岩石物理学

合集下载

岩石物理 Rock Physics

岩石物理 Rock  Physics

教 材:
陈颙,黄庭芳著,岩石物理学,北京大学出版社,2001年 参 考 书: 1)赵鸿儒、唐文榜、郭铁栓编著,超声地震模型试验技术 及应用,石油工业出版社,1986 2)R.E.Sheriff et.al., Reservoir Geophysics, SEG, 1992 3)Amos Nur著,许云译,双相介质中波的传播,石油工
Rock Physics: bridge between reservoir and seismic properties
Reservoir properties
Porosity 孔隙度 4D Feasibility & Seismic modeling 四维 Density 密度 地震可行性及地震模拟 Saturation 饱和度 Fluid type 流体类型 Pressure 压力 Interpretation Temperature 温度 and Inversion Fracture 裂隙 解释及反演
Seismic properties
Seismic velocity 地震 波速 Travel time 走时 Impedance 阻抗 Amplitude 振幅 AVO response AVO 响 应 Other attributes 其他属 性
Role of Rock Physics in Seismic Lithology
Rock physics is the basis for building the predictive tools and interpreting the predicted or inverted data 岩石物理是建立预测工具及解释反演结果的物理 Rock properties Seismic data 基础

岩石的基本物理力学性质

岩石的基本物理力学性质

岩石的基本物理力学性质岩石的基本物理力学性质是岩体最基本、最重要的性质之一,也是岩体力学中研究最早、最完善的力学性质。

岩石密度:天然密度、饱和密度、质量指标密度、重力密度岩石颗粒密度孔隙性孔隙比、孔隙率含水率、吸水率水理指标渗透系数抗风化指标软化系数、耐崩解性指数、膨胀率抗冻性抗冻性系数单轴抗压强度单轴抗拉强度抗剪强度三向压缩强度岩石的基本物理力学性质◆岩石的变形特性◆岩石的强度理论试验方法参照标准:《工程岩体试验方法标准》(GB/T 50266-99)。

第二章岩石的基本物理力学性质第一节岩石的基本物理性质第二节岩石的强度特性第三节岩石的变形特性第四节岩石的强度理论回顾----岩石的基本构成岩石是自然界中各种矿物的集合体,是天然地质作用的产物,一般而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。

岩石是构成岩体的基本组成单元。

相对于岩体而言,岩石可看作是连续的、均质的、各向同性的介质。

岩石的基本构成:由组成岩石的物质成分和结构两大方面来决定的。

回顾----岩石的基本构成一、岩石的物质成分●岩石是自然界中各种矿物的集合体。

●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。

●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。

●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。

回顾----岩石的基本构成二、岩石的结构是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。

其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。

回顾----岩石的基本构成●岩石结构连结结晶连结和胶结连结。

结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。

这种连结结晶颗粒之间紧密接触,故岩石强度一般较大,但随结构的不同而有一定的差异。

岩石的地球物理学特征

岩石的地球物理学特征

岩石的地球物理学特征岩石是地球的主要构成物质之一,对了解地球内部的结构和演化起着重要作用。

地球物理学是研究地球内部和地球表面的力学和物理性质的学科,而岩石的地球物理学特征是地球物理学的一个重要组成部分。

岩石主要由矿物质组成,通过地球物理学的方法可以对岩石的性质进行研究。

岩石的地球物理学特征包括密度、磁性、电性、声速等。

首先,岩石的密度是指单位体积岩石的质量。

不同类型的岩石由不同的矿物组成,因此具有不同的密度。

通过测量岩石的密度,可以初步判断岩石的成分和结构。

常见的火山岩具有较低的密度,而花岗岩和片麻岩则具有较高的密度。

利用这一特征,地球科学家可以对地壳的构成进行研究。

其次,岩石的磁性是指岩石在磁场作用下的表现。

磁性可以分为顺磁性、抗磁性和磁性。

顺磁性岩石在外磁场作用下会产生磁化强度较弱的磁性,抗磁性岩石在外磁场作用下不会产生磁性,而磁性岩石在外磁场作用下会产生较强的磁性。

通过研究岩石的磁性,不仅可以判断地壳岩石的类型,还可以对地磁场进行研究。

地球的磁场由地核中的液态外核运动所产生,通过研究地壳中的磁性岩石,可以了解地磁场的变化和地球内部的动力学过程。

岩石的电性也是岩石的地球物理学特征之一。

电性可以分为导电性和绝缘性。

导电性岩石具有较高的电导率,而绝缘性岩石则具有较低的电导率。

通过测量岩石的电导率,可以研究地下水的分布和地下岩石的性质。

导电性较高的岩石通常富含水分,而月球上的岩石则通常导电性较低。

最后,岩石的声速是指岩石中声波传播的速度。

不同类型的岩石具有不同的声速。

通过测量岩石的声速,可以初步推断岩石的成分和结构,并对地球内部的物质特性进行研究。

声速是地球物理学中常用的工具,被广泛应用于地质勘探、地震学和地壳构造等领域。

综上所述,岩石的地球物理学特征包括密度、磁性、电性和声速等。

这些特征对于研究地球内部的构成和演化,理解地球物理过程和地球动力学有着重要的意义。

通过研究岩石的地球物理学特征,可以深入了解地质现象的成因,为地质学、地球物理学和地球科学的发展提供重要的依据和支持。

岩石物理学及岩石性质

岩石物理学及岩石性质

岩石物理学及岩石性质一、矿物1.1矿物矿物是单个元素或若干个元素在一定地质条件下形成的具有特定理化性质的化合物,是构成岩石的基本单元。

矿物多数是在地壳(地球)物理化学条件下形成的无机晶质固体,也有少数呈非晶质和胶体。

1.2矿物的主要物理特性1.2.1光学特性(1)颜色:矿物的颜色由矿物对入射光的反映呈现出来。

一般来说矿物的颜色是矿物对入射光吸收色的补色。

(2)条痕:条痕色指矿物经过在不涂釉的瓷板上擦划,在瓷板上留下的矿物粉粒的颜色。

(3)光泽:光泽是矿物表面对入射光所射的总光量。

根据光泽有无金属感,将光泽分为金属光泽与非金属光泽。

矿物光泽特性既与矿物组成和结构有关,又与矿物表面特征有关。

(4)透明度:透明度与矿物对矿物透射光的多少有关。

1.2.2力学性质(1)硬度:矿物的硬度是指矿物的坚硬程度。

一般采用摩氏硬度法鉴别矿物硬度。

即采用标准矿物的硬度对未知矿物进行相对硬度的鉴别。

摩氏硬度中选取十种矿物作为标准矿物,将矿物分为10级,称为摩氏硬度计。

这十种矿物硬度由1级到10级的顺序是:①滑石,②石膏,③方解石,④磷灰石,⑤萤石,⑥正长石,⑦石英,⑧黄玉,⑨刚玉,⑩金刚石。

(2)解理与断口:矿物受力后产生破裂出现的没有一定方向的不规则的断开面,谓之断口。

当晶质体矿物受力断开时,出现一系列平行的、平整的裂面时,称为解理。

断口出现的程度跟解理的完善程度相互消长,解理程度越低的矿物越容易形成断口。

因此,断口具有了非晶质体的基本含义。

解理与晶质体内质点间距有明显的关系,解理常出现在质点密度较大的方向上。

(3)延展性:矿物的延展性,也可以称为矿物的韧性。

其特征是表现为矿物能被拉成长丝和辗成薄片的特性。

这是自然金属元素具有的基本特性。

1.3重要矿物(1)自然元素矿物:这类矿物较少,其中包括人们所熟知的矿物,如金、铂、自然铜、硫磺、金刚石(见图1)、石墨等。

图1金刚石(2)硫化物类矿物:本类是金属元素与硫的化合物,大约200多种,Cu、Pb、Mo、Zn、As、Sb、Hg等金属矿床多有此类矿物富集而称,具有很大的经济价值。

岩体力学02-岩石的物理力学性质

岩体力学02-岩石的物理力学性质
3
密度和重度在进行 岩体工程稳定性计 算评价、自重应力 计算时是常用的参 数
g—重力加速度,工程计算时一般取10m/s2。
3、岩石的颗粒密度 岩石的颗粒密度( s)是指岩石固体物质的质量与固体
的体积之比,即
s
ms Vs
g / cm
3
岩石颗粒密度只 取决于矿物成分。
Vs—颗粒体积; ms—颗粒质量
(一)岩石的质量与重量指标——密度与重度
1、天然密度() 岩石在天然条件下单位体积的质量,即
岩石天然密度越大, 其工程性质越好。影 响因素是矿物成分、 孔隙与微裂隙发育程 度以及含水量。
V—岩石试件的总体积; m—岩石试件的总质量

m V
g / cm
3
测定方法有量积法、水中称重法、蜡封法等,试件数量不少于5个 2、饱和密度( sat) 岩石中空隙全部被水充填时单位体积的质量,即
量(mw1)与岩样干质量(ms)之比,即
Wa
大开空隙 率与吸水 率的关系
mw 1 100 % ms
VVb dWa nb 100% dWa V w
2、饱和吸水率(Wsat) 岩石试件在煮沸、高压(一般压力为15MPa)或真空条 件下吸入水的质量(mw2)与岩样干质量(ms)之比,即
kv
0.2~0.4 0.4~0.6 0.6~0.8 0.8~0.9
kf
<0.4 0.4~0.8 0.8~0.9
未风化
>5000
0.9~1.0
0.9~1.0
《岩土工程勘察规范》(GB50021-2001)
硬质岩石风化风化程度野外描述
硬质岩石风化风化程度野外描述
四、岩块的工程分类

第2章 岩石的物理力学性质

第2章 岩石的物理力学性质
第二章 岩石的物理力学性质
目 录
1、岩石的物理性质 2、岩石的强度特性 3、岩石的变形特性 4、岩体结构面的力学性质 5、岩体的力学性质 6、工程岩体的分类 7、岩石力学性质的时间效应
2.1 岩石的物理性质
岩石由固体、液体和气体三相介质组成, 其物理性质是指因岩石三相组成部分的相 对比例关系不同所表现出来的物理状态。
(2)变角板剪切试验(图) P (cos f sin ) A P (sin f cos ) A
此法的主要缺点是a角不能太大,也不能太小。
4 岩石的三轴压缩强度(Triaxial compressive strength)
岩石试件在三向压应力作用下能抵抗的最大轴向压力。
体积变形模量:平均正应力与单位体积变形之比
e V e 1 2 3 V K

切变模量:弹性或准弹性的切变模量
E G 2(1 )
岩块的变形模量和泊松比受岩石矿物组 成、结构构造、风化程度、空隙性、含水率、 微结构面及其与荷载方向的关系等多种因素 的影响,变化很大(图)。
f c tan
大量研究表明:当压力不大时(小于 10MPa),直线形强度包络线能够满足工程 要求,是目前应用最为广泛的强度理论。
(2)二次抛物线形莫尔强度准则(图) 软弱至中等硬度完整岩石,如泥灰岩、 砂岩、泥岩等岩石的强度包络线近似于二次 抛物线。
n( t )
VD D / D 100%
(2)岩石的侧向约束膨胀率
VHP H1 / H 100%
(3)膨胀压力
6 岩石的透水性 达西定律
Vx kix
岩石的渗透系数一般都很小,新鲜致 密岩石的渗透系数一般均小于10-7cm/s。裂 隙发育时,渗透系数一般比新鲜岩石大4~ 6个数量级。

岩石物理相研究及应用

岩石物理相研究及应用

岩石物理相研究及应用岩石物理学是研究岩石和地球内部物质物理性质的学科。

它利用物理实验、地球物理探测技术和数学方法,通过测量和分析岩石的物理特征,探索地球的内部结构和岩石的物质组成。

岩石物理学的研究和应用广泛应用于地质勘探、油田开发、地震监测和自然资源调查等领域,对于实现可持续发展和地球科学的发展具有重要意义。

岩石物理相的研究是岩石物理学的重要内容之一、岩石物理相是指岩石在不同物理条件下的物质状态和行为。

岩石的物理相变化对岩石的物理性质有着重要的影响,研究岩石的物理相变化可以揭示地壳的力学性质和岩石的岩相组成,对于地震预测和地质灾害预防有着重要作用。

岩石物理相的研究包括固相和液相的相互转化、岩石矿物的相变和相分离等过程。

其中,固相和液相的相互转化是岩石物理相研究的重点之一、当温度和压力发生变化时,岩石中的固相物质和液相物质会相互转化,这种相变过程对地下水资源的储存和输运有着重要影响。

研究固相和液相的相互转化规律,可以帮助我们预测地下水资源的分布和利用。

另外,岩石矿物的相变也是岩石物理相研究的一个重要方面。

岩石矿物的相变会导致岩石的物质结构发生变化,进而影响岩石的物理性质。

例如,当温度发生变化时,岩石中的矿物可以发生熔融或结晶的相变过程,这种相变过程会导致岩石的强度和导热性等物理性质发生变化。

研究岩石矿物的相变规律,可以帮助我们理解地壳的演化历史和预测地震活动。

岩石物理相的研究不仅对于地质学学科发展有着重要意义,还具有广泛的应用价值。

地质勘探是岩石物理相研究的重要应用之一、通过测量和分析地下岩石的物理性质,可以预测地下矿产资源的分布和储量,为矿产勘探提供依据。

此外,岩石物理相研究还广泛应用于油田开发。

通过测量岩石的孔隙度、渗透率和饱和度,可以评估油田储量和油藏的产能,为油气勘探和开发提供技术支持。

总的来说,岩石物理相研究及应用对于地球科学的发展和可持续发展具有重要意义。

通过研究岩石的物质性质和相变过程,可以揭示地球的内部结构和地质活动规律,为地质灾害预防、矿产勘探和油气开发提供科学依据。

岩石物理学及岩石性质

岩石物理学及岩石性质

岩石物理学及岩石性质一、矿物1.1矿物矿物是单个元素或若干个元素在一定地质条件下形成的具有特定理化性质的化合物,是构成岩石的基本单元。

矿物多数是在地壳(地球)物理化学条件下形成的无机晶质固体,也有少数呈非晶质和胶体。

1.2矿物的主要物理特性1.2.1光学特性(1)颜色:矿物的颜色由矿物对入射光的反映呈现出来。

一般来说矿物的颜色是矿物对入射光吸收色的补色。

(2)条痕:条痕色指矿物经过在不涂釉的瓷板上擦划,在瓷板上留下的矿物粉粒的颜色。

(3)光泽:光泽是矿物表面对入射光所射的总光量。

根据光泽有无金属感,将光泽分为金属光泽与非金属光泽。

矿物光泽特性既与矿物组成和结构有关,又与矿物表面特征有关。

(4)透明度:透明度与矿物对矿物透射光的多少有关。

1.2.2力学性质(1)硬度:矿物的硬度是指矿物的坚硬程度。

一般采用摩氏硬度法鉴别矿物硬度。

即采用标准矿物的硬度对未知矿物进行相对硬度的鉴别。

摩氏硬度中选取十种矿物作为标准矿物,将矿物分为10级,称为摩氏硬度计。

这十种矿物硬度由1级到10级的顺序是:①滑石,②石膏,③方解石,④磷灰石,⑤萤石,⑥正长石,⑦石英,⑧黄玉,⑨刚玉,⑩金刚石。

(2)解理与断口:矿物受力后产生破裂出现的没有一定方向的不规则的断开面,谓之断口。

当晶质体矿物受力断开时,出现一系列平行的、平整的裂面时,称为解理。

断口出现的程度跟解理的完善程度相互消长,解理程度越低的矿物越容易形成断口。

因此,断口具有了非晶质体的基本含义。

解理与晶质体内质点间距有明显的关系,解理常出现在质点密度较大的方向上。

(3)延展性:矿物的延展性,也可以称为矿物的韧性。

其特征是表现为矿物能被拉成长丝和辗成薄片的特性。

这是自然金属元素具有的基本特性。

1.3重要矿物(1)自然元素矿物:这类矿物较少,其中包括人们所熟知的矿物,如金、铂、自然铜、硫磺、金刚石(见图1)、石墨等。

图1金刚石(2)硫化物类矿物:本类是金属元素与硫的化合物,大约200多种,Cu、Pb、Mo、Zn、As、Sb、Hg等金属矿床多有此类矿物富集而称,具有很大的经济价值。

岩石物理学

岩石物理学

岩石物理学讲义贺振华编成都理工大学2009年目录1 岩石物理学概论 (4学时)1.1 岩石物理学的内容与特点1.2 岩石物理学的研究方法2 岩石与岩石的变形 (6学时) 2.1 地球上的岩石和矿物2.2 应力与应变2.3 岩石的本构关系2.4 岩石物理实验3 岩石中波的传播与衰减(10学时) 3.1 岩石中的波3.2 岩石中波速的测量与应用3.3 岩石中波的衰减3.4 岩石模型4 岩石的弹性 (12学时) 4.1 二相体的弹性4.2 流体静压力下岩石裂纹对弹性的影响4.3 流体静压力下岩石孔洞对弹性的影响4.4 岩石中孔隙流体对弹性的影响4.5 弹性波在双相体岩石中的传播5 岩石的输运特性 (2学时)5.1 达西(Darcy)定律和岩石的渗透率5.2 渗透率的测量5.3 岩石的输运模型6 岩石物理应用 (4学时)6.1 Biot-Gassmann方程与流体替换6.2 裂缝储层岩石物理复习与考试(2学时)1 岩石物理学概论1.1 岩石物理的内容与特点岩石物理学是以研究岩石物理性质的相互关系及应用为主的学科。

重点研究:·在地球内部特殊环境下岩石的行为及其物理性质。

·研究那些与地球内部构造运动、能源和资源勘察与开发、地质灾害的成因与减灾,环境保护与监测等密切相关的问题。

对油气勘探、资源、环境等问题,R. E. Sheriff 对岩石物理学的定义为[1]岩石物理学研究岩石物理性质之间的相互关系,具体地说,研究孔隙度,渗透率等是如何同地震波速度、电阻率、温度等参数相关联的。

岩石物理学与地质学、地球物理学、地球化学、力学、流体力学、材料力学、地热学、环境科学、工程学等众多学科密切相关,是一个高度的交叉、边缘学科。

基础性,应用性都很强。

一般情况下,人们把岩石物理学归属于地学学科。

对油气资源的勘探开发而言,岩石物理是联系地质、地球物理、石油工程三个学科领域的共同基础和桥梁,见图1.1。

图1.1 岩石物理是地质、地球物理、石油工程的共同基础和桥梁石油工程地球物理地质结构岩石物理1.2 岩石物理学的研究方法1.2.1 研究岩石的多尺度性岩石是不同矿物、胶结物和孔隙及孔隙物质组成的复合体。

第四章 岩石物理力学性质和可钻性

第四章   岩石物理力学性质和可钻性

六、岩石的硬度
1、岩石的硬度的基本概念:岩石的硬度反映岩石抵抗外部 更硬物体压入(侵入)其表面的能力。 2、硬度与抗压强度的区别与联系 (1)岩石的硬度与抗压强度一般存在正比例关系;
(2)抗压强度是固体抵抗整体破坏时的阻力,而硬度则是
固体表面对另一物体局部压入或侵入时的阻力。 (3)硬度指标更接近于钻掘过程的实际情况。
第二节 岩石在外载下的破碎机理
0、碎岩工具与岩石作用的主要方式
根据刃具与岩石作用的方式和碎岩机理,可把碎岩刃具分: 切削一剪切型、冲击型、冲击一剪切型三类。 1、切削一剪切型 钻头碎岩刃具以速度vθ 向前移
动而切削(剪切)岩石。工作参数是:
移动速度vθ 、轴向力Pz和切向力 Pθ 以及介质性质。
2、冲击型 冲击型刃具给孔底岩石以直接的冲击动载,碎岩的过程可 用工具动能Tk和岩石变形位能U 的方程式来表达( T=U ):
国家精品课程
第四章 岩土的物理力学 性质及岩石的可钻性
一、岩石的物理力学性质概述 ★ 二、岩石在外载作用下的的破碎机理 三、岩石的可钻性及可钻性指标及坚 固性系数 ★
第一节岩石的物理力学性质概述 ★
岩石的组成与分类
岩石是矿物的集合体。矿物是具有一定成分和物理性质的无 机物质。根据其成因,岩石可分为三类: 1、岩浆岩:岩浆岩是内力地质作用的产物,由地壳深处 的岩浆沿地壳裂隙上升冷凝而成。 2、沉积岩:沉积岩是在地表条件下母岩(岩浆岩、变质岩 或早先形成的沉积岩)风化剥蚀的产物,经搬运、沉积和硬结 等成岩作用而形成的岩石。。 3、变质岩:变质岩是岩浆岩、沉积岩甚至是变质岩本身 在地壳中受到高温、高压及活动性流体的影响而变质形成的 岩石。
3、影响岩石硬度的因素
(1)岩石中坚硬矿物愈多、胶结物的硬度越大、岩石的颗粒 越细、结构越致密,岩石的硬度越大。而孔隙度高、密度低、 裂隙发育的岩石硬度将会降低。 (2)岩石的硬度具有明显的各向异性。层理对岩石硬度的 影响与对岩石强度的影响相反。垂直于层理方向,硬度值 最小; 平行于层理方向,硬度最大;两者之间可相差1.05~1.8倍。

岩石物理学ppt课件

岩石物理学ppt课件

4500-8000




二、岩石密度的影响 由纵横波速度公式:

+2 k+4/3
E(1-)

纵波速度 VP = --------- = ------------ = ----------------

(1+)(1-2)

E

横波速度 VS = ------ = -------------
石 物
2(1+)
物 ,则可通过Gardner公式计算。



地 三、孔隙度的影响

一般说来,在其它因素相同的情况下,孔隙
勘 度大时,岩石的波速V低,也就是说,孔隙度
探 和波的传播速度V成反比。

Wyllie 提出了V-关系的经验公式:
的 岩 石
1
1-
------ = ----- + -------- (时间平均方程)
可知,随着增大,VP 、 VS也增大,但由公式看, 增大,VP 、 VS 应降低,为什么它反而增大?

这是因为增大,杨氏模量E也增大,且其增大的级
性 次比高得多,所以增大,VP 、 VS也增大。

地 震 勘 探 中 的 岩 石 物 理 性 质












砂泥岩横波速度密度关系(p=0.600Vs0.183)


从图上可以 看出,同样的未

固结砂岩,水饱

和时的纵波速度

几乎与温度没有 关系。

岩石物理力学性质指标经验数据

岩石物理力学性质指标经验数据

岩石物理力学性质指标经验数据在岩石物理学中,岩石的物理力学性质指标是评估岩石力学行为的重要参数,包括岩石的强度、变形性质、破裂特性等。

这些指标的经验数据非常重要,能够为岩石物理学的研究和实际工程应用提供有效的参考。

下面将介绍一些常见的岩石物理力学性质指标的经验数据。

岩石的抗压强度是指在垂直于施加力的方向上,岩石能够抵抗的最大压缩应力。

不同类型的岩石具有不同的抗压强度。

常见的岩石抗压强度经验数据如下:-砂岩:5-25MPa-灰岩:25-100MPa-花岗岩:100-250MPa-片麻岩:50-150MPa-麻岩:50-200MPa2. 抗张强度(Tensile strength):岩石在拉伸条件下能够承受的最大应力称为抗张强度。

由于岩石的抗拉强度较低,因此常常使用岩石抗压强度的一半作为岩石的抗拉强度估计值。

常见的岩石抗张强度经验数据如下:-砂岩:1-5MPa-灰岩:5-20MPa-花岗岩:20-100MPa-片麻岩:10-50MPa-麻岩:10-50MPa3. 剪切强度(Shear strength):岩石的剪切强度是指岩石在剪切应力作用下能够抵抗剪切破坏的最大强度。

常见的岩石剪切强度经验数据如下:-砂岩:3-15MPa-灰岩:15-30MPa-花岗岩:30-100MPa-片麻岩:15-50MPa-麻岩:20-60MPa4. 弹性模量(Young modulus):弹性模量是岩石在弹性变形范围内的刚度指标,表示岩石在受力时变形程度的大小。

常见的岩石弹性模量经验数据如下:-砂岩:1-30GPa-灰岩:10-100GPa-花岗岩:50-200GPa-片麻岩:10-50GPa-麻岩:5-50GPa5. 泊松比(Poisson's ratio):泊松比表示材料体积收缩时的径向收缩与轴向延伸之比,常用来表征岩石的变形特性。

-砂岩:0.1-0.4-灰岩:0.1-0.35-花岗岩:0.2-0.35-片麻岩:0.1-0.4-麻岩:0.2-0.4需要注意的是,以上数据仅为经验值,实际岩石的物理力学性质受多种因素的影响,包括岩石类型、成分、结构、孔隙度等。

岩石物理学研究岩石物理性质之间的相互关系

岩石物理学研究岩石物理性质之间的相互关系

岩石物理学研究岩石物理性质之间的相互关系岩石物理学是研究岩石及其内部物理性质之间相互关系的科学学科。

它通过实验、实测和数值模拟等方法,从微观角度分析岩石的物理性质,揭示它们之间的相互作用关系,为地质勘探、地震预测、石油勘探等领域提供理论和实践指导。

岩石物理性质包括密度、弹性模量、磁性、电阻率、导热性等。

不同的岩石类型和结构特征会导致这些性质之间的差异,而这些差异又会对岩石的宏观特性产生影响,如声波的传播速度、电磁波的反射特征等。

因此,研究岩石物理性质之间的相互关系对于理解岩石结构、确定地质工程设计参数、评估地震风险等具有重要意义。

首先,密度是岩石物理性质中的一个重要参数,它可以反映岩石的质量和成分。

不同岩石的密度差异主要是由于其成分和孔隙度不同所导致的。

岩石中的矿物和水分都会对密度产生影响,因此密度可以用来识别岩石类型和矿物组成。

同时,密度还与岩石弹性参数之间存在一定的关系,可以通过密度来估计岩石的应力状态和岩石的弹性模量。

其次,岩石的弹性模量是岩石物理性质中的另一个重要参数,它可以衡量岩石对应力的响应能力。

弹性模量与岩石的密度、孔隙度、矿物组成等因素有密切关系。

高密度、低孔隙度和坚硬矿物组成的岩石具有较高的弹性模量,而低密度、高孔隙度和软质矿物组成的岩石则具有较低的弹性模量。

同时,弹性模量还与岩石的应力状态和应变产生关系,可以通过弹性模量来估计岩石的力学性质和变形特征。

此外,岩石的磁性也是岩石物理性质中的重要参数之一、磁性可以通过测量岩石的磁化率、磁导率等物理量来表征。

不同岩石的磁性特征主要受到其中的磁性矿物(如铁磁矿物)的影响。

通过研究岩石的磁性特征,可以识别矿产资源、勘探油气储层、研究地磁场变化等。

此外,岩石物理性质中的电阻率和导热性等也与岩石的成分、孔隙度和温度等因素关系密切。

电阻率和导热性可以通过测量岩石的电阻和热传导率来获得。

不同岩石中的矿物、水分和孔隙的差异会导致其电阻率和导热性的区别。

岩石物理学的基本理论及其应用

岩石物理学的基本理论及其应用

岩石物理学的基本理论及其应用简介岩石物理学是石油勘探中重要的学科之一。

它研究石油地质中的岩石物理性质,即岩石的物理特性,如密度、波速、弹性模量等。

在石油勘探中,我们需要了解岩石的物理性质,以便确定油气储层的位置、形态和性质。

本文将介绍岩石物理学的基本理论及其应用。

岩石物理学的基本理论岩石的物理性质包括密度、波速、弹性模量、岩石矿物成分等。

这些物理特性能够对石油勘探提供有价值的信息。

密度是指物质的质量与体积之比,是岩石物理学中的一个重要参数。

密度随岩石矿物成分、孔隙度和水含量而变化。

通过密度的测量,我们可以作出地球内部结构的地质概念图,并且可以帮助我们大致估算油气储层的厚度和贡献。

波速是指声波或横波在材料中的传播速度。

其大小反映了岩石的密实度、弹性和矿物成分。

波速可以衡量岩石内部的孔隙度和裂缝系统,快速传播的波速意味着非常致密的岩石。

而慢速波需要通过大量的孔隙来传播。

藉由测量波速,我们可以根据不同速度的波传递的时间来确定地层的深度,并且确定油气储层的位置。

岩石的弹性模量是一个容易产生困惑的概念,它是指在材料内施加应力时,该材料承受的应变程度。

在岩石物理学中,弹性模量通常用于评估岩石的硬度、裂缝和孔隙性和韧性,因此也是评估油气储层的重要物理特性。

岩石物理学的应用岩石物理学的应用范围非常广泛,其中之一是用于油气勘探。

”对于油气勘探,我们需要了解地下岩石的构造和矿物成分。

通过岩石物理学的测量,我们能够明确良好的储层,同时探明油气藏空间的大小,形态和地理位置。

岩石物理学还可以在石油开采过程中提供有价值的信息。

例如,在水力压裂处理过程中,研究岩石物理学可以帮助人们了解裂缝产生的原因和特点。

这可以帮助我们更好地预测裂缝的发展和石油回收效益。

此外,岩石物理学在地质学和工程学中也有很多应用。

例如,在建筑和隧道工程中,我们需要了解岩石的物理性质,以制定更好的施工方案。

结论岩石物理学是石油勘探和开发中的基础学科,其知识可以被应用于各种应用领域。

岩石物理相的研究及应用

岩石物理相的研究及应用

岩石物理相的研究及应用岩石物理是地球物理学的一个重要分支,主要研究岩石的物理性质及其对地球结构、成岩演化和矿产资源的影响。

岩石是地球的基本组成部分,了解其物理相对于研究地球内部结构、地球演化历史以及勘探矿产资源等方面具有重要意义。

以下将介绍岩石物理相的研究内容和应用。

岩石物理相的研究主要包括:岩石的物理性质测定、岩石物理方程和行为模型的建立、岩石的物理变化与地质作用的关系等。

岩石的物理性质包括密度、磁性、电性、声学性质等,通过这些性质的测定可以推测岩石的成分、结构和演化历史。

例如,岩石的密度与成分、孔隙度和压实程度有关,通过测定岩石的密度可以判断其成岩时的压实程度和含水量。

岩石的磁性和电性与岩石中的矿物组成、含水、含油等有关,通过测定岩石的磁性和电性能够了解矿床的分布和矿体的性质。

岩石物理方程和行为模型的建立是岩石物理研究的重要内容,通过建立岩石的物理方程和行为模型,可以深入研究岩石的物理性质和岩石与地质作用之间的关系。

岩石物理行为模型是通过实验和理论推导得到的,可以用于模拟岩石在地壳中的运动和变形过程。

例如,岩石的变形行为模型可以用于研究地震过程中的地壳应变和应力分布,对于地震学研究和地震灾害预测都具有重要意义。

岩石的物理变化与地质作用之间存在着密切的关系,通过研究岩石的物理变化可以了解地质作用的历史和机制。

岩石的物理变化包括岩石的压实、变形和断裂等,这些变化与地质作用之间存在着紧密的关系。

例如,岩石的压实过程会导致岩石的密度增大,研究岩石的压实过程可以了解地壳的压实历史和岩石的演化过程。

岩石的变形和断裂过程可以用来研究地壳的构造演化和地震活动的机制。

岩石物理相的研究在地球科学研究和矿产资源勘探中具有广泛的应用价值。

在地球科学研究领域,岩石物理相可以用来探测地壳内部的结构和岩石性质,对于研究地球演化和地壳构造演化具有重要意义。

岩石物理相还可以用来研究地震活动的机制和地震预测,对于减轻地震灾害具有重要意义。

岩石物理学ppt

岩石物理学ppt

6.1 差应力作用下岩石的特性 6.1.3 声发射及其他性质
5、用声发射研究岩石的破裂过程 岩石变形直至发生破裂的过程中,岩石内部不断地产生微破裂,微
破裂产生时会有声波辐射出来,这就是声发射(acoustic emission)。 用仪器测定每个声发射发生的地点,就可以知道微破裂产生的地点,并 可以从其辐射图形(radiation pattern)定出其破裂机制(focal mechansim)。记录下岩石变形时微破裂不断产生的位置、频度,这 样用声发射的方法就可以知道岩石破裂微破裂的发展演变,以及和岩石 最终破裂的关系
同样平均应力
下由流体静压力实验得到的体积应变之差。前一
种方法比较简单,在处理实验资料时紧常采用,后一种方法物理意义清楚,
在理论分析时经常采用。
6.1 差应力作用下岩石的特性
6.1.1 岩石的膨胀
图6-2给出了四种岩石的体积膨胀实验绍果
6.1 差应力作用下岩石的特性
6.1.1 岩石的膨胀
(2)岩石膨胀的特点
岩石物理学ppt
《岩石物理学》
第1章 岩石 第2章 岩石孔隙度和渗透率 第3章 岩石中波的传播与衰减 第4章 岩石的弹性 第5章 岩石的变形 第6章 岩石的断裂 第7章 岩石的强度
《岩石物理学》
第6章 岩石的断裂 6.1 差应力作用下岩石的特性 6.2 脆性断裂(brittle fracture) 6.3 岩石断裂力学 6.4 流体对断裂的影响
6.1.1 岩石的膨胀
为了确定岩石的膨胀A, 必须知道在差应力σd作用下岩石的弹性变
形.以这种弹性变形为参考基准,才能得到膨胀A·。通常是把在低差应
力下岩石应力-应变曲线的线性部分外推,得到σd—εv曲线。但当岩石孔

岩石物理专业委员会

岩石物理专业委员会

岩石物理专业委员会岩石物理专业委员会是一个致力于研究岩石物理学的学术组织。

在这个委员会中,我们聚集了一群对岩石物理学充满热情的科学家和研究人员,共同探索和推动这一领域的发展。

岩石物理学作为地球科学的重要分支,对于深入了解地球内部结构和地球动力学过程具有重要意义。

岩石物理学是一门研究岩石性质和岩石内部结构的学科。

通过使用各种物理方法和技术,我们可以非常直观地了解岩石的物理特性,并从中推断出岩石的成因、演化历史和地球动力学过程。

岩石物理学的研究对象包括地壳、地幔和地核中的岩石,这些岩石的物理性质是研究地球内部结构和地球动力学过程的重要线索。

岩石物理学的研究方法主要包括实验室实验和地震勘探。

实验室实验通过对岩石样品进行物理性质测试,如弹性参数、磁性、电性等,来研究岩石的物理特性。

地震勘探则是利用地震波在地下传播的特性,通过观测和分析地震波的传播速度和衰减规律,来推断地下岩石的物理特性和结构。

岩石物理学在地球科学研究和地质勘探中具有广泛的应用。

在石油勘探中,岩石物理学可以通过分析地震资料,确定油气储层的位置、厚度和物性,为油气勘探提供重要的依据。

在地震灾害预测中,岩石物理学可以通过监测地震波传播的速度和衰减规律,评估地震活动的强度和危险程度。

在地质工程中,岩石物理学可以通过分析岩石的物理性质和力学特性,评估岩石的稳定性和承载能力,为工程设计和施工提供参考。

岩石物理学的研究还可以为地球科学的其他领域提供重要支持。

例如,通过研究岩石的物理性质和构造特征,可以推断地球内部的物质组成和地球动力学过程,为地球演化和地球系统科学研究提供重要线索。

此外,岩石物理学的研究还可以为资源勘探和环境保护等方面提供重要支持。

岩石物理专业委员会将致力于推动岩石物理学的发展和应用。

我们将组织和开展学术研讨会、学术交流和合作项目,促进岩石物理学的理论研究和实践应用。

我们还将积极开展科普宣传活动,增强公众对岩石物理学的认识和了解。

我们希望通过我们的努力,能够促进岩石物理学的发展,推动地球科学的进步,为人类的生活和发展做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T -- 地质年龄 H -- 深度

a -- 常数


震 勘 探
当V的单位取 ft/s , H的单位取 ft, T的单位 取年, 则 a = 125.3 此公式用得较多。 注意:其应用条件是----砂、泥岩剖面,深度 不太大。由右图看出:

的 H增大,V增大
岩 T增大,V增大
石 物 理
在2~3km内,V增 长是非线性的
理 的压力作用。



关于压力的几个述语


探 • 流体压力:储集层孔隙中的各种流体总是处
中 的 岩
于一定的压力之下,这种作用于孔隙所含流 体的压力,称为地层压力或流体压力。
• 上覆压力:地下岩层所承受的由上覆岩层拄 的重量所造成的压力。
石 物
• 骨架压力:是上覆压力与孔隙内流体压力之 差。骨架压力又称为“有效压力”。
地 震 勘 探 中 的 岩 石 物 理 性 质


勘 上述方程只适用于流体压力与岩石压力相等的
探 情况下,随着流体压力的减小,上述“时间平
中 均方程”要修改为:

1 C 1-C
岩 石
----- = ----- + ---------
V
Vf
Vm
物 式中C是某个常数,当流体压力=岩石压力的
理 一半,且岩石压力相当于埋深在1900m深处所 性 承受的压力达2700kg/m2时,C值取0.85左右。






研究表明:

A、深度不大时,在压力增加的影响下,

速度变化最快;

B、深度增加时,由压力引起的速度增
岩 长明显地变慢。






震 Phillips 1989年给出了V~P的实验公式:


Vp=5.77-6.94-1.73 C+0.446(0.01P-e-0.167p) Vs=3.52-4.91-1.57 C+0.361(0.01P-e-0.167p)
的 Gregory (1976
岩 )研究结论:

不同孔隙
物 度岩石中P波
理 性
速度随含水饱 和度变化特点 不同。
质 看图1-9


P波速度

随围压的增

大而增大,
中 的
不同围压时, Vp随含水饱 和度变化曲

线有所不同,

围压增大,V

随SW变化率

有减小趋势。

看左图


震 勘
不同岩石中,VP随SW变化特点有差异,这种差异 小于变化的影响。
中 式中:V --- 速度,单位为 m/s , --- 孔隙度,C ---
的 岩
泥质含量,P --- 有效压力, 单位为 Mpa Phillips 指出:
有效压力低时,V与有效压力近似为指数关系

有效压力高时,V与有效压力近似为线性关系
物 理
压力对波速的影响在深为2~3km内最大。 实验结论:
为 1~3%,压力增加50~60MP V增加才5~7%

水混合物Vp随呈线性变化。 B、 Sw=0 – 0.85 Vp=常数

Sw > 0.85 Vp急剧增大

C、孔隙中气水分布的均匀
物 性对Vp有影响。

Vp均 < Vp不均

D、理论计算和实验测量值 只是定性一致。

地 3、固结岩石
震 中流体饱和度
勘 探
对P波速度和 反射系数的影 响。

A. R.
石 物

2(1+)
可知,随着增大,VP 、 VS也增大,但由公式看, 增大,VP 、 VS 应降低,为什么它反而增大?

这是因为增大,杨氏模量E也增大,且其增大的级
性 次比高得多,所以增大,VP 、 VS也增大。

地 震 勘 探 中 的 岩 石 物 理 性 质













从图上可以 看出,同样的未

固结砂岩,水饱

和时的纵波速度

几乎与温度没有 关系。






含重油未固结砂岩纵波速度随温度升高而降低的幅度与 含油饱和度有关,SO增)与图1-11(SO=100%)

图13与图11中

砂岩样品完全一样, 仅图13中砂岩样品


地 八 石灰岩速度的特殊性

石灰岩速度的变化规律有其特殊性:
勘 探
1 S.Chacko(1989)任为:石灰岩中,VP/VS值主要取 决于矿物成分。
中 2 Roy Wilkens(1984)任为:硅质灰岩的VP/VS值取决 的 于钙质含量和孔隙几何形状,硅质灰岩中VP、VS随 岩 密度和钙质含量变化方向不相同:

Gardner公式很有用,在制作人工合成记
石 录时,当工区内变化较大且又无测井时
物 ,则可通过Gardner公式计算。



地 三、孔隙度的影响

一般说来,在其它因素相同的情况下,孔隙
勘 度大时,岩石的波速V低,也就是说,孔隙度
探 和波的传播速度V成反比。

Wyllie 提出了V-关系的经验公式:

为 20%, 压力增加50~60MP V增加才30~407%

地 震
五、孔隙流体对波速的影响 1、孔隙流体性质的影响 流体饱和固体中波的性质决定于固体骨

架和孔隙流体的:密度;粘滞性;压缩系数;

孔隙度;渗透率。看下图页岩、油、气、水、

砂岩的V~H关系曲线









勘 探
2、未固结砂岩中 流体饱和度对P波 速度的影响
勘 ,但幅度较小。










七、横波速度问题 1 影响VS的因素

一般来说,影响VP的因素对VS都有影响:

矿物成分、、、H、P、孔隙流体、T等 看图1-16 图1-17(随变化情况)











勘 2 影响程度

就绝对变化值讲,同一因素对VP影响较大
中 ,对VS影响较小。

六、温度影响
大量实验研究得出:
震 1 完全重油饱和未固结砂岩时温度变化非常敏感,比对压

力变化敏感得多。

图11为马拉开波湖

Venezulan未固结砂
的 岩实验结果,由图

可以看出,在300bar

或多或100bar固定有
物 理
效压力下,随着温 度的升高速度急剧 下降。


地 震
图12为100%盐水饱和时情况,除了样品孔隙 空间里重油变为盐水外,其它样品特征及外部条 件都与图11完全相同。
探 从实验结果看,固结岩石为含气~原油混合物、

含气~水混合物时,V随含液体饱和度变化特征的差 别是不确定的。


固体和非固体岩石中孔隙流体及其饱和度对P波
石 速度影响的一致点:
物 I 饱含流体时比饱含气时VP要高;
理 II VP随SW的变化是非线性的;
性 质
III 充满液体的孔隙空间变成含少量气时,VP要明显 降低。

孔隙空间里重油和

盐水各占50%,其它

试验条件都一样。

从图中可以看

出,纵波速度随温 度升高而降低,但

在同一温度范围内

降低幅度仅为20%,

即介于重油饱和与 盐水饱和情况之间。

含沥青未固结砂岩实验结果,VP随T增大而急剧降低。 看图1-14

含重油或沥青的固结良好的砂岩中,VP也随T增大而下降
探 一、 岩石矿物成分对V的影响

在均匀各向同性完全弹性介质中,V取决于介质的弹性模量

+2 k+4/3 E(1-)

纵波速度 VP = --------- = ------------ = -----------


(1+)(1-2)


E

横波速度 VS = ------ = -------------
深层,V~H几乎呈 线性关系




压力对致密岩石和多孔隙岩石中波速的影响不
勘 一样。
探 1 、致密介质

相同矿物成分的均匀介质速度只受外压力的
的 影响,如有微裂缝致密岩石,随深度加深压力
岩 增大。导致微裂缝在高压下闭合, 使V增大。
石 物
例如:岩盐 2、孔隙介质
孔隙介质受来自围岩的外压力及孔隙内流体
的 岩 石
1
1-
------ = ----- + -------- (时间平均方程)
V
Vf
Vm

式中:V -- 流体饱和岩石中的波速

Vf --孔隙所含流体波速 Vm --岩石骨架速度

--孔隙度
相关文档
最新文档