Zurek-Kibble Causality Bounds in Time-Dependent Ginzburg-Landau Theory and Quantum Field Th

合集下载

物理学名词

物理学名词

1/4波片quarter-wave plateCG矢量耦合系数Clebsch-Gordan vector coupling coefficient; 简称“CG[矢耦]系数”。

X射线摄谱仪X-ray spectrographX射线衍射X-ray diffractionX射线衍射仪X-ray diffractometer[玻耳兹曼]H定理[Boltzmann] H-theorem[玻耳兹曼]H函数[Boltzmann] H-function[彻]体力body force[冲]击波shock wave[冲]击波前shock front[狄拉克]δ函数[Dirac] δ-function[第二类]拉格朗日方程Lagrange equation[电]极化强度[electric] polarization[反射]镜mirror[光]谱线spectral line[光]谱仪spectrometer[光]照度illuminance[光学]测角计[optical] goniometer[核]同质异能素[nuclear] isomer[化学]平衡常量[chemical] equilibrium constant[基]元电荷elementary charge[激光]散斑speckle[吉布斯]相律[Gibbs] phase rule[可]变形体deformable body[克劳修斯-]克拉珀龙方程[Clausius-] Clapeyron equation[量子]态[quantum] state[麦克斯韦-]玻耳兹曼分布[Maxwell-]Boltzmann distribution[麦克斯韦-]玻耳兹曼统计法[Maxwell-]Boltzmann statistics[普适]气体常量[universal] gas constant[气]泡室bubble chamber[热]对流[heat] convection[热力学]过程[thermodynamic] process[热力学]力[thermodynamic] force[热力学]流[thermodynamic] flux[热力学]循环[thermodynamic] cycle[事件]间隔interval of events[微观粒子]全同性原理identity principle [of microparticles][物]态参量state parameter, state property[相]互作用interaction[相]互作用绘景interaction picture[相]互作用能interaction energy[旋光]糖量计saccharimeter[指]北极north pole, N pole[指]南极south pole, S pole[主]光轴[principal] optical axis[转动]瞬心instantaneous centre [of rotation][转动]瞬轴instantaneous axis [of rotation]t 分布student's t distributiont 检验student's t testK俘获K-captureS矩阵S-matrixWKB近似WKB approximationX射线X-rayΓ空间Γ-spaceα粒子α-particleα射线α-rayα衰变α-decayβ射线β-rayβ衰变β-decayγ矩阵γ-matrixγ射线γ-rayγ衰变γ-decayλ相变λ-transitionμ空间μ-spaceχ 分布chi square distributionχ 检验chi square test阿贝不变量Abbe invariant阿贝成象原理Abbe principle of image formation阿贝折射计Abbe refractometer阿贝正弦条件Abbe sine condition阿伏伽德罗常量Avogadro constant阿伏伽德罗定律Avogadro law阿基米德原理Archimedes principle阿特伍德机Atwood machine艾里斑Airy disk爱因斯坦-斯莫卢霍夫斯基理论Einstein-Smoluchowski theory 爱因斯坦场方程Einstein field equation爱因斯坦等效原理Einstein equivalence principle爱因斯坦关系Einstein relation爱因斯坦求和约定Einstein summation convention爱因斯坦同步Einstein synchronization爱因斯坦系数Einstein coefficient安[培]匝数ampere-turns安培[分子电流]假说Ampere hypothesis安培定律Ampere law安培环路定理Ampere circuital theorem安培计ammeter安培力Ampere force安培天平Ampere balance昂萨格倒易关系Onsager reciprocal relation凹面光栅concave grating凹面镜concave mirror凹透镜concave lens奥温电桥Owen bridge巴比涅补偿器Babinet compensator巴耳末系Balmer series白光white light摆pendulum板极plate伴线satellite line半波片halfwave plate半波损失half-wave loss半波天线half-wave antenna半导体semiconductor半导体激光器semiconductor laser半衰期half life period半透[明]膜semi-transparent film半影penumbra半周期带half-period zone傍轴近似paraxial approximation傍轴区paraxial region傍轴条件paraxial condition薄膜干涉film interference薄膜光学film optics薄透镜thin lens保守力conservative force保守系conservative system饱和saturation饱和磁化强度saturation magnetization本底background本体瞬心迹polhode本影umbra本征函数eigenfunction本征频率eigenfrequency本征矢[量] eigenvector本征振荡eigen oscillation本征振动eigenvibration本征值eigenvalue本征值方程eigenvalue equation比长仪comparator比荷specific charge; 又称“荷质比(charge-mass ratio)”。

具有类万有引力的有界置信观点动力学分析与应用

具有类万有引力的有界置信观点动力学分析与应用

具有类万有引力的有界置信观点动力学分析与应用刘青松 1习晓苗 1柴 利1摘 要 在社会网络中, Hegselmann-Krause 模型描述了置信阈值内不同邻居对个体的观点影响权重都相同且邻居对个体的吸引力与它们的观点差值成正比, 这是不切实际的. 为了克服经典Hegselmann-Krause 模型的不足, 提出具有类万有引力的有界置信观点动力学模型, 描述个体观点的更新依赖于观点之间的差值和邻居的权威性, 且不同邻居对个体的观点影响权重不同. 根据置信矩阵的性质证明观点的收敛性, 并分析具有衰减置信阈值的观点动力学行为, 给出观点收敛速率的显式解. 最后, 利用提出的观点动力学模型, 研究社会心理学中的“权威效应”和“非零和效应”. 仿真结果表明, 邻居的权威性有利于观点达成一致.关键词 观点动力学, 类万有引力, 有界置信, 社会网络, 收敛性引用格式 刘青松, 习晓苗, 柴利. 具有类万有引力的有界置信观点动力学分析与应用. 自动化学报, 2023, 49(9): 1967−1975DOI 10.16383/j.aas.c211134Analysis and Application of Bounded Confidence Opinion DynamicsWith Universal Gravitation-likeLIU Qing-Song 1 XI Xiao-Miao 1 CHAI Li 1Abstract In the social networks, the Hegselmann-Krause model describes that the different neighbors within the confidence threshold have the same influence weight on the individual 's opinion, and the attractiveness of neigh-bors to the individual is proportional to the opinion distance, which is unrealistic. In order to overcome the short-coming of the classical Hegselmann-Krause model, we propose a bounded confidence opinion dynamics model with universal gravitation-like in this paper, which captures the update of the individual opinion depending on both the opinion distance and the authority of neighbors, and it is shown that different neighbors have different influence weights on individual opinions. The convergence of opinions is proved in terms of the property of confidence matrix,and moreover, the dynamic behavior of the opinion with decaying confidence threshold is analyzed and the explicit solution of the opinion convergence rate is given. Finally, by employing our proposed opinion dynamics model, we study the authority effect and the non-zero-sum effect in social psychology. Simulation analyses reveal that the au-thority of the neighbor is beneficial to opinion achieving consensus.Key words Opinion dynamics, universal gravitation-like, bounded confidence, social networks, convergenceCitation Liu Qing-Song, Xi Xiao-Miao, Chai Li. Analysis and application of bounded confidence opinion dynamics with universal gravitation-like. Acta Automatica Sinica , 2023, 49(9): 1967−1975在过去的几十年中, 随着多智能体系统的兴起[1−3],社会网络引起了学者们的广泛关注, 涌现了许多研究成果[4]. 例如, Ghaderi 等[5]研究了具有固执个体的社会网络观点的收敛性, 给出了观点收敛时间的上界和下界. Xia 等[6]分析了具有偏见同化的非线性观点动力学模型的稳定性. Liu 等[7]提出一种观点扩散模型, 描述了双层连通网络的观点扩散过程,探讨了在所有持有相同观点的耦合主体下, 两种观点在三种类型的两层互连网络中的传播. 针对强连通的社会网络, Ye 等[8]研究了表达观点和私人观点之间的差异, 且给出了网络上保证意见指数快速收敛到极限的一般条件. 针对拟强连通社会网络, 刘青松等[9]研究了多维观点动力学行为, 给出了表达和私人观点收敛的充分条件. Hou 等[10]分析了具有有界置信的表达观点和私人观点动力学行为, 给出了最终聚类数主要由封闭个体率决定的结论.近年来, 学者们针对多自主体系统进行研究[11−14],提出了一些经典观点动力学模型, 促进了社会网络中观点动力学的深入研究. 20世纪50年代, 社会心收稿日期 2021-11-30 录用日期 2022-04-28Manuscript received November 30, 2021; accepted April 28,2022国家自然科学基金(61903282, 62173259), 中国博士后科学基金(2020T130488)资助Supported by National Natural Science Foundation of China (61903282, 62173259) and China Postdoctoral Science Founda-tion (2020T130488)本文责任编委 莫红Recommended by Associate Editor MO Hong 1. 武汉科技大学信息科学与工程学院 武汉 4300811. School of Information Science and Engineering, Wuhan Uni-versity of Science and Technology, Wuhan 430081第 49 卷 第 9 期自 动 化 学 报Vol. 49, No. 92023 年 9 月ACTA AUTOMATICA SINICASeptember, 2023理学家French[15]提出基于个体的观点形成模型. 1974年, DeGroot[16]提出基于个体加权平均的观点动力学模型, 即后来的DeGroot模型. 通过针对每个个体引入偏差, 将DeGroot模型推广到非线性观点动力学模型[6]. 另一方面, 通过引入个体对自身初始观点的固执, 文献[17]提出Friedkin-Johnsen 模型. 之后, Parsegov等[18]将Friedkin-Johnsen模型推广到了多维观点动力学模型. Tian等[19]研究了问题序列上的Friedkin-Johnsen观点动力学模型,给出了问题序列上观点达到一致的充要条件. 在考虑每次观点更新过程中, 随机选取一对个体进行观点交流, Deffuant等[20]提出Deffuant-Weisbuch模型. 随后, 通过两种不同的方法推广了Deffuant-Weisbuch模型[21], 验证了观点几乎必然达到一致.最近, Dong等[22]研究了基于领导概念的观点动态共识构建过程, Mei等[23]提出基于评价网络的学习过程模型.上述观点动力学模型是线性模型, 经典的Heg-selmann-Krause模型[24]是非线性模型, 描述了每个个体只与其置信阈值内的邻居进行观点交互. 与Def-fuant-Weisbuch模型[20]相比, Hegselmann-Krause 模型每次进行观点交流的个体的数量更多, 因而交流效率更高, 观点能够更快地收敛或者达成一致.在实际应用方面, Hegselmann-Krause观点动力学模型可应用于机器人平面、空间交会问题[25]和社会心理学中“权威效应”[26]等方面的研究. 故研究Heg-selmann-Krause或有界置信观点动力学模型, 具有重要应用价值和意义.近年来, 国内外学者针对有界置信模型进行了较为深入的研究[27], 例如Canuto等[28]通过欧拉方法, 研究了基于有界置信模型的动态系统的一致性问题. 通过考虑噪声环境, Su等[29]提出了具有噪声的有界置信模型, 展示了随机噪声如何显著地影响同步的观点, 给出了观点达成拟一致的充分条件.基于改进的有界置信模型, 针对初始观点分布, Yang 等[30]给出了观点收敛到一个聚类的充分条件. 通过正规化交流权重的凸性和Gronwall-Halanay型不等式, Haskovec[31]研究了具有时滞的有界置信模型的渐近一致性问题. 基于离散异构的有界置信模型, Vasca等[32]提出了一种基于非影响相似度区间的个体置信阈值自适应策略, 分析了有限时间的观点动力学行为.鉴于上述对有界置信观点动力学模型国内外研究现状的分析, 目前主要存在以下三个问题: 1)在改进的观点动力学模型中, 邻居对个体的影响力与其观点差异值成正比, 与实际情景存在一定的差距[28];2) 现有文献主要是采用仿真方法研究改进的有界置信模型, 缺乏较为完整的理论研究框架[27]; 3)现有的有界置信模型研究中, 较少研究观点动力学模型的应用[32], 例如考虑建立的观点动力学模型在社会心理学中的应用. 此外, 根据社会心理学中的认知理论可知[33], 由于不同个体社会背景和认知能力不一样, 不同邻居对个体产生的影响就会不一样[33];个体与邻居的观点差异值越大, 邻居对其影响应该越小[34].为了克服上述问题, 本文提出具有类万有引力的有界置信模型, 并分析了观点的演化问题. 本文的主要贡献如下:1)提出了新的具有类万有引力的有界置信观点动力学模型. 解决了Canuto等[28]模型中个体的影响力与其观点差异值成正比这一不符合实际情景的社会现象, 并考虑了个体的权威性;2)在理论上给出了观点收敛的充分条件且分析了基于衰减置信阈值的观点动力学模型, 完善了Chen等[27]的理论研究内容;3)应用本文提出的具有类万有引力的有界置信观点动力学模型, 研究了社会心理学中的“权威效应”和“非零和效应”[35], 填补了Vasca等[32]缺乏的应用研究;4)得到了邻居的权威性和正态分布的初始观点都有利于观点达成一致, 这一重要结论.1 问题描述首先, 回顾经典的有界置信观点动力学模型[24]:i∈V={1,2,···,n}x i(k)iN i=N(i,x(k))={j∈V||xj(k)−xi(k)|≤ε} i|N i|iε式中, , 表示个体的观点值.表示个体所有邻居的集合, 表示个体的邻居数目, 其中为置信度阈值.i1/|N i|ixj(k)−xi(k)j i|xj(k)−xi(k)|通过模型(1)可知, 个体的邻居对其影响权重全部相同即其权重都为. 事实上, 不同个体具有不同的认知水平和不一样的教育背景, 个体受影响程度或被其他个体影响的程度是不同的. 另一方面, 个体的观点值更新依赖于, 即邻居对个体的吸引力与观点差异值成正比. 实际上, 个体与邻居的观点差异值越大, 其对个体的影响越小. 为此, 本文提出一个具有类万有引力的有界置信观点动力学模型:1968自 动 化 学 报49 卷∑w ij (k )式中, 社会影响权重 为:w ij (k )由于社会影响权重 中:是受万有引力表达式的启发[27], 故称观点动力学模型(2)为具有类万有引力的有界置信观点动力学模型.tanh (·)众所周知, 万有引力的大小与物体的质量以及两个物体之间的距离有关. 物体的质量越大, 它们之间的万有引力就越大; 物体之间的距离越远, 它们之间的万有引力越小. 根据社会心理学中的认知理论可知[33], 个体权威性或者社会话语权越大, 其影响力(权重)越大; 个体与邻居的观点差异值越大, 邻居对其影响应该越小[34]. 根据上述关系, 将万有引力与影响力对应, 物体的质量与个体权威性对应, 物体之间的距离与观点差异值对应. 另一方面,类似于经典的Hegselmann-Krause 模型, 保证权重在[0, 1]之间, 故引入 函数给予保证. 综上所述, 便可得到权重式(4). 此外, 在本文的第4节中, 应用所提出的观点动力学模型研究社会心理学中的“权威效应”和“非零和效应”. 从应用结果可进一步地说明权重式(4)的合理性.d ij j i |N j |i j d ij =1d ij (k )j N (j,x (k ))i j x j (k )−x i (k )j i i 事实上, 描述了个体 与个体 观点值越接近, 彼此间的影响也就越大. 此外, 描述了个体 的邻居 的权威性或者社会话语权[27]. 从而本文提出的模型也很好地描述了, 在一个社会中, 拥有大量人脉资源的人享有更多的话语权, 对他人的社会影响也就更大. 注意到, 如果 , 则具有类万有引力的有界置信观点动力学模型(2)退化成经典Hegselmann-Krause 模型(1). 事实上, 是一个关于个体 邻居的个数 和个体 与个体 观点值之差 的函数. 易知个体 的邻居数越多, 与个体 的观点值相差越小, 则其对个体 的差异影响权重越大, 其函数关系见图1.j i w ij (k )(x j (k )−x i (k ))根据本文提出的具有类万有引力的有界置信观点动力学模型(2)可知, 个体 对个体 的影响由 所决定, 其函数关系见图2.x j (k )−x i (k )j N (j,x (k ))i j N (j,x (k ))j i x j (k )−x i (k )i j 由图2可知, 当 一定时, 个体 的邻居数 越多, 其对个体 的影响越大. 当个体 的邻居数 一定时, 个体 与个体 的观点值之差 越大, 个体 的观点值受到个体 的影响先增大后减小. 因此, 要想某个体能对指定个体施加更大的影响, 需要折中进行考虑.0.20−0.2002040601−1w i j (k )(x j (k ) − x i (k ))|N j |x j (k) − x i (k )j i 图 2 个体 对个体 观点的影响j iFig. 2 The influence of individual on theopinion of individual本文主要研究具有类万有引力的有界置信模型(2)的观点演化问题, 给出了观点收敛的充分条件,并将所提出的观点动力学模型应用到社会心理学中的“权威效应”和“非零和效应”.2 收敛性分析本节将分析具有类万有引力的有界置信观点动力学模型(2)的收敛性.i ∈V x i (0)x ∗i ∈R 定义 1. 在观点动力学模型(2)中, 对任意个体 的初始观点值 , 如果存在 , 使得:α∈R 则称模型(2)收敛. 特别地, 如果存在定常数 ,使得:1.00.5001−1d i j (k )|N j |x j (k) − x i (k )204060d ij (k )|N j |x j (k )−x i (k )图 1 关于 和 的函数图d ij (k )|N j |x j (k )−x i (k )Fig. 1 The trajectories of with respect to and 9 期刘青松等: 具有类万有引力的有界置信观点动力学分析与应用1969则称观点达成一致.x i (0)∈[0,1],i ∈V 定理 1. 对于任意观点初值 ,观点动力学模型(2)收敛.证明. 模型(2)可重写为:模型(5)可进一步写为:A (k,x (k ))a ij (k )式中, 置信矩阵 的元素为:A (k,x (k ))θ≥00≤tanh (θ)≤1∑j ∈N i \{i }w ij (k)∈(0,1)易知社会影响矩阵 是行随机矩阵.注意到, 对任意的 , 易得 . 则由式(3)可知, . 故:A (k,x (k ))即 的对角线元素大于0.j i j /∈N i w ij (k )=0i /∈N j w ji (k )=0a ij (k )=0a ji (k )=0,∀i,j ∈V A (k,x (k ))δ>0A (k,x (k ))δ另一方面, 当个体 与个体 的观点值之差大于置信阈值时即 , 则 . 类似地, ,则 . 因此, 当且仅当 . 此外, 易知 中一直存在正元素,即存在 , 使得 的最小正元素大于 .A (k,x (k ))综上所述, 矩阵 满足文献[36]给出模型收敛的充分条件, 从而模型(6)收敛. 故观点动力学模型(2)收敛. □根据定理1, 可得下列推论.x i (0)∈[0,1],i ∈V k τA (k,x (k ))=(1/n )1n 1T n ,k ≥k τ1n =[1,1,···,1]T 推论 1. 对于任意观点初值 ,如果观点动力学模型(6)在经过 次演化后观点达成一致, 则置信矩阵 ,其中 .k τ|x i (k )−x j (k )|→0,∀i,j ∈V,k ≥k τN i =N j =n,证明. 如果观点经过次演化后达成一致, 即 且 则:由式(3)可得:()a ij =1/n,k ≥k τ进一步地, 根据式(7)可知, . □为了得到进一步的结果, 令:x i (0)∈[0,1],i ∈V ε=1推论 2. 考虑观点动力学模型(2), 对于任意观点初值 . 如果置信阈值 且:则ε=1|N i |=n 证明. 由于置信阈值 , 则所有个体均可交流, 即 . 由观点动力学模型(2)可知:j i w ij (k )(x j (k )−x i (k ))i j w ji (k )(x i (k )−x j (k ))w ij (k )=w ji (k )注意到, 邻居 对个体的影响为 ,类似地, 邻居 对个体 的影响为 , 然而, . 易得:则式(9)可退化为:即x (k )=x (0)故 . □第2节主要考虑的是置信阈值不变的情况. 事实上, 观点动力学模型可看作一个谈判的过程模型.一方面, 个体期望它的邻居在每一轮谈判中显著地向它的观点靠拢, 以便继续谈判, 衰减置信阈值可描述这一情景[37]; 另一方面, 具有衰减置信阈值的观点动力学模型可应用于研究图中的社区检测[37]和社会心理学中的“非零和效应”. 故第3节将分析基于衰减置信阈值的观点动力学模型. 此外, 本文将利用建立的具有衰减置信阈值的Hegselmann-Krause 观点动力学模型研究社会心理学中的“非零1970自 动 化 学 报49 卷和效应” (见第4.2节).3 衰减的置信阈值为了描述个体在谈判的过程中, 个体期望它的邻居在每一轮谈判中显著地向它的观点靠拢, 以便继续谈判. 本节考虑下列具有衰减置信阈值的观点动力学模型:式中:和R >00<ρ≤1式中, 和 .x i (0)∈[0,1],i ∈V x i (k ),i ∈Vx i ∗i k ∈V 定理 2. 考虑观点动力学模型(10), 对于任意观点初值 , 观点 是收敛的. 进一步地, 令 表示个体 的最终观点值,对于所有的 , 则:证明. 根据式(10), 有:由式(12), 可得:w ij (k )∈(0,1/|N ρi |]j ∈N ρw ij (k )≤1注意到, , 则, 故:∀k,τ=0,1,···令 , 则由式(14)可知:因此:ρ∈(0,1)x i (k )k =0,1,···τ→∞式中, . 易知序列 , 是一个Cauchy 序列, 故其收敛. 通过令式(15)中的, 则可得式(13). □ε=1类似于观点动力学模型(2), 如果置信度阈值 且式(11)退化为式(8). 则观点动力学模型(10)具有和推论2一样的结论.4 观点动力学模型的应用4.1 权威效应本节将利用本文提出的具有类万有引力的有界置信观点动力学模型(2), 研究普遍存在的社会心理学现象: 权威效应. 所谓权威效应是指一个人要是地位高、有威信、受人敬重, 那他所说的话及所做的事就容易引起别人重视, 并让他们相信其正确性.权威效应的普遍存在, 一方面是由于人们总认为权威人物往往是正确的楷模, 服从他们会使自己具备安全感, 增加不会出错的保险系数; 另一方面, 由于人们总认为权威人物的要求往往和社会规范相一致, 按照权威人物的要求去做, 会得到各方面的赞许和奖励. 在现实生活中, 有很多利用权威效应的例子, 比如做广告时请权威人物赞誉某种产品, 在辩论说理时引用权威人物的话作为论据等. 在人际交往中, 利用权威效应, 能够引导或改变对方的观点和行为.考虑由10个个体组成的社会网络, 设初始观点值为:ε=0.2|N 4|=8置信阈值 . 根据初始观点值和置信阈值可得初始时刻个体之间的网络结构, 如图3所示(图中自环未画出). 易知个体4具有8个邻居即, 具有最大的权威性或者话语权.w ij 0.510.21w ij 0.460.24当观点动力学模型(2)中 为式(8)时, 即不考虑邻居的权威性, 其观点演化曲线如图4(a)所示, 其中形成两簇的最终观点值分别为 和 .当观点动力学模型(2)中 为式(3)时, 即考虑邻居的权威性, 其观点演化曲线如图4(b)所示, 其中形成两簇的最终观点值分别为 和 . 出现这一现象是由于受到了权威者个体4的影响 (图4中虚线为个体4的观点曲线), 两簇观点都向个体4的观点值靠近.为了说明初始条件的客观性, 可随机选取一个9 期刘青松等: 具有类万有引力的有界置信观点动力学分析与应用1971x (0)=[0.25,0.25,0.32,0.45,0.5,0.7,0.7,0.7,0.7,0.8]T ,|N 5|=7个体为权威个体, 不失一般性地, 选取个体5为权威个体, 个体初始观点值可设为 其网络拓扑图如图5所示. 易知, 个体5具有7个邻居即 .类似地, 其观点演化曲线如图6所示, 可以看出, 由于受到权威个体5的影响 (图6中虚线为个体5的观点曲线), 两簇观点都向个体5的观点值靠近.4.2 非零和效应本节将利用本文建立的具有衰减置信阈值的观点动力学模型(10), 研究社会心理学中“非零和效应”.“非零和效应”是一种合作下的博弈, 博弈中做一定的让步, 双方的收益或损失的总和不是零, 观点达成一致, 谈判便可成功[35]. 另一方面, 衰减置信阈值可描述个体期望它的邻居在每一轮谈判中显著地向它的观点靠拢, 以便继续谈判.R =0.8ρ=0.7x i (0)∈[0,1],i ∈V x (0)∈[0,1]n 为了利用本文提出的模型(10)研究社会心理学中“非零和效应”, 令 , , 当个体观点初值 均匀分布时, 观点动力学模型(10)的仿真结果如图7(a)所示, 观点达到了一致, 说明谈判取得成功, 实现了“非零和效应”.当个体观点初值 正态分布时, 其结果如图7(b)所示, 观点达到一致性的速度比个体观点初值均匀分布情况快, 说明谈判过程中, 当持中立观点的人较多时, 谈判取得成功的时间更少.1020102000.51.000.51.0xk /s k /s x(a)(b)图 7 非零和效应Fig. 7 Sum non-zero effect5 仿真分析5.1 基于固定置信阈值的模型仿真分析n =50ε=0.3x i (0)∈[0,1],i ∈V 本节将通过仿真分析本文所得到的理论结果.设群体总个体数 , 置信度阈值 , 观点初值 均匀分布. 将改进的Heg-12345678910图 3 网络拓扑结构 (个体4为权威个体)Fig. 3 Network structure (individual 4 is theauthoritative individual)0.20.40.60.8xk /s (a)(b)k /s 00.20.40.60.8图 4 权威效应 (个体4为权威个体)Fig. 4 Authority effect (individual 4 is theauthoritative individual)12345678910图 5 网络拓扑结构 (个体5为权威个体)Fig. 5 Network structure (individual 5 is theauthoritative individual)0.20.40.60.8x k /s k /s x0.20.40.60.8(a)(b)图 6 权威效应 (个体5为权威个体)Fig. 6 Authority effect (individual 5 is theauthoritative individual)1972自 动 化 学 报49 卷selmann-Krause 观点动力学模型[32]与本文提出的观点动力学模型(2)进行对比, 其观点演化曲线分别如图8(a)和图8(b)所示, 可以看出, 在改进的Hegselmann-Krause 模型[32]中, 观点形成拟一致.有趣的是在具有类万有引力的有界置信模型(2)中, 观点则出现两极分化. 这是因为在文献[32]改进的Hegselmann-Krause 模型中, 观点相似的个体不再进行交互, 而本文提出的具有类万有引力的有界置信模型(2)中, 考虑了影响权重的互异性.02040600.51.000.51.0xk /s020改进的模型模型 (2)|N j | = 14060204060204060k /s x00.51.00246xk /s k /s h (k)(a)(b)(d)(c)图 8 初值为均匀分布时的观点演化Fig. 8 Opinion evolution when the initial value isuniformly distributed|N j |=1当在具有类万有引力的有界置信模型(2)中不考虑个体权威性时即 , 其观点演化曲线如图8(c)所示, 观点仍然达到两极分化, 但其观点形成两极分化的速度比图8(b)的慢, 说明权威个体有利观点的演化速度.为了描述观点演化过程中所有观点的相对变化, 定义变量:η(k )=0其曲线如图8(d)所示. 可以看出, 在文献[32]改进的Hegselmann-Krause 模型中, 观点相对变化较大,而在具有类万有引力的有界置信模型(2)中, 观点相对变化较小; 另一方面, 在不考虑权威个体的模型(2)中, 观点相对变化最小, 但观点收敛速度最慢. 特别地, 如果 , 则群体观点收敛.在现实生活中, 针对一些(如不感兴趣的)话题, 大多数人的观点比较趋于中立, 而只有少部分x i (0)∈[0,1],i ∈V 人的观点比较极端. 为此, 设个体观点初值 为正态分布. 将改进的Hegselmann-Krause 模型与本文建立的有界置信模型(2)进行比较, 其观点曲线如图9(a)和图9(b)所示. 可以看出, 基于有界置信模型(2)的观点达到一致, 而基于改进的Hegselmann-Krause 模型的观点不收敛, 这是因为改进的Hegselmann-Krause 模型中, 观点相似的个体不再进行交互.20406000.51.000.51.020改进的模型模型 (2)|N j | = 140602040602040600.51.0024(a)(b)(d)(c)xxxh (k )k /s k /s k /s k /s图 9 初值为正态分布时的观点演化Fig. 9 Opinion evolution when the initial value isnormally distributed|N j |=1η(k )当具有类万有引力的有界置信模型(2)不考虑个体权威性时即 , 其观点曲线如图9(c)所示, 可以看出, 基于观点动力学模型(2)的观点达到一致速度较慢. 根据 的定义和图9(d)可知, 基于改进的Hegselmann-Krause 模型的观点相对变化最大.5.2 基于衰减置信阈值的模型仿真分析R =0.3ρ=0.7n =50x i (0)∈[0,1],i ∈V x (0)∈[0,1]n 本节将对具有衰减置信阈值的观点动力学模型(10)进行仿真分析. 设 , 和 ,当观点初值 均匀分布时, 观点动力学模型(10)形成了3个均匀的观点簇, 仿真结果如图10(a)所示. 当观点初值 正态分布时, 其结果如图10(b)所示, 形成了4个观点簇. 总之, 基于衰减置信阈值的模型(10)的观点都是收敛的.N c N m n x (0)R ρ设 表示群体最终观点簇数, 表示群体最大观点簇中的个体数量. 在个体数 和观点初值 以及阈值参数 都固定的情况下, 随着 的增9 期刘青松等: 具有类万有引力的有界置信观点动力学分析与应用1973N c N m ρN c =1大, 群体最终观点簇数量 减少, 如图10(c)所示.由图10(d)可知, 群体最大观点簇中个体数量 随着 的增大而增大. 特别地, 当 时, 则群体观点达到一致性.6 结束语本文提出具有类万有引力的有界置信观点动力学模型, 描述了不同邻居对个体的观点影响权重不一样, 且个体观点的更新与观点之间的差值和邻居的权威性有关. 根据置信矩阵的性质证明了观点的收敛性, 在不考虑邻居权威性的条件下, 给出了最终观点平均值的显式表达式. 在衰减置信阈值的条件下, 得到了观点收敛速率的显式解. 利用本文提出的观点动力学模型, 研究了社会心理学中的“权威效应”和“非零和效应”. 仿真分析表明, 邻居的权威性和正态分布的初始观点都有利于观点达成一致.ReferencesZhou B, Lin Z. Consensus of high-order multi-agent systems with large input and communication delays. Automatica , 2014,50: 452−4641Chen Shi-Ming, Shao Sai, Jiang Gen-Lan. Distributed event-triggered fixed-time scaled consensus control for second-order multi-agent systems. Acta Automatica Sinica , 2022, 48(1):261−270(陈世明, 邵赛, 姜根兰. 基于事件触发二阶多智能体系统的固定时间比例一致性. 自动化学报, 2022, 48(1): 261−270)2Zhou B. Consensus of delayed multi-agent systems by reduced-order observer-based truncated predictor feedback protocols.IET Control Theory & Applications , 2014, 8(16): 1741−17513Wang Long, Tian Ye, Du Jin-Ming. Opinion dynamics in social4networks. Scientia Sinica: Informationis , 2018, 48(1): 3−23(王龙, 田野, 杜金铭. 社会网络上的观念动力学. 中国科学: 信息科学, 2018, 48(1): 3−23)Ghaderi J, Srikant R. Opinion dynamics in social networks with stubborn agents: Equilibrium and convergence rate. Automatica ,2014, 50(12): 3209−32155Xia W, Ye M, Liu J, Cao M, Sun X M. Analysis of a nonlinear opinion dynamics model with biased assimilation. Automatica ,2020, 120: Article No. 1091136Liu C, Wu X, Niu R, Aziz-Alaoui M A, Lü J. Opinion diffusion in two-layer interconnected networks. IEEE Transactions on Circuits and Systems I: Regular Papers , 2021, 68(9): 3772−37837Ye M, Qin Y, Govaert A, Anderson B D, Cao M. An influence network model to study discrepancies in expressed and private opinions. Automatica , 2019, 107: 371−3818Liu Qing-Song, Li Ming-Peng, Chai Li. Analysis and applica-tion of multidimensional opinion dynamics on social networkswith oblivion individuals. Acta Automatica Sinica , DOI:10.16383/j.aas.c210091(刘青松, 李明鹏, 柴利. 具有遗忘群体的社会网络多维观点动力学分析与应用. 自动化学报, DOI: 10.16383/j.aas.c210091)9Hou J, Li W, Jiang M. Opinion dynamics in modified expressed and private model with bounded confidence. Physica A: Statist-ical Mechanics and Its Applications , 2021, 574: Article No.12596810Zheng Wei, Zhang Zhi-Ming, Liu He-Xin, Zhang Ming-Quan,Sun Fu-Chun. Dynamic feedback mean square consensus con-trol based on linear transformation for leader-follower multi-agent systems. Acta Automatica Sinica , 2022, 48(10): 2474−2485(郑维, 张志明, 刘和鑫, 张明泉, 孙富春. 基于线性变换的领导-跟随多智能体系统动态反馈均方一致性控制. 自动化学报, 2022,48(10): 2474−2485)11Yi J W, Chai L, Zhang J. Average consensus by graph filtering:New approach, explicit convergence rate, and optimal design.IEEE Transactions on Automatic Control , 2020, 65(1): 191−20612Liu Q, Zhou B. Consensus of discrete-time multi-agent systems with state, input, and communication delays. IEEE Transac-tions on Systems, Man, and Cybernetics: Systems , 2020, 50(11):4425−443713Liu Q. Pseudo-predictor feedback control for multi-agent sys-tems with both state and input delays. IEEE/CAA Journal of Automatica Sinica , 2021, 8(11): 1827−183614French Jr J R. A formal theory of social power. Psychological Review , 1956, 63(3): 181−19415DeGroot M H. Reaching a consensus. Journal of the American Statistical Association , 1974, 69(345): 118−12116Friedkin N, Johnsen E. Social influence networks and opinion change. Advances Group Processes , 1999, 16: 1−2917Parsegov S E, Proskurnikov A V, Tempo R, Friedkin N E. Nov-el multidimensional models of opinion dynamics in social net-works. IEEE Transactions on Automatic Control , 2017, 62(5):2270−228518Tian Y, Wang L. Opinion dynamics in social networks with stubborn agents: An issue-based perspective. Automatica , 2018,96: 213−22319Deffuant G, Neau D, Amblard F, Weisbuch G. Mixing beliefs among interacting agents. Advances in Complex Systems , 2000,3: 87−9820Zhang J, Hong Y. Opinion evolution analysis for short-range and long-range Deffuant-Weisbuch models. Physica A: Statistic-al Mechanics and Its Applications , 2013, 392(21): 5289−52972102040600.51.00.51.0xk /s 0204060k /s xN cr r m(b)(a)(c)(d)图 10 模型(10)观点演化Fig. 10 Opinion evolution of model (10)1974自 动 化 学 报49 卷Dong Y, Ding Z, Martínez L, Herrera F. Managing consensusbased on leadership in opinion dynamics. Information Sciences ,2017, 397: 187−20522Mei W, Friedkin N E, Lewis K, Bullo F. Dynamic models of ap-praisal networks explaining collective learning. IEEE Transac-tions on Automatic Control , 2018, 63(9): 2898−291223Hegselmann R, Krause U. Opinion dynamics and bounded con-fidence models, analysis, and simulation. Journal of Artificial So-cieties and Social Simulation , 2002, 5(3): 1−3324Bullo F, Cortes J, Martinez S. Distributed Control of Robotic Networks. Princeton: Princeton University Press, 2009.25Cody W F. Authoritative effect of FDA regulations. The Busi-ness Lawyer , 1969, 24: 479−49126Chen Z, Lan H. Dynamics of public opinion: Diverse media and audiences ' choices. Journal of Artificial Societies and Social Sim-ulation , 2021, 24(2): 1−2127Canuto C, Fagnani F, Tilli P. An Eulerian approach to the ana-lysis of Krause 's consensus models. SIAM Journal on Control and Optimization , 2012, 50(1): 243−26528Su W, Chen G, Hong Y. Noise leads to quasi-consensus of Heg-selmann-Krause opinion dynamics. Automatica , 2017, 85:448−45429Yang Y, Dimarogonas D V, Hu X. Opinion consensus of modi-fied Hegselmann-Krause models. Automatica , 2014, 50(2):622−62730Haskovec J. A simple proof of asymptotic consensus in the Heg-selmann-Krause and Cucker-Smale models with normalization and delay. SIAM Journal on Applied Dynamical Systems , 2021,20(1): 130−14831Vasca F, Bernardo C, Iervolino R. Practical consensus in bounded confidence opinion dynamics. Automatica , 2021, 129:Article No. 10968332Gerrig R J. Psychology and Life (20th Edition). New York:Pearson, 2013.33Mei W, Bullo F, Chen G, Hendrickx J, Dörfler F. Rethinking the micro-foundation of opinion dynamics: Rich consequences of the weighted-median mechanism [Online], available: https:////abs/1909.06474, January 26, 202234Swingle P G, Santi A. Communication in non-zero-sum games.Journal of Personality and Social Psychology , 1972, 23(1): 54−6335Lorenz J. A stabilization theorem for dynamics of continuous opinions. Physica A: Statistical Mechanics and Its Applications ,2005, 355(1): 217−22336Morarescu I C, Girard A. Opinion dynamics with decaying con-fidence: Application to community detection in graphs. IEEE Transactions on Automatic Control , 2011, 56(8): 1862−187337刘青松 武汉科技大学信息科学与工程学院副教授. 2019年获得哈尔滨工业大学博士学位. 主要研究方向为社会网络, 观点动力学分析, 时滞系统和多智能体系统.E-mail: ********************.cn (LIU Qing-Song Associate profess-or at the School of Information Science and Engineer-ing, Wuhan University of Science and Technology. He received his Ph.D. degree from Harbin Institute of Technology in 2019. His research interest covers social networks, opinion dynamics analysis, time-delay sys-tems, and multi-agent systems .)习晓苗 武汉科技大学信息科学与工程学院硕士研究生. 2020年获得湖南科技大学学士学位. 主要研究方向为社会网络, 观点动力学分析.E-mail: *********************(XI Xiao-Miao Master student at the School of Information Scienceand Engineering, Wuhan University of Science and Technology. She received her bachelor degree from Hunan University of Science and Technology in 2020.Her research interest covers social networks and opin-ion dynamics analysis .)柴 利 武汉科技大学信息科学与工程学院教授. 2002年获得香港科技大学博士学位. 主要研究方向为分布式优化, 滤波器组框架, 图信号处理和网络化控制系统. 本文通信作者.E-mail: ***************.cn(CHAI Li Professor at the Schoolof Information Science and Engineering, Wuhan Uni-versity of Science and Technology. He received his Ph.D. degree from Hong Kong University of Science and Technology in 2002. His research interest covers distributed optimization, filter bank frames, graph sig-nal processing, and networked control systems. Corres-ponding author of this paper .)9 期刘青松等: 具有类万有引力的有界置信观点动力学分析与应用1975。

The GZK Bound in Discrete Space

The GZK Bound in Discrete Space

a r X i v :a s t r o -p h /0602299v 1 14 F eb 2006The GZK Bound in Discrete SpaceN.Kersting Department of Physics Sichuan UniversityChengdu,610065P.R.Chinakest@SCUPHY-TH-06001AbstractThe maximum distance bound for ultrahigh en-ergy cosmic rays (UHECR)with energies above the Greisen-Zatsepin-Kuzmich cutoff∼1019eV relaxes significantly if there is some mechanism that forces UHECR to propagate in discrete in-tervals,rather than continuously,through inter-galactic space.In particular,intervals as small as a femtometer relax the bound for protons by an order of magnitude and potentially account for the observed excess of UHECR flux.IntroductionRecent experiments [1,2,3]have indicated that the flux of cosmic rays entering the Earth’s atmosphere with energy beyond the Greisen-Zatsepin-Kuzmich (GZK)limit [4]of roughly 5·1019eV is much higher than expected.Ac-cording to the original papers on the subject,such ultra-high-energy cosmic rays (UHECR),presumably consisting of photons,nucleons,or heavier nuclei,must be rapidly attenuated af-ter travelling a distance of O (10)Mpc through intergalactic space due to interactions such as N +γ→∆→N +πand γ+γ→e +e −with the cosmic microwave background radiation (CMBR),and since there are no known sources of UHECR within this radius of the Earth the observed flux in our atmosphere should be negli-gable.If further experimentation verifies excess in UHECR flux then the simple GZK model may not be the correct theory of UHECR propaga-tion in space.The excess of UHECR has been known for at least a decade [5],but of interest lately is anal-ysis showing significant clustering of UHECRevents in the sky in directions that point 1to candidate sources 140MpC away [7].The pos-sibility that UHECR are able to travel such long distances through the CMBR lends strong mo-tivation to revise the GZK bound.The original derivation of the GZK bound for protons depends on the energy of the protons (E),the energy loss per interaction (∆E )with a CMBR photon,the number density of CMBR photons (n),and the interaction cross-section (σ)as follows:λGZK =(Enσ)(1)For example,for E =1020eV protons inci-dent on CMBR photons giving resonant pion-production we have σ≈200µb ,n ≈400cm −3,and therefore λGZK ≈1024m ≈30Mpc (one can derive a similar limit for photons).The dilemma is that no potential UHECR sources,such as Active Galactic Nuclei,are observed to be within that radius of the Earth [8].Models to resolve the dilemma usually intro-duce additional assumptions to modify ∆E or σin (1),resulting in a larger λGZK .For example,∆E can decrease in theories in which energy con-servation fails at high energies [9];σdecreases in models where the UHECR is initiated by an exotic particle or neutrino which interacts very weakly with the CMBR [10,11].The current Letter proposes that one can ex-tend the GZK bound if UHECR propagate in discrete jumps through space-time,rather than in a continuous path.It turns out that the form of the second factor in (1)changes,and a jump size as small as a few femtometers is sufficient to resolve the dilemma.In contrast to the above-metioned theories,this model introduces no newparticles or violation of conservation principles, but rests merely on the hypothesis that space-time is discrete.CalculationFirst let us recall the derivation of the second factor in parenthesis in(1),the mean free path length for,say,a proton.This comes about from a pseudo-classical approximation of the proton-CMBR interaction,justified by the relative dif-fuseness of the CMBR.As shown in Figure1, from the perspective of the CMBR the proton sweeps out an effective tube in3-space of cross-sectional areaσand length R;the probability of interaction with a CMBR photon along this path is just the volume swept out,σR,divided by the photon number density n.Therefore the probability of interaction per unit path length is constant,and its inverse,the mean free path of the proton,is(nσ)−1.σRFigure1.Segment of UHECR pathNow suppose the proton doesn’t move in a continuous line,but propagates in jumps2of size R.Working in the same pseudo-classical approx-imation above,in the course of one jump the proton occupies an approximate volume ofσ3/2 in the CMBR,before jumping again.The mean path length(though this’path’is traced out over many jumps)is then R∆E )(Rσ,λR becomesλGZK,and for R<√2Observable properties of the proton such as velocity, energy,etc.are then defined as suitable averages over many mentsSupposing UHECR protons do jump in fermi-size steps through intergalactic space,an imme-diate concern is whether this behaviour applies to other energies and other particles:i.e.few researchers would object to discreteness at the Planck-scale,but do existing observations rule out spacetime discreteness at the fermi-scale? One expects physics of very low energies(eV-and below)to be insensitive to motions on the order of a fermi.However,already in the realm of medium-to high-energies(E>MeV)severe constraints may arise in more sensitive environ-ments,e.g.stellar interiors or particle detectors in accelerator-based experiments,though these are not nearly as uniform and diffuse as the CMBR and hence require a more sophistcated treatment than that appearing in this Letter. In the event,however,in which the discretiza-tion of space is a dynamic phenomenon depend-ing on energy(and possibly other quantum num-bers)these phenomenological constraints may be weakened or removed,and investigations in this direction are underway[12]. References[1]Hayashida,N.,et al.AGASA collabora-tion.,Astropart.Phys.10:303(1999).[2]Bird,D.J.,et al.HIRES collaboration.,Astrophys.J.511:739(1999).[3]Bellido,J.A.et al.,Astropart.Phys.15:167(2001).[4]K.Greisen,Phys.Rev.Lett.16:748(1966);G.T.Zatsepin and V.A.Kuzmin,Sov.Phys.JETP Lett.4:78(1966).[5]D.Bird et al.,Phys.Rev.Lett.71:3401(1993);Astrophys.J.424:491(1994)[6]Dolag,K.,Grasso,D.,Springel,V.,andTkachev,I.,JCAP0501:009(2005)[7]Farrar,G.R.,arXiv:astro-ph/0501388[8]Olinto, A.G.AIP Conf.Proc.745:48-59(2005);Tinyakov,P.and Tkachev,I.,arXiv:hep-ph/0212223.[9]Ellis,J.et al.Phys.Rev.D63:124025(2001);Coleman,S.and Glashow,S.L.,arXiv:hep-ph/9808446[10]Cskai,C.et al.JCAP0305:005(2003);Berezinsky V.et al.Phys.Rev.Lett.79:4302(1997);[11]Jain,P.et al.Phys.Lett.B484:267-274(2000);Kachelriess,M.and Plumacher,M.Phys.Rev.D62:103006(2000) [12]Kersting,N.work in progress。

Fronts propagating with curvature dependent speed Algorithms Based on Hamilton-Jacobi Formulations

Fronts propagating with curvature dependent speed Algorithms Based on Hamilton-Jacobi Formulations

reaching out into the unburnt gas somehow propagate slower than do concave regions which are hot gases surrounding a small unburnt pocket. At the same time, particles along the flame front undergo an increase in volume as they burn, creating a jump in velocity across the flame front. This discontinuity in the velocity field creates vorticity along the burning flame, which can be related to the local curvature, and this new vorticity field contributes to the advection of the propagating flame. Thus, there are at least two distinct ways in which the speed of the moving flame depends on the local curvature. Typically, there have been two types of numerical algorithms employed in the solution of such problems. The first parameterizes the moving front by some variable and discretizes this parameterization into a set of marker points [39]. The positions of the marker points are updated in time according to approximations to the equations of motion. Such techniques can be extremely accurate in the attempt to follow the motions of small perturbations. However, for large, complex motion, several problems soon occur. First, marker particles come together in regions where the curvature of the propagating front builds, causing numerical instability unless a regridding technique is employed. The regridding mechanism usually contains a error term which resembles diffusion and dominates the real effects of curvature under analysis. Secondly, such methods suffer from topological problems; when two regions "burn" together to form a single one, ad-hoc techniques to eliminate parts of the boundary are required to make the algorithm work. Other algorithms commonly employed fall under the category of "volume of fluid " techniques, which, rather than track the boundary of the propagating front, track the motion of the interior region. An example of this type of algorithm is SLIC [26]. In these algorithms, the interior is discretized, usually by employing a grid on the domain and assigning to each cell a "volume fraction" corresponding to the amount of interior fluid currently located in that cell. An advantage of such techniques is that no new computational elements are required as the calculation progresses (unlike the parameterization methods), and complicated topological boundaries are easily handled, see [4,32]. Unfortunately, it is difficult to calculate the curvature of the front from such a representa-

2024-2025学年广东省深圳市深圳实验学校初中部七年级上学期期中英语试题

2024-2025学年广东省深圳市深圳实验学校初中部七年级上学期期中英语试题

2024-2025学年广东省深圳市深圳实验学校初中部七年级上学期期中英语试题1. —________ does it take you to go to school?—About ten minutes.A.How far B.How soon C.How much D.How long 2. —Do you know there ________ a badminton game next month?—I’m so ________ to hear that!A.will have;excitedB.will be; excited C.will be; exciting D.is; exciting 3. —There ________ just a book and two pens in the bag. ________ bag may it be?—It may be Tom’s.A.is; Who’s B.are; Whose C.are; Who’s D.is; Whose 4. There is ________ in today’s homework, so you should do it ________.A.nothing difficult; on your own B.difficult nothing; by yourselfC.nothing difficult; with your own D.difficult nothing; on your own5. —Our class teacher ________ to prepare for the class meeting on Mondays.—From the class meeting, we can learn many good personal ________.A.will need; qualities B.will need;qualityC.needs; qualities D.needs; quality6. — ________ your brother do well in Maths?—Yes, because he is always busy ________ Maths exercises.A.Is; with B.Does; with C.Does; in D.Is; in7. —You eat so many candies! Do you know that candies are harmful ________ our teeth? —Sure! So I brush my teeth ________ a day.A.to; three time B.for; three times C.for; three time D.to; three times 8. —________ is it from here to the station?—It’s about five ________ ride.A.How far; minute’s B.How long; minute’sC.How far; minutes’D.How long; minutes’9. —Hi, Paul, let’s _________ computer games.— That ________ interesting.A.play; sound B.play; sounds C.plays; sounds D.plays; sound 10. —I like the Sports Day in our school, because it’s ________ to watch the running races. —I enjoy ________ the long jump instead.A.interesting; to watch B.interesting;watchingC.interested; watch D.interested;watching11. —Linda is good at ________ care of animals.—Really? I need someone to help me ________ after my cat because I will go on a trip soon.A.taking; look B.taking; looking C.take; to look D.take; looking 12. —Lucy, it’s amazing ________ you to get 100 in such a difficult exam.—Actually, I should thank you. It’s so kind ________ you to help me with my study.A.for; of B.for; for C.of; for D.of; of13. —________ my mother’s help, I ________ the difficult problems last night.—I’m glad to hear that.A.Under; solved B.By; solve C.With; solved D.With; solve 14. —The snacks smells _________. You need to throw them away because ants can smell things _________.—OK, I will do it right now.A.bad; well B.bad; good C.badly; well D.badly; good 15. —Thanks to my English teacher, I learnt ________ new words last year.—________ clever you are!A.hundreds of; What B.eight hundreds;HowC.hundreds of;HowD.eight hundreds;What16. The shop near our school ________ at eight and it ________ for twelve hours.A.is open; opens B.opens; is openC.is opening; is open D.opens; is opened17. —The Art Festival is coming. We are looking forward to ________ on our play. —Practice makes perfect. Let’s ________ it together.A.put; get ready to B.putting; getready to C.put; get readyforD.putting; getready for18. The garden ________ flowers. It look ________. I look ________ at them.A.is filled with; beautifully; happily B.is full of; beautiful; happilyC.is full of; beautiful; happy D.is filled of; beautiful; happily 19. —In the last class, we ________ into 7 groups to play games.—It was so great! Everyone was willing to ________ the games.A.were divided; join B.divided; take partinC.were divided;join inD.divided; join in20. —Trees play an important part in our life. They provide ________.—________, they keep the air cool and clean.A.wood with us; What’s worse B.us with wood; What’s moreC.wood for us; However D.us for wood; BesidesWe all need good friends and want to get on well with them. But what do you do when you and your best friend have ________ ideas? At first, I didn’t know what to do when this happened to my best friend Karina and me.When we first met at a summer camp, we got along so ________ that we shared stories, laughed a lot, and quickly became inseparable (形影不离的) friends. But then something happened at a picnic. “Did you hear the news about the shopping center?” asked one of our friends Levar. “Some people plan to ________ many trees to make room for a shopping center.”“That’s terrible! It will be bad for our environment (环境). We have to ________ that,” I said.“I don’t think so,” said Karina. “The shopping center will give people new jobs.”“But animals will ________ their homes!” I said. “I want people to have ________ , but it doesn’t have to do such a terrible thing.”I wanted Karina to join me in ________ trees, but she didn’t want to. I was so angry that I didn’t________ her for days. Later, my mother knew it and said to me seriously (严肃地), “No two people are the same. You should ________ each other. Don’t let the ________ make you lose a good friend.” After listening to my mom’s words, I said sorry to Karina. Now we’re still good friends. 21.A.wonderful B.basic C.different D.successful22.A.well B.slowly C.hard D.bravely23.A.climb up B.sit by C.watch over D.cut down24.A.support B.stop C.trust D.leave25.A.lose B.build C.clean D.find26.A.homes B.jobs C.rooms D.friends27.A.planting B.watering C.saving D.climbing28.A.write to B.talk to C.think of D.care for29.A.respect B.support C.love D.encourage30.A.difference B.story C.confidence D.importanceThe Tree-planting ClubTrees are useful. They provide food and oxygen. They help save energy, clean the air, and improve climate. Join it, and you will get a “GREEN” medal. Time: Monday-Wednesday Tel:3457-6788The Riding ClubBike more and drive less. It helps to reduce pollution and it’s good for your health because it’s good exercise. At the same time, it helps to save money. Time: From Monday to FridayTel:3458-6789The Volunteering ClubThe Shopping ClubTry green shopping. Use fewer plastic bags and bring reusable shopping bags. Don’t buy more than you really need. Before going to the store, make a list of the things you have to buy. This way, you may make less waste. Time: Every day except Friday Tel:3458-698731. As a member of the Tree-planting Club, what will you get?A.Some deicious food. B.A “GREEN” medal.C.A lovely animal. D.Some plastic bags.32. If Jenny wants to protect the environment and keep fit, she may join ________.A.the Tree-planting Club B.the Riding ClubC.the Volunteering Club D.the Shopping Club33. Bill often helps clean the parks with other volunteers ________.A.on Monday B.on Wednesday C.on Thursday D.on Sunday34. Which of the following is TRUE?A.Call 3457-6878 to join the Tree-plantingClub.B.Go to the Riding Club on weekends.C.Join the Volunteering Club to protect animals. D.Pay some money before joining each club.35. The material may be ________.A.a poster B.a news report C.a postcard D.an e-mail Plastic is useful. It’s in a lot of things we use every day, from clothes to pens, and bottles to toys.But there’s a problem. Most plastic is not biodegradable (可生物降解的), and a lot of it ends up in the sea.How big is the problem?There are billions of bits of plastic in the world’s sea! Every ocean and every beach has plastic, from large objects to small pieces called microplastics. Tons of plastic go into the sea every year. Increasing like this, by 2050 there will be more plastic than fish in the sea!How does plastic harm sea animals?Fish, sea turtles, and birds think plastic is food, and they eat it. The plastic stays in their stomachs. Dead seabirds are found with stomachs full of plastic. Whales, dolphins, and seals are caught by plastic bags or fishing nets. It’s said that millions of ocean animals die each year because of plastic rubbish in the sea around the world.What can we do?Many people and organizations around the world are taking action. In some countries, plastic bags aren’t allowed to use. Scientists are developing new biodegradable plastic. Many communities are trying to use less plastic and recycle more. Kids are playing their part, such as working to make their schools “zero plastic”.Plastic pollution is becoming more and more serious, so it’s necessary for us to produce, buy and use fewer plastic products. Above all, one person can’t solve it alone, but together we will make a difference.36. What w ill happen to the world’s oceans by 2050 according to the passage?A.Tons of plastic will enter the ocean. B.There will be more plastic than fish.C.There will be billions of bits of plastic. D.Every ocean and beach will have plastic.37. Many fish, sea turtles, and birds die because ________ according to the passage.A.they eat plenty of plastic B.they don’t have food to eatC.they are caught by fishermen D.they are caught by plastic bags38. In Paragraph 5, the writer advises us to ________.A.make the problem more serious B.solve the problem on our ownC.buy more plastic products alone D.work together to solve the problem39. In which part of the newspaper can we read the text?A.Travel. B.Science. C.History. D.Sport.40. How is the text organized? (① = Paragraph 1, ② = Paragraph 2, ...)A.B.C.D.In May, 16-year-old Alktur Dibat became the youngest Chinese climber to reach the top of Qomolangma (珠穆朗姆峰).The boy is from Urumqi, Xinjiang. He arrived at the South Base Camp in Nepal on April 15. He spent 28 days getting used to (习惯) the new place and then started his climb with about 10 other good climbers.On May 19, Alktur finally reached the top of the world, breaking the record set last year by Xu Zhuoyuan, a girl from Hunan. Reaching the top of Qomolangma is my biggest dream. I feel very happy that I made my dream come true,” Alktur said. During his climb, he sometimes felt terrible, but it didn’t stop him from keeping going.Alktur is a student at Urumqi No.13 Middle School. He started to learn rock climbing at 7, skiing at 8, and ice climbing at 9. He climbed his first mountain with his father when he was 10. July last year, they climbed a high mountain called Muzta Ata in Xinjiang. In February this year, Alktur climbed Siguni Mountain in Sichuan.To climb Qomolangma, Alktur ran 10 kilometers every morning and took special training classes on weekends. He also took a training class organized by the Chinese Mountaineering Association.Alktur now wants to climb the other highest mountains. He loves the feeling of climbing and wants to keep trying.41. Why did Alktur spend 28 days at the South Base Camp?A.To taking training classes. B.To wait for other climbers.C.To get his body ready for the high place. D.To relax and enjoy the beautifulmountain.42. Which one shows the correct order of the events of Alktur?①Alktur learned skiing. ②Alktur climbed Siguni Mountain.③Alktur climbed to the top of the world. ④Alktur kept practicing running and training.A.①②③④B.③①②④C.①②④③D.③②①④43. What is the main idea of Paragrah 5?A.How Alktur became interested in climbing. B.Why Alktur wanted to climb Qomolangma.C.What Alktur did to make his dream come true. D.Who helped Alktur make his dream come true.44. What do you know about Alktur?A.He climbed Qomolangma with his father.B.He set a new record after a girl called Xu Zhuoyuan.C.He wouldn’t go on climbing after reaching the top of Qomolangma.D.He tried to climb the mountain with 10 climbers in his first climb.45. Which of the following words can best describe Alktur?A.honest and funny. B.helpful and patient.C.Outgoing and kind. D.hard-working and brave.You talk for a long, long time. Any silly topic can become interesting. Any joke you tell to each other makes you laugh loudly. These may be the most fun parts of hanging out (闲逛) with friends.46 If young people don’t learn how to keep friendships, they can easily become lonely and depressed (沮丧的), according to the University of Arizona in the US.Unlike being with one’s parents, hanging out with friends is good for developing social skills (社交技巧). 47 “If we have different ideas, we usually take a vote (投票) to decide where to go,” said Yang Kaiyue, a 14-year-old schoolgirl from Anhui.In China, most kids like to go shopping, go to the cinema and have lunch or dinner together. 48 And kids in the US often play video games together or play sports, like basketball, in the park. What should you remember when you are hanging out with friends? 49Choose a time when your friends are all free. It is even more fun to play with a group of friends than just one.When you are hanging out at a friend’s home, do not be afraid of making a mess (弄乱). 50 Share the money equally (相等地). Do not let one person pay all the money unless it is a special treat (请客).Choose the place before you go so that you will not waste (浪费) time deciding where to go. 根据短文内容,将下面方框内的选项还原到文中空白处,使短文内容完整、通顺,每个选项只能用一次,其中有一个选项是多余的。

Kryazhimskiy_eta...

Kryazhimskiy_eta...

3 JUNE 2011 VOL 332 SCIENCE 1160PERSPECTIVESPropagating bacteria in a lab f or thousands of genera-tions may seem tedious, oreven irrelevant, to most evolution-ary biologists. Nonetheless, such experiments provide an opportunity to deduce quantitative principles ofevolution and directly test them in controlled environments. Combined with modern sequencing technolo-gies, as well as theory, recent micro-bial experiments have suggested a critical role for genetic interactions among mutations, called epistasis, in determining the pace of evolution. T wo papers in this issue, by Khan et al . on page 1193 ( 1) and Chou et al . ( 2) on page 1190, present precise experimental measurements of these epistatic interactions.Microbial evolution experiments in a simple, constant environmentreveal a characteristic pattern: At fi rst, a population rapidly acquires benef icial mutations, but then adaptation progressively slows sothat thousands of generations pass between subsequent benefi cial substitutions ( 3). Unexpected outcomes, however, can and do occur even in these simple experimental conditions. Populations evolve a dramatically elevated mutation rate ( 4), discover rare phe-notypic innovations ( 5), or diverge into dis-tinct lineages that either coexist ( 6) or com-pete vigorously as each strain races to acquire more adaptive mutations ( 7). Recent theory suggests that a common cause underlies all these phenomena: the structure of epistatic interactions among mutations.Epistasis describes how the fi tness conse-quence of a mutation depends on the status of the rest of the genome. In one extreme exam-ple, called sign epistasis, a mutation may be benefi cial if it arises on one genetic back-ground, but detrimental on another. Although interactions among genes may seem an obvi-ous fact of biology, the myriad possible forms of epistasis have made it diffi cult to formu-late predictive evolutionary models or to infer such interactions from empirical data. Nev-ertheless, epistasis is at the heart of classi-cal theories, such as the evolution of sex ( 8), and also of modern concepts such as robust-ness and evolvability (a population’s ability to evolve) ( 9). Moreover, recent theoretical work ( 10) suggests that the overall dynami-cal pattern of adaptation observed in long-term microbial experiments can be explained by a prevalence of what is called antagonistic epistasis, in which benefi cial mutations con-fer less benefi t in combination than they do individually.To quantify epistasis among benef icial mutations and to test these theoretical predic-tions, both Khan et al . and Chou et al . exam-ined the initial substitutions that occurred in populations of bacteria adapting in the labo-ratory. The researchers identifi ed the hand-ful of mutations across the genome that had substituted in an evolved strain, and then con-structed intermediate strains containing com-binations of these mutations. By measuringthe fi tness benefi ts conferred by these muta-tions, individually and in combination, the researchers were able to directly quantify the extent and form of epistasis (see the fi gure).Both studies found a predominance of antagonistic epistasis, which impeded the rate of ongoing adaptation relative to a null model of independent mutational eff ects. Chou et al . further interpreted the prevalence of antagonistic epistasis in terms of meta-bolic costs and benefi ts. The concordance of results from the two studies is noteworthy, especially because Khan et al . analyzed Esch-erichia coli populations [from the long-term experiments of Lenski ( 3)], whereas Chou et al . studied an engineered strain of Methylo-bacterium extorquens . The remarkable preci-sion with which both studies quantifi ed epis-tasis among benefi cial mutations was made possible only by leveraging whole-genome sequencing combined with the ability to reconstruct mutational combinations andassay them in the same environment in whichthe mutations fi rst arose.The view of epistasis across a genome that emerges from this work contrasts sharply In Evolution, the Sum Is Less than Its PartsEVOLUTIONSergey Kryaz himskiy ,1,2 Jeremy A. Draghi ,1 Joshua B. Plotkin 1Laboratory experiments with bacteria shedlight on how epistatic interactions infl uence the pace of evolution.Ancestor strain Adapted strain Reconstruct intermediates Evolves in labDiminishing returns Fitness W abFitness W b Fitness W a 1st mutation 2nd mutation 3rdmutation F i t n e s sAntagonistic epistasis W ab < W a • W b Antagonistic epistasis. Bacteria adapt to a laboratory environment by acquiring benefi cial mutations. Khan et al . and Chou et al . identifi ed the mutations that accrued in an adapted strain, and measured their fi tness benefi ts (growth advantage relative to the ancestor). The mutations conferred smaller marginal benefi ts in combination than they didindividually. This antagonistic epistasis causes progressively slower rates of adaptation over time.C R E D I T : A D A P T E D B Y P . H U E Y /S C I E N C E1Department of Biology, University of Pennsylvania, Phila-delphia, PA 19103, USA. 2Department of Organismic andEvolutionary Biology, Harvard University, Cambridge, MA 02138,USA.E-mail:******************.eduPublished by AAASo n J u n e 2, 2011w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o mPERSPECTIVESwith the type of epistasis found among adap-tive mutations within a single protein ( 11). Notably, Weinreich et al. studied mutations in an antibiotic resistance gene, β-lactamase, and found a prevalence of sign epistasis, which limits the number of genetic paths that evolution can follow ( 11). In contrast, the epistasis documented by Khan et al. and Chou et al. exerts less constraint on the order of substitutions that increase fi tness, so that the specifi c path that evolution will take is less predictable. At the same time, the pre va-lence of antagonistic epistasis measured by the two groups ensures a predictable tempo of adaptation characterized by diminishing marginal returns ( 10).Although these new experiments suggest a consistent principle of how epistasis shapes the pattern of adaptation, many questions must be answered before their results can be extended to evolution outside the labora-tory. It remains unclear, for instance, whether these results would be altered by changing fundamental evolutionary parameters, such as population size, rate of mutation, and rate of re combination. Likewise, it is uncle ar whether experiments in simple environments,with only one or a few niches for coexistingstrains, will refl ect the pattern of adaptation inmore complex ecologies, such as Pseudomo-nas fl uorescens in structured environments( 6). Nonetheless, the compelling consistencybe twe e n the se two studie s should inspireefforts to test the generality of their fi ndings,by measuring epistasis in a wide range ofexperimental and even natural systems.These studies, and the long-term labora-tory evolution experiments from which theyderive, represent a resounding achievementfor the reductionist approach to studyingbiology. The mechanistic picture they paintof evolution is complex but not incompre-hensible; although epistatic interactions leadto surprising phenomena, the advantagesof a frozen “fossil record” of laboratory-raised isolates, and the ease of manipulat-ing—and, now, fully sequencing—evolvedstrains enables researchers to tease apart andexamine the underlying causes of these phe-nomena. Moreover, the theory and conceptsdeveloped to explain these simple experi-me nts may have broad payoffs. Alre ady,epistasis has been implicated in the evolu-tion of drug resistance in infl uenza viruses( 12) and in bacterial pathogens ( 13). Ulti-mately, populations of bacteria tediouslypropagated in the lab may be key to predict-ing the next moves of the most mutable anddangerous human pathogens.References1. A. I. Khan, D. M. Dinh, D. Schneider, R. E. Lenski, T. F.Cooper, Science332, 1193 (2011).2. H.-H. Chou, H.-C. Chiu, N. F. Delaney, D. Segrè, C. J.Marx, Science332, 1190 (2011).3. S. F. Elena, R. E. Lenski, Nat. Rev. Genet.4, 457 (2003).4. P. D. Sniegowski, P. J. Gerrish, R. E. Lenski, Nature387,703 (1997).5. Z. D. Blount, C. Z. Borland, R. E. Lenski, Proc. Natl. Acad.Sci. U.S.A.105, 7899 (2008).6. P. B. Rainey, M. Travisano, Nature394, 69 (1998).7. R. J. Woods et al., Science331, 1433 (2011).8. A. S. Kondrashov, Nature336, 435 (1988).9. G. P. Wagner, L. Altenberg, Evolution50, 967 (1996).10. S. Kryazhimskiy, G. Tkačik, J. B. Plotkin, Proc. Natl. Acad.Sci. U.S.A.106, 18638 (2009).11. D. M. Weinreich, N. F. Delaney, M. A. Depristo, D. L.Hartl, Science312, 111 (2006).12. J. D. Bloom, L. I. Gong, D. Baltimore, Science328, 1272(2010).13. S. Trindade et al., PLoS Genet.5, e1000578 (2009).10.1126/science.1208072Behavior and the Dynamic Genome GENOMICSAlison M. Bell 1,3 and Gene E. Robinson 2,3Does behavior evolve through gene expression changes in the brain in response to the environment?W he n circumstance s change, an organism’s fi rst response is oftenbehavioral. But how does adap-tive behavior evolve, given that it requires constant and often instantaneous interac-tions between an individual and its environ-ment? The dominant view emphasizes new random DNA mutation as the starting point. This may lead to behavioral variation. If the resulting variants have different fi tness values, then natural selection could result in behavioral evolution through changes in allele frequencies across generations. An alternative theory proposes environmentally induced change in an organism’s behavior as the starting point ( 1), and “phenotypic plas-ticity” that is inherited across generations through an unspecifi ed process of “genetic assimilation” ( 2). Despite numerous exam-ples ( 3), the latter as a driver of behavioralevolution has never been widely accepted,perhaps as a reaction against Lamarckian-ism—the idea that characteristics acquiredby habit, use, or disuse can be passed onacross ge ne rations. Howe ve r, be havioralgenetics and genomics, especially for ani-mals in natural populations, lend some plau-sibility to the phenotypic plasticity view.The ability to analyze genome-wide geneexpression through “transcriptomics” hasshown that the genome responds dynami-cally to stimuli ( 4). One illustrative exam-ple is the honey bee. The African honey bee(Apis mellifera scutellata) responds muchmore fi ercely when its hive is attacked thando other subspecies of honey bee. Evolu-tionary changes in brain gene expressionmay have resulted in an increase in respon-siveness to alarm pheromone (the chemicalbees use to alert each other to danger) forAfrican honey bees ( 5). About 10% of thesame genes regulated in the brain by alarmpheromone are also differentially expressedbe twe e n African and the le ss aggre ssiveEuropean honey bees. These genes, actingover both physiological and evolutionarytime scales, provide a possible mechanismfor how behavioral plasticity might driverapid behavioral evolution through changesin gene regulation. In an environment withmore predators, colonies producing morebees with lower thresholds for respondingto alarm pheromone would have fared bet-ter, which would then result in a popula-tion with patterns of gene expression whoseoutput was an “aroused” behavior, even inthe absence of alarm pheromone. Althoughthis view does not rule out the possibilitythat these differences in aggression arosethrough new mutation, the transcriptomicsagrees with the idea of “genetic accommo-dation” ( 3), the modern, more inclusive ver-sion of genetic assimilation, which couldinvolve e ithe r e volutionary incre ase s ordecreases in plasticity. In certain environ-ments, plastic genotypes might be favored,but in other environments, nonplastic gen-otypes might be preferred instead. Futurestudies will determine whether differencesin honey bee aggression can be explainedby selection on regulatory regions of the1Department of Animal Biology, University of Illinois,Urbana-Champaign, IL 61801, USA. 2Department of Ento-mology, University of Illinois, Urbana-Champaign, IL 61801,USA. 3Neuroscience Program, Program in Ecology, Evolution-ary Biology and Conservation, Institute for Genomic Biology,University of Illinois, Urbana-Champaign, IL 61801, USA.E-mail:******************.eduPublished by AAAS o n J u n e 2 , 2 0 1 1 w w w . s c i e n c e m a g . o r g D o w n l o a d e d f r o m SCIENCE VOL 332 3 JUNE 20111161。

锥拉伸与压缩不动点定理英文表示

锥拉伸与压缩不动点定理英文表示

锥拉伸与压缩不动点定理英文表示English:The Contraction Mapping Theorem, also known as the Banach Fixed-Point Theorem, states that for a complete metric space and a contraction mapping, there exists a unique fixed point. In other words, if there is a function that maps points in the space to other points such that the distance between the images of the points becomes smaller as the distance between the original points becomes smaller, then there exists a unique point in the space such that when the function is applied to this point, the result is the same point. This theorem is widely applicable in various fields such as economics, engineering, and computer science, where it is used to prove the existence and uniqueness of solutions to certain problems.中文翻译:收缩映射定理,也称为巴拿赫不动点定理,规定了在完备的度量空间和一个收缩映射下,存在一个唯一的不动点。

换句话说,如果存在一个函数,将空间中的点映射到其他点,使得原始点之间的距离变小时,它们的映射点之间的距离也变小,那么在空间中存在一个唯一的点,当该函数应用于该点时,结果仍然是同一个点。

喜欢的建筑 英语作文

喜欢的建筑 英语作文

When it comes to architecture,there are countless styles and structures that can captivate the heart and mind.My favorite type of architecture is one that seamlessly blends aesthetics with functionality,creating spaces that are not only visually appealing but also serve a purpose in the community.Historical Significance and Cultural HeritageOne of the most enchanting aspects of architecture is its ability to reflect the history and culture of a place.Buildings like the Eiffel Tower in Paris or the Taj Mahal in India are not just architectural marvels they are symbols of a nations heritage and pride.These structures have stood the test of time,telling stories of the past and inspiring the present.Innovation and Modern DesignIn contrast to historical structures,modern architecture often pushes the boundaries of what is possible with new materials and technologies.Buildings like the Burj Khalifa in Dubai or the Guggenheim Museum in Bilbao showcase the ingenuity of contemporary architects.These structures are not only functional but also serve as artistic expressions that challenge our perceptions of space and form.Sustainability and EcoFriendly PracticesAs the world becomes more aware of environmental issues,sustainable architecture is gaining popularity.I admire buildings that incorporate ecofriendly practices,such as the use of solar panels,green roofs,and rainwater harvesting systems.These structures not only reduce their environmental footprint but also promote a healthier living environment for their occupants.Community Spaces and Public BuildingsArchitecture that serves the community is particularly appealing to me.Public libraries, community centers,and parks are examples of spaces that bring people together and foster a sense of belonging.These buildings are designed to be inclusive,accessible,and welcoming to all members of the community.Personal Connection and Emotional ImpactOn a personal level,architecture can evoke emotions and create lasting memories.A childhood home,a university campus,or even a favorite coffee shop can hold a special place in ones heart.These spaces become a part of our identity and contribute to oursense of belonging.ConclusionIn essence,my favorite architecture is a harmonious blend of history,innovation, sustainability,community service,and personal connection.It is the kind of architecture that not only stands out for its beauty but also for its ability to enrich the lives of those who interact with it.Whether its a historic monument or a modern skyscraper,the best architecture leaves a lasting impression and contributes positively to the world around it.。

新教材高中英语Unit4DisastersSectionⅡ课时作业新人教版必修第一册(含答案)

新教材高中英语Unit4DisastersSectionⅡ课时作业新人教版必修第一册(含答案)

新教材高中英语新人教版必修第一册:Section ⅡReading and Thinking (1)[基础测评]Ⅰ. 根据首字母提示写出正确单词1. Is coal actually cheaper than gas?2. Sixty percent of the people surveyed hold a positive attitude to the design.3. When we were in danger,they came to our rescue.4. Our school was built of brick.5. When Jack knew he was cheated, he was too angry to breathe.6. Although we suffer from many serious natural disasters, we are sure to overcome all difficulties.7. I am more than glad that you have learned to guess the meanings of the words from the context.8. The storm did a lot of damage to the crops.9. Getting up this morning was quite an effort.10. Chris had seen him through a crack from the curtains.Ⅱ. 单句语法填空1. The injured leg caused great suffering (suffer) to the man.2. The workers made it to the ruins (ruin) and began their work right away.3. Then came the shocking (shock) news that the pilot failed to escape death.4. Give up the belongings in your room or you might be trapped(trap) in the fire.5. Ever since Bonnie moved there, she has been buried (bury) in her research.6. Compared to that in the city, the air in the mountains is far better to breathe (breathe).7. I looked at my husband in shock, waiting for him to tell me that I had misunderstood everything.8. We’ve missed the bus. It looks as if we’ll have to walk.Ⅲ. 根据汉语句意完成英语句子1. 我非常震惊。

Online Stochastic Modelling for Network-Based GPS Real-Time Kinematic Positioning

Online Stochastic Modelling for Network-Based GPS Real-Time Kinematic Positioning
2)Telematics Research Division, Electronics and Telecommunications Research Institute, 161 Gajeong-dong, Yuseong-gu, Daejeon 305-350 Korea e-mail: hkyulee@etri.re.kr, Tel: 82-42-860-1748, Fax: 82-42-860-1611
114
Journal of Global Positioning Systems
Model, Distance-Based Linear Interpolation Method, Linear Interpolation Method, Lower-Order Surface Model and Least-Square Collocation (Fotopoulos & Cannon, 2001). However, Dai et al (2001) demonstrated that the performances of all of these methods are similar.
Received: 16 November 2004 / Accepted: 8 July 2005
Abstract. Baseline length-dependent errors in GPS RTK positioning, such as orbit uncertainty, and atmospheric effects, constrain the applicable baseline length between reference and mobile user receiver to perhaps 10-15km. This constraint has led to the development of networkbased RTK techniques to model such distance-dependent errors. Although these errors can be effectively mitigated by network-based techniques, the residual errors, attributed to imperfect network functional models, in practice, affect the positioning performance. Since it is too difficult for the functional model to define and/or handle the residual errors, an alternative approach that can be used is to account for these errors (and observation noise) within the stochastic model. In this study, an online stochastic modelling technique for network-based GPS RTK positioning is introduced to adaptively estimate the stochastic model in real time. The basis of the method is to utilise the residuals of the previous segment results in order to estimate the stochastic model at the current epoch. Experimental test results indicate that the proposed stochastic modelling technique improves the performance of the least squares estimation and ambiguity resolution.

Koszul algebras and the quantum MacMahon Master Theorem

Koszul algebras and the quantum MacMahon Master Theorem

1. I NTRODUCTION In [4], Garoufalidis, Lˆ e and Zeilberger prove a quantum version of MacMahon’s celebrated “Master Theorem” [8, pp. 97–98]. As stated in [4], the generalization was motivated in part by considerations in quantum topology and knot theory, and it also answers a long-standing open question by G. Andrews [1, Problem 5]. An abundance of different proofs of the original Master Theorem can be found in the literature; the quantum-generalization in [4] is proved by an application of the calculus of difference operators developed by Zeilberger in [12]. Our goal here is to derive the quantum MacMahon Master Theorem of Garoufalidis, Lˆ e, and Zeilberger, along with its multiparameter extension proved subsequently by Konvalinka and Pak [7], fairly effortlessly from basic properties of Koszul algebras. Indeed, the Koszul complex immediately leads to a generalized MacMahon identity stated as equation (11) below. The quantum MacMahon Master Theorem is the special case of (11) where the Koszul algebra in question is the so-called quantum affine space. Thus, neither the main result of this note nor the methods employed are ours but we believe that the connection between Koszul algebras and the quantum Master Theorem deserves to be explicitly stated and fully exploited. The link to quantum affine space and quantum matrices was in fact already briefly mentioned in the last section of [4], but the proof given here appears to be new. We have tried to keep this note reasonably self-contained and accessible to readers unfamiliar with Koszul algebras. Sections 2 and 3 serve to deploy the pertinent background material concerning Koszul algebras and characters in some detail. The operative technicalities for our proof are collected in Lemmas 1 and 2 below; they are presented here with full proofs for lack of a suitable reference. The quantum MacMahon Master Theorem [4, Theorem 1], [7, Theorem 1.2] is then stated and proved in Section 4. The short final Section 5 discusses certain modifications of the MacMahon identity. Our basic reference for Koszul algebras are Manin’s notes [9]; for bialgebras, our terminology follows Kassel [6]. We work over a commutative base field except in 3.1 and 3.2 where can be any commutative ring at no extra cost. Throughout, ⊗ will stand for ⊗ . 2. KOSZUL ALGEBRAS 2.1. Quadratic algebras. A quadratic algebra is a factor of the tensor algebra T(V ) of some finite-dimensional -vector space V modulo the ideal generated by some subspace R(A) ⊆ T(V )2 = V ⊗2 . Thus, A∼ = T(V )/ (R(A)). The natural grading of T(V ) descends to a grading A = d≥0 Ad of A with A0 = and A1 an be viewed as the = V . In practise, one often fixes a -basis x

2025届高考英语二轮专题复习与测试专题强化练三推理判断题__观点态度类

2025届高考英语二轮专题复习与测试专题强化练三推理判断题__观点态度类

专题强化练(三) 推理推断题——观点看法类A(2024·广州市高三调研测试)Our planet quakes thousands of times a year,but we still can't predict exactly when and where earthquakes will strike.What if animals' odd behaviors could warn us?Researchers have reviewed hundreds of reports on pre­packed abnormal animal behaviors,but more were just anecdotes.Geologist Jim Berkland counted newspaper ads looking for runaway cats and dogs.On October 13,1989,he told a newspaper reporter a big quake would strike in a week.Four days later,the Loma Prieta earthquake hit! But the scientific community still rejected Berkland's theory.He didn't document every prediction,so nobody could measure his accuracy rate.Actual scientific evidence has to be repeatable.And a connection between a cause and an effect has to be shown to be stronger than random chance through careful experimentation and data collection.California researchers in the 1970s happened to have built controlled habitats to monitor the wheel­running activity of pocket mice.These habitats happened to be in an active earthquake area.Then the 1971 San Fernando Earthquake struck nearby.The researchers checked their data and found no big changes in how long the animals ran in their wheels or stayed underground before the earthquake activity.What might the next experiment show?Researchers from 150 universities worldwide are working on a new study called the ICARUS project.The project tracks many small animal species such as birds,bats,and turtles for the purpose of scientific research.One group of researchers are looking for possible connections between animal behaviors and earthquakes.If they find a reliable connection,this could save hundreds of thousands of human lives.ICARUS aims to power an app that will give people hours to get to safety.However,not everyone is hopeful.Geologist Wendy Bohon said that ICARUS is doing some “cool things”,but she knows animal behaviors are hard to pin down.“My cat could act crazy before an earthquake,”she says.“But it also acts crazy if somebody uses the can opener.”【语篇解读】本文是一篇说明文。

Markets and Hierarchies

Markets and Hierarchies
Opportunism is a problem in small numbers exchange (hold-up problem)
TRANSACTION COST FRAMEWORK
Copyright © 2018, 2013, 2009 Pearson Education, Inc All Rights Reserved
corruption of the strategic decision-making process – tops managers of departments further their own goals rather than the overall goals of the organisations
INFORMATION AND ORGANISATIONAL DESIGN
LUBS5002
Markets and Hierarchies
OBJECTIVES
Apply the concepts of transaction cost economics to the understanding of efficient organisational structure.
• Effects on internal/external TC’s are industry specific but most dramatic for ‘information goods’ (books, films, music).
DIGITIZATION AND TRANSACTION COSTS
control – location decision-making rights within hierarchy
(Besanko et al, 1996)

Microwave Theory and Technique Electronic Measurements Fundamentals of Electronics Circuit

Microwave Theory and Technique Electronic Measurements Fundamentals of Electronics Circuit

RESEARCH INTERESTSPower Electronics, Switching-Mode PWM and Resonant DC/DC Power Converters, DC/AC Inverters, Resonant Rectifiers, RF Tuned Power Transistor Amplifiers and Oscillators, Power Management, Magnetic Devices, Semi-conductor Device Modeling, Power Integrated Circuits, Electronic Ballasts, Lighting Systems, Modeling and Con-trols of Power Converters, Sensors, Electronic Circuits, Integrated Circuits, Energy Harvesting, and CAD.EDUCATION1966-1971 Department of Electronics, Technical University of Warsaw, Warsaw, Poland1972-1973 Post Graduate Study in Engineering Education, Technical University of Warsaw, Warsaw, PolandDEGREES1971M.S.Thesis: "Gunn diode oscillator for X-band with varactor tuning"Advisors: Professor Adam Smolinski and Professor Janusz DobrowolskiDepartment of Electronics, Technical University of Warsaw, Warsaw, Poland 1978Ph.D.Dissertation: "High-efficiency tuned power transistor amplifier"Advisor: Professor Jan EbertDepartment of Electronics, Technical University of Warsaw, Warsaw, Poland 1984D. Sci.Dissertation: "High-efficiency tuned power amplifiers, frequency multipliers, and oscillators," Warsaw Technical University Publisher, pp. 1-143, Warsaw 1984Department of Electronics, Technical University of Warsaw, Warsaw, PolandPROFESSIONAL ACADEMIC EXPERIENCE1972-1978 Instructor, Department of Electronics, Technical University of Warsaw, Warsaw, Poland1978-1984 Assistant Professor, Department of Electronics, Technical University of Warsaw, Warsaw, PolandCourses taught High-Frequency High-Power TechniquesRadio TransmittersElectromagnetic Field TheoryMicrowave Theory and TechniqueElectronic MeasurementsFundamentals of ElectronicsCircuit TheoryElectronic Circuits and SystemsRadio Transmitters LaboratoryRadio Receivers LaboratoryElectronics LaboratoryRadio Electronics Laboratory, Chair, 1978-1984Electronic Apparatus Laboratory, Chair, 1978-1984.MARIAN K. KAZIMIERCZUKProfessor of Electrical EngineeringWright State UniversityDayton, OH 45435Phone: 937 775-5059 Fax: 937-775-3936 mkazim@1984-1985 Visiting Professor, Department of Electrical Engineering, Virginia Polytechnic Institute and State Uni-versity, Blacksburg, VA 24061Courses taught EE3101 Electromagnetic FieldsEE3201 Electronics IEE3202 Electronics IIEE4201 Electronic Circuits and Systems I1985-1990 Assistant Professor, Department of Electrical Engineering, Wright State University, Dayton, OH 45435 1990-1994 Associate Professor, Department of Electrical Engineering, Wright State University, Dayton, OH 45435 1994-pres Professor, Department of Electrical Engineering, Wright State University, Dayton, OH 45435 Courses taught EE 331/531 Electronic DevicesEE 431/631 Electronic CircuitsEE 434/634 Electronic Circuits LaboratoryEE 444/644 Linear Integrated CircuitsEE 449/649 Pulse and Digital CircuitsEE 499/699 Special Problems in EngineeringEE 499 Design Industrial ClinicEE 741 Power Semiconductor DevicesEE 742 Power Electronics IIEE 743 Power Electronics IIIEGR 891 Ph.D. SeminarADVISING11 Ph.D. students81 M.S. students6 post-doctoral positions3 sabbatical positionsPROFESSIONAL NON-ACADEMIC EXPERIENCE1984 Design Automation, Inc., 809 Massachusetts Avenue, Lexington, MA 02173, (617) 862-8998 Project Engineer responsible for designing high-efficiency switching-mode dc/dc converters1991 Wright-Patterson AFB, Wright Laboratory, Dayton, OH, Summer Faculty Fellowship1995 Wright-Patterson AFB, Wright Laboratory, Dayton, OH, Summer Faculty Fellowship1996 Wright-Patterson AFB, Wright Laboratory, Dayton, OH, Summer Faculty Fellowship PROFESSIONAL MEMBERSHIPSIEEE, Fellow 2005-presentIEEE, Senior Member 1991-2004Power Electronics Society 1991-presentCircuit and Systems Society 1991-presentIndustrial Electronics Society 1991-presentAerospace and Electronic Systems Society 1991-presentIndustry Applications Society 1991-presentTau Beta Pi 1992-presentElectrical Manufacturing and Coil Winding Association 1991-presentAWARDS1977 President of the Technical University of Warsaw1978 President of the Technical University of Warsaw1979 President of the Technical University of Warsaw1980 President of the Technical University of Warsaw1981 Minister of Science, University Education, and Technology1982 Minister of Science, University Education, and Technology1983 Polish Academy of Sciences1984 President of the Technical University of Warsaw1985 Minister of Science, University Education, and Technology1990 Harrel V. Noble Award, IEEE Dayton Section1991 Excellence in Research Award, College of Engineering and Computer Science, Wright State University 1991 Presidential Award for Faculty Excellence in Research, Wright State University1993 Excellence in Teaching Award, College of Engineering and Computer Science, Wright State University 1993 Nominated for the Presidential Teaching Excellence Award, Wright State University1994 Nominated for the Presidential Teaching Excellence Award, Wright State University1994 Electrical Manufacturing and Coil Winding for outstanding contribution1995 Award for Outstanding Professional Achievement, the Affiliate Societies Council of the Engineering and Sci-ence Foundation of Dayton1995 Outstanding Faculty Member, College of Engineering and Computer Science, Wright State University1995 Presidential Award, Outstanding Faculty Member, Wright State University1996 Brage Golding Distinguished Professor of Research Award, Wright State University1997 Excellence in Professional Service Award, College of Engineering and Computer Science, Wright State Uni-versity1997 Nominated for the Presidential Professional Service Award, Wright State University2000 Excellence in Teaching Award, College of Engineering and Computer Science, Wright State University 2000 Nominated for the Presidential Teaching Award, Wright State University2002 Excellence in Professional Service Award, College of Engineering and Computer Science, Wright State Uni-versity2002 Nominated for the Presidential Professional Service Award, Wright State University2003 Excellence in Research Award, College of Engineering and Computer Science, Wright State University 2004 Board of Trustees’ Award for Faculty Excellence, Wright State University2005 Nominated for the Excellence in Teaching Award, College of Engineering and Computer Science, Wright State University2006 Nominated for Robert J. Kegerreis Distinguished Professor of Teaching by CECS2007 Nominated for Robert J. Kegerreis Distinguished Professor of Teaching by CECS2007 Nominated for the Excellence in Teaching Award, College of Engineering and Computer Science, Wright State UniversityPUBLICATIONSBooks1. M. K. Kazimierczuk and D. Czarkowski, "Resonant Power Converters," John Wiley & Sons, New York, NY, pp.1-481, 1995 (The text book is intended for graduate courses and practicing engineers).2. M. K. Kazimierczuk and D. Czarkowski, "Solutions for Resonant Power Converters," John Wiley & Sons, NewYork, NY, pp. 1-80, 1995.3. A. Aminian and M. K. Kazimierczuk, “Electronic Devices: A Design Approach,” Prentice Hall, Upper SaddleRiver, NJ, pp. 1-810, 2004 (The text book is intended for undergraduate courses, 3 quarters or 2 semesters). 4. M. K. Kazimierczuk and A. Aminian, “Laboratory Manual to Accompany Electronic Devices: A Design Ap-proach,” Prentice Hall, Upper Saddle River, NJ, pp. 1-149, 2004 (The book is intended for undergraduate courses).5. M. K. Kazimierczuk and A. Aminian, “Instructor’s Solutions Manual to Accompany Electronic Devices: A De-sign Approach,” Prentice Hall, Upper Saddle River, NJ, pp. 1-543, 2004.6. M. K. Kazimierczuk, “Pulse-width DC-DC Power Converters,” John Wiley & Sons, New York, NY, 2008, pp. 1-968 (in press). (The book is intended for graduate students and practicing engineers).7. M. K. Kazimierczuk, “Solutions Manual for Pulse-width WM DC-DC Power Converters,” John Wiley & Sons,New York, NY, 2008 (in press).Journal Articles1. M. K. Kazimierczuk and J. M. Modzelewski, "Drive-transformerless Class-D voltage switching tuned poweramplifier," Proceedings of the IEEE, Vol. 68, pp. 740-741, June 1980.2. M. K. Kazimierczuk, "Class E tuned power amplifier with shunt inductor," IEEE Journal of Solid-State Circuits,Vol. SC-16, pp. 2-7, February 1981.3. J. Ebert and M. K. Kazimierczuk, "Class E high-efficiency tuned power oscillator," IEEE Journal of Solid-StateCircuits, Vol. SC-16, pp. 62-66, April 1981.4. M. K. Kazimierczuk, "A new approach to the design of tuned power oscillators," IEEE Transactions on Circuitsand Systems, Vol. CAS-29, pp. 261-267, April 1982.5. J. Ebert and M. K. Kazimierczuk, "High-efficiency RF power transistor amplifier," Bull. Polon. Sci., Ser. Sci.Tech., Vol. 25, No. 2, pp. 135-138, 1977.6. J. Ebert and M. K. Kazimierczuk, "Applying the Class E concept to the RF power generator," Bull. Acad.Polon. Sci., Ser. Sci. Tech., Vol. 29, No. 1-2, pp. 79-87, 1981.7. M. K. Kazimierczuk, "Effects of the collector current fall time on the Class E tuned power amplifier," IEEEJournal of Solid-State Circuits, Vol. SC-18, pp. 181-193, April 1983.8. M. K. Kazimierczuk, "Exact analysis of Class E tuned power amplifier with only one inductor and one capacitorin load network," IEEE Journal of Solid-State Circuits, Vol. SC-18, pp. 214-221, April 1983.9. M. K. Kazimierczuk, "Parallel operation of power transistors in switching amplifiers," Proceedings of the IEEE,Vol. 71, pp. 1456-1457, December 1983.10. M. K. Kazimierczuk, "Charge-control analysis of Class E tuned power amplifier with only one inductor and onecapacitor in load network," IEEE Transactions on Electronic Devices, Vol. ED-31, pp. 366-373, March 1984.11. M. K. Kazimierczuk, "Accurate measurements of lifetime of excess base stored charge at high collector cur-rents," IEEE Transactions on Electronic Devices, Vol. ED-31, pp. 374-378, March 1984.12. M. K. Kazimierczuk, "Collector amplitude modulation of Class E tuned power amplifier," IEEE Transactions onCircuits and Systems, Vol. CAS-31, pp. 543-549, June 1984.13. M. K. Kazimierczuk and N. O. Sokal, "Cause of instability of power amplifier with parallel-connected powertransistors," IEEE Journal of Solid-State Circuits, Vol. SC-19, pp. 541-542, August 1984.14. M. K. Kazimierczuk, "Class E tuned power amplifier with nonsinusoidal output voltage," IEEE Journal of SolidState Circuits, Vol. SC-21, pp. 575-581, August 1986.15. M. K. Kazimierczuk, "Generalization of conditions for 100-percent efficiency and nonzero output power inpower amplifiers and frequency multipliers," IEEE Transactions on Circuits and Systems, Vol. CAS-33, pp.805-807, August 1986.16. M. K. Kazimierczuk and K. Puczko, "Exact analysis of Class E tuned power amplifier at any Q and switch dutycycle," IEEE Transactions on Circuits and Systems, Vol. CAS-34, pp. 149-159, February 1987.17. M. K. Kazimierczuk, "High-speed driver for switching power MOSFETs," IEEE Transactions on Circuits andSystems, Vol. CAS-35, pp. 254-256, February 1988.18. M. K. Kazimierczuk, "Design-oriented analysis of boost zero-voltage-switching resonant dc/dc converter,"IEEE Transactions on Power Electronics, Vol. PE-3, pp. 126-136, April 1988.19. M. K. Kazimierczuk, "Steady-state analysis of a buck zero-current-switching resonant dc/dc converter," IEEETransactions on Power Electronics, Vol. PE-3, pp. 286-296, July 1988.20. M. K. Kazimierczuk, "A network theorem dual to Miller's theorem," IEEE Transactions on Education, Vol. E-31,pp. 265-269, November 1988.21. M. K. Kazimierczuk and X. T. Bui, "Class E dc/dc converters with an inductive impedance inverter," IEEETransactions on Power Electronics, Vol. PE-4, pp. 124-135, January 1989.22. J. Jozwik and M. K. Kazimierczuk, "Dual sepic PWM switching-mode dc/dc power converter," IEEE Transac-tions on Industrial Electronics, Vol. IE-36, pp. 64-70, February 1989.23. M. K. Kazimierczuk and W. A. Tabisz, "Class C-E high-efficiency tuned power amplifier," IEEE Transactionson Circuits and Systems, Vol. CAS-36, pp. 421-428, March 1989.24. M. K. Kazimierczuk and W. D. Morse, "State-plane analysis of zero-voltage-switching resonant dc/dc convert-ers," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-25, pp. 232-239, March 1989.25. M. K. Kazimierczuk and W. D. Morse, "State-plane analysis of zero-current-switching resonant dc/dc powerconverters," IEEE Transactions on Power Electronics, Vol. PE-4, pp. 265-271, April 1989.26. M. K. Kazimierczuk, "Analysis of buck/boost zero-current-switching resonant dc/dc converter," IEE Proceed-ings, Part B, Electric Power Applications, Vol. 136, pp. 127-135, May 1989.27. M. K. Kazimierczuk and J. Jozwik, "Optimal topologies of resonant dc/dc converters," IEEE Transactions onAerospace and Electronic Systems, Vol. AES-25, pp. 362-372, May 1989.28. M. K. Kazimierczuk and J. Jozwik, "Class E zero-voltage-switching rectifier with a series capacitor," IEEETransactions on Circuits and Systems, Vol. CAS-36, pp. 926-928, June 1989.29. M. K. Kazimierczuk and K. Puczko, "Power-output capability of Class E amplifier at any loaded Q and switchduty cycle," IEEE Transactions on Circuits and Systems, Vol. CAS-36, pp. 1142-1143, August 1989.30. M. K. Kazimierczuk and X. T. Bui, "Class E dc/dc converters with a capacitive impedance inverter," IEEETransactions on Industrial Electronics, Vol. IE-36, pp. 425-433, August 1989.31. M. K. Kazimierczuk, "Analysis and design of buck/boost zero-voltage-switching resonant dc/dc converter," IEEProceedings, Pt. G, Circuits, Devices, and Systems, Vol. 136, pp. 157-166, August 1989.32. M. K. Kazimierczuk and K. Puczko, "Class E tuned power amplifier with an antiparallel diode or a series diodeat switch, with any loaded Q and switch duty cycle," IEEE Transactions on Circuits and Systems, Vol. CAS-36, pp. 1201- 209, September 1989.33. M. K. Kazimierczuk and J. Jozwik, "DC/DC converter with Class E zero-voltage-switching inverter and Class Ezero-current-switching rectifier," IEEE Transactions on Circuits and Systems, Vol. CAS-36, pp. 1485-1488, November 1989.34. M. K. Kazimierczuk and J. Jozwik, "Resonant dc/dc converter with Class-E inverter and Class-E rectifier,"IEEE Transactions on Industrial Electronics, Vol. IE-36, pp. 568-578, November 1989.35. M. K. Kazimierczuk, "Class E low dv D/dt rectifier," IEE Proceedings, Pt. B, D Electric Power Applications, Vol.136, pp. 257-262, November 1989.36. M. K. Kazimierczuk and J. Jozwik, "Class E2 narrow-band resonant dc/dc converters," IEEE Transactions onInstrumentation and Measurement, Vol. IM-38, pp. 1064-1068, December 1989.37. M. K. Kazimierczuk and J. Jozwik, "Class E zero-voltage-switching and zero-current-switching rectifiers," IEEETransactions on Circuits and Systems, Vol. CAS-37, pp. 436-444, March 1990.38. M. K. Kazimierczuk and X. T. Bui, "Class-E amplifier with an inductive impedance inverter," IEEE Transactionson Industrial Electronics, Vol. IE-37, pp. 160-166, April 1990.39. J. Jozwik and M. K. Kazimierczuk, "Analysis and design of Class-E2 dc/dc converter," IEEE Transactions onIndustrial Electronics, Vol. IE-37, pp. 173-183, April 1990.40. M. K. Kazimierczuk, "Analysis of Class E zero-voltage-switching rectifier," IEEE Transactions on Circuits andSystems, Vol. CAS-37, pp. 747-755, June 1990.41. M. K. Kazimierczuk and J. Jozwik, "Class E2 resonant dc/dc power converter," IEE Proceedings, Pt. G, Cir-cuits, Devices and Systems, Vol. 137, pp. 193-196, June 1990.42. M. K. Kazimierczuk and J. Jozwik, "Analysis and design of Class E zero-current-switching rectifier," IEEETransactions on Circuits and Systems, Vol. CAS-37, pp. 1000-1009, August 1990.43. M. K. Kazimierczuk and K. Puczko, "Class E low dv/dt synchronous rectifier with controlled duty ratio and out-put voltage," IEEE Transactions on Circuits and Systems, Vol. CAS-38, pp. 1165-1172, October 1991.44. M. K. Kazimierczuk, "Class D current-driven rectifiers for resonant dc/dc converter applications," IEEE Trans-actions on Industrial Electronics, Vol. IE-38, pp. 344-354, October 1991.45. M. K. Kazimierczuk, "Class D voltage-switching MOSFET power amplifier," IEE Proceedings, Part B, ElectricPower Applications, Vol. 138, pp. 285-296, November 1991.46. M. K. Kazimierczuk, W. Szaraniec, and S. Wang, "Analysis and design of parallel resonant converter at highQ L," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-28, pp. 35-50, January 1992.47. M. K. Kazimierczuk and S. Wang, "Frequency-domain analysis of series resonant converter for continuousconduction mode," IEEE Transactions on Power Electronics, Vol. PE-6, pp. 270-279, April 1992.48. M. K. Kazimierczuk and W. Szaraniec, "Analysis of Class E rectifier with a series capacitor," IEE Proceedings,Part G, Circuits, Devices and Systems, Vol. 139, pp. 269-276, June 1992.49. M. K. Kazimierczuk, "Synthesis of phase-modulated dc/ac inverters and dc/dc converters," IEE Proceedings,Pt. B, Electric Power Applications, Vol. 139, pp. 387-394, July 1992.50. A. Ivascu, M. K. Kazimierczuk, and S. Birca-Galateanu, "Class E resonant low dv/dt rectifier," IEEE Transac-tions on Circuits and Systems, Vol. CAS-39, pp. 604-613, August 1992.51. D. Czarkowski and M. K. Kazimierczuk, "Linear circuits models of PWM flyback and buck/boost converters,"IEEE Transactions on Circuits and Systems, Vol. CAS-39, pp. 688-693, August 1992.52. M. K. Kazimierczuk and W. Szaraniec, "Class D zero-voltage switching inverter with only one shunt capacitor,"IEE Proceedings, Part B, Electric Power Applications, Vol. 139, pp. 449-456, September 1992.53. D. Czarkowski and M. K. Kazimierczuk, "Static- and dynamic-circuit models of PWM buck-derived dc-dc con-verters," IEE Proceedings, Part G, Circuits, Devices and Systems, Vol. 139, pp. 669-679, December 1992. 54. M. K. Kazimierczuk, N. Thirunarayan, and S. Wang, "Analysis of series-parallel resonant converter," IEEETransactions on Aerospace and Electronic Systems, Vol. AES-29, pp. 88-99, January 1993.55. M. K. Kazimierczuk and W. Szaraniec, "Analysis of Class E low di/dt rectifier with a series inductor," IEEETransactions Aerospace and Electronic Systems, Vol. AES-29, pp. 278-287, January 1993.56. M. Mikolajewski and M. K. Kazimierczuk, "Zero-voltage-ripple rectifiers and dc/dc resonant converters," IEEETransactions on Power Electronics, Vol. PE-6, pp. 12-17, January 1993.57. A. Reatti, M. K. Kazimierczuk, and R. Redl, "Class E full-wave low dv/dt rectifier," IEEE Transactions on Cir-cuits and Systems, Vol. CAS-40, pp. 73-85, February 1993.58. M. K. Kazimierczuk and N. Thirunarayan, "Class D voltage-switching inverter with tapped resonant inductor,"IEE Proceedings, Pt. B., Electric Power Applications, Vol. 140, pp. 177-185, May 1993.59. D. Czarkowski and M. K. Kazimierczuk, "Single-capacitor phase-controlled series resonant converter," IEEETransactions on Circuits and Systems, Vol. CAS-40, pp. 383-391, June 1993.60. M. K. Kazimierczuk and W. Szaraniec, "Class D-E resonant dc/dc converter," IEEE Transactions on Aero-space and Electronics Systems, Vol. AES-29, pp. 963-976, July 1993.61. D. Czarkowski and M. K. Kazimierczuk, "Energy-conservation approach to modeling PWM dc-dc converters,"IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-29, pp. 1059-1063, July 1993.62. D. Czarkowski and M. K. Kazimierczuk, "Phase-controlled series-parallel resonant converter," IEEE Transac-tions on Power Electronics, Vol. PE-8, pp. 309-319, July 1993.63. M. K. Kazimierczuk and M. K. Jutty, "Phase-modulated series-parallel resonant converter with series load,"IEE Proceedings, Pt. B, Electric Power Applications, Vol. 140, pp. 297-306, September 1993.64. M. K. Kazimierczuk and W. Szaraniec, "Electronic ballast for fluorescent lamps," IEEE Transactions on PowerElectronics, Vol. PE-8, pp. 386-395, October 1993.65. A. Ivascu, M. K. Kazimierczuk, and S. Birca-Galateanu, "Class E resonant low di/dt rectifier," IEE Proceedings,Part G, Circuits, Devices and Systems, Vol. 140, pp. 417-423, December 1993.66. M. K. Kazimierczuk, D. Czarkowski, and N. Thirunarayan, "A new phase-controlled parallel resonant con-verter," IEEE Transactions on Industrial Electronics, Vol. IE-40, pp. 542-552, December 1993.67. D. Czarkowski and M. K. Kazimierczuk, "Application of state feedback with integral control to pulse-widthmodulated push-pull dc-dc converter," IEE Proceedings, Part D, Control Theory and Applications, Vol. 141, pp. 99-103, March 1994.68. M. K. Kazimierczuk, B. Tomescu, and A. Ivascu, "Class E resonant rectifier with a series capacitor," IEEETransactions on Circuits and Systems, Vol. 41, pp. 885-890, December 1994.69. M. K. Kazimierczuk and R. Cravens II, "Closed-loop characteristics of voltage-mode-controlled PWM boost dc-dc converter with an integral-lead controller," Journal of Circuits, Systems and Computers, Vol. 4, No. 4, pp.429-458, December 1994.70. M. K. Kazimierczuk and N. Thirunarayan, "Dynamic performance of MCTs under inductive load conditions,"Journal of Circuits, Systems and Computers, Vol. 4, No. 4, pp. 471-485, December 1994.71. M. K. Kazimierczuk and M. Jutty, "Fixed-frequency phase-controlled full-bridge resonant converter with a se-ries load," IEEE Transactions on Power Electronics, Vol. PE-10, pp. 9-18, January 1995.72. D. Czarkowski, L. R. Pujara, and M. K. Kazimierczuk, "Robust stability of state-feedback control of PWM dc-dcpush-pull converter," IEEE Transactions on Industrial Electronics, Vol. IE-41, pp. 108-111, February 1995.73. M. K. Kazimierczuk and A. Abdulkarim, "Current-source converter with parallel-resonant circuit," IEEE Trans-actions on Industrial Electronics, Vol. IE-42, pp. 199-208, April 1995.74. D. Czarkowski and M. K. Kazimierczuk, "Static characteristics of MOS-controlled thyristors - Analysis, simula-tion and experimental results," Journal of Circuits, Systems and Computers, Vol. 5, No. 1, pp. 65-80, March 1995.75. M. K. Kazimierczuk and R. Cravens II, "Open and closed-loop dc and small-signal characteristics of PWMbuck-boost converter for CCM," Journal of Circuits, Systems and Computers, Vol. 5, No. 3, pp. 261-303, Sep-tember 1995.76. M. K. Kazimierczuk, N. Thirunarayan, B. T. Nguyen, and J. A. Weimer, "Experimental static and dynamiccharacteristics of MOS-controlled thyristors for resistive loads," Journal of Circuits, Systems and Computers, Vol. 5, No. 3, pp. 393-410, September 1995.77. R. E. Siferd, R. C. Cravens II, and M. K. Kazimierczuk, "CMOS PWM control circuit with programmable deadtime," Journal of Circuits, Systems and Computers, Vol. 5, No. 3, pp. 429-441, September 1995.78. M. K. Kazimierczuk, "Reverse recovery of power pn junction diodes," Journal of Circuits, Systems and Com-puters, Vol. 5, No. 4, pp. 589-606, December 1995.79. M. Bartoli, N. Neferi, A. Reatti, and M. K. Kazimierczuk, "Modeling winding losses in high-frequency powerinductors," Journal of Circuits, Systems and Converters, Vol. 5, No. 4, pp. 607-626, December 1995.80. M. K. Kazimierczuk and R. C. Cravens II, "Experimental results for the small-signal study of the PWM boostDC-DC converter with an integral-lead controller," Journal of Circuits, Systems and Computers, Vol. 5, No. 4, pp. 747-755, December 1995.81. M. K. Kazimierczuk and R. S. Geise, "Single-loop current-mode control of a PWM boost dc-to-dc converterwith a non-symmetric phase control," Journal of Circuits, Systems and Computers, Vol. 5, No. 4, pp. 699-734, December 1995.82. M. K. Kazimierczuk and R. C. Cravens II, "Current-source parallel-resonant dc/ac inverter with transformer,"IEEE Transactions on Power Electronics, Vol. PE-11, pp. 275-284, March 1996.83. M. K. Kazimierczuk, M. J. Mescher, and R. P. Prenger, "Class D current-driven center-topped transformercontrollable synchronous rectifier," IEEE Transactions on Circuits and Systems, Part I, Vol. 43, pp. 670-680, August 1996.84. M. K. Kazimierczuk and A. Massarini, "Feedforward control of dc-dc PWM boost converter," IEEE Transac-tions on Circuits and Systems, Part I, Vol. 44, pp. 143-148, February 1997.85. M. K. Kazimierczuk and C. Wu, "Frequency-controlled series-resonant converter with center-topped synchro-nous rectifier," IEEE Transactions of Aerospace and Electronic Systems, Vol. 33, No. 3, pp. 939-947, July 1997.86. A. Massarini and M. K. Kazimierczuk, "Self-capacitance of inductors," IEEE Transactions on Power Electron-ics, Vol. 12, pp. 671-676, July 1997.87. A. Massarini, U. Reggiani, and M. K. Kazimierczuk, “Analysis of networks with ideal switches by state equa-tions,” IEEE Transactions on Circuits and Systems, Part I, Vol. 44, No. 8, pp. 692-697, August 1997.88. D. Czarkowski and M. K. Kazimierczuk, “ZVS Class D series resonant inverter − Time state space simulationand experimental results,” IEEE Transactions on Circuits and Systems, Part I, Vol. 45, No. 11, pp. 1141-1147, November 1998.89. M. K. Kazimierczuk, G. Sancineto, U. Reggiani, and A. Massarini, “Small-signal high-frequency model of ferriteinductors,” IEEE Transactions on Magnetics, Vol. 35, pp. 4185-4191, September 1999.90. G. Grandi, M. K. Kazimierczuk, A. Massarini, and U. Reggiani, “Stray capacitance of single layer solenoid air-core inductors,” IEEE Transactions on Industry Applications, Vol. 35, pp. 1162-1168, September/October 1999.91. M. K. Kazimierczuk and L. A. Starman, “Dynamic performance of PWM dc-dc boost converter with input volt-age feedforward control,” IEEE Transactions on Circuits and Systems, Part I, Vol. 46, No. 12, pp. 1473-1481, December 1999.92. A. J. Frazier and M. K. Kazimierczuk, “DC-AC power inversion using sigma-delta modulation,” IEEE Transac-tions on Circuits and Systems, Part I, Vol. 46, No.1, pp. 79-82, January 2000.93. M. K. Kazimierczuk and A. J. Edstrom, “Open-loop peak voltage feedforward control of a PWM buck con-verter,” IEEE Transactions on Circuits and Systems, Part I, Vol. 47, pp. 740-746, May 2000.94. M. K. Kazimierczuk, “Transfer function of current modulator in PWM converters with current-mode control,”IEEE Transactions on Circuits and Systems, Part I, Vol. 47, No. 9, pp. 1407-1412, September 2000.95. W. Pietrenko, W. Janke, and M. K. Kazimierczuk, “Application of semianalytical recursive convolution algo-rithms for large-signal time-domain simulation of switch-mode power converters,” IEEE Transactions on Cir-cuits and Systems, Part I, Vol. 48, No. 10, pp. 1246-1252, October 2001.96. A. Reatti and M. K. Kazimierczuk, “Comparison of various methods for calculating the ac resistance of induc-tors,” IEEE Transactions on Magnetics, Vol. 37, No. 3, pp. 1512-1518, May 2002.97. A. Reatti and M. K. Kazimierczuk, “Small-signal model of PWM converters for discontinuous conduction modeand its application for boost converter,” IEEE Transactions on Circuits and Systems, Part I, Fundamental The-ory and Applications, Vol. 50, No. 1, pp. 65-73, January 2003.98. B. Bryant and M. K. Kazimierczuk, “Effect of a current sensing resistor on required MOSFET size,” IEEETransactions on Circuits and Systems, Part I, Fundamental Theory and Applications, Vol. 50, pp. 708-711, May 2003.99. T. Suetsugu and M. K. Kazimierczuk, “ZVS condition predicting sensor for the Class E amplifier,” IEEE Trans-actions on Circuits and Systems, Part I, Fundamental Theory and Applications, Vol. 50, NO. 6, pp. 763-769, June 2003.100. T. Suetsugu and M. K. Kazimierczuk, “Comparison of Class E amplifier with nonlinear and linear shunt capaci-ties,” IEEE Transactions on Circuits and Systems, Part I, Fundamental Theory and Applications, Vol. 50, pp.1089-1097, August 2003.101. T. Suetsugu and M. K. Kazimierczuk, “Voltage clamped Class E amplifier with Zener diode,” IEEE Transac-tions on Circuits and Systems, Part I, Fundamental Theory and Applications, Vol. 50, No. 10, pp. 1347-1349, October 2003.102. G. Grandi, M. K. Kazimierczuk, A. Massarini, M. Reggiani, and G. Sancineto, “Model of laminated iron-core inductors,” IEEE Transactions on Magnetics, Vol. 40, No. 4, pp. 1839-1845, July 2004.103. T. Suetsugu and M. K. Kazimierczuk, “Analysis and design of Class E amplifier with shunt capacitance com-posed of nonlinear and linear capacitances,” IEEE Transactions on Circuits and Systems, Part I: Regular Pa-pers, Vol. 51, No. 7, pp. 1261-1268, July 2004.104. D. Kessler and M. K. Kazimierczuk, “Power losses and efficiency of Class E power amplifier at any duty cycle,”IEEE Transactions on Circuits and Systems, Part I: Regular Papers, Vol. 51, No. 9, pp. 1675-1689, September 2004.105. T. Suetsugu and M. K. Kazimierczuk, “Design procedure of lossless voltage-clamped Class E amplifier with transformer and diode,” IEEE Transactions on Power Electronics, Vol. 20, No. 1, pp. 56-64, January 2005. 106. M. K. Kazimierczuk, V. G. Krizhanovski, J. V. Rassokhina, and D. V. Chernov, “Class-E MOSFET tuned power oscillator design procedure,” IEEE Transactions on Circuits and Systems, Part I: Regular Papers, Vol. 52, No.6, pp. 1138-1147, June 2005.107. R. Kleismit, G. Kozlowski, R. Bigger, I. Maartense, M. K. Kazimierczuk, and D. B. Mast, “Characterization of local dielectric properties of superconductor YBa2Cu3O7-8using evanescent microwave microscopy,” IEEE Transactions on Applied Superconductivity, Vol. 15, No. 2, pp. 2915-2918, June 2005.108. R. A. Kleismit, M. ElAshry, G. Kozlowski, M. S. Amer, M. K. Kazimierczuk, and R. R. Bigger, “Local dielectric and strain measurements in YBa2Cu3O7-8 thin films by evanescent microscopy and Raman spectroscopy,” Su-perconductor Science and Technology, Vol. 18, pp. 1197-1203, July 2005.109. B. Bryant and M. K. Kazimierczuk, “Open-loop power-stage transfer functions relevant to current-mode control of boost PWM converter operating in CCM,” IEEE Transactions on Circuits and Systems, Part I: Regular Pa-pers, Vol. 52, No. 10, pp. 2158-2164, October 2005.110. B. Bryant and M. K. Kazimierczuk, “Modeling the closed-current loop of PWM DC-DC converters with peak current-mode control converter operating in CCM,” IEEE Transactions on Circuits and Systems, Part I: Regu-lar Papers, Vol. 52, No. 11, pp. 2404-2412, November 2005.111. B. Bryant and M. K. Kazimierczuk, “Voltage loop of boost PWM DC-DC converters with peak current-mode control,” IEEE Transactions on Circuits and Systems, Part I, Regular Papers, Vol. 53, No.1, pp. 99-105, Janu-ary 2006.。

一类改进的Cucker-Smale_模型固定时间免碰撞集群行为的研究

一类改进的Cucker-Smale_模型固定时间免碰撞集群行为的研究

第37卷第4期2023年8月南华大学学报(自然科学版)Journal of University of South China(Science and Technology)Vol.37No.4Aug.2023收稿日期:2023-03-13基金项目:湖南省自然科学基金面上项目(2021JJ30567)作者简介:李鑫悦(1997 ),女,硕士研究生,主要从事微分方程与动力学系统等方面的研究㊂E-mail:1595538864@㊂∗肖其珍(1987 ),女,副教授,博士,主要从事微分方程与动力系统方面的研究㊂E-mail:2016002090@DOI :10.19431/ki.1673-0062.2023.04.012一类改进的Cucker-Smale 模型固定时间免碰撞集群行为的研究李鑫悦1,肖其珍1∗,王㊀琳2,刘宏亮1(1.南华大学数理学院,湖南衡阳421001;2.湖南交通工程学院公共基础部,湖南衡阳421001)摘㊀要:对一类改进的Cucker-Smale 模型进行研究,通过设置新型的连续㊁非Lipschitz 控制器和基于构建Lyapunov 函数,得到改进的Cucker-Smale 系统达到固定时间集群的充分条件㊂利用不等式和图论相关理论,得到集群发生过程中免碰撞的充分条件㊂最后,通过数值模拟验证结果的有效性㊂关键词:Cucker-Smale 模型;固定时间集群;免碰撞;控制器中图分类号:㊀文献标志码:A文章编号:1673-0062(2023)04-0090-07Research on Collision Avoiding Fixed-time Flocking ofModified Cucker-Smale SystemsLI Xinyue 1,XIAO Qizhen 1∗,WANG Lin 2,LIU Hongliang 1(1.School of Mathematics and Physics,University of South China,Hengyang,Hunan 421001,China;2.Public Infrastructure Department,Hunan Institute of Transportation Engineering,Hengyang,Hunan 421001,China)Abstract :In this paper,the problems of modified Cucker-Smale system are studied.By designing new continuous non-Lipschitz controllers and based on the construction of Lya-punov function,the sufficient conditions for the fixed time flocking of the modified Cucker-Sale system are obtained.The sufficient conditions of collision avoiding fixed-time flocking are obtained by using the inequality and the related theory of graph.Finally,the validity of the results is verified by numerical simulation.key words :Cucker-Smale system;fixed-time flocking;collision avoiding;controller9第37卷第4期李鑫悦等:一类改进的Cucker-Smale 模型固定时间免碰撞集群行为的研究2023年8月0㊀引㊀言在自然界中普遍存在集群行为的现象,如鸟的集群㊁鱼群的有向性运动㊁细菌的聚集和无人机集群等等㊂个体通过相互交换信息而达到集群的行为,引起了越来越多领域的学者的关注,如生物学㊁物理学㊁工程学和社会学等等㊂许多学者通过构建模型来研究自然界中的集群现象㊂在1995年,T.Vicsek 等[1]提出了一种所有粒子根据相邻的粒子调整自己速度的自推进粒子模型,结果表明随着粒子的数量不断增加,粒子群体的运动由无序转变为有序㊂基于Vicsek 模型,F.Cucker 和S.Smale [2]提出了一个新的模型,在这个模型中每个粒子根据自己的速度与其他粒子的速度差异的加权平均值来调整自己的速度,该模型称为Cucker-Smale 系统,下文简称为C-S 系统㊂Cucker-Smale 系统具体描述如下:̇x i =v i ,̇vi =1N ψ( x j -x i )(v j -v i ),ìîíïïï式中:i ,j =1,2, ,N 表示第i ㊁j 粒子;x i =(x i 1,x i 2, ,x id )ɪR d表示第i 粒子的位置;v i =(v i 1,v i 2, ,v id )ɪR d 表示第i 粒子的速度㊂方程ψ(㊃):[0,ɕ)ң[0,ɕ)表示第i 粒子和第j 粒子的通信比率㊂具体表达式如下:ψ(y )=k(σ2+y )β式中:k >0,β>0为系统参数㊂Q.Z.Xiao,H.L.Liu 等[3]提出一个新型的㊁非Lipschitz 的㊁由N 个自主粒子相互作用构成的系统,系统如下:̇x i =v i ,i =1,2, ,N ,̇v i =1N ðNj =1,j ʂi ψij ðk ={1,-1}K k sig(v j -v i )1+2kα(),ìîíïïïï其中0<α<1/2,sig(z )p =|z |p sign(z ),K k (k =1,-1)是衡量耦合强度的正常数,ψij =ψ( x j -x i )是通信比率函数㊂文献[3]提出该系统能够发生免碰撞集群并且系统稳定时间的上界仅仅依赖于设计的参数和集群的最终大小,通过粒子数和系统的初始状态来估计㊂最后给出在集群发生的过程中所有粒子不发生碰撞的充分条件㊂X.F.Zhang 等[4]通过对第l 粒子被控制并对第1到第l 粒子设计新的连续㊁非Lipschitz 的控制器,利用微分方程理论,得到改进后的C-S 系统集群的充分条件㊂给出免碰撞的充分条件并研究了控制粒子个数对收敛速度的影响㊂结果表明,收敛时间与控制粒子个数和固定节点的密度有关㊂值得注意的是带有控制器的C-S 系统更具有实用性,在经济成本方面显示出一定的优势㊂此外该系统给出了免碰撞集群的充分条件进一步保证任何两个粒子之间不会发生碰撞㊂受文献[3-4]的启发,对经典的C-S 系统进行一定的修改,研究该系统固定时间免碰撞集群的行为㊂1㊀模型介绍带有新型的连续㊁非Lipschitz 控制器的C-S系统描述如下:̇xi =v i ,i =1,2, ,N ,̇vi =ðN j =1,j ʂi ψij ðk ={1,-1}K k sig(v j -v i )1+2kα()-ðk ={1,-1}γk sig(v i -v ∗)1+2kαìîíïïïïïï(1)式中:0<α<1/2,sig(z )p =|z |p sign(z ),K k (k =1,-1)为衡量耦合强度的正常数;ψij =ψ( x j -x i )为通信比率函数;当i ɪI c ={1,2, ,l }时γk >0;当i ɪ I c ={l +1,l +2, ,N }时γk =0;v ∗为控制目标,这里通信比率函数ψij ,满足inf s ȡ0ψ(s )ȡψ∗>0㊂(2)2㊀预备知识为后面讨论问题的需要,预备知识如下:引理1[5]:当z 1,z 2, ,z n >0和0<r <s ,则以下不等式成立(ðn i =1|z i|s)1sɤ(ðn i =1|z i|r)1r和(1nðni =1|z i|s)1sȡ(1nðni =1|z i|r)1r㊂㊀㊀引理2[6]:图G (A )是严格对称的,并且图G (A )的Laplace 矩阵L A 的最简单的特征值为0,其他特征值都是正的㊂若图G (A )是无向图则满足等式ξTL A ξ=12ðNi ,j =1a ij (ξj -ξi )2,这里ξ=(ξ1,ξ2, ,ξN )T ɪR n ㊂引理3[7]:考虑以下等式19第37卷第4期南华大学学报(自然科学版)2023年8月̇x =f (t ,x ),x (0)=x 0,(3)这里x ɪR n 和f :R +ˑR n ңR n 是一个非线性连续函数,考虑模型(3)的平凡平衡点0㊂若存在一个连续径向无界函数V :R n ңR +ɣ{0}满足以下条件:(i)V (z )=0⇔z =0,(ii)对于正的参数κ,Q >0,0<p <1<q ,任意的方程满足不等式̇V (z (t ))ɤ-κV p (z (t ))-QV q (z (t ))则模型(3)的零解是固定时间稳定的,函数V 的稳定时间被评估为T ɤT maxʒ=1κκQ()((1-p )/(1-q ))11-p +1q -1()㊂㊀㊀定义1[4]:若存在一个不依赖初始值和任意初始条件x i (0),v i (0),(1ɤi ,j ɤN )的时间T ,系统(1)的解{x i ,v i }满足以下条件:(i)所有粒子速度差值在有限时间趋于0并在之后速度差值都为0,即|v i -v j |=0,∀t ȡT ,则收敛时间T =inf{T 1:|v i -v j |=0,∀t ȡT 1}㊂㊀㊀(ii)该集群的直径是有界的即sup 0ɤt ɤɕ|x i -x j |2<ɕ则系统(1)达到固定时间集群㊂若还满足min i ʂj|x i (t )-x j (t )|>0,t ȡ0,(4)则称系统(1)达到固定时间免碰撞集群㊂3㊀主要结果定理1:若条件(2)成立,那么C-S 系统(1)将形成固定时间集群,并且达到固定时间集群的渐近稳定时间上界为:T max =2αλ21-αN -αλ11+αλ21-α㊂(5)㊀㊀证明:令e i (t )=v i (t )-v ∗,e =(e 1,e 2, ,e N )T ,e i (t )表示第i 粒子的状态误差㊂根据系统(1),得到状态误差系统:̇e i =ψij K 1sig(e j -e i )1+2α-γ1sig(e i )1+2α+ψij K -1sig(e j -e i )1-2α-γ-1sig(e i )1-2α㊂考虑变量 x =1N ðNi =1x i 和 e =1N ðNi =1e i ,令^x i =x i - x 和^e i =e i -e 可得1N ðNi =1^x i (t )=0和1N ðNi =1^e i(t )=0,为简化变量,用(x i ,e i )代替(^x i ,^e i )容易得到ðNi =1x i (t )=ðNi =1e i (t )=0㊂取Lyapunov 函数:V (t )= e 2=ðNi =1|e i (t )|2㊂(6)令X (t )= x 2=ðNi =1|x i (t )|2㊂(7)㊀㊀根据式(6)和式(7),可以得到ðNi ,j =1|e i -e j |2=2NV (t ),ðN i ,j =1|x i -x j |2=2NX (t )㊂(8)㊀㊀从定义1和式(8)可知,当函数V (t )在固定时间趋于0时,所有粒子速度差在固定时间趋于0㊂下面证明V (t )在固定时间趋于0㊂对式(6)进行求导可得:d d t V (t )=2ðNi =1e i (t ),dd te i (t )⓪=2K 1ðN i ,j =1ψij e i sig(e j -e i )1+2α-2γ1ðNi =1e i sig(e i )1+2α+2K -1ðN i ,j =1ψij e i sig(e j -e i )1-2α-2γ-1ðNi =1e i sig(e i )1-2α㊂(9)令dd tV (t )=V 1+V 2+V 3+V 4㊂对V 1+V 2进行推导V 1+V 2=2K 1ðN i ,j =1ψij e i sig(e j -e i )1+2α-2γ1ðNi =1e i sig(e i )1+2α=K 1ðN i ,j =1ψij e i sig(e j -e i )1+2α-K 1ðNi ,j =1ψij e j sig(e j -e i )1+2α-2γ1ðNi =1e i sig(e i )1+2α=-K 1ðN i ,j =1ψij (e j -e i )sig(e j -e i )1+2α-2γ1ðNi =1e i sig(e i )1+2α㊂(10)容易看出V 1+V 2=-K 1ðNi ,j =1ψij |e j -e i |2+2α-29第37卷第4期李鑫悦等:一类改进的Cucker-Smale 模型固定时间免碰撞集群行为的研究2023年8月2γ1ðNi =1e i sig(e i )1+2α㊂(11)㊀㊀为了简化方程,定义新矩阵B =(b ij ),矩阵B中的元素b ij =(K 1ψ∗)11+α㊂考虑到矩阵B 为图G (B )的邻接矩阵,则L B 是图G (B )的Laplace 矩阵㊂根据定理2可得,ðNi ,j =1(K 1ψ∗)11+α|e j -e i |2=2e T L B e ㊂(12)㊀㊀根据引理1和条件(2)得到V 1+V 2ɤ-N-α(ðNi ,j =1(K 1ψ∗)11+α|e j -e i |2+ðNi =1(2γ1)11+α|e i |2)1+α㊂(13)㊀㊀令对角矩阵üþýïïïïïïïï}D γ1=((2γ1)11+α, ,(2γ1)11+αl,0, ,0N -l )㊀㊀ðNi =1(2γ1)11+α|e i |2=12ðNi =1(2γ1)11+α|e j -e i |2=e T D γ1e ㊂(14)因此得到V 1+V 2ɤ-N -α[e T (2L B +D γ1)e ]1+α(15)令λ1=λmin (2L B +D γ1),进一步得到V 1+V 2ɤ-N -α(λ1e T e )1+α=-N -αλ11+αV 1+α(t )(16)简单计算可得V 3+V 4=2K -1ðNi ,j =1ψij e i sig(e j -e i )1-2α-2γ-1ðN i =1e i sig(e i )1-2α=K -1ðN i ,j =1ψij e i sig(e j -e i )1-2α-K -1ðNi ,j =1ψij e j sig(e j -e i )1-2α-2γ-1ðNi =1e i sig(e i )1-2α=-K -1ðNi ,j =1ψij (e j -e i )sig(e j -e i )1-2α-2γ-1ðNi =1e i sig(e i )1-2α㊂(17)容易看出V 3+V 4=-K -1ðNi ,j =1ψij |e j -e i |2-2α-2γ-1ðNi ,j =1|e i |2-2α=-ðNi =1[ðNj =1((K -1ψij )12-2α|e j -e i |)2-2α+((2γ-1)12-2α|e i |)2-2α]㊂(18)根据引理1和条件(2)得到V 3+V 4ɤ-(ðNi ,j =1(K -1ψ∗)11-α|e j -e i |2+ðNi =1(2γ-1)11-α|e i |2)1-α㊂(19)㊀㊀为了简化方程,定义一个新的矩阵C =(c ij ),矩阵C 中的元素c ij =(K -1ψ∗)11-α㊂考虑到矩阵C 为图G (C )的邻接矩阵,则L C 是图G (C )的Laplace 矩阵㊂根据定理2可得,ðNi ,j =1(K -1ψ∗)11-α|e j -e i |2=2e T L C e ㊂(20)令对角矩阵üþýïïïïïïïï}D γ-1=((2γ-1)11-α, ,(2γ-1)11-αl,0, ,0N -l)ðNi =1(2γ-1)11-α|e i |2=e T D γ-1e ㊂(21)因此得到V 3+V 4ɤ-N -α[e T (2L C +D γ-1)e ]1-α令λ2=λmin (2L C +D γ-1),㊀㊀进一步得到V 3+V 4ɤ-(λ2e T e )1-α=-λ21-αV 1-α(t )㊂(22)㊀㊀结合式(16)和式(22)可得,dd tV (t )ɤ-N -αλ11+αV 1+α(t )-λ21-αV 1-α(t )㊂(23)㊀㊀根据引理3,系统(1)达到固定时间集群时,渐近稳定时间的上界为T max=2αλ21-αN -αλ11+αλ21-α㊂㊀㊀固定时间集群定义中的条件(i)证毕㊂接下来证明固定时间集群定义中的条件(ii):X (t )有界即sup 0ɤt <ɕ|x i -x j |2<ɕ㊀㊀对式(7)进行关于t 的导数㊂dd t X i (t )=2ðNi =1x i (t )e i (t )ɤ2 x e ɤ2X 12(t )V 12(t )㊂(24)39第37卷第4期南华大学学报(自然科学版)2023年8月㊀㊀对式(24)两边求0ңt 的定积分:X 12(t )-X 12(0)ɤʏtV 12(s )d s ㊂(25)㊀㊀由固定时间集群的定义条件(i)可知,当t >T max 时,V (t )ʉ0,可得X 12(t )-X 12(0)ɤʏT maxV 12(s )d s ㊂(26)㊀㊀由式(23)可知dd tV (t )<0,V (t )是减函数,得到V (t )ɤV (0)㊂X 12(t )ɤX 12(0)+ʏT maxV 12(0)d s =X 12(0)+V 12(0)T max ㊂(27)由式(8)可得max i ʂjx i (t )-x j (t ) 2ɤðNi ,j =1x i (t )-x j (t ) 2=2NX (t )㊂(28)结合式(28)得到max i ʂj|x i (t )-x j (t )|ɤ2N X 12(t )ɤ2N (X 12(0)+V 12(0)T )㊂(29)因此,max i ʂj|x i (t )-x j (t )|ɤC(30)这里C =2N (X 12(0)+V 12(0)T )㊂固定时间集群的定义中的条件(ii)证明完成,综上所述证毕㊂定理2:在定理1的条件下,假设系统(1)满足不等式min i ʂjx i (0)-x j (0) >max e i (0)-e j (0) T max(31)则系统(1)能够达到免碰撞集群㊂证明:令X ij (t )=|x j (t )-x i (t )|V ij (t )=|v j (t )-v i (t )|=|e j (t )-e i (t )|㊂㊀(32)㊀㊀定理1表明系统(1)在固定时间能够达到集群,因此需证明该系统中的所有粒子不能发生碰撞是必要的㊂粒子不能发生碰撞意味着在t ȡ0时,X ij (t )>0㊂根据式(23)得到dd t|e (t )|2ɤ-C 1|e (t )|2+2α-C 2|e (t )|2-2αdd t |e (t )|ɤ-C 12|e (t )|1+2α-C 22|e (t )|1-2α㊂(33)㊀㊀C 1,C 2是正常数,为了简化参数用(C 1,C 2)代替C 12,C 22(),得到dd t|e (t )|ɤ-C 1|e (t )|1+2α-C 2|e (t )|1-2α㊂(34)㊀㊀容易看出|e (t )|ɤ|e (0)|,根据V ij (t )的表达式和不等式性质V ij (t )= e i (t )-e j (t ) ɤmax e i (0)-e j (0) ㊂(35)㊀㊀另一方面,对X 2ij (t )进行求导d d t X 2ij(t )=2 x i -x j (e i -e j )ɤ2 x i -x j e i -e j =2X ij (t )V ij (t )(36)dd t X ij(t )ɤV ij (t )(37)㊀㊀对式(36)两边同时关于0ңt 求积分|X ij (t )-X ij (0)|=ʏtd X ij (s )d sd s ɤʏt|V ij (s )|d s ㊂(38)㊀㊀当t ȡT max 时,V ij =0和式(37)得到|X ij (t )-X ij (0)|ɤ2max e i (0)-e j (0) T max ㊂㊀㊀利用三角不等式得到|X ij (t )|ȡ|X ij (0)|-|X ij (t )-X ij (0)|ȡmin i ʂj|X ij (0)|-max e i (0)-e i (0) T max ㊂㊀㊀由定理2的条件可得|X ij (t )|>0证毕㊂4㊀数值模拟使用Matlab 对如下系统(1)进行数值仿真㊂通过数值模拟验证理论结果的有效性,从图论的角度来看,所有模拟中的拓扑图都是完全连通的,这与Vicsek 模型不同㊂在所有模拟中,因模拟简化通信比率函数ψij =1(1+s 2)βȡ1(1+d 2max )β=ψ∗㊂㊀㊀这里d max 表示两个粒子之间最大距离㊂被控制的粒子数为N D ,控制率为n D =N D /N ㊂取α=1/4,β=1/4㊂模拟1:当粒子数N =10,系统的控制目标v ∗=6.25,K 1=2(1/2),K -1=1,n D =0.2,图1(a)和49第37卷第4期李鑫悦等:一类改进的Cucker-Smale 模型固定时间免碰撞集群行为的研究2023年8月图1(b)分别表示模型中速度和集群直径的变化情况,图1(c)表示两个粒子之间最短的距离;结果表明,带有控制器的C-S 系统能够达到固定时间集群,并且稳定时间的上界是T max =1.2104,取小数后四位㊂由图1(a)可以看出在时间t =0.75之后所有的粒子速度趋于相同,由图1(b)集群的直径即集群大小在t =1之前波动,但t =1之后集群的直径没有发生改变,且大小为36.7191;从图1(c)可以看出,在t =0.5之前所有粒子之间的最短距离波动较大,且大于0,最小距离在t =0.5之后保持在0.0667左右㊂因此,图1(c)清楚地看出所有的粒子并不会发生碰撞㊂这种波动现象合理地阐明了集群的特征㊂这次仿真结果有效地证明了该系统具有免碰撞固定时间集群㊂图1㊀模拟1结果图Fig.1㊀Figure of simulation 1results㊀㊀模拟2:当粒子数N =20,系统的控制目标v ∗=12.5,K 1=2(1/2),K -1=1,n D =0.2,图2(a)和图2(b)分别表示系统中速度和集群直径的变化情况,图2(c)表示两个粒子之间最短的距离㊂结果表明,带有控制器的C-S 系统能够达到固定时间集群,并且稳定时间的上界是T max =0.8260㊂由图2(a)和图2(b)可以看出在时间t =0.8之后所有的粒子速度趋于相同和集群的直径即集群大小在t =0.5之前波动,但t =0.5之后集群的直径没有发生改变,且大小为84.7473;从图2(c)可以看出,在t =0.5之前所有粒子之间的最小距离波动较大但大于0之后波动较小保持在0.37左右㊂因此,图2(c)清楚地显示了所有的粒子并不会发生碰撞㊂此模拟结果有效地证明了该系统具有免碰撞固定时间集群㊂图2㊀模拟2结果图Fig.2㊀Figure of simulation 2results㊀㊀模拟3:为了使数值模拟结果更有说服力取粒子数N =40,系统的控制目标v ∗=25,K 1=2(1/2),K -1=1,n D =0.2,图3(a)和图3(b)分别表示系统中速度和集群直径的变化情况,图3(c)表59第37卷第4期南华大学学报(自然科学版)2023年8月示两个粒子之间最短的距离;结果表明,带有控制器的C-S 系统能够达到固定时间集群,并且稳定时间的上界是T max =0.5497㊂同数值模拟1和模拟2分析可以看出数值模拟3中系统也能达到固定时间免碰撞集群,且集群大小为160.705㊂因此,这些模拟结果充分表明系统(1)能够达到固定时间免碰撞集群,有效地说明了定理1和定理2结论的合理性㊂图3㊀模拟3结果图Fig.3㊀Figure of simulation 3results5㊀结㊀论主要讨论改进的C-S 系统固定时间免碰撞集群的问题㊂研究结果表明,带有连续㊁非Lipschitz 控制器的C-S 系统能够发生固定时间免碰撞集群,系统达到集群的时间上界为T max ,具体结果见定理1,并给出了系统能够发生免碰撞的充分条件㊂参考文献:[1]VICSEK T,CZIROK A,BENJACOB E,et al.Novel typeof phase transition in a system of self-driven particles [J].Physical review letters,1995,75(6):1226-1229.[2]CUCKER F,SMALE S.Emergent behavior in flocks[J].IEEE transactions on automatic control,2007,52(5):852-862.[3]XIAO Q Z,LIU H L,XU Z H,et al.On collision avoidingfixed-time flocking with measurable diameter to a Cucker-Smale-type self-propelled particle model[J].Complexity,2020(11):1-12.[4]ZHANG X F,DAI H F,ZHAO L Z,et al.Collision avoi-ding finite-time and fixed-time flocking of Cucker-Smale systems with pinning control[J].International journal of control,2022,95(8):2045-2055.[5]HARDY G H,LITTLEWOOD J E,POLYA G.Inequalities [M].Cambridge:Cambridge university press,1952:53-74.[6]WANG L,XIAO F.Finite-time consensus problems fornetworks of dynamic agents [J].IEEE transactions on automatic control,2010,55(4):950-955.[7]POLYAKOV A.Nonlinear feedback design for fixed-time stabilization of linear control systems[J].IEEE transac-tions on automatic control,2012,57(8):2106-2110.[8]吴俊滔,王晓,刘易成.一类混合型Cucker-Smale 模型的有限时间集群[J].应用数学,2021,34(3):711-724.69。

Obstacle Course Fun

Obstacle Course Fun

**Title: Obstacle Course Fun**Obstacle course racing is a sport that brims with excitement and adventure.On the obstacle course, athletes face a series of challenges that test their strength, agility, and determination. As they navigate through the course, they climb over walls like fearless warriors scaling fortresses. Crawling under nets is like slithering through a maze of challenges. Swinging on ropes is like being a trapeze artist in a circus of athleticism. The mud pits add an element of messiness and fun, as athletes trudge through, feeling the earth beneath their feet. The course, with its diverse obstacles and terrain, becomes a playground for the brave. Athletes wear comfortable athletic wear and sturdy shoes to tackle the challenges. And the feeling? A rush of adrenaline and a sense of accomplishment with each obstacle conquered. Obstacle course racing is like a thrilling roller coaster ride of physical challenges.The benefits of obstacle course racing are numerous. Physically, it is a full-body workout. It builds strength in the muscles, improves endurance, and enhances cardiovascular health. Obstacle course racing is like a fitness boot camp that hones the body for any challenge. It helps improve balance, coordination, and flexibility. Mentally, it is a source of growth. It reduces stress and anxiety as athletes focus on the task at hand. It instills discipline, perseverance, and a can-do attitude. After completing an obstacle course, there's a feeling of confidence and a boost in self-esteem. Socially, obstacle course racing brings people together. Competitions and group events create a sense of community and camaraderie. It's a shared passion that transcends differences and builds lasting friendships.As the famous quote by Helen Keller goes, "Alone we can do so little; together we can do so much." Obstacle course racing teaches us the power of teamwork and support.In conclusion, obstacle course racing is a source of unending fun and growth. It offers us the chance to challenge ourselves, have fun, and connect with others. So step onto the course, embrace the fun of obstacle course racing, and let the sport inspire you to overcome any obstacle in life.。

二维超导薄膜中拓扑缺陷数目与冷却速度-KUBB相变

二维超导薄膜中拓扑缺陷数目与冷却速度-KUBB相变

二维超导薄膜中拓扑缺陷数目与冷却速度KUBB相变论文导读::基于含时Ginzburg-Landau(TDGL)方程建立二维超导薄膜经历快速冷却后的拓扑缺陷数目与冷却速度的关系模型。

采用差分法对此模型进行了数值模拟,计算出不同冷却速度下拓扑缺陷数目随着时间的变化关系。

计算结果发现,在不同冷却速度下,缺陷数目随着时间的变化可以分为两个阶段:第一阶段缺陷数目较多,拓扑缺陷数目随时间急剧减少;在第二阶段,缺陷数目较少,缺陷数目缓慢减少。

而且发现,较快的冷却速度有利于形成更多的拓扑缺陷。

这种变化趋势与文献[8]报道的实验结果相一致。

论文关键词:超导薄膜,TDGL,KUBB相变,拓扑缺陷,冷却速度1引言相变现象一直是凝聚态物理学中的研究热点之一。

在文献[1]中,Kibble预言如果一个复序参量系统经历快速冷却后发生相变进入到有序状态,就会产生拓扑缺陷。

Zurek[2]发展了Kibble的理论,他预言拓扑缺陷的初始密度是冷却速度的函数。

并且KUBB相变,Zurek等人用数值方法研究了一维和二维对称性破缺发生时,拓扑缺陷的数目与冷却速度的关系[3,4]中国期刊全文数据库。

以前关于这类现象的研究主要集中在超流体系[5-7]。

近期,在实验上二维超导薄膜经历快速冷却后形成拓扑缺陷的现象也有了相关报道[8]。

在超导体系中,形成的拓扑缺陷就是磁通量子。

但二维超导薄膜经历快速冷缺后形成拓扑缺陷(磁通量子)的数目与冷却速度的关系没有相关的数值模拟。

含时Ginzburg-Landau(TDGL)方程是研究超导磁通动力学的一个有力工具[9-15]。

基于上述情况,我们基于TDGL方程,采用数值模拟的方法研究了二维超导薄膜在经历快速冷却条件下所形成的拓扑缺陷数目与冷却速度的关系。

数值模拟结果发现,在不同冷却速度下KUBB相变,缺陷数目随着时间的变化情况不同,而且较快的冷却速度有利于形成更多的拓扑缺陷。

这种变化趋势与文献[8]所报道的实验结果相一致。

将火箭射入空中英语作文

将火箭射入空中英语作文

Launching a rocket into the sky is an exhilarating and complex process that requires a deep understanding of physics, engineering, and a host of other scientific disciplines. Here is a stepbystep account of what it takes to send a rocket soaring through the atmosphere.Step 1: Design and PlanningThe journey of a rocket begins with meticulous design and planning. Engineers and scientists work together to create a blueprint that outlines the rockets structure, propulsion system, and payload capacity. This stage involves extensive calculations to ensure the rocket can withstand the forces it will encounter during launch and ascent. Step 2: ConstructionOnce the design is finalized, the construction phase begins. This involves fabricating the various components of the rocket, such as the fuselage, engines, and payload bay. Each part must be built to exact specifications to ensure the rockets structural integrity and performance.Step 3: TestingBefore a rocket can be launched, it undergoes rigorous testing. This includes static tests of the engines, structural tests to ensure the rocket can handle the stresses of launch, and simulations to predict the rockets behavior during flight.Step 4: Assembly and IntegrationAfter testing, the rocket is assembled and integrated with its payload. This process is delicate and requires precision to avoid any damage to the rocket or its cargo.Step 5: Transport and SetupThe assembled rocket is then transported to the launch site. Once there, it is carefully erected on the launch pad. This setup includes connecting the rocket to ground support equipment for fueling and monitoring systems.Step 6: FuelingThe rocket is fueled with a combination of propellants, which can be liquid or solid, depending on the design. This process must be conducted with extreme care due to the volatile nature of rocket fuel.Step 7: Countdown and LaunchAs the launch date approaches, a countdown sequence is initiated. This involves a series of checks and preparations to ensure that all systems are go for launch. The final moments before launch are filled with tension and anticipation.Step 8: Ignition and LiftoffAt the designated time, the rockets engines ignite, creating an immense amount of thrust. This force overcomes gravity, and the rocket begins its ascent. The initial phase of the launch is the most critical, as it involves clearing the launch tower and gaining altitude quickly.Step 9: Stage SeparationMost rockets are multistaged, meaning they shed parts of themselves as they ascend. This is done to reduce weight and increase efficiency. Stage separation is a carefully choreographed event that must occur at precise moments to ensure the rocket continues on its trajectory.Step 10: Reaching Orbit or DestinationOnce the rocket has shed its initial stages, it continues to propel itself towards its destination, whether that be Earths orbit or beyond. Upon reaching the desired altitude, the payload is deployed or the mission objectives are carried out.Step 11: Mission CompletionThe final stage of the rockets journey is its return to Earth, if applicable, or the completion of its mission in space. This can involve landing, deorbiting, or remaining in orbit for further operations.The entire process of launching a rocket is a testament to human ingenuity and our relentless pursuit of exploring the cosmos. Each successful launch is a victory for science and a step forward in our understanding of the universe.。

宠物大学英语作文

宠物大学英语作文

In an era where pets have become integral members of many households,the concept of a Pet University is not only innovative but also a testament to the evolving role of animals in our lives.The Pet University,as the name suggests,is a place where pets can receive education and training,enhancing their skills and behaviors,and ultimately,improving their quality of life as well as their interaction with humans.The CurriculumThe curriculum at the Pet University is designed to cater to the diverse needs of pets, focusing on areas such as obedience training,agility,and socialization.Here are some of the courses that might be offered:1.Basic Obedience:This course is fundamental for all pets,teaching them commands such as sit,stay,come,and down.It helps in establishing a strong bond between the pet and its owner.2.Advanced Obedience:For pets who have mastered the basics,this course delves into more complex commands and behaviors,preparing them for advanced tasks or even professional roles like therapy or service animals.3.Agility Training:This course is particularly popular among dog owners,focusing on physical fitness and mental agility.It involves navigating obstacles and performing tasks that require speed,coordination,and focus.4.Socialization Classes:Crucial for pets that may be shy or aggressive,these classes help pets learn to interact comfortably with other animals and humans in various settings.5.Behavior Modification:For pets with specific behavioral issues,this course offers tailored training programs to address problems such as excessive barking,destructive behavior,or fear.The FacultyThe faculty at the Pet University consists of experienced trainers and behaviorists who are wellversed in animal psychology and training methodologies.They are dedicated to creating a positive learning environment for the pets,ensuring that they are comfortable and engaged throughout the learning process.The FacilitiesThe campus of the Pet University is equipped with stateoftheart facilities to cater to the physical and educational needs of the pets.This includes spacious training grounds, agility courses,indoor training areas,and a veterinary clinic for health checkups and immediate medical attention if needed.The BenefitsEnrolling pets in the Pet University offers numerous benefits:Improved Behavior:Pets learn to behave better,making them more enjoyable companions and reducing the likelihood of behavioral issues.Enhanced Skills:Pets gain new skills and abilities,which can be both fun and useful, depending on the pets role in the household or community.Stronger Bond:The training process strengthens the bond between the pet and its owner, as they work together to achieve goals.Community Integration:Welltrained pets are more likely to be accepted in public spaces, allowing for a greater range of activities and experiences.Health Benefits:The physical activities involved in training contribute to the overall health and wellbeing of the pets.The FutureAs society continues to recognize the importance of pets,the Pet University represents a forwardthinking approach to pet care and education.It is a place where pets can thrive, learn,and grow,contributing to a more harmonious coexistence between humans and their furry friends.With ongoing research and development in animal behavior and training techniques,the Pet University is poised to be at the forefront of this exciting field.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Prior to that, in the next two sections we reiterate and rephrase the Zurek-Kibble bounds before providing an alternative scenario for the way defects appear after a transition. This is based on the fact that the simple defects that we shall consider have ’false’ ground-state or vacuum at their cores where the field vanishes. Under suitable circumstances the separation length ξ¯def is more sensibly derived by counting zeroes of the field as ξ¯def = O(ξ¯zero), where ξ¯zero measures the separation of field zeroes. However, in principle, ξ¯zero and ξ¯ are different correlation lengths, exploring different attributes of the fluctuation spectrum.
We then apply these ideas in turn to condensed matter systems, using the empirical time-dependent Ginzburg Landau (TDGL) theory as specifying the dynamics, and to relativistic Quantum Field Theory (QFT). In the latter case, there is a further complication in that the system needs to decohere
Zurek’s and Kibble’s causal constraints for defect production at continuous transitions are encoded in the field equations that condensed matter systems and quantum fields satisfy. In this article we highlight some of the properties of the solutions to the equations and show to what extent they support the original ideas. PACS numbers: 11.27.+d, 05.70.Fh, 11.10.Wx, 67.40.Vs.
Although subsequent work by several authors (including Zurek himself2,3) has refined these original proposals4 they are, at heart, very simple: after a continuous transition the order parameter field (or fields) cannot adapt to a single uniform ground state value immediately. The reason is straightforward. Although the adiabatic (equilibrium) correlation length ξeq(t) diverges at the transition the true correlation length ξ(t) does not, since there is not enough time for it to do so. Causality imposes a maximum rate at which the
Since causality is as equally embodied in quantum field theory (QFT) as in condensed matter, these ideas had been posed independently by Kibble5,6 in the context of phase transitions of QFT in the very early universe. One of the great successes of QFT has been the unification of the electroweak forces through spontaneous symmetry breaking. There is every reason to believe that this and other symmetries were not always broken but that, in the very early and hot universe, they were restored. Kibble7,8 and others9 have observed that the same causal arguments put useful constraints on the density of defects at the time of their formation, which could have consequences today. Unfortunately, because of our lack of understanding of the details of the early universe it is impossible to make reliable predictions10.

R.J. Rivers
correlation length can grow and hence a maximum correlation length, ξ¯ say, at the onset of the transition. At the same time, causality imposes a horizon outside which the fields are uncorrelated. A consequence of a correlation length that is always finite is the creation of topological defects (monopoles, vortices, walls, etc.) that mark ’domain’ boundaries. These defects then self-interact and annihilate, leading to larger and larger regions over which the field assumes one of the possible ground state values.
Nonetheless, subject to certain conditions, we find that ξ¯def is, indeed, O(ξ¯), as predicted, both for condensed matter and QFT. The Kibble-Zurek bounds are qualitatively valid, albeit for somewhat different reasons than simple causality. A byproduct is that the failure of 4He experiments to give agreement14 may lie in an incorrect assumption of the decay rate of defects.
ZK Causality in TDGL Theory and QFT
(i.e. lose its quantum mechanical interference) before we can use classical probabilities to identify defects, and we devote Section 6 to that.
arXiv:cond-mat/0105171v1 8 May 2001
Zurek-Kibble Causality Bounds in Time-Dependent Ginzburg-Landau Theory and
Quantum Field Theory
R.J. Rivers
Theoretical Physics, Blackett Laboratory, Imperial College, Prince Consort Road, London, SW7 2BZ, U.K.
If the simple relationship ξ¯ = O(ξ¯def ) between the correlation length ξ¯ and the separation length ξ¯def of defects suggested by this picture is valid then the density of defects is bounded, and calculable, at their moment of formation. If their evolution is known, the density of defects at late times is similarly constrained.
相关文档
最新文档