2011学年第一学期期中考试高三数学试卷参考答案(文科
2011年高考江西省数学试卷-文科(含详细答案)
绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至4页,满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:样本数据1122(,),(,),...,(,)n n x y x y x y 的回归方程:y a bx =+其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =- 锥体体积公式1212,n n x x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+== 13V Sh =其中S 为底面积,h 为高 第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若()2,,x i i y i x y R -=+∈,则复数x yi +=( ) A.2i -+ B.2i + C.12i - D.12i + 答案:B解析: ()iyi x x y iy i xi i y i i x +=+∴==∴+=-+=-22,12,222.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ) A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂ 答案:D 解析:{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U3.若121()log (21)f x x =+,则()f x 的定义域为( )A.1(,0)2-B.1(,)2-+∞ C.1(,0)(0,)2-⋃+∞ D.1(,2)2-答案:C 解析:()()+∞⋃⎪⎭⎫⎝⎛-∈∴≠+>+∴≠+,00,21112,012,012log 21x x x x4.曲线x y e =在点A (0,1)处的切线斜率为( )A.1B.2C.eD.1e答案:A 解析: 1,0,0'===e x e y x5.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( )A.18B.20C.22D.24答案:B 解析:20,100,1111111110=∴+==∴=a d a a a S S6.观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( ) A.01 B.43 C.07 D.49答案:B 解析: ()()()()()()343***2011,200922011168075,24014,3433,492,7=∴=-=====f f f f f x f x7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为o m ,平均值为x ,则( ) A.e o m m x ==B.e o m m x =<C.e o m m x <<D.o e m m x <<答案:D 计算可以得知,中位数为5.5,众数为5所以选DA.y = x-1B.y = x+1C.y = 88+12x D.y = 176 C 线性回归方程bx a y +=,()()()∑∑==---=ni ini iix x yyx x b 121,x b y a -=9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )答案:D 左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。
海淀区2011年高三年级第一学期文科数学期末练习及答案
海淀区2011年高三年级第一学期文科数学期末练习第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.sin 240的值为A .12-B . 12C .32-D .322. 若等差数列{}n a 的前n 项和为n S ,且236a a +=,则4S 的值为 A. 12 B.11 C.10 D. 93. 设,αβ为两个不同的平面,直线l α⊂,则“l β⊥”是“αβ⊥”成立的 A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件4. 某部门计划对某路段进行限速,为调查限速60 km/h 是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按[40,50),[50,60),[60,70),[70,80]分组,绘制成如图所示的频率分布直方图.则这300辆汽车中车速低于限速的汽车有A.75辆B.120辆C.180辆D.270辆 5.点(2,)P t 在不等式组4030x y x y --≤⎧⎨+-≤⎩表示的平面区域内,则点(2,)P t 到直线34100x y ++=距离的最大值为 A.2 B. 4 C. 6 D.8 6. 一空间几何体的三视图如图所示,则该几何体的体 积为A .12B .6C . 4D .27. 已知函数1()sin ,[0,π]3f x x x x =-∈,01cos 3x =(0[0,π]x ∈),那么下面结论正确的是A .()f x 在0[0,]x 上是减函数 B. ()f x 在0[,π]x 上是减函数 C. [0,π]x ∃∈, 0()()f x f x > D. [0,π]x ∀∈, 0()()f x f x ≥车速O40506070800.0100.0350.030a频率组距正视图左视图俯视图222112218. 已知椭圆E :1422=+y m x ,对于任意实数k ,下列直线被椭圆E 所截弦长与l :1+=kx y 被椭圆E 所截得的弦长不可能...相等的是 A .0kx y k ++= B .01=--y kx C .0kx y k +-= D .20kx y +-=二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 若直线l 经过点(1,2)且与直线210x y +-=平行,则直线l 的方程为__________.10.某程序的框图如图所示,执行该程序,若输入4, 则输出的S 为 .11.椭圆2212516x y +=的右焦点F 的坐标为 .则顶点在原点的抛物线C 的焦点也为F ,则其标准方程为 .12.在一个边长为1000米的正方形区域的每个顶点处设有一个监测站,若向此区域内随机投放一个爆破点,则爆破点距离监测站200米内都可以被检测到.那么随机投入一个爆破点被监测到的概率为_______.13已知向量(1,),(1,)t t ==-a b .若-2a b 与b 垂直, 则||___=a .14.在平面直角坐标系xOy 中,O 为坐标原点.定义()11,P x y 、()22,Q x y 两点之间的“直角距离”为1212(,)d P Q x x y y =-+-为. 若点()1,3A -,则(,)d A O = ; 已知()1,0B ,点M 为直线20x y -+=上动点,则(,)d B M 的最小值为 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)开始0;0S n ==n i<21n S S =++是否1n n =+S输出结束i 输入设函数13()sin cos 22f x x x =+,R x ∈. (I )求函数)(x f 的周期和值域;(II )记ABC ∆的内角C B A ,,的对边分别为c b a ,,,若3(),2f A = 且32a b =, 求角C 的值.16. (本小题满分13分)某学校三个社团的人员分布如下表(每名同学只参加一个社团)围棋社戏剧社书法社学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果围棋社被抽出12人. (I) 求这三个社团共有多少人?(II) 书法社从3名高中和2名初中成员中,随机选出2人参加书法展示,求这2人中初、高中学生都有的概率.17. (本小题满分13分)如图,棱柱ABCD —1111A B C D 的底面ABCD 为菱形 ,AC BD O ,侧棱1AA ⊥BD,点F高中 45 30 a初中151020为1DC 的中点.(I ) 证明://OF 平面11BCC B ; (II )证明:平面1DBC ⊥平面11ACC A .18. (本小题满分13分)已知函数322()1,a f x x x=++其中0a >.(I )若曲线()y f x =在(1,(1))f 处的切线与直线1y =平行,求a 的值; (II )求函数()f x 在区间[1,2]上的最小值. 19. (本小题满分14分)已知圆22:4O x y +=,点P 为直线:4l x =上的动点.(I)若从P 到圆O 的切线长为23,求P 点的坐标以及两条切线所夹劣弧长;(II )若点(2,0),(2,0)A B -,直线,PA PB 与圆O 的另一个交点分别为,M N ,求证:直线MN 经过定点(1,0).20. (本小题满分14分)已知集合{}1,2,3,,2A n = *()n N ∈.对于A 的一个子集S ,若存在不大于n 的正整数m ,使得对于S 中的任意一对元素12,s s ,都有12s s m -≠,则称S 具有性质P.(Ⅰ)当10n =时,试判断集合{}9B x A x =∈>和{}*31,C x A x k k N =∈=-∈是否具有性质P ?并说明理由.(II)若集合S 具有性质P ,试判断集合 {}(21)T n x x S =+-∈)是否一定具有性质P ?并说明理由.答案及评分参考第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案CAACBDBD第II 卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分)9.240x y +-= 10. 19 11.(3,0) 212y x = 12.25π13. 2 14. 4 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I ) x x x f cos 23sin 21)(+=)3sin(π+=x , ............................... 3分)(x f ∴的周期为π2 (或答:0,,2≠∈k Z k k π). ................................4分 因为x R ∈,所以3x R π+∈,所以)(x f 值域为]1,1[- . ...............................5分(II )由(I )可知,)3sin()(π+=A A f , ...............................6分23)3s i n (=+∴πA, ...............................7分 π<<A 0 ,3433πππ<+<∴A , ..................................8分 2,33A ππ∴+=得到3A π= . ...............................9分 ,23b a =且B b A a sin sin = , ....................................10分 32s i n 32b b B ∴=, ∴1sin =B , ....................................11分 π<<B 0 , 2π=∴B . ....................................12分6ππ=--=∴B A C . ....................................13分16. (共13分)解:(I )围棋社共有60人, ...................................1分 由150301260=⨯可知三个社团一共有150人. ...................................3分 (II )设初中的两名同学为21,a a ,高中的3名同学为321,,b b b , ...................................5分 随机选出2人参加书法展示所有可能的结果:1211121321{,},{,},{,},{,},{,},a a a b a b a b a b 222312132{,}, {,},{,},{,},{,}a b a bb b b b b b ,共10个基本事件. ..................................8分 设事件A 表示“书法展示的同学中初、高中学生都有”, ..................................9分 则事件A 共有111213212223{,},{,},{,},{,},{,},{,}a b a b a b a b a b a b 6个基本事件. ...................................11分 ∴53106)(==A P . 故参加书法展示的2人中初、高中学生都有的概率为35. ................................13分 17. (共13分)解:(I ) 四边形ABCD 为菱形且AC BD O = ,O ∴是BD 的中点 . ...................................2分 又点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , ...................................4分⊄OF 平面11BCC B ,⊂1BC 平面11BCC B ,∴//OF 平面11BCC B . ...................................6分 (II ) 四边形ABCD 为菱形,AC BD ⊥∴, ...................................8分 又⊥BD 1AA ,1,AA AC A = 且1,AA AC ⊂平面11ACC A ,.................................10分 ⊥∴BD 平面11ACC A , ................................11分 ⊂BD 平面1DBC ,∴平面1DBC ⊥平面11ACC A . ................................13分 18. (共13分)解:3332222()()2a x a f x x x x -'=-=,0x ≠. .........................................2分(I )由题意可得3(1)2(1)0f a '=-=,解得1a =, ........................................3分此时(1)4f =,在点(1,(1))f 处的切线为4y =,与直线1y =平行.故所求a 值为1. ........................................4分 (II )由()0f x '=可得x a =,0a >, ........................................ 5分 ①当01a <≤时,()0f x '>在(1,2]上恒成立 ,所以()y f x =在[1,2]上递增, .....................................6分 所以()f x 在[1,2]上的最小值为3(1)22f a =+ . ........................................7分 ②当12a <<时,x(1,)a a(,2)a()f x ' - 0 + ()f x极小由上表可得()y f x =在[1,2]上的最小值为2()31f a a =+ . ......................................11分 ③当2a ≥时,()0f x '<在[1,2)上恒成立,所以()y f x =在[1,2]上递减 . ......................................12分....................................10分所以()f x 在[1,2]上的最小值为3(2)5f a =+ . .....................................13分 综上讨论,可知:当01a <≤时, ()y f x =在[1,2]上的最小值为3(1)22f a =+; 当12a <<时,()y f x =在[1,2]上的最小值为2()31f a a =+; 当2a ≥时,()y f x =在[1,2]上的最小值为3(2)5f a =+. 19. (共14分)解:根据题意,设(4,)P t . (I)设两切点为,C D ,则,OC PC OD PD ⊥⊥,由题意可知222||||||,PO OC PC =+即222242(23)t +=+ , ............................................2分 解得0t =,所以点P 坐标为(4,0). ...........................................3分 在Rt POC ∆中,易得60POC ∠= ,所以120DOC ∠= . ............................................4分 所以两切线所夹劣弧长为24233ππ⨯=. ...........................................5分 (II )设1122(,),(,)M x y N x y ,(1,0)Q , 依题意,直线PA 经过点(2,0),(4,)A P t -,可以设:(2)6tAP y x =+, ............................................6分和圆224x y +=联立,得到22(2)64t y x x y ⎧=+⎪⎨⎪+=⎩ , 代入消元得到,2222(36)441440t x t x t +++-= , ......................................7分 因为直线AP 经过点11(2,0),(,)A M x y -,所以12,x -是方程的两个根,所以有2124144236t x t --=+, 21272236t x t -=+ , ..................................... 8分代入直线方程(2)6t y x =+得,212272224(2)63636t t ty t t -=+=++. ..................................9分 同理,设:(2)2tBP y x =-,联立方程有 22(2)24t y x x y ⎧=-⎪⎨⎪+=⎩, 代入消元得到2222(4)44160t x t x t +-+-=,因为直线BP 经过点22(2,0),(,)B N x y ,所以22,x 是方程的两个根,22241624t x t -=+, 222284t x t -=+ , 代入(2)2t y x =-得到2222288(2)244t t t y t t --=-=++ . .....................11分 若11x =,则212t =,此时2222814t x t -==+ 显然,,M Q N 三点在直线1x =上,即直线MN 经过定点Q (1,0)............................12分 若11x ≠,则212t ≠,21x ≠, 所以有212212240836722112136MQ t y t t k t x t t -+===----+, 22222280842811214NQ t y t t k t x t t ---+===----+................13分 所以MQ NQ k k =, 所以,,M N Q 三点共线,即直线MN 经过定点Q (1,0).综上所述,直线MN 经过定点Q (1,0). .......................................14分20. (共14分)解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A = ,{}{}910,11,12,,19,20B x A x =∈>= 不具有性质P . ...................................1分 因为对任意不大于10的正整数m ,都可以找到集合B 中两个元素110b =与210b m =+, 使得12b b m -=成立 . ...................................3分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ....................................4分因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠ . ............................................6分 (Ⅱ)若集合S 具有性质P ,那么集合{}(21)T n x x S =+-∈一定具有性质P . ..........7分 首先因为{}(21)T n x x S =+-∈,任取0(21),t n x T =+-∈ 其中0x S ∈,因为S A ⊆,所以0{1,2,3,...,2}x n ∈,从而01(21)2n x n ≤+-≤,即,t A ∈所以T A ⊆ ...........................8分 由S 具有性质P ,可知存在不大于n 的正整数m ,使得对S 中的任意一对元素12,s s ,都有 12s s m -≠, ..................................9分 对上述取定的不大于n 的正整数m , 从集合{}(21)T n x x S =+-∈中任取元素112221,21t n x t n x =+-=+-, 其中12,x x S ∈, 都有1212t t x x -=- ; 因为12,x x S ∈,所以有12x x m -≠,即 12t t m -≠ 所以集合{}(21)T n x x S =+-∈具有性质P . .............................14分。
东城区2011高三数学一模文科及答案
东城区2010-2011学年度综合练习(一)高三数学 (文科)2011.4一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知复数z 满足(1i)2z -=,则z 等于(A )1i + (B )1i - (C )1i -+ (D )1i -- (2)命题“0x ∃∈R ,20log 0x ≤”的否定为(A )0x ∃∈R ,20log 0x > (B )0x ∃∈R ,20log 0x ≥ (C )x ∀∈R ,2log 0x ≥ (D )x ∀∈R ,2log 0x >(3)已知函数()f x 是定义在R 上的偶函数,且当0x >时,()ln(1)f x x =+,则函数()f x 的大致图像为(A )(B ) (C ) (D )(4)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面平行; ②若两个平面都垂直于同一条直线,则这两个平面平行;③若两个平面互相垂直,则在其中一个平面内的直线垂直另外一个平面;其中为真命题的是(A )①和② (B )②和③ (C )③和④ (D )②和④ (5)已知函数()sin y x =ω+ϕ(0,02πω><ϕ≤的部分图象如图所示,则点P (),ωϕ的坐标为 (A )(2,3π(B )(2,6π(C )1(,23π (D )1(,26π(6)若右边的程序框图输出的S 是126,则条件①可为(A )5n ≤ (B )6n ≤ (C )7n ≤ (D )8n ≤C(7)已知函数131()()2xf x x =-,那么在下列区间中含有函数()f x 零点的为(A )1(0,)3(B )11(,)32(C )1(,1)2(D )(1,2)(8)空间点到平面的距离如下定义:过空间一点作平面的垂线,该点和垂足之间的距离即为该点到平面的距离.平面α,β,γ两两互相垂直,点A ∈α,点A 到β,γ的距离都是3,点P 是α上的动点,满足P 到β的距离是到P 到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值为 (A )3 (B )323- (C )36-(D )33-二、填空题:本大题共6小题,每小题5分,共30分。
北京市丰台区2011-2012学年度高三年级第一学期期末考试(数学文科)
北京丰台区2011—2012学年度高三第一学期期末练习数学试题(文)注意事项: 1.答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码。
2.本次考试所有答题均在答题卡上完成。
选择题必须使用2B 铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。
非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚。
3.请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效,在试题、草稿纸上答题无效。
4.请保持答题卡卡面清洁,不要装订、不要折叠、不要破损。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合A ={x ∣x <4},B ={x ∣x 2<4},则( )A .A ⊆BB .B ⊆AC .A ⊆R B ðD .B ⊆R A ð2.在复平面内,复数1+ii-对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知命题p :x R ∃∈,1x x>,命题q :x R ∀∈,20x >,则 ( ) A .命题p q ∨是假命题 B .命题p q ∧是真命题C .命题()p q ∨⌝是假命题D .命题()p q ∧⌝是真命题4.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是0(1)(1)nn P P k k =+>-,其中P n 为预测人口数,P 0为初期人口数,k 为预测年内增长率,n 为预测期间隔年数.如果在某一时期有-1<k <0,那么这期间人口数 ( )1A俯视图侧视图正视图A.呈上升趋势B.呈下降趋势C.摆动变化D.不变5.若某空间几何体的三视图如图所示,则该几何体的体积是()A.13B.23C.1 D.26.执行如右图所示的程序框图,输出的S值为()A.650 B.1250C.1352 D.50007.若函数21()log(f x x ax=+-在区间(1,2)内有零点,则实数a的取值范围是()A.25(log,1)2--B.(1,)+∞C.25(0,log)2D.25(1,log28.如图,P是正方体ABCD—A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()(A)(B)(C)(D)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.过点(-1,3)且与直线x-2y+3=0平行的直线方程为.10.已知函数2log ,(0),()2,(0).x x x f x x >⎧=⎨≤⎩ 若1()2f a =,则a = .11.某个容量为100的样本的频率分布直方图如图所示,则数据在区间[8,10)上的频数是 .12.若向量a ,b满足a = 2b = ,()a b a -⊥,则向量a 与b 的夹角等于__ _.13.设S n 是等比数列{a n }的前n 项和,若S 1,2S 2,3S 3成等差数列,则公比q 等于 .14.函数()f x 的导函数为'()f x ,若对于定义域内任意1x ,2x 12()x x ≠,有121212()()'()2f x f x x x f x x -+=-恒成立,则称()f x 为恒均变函数.给出下列函数:①()=23f x x +;②2()23f x x x =-+;③1()=f x x;④()=xf x e ;⑤()=ln f x x .其中为恒均变函数的序号是 .(写出所有..满足条件的函数序号) 三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数2()2cos2xf x x =. (Ⅰ)求函数()f x 的最小正周期和值域; (Ⅱ)若α为第二象限角,且1()33f πα-=,求cos 21tan αα-的值.16.(本小题共14分) 如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥底面ABC ,AC =BC ,M ,N 分别是CC 1,AB 的中点. (Ⅰ)求证:CN ⊥AB 1;(Ⅱ)求证:CN //平面AB 1M .N MC 1B 1A 1CBA17.(本小题共13分) 为了解某地区中学生的身体发育状况,拟采用分层抽样的方法从甲、乙、丙三所中学抽取6个教学班进行调查.已知甲、乙、丙三所中学分别有12,6,18个教学班. (Ⅰ)求从甲、乙、丙三所中学中分别抽取的教学班的个数;(Ⅱ)若从抽取的6个教学班中随机抽取2个进行调查结果的对比,求这2个教学班中至少有1个来自甲学校的概率.18.(本小题共13分)在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线40x -=相切.(Ⅰ)求圆O 的方程;(Ⅱ)直线l :3y kx =+与圆O 交于A ,B 两点,在圆O 上是否存在一点M ,使得四边形OAMB 为菱形,若存在,求出此时直线l 的斜率;若不存在,说明理由. 19.(本小题共14分)已知函数x xbax x f ln 2)(++=. (Ⅰ)若函数)(x f 在1=x ,21=x 处取得极值,求a ,b 的值;(Ⅱ)若(1)2f '=,函数)(x f 在),0(+∞上是单调函数,求a 的取值范围.20.(本小题共13分)函数()f x 的定义域为R ,数列{}n a 满足1=()n n a f a -(*n N ∈且2n ≥).(Ⅰ)若数列{}n a 是等差数列,12a a ≠,且11()()()n n n n f a f a k a a ---=-(k 为非零常数, *n N ∈且2n ≥),求k 的值;(Ⅱ)若()(1)f x kx k =>,12a =,*ln ()n n b a n N =∈,数列{}n b 的前n 项和为n S ,对于给定的正整数m ,如果(1)m n mnS S +的值与n 无关,求k 的值.参考答案一、选择题共8小题,每小题5分,共40分。
丰台区高三数学第一学期期末试卷(文科)2011.1
正视图俯视图丰台区高三数学第一学期期末试卷(文科)2011.1一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.复数21i i+等于A .1i --B .1i -+C .1i -D .1i +2.某单位有老年人27人,中年人54人,青年人81人,为了调查他们身体状况的某项指标,按照老、中、青三个年龄层次进行分层抽样.已知在青年人中抽了18人,那么该单位抽取的样本容量为 A .27B .36C .54D .813.若一个螺栓的底面是正六边形,它的正视图和俯视图如图所示,则它的体积是A.32225+πB.3225πC.3225+π D.12825π4.已知(0)4πα∈,,3log sin a α=,sin 2b α=,cos 2c α=,那么a ,b ,c 的大小关系是A .a > c > bB .c > a > bC .b > c > aD . c > b >a5.已知等比数列{}n a 的公比为12,并且a 1+a 3 + a 5 +…+a 99=60,那么a 1+a 2 +a 3+…+a 99 +a 100的值是A .30B .90C .100D .1206.已知命题p :1x ∃>,210x ->,那么p ⌝是A .1x ∀>,210x -> B .1x ∀>,210x -≤ C .1x ∃>,210x -≤D .1x ∃≤,210x -≤7.对任意非零实数a ,b ,若a b ⊗的运算原理如右图 程序框图所示,则(32)4⊗⊗的值是A .0B .12C .32D .98.已知函数31()()log 5x f x x =-,若0x 是函数()y f x =的零点,且100x x <<,则1()f xA .恒为正值B .等于0C .恒为负值D .不大于0二、填空题:本大题共6小题,每小题5分,共30分9.在△ABC 中,如果5A B =,3A C =,7B C =,那么A ∠= . 10.已知向量(43)a = ,,(12)b =-,,那么a 与b 夹角的余弦值为 .11.某年级举行校园歌曲演唱比赛,七位评委为学生甲打出的演唱分数茎叶图如右图所示,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为 , .12.过点(34)-,且与圆22(1)(1)25x y -+-=相切的直线方程为 .13.已知x ,y 满足约束条件1260y y x x y ≥⎧⎪≤⎨⎪+-≤⎩,,, 那么3z x y =+的最小值为 .14.若X 是一个集合,τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X 上的一个拓扑.已知集合X ={,,}a b c ,对于下面给出的四个集合τ: ①{{}{}{}}a c a b c τ=∅,,,,,; ②{{}{}{}{}}b c b c a b c τ=∅,,,,,,,; ③{{}{}{}}a a b a c τ=∅,,,,,;④{{}{}{}{}}a c b c c a b c τ=∅,,,,,,,,. 其中是集合X 上的拓扑的集合τ的序号是 .三、解答题:本大题共6小题,共80分 15.(本小题共13分)已知函数2()2sin cos 2cos ()f x x x x x R =-∈. (Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)当02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的取值范围.直三棱柱ABC -A 1B 1C 1中,AB =5,AC =4,BC =3,AA 1=4,D 是AB 的中点. (Ⅰ)求证:AC ⊥B 1C ; (Ⅱ)求证:AC 1∥平面B 1CD ;17.(本小题满分14分)已知函数()log a f x x =(0a >且1a ≠).(Ⅰ)若函数()f x 在[23],上的最大值与最小值的和为2,求a 的值;(Ⅱ)将函数()f x 图象上所有的点向左平移2个单位长度,再向下平移1个单位长度,所得函数图象不经过第二象限,求a 的取值范围.18.(本小题14分)已知O 为平面直角坐标系的原点,过点(20)M -,的直线l 与圆221x y +=交于P ,Q 两点.(Ⅰ)若PQ =l 的方程;(Ⅱ)若12M P M Q =,求直线l 与圆的交点坐标.AA 1BC DB 1C 1已知函数2()(1)x f x e x ax =++.(Ⅰ)若曲线()y f x =在点(2(2))f ,处的切线与x 轴平行,求a 的值; (Ⅱ)求函数()f x 的极值.20.(本小题共13分)已知函数2()(0)f x a x b x a =+≠的导函数()422f x x '=-+,数列}{n a 的前n 项和为n S ,点()n n P n S ,(*n ∈N )均在函数)(x f y =的图象上.(Ⅰ)求数列}{n a 的通项公式n a 及前n 项和n S ; (Ⅱ)存在*k ∈N ,使得k nS S S n <+++ 2121对任意*n ∈N 恒成立,求出k 的最小值;(Ⅲ)是否存在*m ∈N ,使得12m m m a a a ++⋅为数列{}n a 中的项?若存在,求出m 的值;若不存在,请说明理由.(考生务必将答案答在答题卡上,在试卷上作答无效)丰台区高三数学第一学期期末文科参考答案及评分标准2011.1一、选择题:本大题共8小题,每小题5分,共40分。
第一学期期末统一考试高三数学文科试卷
第一学期期末统一考试高三数学文科试卷一、选择题:本题共10小题,每小题5分,共50分。
(1)设集合}12|{<<-=x x A }0|{<-=a x x B ,若B A ⊂,则a 的取值范围是( )(A )]2,(--∞ (B )),1[+∞ (C )]1,(-∞ (D )),2[+∞-(2)已知二面角βα--l ,直线α⊂a ,β⊂b ,且a 与l 不垂直,b 与l 不垂直,那么( )(A )a 与b 可能垂直,但不可能平行 (B )a 与b 可能垂直,也可能平行(C )a 与b 不可能垂直,但可能平行 (D )a 与b 不可能垂直,也不可能平行(3)函数k x A x f ++=)sin()(ϕω在一个周期内的图象如图所示,函数)(x f 解析式为( )(A )1)1221sin(4)(-+=πx x f (B )1)122sin(2)(+-=πx x f(C )1)621sin(4)(-+=πx x f (D )1)62sin(2)(+-=πx x f(4)若椭圆)0(122>>=+b a b y a x ,双曲线)0,0(122>>=-n m ny m x 有相同的焦点1F ,2F ,P 是两曲线的交点,则||||21PF PF ⋅的值是( )(A )m a - (B )n b - (C )a-m (D )b-n(5)如图,O 为直二面角βα--MN 的棱MN 上的一点,射线OE ,OF 分别在βα,内,且∠EON=∠FON=45°,则∠EOF 的大小为( )(A )30° (B )45° (C )60° (D )90°(6)在等差数列}{n a 中, 2≥n ,公差d<0,前n 项和是n S ,则有( )(A )1na S na n n << (B )n n na S na <<1(C )1na S n ≥ (D )n n na S ≤(7)8种不同的商品,选出5种放入5个不同的柜台中,如果甲、乙两种商品不能放入第5号柜台中,那么不同的放法共有( )(A )3360种 (B )5040种 (C )5880种 (D )2160种(8)下列四个命题: ①满足zz 1=的复数只有i ±±,1; ②若a ,b 是两个相等的实数,则i b a b a )()(++-是纯虚数;③复R z ∈的充要条件是z z =;④复平面内x 轴即实轴,y 轴即虚轴。
黑龙江大庆实验中学2011届高三上学期期中考试(数学文)
大庆实验中学2010-2011学年度上学期期中考试高三数学试题(文科)出题人:侯典峰说明:(1)试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟;(2)答第Ⅰ卷前,考生务必将自己的姓名、班级、考号填写在答题卡相应的位置.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{|51}A x x =-≤<,{|2}B x x =≤,则A B 等于(A){|12}x x ≤≤ (B){52}x -≤≤ (C){|1}x x < (D){|2}x x ≤ (2)已知等差数列79412{},16,1,n a a a a a +==中则的值是(A)15(B)30(C)31(D)64(3)命题x x q x p >>2:,1:,p 是q 的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件(4)若2313log 3,log 2,log 2,,,a b c a b c === 则的大小关系是(A)a b c << (B)b c a << (C) c a b << (D) c b a <<(5)为了得到函数sin(2)3y x π=-的图象,只需把函数sin(2)6y x π=+的图象(A)向左平移4π个单位 (B)向左平移2π个单位 (C)向右平移4π个单位 (D)向右平移2π个单位(6)函数f(x)=log 2x +2x -1的零点必落在区间( )(A) (18,14) (B) (14,12) (C) (12,1) (D) (1,2)(7)若2,a b == 且()a b a -⊥,则a 与b 的夹角为(A)4π (B)3π(C)32π (D)65π(8) 函数sin()(0,||,)4y A x x R πωϕωϕ=+><∈的部分图象如图所示,则函数为(A) 4sin()84y x ππ=-(B) 4sin()84y x ππ=-+(C)4sin()84y x ππ=--(D)4sin()84y x ππ=+(9) 设n S 为等比数列{}n a 的前n 项和,已知342332,32,S a S a q =-=-=则公比(A)3(B)4(C)5(D)6(10)设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为 (A)2716-(B)1516(C)89(D)18(11)已知偶函数()x f 在区间[)+∞,0上单调递增,则满足()⎪⎭⎫ ⎝⎛<-3112f x f 的x 的取值范围是(A)⎪⎭⎫ ⎝⎛32,31 (B) ⎪⎭⎫⎢⎣⎡32,31 (C)⎪⎭⎫⎝⎛32,21 (D)⎪⎭⎫⎢⎣⎡32,21 (12)函数:①sin y x x =⋅②cos y x x =⋅③|cos |y x x =⋅④2x y x =⋅的图象(部)如下,但顺序被打乱,则按照从左到右将图像对应的函数序号安排正确的一组是(A)④①②③ (B)①④③② (C)①④②③(D)③④②①第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(13)设函数()()5142++-=x a x x f 在[)+∞-,1上是增函数,在(]1,-∞-上是减函数,则()=-1f .(14)已知向量),(),1,1(),4,2(λ+⊥==若则实数λ= (15)在等差数列{}n a 中,已知113a =,254a a +=,33m a =,则m 为_____.(16)设函数()cos 213f x x π⎛⎫=++ ⎪⎝⎭,有下列结论: ①函数()f x 的最小正周期是π; ②直线3x π=是函数()f x 图象的一条对称轴;③点5(,0)12π-是函数()f x 图象的一个对称中心;④将函数()f x 的图象向右平移6π个单位后所得的函数是偶函数. 其中所有正确结论的序号是_____.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)等比数列{}n a 的前n 项和为n S ,已知1S ,3S ,2S 成等差数列(Ⅰ)求{}n a 的公比q ;(Ⅱ)已知133a a -=,求n S .(18) (本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,3C π=,5b =,ABC ∆的面积为(Ⅰ)求,a c 的值; (Ⅱ)求sin 6A π⎛⎫+ ⎪⎝⎭的值.(19)(本小题满分12分)设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,(Ⅰ)若5S =5,求6S 及a 1; (Ⅱ)求d 的取值范围.(20)(本小题满分12分)已知:2()sin 21().f x x x x R =+∈求: (Ⅰ)()f x 的最小正周期;(Ⅱ)()f x 的单调增区间;(Ⅲ)若[,]44x ππ∈-时,求()f x 的值域.(21) (本小题满分12分)已知函数),()1(31)(223R b a b x a ax x x f ∈+-+-=.(Ⅰ)若1=x 为)(x f 的极值点,求a 的值;(Ⅱ)若)(x f y =的图象在点()1(,1f )处的切线方程为03=-+y x ,求)(x f 在区间]4,2[-上的最大值;(Ⅲ)当0≠a 时,若)(x f 在区间)1,1(-上不单调,求a 的取值范围.(22) (本小题满分12分)已知函数2()(33)x f x x x e =-+⋅定义域为[]t ,2-(2t >-),设n t f m f ==-)(,)2(.(Ⅰ)试确定t 的取值范围,使得函数)(x f 在[]t ,2-上为单调函数; (Ⅱ)求证:n m >;(Ⅲ)求证:对于任意的2->t ,总存在),2(0t x -∈,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.大庆实验中学2010-2011学年度上学期期中考试 高三数学试题(文科)D A A D C C A B B B A C 1 -3 50 ①②④ (17)(Ⅰ)依题意有)(2)(2111111q a q a a q a a a ++=++由于 01≠a ,故022=+q q 又0≠q ,从而21-=q ……………………5分(Ⅱ)由已知可得321211=--)(a a 故41=a 从而141281113212n nn S ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==--⎢⎥ ⎪⎛⎫⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭……10分(18)解:(Ⅰ)由已知3C π=,5b =,1sin 2ABC S ab C ∆=知15sin 23a π=⋅⋅得8a =由余弦定理可得2642580cos 493c π=+-=,从而可知7c = ……………………6分(Ⅱ)由(Ⅰ)知4925641cos 707A +-==,由于A是三角形的内角,故sin A ==所以1113sin sin cos cos sin 6667214A A A πππ⎛⎫+=+=+⨯= ⎪⎝⎭ ………………12分(19)解:(Ⅰ)由题意知31556-=-=S S 8566-=-=∴S S a ⎩⎨⎧-=+=+∴85510511d a d a 解得:71=a 所以7,316=-=a S ……………………6分(Ⅱ)01565=+S S 即0110922121=+++d da a 故8)94(221-=+d d a (或0)110(88122≥+-=∆d d )所以82≥d 所以2222≥-≤d d 或 即d 的取值范围是2222≥-≤d d 或 ……………………12分 20.解:2()sin 21)1f x x x =-+=sin 212sin(2)13x x x π++=++……………………4分(Ⅰ)函数()f x 的最小正周期为22T ππ==……………………6分 (Ⅱ)由222232k x k πππππ-≤+≤+,得522266k x k ππππ-≤≤+ 5,()1212k x k k Z ππππ∴-≤≤+∈∴函数()f x 的单调增区间为5,,().1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦………9分 (Ⅲ)因为5,,2,,44366x x πππππ⎡⎤⎡⎤∈-∴+∈-⎢⎥⎢⎥⎣⎦⎣⎦1sin(2),132x π⎡⎤∴+∈-⎢⎥⎣⎦[]()0,3.f x ∴∈………12分 21解:(Ⅰ))1(2)(22-+-='a ax x x f ,,02,0)1(,)(12=-='∴=a a f x f x 即的极值点为.20或=∴a ,经检验. 2 0 或 = a 是所求的值……3分 (Ⅱ)由题意可知()12f =,()'11f =-,解之得81,3a b ==,即()321833f x x x =-+,∴x x x f 2)('2-=,令()'0fx =,得0=x 和2=x当x 变化时,()'fx ,()f x 的变化情况如下表所以当4x =时,函数()f x 有最大值为8 …………9分(Ⅲ)因为函数)(x f 在区间)1,1(-不单调,所以函数)(x f '在)1,1(-上存在零点. 又()()()'11f x x a x a =---+⎡⎤⎡⎤⎣⎦⎣⎦,0)('=x f 的两根为1,1+-a a ,且在区间)1,1(-上不可能有2个零点.所以0)1()1(<'-'f f 即:0)2)(2(2<-+a a a 解之得20a -<<或02a <<即所求a 的取值范围是()()2,00,2- . ……12分(22)(Ⅰ)解:因为2()(33)(23)(1)x x x f x x x e x e x x e '=-+⋅+-⋅=-⋅由()0f x '>得10x x ><或;由()0f x '<得01x <<,所以()f x 在(,0),(1,)-∞+∞上递增,在(0,1)上递减,故若)(x f 在[]t ,2-上为单调函数,则20t -<≤…………………3分(Ⅱ)证:因为()f x 在(,0),(1,)-∞+∞上递增,在(0,1)上递减,所以()f x 在1x =处取得极小值e , 又213(2)f e e-=<,所以()f x 在[)2,-+∞上的最小值为(2)f -从而当2t >-时,(2)()f f t -<,即m n <………………6分)(Ⅲ)证:因为0'2000()x f x x x e=-,所以0'20()2(1)3x f x t e =-即为22002(1)3x x t -=-, 令222()(1)3g x x x t =---,从而问题转化为证明方程222()(1)3g x x x t =---=0在(2,)t -上有解,并讨论解的个数因为222(2)6(1)(2)(4)33g t t t -=--=-+-,221()(1)(1)(2)(1)33g t t t t t t =---=+- (7)分)所以 ①当421t t >-<<或时,(2)()0g g t -⋅<,所以()0g x =在(2,)t -上有解,且只有一解 ……(8分) ②当14t <<时,(2)0()0g g t ->>且,但由于22(0)(1)03g t =--<, 所以()0g x =在(2,)t -上有解,且有两解 ………………(9分)③当1t =时,2()001g x x x x x =-=⇒==或,所以()0g x =在(2,)t -上有且只有一解; (10)当4t =时,2()6023g x x x x x =--=⇒=-=或, 所以()0g x =在(2,4)-上也有且只有一解…(11分)综上所述, 对于任意的2->t ,总存在),2(0t x -∈,满足0'20()2(1)3x f x t e =-, 且当421t t ≥-<≤或时,有唯一的0x 适合题意;当14t <<时,有两个0x 适合题意…(12分)。
高三数学试题(文科)参考答案
2010年高考考前仿真模拟高三数学试题(文科)参考答案 2010.5一、选择题:本大题共12小题,每小题5分,共60分. AADCB DABDC AB二、填空题:本大题共4个小题,每小题4分,共16分.13. 8 14.A=10S 15. 2 16. ①②④三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)(1cos 2)()622x f x x +=-)36x π=++, ………………3分故f (x )的最小正周期π=T . …………………………………………………………4分由ππππk x k 2622≤+≤+-得f (x )的单调递增区间为()Z k k k ∈--]12,127[ππππ.……6分 (II)由()3f α=-)336πα++=-,故cos(2)16πα+=-. ……………………………………………………8分又由02πα<<得2666πππαπ<+<+,因此26παπ+=,∴512πα=. …………………………………………………………10分则15tan tantan(3)212643πππα+==+==+. ………………………………12分18.(本小题满分12分)解:(Ⅰ)在直角梯形ABCD 中,AC=22,取AB 中点E,连接CE,则四边形AECD为正方形, ………2分∴AE=CE=2,又BE=221=AB ,则ABC ∆为等腰直角三角形,∴BC AC ⊥, …………………………4分 又 ⊥PA 平面ABCD,⊂BC 平面ABCD , ∴BC PA ⊥,由A PA AC =⋂得⊥BC 平面PAC, ⊂PC 平面PAC,所以PC BC ⊥. ………6分(Ⅱ)取P A 的中点G ,连结FG 、DG , 则1////2G F A B D C ,∴//G F D C . ……8分∴四边形DCFG 为平行四边形,DG//CF. ……10分 又D G ⊂平面PAD ,C F ⊄平面PAD ,∴CF//平面PAD. ………………………………12分19.(本小题满分12分) 解:(Ⅰ)由表知,4500.08t ==, ………………………………2分10.040.380.320.080.18y =----=,500.042x =⨯=,500.3819z =⨯=. ………………………………6分 (Ⅱ)由题知,第一组有2名同学,设为,a b ,第五组有4名同学,设为,,,A B C D . 则,m n 可能的结果为:(,),(,),(,),(,),(,),a b a A a B a C a D (,),(,),(,),(,),b A b B b C b D(,),(,),(,),(,),(,)A B A C A D B D C D 共15种, ………………………………8分其中使1m n ->成立的有:(,),(,),(,),(,),(,),(,),(,),(,)a A a B a C a D b A b B b C b D 共8种,……………………10分所以,所求事件的概率为815. ………………………………12分20.(本小题满分12分)解:(Ⅰ)()113,213n n n n a S n n a S n +-=-+≥=--+ 时, , …………2分 ,12,111-=-=-∴++n n n n n a a a a a 即112(1),(2,),n n a an n +∴-=-≥∈N * ……………………………4分2221(1)232n n n a a --∴-=-=∙=n a ⎩⎨⎧≥+∙=-2,1231,22n n n ……………………………6分 (Ⅱ)113322n n n S a n n -+=+-=∙+- ,123-∙=∴n n n b ………………………………………………8分⎪⎭⎫⎝⎛++++=∴-1222322131n n n T⎪⎭⎫⎝⎛++++=nn n T 2232221312132 相减得,⎪⎭⎫⎝⎛-++++=-n n n n T 22121211312112 ,……………………………10分 n n n nT 23221134∙-⎪⎭⎫ ⎝⎛-=∴﹤34. ……………………………12分∴结论成立. 21.(本小题满分12分) 解:(Ⅰ)设与22142xy+=相似的椭圆的方程22221x y ab+=则有222461a b ab⎧=⎪⎪⎨⎪+=⎪⎩ ………………3分 解得2216,8a b ==.所求方程是221168xy+=. ………………6分(Ⅱ) 当射线l的斜率不存在时(0,(0,A B ±.设点P 坐标P(0,0)y ,则204y =,02y =±.即P(0,2±). ………………8分当射线l 的斜率存在时,设其方程y kx =,P(,)x y 由11(,)A x y ,22(,)B x y 则112211142y kx x y =⎧⎪⎨+=⎪⎩ 得2122212412412x k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩||O A ∴=同理||O B =………………10分当l 的斜率不存在时,||||4O A O B == ,当l 的斜率存在时,2228(1)4||||41212b OA OB kk+==+++ ,4||||8OA OB ∴<≤ ,综上,||||OA OB 的最大值是8,最小值是4. ………………12分 22.(本小题满分14分)解:(I)函数()f x 的定义域为(0,)+∞. …………………………1分 当0a =时,1()2ln f x x x=+,∴222121()x f x xxx-'=-=.…………………2分由()0f x '=得12x =.()f x ,()f x '随x 变化如下表:故,m in 1()()22ln 22f x f ==-,没有极大值. …………………………4分(II )由题意,222(2)1()ax a x f x x+--'=.令()0f x '=得11x a=-,212x =. ………………………6分若0a >,由()0f x '≤得1(0,]2x ∈;由()0f x '≥得1[,)2x ∈+∞. …………7分若0a <,①当2a <-时,112a-<,1(0,]x a∈-或1[,)2x ∈+∞,()0f x '≤;11[,]2x a ∈-,()0f x '≥.②当2a =-时,()0f x '≤. ③当20a -<<时,112a ->,1(0,]2x ∈或1[,)x a∈-+∞,()0f x '≤;11[,]2x a∈--,()0f x '≥.综上,当0a >时,函数的单调递减区间为1(0,]2,单调递增区间为1[,)2+∞;当2a <-时,函数的单调递减区间为1(0,]a -,1[,)2+∞,单调递增区间为11[,]2a -;当20a -<<时,函数的单调递减区间为1(0,]2,1[,)a -+∞,单调递增区间为11[,]2a--.…………………………10分(Ⅲ) 当2a =时,1()4f x x x=+,2241()x f x x-'=.∵11[,6]2x n n∈++,∴()0f x '≥.∴m in 1()()42f x f ==,m ax 1()(6)f x f n n=++. …………………………12分由题意,11()4(6)2m f f n n<++恒成立.令168k n n=++≥,且()f k 在1[6,)n n+++∞上单调递增,m in 1()328f k =,因此1328m <,而m 是正整数,故32m ≤,所以,32m =时,存在123212a a a ==== ,12348m m m m a a a a ++++====时,对所有n 满足题意.∴32m ax m =. …………………………………14分。
北京市西城区2011届高三第一学期期末考试(数学文)
北京市西城区2010 — 2011学年度第一学期期末试卷高三数学(文科) 2011.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1. 已知集合{1}A x x =≥-,{3}B x x =<,那么集合A B = [来源:学#科#网Z#X#X#K] (A ){13}x x -≤< (B ){13}x x -<< (C ){1}x x <-(D ){3}x x >2. 下列函数中,图象关于坐标原点对称的是 (A )lg y x =(B )cos y x =(C )||y x =(D )sin y x =3. 若a b >,则下列不等式正确的是 (A )11a b< (B )33a b >(C )22a b >(D )a b >4. 命题“若a b >,则1a b +>”的逆否命题是 (A )若1a b +≤,则a b > (B )若1a b +<,则a b > (C )若1a b +≤,则a b ≤(D )若1a b +<,则a b <5. 设{}n a 是等差数列,若24a =,57a =,则数列{}n a 的前10项和为 (A )12(B )60(C )75(D )1206. 阅读右面程序框图,如果输出的函数值在区间11[,]42内,那么输入实数x 的取值范围是 (A )(,2]-∞- (B )[2,1]-- (C )[1,2]- (D )[2,)+∞7. 如图,四边形ABCD 中,1AB AD CD ===,2BD =BD CD ⊥,将四边形ABCD沿对角线BD 折成四面体A BCD '-,使平 面A BD '⊥平面BCD ,则下列结论正确的是 (A )A C BD '⊥ (B )90BA C'∠=(C )A DC '∆是正三角形(D )四面体A BCD '-的体积为138. 设函数121()log ()2xf x x =-,2121()log ()2xf x x =-的零点分别为12,x x ,则(A )1201x x << (B )121x x = (C )1212x x << (D )122x x ≥第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. i 为虚数单位,则22(1i)=+______. 10. 已知1==a b ,12⋅=a b ,则平面向量a 与b 夹角的大小为______. 11.若实数,x y 满足条件10,2,1,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2x y +的最大值为______.12.在ABC ∆中,若3,3a b =,3B 2π∠=,则c =____. 13. 已知双曲线22221x y a b-=的离心率为2,它的一个焦点与抛物线28y x =的焦点相同,那么双曲线的焦点坐标为______;渐近线方程为_______.14.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”.在这个定义下,给出下列命题:①到原点的“折线距离”等于1的点的集合是一个正方形; ②到原点的“折线距离”等于1的点的集合是一个圆;③到(1,0),(1,0)M N -两点的“折线距离”之和为4的点的集合是面积为6的六边形; ④到(1,0),(1,0)M N -两点的“折线距离”差的绝对值为1的点的集合是两条平行线. 其中正确的命题是____________.(写出所有正确命题的序号)三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2()3sin 22sin f x x x -. (Ⅰ)求()6f π的值;(Ⅱ)若[,]63x ππ∈-,求()f x 的最大值和最小值.16.(本小题满分13分)如图,在三棱柱111ABC A B C -中,侧面11ABB A ,11ACC A均为正方形,90BAC ∠=,D 为BC 中点.(Ⅰ)求证:1//A B 平面1ADC ; (Ⅱ)求证:11C A B C ⊥.[来源:学科网ZXXK] [来源:学|科|网]17.(本小题满分13分)对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下: [来源:Z&xx&](Ⅰ)求出表中,M p 及图中a 的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率. [来源:学科网]18.(本小题满分13分)分组[来频数 频率 [10,15) 10 0.25[15,20)24n[20,25)mp[25,30)20.05 合计M1ABCDC 1 A 1B 1已知椭圆2222:1x y C a b+= (0>>b a )的一个焦点坐标为(1,0),且长轴长是短轴长的2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为坐标原点,椭圆C 与直线1y kx =+相交于两个不同的点,A B ,线段AB 的中点为P ,若直线OP 的斜率为1-,求△OAB 的面积.19.(本小题满分14分)已知函数()ln f x ax x =+()a ∈R .(Ⅰ)若2a =,求曲线()y f x =在1x =处切线的斜率; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()22g x x x =-+,若对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值范围.[来源:学.科.网Z.X.X.K]20.(本小题满分14分)[来源:Z,xx,]已知数列}{n a 的首项为1,对任意的n ∈*N ,定义n n n a a b -=+1. (Ⅰ) 若1n b n =+,求4a ;(Ⅱ) 若11(2)n n n b b b n +-=≥,且12,(0)b a b b ab ==≠.[来源:学&科&网] (ⅰ)当1,2a b ==时,求数列{}n b 的前3n 项和;(ⅱ)当1a =时,求证:数列}{n a 中任意一项的值均不会在该数列中出现无数次.北京市西城区2010 — 2011学年度第一学期期末高三数学参考答案及评分标准(文科) 2011.1一、选择题:本大题共8小题,每小题5分,共40分.2[来二、填空题:本大题共6小题,每小题5分,共30分.9.i - 10. 6011. 412.3 13. (2,0)±30x y ±= 14. ①③④[来源:] 注:13题第一问2分,第二问3分;14题①③④选对其中两个命题得2分,选出错误的命题即得0分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分) 解:(Ⅰ)()6f π232sin 36ππ- ………………2分 321241=-⨯=. ………………4分 (Ⅱ)()f x 3sin2cos21x x =+- ………………6分2sin(2)16x π=+-. ………………8分[来源:]因为[,]62x ππ∈-,所以65626πππ≤+≤-x , ………………10分 所以 1sin(2)126x π-≤+≤, ………………11分 所以()f x 的最大值为1 ,最小值为2-. ………………13分16.(本小题满分13分)解:(Ⅰ)连结1AC ,设1AC 交1AC 于点O ,连结OD . ………………2分 因为11ACC A 为正方形,所以O 为1AC 中点,又D 为BC 中点,所以OD 为1A BC ∆的中位线,[来源:学科网]所以1//A B OD . ………………4分 因为OD ⊂平面1ADC ,1A B ⊄平面1ADC , 所以1//A B 平面1ADC . ………………6分 (Ⅱ)由(Ⅰ)可知,11C A CA ⊥ ………………7分因为侧面11ABB A 是正方形,1AB AA ⊥, 且90BAC ∠=, 所以AB ⊥平面11ACC A . 又11//AB A B ,所以11A B ⊥平面11ACC A . ………………9分 又因为1C A ⊂平面11ACC A ,所以111A B C A ⊥. ………………10分 所以111C A A B C ⊥平面. ………………12分 又1B C ⊂平面11A B C ,所以11C A B C ⊥. ………………13分 17.(本小题满分13分)解:(Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,100.25M=, 所以40M =. ………………2分 因为频数之和为40,所以1024240m +++=,4m =. ………………3分40.1040m p M ===. ………………4分 因为a 是对应分组[15,20)的频率与组距的商,所以240.12405a ==⨯.……………6分 (Ⅱ)因为该校高三学生有240人,分组[10,15)内的频率是0.25,所以估计该校高三学生参加社区服务的次数在此区间内的人数为60人. ………8分 (Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有26m +=人,设在区间[20,25)内的人为{}1234,,,a a a a ,在区间[25,30)内的人为{}12,b b . 则任选2人共有1213141112232421(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a b a b a a a a a b2234(,),(,)a b a a ,3132414212(,),(,),(,),(,),(,)a b a b a b a b b b 15种情况, ………………10分AB CDC 1A 1B 1O而两人都在[25,30)内只能是()12,b b 一种, ………………12分 所以所求概率为11411515P =-=.(约为0.93) ………………13分18.(本小题满分13分)解:(Ⅰ)由题意得1,2c a b ==, ………………2分又221a b -=,所以21b =,22a =. ………………3分所以椭圆的方程为2212x y +=. ………………4分 (Ⅱ)设(0,1)A ,11(,)B x y ,00(,)P x y ,联立2222,1x y y kx ⎧+=⎨=+⎩ 消去y 得22(12)40k x kx ++=……(*), ………………6分解得0x =或2412k x k =-+,所以12412kx k=-+, 所以222412(,)1212k k B k k--++,2221(,)1212k P k k -++, ………………8分 因为直线OP 的斜率为1-,所以112k-=-,[来源:学科网ZXXK] 解得12k =(满足(*)式判别式大于零). ………………10分 O 到直线1:12l y x =+5………………11分 2211(1)AB x y =+-=253………………12分 所以△OAB 的面积为12252335=. ………………13分19.(本小题满分14分)解:(Ⅰ)由已知1()2(0)f x x x'=+>, ………………2分(1)213f '=+=.故曲线()y f x =在1x =处切线的斜率为3. ………………4分[来源:学§科§网](Ⅱ)11'()(0)ax f x a x x x+=+=>. ………………5分 ①当0a ≥时,由于0x >,故10ax +>,'()0f x >所以,()f x 的单调递增区间为(0,)+∞. ………………6分②当0a <时,由'()0f x =,得1x a=-.在区间1(0,)a -上,()0f x '>,在区间1(,)a -+∞上()0f x '<,所以,函数()f x 的单调递增区间为1(0,)a -,单调递减区间为1(,)a-+∞.………………8分(Ⅲ)由已知,转化为max max ()()f x g x <. ………………9分max ()2g x = ………………10分由(Ⅱ)知,当0a ≥时,()f x 在(0,)+∞上单调递增,值域为R ,故不符合题意. (或者举出反例:存在33(e )e 32f a =+>,故不符合题意.) ………………11分当0a <时,()f x 在1(0,)a -上单调递增,在1(,)a -+∞上单调递减,故()f x 的极大值即为最大值,11()1ln()1ln()f a a a-=-+=----, ………13分 所以21ln()a >---, 解得31ea <-. ………………14分 [来源:学科网ZXXK]20.(本小题满分14分)(Ⅰ) 解:11a =,211123a a b =+=+=,322336a a b =+=+=4336410a a b =+=+=. ………………3分(Ⅱ)(ⅰ)解:因为11n n n b b b +-=(2n ≥),所以,对任意的n ∈*N 有5164321n n n n n n n b b b b b b b ++++++====, 即数列{}n b 各项的值重复出现,周期为6. ………………5分又数列}{n b 的前6项分别为21,21,1,2,2,1,且这六个数的和为7.设数列{}n b 的前n 项和为n S ,则,当2()n k k =∈*N 时,36123456()7n k S S k b b b b b b k ==+++++=,当21()n k k =+∈*N 时,363123456616263()n k k k k S S k b b b b b b b b b ++++==++++++++ 123775k b b b k =+++=+ , ………………7分 所以,当n 为偶数时,372n S n =;当n 为奇数时,3732n n S +=. ………………8分(ⅱ)证明:由(ⅰ)知:对任意的n ∈*N 有6n n b b +=,又数列}{n b 的前6项分别为111,,,1,,b b b b,且这六个数的和为222b b ++.设)0(6≥=+n a c i n n ,(其中i 为常数且}6,5,4,3,2,1{∈i ),所以1n n c c +-=66666162636465n i n i n i n i n i n i n i n i a a b b b b b b ++++++++++++++-=+++++222b b=++. 所以,数列}{6i n a +均为以222b b++为公差的等差数列. ………………10分 因为0b >时,2220b b ++>,0b <时,22220b b++≤-<, ………………12分所以{6n i a +}为公差不为零的等差数列,其中任何一项的值最多在该数列中出现一次.所以数列}{n a 中任意一项的值最多在此数列中出现6次,即任意一项的值不会在此数列中重复出现无数次. ………………14分。
魏县一中2010—2011学年度第一学期期中考试高三年级数学试卷(文科)2010.11
魏县一中2010—2011学年度第一学期期中考试高三年级数学试卷(文科)(自测)说明:1.考试时间120分钟,满分150分.2.将卷Ⅰ答案用2B 铅笔涂在答题卡上,卷Ⅱ用蓝黑钢笔或圆珠笔答在试卷上.. 3.球的体积公式为V =3π34R ,球的表面积公式是S =4πR 2 4.独立重复试验概率公式 k n kk n n p p C k P --=)1()(卷Ⅰ(选择题 共60分)一.选择题(共12小题,每小题5分,计60分.在每小题给出的四个选项中,只有一个选项正确 1. 集合A =⎭⎬⎫⎩⎨⎧≥-+021|x x x ,B =⎭⎬⎫⎩⎨⎧∈=N n n y y ,2πsin |,则B A C R ⋂)(=( ) A . {}1,0,1- B .{}1,1- C .{}1,0 D .{}1- 2.函数y =216x-)2(log 22--x +1的定义域为 ( )A .[-4,4]B .)2,4[-C .]4,2(D .),2(+∞3.在等比数列{a n }中,若27975=a a a ,则1129a a= ( )A .9B .1C .2D .34. 在下列函数中,图象关于原点对称的是 ( )A .y =x sin xB .y =2xx e e -+C .y =x ln xD .y =x 3-2sin x +tan x5.已知实数x 、y 满足⎪⎩⎪⎨⎧≤≤≤-≥+3022y y x y x ,则z =2x -y 的取值范围是( )A . [-5,7]B . [5,7]C . [4,7]D . [-5,4]6. 当a >0且a ≠1时,把函数x a y -=和x y a log =的图象画在同一平面直角坐标系 中,可以是 ( )A .①②B .①③C .②③D .③④7.已知正方形ABCD 的边长为2,E 是BC 的中点,则·等于 ( ) A .-6 B .6 C .7 D .-88.已知函数f (x )满足,1)2()(=+⋅x f x f 且f (1)=2,则f (99)= ( ) A .21B .1C .2D .99 9. 4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 ( ) A .13 B .21 C .23 D .3410.若函数f (x )=ax 3+bx 2+cx +d 有极值,则导函数f ’(x )的图象不可能是 ( )11.已知双曲线13222=-by x 的右焦点到一条渐近线的距离为1,则该双曲线的离心率为 ( )A .2B .3C .332 D . 223 12.某班选派6人参加两项公益活动,每项活动最多安排4人,则不同的安排方法有( )A .50种B .70种C .35种D .55种卷Ⅱ(非选择题 共90分)二.填空题(共4小题,每小题5分,计20分)13.已知二项式 (1+2x )100 的展开式为a 0+a 1x +a 2x 2+a 3x 3+…+a 100x 100,则)222(log 10010022102a a a a ++++=______. 14.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为 ____.15. 已知S 、A 、B 、C 是球O 表面上的四个点,SA ⊥平面ABC ,AB ⊥BC , SA =2,AB =BC =2,则球O 的表面积为_______.16.过函数f (x )=24x -的图象上一点作切线l ,l 与x 轴、y 轴的交点分别为 A 、B ,则|AB |的最小值为_______.三.解答题(本大题共6小题,计70分,写出必要的解题步骤) 17. (本题满分10分)已知f (x )=6c os 2x -23si n x c os x -3.⑴求f (x )的值域及最小正周期;⑵设锐角△ABC 的内角A 、B 满足f (A )=2f (B )=-23,AB =3,求BC .18.(本题满分12分)已知等差数列{a n }的前n 项和为S n ,已知a 5=9,S 10=100. ⑴求通项a n ;⑵记数列}{n S n 的前n 项和为T n ,数列}1{11++-n n T S 的前n 项和为U n .求证:U n <2.19.(本题满分12分)甲、乙两位乒乓球选手,在过去的40局比赛中,甲胜24局.现在两人再次相遇. ⑴打满3局比赛,甲最有可能胜乙几局,说明理由;⑵采用“三局两胜”或“五局三胜”两种赛制,哪种对甲更有利,说明理由.(注:计算时,以频率作为概率的近似值.“三局两胜”就是有一方胜局达到两局时, 就结束比赛;“五局三胜”就是有一方胜局达到三局时,就结束比赛) 20.(本题满分12分)已知四棱锥P —ABCD 的底面是正方形,P A ⊥底面ABCD .异面直线PB 与CD 所成的角为45°.求:⑴二面角B —PC —D 的大小;⑵直线PB 与平面PCD 所成的角的 大小.21.(本题满分12分) 已知函数f (x )=31x 3-(a +2)x 2+a (a +4)x +5在区间(-1,2)内单调递减,求a 的取值范围.22.(本题满分12分)已知点P (-1,23)是椭圆E :12222=+by a x (a >b >0)上一点,F 1、F 2分别是椭圆E 的左、右焦点,O 是坐标原点,PF 1⊥x 轴.⑴求椭圆E 的方程;⑵设A 、B 是椭圆E 上两个动点,λ=+(0<λ<4,且λ≠2).求证:直线AB 的斜率等于椭圆E 的离心率;⑶在⑵的条件下,当△P AB 面积取得最大值时,求λ的值.魏县一中2010—2011学年期中考试高三年级数学(文科)参考答案(自测)一.选择题:CCDD ABBA CDCA7.提示:建立坐标系如图.则A (0,0),C (2,2),E (2,1),AC =(2,2),=(2,1).·=6.也可以先用余弦定理求出∠CAE 的余弦.8.提示:)()4(,)(1)2(x f x f x f x f =+=+,f (x )的周期为4.f (99)=f (3)=f (1+2)=21)1(1=f . 12. 提示:这是分组问题.362226C A C +=50. 二.13.答案:100. 提示:令x =21,得1001002210222a a a a ++++ =2100.14. 答案:18.15.答案:8π.提示:三棱锥S —ABC 是长方体的一角,它的外接球的直径和该长方体的外接球的直径相同.2R =22224=++,R =2.16.答案:4.提示:f (x )的图象是半圆x 2+y 2=4(y ≥0),设A (a ,0),B (0,b ),则直线l 的方程为1=+bya x ,因为直线l 与半圆x 2+y 2=4(y ≥0)相切,所以圆心到直线l 的距离为211122=+b a ,即)11(422b a +=1, 于是a 2+b 2=4(a 2+b 2)(2211ba +)≥16,|AB |=22b a +≥4,a =b 时取等号. 说明:此题主要考查数形结合.此题不要用导数求切线,因为文科不要求y =24x -的导数.三. 解答题17.解:⑴f (x )=3(1+c os2x )- 3sin 2x -3=23 (x x 2sin 212cos 23-) =23c os(2x +6π)……………………………………………3分 f (x )的值域为[-23,23],周期为π; ……………………4分⑵由f (A )=23c os(2A +6π)=-23得c os(2A +6π)=-1, ∵0<A <2π,6π<2A +6π<67π,∴2A +6π=π,A =125π……………………………………………6分由f (B )=23c os(2B +6π)=-3得c os(2B +6π)=-21,∵0<B <2π,6π<2B +6π<67π,∴2B +6π=32π,B =4π.因此C =3π. ………………………………………………………8分根据正弦定理得3πsin 3sin sin ==CABA BC =2, 所以BC =2sin A =2sin(4π+6π)=226+. ……………………10分 18.解:⑴a 5=a 1+4d =9S 10=10a 1+d 2910⨯=100, 解得a 1=1,d =2, ……………………………………………4分 a n =a 1+(n -1)d =2n -1; ……………………………………………6分⑵S n =212)(n a a n n =+,n nS n =,T n =2)1(+n n ,…………………………8分S n +1-T n +1=(n +1)2-2)2)(1(++n n =2)1(+n n .)111(2)1(2111+-=+=-++n n n n T S n n , ……………………………10分U n =2[)111()4131()3121()211(+-++-+-+-n n ]=2(111+-n )<2. ……………………………………………12分19.解:比赛一局,甲胜的概率约为p =6.04024=.………………………………1分 ⑴甲胜k (k =0,1,2,3)局的概率为k kk p p C k P --=333)1()(.………………2分则0064.0)0(3=P 288.0)1(3=P432.0)2(3=P 216.0)3(3=P ,……………………………………5分因为甲P 3(2)最大,所以甲最有可能胜两局;…………………………6分⑵三局两胜制:甲胜的概率为P 1=648.06.0)1()2(22=⨯+P P ,………………8分五局三胜制:甲胜的概率为P 2=683.06.0)2(6.0)2()3(433≈⨯+⨯+P P P ,……………………………………11分因为P 2>P 1,所以采用“五局三胜制”对甲有利. ……………12分20.解:⑴∵AB ∥CD ,∴∠PBA 就是PB 与CD 所成的角,即∠PBA =45°,……1分于是P A =AB .作BE ⊥PC 于E ,连接ED ,在△ECB 和△ECD 中,BC =CD ,CE =CE , ∠ECB =∠ECD , △ECB ≌△ECD ,∴∠CED =∠CEB =90°,∠BED 就是二面角B —PC —D 的平面角.………………………4分设AB =a ,则BD =PB =a 2,PC =a 3,BE =DE =a PC BC PB 36=⨯,cos ∠BED =212222-=⨯-+DE BE BD DE BE ,∠BED =120° 二面角B —PC —D 的大小为120°; ……………………………6分⑵还原棱锥为正方体ABCD —PB 1C 1D 1,作BF ⊥CB 1于F , ∵平面PB 1C 1D 1⊥平面B 1BCC 1,∴BF ⊥平面PB 1CD ,………………………………8分 连接PF ,则∠BPF 就是直线PB 与平面PCD 所成 的角. ……………………………………………10分BF =a 22,PB =a 2,sin ∠BPF =21,∠BPF =30°.所以就是直线PB 与平面PCD 所成的角为30°. …………………12分 注:也可不还原成正方体,利用体积求出点B 到平面PCD 的距离,或用向量法解答.21.解1:f ’(x )=x 2-2(a +2)x +a (a +4)=(x -a )(x -a -4),……………………………4分 f ’(x )<0的解为(a ,a +4), ……………………………7分 ∵f (x )在区间(-1,2)内单调递减,∴(-1,2)⊆ (a ,a +4),……………………………………………………10分 由此得a ≤-1且a +4≥2,a 的范围是[-2,-1]. ………………12分解2:f ’(x )=x 2-2(a +2)x +a (a +4), …………………2分 ∵f (x )在区间(-1,2)内单调递减,∴f ’(x )≤0在区间(-1,2)上恒成立, …………………4分∵二次函数f ’(x )=x 2-2(a +2)x +a (a +4)的开口向上,∴f ’(-1)=a 2+6a +5≤0且f ’(2)=a 2-4≤0 …………………………………10分解得a 的范围是[-2,-1]. ………………………………………………12分22. 解:⑴∵PF 1⊥x 轴,∴F 1(-1,0),c =1,F 2(1,0),|PF 2|=2523222=+)(,2a =|PF 1|+|PF 2|=4,a =2,b 2=3,椭圆E 的方程为:13422=+y x ;…………………3分⑵设A (x 1,y 1)、B (x 2,y 2),由 λ=+得(x 1+1,y 1-23)+(x 2+1,y 2-23)=λ(1,- 23), 所以x 1+x 2=λ-2,y 1+y 2=23(2-λ)………① …………………5分又12432121=+y x ,12432222=+y x ,两式相减得3(x 1+x 2)(x 1-x 2)+ 4(y 1+y 2)(y 1-y 2)=0………..② 以①式代入可得AB 的斜率k =212121=--x x y y =ac=e ;……………8分⑶设直线AB 的方程为y =21x +t , 与124322=+y x 联立消去y 并整理得 x 2+tx +t 2-3=0, △=3(4-t 2),|AB |=222124215)4(3411||1t t x x k -⨯=-⨯+=-+, 点P 到直线AB 的距离为d =5|2|2-t ,△P AB 的面积为S =21|AB |×d =|2|4232--⨯t t , ………10分 设f (t )=S 2=43-(t 4-4t 3+16t -16) (-2<t <2), f ’(t )=-3(t 3-3t 2+4)=-3(t +1)(t -2)2,由f ’(t )=0及-2<t <2得t =-1.当t ∈(-2,-1)时,f ’(t )>0,当t ∈(-1,2)时,f ’(t )<0,f (t )=-1时取得最大值481, 所以S 的最大值为29. 此时x 1+x 2=-t =1=λ-2,λ=3. ……………………………………12分。
2011年高考安徽省数学试卷-文科(含详细答案)
(C) 4
(C) 3
(C) ( ,b+1)
a
(B) 2, 2 (C ) 1, 2
(7)若数列an的通项公式是 an (1)n (3n 2) ,则 a a L a
(A) 15
(B) 12
(8)一个空间几何体得三视图如图所示,则该几何体的表面积为
第(8)题图
2011 年普通高等学校招生全国统一考试(安徽卷)
数学(文科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第 1 至第 2 页,第Ⅱ 卷第 3 页至第 4 页。全卷满分 150 分,考试时间 120 分钟。 考生注意事项:
(1) 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答 题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。务必在答题 卡背面规定的地方填写姓名和座位号后两位。
(2) 答第Ⅰ卷时,每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号 涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。
(3) 答第Ⅱ卷时,必须使用 0.5 毫米的黑色墨水签字笔在答题卡上书写,要求字体 工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用 0.5 毫 米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出书写的答案 无效,在试题卷、草稿纸上答题无效。
(A) 48
(B)32+8
(C )
(C) 48+8
(9) 从正六边形的 6 个顶点中随机选择 4 个顶点,则以它们作为顶点的四边形是矩形的概率
等于
(A)
ቤተ መጻሕፍቲ ባይዱ (B)
(C)
(10) 函数 f (x) axn g( x) 在区间〔0,1〕上的图像如图所示,则 n 可能是
肇庆市中小学教学质量评估2010-2011学年第一学期期末高三数学(文科)试题及答案
肇庆市中小学教学质量评估 2010—2011学年第一学期统一检测题高三数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0>=x x M ,{}21≤≤-=x x N ,则=N MA .{}1-≥x xB .{}2≤x xC .{}20≤<x xD .{}21|≤≤-x x 2.复数432i i i i z +++=的值是A .-1B .0C .1D .i 3.从甲、乙、丙三人中任选两名代表,甲被选中的概率是A .61B .31C .32D .654.若)4,2(=,)3,1(=,则=A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7) 5.设a ,b 是两条直线,α,β是两个平面,则a ⊥b 的一个充分条件是 A .a ⊥α,b //β,α⊥β B .a ⊥α,b ⊥β,α//β C .a ⊂α,b //β,α⊥β D .a ⊂α,b ⊥β,α//β6.若实数x ,y 满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x 则y x +的最小值是A .4B .3C .2D .1 7.图1是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是 A . 9π B . 10π C . 11π D . 12π8.设函数)0(112)(<-+=x xx x f ,则)(x f正视图侧视图俯视图图1A .有最大值B .有最小值C .是增函数D .是减函数9.设等差数列}{n a 的前n 项和为n S ,若22=S ,104=S 则=6S A .12 B .18 C .24D .3010.设椭圆)0,0(12222>>=+n m ny m x 的右焦点与抛物线x y 82=的焦点相同,离心率为21,则此椭圆的方程为A .1161222=+y x B .1121622=+y x C .1644822=+y x D .1486422=+y x 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.定义新运算为a ∇b =ba 1+,则2∇(3∇4)的值是__▲__. 12.阅读右边程序框图,该程序输出的结果是__▲__. 13.在∆ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边, 已知6,3,3π=∠==C b a ,则角A 等于__▲__.(二)选做题(14、15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图2,PC 、DA 为⊙O 的 切线,A 、C 为切点,AB 为⊙O 的直径, 若 DA =2,CD :DP =1:2,则AB =__▲__. 15.(坐标系与参数方程选做题)若直线⎩⎨⎧+=-=,32,21t y t x (t 为参数)与直线14=+ky x 垂直,则常数k =__▲__.三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 16. (本小题满分12分)已知向量)sin ,(cos A A =,)1,2(-=,且0=∙. (1)求tan A 的值;PA OBCD 图2(2)求函数)(sin tan 2cos )(R x x A x x f ∈+=的值域.17. (本小题满分12分)如图3,在四棱锥P —ABCD 中,底面为直角梯形,AD //BC ,∠BAD =90︒,P A ⊥底面ABCD ,且P A =AD =AB =2BC =2a ,M ,N 分别为PC 、PB(1)求证:MN //平面P AD ; (2)求证:PB ⊥DM ;(3)求四棱锥P —ADMN 的体积.18. (本小题满分14分)对某电子元件进行寿命追踪调查,情况如下: (1)完成频率分布表;(2)完成频率分布直方图;图3(3)估计电子元件寿命在100~400小时以内的概率; (4)估计电子元件寿命在400小时以上的概率.19. (本小题满分14分)设函数2312)(bx ax e x x f x ++=-,已知2-=x 和1=x 为)(x f 的极值点. (1)求a 和b 的值; (2)讨论)(x f 的单调性.20.(本小题满分14分)将数列}{n a 中的所有项按每一行比上一行多一项的规则排成如下表:一列数1a ,2a ,4a ,7a ,⋯,构成的数列为}{n b ,111==a b ,记表中的第n S 为数列}{n b 的前n 项和,且满足)2(122≥=-n S S b b nn n n. (1)求证数列⎭⎬⎫⎩⎨⎧n S 1成等差数列,并求数列}{n b 的通项公式;(2)上表中,若81a 项所在行的数按从左到右的顺序构成等比数列,且公比q 为正数,求当91481-=a 时,公比q 的值.21. (本小题满分14分)已知R m ∈,直线l :m y m mx 4)1(2=+-和圆C :0164822=++-+y x y x . (1)求直线l 斜率的取值范围;a 1a 2a 3a 4a 5a 6a 7a 8a 9a 10......(2)直线l 能否将圆C 分割成弧长的比值为21的两段圆弧?请说明理由.2010—2011学年第一学期统一检测题 高三数学(文科)参考答案及评分标准一、选择题二、填空题11. 3; 12. 120; 13.6π; 14.34; 15. -6 三、解答题16.(本小题满分12分)解:(1)由题意得0sin cos 2=-=∙A A n m , (2分) 因为0cos ≠A ,所以2tan =A . (4分) (2)由(1)知2tan =A 得23)21(sin 2sin 2sin 21sin 22cos )(22+--=+-=+=x x x x x x f . (6分)因为R x ∈,所以]1,1[sin -∈x . (7分) 当21sin =x 时,)(x f 有最大值23; (9分) 当1sin -=x 时,)(x f 有最小值-3; (11分)故所求函数)(x f 的值域是]23,3[-. (12分)17.(本小题满分12分)证明:(1)因为M 、N 分别为PC 、PB 的中点, 所以MN //BC ,且221aBC MN ==. (1分) 又因为AD //BC ,所以MN //AD . (2分)又AD ⊂平面P AD ,MN ⊄平面P AD ,所以MN //平面P AD . (4分)B图3(2)因为AN 为等腰∆ABP 底边PB 上的中线,所以AN ⊥PB . (5分) 因为P A ⊥平面ABCD ,AD ⊂平面ABCD ,所以AD ⊥P A . 又因为AD ⊥AB ,且AB ⋂AP =A ,所以AD ⊥平面P AB .又PB ⊂平面P AB ,所以AD ⊥PB . (6分) 因为AN ⊥PB ,AD ⊥PB ,且AN ⋂AD =A ,所以PB ⊥平面ADMN . (7分) 又DM ⊂平面ADMN ,所以PB ⊥DM . (8分) 解:(3)由(1)和(2)可得四边形ADMN 为直角梯形,且∠DAN =90︒, AD =2a ,2a MN =,a AN 2=,所以2425a S ADMN =直角梯形. (9分) 由(2)PB ⊥平面ADMN ,得PN 为四棱锥P —ADMN 的高,且a PN 2=,(10分) 所以36531a S PN V ADMN ADMN P =∙=-直角梯形. (12分)18.(本小题满分14分)解:(1)完成频率分布表如下: (4分)(2)完成频率分布直方图如下: (8分)(3)由频率分布表可知,寿命在100~400小时的电子元件出现的频率为0.10+0.15+0.40=0.65,所以估计电子元件寿命在100~400小时的概率为0.65.(11分) (4)由频率分布表可知,寿命在400小时以上的电子元件出现的频率为0.20+0.15=0.35,所以估计电子元件寿命在400小时以上的概率为0.35. (14分)19. (本小题满分14分) 解:显然)(x f 的定义域为R.(1))23()2(232)(12121b ax x x xe bx ax e x xe x f x x x +++=+++='---, (2分)由2-=x 和1=x 为)(x f 的极值点,得⎩⎨⎧='=-'.0)1(,0)2(f f (4分)即⎩⎨⎧=++=+-,0233,026b a b a (5分) 解得⎪⎩⎪⎨⎧-=-=.1,31b a (7分)(2)由(1)得)1)(2()(1-+='-x e x x x f . (8分) 令0)(='x f ,得21-=x ,02=x ,13=x . (10分))(x f '、)(x f 随x 的变化情况如下表: (13分)从上表可知:函数)(x f 在)0,2(-和),1(+∞上是单调递增的,在)2,(--∞和)1,0(上是单调递减的. (14分)20.(本小题满分14分)解:(1)由已知,当2≥n 时,122=-nn n nS S b b ,又1--=n n n S S b , (1分) 所以1)()(2211=-----nn n n n n S S S S S S . (2分) 即1)(211=----nn n n S S S S ,所以21111=--n n S S , (4分) 又1111===a b S ,所以数列⎭⎬⎫⎩⎨⎧n S 1是首项为1,公差为21的等差数列. (5分)所以21)1(21111+=-+=n n S S n ,即12+=n S n . (7分) 所以,当2≥n 时,)1(2112121+-=+--+=-=-n n n n S S b n n n , (9分) 因此⎪⎩⎪⎨⎧≥+-==).2()1(2),1(1n n n n b n (10分) (2)因为782131212321=⨯=++++ ,所以表中第1行至第12行共含有数列}{n a 的前78项,故81a 在表中第13行第三列. (12分) 所以,91421381-==q b a , (13分) 又1413213⨯-=b ,所以2=q . (14分)21.(本小题满分14分) 解:(1)直线l 的方程可化为14122+-+=m mx m m y , (1分) 于是直线l 的斜率12+=m mk . (2分) 因为)1(21||2+≤m m , (4分) 所以211||||2≤+=m m k ,当且仅当1||=m 时等号成立. (5分)所以,直线l 的斜率k 的取值范围是]21,21[-. (6分)(2)不能. (8分) 由(1)知直线l 的方程为:)4(-=x k y ,其中21||≤k . (9分) 圆C 的方程可化为4)2()4(22=++-y x ,所以圆C 的圆心为C (4,-2),半径r =2. (10分) 于是圆心C 到直线l 的距离212kd +=. (11分)由21||≤k ,得154>≥d ,即2r d >. (12分) 所以若直线l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于32π.(13分) 故直线l 不能将圆C 分割成弧长的比值为21的两段弧. (14分)。
高中高三数学上学期期中试卷 文(含解析)-人教版高三全册数学试题
某某省某某市潮师高中2015届高三上学期期中数学试卷(文科)一、选择题(每小题5分,总50分)1.(5分)已知集合A={x|x>1},B={x|x2﹣2x<0},则A∩B=()A.{x|x>0} B.{x|x>1} C.{x|1<x<2} D.{x|0<x<2}2.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数为()A.y=x﹣1B.y=log2x C.y=|x| D.y=﹣x23.(5分)设i为虚数单位,则复数等于()A.B.C.D.4.(5分)设f(x)为奇函数,当x>0时,f(x)=x2+x,则f(﹣1)=()A.﹣2 B.0 C.2 D.﹣15.(5分)某几何体的三视图如图所示,它的体积为()A.72πB.48πC.36πD.12π6.(5分)已知函数f(x)=x+1(x<0),则f(x)的()A.最小值为3 B.最大值为3 C.最小值为﹣1 D.最大值为﹣1 7.(5分)函数f(x)=Asin(ωx+φ)(其中ω>0,|φ|<)的图象如图所示,为了得到f(x)的图象,则只要将g(x)=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.(5分)如图,在△ABC中,点D是BC边上靠近B的三等分点,则=()A.B.C.D.9.(5分)已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则•的取值X围是()A.[﹣1,0] B.[0,1] C.[0,2] D.[﹣1,2]10.(5分)设函数f(x)=x3﹣4x+a(0<a<2)有三个零点x1、x2、x3,且x1<x2<x3,则下列结论正确的是()A.x1>﹣1 B.x2<0 C.0<x2<1 D.x3>2二、填空题:本大题共4小题,每小题5分,满分20分.11.(5分)已知a∈(﹣,0),且sin(+a)=,则tana=.12.(5分)直线y=﹣x+b是函数f(x)=的切线,则实数b=.13.(5分)设函数,若f(x0)>1,则x0的取值X围是.14.(5分)向量在正方形网格中的位置如图所示.设向量=,若,则实数λ=.三、解答题(共80分)15.(12分)已知函数的周期是π.(1)求ω和的值;(2)求函数的最大值及相应x的集合.16.(12分)某学校甲、乙两个班参加体育达标测试,统计测试成绩达标人数情况得到如下所示的列联表,已知在全部学生中随机抽取1人为不达标的概率为.(1)请完成列联表;组别达标不达标总计甲班8乙班54合计120(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.17.(14分)已知=(sinB,1﹣cosB),且与=(1,0)的夹角为,其中A,B,C是△ABC的内角.(1)求角B的大小;(2)求sinA+sinC的取值X围.18.(14分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3.(1)求证:AB1∥平面BC1D;(2)求四棱锥B﹣AA1C1D的体积.19.(14分)已知函数f(x)=x+alnx(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)在(Ⅰ)的条件下,求f(x)的极值;(Ⅲ)讨论f(x)的单调区间.20.(14分)已知f(x)=xlnx,g(x)=﹣x+a.(1)当a=2时,求函数y=g(x)在[0,3]上的值域;(2)求函数f(x)在[t,t+2](t>0)上的最小值;(3)证明:对一切x∈(0,+∞),都有xlnx>成立.某某省某某市潮师高中2015届高三上学期期中数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,总50分)1.(5分)已知集合A={x|x>1},B={x|x2﹣2x<0},则A∩B=()A.{x|x>0} B.{x|x>1} C.{x|1<x<2} D.{x|0<x<2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即B={x|0<x<2},∵A={x|x>1},∴A∩B={x|1<x<2}.故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数为()A.y=x﹣1B.y=log2x C.y=|x| D.y=﹣x2考点:奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:根据y=x﹣1=在区间(0,+∞)上单调递减,得A项不符合题意;根据y=log2x的定义域不关于原点对称,得y=log2x不是偶函数,得B项不符合题意;根据y=﹣x2的图象是开口向下且关于x=0对称的抛物线,得y=﹣x2的在区间(0,+∞)上为减函数,得D项不符合题意.再根据函数单调性与奇偶性的定义,可得出只有C项符合题意.解答:解:对于A,因为函数y=x﹣1=,在区间(0,+∞)上是减函数不满足在区间(0,+∞)上单调递增,故A不符合题意;对于B,函数y=log2x的定义域为(0,+∞),不关于原点对称故函数y=log2x是非奇非偶函数,故B不符合题意;对于C,因为函数y=|x|的定义域为R,且满足f(﹣x)=f(x),所以函数y=|x|是偶函数,而且当x∈(0,+∞)时y=|x|=x,是单调递增的函数,故C符合题意;对于D,因为函数y=﹣x2的图象是开口向下的抛物线,关于直线x=0对称所以函数y=﹣x2的在区间(0,+∞)上为减函数,故D不符合题意故选:C点评:本题给出几个基本初等函数,要求我们找出其中的偶函数且在区间(0,+∞)上单调递增的函数,着重考查了基本初等函数的单调性与奇偶性等知识,属于基础题.3.(5分)设i为虚数单位,则复数等于()A.B.C.D.考点:复数代数形式的乘除运算.专题:计算题.分析:把给出的复数分子分母同时乘以2﹣i,然后整理成a+bi(a,b∈R)的形式即可.解答:解:=.故选A.点评:本题考查了复数代数形式的乘除运算,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.4.(5分)设f(x)为奇函数,当x>0时,f(x)=x2+x,则f(﹣1)=()A.﹣2 B.0 C.2 D.﹣1考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:由奇函数的性质可得f(﹣1)=﹣f(1),再根据已知表达式可求得f(1).解答:解:∵f(x)为奇函数,∴f(﹣1)=﹣f(1),又当x>0时,f(x)=x2+x,∴f(1)=12+1=2,∴f(﹣1)=﹣2,故选A.点评:本题考查函数奇偶性的性质及其应用,属基础题,定义是解决问题的基本方法.5.(5分)某几何体的三视图如图所示,它的体积为()A.72πB.48πC.36πD.12π考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知:该几何体是一个倒置的圆锥,其底面的直径为6,母线长为5.如图所示:底面上的高PO==4.据此可计算出其体积.解答:解:由三视图可知:该几何体是一个倒置的圆锥,其底面的直径为6,母线长为5.如图所示:底面上的高PO==4.∴V==12π.故选D.点评:由三视图正确恢复原几何体是解决问题的关键.6.(5分)已知函数f(x)=x+1(x<0),则f(x)的()A.最小值为3 B.最大值为3 C.最小值为﹣1 D.最大值为﹣1考点:基本不等式.专题:不等式的解法及应用.分析:利用基本不等式即可得出.解答:解:∵x<0,∴函数f(x)=x+1=+1=﹣1,当且仅当x=﹣1时取等号.因此f(x)有最大值﹣1.故选:D.点评:本题考查了基本不等式的应用,属于基础题.7.(5分)函数f(x)=Asin(ωx+φ)(其中ω>0,|φ|<)的图象如图所示,为了得到f(x)的图象,则只要将g(x)=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由已知函数的图象求出函数解析式,然后看自变量x的变化得答案.解答:解:由图可知,A=1,,∴,即ω=2.由五点作图的第三点可知,+φ=π,得φ=(|φ|<),则f(x)=sin(2x+)=sin2(x+).∴为了得到f(x)的图象,则只要将g(x)=sin2x的图象向左平移个单位长度.故选:C.点评:本题考查由函数的部分图象求函数解析式,考查了函数图象的平移,解答的关键是利用五点作图的某一点求初相,是基础题.8.(5分)如图,在△ABC中,点D是BC边上靠近B的三等分点,则=()A.B.C.D.考点:向量加减混合运算及其几何意义.专题:平面向量及应用.分析:利用向量的三角形法则和向量共线定理即可得出.解答:解:===.故选C.点评:熟练掌握向量的三角形法则和向量共线定理是解题的关键.9.(5分)已知O是坐标原点,点A(﹣1,1),若点M(x,y)为平面区域,上的一个动点,则•的取值X围是()A.[﹣1,0] B.[0,1] C.[0,2] D.[﹣1,2]考点:简单线性规划的应用;平面向量数量积的运算.专题:数形结合.分析:先画出满足约束条件的平面区域,求出平面区域的角点后,逐一代入•分析比较后,即可得到•的取值X围.解答:解:满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式当x=1,y=1时,•=﹣1×1+1×1=0当x=1,y=2时,•=﹣1×1+1×2=1当x=0,y=2时,•=﹣1×0+1×2=2故•和取值X围为[0,2]解法二:z=•=﹣x+y,即y=x+z当经过P点(0,2)时在y轴上的截距最大,从而z最大,为2.当经过S点(1,1)时在y轴上的截距最小,从而z最小,为0.故•和取值X围为[0,2]故选:C点评:本题考查的知识点是线性规划的简单应用,其中画出满足条件的平面区域,并将三个角点的坐标分别代入平面向量数量积公式,进而判断出结果是解答本题的关键.10.(5分)设函数f(x)=x3﹣4x+a(0<a<2)有三个零点x1、x2、x3,且x1<x2<x3,则下列结论正确的是()A.x1>﹣1 B.x2<0 C.0<x2<1 D.x3>2考点:根的存在性及根的个数判断.专题:计算题;函数的性质及应用.分析:利用导数研究函数的单调性,利用导数求函数的极值,再根据f (x)的三个零点为x1,x2,x3,且x1<x2<x3,求得各个零点所在的区间,从而得出结论.解答:解:∵函数f (x)=x3﹣4x+a,0<a<2,∴f′(x)=3x2﹣4.令f′(x)=0,得x=±.∵当x<﹣时,f′(x)>0;在(﹣,)上,f′(x)<0;在(,+∞)上,f′(x)>0.故函数在(﹣∞,﹣)上是增函数,在(﹣,)上是减函数,在(,+∞)上是增函数.故f(﹣)是极大值,f()是极小值.再由f (x)的三个零点为x1,x2,x3,且x1<x2<x3,得 x1<﹣,﹣<x2<,x3>.根据f(0)=a>0,且f()=a﹣<0,得>x2>0.∴0<x2<1.故选C.点评:本题主要考查函数的零点的定义,函数的零点与方程的根的关系,利用导数研究函数的单调性,利用导数求函数的极值,属于中档题.二、填空题:本大题共4小题,每小题5分,满分20分.11.(5分)已知a∈(﹣,0),且sin(+a)=,则tana=﹣.考点:两角和与差的正切函数.专题:三角函数的求值.分析:先由诱导公式求出cosα的值,再根据角的X围求出sinα,从而可求tana的值.解答:解:sin(+a)=⇒cosα=,∵a∈(﹣,0),=﹣,故tana===﹣.故答案为:﹣.点评:本题主要考察了诱导公式的应用,考察了同角三角函数的关系式的应用,属于基础题.12.(5分)直线y=﹣x+b是函数f(x)=的切线,则实数b=1或﹣1.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:设切点为P(m,n),求出函数f(x)=的导数,得切线斜率为﹣,再根据切点P既在切线y=﹣x+b上又在函数f(x)=的图象上,列出关于m、n、b的方程组,解之即可得到实数b之值.解答:解:由于函数f(x)=的导数,若设直线y=﹣x+b与函数f(x)=相切于点P(m,n),则解之得m=2,n=,b=1或m=﹣2,n=﹣,b=﹣1综上所述,得b=±1故答案为:1或﹣1点评:本题给出已知函数图象的一条切线,求参数b的值,着重考查了导数的运算公式与法则和利用导数研究曲线上某点切线方程等知识,属于基础题.13.(5分)设函数,若f(x0)>1,则x0的取值X围是(﹣∞,﹣1)∪(1,+∞).考点:指数函数的单调性与特殊点;幂函数的单调性、奇偶性及其应用.专题:计算题;分类讨论.分析:根据函数表达式分类讨论:①当x0≤0时,可得2﹣x﹣1>1,得x<﹣1;②当x0>0时,x0.5>1,可得x>1,由此不难得出x0的取值X围是(﹣∞,﹣1)∪(1,+∞).解答:解:①当x0≤0时,可得2﹣x0﹣1>1,即2﹣x0>2,所以﹣x0>1,得x0<﹣1;②当x0>0时,x00.5>1,可得x0>1.故答案为(﹣∞,﹣1)∪(1,+∞)点评:本题考查了基本初等函数的单调性和值域等问题,属于基础题.利用函数的单调性,结合分类讨论思想解题,是解决本题的关键.14.(5分)向量在正方形网格中的位置如图所示.设向量=,若,则实数λ=3.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据正方形网格确定向量的长度和两个向量的夹角,然后利用,可以某某数λ.解答:解:设正方形的边长为1,则AB=1,AC=,∴cos∠CAB=,∵,=,∴,即,∴,解得λ=3.故答案为:3.点评:本题主要考查平面数量积的应用,利用向量垂直和数量积的关系即可求出λ,要根据表格确定向量是解决本题的关键.三、解答题(共80分)15.(12分)已知函数的周期是π.(1)求ω和的值;(2)求函数的最大值及相应x的集合.考点:三角函数的周期性及其求法;三角函数中的恒等变换应用.专题:三角函数的图像与性质.分析:(1)根据函数的周期公式即可求ω和的值;(2)将函数g(x)进行化简,然后利用三角函数的性质即可求函数的最大值.解答:解:(1)∵函数的周期是π,且ω>0,∴,解得ω=2.∴.∴.(2)∵=,∴当,即时,g(x)取最大值.此时x的集合为.点评:本题主要考查三角函数的图象和性质,要求熟练掌握函数的周期性和函数最值的求解方法.16.(12分)某学校甲、乙两个班参加体育达标测试,统计测试成绩达标人数情况得到如下所示的列联表,已知在全部学生中随机抽取1人为不达标的概率为.(1)请完成列联表;组别达标不达标总计甲班8乙班54合计120(2)若用分层抽样的方法在所有测试不达标的学生中随机抽取6人,问其中从甲、乙两个班分别抽取多少人?(3)从(2)中的6人中随机抽取2人,求抽到的两人恰好都来自甲班的概率.考点:古典概型及其概率计算公式;分层抽样方法.专题:概率与统计.分析:(1)根据在全部学生中随机抽取1人为不达标的概率为,总人数为120,故不达标的人数为12,达标的人数为108,乙班不达标为4人,甲班达标的人数为54,故可得结论;(2)用分层抽样的方法,可求甲班、乙班抽取的人数;(3)利用枚举法确定基本事件的个数,根据古典概型概率公式,可得结论.解答:解:(1)在全部学生中随机抽取1人为不达标的概率为,总人数为120,故不达标的人数为12,达标的人数为108,乙班不达标为4人,甲班达标的人数为54,故有组别达标不达标总计甲班54 8 62乙班54 4 58合计108 12 120…(3分)(2)由表可知:用分层抽样的方法从甲班抽取的人数为人,…(4分)从乙班抽取的人数为人…(5分)(3)设从甲班抽取的人为a,b,c,d,从乙班抽取的人为1,2;“抽到的两个人恰好都来自甲班”为事件A.…(6分)所得基本事件共有15种,即:ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12…(8分)其中事件A包含基本事件ab,ac,ad,bc,bd,cd,共6种,…(10分)由古典概型可得…(12分)点评:本题考查概率知识的运用,考查分层抽样,考查枚举法的运用,考查学生分析解决问题的能力,属于中档题.17.(14分)已知=(sinB,1﹣cosB),且与=(1,0)的夹角为,其中A,B,C是△ABC的内角.(1)求角B的大小;(2)求sinA+sinC的取值X围.考点:平面向量数量积的运算.专题:三角函数的求值.分析:(1)根据两向量的夹角及两向量的求出两向量的数量积,然后再利用平面向量的数量积的运算法则计算,两者计算的结果相等,两边平方且利用同角三角函数间的基本关系化简,得到关于cosB的方程,求出方程的解即可得到cosB的值,由B的X围,利用特殊角的三角函数值即可求出B的度数;(2)由B的度数,把所求的式子利用三角形的内角和定理化为关于A的式子,再利用两角差的正弦函数公式及特殊角的三角函数值化简,最后利用两角和的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由A的X围求出这个角的X围,根据正弦函数的图象可知正弦函数值的X围,进而得到所求式子的X围.解答:解:(1)∵=(sinB,1﹣cos B),且与=(1,0)的夹角为,∴=2sinB,又=×1×cos=,∴2sinB=,化简得:2cos2B﹣cosB﹣1=0,∴cosB=1(舍去)或cosB=﹣,又∵B∈(0,π),∴B=;(2)sinA+sinC=sinA+sin(﹣A)=sinA+cosA﹣sinA=sinA+cosA=sin(A+),∵0<A<,∴,则,∴sin A+sin C∈(,1].点评:此题考查了平面向量的数量积的运算,向量的数量积表示向量的夹角,三角函数的恒等变换以及同角三角函数间基本关系的运用.学生做题时注意角度的X围,熟练掌握三角函数公式,牢记特殊角的三角函数值,掌握正弦函数的值域.18.(14分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,A B⊥BC,D为AC的中点,A1A=AB=2,BC=3.(1)求证:AB1∥平面BC1D;(2)求四棱锥B﹣AA1C1D的体积.考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积.专题:计算题;证明题.分析:(1)欲证AB1∥平面BC1D,根据线面平行的判定定理可知只需证AB1与平面BC1D内一直线平行,连接B1C,设B1C与BC1相交于点O,连接OD,根据中位线定理可知OD∥AB1,OD⊂平面BC1D,AB1⊄平面BC1D,满足定理所需条件;(2)根据面面垂直的判定定理可知平面ABC⊥平面AA1C1C,作BE⊥AC,垂足为E,则BE⊥平面AA1C1C,然后求出棱长,最后根据四棱锥B﹣AA1C1D的体积求出四棱锥B﹣AA1C1D的体积即可.解答:解:(1)证明:连接B1C,设B1C与BC1相交于点O,连接OD,∵四边形BCC1B1是平行四边形,∴点O为B1C的中点.∵D为AC的中点,∴OD为△AB1C的中位线,∴OD∥AB1.(3分)∵OD⊂平面BC1D,AB1⊄平面BC1D,∴AB1∥平面BC1D.(6分)(2)∵AA1⊥平面ABC,AA1⊂平面AA1C1C,∴平面ABC⊥平面AA1C1C,且平面ABC∩平面AA1C1C=AC.作BE⊥AC,垂足为E,则BE⊥平面AA1C1C,(8分)∵AB=BB1=2,BC=3,在Rt△ABC中,,,(10分)∴四棱锥B﹣AA1C1D的体积(12分)==3.∴四棱锥B﹣AA1C1D的体积为3.(14分)点评:本题主要考查了线面平行的判定定理,以及棱锥的体积的度量,同时考查了空间想象能力,计算能力,以及转化与化归的思想,属于基础题.19.(14分)已知函数f(x)=x+alnx(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)在(Ⅰ)的条件下,求f(x)的极值;(Ⅲ)讨论f(x)的单调区间.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:导数的综合应用.分析:(Ⅰ)由求导公式求出导函数,求出切线的斜率f′(1)及f(1)的值,代入点斜式方程再化为一般式方程;(Ⅱ)先求出函数的定义域,再对导函数进行化简,判断出导函数的符号,即可得函数的单调性即极值情况;(Ⅲ)先对导函数进行化简,再对a进行分类讨论,利用列表格判断出导函数的符号,即可得函数的单调区间.解答:解:(I)当a=1时,f(x)=x+lnx,则,﹣﹣﹣(1分)所以f′(1)=2,且f(1)=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以切线方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)函数的定义域为(0,+∞),由(1)得=,﹣﹣﹣﹣﹣(6分)∵x>0,∴f′(x)>0恒成立﹣﹣﹣﹣﹣(8分)∴f(x)在(0,∞)上单调递增,没有极值﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(Ⅲ)由题意得,(x>0)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当a≥0时,在(0,∞)时,f′(x)>0,所以f(x)的单调增区间是f′(x)>0;﹣﹣﹣﹣﹣(11分)当a<0时,函数f(x)与f′(x)在定义域上的情况如下:x (0,a)﹣a (﹣a,+∞)f′(x)﹣0 +f(x)↘极小值↗﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)综上,当a≥0时,f(x)的单调增区间是(0,+∞);当a<0时,f(x)的单调增区间是(﹣a,+∞),减区间是(0,a).﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题考查导数的几何意义,切线方程的求法,以及导数与函数的单调性、极值的应用,考查了分类讨论思想,注意一定先求出函数的定义域,以及把导函数化到最简.20.(14分)已知f(x)=xlnx,g(x)=﹣x+a.(1)当a=2时,求函数y=g(x)在[0,3]上的值域;(2)求函数f(x)在[t,t+2](t>0)上的最小值;(3)证明:对一切x∈(0,+∞),都有xlnx>成立.考点:利用导数研究函数的单调性;二次函数的性质;二次函数在闭区间上的最值.专题:计算题.分析:(1)当a=2时,由g(x)=,x∈[0,3],利用二次函数的性质求出它的值域.(2)利用函数f(x)的导数的符号,分类讨论f(x)单调性,从而求出f(x)的最小值.(3)令 h(x)==﹣,通过h′(x)=的符号研究h(x)的单调性,求出h(x)的最大值为h(1)=﹣.再由f(x)=xlnx在(0,+∞)上的最小值为﹣,且f(1)=0大于h(1),可得在(0,+∞)上恒有f(x)>h(x),即.解答:解:(1)当a=2时,g(x)=,x∈[0,3],当x=1时,;当x=3时,,故g(x)值域为.(2)f'(x)=lnx+1,当,f'(x)<0,f(x)单调递减,当,f'(x)>0,f(x)单调递增.①若,t无解;②若,即时,;③若,即时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt,所以 f(x)min=.(3)证明:令 h(x)==﹣,h′(x)=,当 0<x<1时,h′(x)>0,h(x)是增函数.当1<x时.h′(x)<0,h(x)是减函数,故h(x)在(0,+∞)上的最大值为h(1)=﹣.而由(2)可得,f(x)=xlnx在(0,+∞)上的最小值为﹣,且当h(x)在(0,+∞)上的最大值为h(1)时,f(x)的值为ln1=0,故在(0,+∞)上恒有f(x)>h(x),即.点评:本题主要考查利用导数研究函数的单调性,二次函数的性质,函数的恒成立问题,属于中档题.。
北京四中2012届高三第一学期文科数学期中测试及答案
北京四中2011~2012学年度第一学期高三年级期中测试试题数学试卷(文)(试卷满分150分,考试时间为120分钟)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.若全集,集合,,则集合A.B.C.D.2.“”是“”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.函数的图像大致为4.设,则A. B. C. D.5.将函数的图象向左平移个单位, 再向上平移1个单位,所得图象的函数解析式是A.B.C.D.6.函数的零点个数为A.3 B.2 C.1D.07.若,则的值为A.B.C.4D.88. 对于函数,若存在区间,使得,则称区间为函数的一个“稳定区间”.给出下列4个函数:①;②;③;④.其中存在稳定区间的函数有A.①②B.①③C.②③D.②④二、填空题共6小题,每小题5分,共30分。
9.已知,则____________.10.若函数则不等式的解集为______.11.等比数列的前n项和为,且4,2,成等差数列。
若=1,则____________.12.函数的图象如图所示,则的解析式为___.13.已知函数.(),那么下面命题中真命题的序号是____________.①的最大值为②的最小值为③在上是减函数④在上是减函数14.已知数列的各项均为正整数,为其前项和,对于,有,当时,的最小值为______;当时,______.三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
15.(本小题满分12分)已知函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)求函数的单调增区间及其图象的对称轴方程.16.(本小题满分13分)已知:若是公差不为0的等差数列的前项和,且、、成等比数列.(Ⅰ)求数列、、的公比;(Ⅱ)若,求数列的通项公式.17.(本小题满分14分)已知函数().(Ⅰ)求函数的单调递增区间;(Ⅱ)内角的对边长分别为,若且试求角B和角C.18. (本小题满分14分)已知函数,的图象经过和两点,且函数的值域为.过函数的图象上一动点作轴的垂线,垂足为,连接.(Ⅰ)求函数的解析式;(Ⅱ)记的面积为,求的最大值.19.(本小题满分13分)设且,函数.(Ⅰ)求的值;(Ⅱ)求函数的单调区间.20.(本小题满分14分)设集合由满足下列两个条件的数列构成:①②存在实数,使.(为正整数)(Ⅰ)在只有项的有限数列,中,其中,试判断数列,是否为集合的元素;(Ⅱ)设是等差数列,是其前项和,,证明数列;并求出的取值范围.参考答案及解析一.选择题(一.选择题(每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案 D A A D B B D C2. A解析:当时,,反之,当时,有,或,故应选A.3. A解析:函数有意义,需使,其定义域为,排除C,D,又因为,所以当时函数为减函数,故选A. 4.D解析:.故选D.5.B解析:将函数的图象向左平移个单位,得到函数即的图象,再向上平移1个单位,所得图象的函数解析式为,故选B.7.D解析:8.C解析:①中,若存在“稳定区间”则,,即有解,即图像有交点,事实上两函数图像没有交点,故函数不存在“稳定区间”。
人教版数学高三期中测试精选(含答案)8
【答案】A
9.设 a, b, c 是互不相等的整数,则下列不等式中不恒成立的是( )
A.| a b || a c | | b c |
C.
|
a
b
|
a
1
b
2
B. a2
1 a2
a
1 a
D. a 3 a 1 a 2 a
【来源】上海市上海中学 2018-2019 学年高三上学期期中数学试题
x [2, 4] ,不等式 f (x) t 2 恒成立,则 t 的取值范围为__________.
【来源】山东省菏泽一中、单县一中 2016-2017 学年高二下学期期末考试数学(文)试
题 【答案】 (,10]
2x y 1 0,
12.设关于
x
,
y
的不等式组
x m 0,
表示的平面区域为 D ,若存在点
【答案】(1)见解析;(2) 2- n 2 n n2
2n
2
7x 5y 23 0
30.已知
x,y
满足条件:
x
7
y
11
0
,求:
4x y 10 0
(1) 4x 3y 的最小值; x y 1
(2) x 5 的取值范围.
【来源】上海市上海中学 2015-2016 学年高二上学期期中数学试卷
an
2n
的前
n
项和
Sn
.
【来源】江西省抚州市临川一中 2019-2020 届高三上学期第一次联合考试数学(文科)
试题
【答案】(1) an
1 2
n
;(2)
Sn
2n1
n2
n
2
.
34.已知等差数列an 的前 n 项和为 Sn , a2 a8 82 , S41 S9 .
江苏省震泽中学第一学期高三数学文科期中考试卷
江苏省震泽中学第⼀学期⾼三数学⽂科期中考试卷江苏省震泽中学07-08学年第⼀学期期中测试数学(⽂)试卷命题⼈:姚迎春审核⼈:包君⼀、填空题:(5×14=70)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U 则≥-+=≥= 2. 等差数列{}n a 中,12010=S ,那么29a a +的值是3.直线2(1)(3)750m x m y m ++-+-=与直线(3)250m x y -+-=垂直的充要条件是4.复数21i -的值为5.下列函数中,在其定义域内既是奇函数,⼜是减函数的是①0.5log y x =()0≠x ② x xy +=1 ()0≠x ③ x x y --=3 ④ x y 9.0=6.与直线2x -y -4=0平⾏且与曲线x y 5=相切的直线⽅程是. 7.函数y 的定义域和值域分别是和 8.在ABC ?中,60=∠C ,则=+++ac bc b a 9.圆064422=++-+y x y x 截直线x-y-5=0所得弦长等于 10. P 是椭圆221169x y +=上的动点, 作PD⊥y 轴, D 为垂⾜, 则PD 中点的轨迹⽅程为 .11.已知双曲线22x -my 2=1的⼀条准线与抛物线y 2=4x 的准线重合,则双曲线的离⼼率为12.若,a b 是正常数,a b ≠,,(0,)x y ∈+∞,则222()a b a b x y x y++≥+,当且仅当a bx y =时上式取等号. 利⽤以上结论,可以得到函数29()12f x x x =+-(1(0,)2x ∈)的最⼩值为,取最⼩值时x 的值为.13.⼀⽔池有两个进⽔⼝,⼀个出⽔⼝,每⽔⼝的进出⽔速度如图甲、⼄所⽰.某天0点到6点,该⽔池的蓄⽔量如图丙所⽰.(⾄少打开⼀个⽔⼝)给出以下3个论断:①0点到3点只进⽔不出⽔;②3点到4点不进⽔只出⽔;③4点到6点不进⽔不出⽔,则⼀定能确定正确的诊断是.14. 如图,⼀个粒⼦在第⼀象限运动,在第⼀秒末,它从原点运动到(0,1),接着它按如图所⽰的x 轴、y 轴的平⾏⽅向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…),且每秒移动⼀个单位,那么第2008秒末这个粒⼦所处的位置的坐标为______。
北京市海淀区2011高三年级第二学期期中练习数学文科及参考答案
海淀区高三年级第二学期期中练习数 学 (文科) 2011.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}2 23x x x ≤-≤<或 B. {}32<<x x C. {}32<≤x x D. R2. 设0.5323, log 2, cos 3a b c π===,则A. c b a <<B. c a b <<C. a b c <<D. b c a << 3.函数1()x f x x+=图象的对称中心为 A .(0,0) B.(0,1)C. (1,0)D. (1,1)4. 执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为A. 25 B .24 C. 23 D .225.从集合{1,1,2}A =-中随机选取一个数记为k ,从集合{2,1,2}B =-中随机选取一个数记为b ,则直线y kx b =+不经过第三象限的概率为A . 29 B. 13 C. 49D. 596. 在同一个坐标系中画出函数,sin x y a y ax ==的部分图象,其中01a a >≠且,则下列所给图象中可能正确的是7. 已知函数221, 1,()1, 1,x ax x f x ax x x ⎧++≥⎪=⎨++<⎪⎩ 则“20a -≤≤”是“()f x 在R 上单调递增”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.若直线l 被圆22:2C x y +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是A .22(1)1x y -+= B ..2212x y += C. 2y x = D .221x y -=二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 计算21i=+__________________. 10. 为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3,s 则它们的大小关系为 . (用“>”连接)11. 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内 一动点,则三棱锥P ABC -的主视图与左视图的面积的比值 为_________.12. 已知函数()x f x xe =,则'()f x =________;函数()f x 图象在点(0,(0))f 处的切线方程为_______ 13. 已知向量(,2),(1,)a x b y ==,其中,0x y ≥.若4≤ a b ,则y x -的取值范围为 . 14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上 一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x ,△CPD 的面积为()f x .则()f x 的定义域为________;()f x 的最大值为 ________.PDCBA1A 1D 1B 1C 左视主视CBD 乙丙甲三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为a b c 、、,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ) 求tan()B C +; (Ⅱ) 求a 的值.16. (本小题共13分)数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ;( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.17. (本小题共13分)如图:梯形ABCD 和正△PAB 所在平面互相垂直,其中//,AB DC 12AD CD AB ==,且O 为AB 中点.( I ) 求证://BC 平面POD ; ( II ) 求证:AC ⊥PD .18. (本小题共14分)已知函数1()ln (0,)f x a x a a x=+≠∈ R (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(II) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围. BACDOP19. (本小题共14分)已知椭圆2222:1x y C a b+= (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点. 求O 到直线距离的l 最小值.20. (本小题共13分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i = , 设j j k k k b +++= 21(1,2,3)j = ,12()100m g m b b b m =+++- (1,2,3).m = (Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (II) 若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++= ,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习 数 学(文)2011.4参考答案一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.1i - 10. s 1>s 2>s 3 11. 1 12. (1)x x e +, y x = 13. [4,2]- 14. (2,4),三、解答题(本大题共6小题,共80分) 15. (共13分)解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=- …………………3分 代入得到,1123tan()111123B C ++==-⨯. …………………6分 (II )因为180A B C =-- …………………7分 所以tan tan[180()]tan()1A B C B C =-+=-+=- …………………9分 又0180A <<,所以135A = . …………………10分 因为1tan 03C =>,且0180C << ,所以sin C = , …………………11分 由sin sin a c A C=,得a = …………………13分16. (共13分)解:(I )因为12n n S S n -=+,所以有12n n S S n --=对2n ≥,*N n ∈成立 ………2分 即2n a n =对2n ≥成立,又1121a S ==⋅, 所以2n a n =对*N n ∈成立 …………………3分 所以12n n a a +-=对*N n ∈成立 ,所以{}n a 是等差数列, …………………4分 所以有212nn a a S n n n +=⋅=+ ,*N n ∈ …………………6分由(I ),2n a n =,*N n ∈对成立所以有396,18a a ==,又12a =, ………………9分 所以由 112339, b a b a b a ===,,则23123b b b b == …………………11分 所以存在以12b =为首项,公比为3的等比数列{}n b , 其通项公式为123n n b -=⋅ . ………………13分17. (共13分)证明: (I) 因为O 为AB 中点,所以1,2BO AB =…………………1分 又//,AB CD 12CD AB =, 所以有,//,CD BO CD BO = …………………2分所以ODCB 为平行四边形,所以//,BC OD …………………3分 又DO ⊂平面,POD BC ⊄平面,POD所以//BC 平面POD . …………………5分 (II)连接OC .因为,//,CD BO AO CD AO ==所以ADCO 为 平行四边形, …………………6分 又AD CD =,所以ADCO 为菱形,所以 AC DO ⊥, …………………7分 因为正三角形PAB ,O 为AB 中点,所以PO AB ⊥ , …………………8 分 又因为平面ABCD ⊥平面PAB ,平面ABCD 平面PAB AB = ,所以PO ⊥平面ABCD , …………………10分 而AC ⊂平面ABCD ,所以 PO AC ⊥,又PO DO O = ,所以AC ⊥平面POD . …………………12分 又PD ⊂平面POD ,所以AC ⊥PD . …………………13分18. (共14分) BACDOPBA CD OP当1a =, 21'()x f x x -=, 令'()0f x =,得 1x =, …………………3分又()f x 的定义域为(0,)+∞, ()f x ',()f x 随x 的变化情况如下表:所以1x =时,()f x 的极小值为1 . …………………5分()f x 的单调递增区间为(1,)+∞,单调递减区间为(0,1); …………………6分(II )解法一:因为2211'()a ax f x x x x -=-+= ,且0a ≠, 令'()0f x =,得到1x a= ,若在区间(0,]e 上存在一点0x ,使得0()0f x <成立,其充要条件是()f x 在区间(0,]e 上的最小值小于0即可. …………………7分 (1)当10x a=<,即0a <时,'()0f x <对(0,)x ∈+∞成立, 所以,()f x 在区间(0,]e 上单调递减,故()f x 在区间(0,]e 上的最小值为11()ln f e a e a e e =+=+, 由10a e +<,得1a e <-,即1(,)a e∈-∞- …………………9分 (2)当10x a =>,即0a >时,① 若1e a≤,则'()0f x ≤对(0,]x e ∈成立,所以()f x 在区间(0,]e 上单调递减,所以,()f x 在区间(0,]e 上的最小值为11()ln 0f e a e a e e=+=+>,显然,()f x 在区间(0,]e 上的最小值小于0不成立 …………………11分 ② 若10e <<,即1a >时,则有所以()f x 在区间(0,]e 上的最小值为()lnf a a aa=+, 由11()ln(1ln )0f a a a a a a=+=-<, 得 1ln 0a -<,解得a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知:1(,)(,)a e e∈-∞-+∞ 符合题意. …………………14分 解法二:若在区间(0,]e 上存在一点0x ,使得0()0f x <成立, 即001ln 0a x x +<, 因为00x >, 所以,只需001ln 0ax x +< …………………7分 令()1ln g x ax x =+,只要()1ln g x ax x =+在区间(0,]e 上的最小值小于0即可因为'()ln (ln 1)g x a x a a x =+=+, 令'()(ln 1)0g x a x =+=,得1x e = …………………9分 (1)当0a <时:因为(0,)x e∈时,()1ln 0g x ax x =+>,而()1ln 1g e ae e ae =+=+, 只要10ae +<,得1a e <-,即1(,)a e∈-∞- …………………11分所以,当 (0,]x e ∈时,()g x 极小值即最小值为1()1ln1a g a eee e=+⋅=-, 由10ae-<, 得 a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知,有1(,)(,)a e e∈-∞-+∞ . …………………14分解:(Ⅰ)由已知,222214a b e a -==,所以2234a b =, ① …………………1分 又点3(1,)2M 在椭圆C 上,所以221914a b+= , ② …………………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. …………………5分(Ⅱ) 当直线l 有斜率时,设y kx m =+时,则由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消去y 得,222(34)84120k x kmx m +++-=, …………………6分222222644(34)(412)48(34)0k m k m k m ∆=-+-=+->, ③…………7分设A 、B 、P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则:012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++,…………8分 由于点P 在椭圆C 上,所以2200143x y +=. ……… 9分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………10分 又点O 到直线l 的距离为:d ===≥= ………11分 当且仅当0k =时等号成立 …………12分当直线l 无斜率时,由对称性知,点P 一定在x 轴上,从而P 点为(2,0),(2,0)-,直线l 为1x =±,所以点O 到直线l 的距离为1 ……13分所以点O 到直线l的距离最小值为2……14分20. (共13分)解: (I) 因为数列1240,30,k k ==320,k =410k =,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=-. …………………3分 (II) 一方面,1(1)()100m g m g m b ++-=-,根据j b 的含义知1100m b +≤,故0)()1(≤-+m g m g ,即 )1()(+≥m g m g , ① …………………5分 当且仅当1100m b +=时取等号.因为123100,,,,a a a a 中最大的项为50,所以当50m ≥时必有100m b =, 所以(1)(2)(49)(50)(51)g g g g g >>>===即当149m <<时,有()(1)g m g m >+; 当49m ≥时,有()(1)g m g m =+ . …………………7分(III )设M 为{}12100,,,a a a 中的最大值.由(II )可以知道,()g m 的最小值为()g M . 下面计算()g M 的值.123()100M g M b b b b M =++++-1231(100)(100)(100)(100)M b b b b -=-+-+-++-233445()()()()M M M M k k k k k k k k k k =----+----+----++- 23[2(1)]M k k M k =-+++-12312(23)()M M k k k Mk k k k =-++++++++123100()M a a a a b =-+++++ 123100()100a a a a =-+++++ ,∵123100200a a a a ++++= , ∴()100g M =-,∴()g m 最小值为100-. …………………13分说明:其它正确解法按相应步骤给分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011学年第一学期期中考试 (2011. 11)高三数学试卷答案(文科)考生注意:l .本试卷共有23道试题,满分150分。
考试时间120分钟。
2.答卷前,考生务必在答题纸上将学校、班级、姓名、学号、准考证号等填写清楚。
友情提示:诚实守信,沉着冷静,细致踏实,自信自强!一、填空题:(本大题共14题,考生必须在答题纸相应的空格内直接填写结果,每个空格填对得4分,否则一律得零分,共56分)1.函数2()lg2x f x x +=-的定义域为(2,2)- ; 2.不等式111x ≤-的解集 ;[)(,1)2,-∞+∞ 3.函数()2x f x x =+,则11()3f -=__ ;1 4.若ABC ∆的内角A 满足1sin 2A =,则A ∠= ;566ππ 或 5.方程22log (95)log (31)x x -=+的解是 ;1x =6.已知集合21{|2,},{|,}2x M y y x R N y y x x R -==∈==+∈,则N M ⋂= ;1[,1]27.已知函数)(x f 是定义在实数集上的单调增函数,若)23()12(2a f a f ->-,则实数a 的取值范围是 ;(2)1)-∞-+∞ ,(, 8.在一次歌手大奖赛上,七位评委为歌手打出的分数分别为9.48.49.49.99.69.49.7,去掉一个最高分,去掉一个最低分,所剩数据的方差为 ; 0.0169.251()x x -展开式中4x 的系数是 10 (用数字作答); 10.已知对于任意实数x ,函数)(x f 满足)()(x f x f =-.若函数)(x f 有2011个零点,则这2011个零点之和为 ;011.甲、乙、丙、丁4名同学被随机地分到A 、B 、C 三个社区参加社会实践,要求每个社区至少有一名同学.则甲、乙两人被分在同一个社区的概率是 ;61 12.已知[]x 表示不超过x 的最大整数,若方程13x ⎛⎫ ⎪⎝⎭=31x 的解为0x ,则0[]x = 0 ; 13.关于x 的方程0sin c o s 22=+-p x x 在],0[π∈x 有解,则实数p 的取值范围是 ;]1,2[-14.观察下列等式:1535522C C +=-,1597399922C C C ++=+,159131151313131322C C C C +++=-,1591317157171717171722C C C C C ++++=+,………由以上等式推测到一个一般的结论:对于*n N ∈,则1594141414141n n n n n C C C C +++++++++= ;()4121212nn n --+-二、选择题:(本大题共4题,每题有且只有一个正确答案,考生必须在答题纸的相应编号上填上所选答案,选对得4分,否则一律得零,共16分)15.已知函数x y e =的图像与函数()y f x =的图像关于直线y x =对称,则有 ( D ) A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x =>C .()22()x f x e x R =∈D .()2ln ln2(0)f x x x =+>16.函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭的单调增区间为 ( C ) A .,,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ B .()(),1,k k k Z ππ+∈ C .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ D .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭17.若A B C 、、为三个集合,A B B C = ,则一定有 ( A )A .A C ⊆B .C A ⊆ C .A C ≠D .A =∅18.设奇函数)(x f 的定义域为实数集R ,且满足(1)(1)f x f x +=-,当[01)x ∈,时,()21x f x =-.则135(0)()(1)()(2)()222f f f f f f +++++的值为 ( B )A .12+B .12-C .0D .三、解答题:(本大题共有5题,共78分,解答下列各题必须在答题纸相应编号的规定区域.....................内写出必要步骤.........)19.(本小题共14分)已知p :1123x --≤,q :(1)(1)0(0)x m x m m -+--≤>,且q 是p 的必要不充分条件,求实数m 的取值范围. 解:由1123x --≤ ⇒ 12123x --≤-≤ -----------------2分⇒ 210x -≤≤ 即p 为:[2,10]---------------------5分 而q 为:[1,1]m m -+, ------------------------------7分又q 是p 的必要不充分条件,即p q Ø,----------------10分所以 12110m m -≤-⎧⎨+≥⎩ ⇒9m ≥--------------------- ----------13分 即实数m 的取值范围为[9,)+∞.--------------------------- (14分)20.(本小题共14分)已知函数()2cos (sin cos )1f x x x x x R =-+∈,.(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间384⎡⎤⎢⎥⎣⎦,ππ上的最小值和最大值.解:(1)π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.-------4分 因此,函数()f x 的最小正周期为π.----------------------------------------------------6分(2)因为π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,-----------------------------8分 在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,--------------------------------------------------------------10分又π08f ⎛⎫= ⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭,-------12分故函数()f x 在区间384⎡⎤⎢⎥⎣⎦,ππ1-.---------------------------14分21.(本小题共16分) 已知2(1)()(0)2x p x p f x p x p+++=>+ (1)若1p >时,解关于x 的不等式()0f x ≥()0f x ≥;(2)若()2f x >对24x ≤≤时恒成立,求p 的取值范围.解:(1) ()(1)()02x p x f x x p++=≥+-------------------------------------------------2分 ①12{|1}2p p x p x x <<-≤≤->-时,解集为或------------------------------4分 ②2p =时, 解集为{|21}x x x ≥-≠-且------------------------------------6分③2p >时,解集为{|1}2p x p x x -≤<-≥-或--------------------------------8分 (2) 2(1)22x p x p x p+++>+ 2(1)42x p x p x p +++>+--------------------------------------------9分∴ 2(3)024x p x p x +-->≤≤对恒成立∴ 232(2)2411x x p x x x x ->=--+≤≤--对恒成立------------------------11分 ∵ 2()(2)[24]1g x x x =--+-在,上递减------------------------------13分 ∴ max ()(2)2g x g ==------------------------------------------------15分∴ 2p > ---------------------------------------------------16分22.(本小题共16分)建造一条防洪堤,其断面为等腰梯形,腰与底边成角为060(如图),考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为36平方米,为了使堤的上面与两侧面的水泥用料最省,则断面的外周长...l (梯形的上底线段与两腰长的和)要最小.(1)求外周长l 的最小值,此时防洪堤高h 为多少米?(2)如防洪堤的高h 限制在]23,3[范围内,外周长l 最小为多少米?解: (1)有题意36)(21=+h BC AD , h BC h BC AD 33260cot 20+=+=--------------3分所以1(2)233BC h h BCh+==---------------------5分外围周长26363333660sin22≥+=-+=+=hhhhhBCABl------8分当hh363=,即6=h时等号成立.--------------------11分所以外围的周长的最小值为26米,此时堤高6=h米.--------------12分(2)由(1)知)6(3hhl+=,由耐克函数可知l在]24,3[∈h内单调递增,------14分所以l的最小值为3533633=+⨯米(当3=h)-------------------16分23.(本小题共18分)已知函数1()|1|,(0)f x xx=->.(1)作出该函数的图像;(2)当0a b<<,且()()f a f b=时,求证:112a b+=;(3)是否存在实数(0)a b a b<<、,使得函数()y f x=的定义域为[,]a b时,值域为11[,]1616a b,若存在求出a b、的值;若不存在,说明理由.解:(1)---------------------4分(2) ∵0x>,∴11,1,()11,01xxf xxx⎧-≥⎪⎪=⎨⎪-<<⎪⎩;--------------------6分∴()f x在(0,1)上为减函数,在(1,)+∞上是增函数.-------------7分由0a b<<,且()()f a f b=,可得01a b<<<,和1111a b-=-,即112a b+=-----------------10分(3) 假设存在实数(0)a b a b<<、,使得函数()y f x=的定义域为[,]a b时,值域为11[,]1616a b .----11分 ①当(0,1)a b ∈、时,由于()f x 在(0,1)上是减函数,故111,1611116b a a b⎧-=⎪⎪⎨⎪-=⎪⎩,此时得a b =,不符合题意.-----12分②当[)(0,1),1,a b ∈∈+∞时,可得0在值域内,值域不可能是11[,]1616a b ,所以a b 、不存在.-----------13分所以 [)1,a b ∈+∞、. ∵[)1()|1|1,f x x=-+∞在上是增函数, ∴1(),161()16f a a f b b ⎧=⎪⎪⎨⎪=⎪⎩ 即111,1611116a ab b ⎧-=⎪⎪⎨⎪-=⎪⎩-------------------14分a b 、是方程211016x x -+=的两个根.--------------------------------------15分8x =±分,88a b a b <∴=-=+ 所以存在实数 (0)a b a b <<、满足题意 --------------------18分。