第七章 消除反应
消除反应
化学术语
01 内容简介
03 反应速率 05 反应机理
目录
02 分类 04 消除规则
消除反应又称脱去反应或是消去反应,是指一种有机化合物分子和其他物质反应,失去部分原子或官能基 (称为离去基)的有机反应。消除反应发生后,生成反应的分子会产生多键,为不饱和有机化合物。消除反应可 使反应物分子失去两个基团(见基)或原子,从而提高其不饱和度。
内容简介
消除反应 (elimination reaction)又称脱去反应或消去反应,是一种有机反应,一般为一有机化合物分子 和其他物质反应,失去部分原子或官能团(称为离去基)。反应后的分子会产生多键,为不饱和有机化合物。消 除反应分为下列两种:β消除反应:较常见,一般生成烯类。α消除反应:生成卡宾类化合物。离去基所接的碳 为α碳,其上的氢为α氢,而隔壁相邻接的碳及氢则为β碳及β氢。化合物会失去β氢原子的称为 β消除反应, 会失去α氢原子的称为α消除反应。
有些反应物在 β碳原子上连有比氢更容易被路易斯碱(见酸碱理论)作用的基团或者根本没有 β氢,它们 就有可能发生不涉及失去 β氢的消除。连二卤代烷在碘离子或锌的作用下发生的脱卤反应和 α,α-二烷基β -卤代酸的脱羧反应都属于这种情况。
谢谢观看
在E1C和E1CB中,反应均分两步进行,各自的活性中间体碳正离子和碳负离子都具平面结构,一般不存在立 体选择性问题。但在E2中,只有离去基团、α和β碳及β氢四者处于共平面的空间位置,才有利于协同反应的进 行,而符合这种要求的空间排列有两种:离去基团和β氢在α、β碳同一边时,发生顺式消除;离去基团和β氢在 α、β碳的两边时,发生反式消除。在大多数情况下,E2为反式消除,但不排除顺式消除的可能性,甚至有些反 应物由于结构的限制,只能发生顺式消除。
第七章 卤代烃亲核取代和β-消除
(C有H3助)3C于Br 1分×散10电8
荷,使
=
CH2=CCHH2–=CCHH2+>R3C+>R2CH+>RCCHH2 2+>CH过 稳3+渡 定态 。
按SN2反应活性:烯丙型>CH3X >伯>仲>叔>乙烯型
CH3Br CH3CH2Br (CH3)2CHBr (CH3)3CBr
SN2速率 150
1.0
CH3CH2Br CH3CH2CH2Br (CH3)2CHCH2Br (CH3)3CCH2Br
1.0
0.28
0.030
0.000042
《有机化学》教学课件(76-04-首页
凡是有利于生成C+,使C+稳定的因素,都有利于SN1。 ① R–X + AgNO3 乙醇 R–ONO2 + AgX↓ 反应活性:叔>仲>伯>CH3X (都按SN1反应) Ag+能够促使C+的生成 极性溶剂,通过溶剂化作 用使C+稳定 ② R–X + NaI 丙酮 R–I + NaX
0.01
0.001
用空间效应解释——空间阻碍越大,越不利于SN2。
《有机化学》教学课件(76-04-1.0版)—第十九讲
不同烃基结构的反应趋势
R3CX SN1
R2CHX
RCH2X
返回首页
SN2 CH3X
SN1
SN1 SN2
SN2
CH3 CH3C–CH2Br
H2O
? SN1 、SN2
CH3
空间阻碍对SN2反应速率的影响
–CH2CH2CH3 Br2
hv
–CH=CHCH3
碱性:C2H5ONa>NaOH
高等有机化学消除反应
消除反应在有机合成中应用
形成碳碳双键或三键
立体选择性合成
通过消除反应可以方便地构建碳碳双 键或三键,这是有机合成中常用的手 段之一。
一些消除反应具有立体选择性,可以 用于合成具有特定立体结构的化合物。
构建复杂分子骨架
消除反应还可以用于构建复杂分子的 骨架,例如通过分子内的消除反应可 以形成环状化合物。
影响因素及改进方法
01
底物结构
底物结构对消除反应有很大影响,如卤代烃中卤素原子的种类和位置、
醇类化合物中羟基的位置等都会影响反应速率和产物分布。
02
反应条件
反应温度、溶剂种类、碱性强度等反应条件也会影响消除反应的进行。
03
改进方法
针对底物结构和反应条件的影响,可以采取相应的改进方法,如优化底
物结构、调整反应条件、使用催化剂等,以提高消除反应的效率和选择
A
B
C
D
催化剂种类和用量
对于使用过渡金属催化剂的烯烃消除反应, 催化剂种类和用量也是影响反应效率和选 择性的重要因素之一。
反应温度和溶剂
反应温度和溶剂对烯烃消除反应也有重要 影响,需要根据实际情况进行优化选择。
03 炔烃和芳香族化合物消除 反应
炔烃和芳香族化合物消除特点
高选择性
炔烃和芳香族化合物的消除反应 通常具有高度的选择性,能够生 成特定的产物。
消除反应特点
反应后生成物分子中的化学键总数减少,多数消除反应为可逆反应,甚至完全 可逆。
消除反应分类及机理
分类
根据反应物和产物的结构以及反应机 理的不同,消除反应可分为E1、E2 、E1cb三种类型。
机理
消除反应的发生往往伴随着碳正离子 、碳负离子、自由基等中间体的生成 ,这些中间体的稳定性和反应活性决 定了消除反应的速率和选择性。
消除反应
主要
与例2底物相同
KOH为强碱
可能经过E2 + E1 机理
®山东农业大学化学学院
例4:解释下列消除产物的生成机理
CH3 EtOH CH CH3 CH3 H3C C C CH3 CH3 + CH3 H2C C CH CH3 CH3
H3C
C
CH3 Br
E1机理+ 正碳离子重排
a
Br CH3 H3C C H3C CH Br CH3 - Br H3 C CH3 C CH3
CH3 (H3C)2HC CH3 CH3
C2H5O (H3C)2HC
+
Cl I CH3 Cl (H3C)2HC II
(H3C)2HC
25%
75%
C2H5O (H3C)2HC
CH3
消除速率
I : II = 200 : 1
唯一产物
®山东农业大学化学学院
化合物I的反应解释
稳定的构象
a CH3 C2H5O H H b
Ph
H
为E2反式消除机理
Ph H3C Br
b a
EtO H H
H
Ph H Br
EtO Ph Ph
H H CH3 Br Ph C H3C C H Ph
Ph
Ph H3C
伞形式
Newman投影式
转变为H和Br反式共平面构象
®山东农业大学化学学院
例:解释下列两个异构体在相同反应条件下的不同反应结果
(环状化合物的E2消除)
(89.2%)
Ar +
(10.8%)
Ar
Ha OTs
Ha与芳环同碳相连,其活泼性比Hb高, ®山东农业大学化学学院 故发生顺式消除。
第七章 消除反应
υ=k[RX][B:-]
双分子消除历程,二级反应
2. 反应活性(Reaction activity )
离去基团:RI > RBr > RCl
(与SN2反应相同)
进攻试剂的碱性越强,则反应活性越高。 如:HO﹣ > CH3COO﹣ (与SN2反应有所不同) 反应底物卤代烃的活性: 3º >1º >2º
1. 羧酸酯的热消除:
在无外加试剂存在下,通过加热,失去β-氢和羧 酸根,生成烯烃。
H O H O C H R R H H O + H O C R
R
H
H O
H C R
R
H
H
H O
反应特点:1) 高温,不需碱作催化剂 2) 环状过渡态机理 3) 通常是顺式消除。
环状化合物(Ⅰ)的热消除,只得化合 物(Ⅱ),为顺式消除。
(I) (II)
L
(2)
L: S(CH3)2 I / II 6.7
底物结构的影响
N(CH3)3 ~50
(CH3)3CCH2C(CH3)2 Br
EtO
(CH3)3CCH2C CH2 CH3
4.立体化学( Stereochemistry)
消除反应立体化学的确立:
(1)反应物中H和L 的空间关系:H和L可 在C-C键的两侧或同一侧,分别称为反式消 除和顺式消除。 (2)产物中取代基的空间关系:反应产物 是以顺式还是反式异构体为主
第七章 消除反应
Elimination Reaction
定义: 消除反应:是指从有机分子中消除去一个 小分子或两个原子或基团,生成双键、叁 键或环状结构化合物的反应。 分类: (1)α-消除(或1,1-消除)反应 H
第七章 消除反应汇总
E1 历程
因为先生成碳正离子,顺、反消除均能发生, 同时得到Z和 E烯烃,没有立体选择性。 但是位阻大的基团CH C CH2CH3
Cl
CH3
CH3
H3CH2C
CH2CH3
minor
CH3CHCH2CH3 - OCH3
Br
CH3CHCH2CH2CH3 - OH
Cl CH3
CH3CCH2CH3
- OH
Cl
CH3CH=CHCH3 + CH2=CHCH2CH3
80%
20%
CH3CH=CHCH2CH3 + CH2=CHCH2CH2CH3
67%
33%
CH3 CH3C=CHCH3 +
70%
3º苄基型 > 3º烯丙型 > 2º苄基型 > 2º烯丙型 >3º > 1º苄基型 ~ 1º烯丙型 ~ 2º> 1º> 乙烯型
(与SN1反应相同)
卤代烃: RI > RBr > RCl > RF
(与SN1反应相同)
醇的脱水反应往往在酸性条件下,先质子化 后进行,因此醇的脱水反应以E1反应为主。
CH3 CH2=CCH2CH3
30%
过渡态分析
影响E2反应区域选择性的因素:
1)碱的结构( Base Structure)
CH3 CH3CH-CCH3 + RO -
CH3 Br Base
CH3CH2O -
CH3 CH3C=CCH3 +
CH3 More substituted
product
79%
CH3 CH3CHC=CH2
(与SN1反应相同)
3. 区域选择性 ( Regiochemistry )
消除反应的概念
消除反应的概念1. 哎呀,小伙伴们!今天咱们来聊个听起来挺高大上的话题——消除反应。
别被这名字唬住啦,其实它就像是化学界的"和事佬",专门调解那些闹别扭的化学反应。
咱们一起来瞧瞧这个有意思的概念吧!2. 说到消除反应,咱们得先搞清楚它是干啥的。
简单来说,就是让两个原本要打架的化学物质变得和和气气的。
就像是化学界的"和平使者",把两个剑拔弩张的家伙拉到一起,说:"来来来,都别吵了,握个手言和吧!"3. 这消除反应啊,说白了就是在一个反应里同时进行两个相反的过程。
听起来有点绕口是不是?别着急,咱们打个比方。
就像是你左手拿着个苹果,右手拿着个梨,然后两只手同时往嘴里塞。
结果呢?你嘴里既有苹果味儿又有梨味儿,但是谁也不压倒谁,就这么和谐共处了。
4. 在化学反应中,消除反应就像是两个小朋友在玩跷跷板。
一个上去,另一个就下来,反反复复,谁也不让谁。
最后呢?两个小朋友都玩得开心,谁也不吃亏。
这就是消除反应的妙处,让两个本来要打架的反应和平相处,谁也不欺负谁。
5. 咱们再举个例子。
想象一下,你有一瓶可乐和一包曼妥思。
正常情况下,把曼妥思丢进可乐里,那场面,啧啧,简直就是小型喷泉啊!但是如果咱们来个消除反应,就好比在可乐里加了个"定心丸",曼妥思进去了,可乐连个泡都不冒。
这就是消除反应的魔力!6. 说到这儿,有小伙伴可能要问了:"这消除反应听起来挺神奇的,那它在实际生活中有啥用啊?"哎呀,这问题问得好!消除反应在工业生产中可是大有用处。
比如说,在制造某些化学品的时候,如果反应太猛烈,可能会把设备给炸飞喽。
这时候,消除反应就像是一个温柔的刹车,让整个过程变得平稳又安全。
7. 再给大家举个有意思的例子。
想象一下,你在泡澡,水温刚刚好。
这时候你想加点热水,但又怕水变太烫。
这时候,你一边放热水,一边放冷水,保持水温不变。
这不就是生活中的消除反应吗?两个相反的过程同时进行,最后达到一个平衡。
消除反应
α-消除 :从同碳原子上消除两个原子或基团,
形成卡宾(碳烯)。
C H X C:+ H-X (1,1-消除)
CHCl3 + (CH3)3COK 如:
: CCl2 +
(CH3)3COH + KCl
γ -消除 :消除的两个原子或基团在1,3-位上。
X H C—R R—C H CH2 H
O 如:NaOH + ClCH2-CH2CH2—C—CH3 γ β α
例如:1-溴-1,2-二苯 丙烷按E2历程进行消除 反应时,其中一对对映 体只生成顺式-1,2-二苯 丙烯,另一对对映体只 生成反式-1,2-二苯丙烯。
B H CH3 Br C6H5 H H C6H5 CH3 H Br C6H5 C6H5 CH3 C6H5 H C6H5
(1R,2R)
C6H5 CH3 H Br H C6H5
当可以形成稳定的共轭烯烃,则以形成共轭烯烃为主要产物。
5.消除反应的立体化学
在E2消除中,过渡态所涉及五个原子(包括碱) 必须位于同一平面。
B H C C L
B H L C C
C
C
(I)
(II)
在(I)中H和L从相反方向消除称为反式消除或 对向消除,而(II)称为顺式消除或同向消除。一 般情况下反式消除更有利,因为在( I )中为对位 交叉构象,这种过渡态的能量比重叠式构象(II) 所需的能量小。
进行热消除反应的底物: RCH2CHOCOCH3 反应特点:1)不需碱作催化剂 1 R S 2)环状过渡态机理 RCH2CHOCSCH3 3)通常是顺式消除。 R1
热消除遵循Hofmann规则,优先得到取代程度较低的烯烃
CH3 CH3 CH CH CH3 OCOCH3 CH3 H2C CH CH + CH3 (80%) CH3 CH C (20%) CH3 CH3
第七章消除反应(完)
B
H
X
BH
消去的 H 和 X 必须在
同一平面上,才能满足
逐渐生成的 p轨道最大
X
限度的交叠。
交叉式构象 H与X为反式共平面
负电荷相距较远
考虑顺式共平面消除(顺式消除)
B
H
X
CC
BH
X
CC
负电荷相距较近, 有排斥作用
CC
X
B
H
BH
X
H与X为顺式共平面
重叠式构象, 较不稳定。
结论:顺式消 除比反式消除 难发生
1、E1历程 遵从Saytyeff规则,形成热力学稳定的烯烃, 如果空阻过大时则遵从Hofmann消除
(CH3)3CCH2
CH3 C Cl NaOH
H2O CH3
(CH3)3CCH2
C CH2+CH3 CH3
CH3 C CH=CMe2 CH3
2、E1cb历程
遵从Hofmannn规则
H R' R CH2 C CH B-
B: 中性或带负电荷,如:OR-, OH-, H2O等。 L: X,SO2R, NO2, CN, NR3+,SR2+等。
动力学为二级动力学,反应速度与反应物的 浓度有关,也与碱浓度有关。
V=k[反应物] [B]
* *反反应应为为协协同同反反应应,,氢氢提提取取和和离离去去基基团团的的脱脱掉掉发发生生在在同同一 一步步骤骤,,从从来来没没有有鉴鉴定定到到过过中中间间体体。。
-E2可变过渡态理论 协同的一步反应,无任何中间体,而E1和E1cb均为
二步反应。多数情况下E2键的断裂和形成并非协 同的,而且有先有后,为此提出了可变过渡理论。
过渡态中C-H键断裂程度增加
消除反应机理(课堂PPT)
.
2
-消除反应
-消除反应有E1、E2 、E1cb三种反应机制
.
3
E1反应机理
进攻-H
慢
快
E代表消除反应,E1表示单分子消除反应。1代表单分子过程
E1反应分两步进行:
第一步是中心碳原子与离去基团的键异裂,产生活性中间体碳正离子。
这是速控步。 第二步是碱提供一对孤电子,与碳正离子中的氢结合,碳正离子消除一个 质子形成烯。这是快的一步。
CH3
100~200o C
RCH=CH2 + (CH3)3N + H2O
季铵碱在加热条件下(100~200C)发生热分解 生成烯烃的反应称为霍夫曼消除反应。霍夫曼消除反 应遵循霍夫曼规则。
.
13
Hofmann(霍夫曼)规则
四级铵碱热消除时,若有两个-H可以发生 消除,总是优先消去取代较少的碳上的-H。
CH3 CH3C CHCH3 Br
H
C H 3 C H 3C C H C H 3
H
C H 3
O H
C H 3C C H C H 3
H
.
C H 3 C H 3 CC H C H 3
9
RO H
a b
卤代烷E2反应的消除机理
RO-
c
H
c
d
d
X
a b
X
a
c
+ ROH + X-
b
d
反应机理表明 *1 E2机理的反应遵循二级动力学。 *2 卤代烷E2反应必须在碱性条件下进行。 *3 两个消除基团必须处于反式共平面位置。 *4 在E2反应中,不会有重排产物产生。
生成取代较多的稳定烯烃,这称为札依采夫规则。大 多数卤代烷的消除反应遵循札依采夫规则。
消除反应的反应机理
消除反应的反应机理
消除反应是一种化学反应,其目的是通过引入一个还原剂或者通过其他方法,将一个化合物中的一个功能团(如羟基、卤素等)去除或转化为另一种化合物。
消除反应的反应机理取决于具体需要发生的消除反应类型,常见的消除反应包括酸碱消除、酯消除、酮消除等。
以酸碱消除为例,反应机理如下:
1. 首先,酸或碱(如HCl、NaOH)会与目标化合物发生反应,生成一个中间产物。
2. 中间产物会经历一个消除反应,常见的有迁移消除反应(一般发生在α位氢上)。
3. 消除反应会断裂原有的化学键,生成新的化合物和副产物。
4. 最后,副产物再次参与反应,与酸或碱发生反应,重新恢复为起始物质。
总的来说,消除反应的反应机理是一个多步骤的过程,其中包括酸碱的作用、中间产物的形成、消除反应的发生以及最终产物的生成。
具体的机理还会受到反应条件、溶剂以及反应物的结构等因素的影响。
《消除反应》课件
化学实验
消除反应常常用于化学实验中,帮助学生理解化 学反应的过程和特性。
Байду номын сангаас
总结
消除反应在工业生产和化学实验中扮演着至关重要的角色。了解消除反应的 分类和应用领域有助于更好地理解化学反应的本质。
类型分类
消除反应还可以根据反应类型进行分类,包括 氧化还原反应、酸碱反应、置换反应等。
具体案例分析
1
酸碱中和反应
介绍酸碱中和反应的过程,以及产生的产物。
2
金属与酸反应
分析金属与酸发生消除反应时,产生的气体和其他产物。
3
燃烧反应
讲解燃烧反应中产生的气体和其他副产物。
消除反应的应用
化肥生产
消除反应在化肥生产过程中扮演着重要角色,提 高了农作物的产量和质量。
消除反应
介绍《消除反应》PPT课件,包括定义、意义、分类、案例分析和应用。让 你了解化学反应中消除反应的重要性及应用领域。
前言
消除反应是化学反应中常见的一种,对工业生产和化学实验都具有重要意义。 我们将在本课件中深入探讨它的背景和重要性。
什么是消除反应
消除反应是指反应物转变为产物时,分子中的某些组分被消除的过程。这个 过程通常会伴随着能量的释放。
消除反应的意义
工业生产
消除反应在工业生产中起到了至关重要的作 用,例如在化肥合成、燃料燃烧等过程中。
化学实验
化学实验中常常会用到消除反应,如酸碱反 应、金属与酸反应等,它们都是消除反应的 具体应用。
消除反应的分类
物理状态分类
根据反应物和产物的物理状态不同,消除反应 可以分为气体到气体、液体到气体等几种不同 的类型。
有机化学中的消除反应
有机化学中的消除反应消除反应是有机化学中一种重要的反应类型,它可以通过去除某个分子中的原子或官能团来实现。
消除反应常常涉及酸碱中和或者环境改变,产物主要由所消除的官能团和其余分子组成。
消除反应可以分为酸性消除和碱性消除两种类型。
下面将详细介绍这两种消除反应以及它们在有机合成中的应用。
一、酸性消除酸性消除是指在酸性条件下进行的消除反应。
最常见的酸性消除是β-消除,它是指在有机分子中,α位和β位存在可去质子的情况下,通过去除β位的质子而形成双键。
酸性消除常常利用酸或者酸性离子交换剂作为催化剂。
例如,酚的β-消除反应可以通过酸性条件促使酚中的-OH官能团失去质子,生成共轭双键。
酸性消除在有机合成中有着广泛的应用。
例如,β-消除在合成不饱和化合物和芳香烃中具有重要作用。
通过选择不同的酸性条件,可以实现特定位置的消除反应,从而得到目标化合物。
二、碱性消除碱性消除是指在碱性条件下进行的消除反应。
最常见的碱性消除是去质子化反应,它是指通过碱性条件下引发质子转移,使得某个位置失去质子,形成双键或者其他官能团。
典型的碱性消除反应包括碱性去质子化、酮醇互变异构化等。
碱性消除在有机合成中也有着广泛的应用。
例如,碱性去质子化反应可以用于合成烯烃、炔烃和环状化合物等化合物。
此外,碱性消除还可以用于构建碳-碳或碳-氧键,以实现特定的官能团转换。
总结:有机化学中的消除反应包括酸性消除和碱性消除两种类型。
酸性消除通过酸性催化剂促使分子中的原子或官能团失去质子,形成双键或者其他官能团。
碱性消除则是通过碱性条件下引发质子转移,从而实现化合物的转化和官能团的改变。
这些消除反应在有机合成中具有重要的应用,能够实现特定位置的官能团转换,为有机化学研究和合成提供了重要的方法和手段。
以上就是有机化学中的消除反应的相关内容。
消除反应作为一种重要的反应类型,具有广泛的应用领域。
通过深入理解消除反应的机理和条件优化,可以为有机合成中的目标化合物的合成提供更有效的途径。
化学反应中的消除反应
化学反应中的消除反应化学反应是我们生活中常见的一种现象,其本质是原子或者分子之间的相互作用所引起的化学变化。
在原子或者分子之间反应产生化学键的基础上一般由两种类型的反应组成,分别是合成反应和分解反应。
但是还有一种反应类型也十分重要,即消除反应。
消除反应是一种分解反应,但是与一般的分解反应不同,它是不可逆转的,而且反应物中的原子或者分子不是直接分解为它们的组成成分,而是产生了一些气体或者液体,在这个过程中,一些键断裂,反应物中的离子以及中间物被消耗殆尽或者被转化。
从这个意义上来看,消除反应是一种特殊的分解反应。
除了其表面上看似与分解反应相似的特点,消除反应还有以下几个特征:反应产物的分子量较小,产物常常是气体或者液体,消除反应是不可逆转的。
由于产生了气体或者液体,使得反应速率非常快,从而产物的产量也比其他类型的反应更为可观。
消除反应与生活中的许多现象息息相关。
例如,一些消毒剂就是利用消除反应来杀灭细菌。
在消毒过程中,消毒剂在细胞中产生了氧化作用,使得有害微生物被消耗殆尽。
在这个过程中,消毒剂与水反应,产生了氧气和游离的负离子,从而氧化了微生物。
除了消毒剂,一些药物也是基于消除反应来发挥作用的。
例如,硫磺酸在皮肤表面产生了消除反应,从而有效地杀死了一些真菌。
硫磺酸反应的产物是二氧化硫和水。
另一个例子是在治疗变形虫感染的过程中,喹呤类药物也是基于消除反应来杀死变形虫的。
工业上的许多过程也利用了消除反应的特点。
例如,在玻璃制造过程中,利用了氟化氢气体的消除反应来腐蚀玻璃并产生光泽。
还有,在生产化学品和有机化合物的过程中,工人们利用消除反应来加快合成的速度,提高产率。
除了以上这些应用外,消除反应在许多学科领域中也有重要作用。
例如,在完成有机化学实验时,有时需要利用消除反应来产生等量的气体。
还有,化学反应动力学中的反应机理研究也需要利用消除反应来分析反应过程中发生的化学反应。
总之,消除反应是一种重要的反应类型,用于生产、医疗和基础研究。
消除反应的名词解释
消除反应的名词解释
朋友!今天咱们来聊聊消除反应。
消除反应啊,简单说就是在化学反应中,分子去掉一些部分,形成新的分子。
就好像一个组合,有人退出了,组合就变了个样。
比如说,从一个有机化合物里,去掉一个小分子,像去掉个水分子或者卤化氢分子啥的。
这一去掉,原来的分子结构就发生了变化,变成了新的化合物。
想象一下,这就好比你整理房间,把一些不需要的东西扔出去,房间的布局就不一样了,变得更清爽、更有条理。
消除反应也有不同的类型和规则,就像不同的整理房间方式,有的是按照一定顺序扔东西,有的是挑着特定的东西扔。
消除反应就是化学世界里的一种“变身魔法”,让分子通过去掉一部分,实现华丽的转变!怎么样,这下明白了吧?。
消除反应机理
伯醇E2历程:
H CH3CH2OH
CH3CH2OH2
H2O H2Oδ
CH2 H
CH2 δOH2
CH2 CH2 H2O
H3O
实例 E2
CH3
H
H
C2H5OH
NaOH
H
CH3
CC
CH3
H3C
Br
实例 霍夫曼消除反应 E2
[RCHN+(CH3)3]OH-
CH3
100~200o C
RCH=CH2 + (CH3)3N + H2O
季铵碱在加热条件下(100~200C)发生热分解 生成烯烃的反应称为霍夫曼消除反应。霍夫曼消除反 应遵循霍夫曼规则。
Hofmann(霍夫曼)规则
四级铵碱热消除时,若有两个-H可以发生 消除,总是优先消去取代较少的碳上的-H。
Hofmann规则:含有β-氢原子的季铵碱分解时,发 生E2反应主要生成分子量较小、支链较少的烯烃
因为反应速率只与第一步有关,第一步是单分子过程,所以反应动力学上 是一级反应。
E1反应机理
• 消除反应的决速步骤是卤烷的离解,生成碳正离子 • 卤烷消除反应活性顺序为:
R3CX > R2CHX > RCH2X • 碳正离子可能发生重排 • 当消除有多种可能时,产物符合札依采夫规则
札依采夫规则
在β -消除反应中,含氢较少的β 碳提供氢原子, 生成取代较多的稳定烯烃,这称为札依采夫规则。 大多数卤代烷的消除反应遵循札依采夫规则。
-消除反应
-消除反应有E1、E2 、E1cb三种反应机制
E1反应机理
进攻-H
慢
快
E代表消除反应,E1表示单分子消除反应。1代表单分子过程
消除反应
H
C
H2 C
H
卡宾的反应
(2) 与碳碳双键的加成
CH3CH = CHCH3 + CH2N2
光
CH3CH
CHCH3 ( 80%)
CH2 + CH2
二环 4,1,0 庚烷
在烯烃存在下的卡宾,可与双键加成得到环丙烷的衍生物。
HCCl3 + (CH3)3COK CCl2 + (CH3)3C-OH + KCl
CH2N2 重氮甲烷
紫外光 或加热
CH2 + N2
卡宾的结构
R
'
R
三线态
卡宾的反应
(1) 插入反应(insertion) 卡宾能把自身插入到大多数分子的C-H键中去。
C H+ CH2 C H2 C H
C
H+
CH2
C C H2
E1CB反应:生成Hofmann烯
N(CH3)3OH CH3 CH2 CH CH3 CH3 CH2 N(CH3)3 CH CH2
CH3
CH2
CH
CH2 95%
E2:大多数消除遵守Saytzess规则,但也有例 外(即趋向与Hofmann规则)
几个特殊例子:
CH 3(CH 2)3CHCH 3 L
CH3CH=C(CH3)2 + CH3CH2 90%
C CH3
CH2 10%
• Hofmann法则:季铵碱分解时,生成双键碳 原子上烷基最少的烯烃。
CH3CH2CHCH3 HO N(CH3)3 △ CH3CH2CH=CH2 + CH3CH=CHCH3 + N(CH3)3 95% 5%
E1:主要是生成Saytzess烯
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3º 苄基型 > 3º 烯丙型 > 2º 苄基型 > 2º 烯丙型 >3º > 1º 苄基型 ~ 1º 烯丙型 ~ 2º> 1º> 乙烯型
(与SN1反应相同)
卤代烃: RI > RBr > RCl > RF
(与SN1反应相同)
醇的脱水反应往往在酸性条件下,先质子化 后进行,因此醇的脱水反应以E1反应为主。
在碱的作用下,C - L 键的断裂与C - H 键的断 裂同时进行,这是一个协同的双分子反应。
υ=k[RX][B:-]
双分子消除历程,二级反应
2. 反应活性(Reaction activity )
离去基团:RI > RBr > RCl
(与SN2反应相同)
进攻试剂的碱性越强,则反应活性越高。 如:HO﹣ > CH3COO﹣ (与SN2反应有所不同) 反应底物卤代烃的活性: 3º >2º > 1º
υ =k
C C H L
单分子消除反应
E1 历程的特点:
1.易于解离为碳正离子的化合物,消除反应 按E1历程进行。如叔卤代烃 2.E1和SN1为竞争反应。 通常高温和强碱有利于E1反应,但在极性 溶剂及没有强碱存在时, SN1反应快,且 产物稳定。 3.有利于E1反应的因素:使正碳离子稳定的 给电子基团;好的离去基团,电离能力强 的高介电常数极性溶剂。
第七章 消除反应
Elimination Reaction
定义: 消除反应:是指从有机分子中消除去一个 小分子或两个原子或基团,生成双键、叁 键或环状结构化合物的反应。 分类: (1)α-消除(或1,1-消除)反应 H
R C R
X
R C R
如: CH2I2+Zn → :CH2
(2)β-消除(或1,2-消除)反应
H CH3CHCH2CH2 CH2
NH2(CH3)2
例如:
2. 氟代烃,因为氟的碱性强,难以离去,发生似 E1cB反应,得到反Zaitsev规则为主的烯烃
3. 区域选择性 ( Regiochemistry )
一般遵循反Saytzeff规则,生成少取代烯烃为主(稳定)。
E2 Reaction
1.反应机理(Mechanism )
2、E1cB 历程
双步反应: 第一步:反应物先与碱作用,失去β氢原子, 生成反应物的共轭碱负碳离子; (速率决定步骤) 第二步:负碳离子失去 L并生成π键
反应速率不仅与反应物浓度成正比,也与碱 的浓度有关。二级反应
E1cB反应:单分子共轭碱消除反应 (碳负离子历程)
容易发生E1cB反应物质具有的特点:
(I) (II)
L
(2)
L: S(CH3)2 I / II 6.7
底物结构的影响
N(CH3)3 ~50
(CH3)3CCH2C(CH3)2 Br
EtO
(CH3)3CCH2C CH2 CH3
4.立体化学( Stereochemistry)
消除反应立体化学的确立:
(1)反应物中H和L 的空间关系:H和L可 在C-C键的两侧或同一侧,分别称为反式消 除和顺式消除。 (2)产物中取代基的空间关系:反应产物 是以顺式还是反式异构体为主
E1 历程
因为先生成碳正离子,顺、反消除均能发生, 同时得到Z和 E烯烃,没有立体选择性。 但是位阻大的基团处于双键的两侧是主产物。
CH3 CH3 CH3 CH3CH2CH C CH2CH3 Cl H3CH2C major H3CH2C E1 CH3 minor
CH3 CH2CH3 CH2CH3 CH3
(与SN1反应相同)
3. 区域选择性 ( Regiochemistry )
一般遵循Saytzeff规则,生成多取代烯烃为主(稳定)。
特殊情况:
EtONa
当离去基团的体积大时,碱不易进攻1位的氢,易进攻2位的氢。
CH3CH2CH2 CH CH3
(1)
CH3CH2CH2CH CH2 + CH3CH2CH CHCH3
①
b-碳原子上连有强的吸电子基,从而使 b-氢具有较强的酸性,容易离去,且碳 负离子得以稳定;(NO2、CN、羰基等)
离去基团难离去,即C-L键不易断裂
②
例如: 1. 季铵碱的Hofmann消去反应,因为季铵阳离子强烈 的吸电子作用,其b-氢具有较强的酸性,容易离 去,因此也具有似E1cB历程,得到反Zaitsev 规 则为主的烯烃。 OH 这种选择性被称为 Hofmann取向 (Hofmann Orientation)
(与SN2反应相反)
3.区域选择性(Regiochemistry)
从含氢较少的β -碳上消去得到取代基较多的 烯烃 — Saytzeff Rule
CH3CHCH2CH3 Br CH3CHCH2CH2CH3 Cl CH3 CH3CCH2CH3 Cl - OH - OH - OCH3 CH3CH=CHCH3 + CH2=CHCH2CH3 20% 80% CH3CH=CHCH2CH3 + 67% CH3 CH3C=CHCH3 70% + CH2=CHCH2CH2CH3 33% CH3 CH2=CCH2CH3 30%
重点讨论β-消除反应
本章主要内容
一、消除反应历程 二、影响消除反应的因素 三、其它1,2 -消除反应 四、热解消除反应
一、消除反应历程
消除反应的历程 — E1, E2, and E1cB
H
E1
-LG
-H
B:
H
LG
E2
H
LG
E1cB
-H
B:
-LG
LG
E1 Reactio反应区域选择性的因素:
1)碱的结构( Base Structure)
CH3 CH3CH-CCH3 CH3 Br Base CH3CH2O (CH3)3CO CH3CH2(CH3)2CO (CH3CH2)3CO + RO CH3 CH3C=CCH3 CH3 More substituted product 79% 27% 19% 8% + CH3 CH3CHC=CH2 CH3 Less substituted product 21% 73% 81% 92%
H R C H X C H R RCH CHR + HX
(3)γ-消除(或1,3-消除)反应
H R X R
O NaOH + Cl CH2 γ CH2 β CH2 α CCH3
R
R +HX
O CCH3 + NaCl + H2O
另外还有1,4-消除和1,5-消除反应等等。这些消 除等可以看作是分子内的取代反应。