1=1×1 ; 2=1×2;8=2×4;28=4×7; 77=7×11 其中1, 1, 2, 4, 7 (差是 0, 1, 2, 3) ; 1, 2 ,4 ,7 ,11 (差是1, 2, 3, 4)所以是: 7*11=77
255, 11, 24 , 51, (C)6257106110 5*2+1=11 ; 11*2+2=24 ; 24*2+3=51 ; 51*2+4=106
26 2,8,24,64 (D)8898159160
先约2 ,变成 1,4 ,12 ,32;1*2+2=4 4*2+4=12 12*2+8=32
27 6 , 15,35,77 (C)161162163164
A*2+3,+5,+7
2895、88、71、61、50、
(D)、32、16
40393837隔项看,差值成等差数列
29
30
2345678911121314
方249162536496481
121144169
196
方382764125216343512729
1331―-
-161718192122232426272829
方2256289324361441484529576
676729784
841
等差数列:a n=a1+(n-1)×d ;S=a1n+n×(n-1)d / 2等比数列:a n=a1q n-1 ;S=。