圆锥曲线定义在高考中的应用

合集下载

高考数学 圆锥曲线的概念,解题方法、题型、易误点总结 试题

高考数学 圆锥曲线的概念,解题方法、题型、易误点总结 试题

卜人入州八九几市潮王学校数学概念、方法、题型、易误点技巧总结——圆锥曲线1.圆锥曲线的两个定义:〔1〕第一定义中要重视“括号〞内的限制条件:椭圆中,与两个定点F,F的间隔的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的间隔的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值〞与<|F F|不可无视。

假设=|F F|,那么轨迹是以F,F为端点的两条射线,假设﹥|F F|,那么轨迹不存在。

假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。

比方:①定点,在满足以下条件的平面上动点P的轨迹中是椭圆的是A.B.C.D.〔答:C〕;②方程表示的曲线是_____〔答:双曲线的左支〕〔2〕第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母〞,其商即是离心率。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点间隔与此点到相应准线间隔间的关系,要擅长运用第二定义对它们进展互相转化。

如点及抛物线上一动点P〔x,y〕,那么y+|PQ|的最小值是_____〔答:2〕2.圆锥曲线的HY方程〔HY方程是指中心〔顶点〕在原点,坐标轴为对称轴时的HY位置的方程〕:〔1〕椭圆:焦点在轴上时〔〕〔参数方程,其中为参数〕,焦点在轴上时=1〔〕。

方程表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕。

比方:①方程表示椭圆,那么的取值范围为____〔答:〕;②假设,且,那么的最大值是____,的最小值是___〔答:〕〔2〕双曲线:焦点在轴上:=1,焦点在轴上:=1〔〕。

方程表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。

比方:①双曲线的离心率等于,且与椭圆有公一共焦点,那么该双曲线的方程_______〔答:〕;②设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,那么C的方程为_______〔答:〕〔3〕抛物线:开口向右时,开口向左时,开口向上时,开口向下时。

圆锥曲线在高考数学中的应用

圆锥曲线在高考数学中的应用

圆锥曲线在高考数学中的应用圆锥曲线在高考数学中的应用是一个广为人知的话题。

圆锥曲线是数学中非常重要的一个概念,它在几何、代数、物理等多个领域中都有着广泛的应用,同时也是高中数学中的重要知识点之一。

在高考中,圆锥曲线不仅是数学选择题中常出现的题型,而且在解析几何中也有重要的应用和指导意义。

一、圆锥曲线的定义和分类在空间直角坐标系中,对于任意给定的两个定点 F1 和 F2 ,以及一个正实数 e(离心率),设点 P(x, y,z) 在平面 F1PF2 上,且点 P 到 F1、F2 两点的距离之比为 e,则称 P(x, y,z) 所在的曲线为椭圆,当 e=1 时,称为双曲线。

以直角坐标系中的 x 轴为对称轴,离心率为 e 的曲线称为扁平椭圆,离心率为 1 的曲线称为各向同性圆;以直角坐标系中的 y 轴为对称轴,离心率为 e 的曲线称为长圆,离心率为 1 的曲线称为抛物线;直角坐标系中过 y 轴的某一条直线称为对称轴,离心率为 e 的曲线称为双曲线,当 e=1 时,曲线即为平行于对称轴的两条渐进线的双曲线。

二、圆锥曲线在高考中的应用1. 选择题中的圆锥曲线圆锥曲线作为数学中重要的知识点之一,也是高考数学试卷中出现频率较高的题型之一。

在选择题中,考生通常需要根据所给出的条件来确定所求函数方程的类型,根据曲线的性质推算出符合条件的答案。

例如:已知点 A(2,0)、B(0,1) 和抛物线 C:y=mx^2+mx-1 的顶点在直线AB 上,且交点为 D。

则一个满足 D(-2,-3) 的曲线方程式为(A)双曲线(B)椭圆(C)抛物线(D)圆这道问题主要考察考生对于曲线类型的判断能力和对于直线方程、抛物线特征等知识点的掌握能力。

2. 解析几何中的圆锥曲线在解析几何中,圆锥曲线是几何学中不可或缺的内容之一。

其中,椭圆、双曲线和抛物线最为常见,它们的数学模型、特征方程以及轨迹方程等知识点在高考中都有一定的出现概率。

例如:已知椭圆的中心在坐标原点,长轴为 10,短轴为 6,曲线经过点(8,0)和(-8,0),则该椭圆的方程是:(A)x^2/25+y^2/9=1(B)x^2/100+y^2/36=1(C)x^2/36+y^2/100=1(D)x^2 /9+y^2/25=1这个问题主要考察考生通过已知条件推导出椭圆的方程的能力,需要对于椭圆的中心、坐标轴长度等特征有较为准确的掌握。

圆锥曲线的性质及推广应用

圆锥曲线的性质及推广应用

圆锥曲线的性质及推广应用圆锥曲线的性质及推广应用摘要:在高中阶段,学生对圆锥曲线性质的掌握及应用,是现今我国高考数学的考查重点。

作为高中数学教师,我们要积极探究圆锥曲线在解析几何下的分类,然后利用这些平面解析几何的知识以及数形结合的数学思考模式,对圆锥曲线的基本性质及推广应用进行总结、证明,并将其应用于对学生的解题教学中。

关键词:高中数学;圆锥曲线;性质;推广;应用;解题圆锥曲线是解析几何的重要内容,其对于几何问题的研究却是利用代数的解题方法。

而且,对于高中生来说,圆锥曲线的性质掌握及其推广应用是目前我国高考数学的重点考查内容。

从更深层次来讲,加强对于圆锥曲线分类与性质的研究,在一定程度上可以帮助学生打开解题思路、提高解题技巧,同时培养学生以数学思维能力、创新能力为代表的综合能力。

因此,为了使学生能够更好地掌握圆锥曲线的性质及其的推广应用,且进一步提高学生的数学学习素质,作为高中数学教师的我们,就要积极探讨圆锥曲线在解析几何下的分类及其性质,注重对学生圆锥曲线性质及其推广应用的教学。

一、圆锥曲线的定义对于圆锥曲线在解析几何下的分类及性质的研究前提,是对于圆锥曲线定义的了解及掌握。

本文,笔者从三个方面介绍圆锥曲线的定义。

1、从几何的观点出发。

我们说,如果用一个平面去截取另一个平面,然后两个平面的交线就是我们所要研究的圆锥曲线。

严格来讲,圆锥曲线包含许多情况的退化,由于学生对于数学知识学习的局限性,对于圆锥曲线的教学,我们通常包含椭圆、双曲线和抛物线,这三类的知识内容。

2、从代数的观点出发。

在直角坐标系中,对于圆锥曲线的定义就是二元二次方程的图像。

高中生在其的学习中,可以根据其判别式△的不同,分为椭圆、双曲线、抛物线以及其他几种退化情形。

3、从焦点-准线的观点出发。

在平面中有一个点,一条确定的直线与一个正实常数e,那么所有到点与直线的距离之比都为e的点,所形成的图像就是圆锥曲线。

学生在具体的圆锥曲线学习中可以了解到,如果e的取值不同,这些点所形成的具体的图像也不同。

高考数学中的圆锥曲线

高考数学中的圆锥曲线

高考数学中的圆锥曲线圆锥曲线是代数几何中的重要概念,也是高中数学中比较难的一部分。

它包含了直线、双曲线、抛物线和椭圆四种曲线类型。

在高考数学中,圆锥曲线是一个难点,但是掌握了这个知识点,不仅有助于理解高数中其他知识点,也有助于应对高考成绩。

一、圆锥曲线的定义和概念圆锥曲线是在平面直角坐标系中的解析几何概念,它是二次方程x²+y²+Dx+Ey+F=0(D,E,F均为常数,且D²+E²≠0)的图形。

其中的四种曲线类型如下:1. 直线:当圆锥曲线的系数D=E=0时,圆锥曲线变成直线。

直线可以看成是一个不确定的椭圆,它有两个焦点(即两个充电电荷)、两个半轴(即极值)。

2. 双曲线:当圆锥曲线的系数D²-E²>0时,圆锥曲线变成双曲线。

双曲线有两个焦点和两个渐近线。

3. 抛物线:当圆锥曲线的系数D=0,E≠0时,圆锥曲线变成抛物线。

抛物线有一个焦点和一个顶点。

4. 椭圆:当圆锥曲线的系数D²-E²<0时,圆锥曲线变成椭圆。

椭圆有两个焦点和两个半轴。

二、实例探究:直线与圆锥曲线我们以直线为例,来看一下圆锥曲线与直线的关系。

首先,我们知道当圆锥曲线系数D=E=0时,可以变成一个直线。

而对于直线y=kx+b(k和b均为常数),可以加入一个令y=mx,那么k和b就是D和E,即圆锥曲线的系数。

例如,圆锥曲线x²-6x+y²+4y+9=0,我们可以将它转换为(x-3)²+(y+2)²=4。

这是一个半径为2,圆心在(3,-2)处的圆。

我们可以绘制它的图像,然后再绘制直线y=x-1的图像。

从图像来看,直线y=x-1穿过了圆心,因此它一定与这个圆有交点。

我们可以通过解方程,求出直线y=x-1与圆的交点:(x-3)²+(y+2)²=4;y=x-1.解得:x²-5x+9=0,因此x=(5±√5)/2,代入y=x-1,得到y=(3±√5)/2。

高考数学圆锥曲线的定义及应用

高考数学圆锥曲线的定义及应用

圆锥曲线的定义及应用一、圆锥曲线的定义1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。

即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。

2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。

即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。

3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

二、圆锥曲线的方程。

1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2)3.抛物线:y2=±2px(p>0),x2=±2py(p>0)三、圆锥曲线的性质1.椭圆:+=1(a>b>0)(1)X围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±2.双曲线:-=1(a>0, b>0)(1)X围:|x|≥a, y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞)(5)准线:x=±(6)渐近线:y=±x3.抛物线:y2=2px(p>0)(1)X围:x≥0, y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-四、例题选讲:例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。

解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。

圆锥曲线定义在解题中的应用

圆锥曲线定义在解题中的应用

圆锥曲线定义在解题中地应用-中学数学论文圆锥曲线定义在解题中地应用山东惠民县第一中学吴淑娟圆锥曲线是平面解析几何中地重点和难点,是高考必不可少地考试内容.圆锥曲线地定义揭示了圆锥曲线最本质地数形关系.灵活运用圆锥曲线地定义,有助于快速解答关于圆锥曲线地各种问题.比如求点地轨迹、求离心率、求最值、判断曲线类型等各方面地题目都可以应用到圆锥曲线地定义来解题.而利用圆锥曲线定义解题地关键和第一步是:识别出可用圆锥曲线定义解题地题目.本文以若干例题为例,分析在解题过程中应用圆锥曲线定义地各种思路和具体方法,希望能给大家一定地启发.一、圆锥曲线定义在求离心率方面地应用离心率是圆锥曲线几何性质地一个方面,也是常见地基本问题.不少离心率问题与圆锥曲线地定义密切相关,我们可以用圆锥曲线地定义进行求解.解析:灵活地运用圆锥曲线地定义,将使有关圆锥曲线地问题地解题过程变得简单快捷.一般而言,当题目涉及准线方程、焦点、离心率、圆锥曲线上地点这四个条件中地三个甚至两个时,我们就可以尝试通过圆锥曲线地定义解题了. 二、圆锥曲线定义在求值方面地应用解析:在这道题目里,如果通过联立方程组求两曲线地交点P地坐标,再通过两点间距离公式来计算|PF1|、|PF2|,其过程将十分繁琐.而通过圆锥曲线地定义出发,巧用椭圆和双曲线地定义解题,其过程将十分简单.三、圆锥曲线定义在求最值方面地应用四、圆锥曲线定义在求动点轨迹方程方面地应用求动点轨迹方程也是考试中常见地题型.如果在审题过程中发现动点运动轨迹或几何约束条件符合圆锥曲线地定义时,我们可根据定义确定其标准方程和待定系数之值,从而直接得出结果.例5:过原点地椭圆地一个焦点为F1(1,0),长轴长为4,求椭圆中心地轨迹.解析:本题用常规解法会比较难,因为题目中地条件不能很快得出结论,但我们可以换一种思路,用圆锥曲线地定义来求解.用定义法求轨迹方程有五个步骤:1.定性:根据题设条件找到动点M地运动轨迹与已知条件之间所保持地不变地地方,并判断动点M地轨迹是否符合某种圆锥曲线地定义,从而得到初步地解题方向;2.定位:根据题设条件确定圆锥曲线对称中心、顶点地位置;3.定量:求出相关参数地值;4.定方程:确定动点M 地轨迹方程;5.定范围:确定动点地运动范围.总之,巧妙地运用圆锥曲线地定义解题,一方面使我们能迅速抓住问题地本质,通过数形结合,避开复杂地运算,解开题目;另一方面使我们进一步理解和掌握圆锥曲线地定义,将圆锥曲线和相关地知识融会贯通,为进一步学习更高深地数学知识打下坚实地基础.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.b5E2R。

圆锥曲线的七种常考题型详解【高考必备】

圆锥曲线的七种常考题型详解【高考必备】

圆锥曲线的七种常考题型详解【高考必备】圆锥曲线的七种常见题型题型一:定义的应用圆锥曲线的定义包括椭圆、双曲线和抛物线。

在定义的应用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。

适用条件需要注意。

例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。

例2:方程表示的曲线是什么?题型二:圆锥曲线焦点位置的判断在判断圆锥曲线焦点位置时,需要将方程化成标准方程,然后判断。

对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐标轴上,一次项的符号决定开口方向。

例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么?例2:当k为何值时,方程是椭圆或双曲线?题型三:圆锥曲线焦点三角形问题在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。

PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。

例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。

例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。

题型四:圆锥曲线中离心率、渐近线的求法在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。

在解题时需要注重数形结合思想和不等式解法。

例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是多少?例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。

题型五:圆锥曲线的参数方程在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。

例1:求椭圆x^2/4+y^2/9=1的参数方程。

例2:求双曲线x^2/9-y^2/4=1的参数方程。

题型六:圆锥曲线的对称性圆锥曲线具有对称性,可以通过对称性求解问题。

高考数学专题六解析几何 微专题38 圆锥曲线中二级结论的应用

高考数学专题六解析几何 微专题38 圆锥曲线中二级结论的应用

当我们垂直地缩小一个圆时,我们得到一个椭圆,椭圆的面积等于圆周率
π 与椭圆的长半轴长与短半轴长的乘积,已知椭圆 C:ax22+by22=1(a>b>0)的
面积为 6π,两个焦点分别为 F1,F2,点 P 为椭圆 C 的上顶点,直线 y=
kx 与椭圆 C 交于 A,B 两点,若 PA,PB 的斜率之积为-49,则椭圆 C 的
A,B
两点,且|A→F|=λ|F→B|,则椭圆的离心率等于λ+λ1-c1os
α.
2.设点 P 是双曲线ax22-by22=1(a>0,b>0)上异于实轴端点的任一点,则
(1)|PF1||PF2|=1-2cbo2s
θ.(2)
S△PF1F2
= b2 tan
由二级结论可知S△F1PF2 =
∠bF2 1PF2=5 3.
tan 2
(2)已知 P 为椭圆 C:x42+y32=1 上的一个动点,F1,F2 是椭圆 C 的左、右焦 点,O 为坐标原点,O 到椭圆 C 在 P 点处切线的距离为 d,若|PF1|·|PF2|=
274,则
14 d=____2____.
方法二 因为AB过抛物线的焦点, 设A(x1,y1),B(x2,y2), 则 x1x2=p42=1,y1y2=-p2=-4,
所以O→A·O→B=x1x2+y1y2=-3.
总结提升
圆锥曲线有许多形式结构相当漂亮的结论,记住圆锥曲线中一些二 级结论,能快速解决圆锥曲线压轴小题,常用结论包括椭圆与双曲 线中的焦点三角形面积公式、焦半径、切线方程、离心率等,周角 定理以及抛物线焦点弦二级结论的综合应用.
3.M为抛物线y2=2px(p>0)的准线l上一点,MA,MB均与抛物线相切,A, B为切点,则有:(见图4) (1)AB过焦点F. (2)2yM=yA+yB. (3)MA⊥MB. (4)MF⊥AB.

高三数学:圆锥曲线中的新定义解析

高三数学:圆锥曲线中的新定义解析

“九省联考”新题型圆锥曲线中的新定义问题新定义题目简介题型特点“新定义”题型内容新颖,题目中常常伴随有“定义”、“规定”等字眼,题目一般都是用抽象的语言给出新的定义、运算或符号,没有过多的解析说明,要求考生自己仔细揣摩、体会和理解定义的含义,在阅读新定义后要求马上运用它解决相关问题,考查考生的理解与运算、信息迁移的能力。

解题策略求解“新定义”题目,主要分如下几步:(1)对新定义进行信息提取,明确新定义的名称和符号;(2)对新定义所提取的信息进行加工,探求解决方法和相近的知识点,明确它们的相同点和相似点;(3)对定义中提取的知识进行转换、提取和转换,这是解题的关键,如果题目是新定义的运算、法则,直接按照法则计算即可;若新定义的性质,一般要判断性质的适用性,能否利用定义的外延,可用特质排除,注意新定义题目一般在高考试卷的压轴位置,往往设置三问,第一问的难度并不大,所以对于基础差的考生也不要轻易放弃。

一、单选题1已知曲线Γ的对称中心为O,若对于Γ上的任意一点A,都存在Γ上两点B,C,使得O为△ABC的重心,则称曲线Γ为“自稳定曲线”.现有如下两个命题:①任意椭圆都是“自稳定曲线”;②存在双曲线是“自稳定曲线”.则()A.①是假命题,②是真命题B.①是真命题,②是假命题C.①②都是假命题D.①②都是真命题【答案】B【分析】设出椭圆、双曲线方程及点A,B,C的坐标,结合三角形重心坐标公式利用点A的坐标求出直线BC 方程,再与椭圆或双曲线方程联立,判断是否有两个不同解即得.【详解】椭圆是“自稳定曲线”.设椭圆方程为x2a2+y2b2=1(a2≠b2,a2>0,b2>0),令A(x0,y0),则b2x20+a2y20=a2b2,设B(x1,y1),C(x2,y2),由O是△ABC的重心,知x1+x2=-x0y1+y2=-y0,直线BC过点M-x02,-y02,当y 0=0时,若A (a ,0),直线y =-a2与椭圆有两个交点B ,C ,符合题意,若A (-a ,0),直线y =a2与椭圆有两个交点B ,C ,符合题意,则当y 0=0,即A (±a ,0)时,存在两点B ,C ,使得△ABC 的重心为原点O ,同理,当x 0=0,即A (0,±b )时,存在两点B ,C ,使得△ABC 的重心为原点O ,当x 0y 0≠0时,b 2x 21+a 2y 21=a 2b 2b 2x 22+a 2y 22=a 2b 2 ,两式相减得b 2(x 1-x 2)(x 1+x 2)+a 2(y 1-y 2)(y 1+y 2)=0,直线BC 的斜率y 1-y 2x 1-x 2=-b 2x 0a 2y 0,方程为y +y 02=-b 2x 0a 2y 0x +x 02 ,即y =-b 2x 0a 2y 0x -b 22y 0,由y =-b 2x 0a 2y 0x -b 22y 0b 2x 2+a 2y 2=a 2b2消去y 并整理得:x 2+x 0x +a 24-a 2b 2y 20=0,Δ=x 20-a 2+4a 2b 2y 20=-a 2b 2y 20+4a 22b 2y 20=3a 2b2y 20>0,即直线BC 与椭圆交于两点,且O 是△ABC 的重心,即当x 0y 0≠0时,对于点A ,在椭圆上都存在两点B ,C ,使得O 为△ABC 的重心,综上,椭圆上任意点A ,在椭圆上都存在两点B ,C ,使得O 为△ABC 重心,①为真命题;双曲线不是“自稳定曲线”.由对称性,不妨令双曲线方程为x 2m 2-y 2n2=1(m >0.n >0),令A (t ,s ),则n 2t 2-m 2s 2=m 2n 2,设B (t 1,s 1),C(t 2,s 2),假设O 是△ABC 的重心,则t 1+t 2=-t s 1+s 2=-s,直线BC 过点-t 2,-s2,当s =0时,直线x =-m 2或直线x =m 2与双曲线x 2m 2-y 2n2=1都不相交,因此s ≠0,n 2t 21-m 2s 21=m 2n 2n 2t 22-m 2s 22=m 2n2 ,两式相减得n 2(t 1-t 2)(t 1+t 2)-m 2(s 1-s 2)(s 1+s 2)=0,直线BC 的斜率s 1-s 2t 1-t 2=n 2t m 2s ,方程为y +s 2=n 2t m 2s x +t 2 ,即y =n 2t m 2s x +n 22s ,由y =n 2t m 2sx +n 22sn 2x 2-m 2y 2=m 2n2消去y 并整理得:x 2+tx +m 24+m 2n 2s 2=0,Δ =t 2-a 2-4m 2n 2s 2=m 2n 2s 2-4m 2n 2s 2=-3m 2n2s 2<0,即直线BC 与双曲线不相交,所以不存在双曲线,其上点A 及某两点B ,C ,O 为△ABC 的重心,②是假命题.故选:B【点睛】思路点睛:涉及直线被圆锥曲线所截弦中点及直线斜率问题,可以利用“点差法”,设出弦的两个端点坐标,代入曲线方程作差求解,还要注意验证.2数学美的表现形式多种多样,我们称离心率e =ω(其中ω=5-12)的椭圆为黄金椭圆,现有一个黄金椭圆方程为x 2a 2+y 2b2=1,(a >b >0),若以原点O 为圆心,短轴长为直径作⊙O ,P 为黄金椭圆上除顶点外任意一点,过P 作⊙O 的两条切线,切点分别为A ,B ,直线AB 与x ,y 轴分别交于M ,N 两点,则b 2|OM |2+a 2|ON |2=()A.1ωB.ωC.-ωD.-1ω【答案】A【分析】根据题意O 、A 、P 、B 四点在以OP 为直径的圆上,可设点P 坐标为P x 0,y 0 ,从而得出四点所在圆的方程为x x -x 0 +y y -y 0 =0,利用两圆方程之差求得切点A 、B 所在直线方程,进而求得M 、N 两点坐标即可解决本题.【详解】依题意有OAPB 四点共圆,设点P 坐标为P x 0,y 0 ,则该圆的方程为:x x -x 0 +y y -y 0 =0,将两圆方程:x 2+y 2=b 2与x 2-x 0x +y 2-y 0y =0相减,得切点所在直线方程为l AB :xx 0+yy 0=b 2,解得M b 2x 0,0 ,N 0,b 2y 0,因为x 20a 2+y 20b2=1,所以b 2|OM |2+a 2|ON |2=b 2b 4x 20+a 2b 4y 2=b 2x 20+a 2y 2b 4=a 2b 2b 4=a 2b 2=11-ω2=25-1=1ω.故选:A3小明同学在完成教材椭圆和双曲线的相关内容学习后,提出了新的疑问:平面上到两个定点距离之积为常数的点的轨迹是什么呢?又具备哪些性质呢?老师特别赞赏他的探究精神,并告诉他这正是历史上法国天文学家卡西尼在研究土星及其卫星的运行规律时发现的,这类曲线被称为“卡西尼卵形线”.在老师的鼓励下,小明决定先从特殊情况开始研究,假设F 1-1,0 、F 21,0 是平面直角坐标系xOy 内的两个定点,满足PF 1 ⋅PF 2 =2的动点P 的轨迹为曲线C ,从而得到以下4个结论:①曲线C 既是轴对称图形,又是中心对称图形;②动点P 的横坐标的取值范围是-3,3 ;③OP 的取值范围是1,3 ;④△PF 1F 2的面积的最大值为1.其中正确结论的个数为()A.1 B.2C.3D.4【答案】D【分析】设P (x ,y ),由题设可得曲线C 为(x 2-1)2+2y 2(x 2+1)+y 4=4,将(x ,y )、(-x ,y )、(-x ,-y )代入即可判断①;令t =y 2≥0,由f (t )=t 2+2(x 2+1)t +(x 2-1)2-4在[0,+∞)上有解,结合二次函数性质求P 的横坐标的取值范围判断②;由②分析可得OP 2=x 2+y 2=2x 2+1-1,进而求范围判断③;由基本不等式、余弦定理确定∠F 1PF 2范围,再根据三角形面积公式求最值判断④.【详解】令P (x ,y ),则(x +1)2+y 2⋅(x -1)2+y 2=2,所以[(x +1)2+y 2][(x -1)2+y 2]=4,则(x 2-1)2+2y 2(x 2+1)+y 4=4,将(x ,y )、(-x ,y )、(-x ,-y )代入上述方程后,均有(x 2-1)2+2y 2(x 2+1)+y 4=4,所以曲线C 既是轴对称图形,又是中心对称图形,①正确;令t =y 2≥0,则t 2+2(x 2+1)t +(x 2-1)2-4=0,对于f (t )=t 2+2(x 2+1)t +(x 2-1)2-4,对称轴为x =-(x 2+1)<0,所以f (t )在[0,+∞)上递增,要使f (t )=0在[0,+∞)上有解,只需f (0)=(x 2-1)2-4≤0,所以-1≤x 2-1≤2,即0≤x 2≤3,可得-3≤x ≤3,②正确;由OP 2=x 2+y 2,由f (t )=0中,Δ=4(x 2+1)2-4(x 2-1)2+16=16(x 2+1),所以t =y 2=-2(x 2+1)+Δ2=2x 2+1-(x 2+1)>0,其中负值舍去,综上,OP 2=x 2+y 2=2x 2+1-1,又0≤x 2≤3,即1≤x 2+1≤4,所以OP 2∈[1,3],则OP ∈[1,3],③正确;由PF 1 +PF 2 ≥2PF 1 ⋅PF 2 =22,仅当PF 1 =PF 2 =2时等号成立,△PF 1F 2的面积S =12PF 1 PF 2 sin ∠F 1PF 2=sin ∠F 1PF 2,而cos ∠F 1PF 2=PF 1 2+PF 2 2-F 1F 222PF 1 PF 2 ≥0,所以0°<∠F 1PF 2≤90°,所以△PF 1F 2的面积的最大值为1,④正确.综上,正确结论的个数为4个.故选:D【点睛】关键点点睛:②③通过换元t =y 2≥0,构造f (t )=t 2+2(x 2+1)t +(x 2-1)2-4,利用根的分布求P 的横坐标、OP 的取值范围.4在平面直角坐标系中,定义d (A ,B )=max x 1-x 2 ,y 1-y 2 为两点A (x 1,y 1),B (x 2,y 2)的“切比雪夫距离”,并对于点P 与直线l 上任意一点Q ,称d P ,Q 的最小值为点P 与直线l 间的“切比雪夫距离”,记作d P ,l ,给定下列四个命题:p 1:对于任意的三点A ,B ,C ,总有d C ,A +d C ,B ≥d A ,B ;p 2:若点P 3,1 ,直线l :2x -y -1=0,则d P ,l =43;p 3:满足d (O ,M )=C C >0 的点M 的轨迹为正方形;p 4:若点F 1(-c ,0),F 2c ,0 ,则满足d P ,F 1 -d P ,F 2 =2a 2c >2a >0 的点M 的轨迹与直线y =k (k 为常数)有且仅有2个公共点;则其中真命题的个数为()A.1B.2C.3D.4【答案】D【分析】①讨论A ,B ,C 三点共线,以及不共线的情况,结合图象和新定义,即可判断;②设点Q 是直线y =2x -1上一点,且Q (x ,2x -1),可得d (P ,Q )=max {|x -3|,|2-2x |},讨论|x -3|,|2-2x |的大小,可得距离d ,再由函数的性质,可得最小值;③运用新定义,求得点的轨迹方程,即可判断;④讨论P 在坐标轴上和各个象限的情况,求得轨迹方程,即可判断.【详解】①对任意三点A 、B 、C ,若它们共线,设A (x 1,y 1)、B (x 2,y 2),C (x 3,y 3),如图,结合三角形的相似可得d (C ,A ),d (C ,B ),d (A ,B )为AN ,CM ,AK ,或CN ,BM ,BK ,则d (C ,A )+d (C ,B )=d (A ,B );若B ,C 或A ,C 对调,可得d (C ,A )+d (C ,B )>d (A ,B );若A ,B ,C 不共线,且三角形中C 为锐角或钝角,由矩形CMNK 或矩形BMNK ,d (C ,A )+d (C ,B )≥d (A ,B );则对任意的三点A ,B ,C ,都有d (C ,A )+d (C ,B )≥d (A ,B );故①正确;设点Q 是直线y =2x -1上一点,且Q (x ,2x -1),可得d (P ,Q )=max {|x -3|,|2-2x |},由|x -3|≥|2-2x |,解得-1≤x ≤53,即有d (P ,Q )=|x -3|,当x =53时,取得最小值43;由|x -3|<|2-2x |,解得x >53或x <-1,即有d (P ,Q )=|2x -2|,d (P ,Q )的范围是3,+∞ ∪43,+∞ =43,+∞ ,无最值,综上可得,P ,Q 两点的“切比雪夫距离”的最小值为43.故②正确;③由题意,到原点的“切比雪夫距离”等于C 的点设为x ,y ,则max x ,y =C ,若y ≥x ,则|y |=C ;若|y |<|x |,则|x |=C ,故所求轨迹是正方形,则③正确;④定点F 1(-c ,0)、F 2(c ,0),动点P (x ,y )满足|d (P ,F 1)-d (P ,F 2)|=2a (2c >2a >0),可得P 不y 轴上,P 在线段F 1F 2间成立,可得x +c -(c -x )=2a ,解得x =a ,由对称性可得x =-a 也成立,即有两点P 满足条件;若P 在第一象限内,满足|d (P ,F 1)-d (P ,F 2)|=2a ,即为x +c -y =2a ,为射线,由对称性可得在第二象限、第三象限和第四象限也有一条射线,则点P 的轨迹与直线y =k (k 为常数)有且仅有2个公共点.故④正确;综上可得,真命题的个数为4个,故选:D .【点睛】关键点点睛:求解本题的关键在于对新定义“切比雪夫距离”的理解,“切比雪夫距离”即是两点横坐标之差绝对值与纵坐标之差绝对值中的最大值;理解新定义的基础上,结合曲线与方程的有关性质,即可求解.5定义:若直线l将多边形分为两部分,且使得多边形在l两侧的顶点到直线l的距离之和相等,则称l为多边形的一条“等线”.已知双曲线C:x2a2-y2b2=1(a,b为常数)和其左右焦点F1,F2,P为C上的一动点,过P作C的切线分别交两条渐近线于点A,B,已知四边形AF1BF2与三角形PF1F2有相同的“等线”l.则对于下列四个结论:①PA=PB;②等线l必过多边形的重心;③l始终与3x2a2-3y2b2=1相切;④l的斜率为定值且与a,b有关.其中所有正确结论的编号是()A.①②B.①④C.②③④D.①②③【答案】D【分析】对于①,利用导数的几何意求出过点P x0,y0的切线方程,再与渐近线方程联立可求出A,B的横坐标,然后与x0比较可得答案,对于②,由“等线”的定义结合重心的定义分析判断,对于③④,由多边形重心的定义可知四边形AF1BF,其重心H必在△AF1F2与△BF1F2重心连线上,也必在△AF1B与△AF2B重心连线上,△PF1F2重心设为G,则l即为直线GH,然后由重心的性质可证得GH∥AB,从而可得结论.【详解】解:①:设P x0,y0,当y0>0时,设y>0,则由x2a2-y2b2=1,得y=bax2-a2,所以y =bxa x2-a2,所以切线的斜率为k=bx0a x20-a2,所以切线方程为y-y0=bx0a x20-a2(x-x0),因为点P x0,y0在双曲线上,所以x20a2-y20b2=1,得x20-a2=aby0,b2x20-a2y20=a2b2,所以y-y0=bx0a⋅aby0(x-x0)=b2x0a2y0(x-x0),所以a2y0y-a2y20=b2x0x-b2x20,所以b2x0x-a2y0y=b2x20-a2y20=a2b2,所以x0xa2-y0yb2=1,同理可求出当y0<0时的切线方程为x0xa2-y0yb2=1,当y0=0时,双曲线的切线方程为x=±a,满足x0xa2-y0yb2=1,所以过P点切线方程为x0xa2-y0yb2=1,渐近线方程为y=±b a x联立两直线方程得x A=ax0a-y0b,x B=ax0a+y0b故有x A+x B=2x0x02a2-y02b2=2x0,故PA=PB②:设多边形顶点坐标为x i,y i,其中i=1,2,3⋯n设“等线”方程为y -kx -b =0,则x i ,y i 到等线的距离为:d i =y i -kx i -b1+k 2又因为等线将顶点分为上下两部分,则有d 上部分=y i -kx i -b1+k 2d 下部分=-y i -kx i -b1+k 2d 上部分= d 下部分从而ni =1y i -kx i -b1+k2=0整理得1n ni =1y i =k ⋅1n ni =1x i +b即等线l 必过该多边形重心.③④:考察△PF 1F 2重心,设P x 0,y 0 ,则重心G x 03,y 03.对于四边形AF 1BF ,其重心H 必在△AF 1F 2与△BF 1F 2重心连线上,也必在△AF 1B 与△AF 2B 重心连线上,则l 即为直线GH .设△AF 1F 2与△BF 1F 2重心分别为E ,F ,则OE EA=OF FB =12,所以EF ∥AB ,因为G 为△PF 1F 2的重心,所以OE EA=OGGP ,所以EG ∥AB ,所以E ,F ,G 三点共线,因为H 在EF 上,所以GH ∥AB ,过G x 03,y 03,因为直线AB 为x 0x a 2-y 0y b 2=1,所以直线AB 的斜率为k =b 2a 2⋅x0y 0,所以直线GH 的方程为y -y 03=b 2a 2⋅x 0y 0x -x 03 ,整理得3x 0x a 2-3y 0y b 2=1,所以直线l 方程3x 0xa 2-3y 0yb 2=1,由①的求解过程可知该方程为3x 2a 2-3y 2b2=1切线方程,所以③正确,④错误,故①②③正确.故选:D【点睛】关键点点睛:此题考查双曲线的性质和导数的几何意义的应用,考查新定义,解题的关键是对“等线”定义的正确理解和重心的找法,考查计算能力,属于难题.二、多选题6古希腊数学家阿波罗尼斯采用平面切割圆锥面的方法来研究圆锥曲线.后经研究发现:当圆锥轴截面的顶角为2α时,用一个与旋转轴所成角为β的平面γ(不过圆锥顶点)去截该圆锥面,则截口曲线(圆锥曲线)的离心率为e =cos βcos α.比如,当α=β时,e =1,即截得的曲线是抛物线.如图,在空间直角坐标系Oxyz 中放置一个圆锥,顶点S (0,0,2),M (0,1,1),底面圆O 的半径为2,直径AB ,CD 分别在x ,y 轴上,则下列说法中正确的是()A.已知点N (0,0,1),则过点M ,N 的平面截该圆锥得的截口曲线为圆B.平面MAB 截该圆锥得的截口曲线为抛物线的一部分C.若E (-2,-2,0),F (2,2,0),则平面MEF 截该圆锥得的截口曲线为双曲线的一部分D.若平面γ截该圆锥得的截口曲线为离心率是2的双曲线的一部分,则平面γ不经过原点O 【答案】BCD【分析】根据情境,由题可知cos α=cos π4,再对每个选项,求出过点M 的平面与旋转轴OS 所成角的余弦,即cos β的值,代入e =cos βcos α求值,从而利用离心率的范围判断截口曲线类型即可.【详解】对于A :只有过点M ,N 且与底面平行的平面截该圆锥得的截口曲线才是圆,其他情况均不是圆,故A 不正确;对于B :由题得底面圆O 的半径为2,则OD =2,OS =2,则M 为SD 中点,易知AB ⊥平面SCD ,SD ⊂平面SCD ,所以SD ⊥AB ,又SD ⊥OM ,OM ∩AB =O ,OM ⊂平面MAB ,AB ⊂平面MAB ,所以SD ⊥平面MAB ,又易知OM =SM =MD ,所以平面MAB 与旋转轴OS 所成角为∠SOM =π4,∠OSD =π4,即β=π4,α=π4,所以e =cos βcos α=1,所以平面MAB 截该圆锥得的截口曲线为抛物线的一部分,故B 正确;对于C :E (-2,-2,0),F (2,2,0),M (0,1,1),则EF =22,22,0 ,MF=2,2-1,-1 ,设平面MEF 的一个法向量为m=x ,y ,z ,则EF ⋅m =22x +22y =0MF ⋅m=2x +2-1 y -z =0,取x =1,则y =-1,z =1,故m=(1,-1,1),所以sin β=cos m ,OS =m ⋅OSm OS =23×2=33,∴cos β=63,故e =cos βcos α=63cos π4=6322=233∈(1,+∞),所以平面MEF 截该圆锥得的截口曲线为双曲线的一部分,故C 正确;对于D :若平面γ截该圆锥得的截口曲线为离心率是2的双曲线的一部分,则cos βcos α=cos β22=2,∴cos β=1,∵β∈0,π2 ,∴β=0,所以平面γ⎳OS ,故平面γ不经过原点O ,故D 正确.故选:BCD .【点睛】关键点睛:本题解决的关键是理解截口曲线(圆锥曲线)的离心率的定义,结合空间向量法即可得解.7法国数学家加斯帕尔•蒙日是19世纪著名的几何学家,他创立了画法几何学,推动了空间解析几何学的独立发展,奠定了空间微分几何学的宽厚基础.根据他的研究成果,我们定义椭圆C :x 2a 2+y 2b 2=1(a >b >0)的“蒙日圆”的方程为x 2+y 2=a 2+b 2,已知椭圆C 的长轴长为4,离心率为e =12,P 为蒙日圆上任一点,则以下说法正确的是()A .过点P 作椭圆C 的两条切线PA ,PB ,则有PA ⊥PB .B .过点P 作椭圆的两条切线,交椭圆于点A ,B ,O 为原点,则OP ,AB 的斜率乘积为定值k OP ⋅k AB =-43.C .过点P 作椭圆的两条切线,切点分别为A ,B ,则S △APB 的取值范围97,167.D .过点P 作椭圆的两条切线,切点分别为A ,B ,O 为原点,则S △AOB 的最大值为3.【答案】ACD【分析】对于A ,由题意求出蒙日圆的方程,讨论切线斜率是否存在,结合联立直线和椭圆方程,利用根与系数关系化简,即可判断;对于B ,求出切点弦AB 的方程即可得其斜率,化简即可判断;对于C ,D ,联立切点弦AB 的方程和椭圆方程,求出弦长|AB |,求出相应三角形的高,即可求得三角形面积的表达式,结合函数的单调性或者不等式知识即可求得最值或范围.【详解】由题意知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4,离心率为e =12,故a =2,c a =12,∴c =1,b 2=a 2-c 2=3,则椭圆方程为x 24+y 23=1,“蒙日圆”的方程为x 2+y 2=7;对于A ,假设有一条切线斜率不存在,不妨假设PB 斜率不存在,则不妨设PB 过椭圆的右顶点,则PB 方程为x =2,则P 点坐标为P (2,±3),显然此时A 点取椭圆的短轴顶点(0,±3),则PA 方程为y =±3,此时满足PA 与椭圆相切,且PA ⊥PB ;当切线斜率存在且不为0时,设切线方程为y =kx +m ,(k ≠0),设P x 1,y 1 ,则m =y 1-kx 1,x 21+y 21=7,联立y =kx +mx 24+y 23=1,整理得4k 2+3 x 2+8kmx +4m 2-12=0,则Δ=64k 2m 2-44k 2+3 4m 2-12 =0,即m 2=4k 2+3,将m =y 1-kx 1代入上式,得关于k 的方程x 21-4 k 2-2x 1y 1k +y 21-3=0,则Δ=4(3x 21+4y 21-12)>0,(P 在椭圆x 24+y 23=1外),k PA ,k PB 为该方程的两个根,故k PA ⋅k PB =y 21-3x 21-4=7-x 21-3x 21-4=-1,即PA ⊥PB ,A 正确;对于B ,设A (x 2,y 2),B (x 3,y 3),则PA 的方程为x 2x4+y 2y 3=1,PB 的方程为x 3x4+y 3y 3=1,两切线过点P x 1,y 1 ,故x 2x 14+y 2y 13=1,x 3x14+y 3y 13=1,即点A ,B 在直线xx 14+yy 13=1上,因为两点确定一条直线,故直线AB 的方程为xx 14+yy 13=1,则k AB =-3x14y 1,而k OP =y 1x 1,故k OP ⋅k AB =-34,B 错误;对于C ,由于直线AB 的方程为xx 14+yy 13=1,联立x 24+y 23=1,得3x 21+4y 21 x 2-24x 1x +48-16y 21=0,Δ =24x 1 2-43x 21+4y 21 48-16y 21 =64y 213x 21+4y 21-12 >0,则x 2+x 3=24x 13x 21+4y 21,x 2x 3=48-16y 213x 21+4y 21,故|AB |=1+(k AB )2⋅(x 2+x 3)2-4x 2x 3=1+9x 2116y 21×8|y 1|3x 21+4y 21-123x 21+4y 21=29x 21+16y 213x 21+4y 21-123x 21+4y 21,又点P 到直线AB 的距离为d =|3x 21+4y 21-12|9x 21+16y 21,故S △APB =12|AB |d =9x 21+16y 213x 21+4y 21-123x 21+4y 21⋅|3x 21+4y 21-12|9x 21+16y 21=(3x 21+4y 21-12)3x 21+4y 21-123x 21+4y 21,又x 21+y 21=7,故令t =3x 21+4y 21-12=y 21+9,t ∈[3,4],则S △APB =t 3t 2+12=11t+12t3,令f (t )=1t +12t 3,显然f (t )在[3,4]上单调递减,故y =11t+12t3在[3,4]上单调递增,则(S △APB )min =1f (3)=2721=97,(S △APB )max =1f (4)=6428=167,即S △APB 的取值范围97,167,C 正确;对于D ,由C 的分析可知|AB |=29x 21+16y 213x 21+4y 21-123x 21+4y 21,而点O 到直线AB 的距离为d =|-12|9x 21+16y 21,故S △AOB =12|AB |d =9x 21+16y 213x 21+4y 21-123x 21+4y 21⋅|-12|9x 21+16y 21=123x 21+4y 21-123x 21+4y 21,又x 21+y 21=7,故令t =3x 21+4y 21-12=y 21+9,t ∈[3,4],则S △AOB =12t t 2+12=12t +12t,而t +12t ≥212=43,当且仅当t =12t,即t =23∈[3,4]时等号成立,故S △AOB =12t +12t ≤1243=3,即S △AOB 的最大值为3,D 正确,故选:ACD【点睛】难点点睛:本题考查了椭圆的相关知识,涉及到蒙日圆的问题,综合性强,计算量大,难点在于计算相关三角形的面积,要注意切线方程的应用,计算需要十分细心.8小明同学在完成教材椭圆和双曲线的相关内容学习后,提出了新的疑问:平面上到两个定点距离之积为常数的点的轨迹是什么呢?又具备哪些性质呢?老师特别赞赏他的探究精神,并告诉他这正是历史上法国天文学家卡西尼在研究土星及其卫星的运行规律时发现的,这类曲线被称为“卡西尼卵形线”.在老师的鼓励下,小明决定先从特殊情况开始研究,假设F 1-1,0 、F 21,0 是平面直角坐标系xOy 内的两个定点,满足PF 1 ⋅PF 2 =2的动点P 的轨迹为曲线C ,从而得到以下4个结论,其中正确结论的为()A.曲线C 既是轴对称图形,又是中心对称图形B.动点P 的横坐标的取值范围是-3,3C.OP 的取值范围是1,2D.△PF 1F 2的面积的最大值为1【答案】ABD【分析】设P (x ,y ),由题设可得曲线C 为(x 2-1)2+2y 2(x 2+1)+y 4=4,将(x ,y )、(-x ,y )、(-x ,-y )代入即可判断A ;令t =y 2≥0,由f (t )=t 2+2(x 2+1)t +(x 2-1)2-4在[0,+∞)上有解,结合二次函数性质求P 的横坐标的取值范围判断B ;由②分析可得OP 2=x 2+y 2=2x 2+1-1,进而求范围判断C ;由基本不等式、余弦定理确定∠F1PF 2范围,再根据三角形面积公式求最值判断D .【详解】令P (x ,y ),则(x +1)2+y 2⋅(x -1)2+y 2=2,所以[(x +1)2+y 2][(x -1)2+y 2]=4,则(x 2-1)2+2y 2(x 2+1)+y 4=4,将(x ,y )、(-x ,y )、(-x ,-y )代入上述方程后,均有(x 2-1)2+2y 2(x 2+1)+y 4=4,所以曲线C 既是轴对称图形,又是中心对称图形,A 正确;令t =y 2≥0,则t 2+2(x 2+1)t +(x 2-1)2-4=0,对于f (t )=t 2+2(x 2+1)t +(x 2-1)2-4,对称轴为x =-(x 2+1)<0,所以f (t )在[0,+∞)上递增,要使f (t )=0在[0,+∞)上有解,只需f (0)=(x 2-1)2-4≤0,所以-1≤x 2-1≤2,即0≤x 2≤3,可得-3≤x ≤3,B 正确;由OP 2=x 2+y 2,由f (t )=0中,Δ=4(x 2+1)2-4(x 2-1)2+16=16(x 2+1),所以t =y 2=-2(x 2+1)+Δ2=2x 2+1-(x 2+1)>0,其中负值舍去,综上,OP 2=x 2+y 2=2x 2+1-1,又0≤x 2≤3,即1≤x 2+1≤4,所以OP 2∈[1,3],则OP ∈[1,3],C 错误;由PF 1 +PF 2 ≥2PF 1 ⋅PF 2 =22,仅当PF 1 =PF 2 =2时等号成立,△PF 1F 2的面积S =12PF 1 PF 2 sin ∠F 1PF 2=sin ∠F 1PF 2,而cos ∠F 1PF 2=PF 1 2+PF 2 2-F 1F 222PF 1 PF 2 ≥0,所以0°<∠F 1PF 2≤90°,所以△PF 1F 2的面积的最大值为1,D 正确.故选:ABD .【点睛】关键点点睛:B ,C 通过换元t =y 2≥0,构造f (t )=t 2+2(x 2+1)t +(x 2-1)2-4,利用根的分布求P 的横坐标、OP 的取值范围.9如图,已知圆锥PO 的轴PO 与母线所成的角为α,过A 1的平面与圆锥的轴所成的角为ββ>α ,该平面截这个圆锥所得的截面为椭圆,椭圆的长轴为A 1A 2,短轴为B 1B 2,长半轴长为a ,短半轴长为b ,椭圆的中心为N ,再以B 1B 2为弦且垂直于PO 的圆截面,记该圆与直线PA 1交于C 1,与直线PA 2交于C 2,则下列说法正确的是()A.当β<α时,平面截这个圆锥所得的截面也为椭圆B.|NC 1|⋅|NC 2|=a 2sin β+α sin β-αcos 2αC.平面截这个圆锥所得椭圆的离心率e =cos βcos αD.平面截这个圆锥所得椭圆的离心率e =sin αsin β【答案】BC【分析】由截口曲线的含义可判断A ;过N 作NG ⊥PC 1于点G ,求出而|C 1N |=a sin (α+β)cos α,|C 2N |=a sin (β-α)cos α,即可判断B ;根据图形的几何性质求得椭圆的a ,c 之间的关系式,即可求得离心率,可判断C ,D .【详解】由截口曲线知,当β<α时,平面截这个圆锥所得截面为双曲线,A 错.对于B ,过N 作NG ⊥PC 1于点G ,而∠C 1A 1N =α+β,NA 1 =a ,所以|NG |=a sin α+β ,而∠C 1NG =α,∴|C 1N |=a sin (α+β)cos α,同理过N 向PC 2作垂线,可得|C 2N |=a sin (β-α)cos α,∴|NC 1|⋅|NC 2|=a 2sin (β+α)sin (β-α)cos 2α,B 正确;对于C ,D ,设圆锥上部球O 1与椭圆截面圆锥侧面均相切,轴截面的内切圆O 1,半径为r ,球O 1与A 1A 2的切点为椭圆左焦点F ,设∠O 1A 2F =θ,∠O 1A 1F =φ,∴θ=β-α2①,φ=π-(α+β)2,|A 1F |=a -c =r tan φ,|A 2F |=a +c =r tan θ,∴a +c a -c =tan φtan θ=1+e1-e ,解得e =tan φ-tan θtan φ+tan θ=sin (φ-θ)sin (φ+θ),而φ-θ=π2-βφ+θ=π2-a,故e =sin π2-β sin π2-α =cos βcos α,故C 正确,D 错误,故选:BC【点睛】难点点睛:求解椭圆的离心率时,要能根据图示求得a ,c 之间的关系,这是解答的难点,也是关键之处,因此通过设∠O 1A 2F =θ,∠O 1A 1F =φ,结合图形的几何性质,得到|A 1F |=a -c =rtan φ,|A 2F |=a +c =r tan θ,即可求解.102021年3月30日,小米正式开始启用具备“超椭圆”数学之美的新log o .设计师的灵感来源于曲线C :x |n + y |n=1.其中星形线E :x 23+y 23=1常用于超轻材料的设计.则下列关于星形线说法正确的是()A.E 关于y 轴对称B.E 上的点到x 轴、y 轴的距离之积不超过18C.E 上的点到原点距离的最小值为14D.曲线E 所围成图形的面积小于2【答案】ABD【分析】A 由(x ,y )、(-x ,y )均在曲线上即可判断;B 应用基本不等式x 23+y 23≥2|xy |23即可判断;C 由x 2+y 2=x 23 3+y 23 3,结合立方和公式及B 的结论即可判断;D 根据x 23+y 23与|x |+|y |图形的位置关系判断.【详解】若(x ,y )在星形线E 上,则(-x ,y )也在E 上,故E 关于y 轴对称,A 正确;由x 23+y 23=1≥2|xy |23=2|xy |13,则|xy |≤18当且仅当|x |=|y |时等号成立,B 正确;由x 2+y 2=x 23 3+y 23 3=x 23+y 23 x 23+y 23 2-3(xy )23 =1-3(xy )23≥14,当且仅当|x |=|y |时等号成立,故E 上的点到原点距离的最小值为12,C 错误;曲线E 过(±1,0),(0,±1),由|x |+|y |≥x 23+y 23=1,则x 23+y 23在|x |+|y |所围成的区域内部,而|x |+|y |=1所围成的面积为2,故曲线E 所围成图形的面积小于2,D 正确.故选:ABD【点睛】关键点点睛:应用基本不等式有x 23+y 23≥2|xy |23,由x 2+y 2=x233+y 233及立方和公式求两点距离,利用x 23+y 23与|x |+|y |图形的位置判断面积大小.11曲率半径是用来描述曲线上某点处曲线弯曲变化程度的量,已知对于曲线x 2a 2+y 2b2=1a >0,b >0 上点P x 0,y 0 处的曲率半径公式为R =a 2b 2x 2a 4+y 20b432,则下列说法正确的是()A.对于半径为R 的圆,其圆上任一点的曲率半径均为RB.椭圆x 2a 2+y 2b2=1a >b >0 上一点处的曲率半径的最大值为aC.椭圆x 2a 2+y 2b2=1a >b >0 上一点处的曲率半径的最小值为b 2a D.对于椭圆x 2a 2+y 2=1a >1 上点12,y 0 处的曲率半径随着a 的增大而减小【答案】AC【分析】利用曲率半径公式的定义,A 中有圆上任一点R=R4R 2R 432=R ;B 、C 中由椭圆在(±a ,0),(0,±b )处分别是最大、最小处,结合公式求得曲率半径的范围;D 中由公式得R =a -834+a 43-a-23432,构造f (a )=a -834+a 43-a-234,利用导数研究其单调性即可,进而可确定正确选项.【详解】A :由题设知:圆的方程可写为x 2R 2+y 2R 2=1,所以圆上任一点P x 0,y 0 曲率半径为R =R4x 20+y 2R 432=R4R 2R 432=R ,正确;B 、C :由x 2a 2+y 2b 2=1a >0,b >0 弯曲最大处为(±a ,0),最小处为(0,±b ),所以在(±a ,0)处有R =a 2b 2a 2a 4+0b432=b 2a ,在(0,±b )处有R =a 2b20a 4+b 2b432=a 2b,即R ∈b 2a ,a 2b ,故B 错误,C 正确;D :由题意,12,y 0 处的曲率半径R =a 214a 4+y 232,而y 20=1-14a 2,所以R =a 214a 4-14a 2+132=a -834+a 43-a -23432,令f (a )=a -834+a 43-a -234,则在a >1上有f (a )=a-1136(8a 4+a 2-4)>0恒成立,故R 在a >1上随着a 的增大而增大,错误;故选:AC .【点睛】关键点点睛:由曲率半径公式,结合曲线方程写出相应点的曲率半径,根据圆、椭圆的性质,构造函数并应用导数研究其单调性,判断各项的正误.三、填空题12在平面直角坐标系中,定义d (A ,B )=x 1-x 2 +y 1-y 2 为点A x 1,y 1 到点B x 2,y 2 的“折线距离”.点O 是坐标原点,点P 在圆x 2+y 2=1上,点Q 在直线2x +y -25=0上.在这个定义下,给出下列结论:①若点P 的横坐标为-35,则d (O ,P )=75; ②d (O ,P )的最大值是2③d (O ,Q )的最小值是2; ④d (Q ,P )的最小值是52其中,所有正确结论的序号是.【答案】①②④【分析】对于①,求出点P 的纵坐标,利用“折线距离”的定义即可判断;对于②,结合基本不等式即可判断;对于③,设Q x ,25-2x ,表示出d (O ,Q )=x +2x -25 ,分段讨论,去掉绝对值,可求得最小值,即可判断;对于④,利用直线和圆的方程设出点的坐标,表示出d (Q ,P ),然后分类讨论,脱掉绝对值符号,结合三角函数的辅助角公式,即可判断.【详解】对于①,若点P 的横坐标为-35,点P 在圆x 2+y 2=1上,则点P 的纵坐标为±45,则d (O ,P )=0-35 +0±45 =75,①正确;对于②,设点P (x ,y ),则x 2+y 2=1,d (O ,P )=|x |+|y |,因为(|x |+|y |)2=x 2+y 2+2|xy |≤1+x 2+y 2=2,故d (O ,P )=|x |+|y |≤2,当且仅当|x |=|y |=22时等号成立,即d (O ,P )的最大值是2,②正确;对于③,设直线2x +y -25=0上的一点为Q x ,25-2x ,则d (O ,Q )=x +2x -25 ;当x ≤0时,d (O ,Q )=-3x +25,此时d min =25;当0<x ≤5时,d (O ,Q )=-x +25,此时dmin =5;当x>5时,d=3x-25,此时d(O,Q)>5;∴当x=5时,d取得最小值5,即d(O,Q)的最小值为5,故③错误;对于④,设P(cosθ,sinθ),θ∈[0,2π],Q x,25-2x,则d(Q,P)=|x-cosθ|+|25-2x-sinθ|,当x≥5-12sinθ时,x>1>cosθ,d(Q,P)=x-cosθ-25+2x+sinθ=3x-cosθ-25+sinθ≥35-12sinθ-cosθ-25+sinθ=5-12sinθ+cosθ=5-52sinθ+α≥52,(α为辅助角,sinα=255,cosα=55),当θ+α=π2时取得等号;当5-12sinθ>x>cosθ时,d(Q,P)=x-cosθ+25-2x-sinθ=-x-cosθ+25-sinθ≥-5-12sinθ-cosθ+25-sinθ=5-12sinθ+cosθ=5-52sinθ+α≥52,(α为辅助角,sinα=255,cosα=55),当θ+α=π2时取得等号;当x≤cosθ时,d(Q,P)=cosθ-x+25-2x-sinθ=-3x+cosθ+25-sinθ≥-3cosθ+cosθ+25-sinθ=-2cosθ-sinθ+25=25-5sin(θ+β)≥5,(β为辅助角,sinβ=255,cosβ=55),当θ+β=π2时取得等号;综上可知d(Q,P)的最小值是52,④正确,故答案为:①②④【点睛】难点点睛:本题考查直线和圆的关系中新定义问题,解答时要根据新的定义去解答,难点在于④的判断,解答时要利用直线和圆的方程设出点的坐标,表示出d(Q,P),然后分类讨论,脱掉绝对值符号,结合三角函数的辅助角公式,即可求解.13卵圆是常见的一类曲线,已知一个卵圆C的方程为:x2x+2+y24=1x>-2,O为坐标原点,点A(1,0),点P为卵圆上任意一点,则下列说法中正确的是.①卵圆C关于x轴对称②卵圆上不存在两点关于直线x =12对称③线段PO 长度的取值范围是[1,2]④△OAP 的面积最大值为1【答案】①③④【分析】利用点x ,y 和x ,-y 均满足方程,即可判断①;设x 0,y 0 和1-x 0,y 0 都在卵圆C 上,再解x 20x 0+2+y 204=11-x 0 1-x 0+2+y 204=1即可判断②;利用两点间的距离公式表示OP 2,然后利用导数研究其最值,即可判断③;利用三角形的面积公式表示出S △OAP ,然后利用导数研究其最值,即可判断④.【详解】对于①,设x ,y 是卵圆C 上的任意一个点,因为x 2x +2+-y 24=x 2x +2+y 24=1,所以点x ,-y 也在卵圆C 上,又点x ,y 和点x ,-y 关于x 轴对称,所以卵圆C 关于x 轴对称,故①正确;对于②,设x 0,y 0 在卵圆C 上,x 0,y 0 关于直线x =12对称的点1-x 0,y 0 也在卵圆C 上,则x 2x 0+2+y 204=11-x 0 1-x 0+2+y 204=1,解得x 0=-1y 0=0 或x 0=2y 0=0 ,所以卵圆上存在-1,0 ,2,0 两点关于直线x =12对称,故②错误;对于③,由x 2x +2+y 24=1,得x 2x +2=1-y 24,所以x2x +2≤1,又x >-2,所以-1≤x ≤2,设点P x ,y ,x ∈-1,2 ,则OP 2=x 2+y 2=x 2+41-x 2x +2 =x 3-2x 2x +2+4,令f x =x 3-2x 2x +2+4,x ∈-1,2 ,则fx =2x x 2+2x -4 x +2,x ∈-1,2 ,令f x =0,则x =0或-1±5,当-1<x <0或-1+5<x <2时,f x >0,当0<x <-1+5时,f x <0,所以函数f x 在-1,0 ,-1+5,2 上递增,在0,-1+5 上递减,又f -1 =1,f 0 =4,f -1+5 =26-105,f 2 =4,且26-105>1,所以f x min =1,f x max =4,即OP 2∈1,4 ,所以OP ∈1,2 ,故③正确;对于④,点P x ,y ,x ∈-1,2 ,S △OAP =12OA ⋅y =12×21-x 2x +2=1-x 2x +2,令g x =x 2x +2,-1≤x ≤2,则g x =x x +4 x +22,-1≤x ≤2,当-1<x <0时,g x <0,当0<x <2时,g x >0,所以g x 在-1,0 上递减,在0,2 上递增,所以g x min =g 0 =0,此时△OAP 的面积取得最大值1,故④正确.故答案为:①③④.【点睛】关键点点睛:本题考查了圆锥曲线的新定义问题,解决此类问题的关键在于理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答.14城市的许多街道是相互垂直或平行的,因此,乘坐出租车往往不能沿直线到达目的地,只能按直角拐弯的方式行走.在平面直角坐标系中,定义d P ,Q =x 1-x 2 +y 1-y 2 为两点P x 1,y 1 、Q x 2,y 2 之间的“出租车距离”.给出下列四个结论:①若点O 0,0 ,点A 1,2 ,则d O ,A =3;②到点O 0,0 的“出租车距离”不超过1的点的集合所构成的平面图形面积是π;③若点A 1,2 ,点B 是抛物线y 2=x 上的动点,则d A ,B 的最小值是1;④若点A 1,2 ,点B 是圆x 2+y 2=1上的动点,则d A ,B 的最大值是3+2.其中,所有正确结论的序号是.【答案】①③④【分析】利用题中定义可判断①;作出平面区域并计算平面区域的面积可判断②;利用题中定义以及二次函数的性质可判断③;设点B cos θ,sin θ ,利用题中定义结合正弦型函数的有界性可判断④.【详解】对于①,d O ,A =1-0 +2-0 =3,①对;对于②,设点P x ,y 满足d O ,P ≤1,即x +y ≤1.对于方程x +y =1,当x ≥0,y ≥0时,x +y =1;当x ≤0,y ≥0时,-x +y =1;当x ≤0,y ≤0时,-x -y =1;当x ≥0,y ≤0时,x -y =1.作出集合x ,y x +y ≤1 所表示的平面区域如下图中的阴影部分区域所表示:平面区域是边长为2的正方形,该区域的面积为2 2=2,②错;对于③,设点B x ,y ,则d A ,B =x -1 +y -2 =y 2-1 +y -2 ,令f y =y 2-1 +y -2 .当y ≤-1时,f y =y 2-1+2-y =y 2-y +1=y -12 2+34≥3,当-1<y <1时,f y =1-y 2+2-y =-y 2-y +3=-y +12 2+134∈1,134 ;当1≤y <2时,f y =y 2-1+2-y =y 2-y +1=y -12 2+34∈1,3 ;当y ≥2时,f y =y 2-1+y -2=y 2+y -3=y +12 2-134≥3.综上所述,d A ,B ≥1,③对;对于④,设点B cos θ,sin θ ,则d A ,B =1-cos θ +2-sin θ =3-sin θ+cos θ =3-2sin θ+π4,所以,d A ,B 的最大值是3+2,④对.故答案为:①③④.【点睛】关键点点睛:本题考查曲线中的新定义,在判断③时,要注意去绝对值,结合二次函数的基本性质求解;在判断④时,在涉及圆或椭圆上的点相关的最值问题时,可充分将点的坐标利用三角函数的形式表示,利用三角函数的有界性与三角恒等变换求解,简化计算.15已知点A 1,-1 .若曲线G 上存在两点B 、C ,使△ABC 为正三角形,则称G 为Ψ型曲线,给定下列四条曲线:①y =x +3-3≤x ≤0 ; ②y =x 2x ≥0 ;③y =2-x 20≤x ≤2 ; ④y =1xx <0 .其中,属于Ψ型曲线的是(写出序号即可)【答案】①④【分析】线段y =x +3-3≤x ≤0 的端点为E -3,0 、F 0,3 ,计算出cos ∠EAF 的值可判断①;设过点A 且与曲线y =x 2x ≥0 相切时切点为M ,计算出tan ∠OAM 可判②;记曲线y =2-x 20≤x ≤2 的端点为P 0,2 、Q 2,0 ,计算出cos ∠PAQ 的值可判断③;数形结合可判断④.【详解】对于①,线段y =x +3-3≤x ≤0 的端点为E -3,0 、F 0,3 ,则EF =32,AE =AF =17,cos ∠EAF =AE2+AF 2-EF 22AE ⋅AF=817<12,故∠EAF >π3,所以,线段y =x +3-3≤x ≤0 上存在B 、C 使得△ABC 为正三角形,故y =x +3-3≤x ≤0 是Ψ型曲线;对于②,设过点A 且与曲线y =x 2x ≥0 相切的直线的方程为y +1=k x -1 ,联立y =x 2y =kx -k -1k >0,可得x 2-kx +k +1=0,Δ=k 2-4k -4=0,因为k >0,解得k =2+22,设切点为点M ,则tan ∠OAM =k AO -k AE 1+k AO k AE =-3-221-2+22 =3+2222+1<3,故0<∠OAM <π3,所以,曲线y =x 2x ≥0 上不存在点B 、C ,使得△ABC 为正三角形,曲线y =x 2x ≥0 不是Ψ型曲线;对于③,由y =2-x 20≤x ≤2 可得x 2+y 2=2,曲线y =2-x 20≤x ≤2 表示圆x 2+y 2=2在第一象限内的圆弧(包括端点),曲线y =2-x 20≤x ≤2 的端点为P 0,2 、Q 2,0 ,。

(统考版)2023高考数学二轮专题复习:圆锥曲线的定义、方程与性质课件

(统考版)2023高考数学二轮专题复习:圆锥曲线的定义、方程与性质课件
________.
3 6
4
答案:
x2
(2)[2022·新高考Ⅱ卷]已知直线l与椭圆6 Nhomakorabeay2
+ =1在第一象限交于A,
3
B两点,l与x轴、y轴分别交于M,N两点,且|MA|=|NB|,|MN|=2 3,
x+ 2y-2 2=0
则l的方程为______________.
归纳总结
直线与圆锥曲线关系的求解技巧
18
16
2
x
y2
C. + =1
3
2
答案:B
x2
y2
B. + =1
9
8
2
x
D. +y2=1
2
(2)[2022·贵州毕节模拟预测]如图,唐金筐宝钿团花纹金杯出土于西
安,这件金杯整体造型具有玲珑剔透之美,充分体现唐代金银器制作
的高超技艺,是唐代金银细工的典范之作.该杯主体部分的轴截面可
以近似看作双曲线C的一部分,若C的中心在原点,焦点在x轴上,离
(1)对于弦中点问题常用“根与系数的关系”或“点差法”求解,在
使用根与系数的关系时,要注意使用条件Δ>0,在用“点差法”时,
要检验直线与圆锥曲线是否相交.
(2)椭圆
x2
a2
y2
+ 2
b
=1(a>b>0)截直线所得的弦的中点是P(x0,y0)(y0≠0),
b2 x0
则直线的斜率为- 2 .
a y0
x2
c
a
2c
2a
= 7m,所以C的离心率e= = =
F1 F2
PF1 − PF2

7m
7

押新高考第21题 圆锥曲线(新高考)(解析版)

押新高考第21题 圆锥曲线(新高考)(解析版)

圆锥曲线圆锥曲线部分历来是高考的重点,也是学生心中的难点,很多学生对圆锥曲线都有畏惧心理.从高考成绩分析上来看,圆锥曲线也是高考得分较低的部分;从考纲上来看,一般会"考查学生对解析几何基本概念的掌握情况,考查学生对解析几何基本方法的一般应用情况,适当地考查学生对几何学知识的综合应用能力,重视对数学思想方法的渗透".通过近几年的高考可以看到浙江高考题在圆锥曲线这一块考抛物线较多。

圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程,研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、范围、探索性问题等,此类命题第(1)问起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.解决此类问题的关键是找到已知条件和代求问题之间的联系,实现代求问题代数化,与已知条件得到的结论有效对接,难点在于代求问题的转化问题方法总结1.圆锥曲线中最值问题的求解方法(1)几何法:通过利用圆锥曲线的定义和几何性质进行求解(2)代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.函数主要是二次函数、对勾函数或者导数求解,不等式主要是运用基本不等式求解2.圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.3定点、定值模板1.寻找适合运动变化的量或者参数,如点坐标,直线的斜率,截距等,把相关问题用参数表示备用,或者找寻带有参数的直线与曲线联立方程组,得到关于x 或y 的一元二次方程,利用韦达定理列出x1x2,x1+x2(或y1y2,y1+y2的关系式备用2.根据已知条件把定点、定值问题转化为与参数有关的方程问题,与第一步的结论对接3,确定与参数无关点、值,即为所求.1.(2021·湖南·高考真题)已知椭圆()2222:10x y C a b a b +=>>经过点()20A ,3(1)求椭圆C 的方程;(2)设直线1y x =-与椭圆C 相交于P Q ,两点,求AP AQ ⋅的值. 【详解】(1)椭圆()2222:10x y C a b a b+=>>经过点()20A ,,所以2a =, 32c ca ==,所以3c =222431b ac =-=-=, 所以椭圆C 的方程为2214x y +=.(2)由22141x y y x ⎧+=⎪⎨⎪=-⎩得2580x x ,解得128,05x x ==,所以118583155x y ⎧=⎪⎪⎨⎪=-=⎪⎩,或110011x y =⎧⎨=-=-⎩,可得83,55P ⎛⎫ ⎪⎝⎭,()0,1Q -,或者83,55Q ⎛⎫⎪⎝⎭,()0,1P -,所以()834312,02,155555AP AQ ⎛⎫⋅=-⋅--=-= ⎪⎝⎭.2.(2021·江苏·高考真题)已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x <时,()()log 2a f x x x =-+(0a >,且1a ≠).又直线():250l mx y m m R +++=∈恒过定点A ,且点A 在函数()f x 的图像上.(1) 求实数a 的值; (2) 求()()48f f -+的值; (3) 求函数()f x 的解析式. 【详解】(1) 由直线l 过定点可得:(2)5m x y +=--,由2050x y +=⎧⎨--=⎩,解得25x y =-⎧⎨=-⎩,所以直线l 过定点()2,5A --.又因为0x <时,()log ()2a f x x x =-+, 所以(2)log 245a f -=-=-, 有log 21a =-,12a =. (2) 12(4)log 4810f -=-=-, 因为()f x 为偶函数,所以12(8)(8)log 81619f f =-=-=-, 所以(4)(8)29f f -+=-.(3) 由(1)知,当0x <时,12()log ()2f x x x =-+. 当0x >时,0x -<,1122()log 2()log 2f x x x x x-=+⋅-=-,又()f x 为偶函数,所以12()()log 2f x f x x x =-=-,综上可知,1212log ()20()log 20x xx f x x x x -+<⎧⎪=⎨->⎪⎩.3.(2021·全国·高考真题)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为(2,0)F 6(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||3MN = 【详解】(1)由题意,椭圆半焦距2c =6c e a =,所以3a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F 三点共线,可设直线(:2MN y k x =即20kx y k --=,由直线MN 与曲线221(0)x y x +=>2211k k =+,解得1k =±,联立(22213y x x y ⎧=±⎪⎨⎪+=⎩可得246230x x -+=,所以12122343x x x x +=⋅=,所以()212121143MN x x x x =++-⋅所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>211b k =+,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++, 所以()2222212122263314141313kb b MN k x x x x kk k -⎛⎫=++-⋅=+--⋅ ⎪++⎝⎭22241k k =+3 化简得()22310k -=,所以1k =±,所以12k b =⎧⎪⎨=-⎪⎩或12k b =-⎧⎪⎨=⎪⎩:2MN y x =或2y x =-+所以直线MN 过点(2,0)F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||3MN =4.(2021·浙江·高考真题)如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围. 【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =. (2)[方法一]:通式通法设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n , 所以直线:2y l x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=, 因为2RN PN QN =⋅,故21111+1+1+444R P Q ⎫=⎪⎪⎭,故2R P Q y y y =⋅. 又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-, 同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-,所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦, 整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭, ()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-, 令21s t =-,则12s t +=且0s ≠, 故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩, 解得73n ≤--7431n -+≤<或1n >.故直线l 在x 轴上的截距的范围为743n ≤--731n -+<或1n >. [方法二]:利用焦点弦性质设直线AB 的方程为11x k y =+,直线MA 的方程为21x k y =-,直线MB 的方程为31x k y =-,直线l 的方程为221212,,,,,(,0)244y y y x m A y B y N m ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,由题设可得1m ≠且112k ≠.由121,4x k y y x=+⎧⎨=⎩得21440y k y --=,所以121124,4y y k y y +==-. 因为2112231121114,44y y y k k y y y +==+=+, 12121223111212110444y y y y y y k k k k y y y y ++∴+=+++=+=-=,()21221212231121212111111441642y y y y y y k k k y y y y y y +⎛⎫⎛⎫=++=+⋅+-=-- ⎪⎪⎝⎭⎝⎭.由21,2x k y y x m =-⎧⎪⎨=+⎪⎩得2112p m y k +=-. 同理3112Q m y k +=-. 由11,2x k y y x m =+⎧⎪⎨=+⎪⎩得1112R m y k -=-. 因为2||||||RN PN QN =⋅,所以2R P Q y y y -⋅=即222211231(1)(1)13112422m m m k k k k ⎛⎫ ⎪-++== ⎪⎛⎫⎛⎫ ⎪-+--- ⎪⎪⎝⎭⎝⎭⎝⎭. 故22121314112k m m k ++⎛⎫=⎪-⎝⎭⎛⎫- ⎪⎝⎭. 令112t k =-,则222221111113311244m t t m t t t t +++⎛⎫⎛⎫==++=++≥ ⎪ ⎪-⎝⎭⎝⎭. 所以210,1410,m m m -≠⎧⎨++≥⎩,解得73m ≤--731m -+≤<或1m.故直线l 在x 轴上的截距的范围为(,743)[743,1)(1,)-∞---++∞. [方法三]【最优解】:设()()22,2(0),,2A a a a B b b >,由,,A F B 三点共线得22222221b a ab a a b a -==-+-,即1ab =-. 所以直线MA 的方程为22(1)1a y x a =++,直线MB 的方程为2222(1)(1)11b ay x x b a -=+=+++,直线AB 的方程为22(1)1ay x a =--. 设直线l 的方程为2(2)y x m m =+≠-, 则222(2)(2)(2),,,1112P Q R N m a m a m a my y y x a a a a a a ----====--+++--.所以()()2222222222(2)(2)||||||11m a m a RN PN QN aa aa +-=⋅⇔=--+-.故()()2222222222221112(1)2140,2133111a a a m t t t a m t t a a a a ⎛⎫-- ⎪--+--+⎛⎫⎡⎤⎝⎭====∈ ⎪⎢⎥-++⎝⎭⎣⎦⎛⎫+-+- ⎪⎝⎭(其中1t a a =-∈R ). 所以(,1483][1483,)m ∈-∞-++∞. 因此直线l 在x 轴上的截距为(,743][743,1)(1,)2m-∈-∞---++∞.5.(2021·北京·高考真题)已知椭圆2222:1(0)x y E a b a b+=>>一个顶 点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为45. (1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围. 【详解】(1)因为椭圆过()0,2A -,故2b =,因为四个顶点围成的四边形的面积为45,故122452a b ⨯⨯=,即5a =,故椭圆的标准方程为:22154x y +=. (2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令3y =-,则112M x x y =-+,同理222N xx y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x > 又1212=22M N x xPM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤, 综上,31k -≤<-或13k <≤.1.(2022·天津·一模)已知椭圆()222210x y a b a b +=>>的右顶点为A ,上顶点为B ,离心率为2且6AB (1)求椭圆的方程;(2)过点A 的直线与椭圆相交于点24,33⎛⎫- ⎪⎝⎭H ,与y 轴相交于点S ,过点S 的另一条直线l 与椭圆相交于M ,N 两点,且△ASM 的面积是△HSN 面积的32倍,求直线l 的方程.【解析】(1)根据题目列方程2222226a b c c a a b ⎧=+⎪⎪=⎨⎪+=⎪⎩ 解得24a =,22b =, 所以椭圆的方程为22142x y +=. (2)由已知得12=-AH k ,所以,直线AH 的方程为()122y x =--,所以,S 点的坐标为()0,1.当直线l 的斜率不存在时,21=-ASM S △,213+=HSN S △, 或21=+ASM S △,213-=HSN S △都与已知不符; 当直线的斜率存在时,设直线l 的方程为1y kx =+,()11,M x y ,()22,N x y ,由221421x y y kx ⎧+=⎪⎨⎪=+⎩,得()2212420k x kx ++-=, 122412k x x k -+=+,122212x x k -=+, 1sin 2=⋅∠ASM S AS MS ASM △,1sin 2=⋅∠HSN S HS NS HSN △, 由△ASM 的面积是△HSN 面积的32可得23=ASM HSN S S △△化简23⋅=⋅AS MS HS NS ,即23=AS NSHS MS, 又3==-A HAS xHS x ,所以,2=NS MS ,即212=-x x ,也就是212x x =-, 所以,12412--=+k x k ,12412=+k x k ,22812-=+k x k ,()2122223221212k x x k k --==++, 解得,2114k =,所以,直线方程为14114=±+y x .2.(2022·福建·模拟预测)在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的左、右焦点为12,F F ,22.过点()2,0P 作直线l 与椭圆C 相交于,A B 两点.若A 是椭圆C 的短轴端点时,23AF AP ⋅=.(1)求椭圆C 的标准方程;(2)试判断是否存在直线l ,使得21F A ,2112F P ,21F B 成等差数列?若存在,求出直线l 的方程;若不存在,说明理由. 【解析】(1) 由题意知:2c e a ==,即2a c =; 当A 为椭圆的短轴端点时,不妨设()0,A b ,则()2,AF b c =-,(),2AP b =-,2223AF AP b c ∴⋅=+=,又22222a b c c =+=,22∴=b c ,即223c c +=,解得:1c =,2a ∴1b =, ∴椭圆C 的标准方程为2212x y +=;(2)设():2l y k x =-,由()22212y k x x y ⎧=-⎪⎨+=⎪⎩得:()2222218820k x k x k +-+-=, ()()42264421820k k k ∆=-+->,22k ⎛∴∈ ⎝⎭, 设()11,A x y ,()22,B x y ,则2122821k x x k +=+,21228221k x x k -=+,()()()42222121212224821221k k x x x x x x k -+∴+=+-=+,()11,0F -,()()2222221111111111112222F A x y x x x x ∴=++=++-=++,同理可得:221221222F B x x =++, ()()2242221211122248122244221x x k k F A F B x x k +++∴+=+++=++, 又219F P =,()4222481224921k k k++∴+=+,整理得:4228830k k --=,即()()22211430k k -+=,解得:2k =,222k ⎛∈- ⎝⎭,∴不存在直线l 符合题意. 3.(2022·湖南·雅礼中学二模)已知曲线C :22221(0)x y a b a b+=>>,1F ,2F 分别为C 的左、右焦点,过1F 作直线l 与C 交于A ,B 两点,满足115AF F B =,且1222AF F S =.设e 为C 的离心率. (1)求2e ; (2)若32e ≤2a =,过点P (4,1)的直线1l 与C 交于E ,F 两点,1l 上存在一点T 使111EP FP PT +=.求T 的轨迹方程. 【解析】 (1)由题直线l 斜率存在且不为0,设:l x my c =-,()()1122,,,A x y B x y ,联立方程组22221x my cx ya b =-⎧⎪⎨+=⎪⎩得22222221210m mc c y y ab a a ⎛⎫+-+-= ⎪⎝⎭, 则2222122122222222214,511mc c a a y y y y y y m m a b a b -+=-==-=++,消去2y ,得2222454a m c b =-,不妨设0m >,则()()122121212215452226AF F c y y y y c y y cSy +--====,整理可得64272176136330e e e -+-=,解得212e =3537-3537+(舍). (2)由题知22:142x y C +=, 若1l 斜率不存在,则与C 无交点,不合题意; 若1l 斜率存在,设1:(4)1l y k x =-+,与22142x y +=联立, 得()()222221416321620k x k k x k k ++-+--=,设()()1122,,,E x y F x y ,则2212122216432162,2121k k k k x x x x k k ---+==++,由()2Δ812810k k =-++>得2727k -+∈⎝⎭,设()00,T x y ,由题120111444x x x +=---,即()1212120811644x x x x x x x --=+-+-, 则可得07424x k -=+, 若07424x k -=+,则008954,2424k k x y k k +-+==++,消去k 得0042110x y +-=,若07424x k --=+,则0082394,2424k k x y k k ++==++,消去k 得0042250x y +-=, 综上,T 的轨迹方程为42110x y +-=或42250x y +-=.4.(2022·广东深圳·二模)已知椭圆2222:1(0)x y E a b a b +=>>经过点3M ⎛ ⎝⎭,且焦距1223F F =,AB CD 分别是它的长轴和短轴.(1)求椭圆E 的方程;(2)若(,)N s t 是平面上的动点,从下面两个条件中选一个...........,证明:直线PQ 经过定点. ①31,s t =≠,NA NB 与椭圆E 的另一交点分别为P ,Q ; ②2,t s =∈R ,直线,NC ND 与椭圆E 的另一交点分别为P ,Q . 【解析】(1)由已知,3c =3M ⎛ ⎝⎭在椭圆上,所以221314a b +=,又因为222a c b -=,所以 224,1a b ==,所以椭圆的方程为:224,1a b ==.(2)选①,则()()(1,),2,0,2,0N t A B -,设()(),,,P P Q Q P x y Q x y , ,,12312NA NB t t t k k t ====-+-所以()():2,:2,3NA NB tl y x l y t x =+=-- ()222314t y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得:()2222941616360t x t x t +++-=, ()()42222564941636360t t t ∆=-+-=>所以221636294P t x t --=+,所以2281894Pt x t -+=+,则21294P t y t =+,所以22281812,9494t t P t t ⎛⎫-+ ⎪++⎝⎭, ()22214y t x x y ⎧=--⎪⎨+=⎪⎩,消去y 得:()222214161640t x t x t +-+-=, ()()422256414164160t t t ∆=-+-=>,所以22164214Q t x t -=+,所以228214Qt x t -=+,则2414Q t y t =+,所以 222824,1414t t Q t t ⎛⎫- ⎪++⎝⎭, 所以322224222124322429414818823664349414PQt tt t t t t k t t t t t t ---++===-+--+-++,所以直线PQ 的方程为:22224282143414t t t y x t t t ⎛⎫---=- ⎪+++⎝⎭, 所以()()43216832162830y x t yt x t y +-++-+=,所以0,4y x ==,故直线PQ 恒过定点()4,0.选②,则()()(,2),0,1,0,1N s C D -,设()(),,,P P Q Q P x y Q x y , 211213,,NC ND k k s s s s -+====所以13:1,:1,NC ND l y x l y x s s=+=- 221114y x s x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得:()22224240s y s y s +++-=, ()()4224444640s s s ∆=-+-=>所以2244P s y s -=+,所以284P s x s -=+, 所以22284,44s s P s s ⎛⎫-- ⎪++⎝⎭ 同理:223636Q s y s -=+,所以22436Q s x s =+,所以2222436,3636s s Q s s ⎛⎫- ⎪++⎝⎭()()()2222222222364121212364248161612364PQs s s s s s s k s s s s s s s ---+⋅--++===-+-++所以直线PQ 的方程为:22224128+4164s s s y x s s s --⎛⎫-= ⎪++⎝⎭令0x =,则()()2222212+2841=22424s s s y s s --+==++ 故直线PQ 恒过定点10,2⎛⎫⎪⎝⎭.5.(2022·广东汕头·二模)如图所示,C 为半圆锥顶点,O 为圆锥底面圆心,BD 为底面直径,A 为弧BD 中点.BCD △是边长为2的等边三角形,弦AD 上点E 使得二面角E BC D --的大小为30°,且AE t AD =.(1)求t 的值;(2)对于平面ACD 内的动点P 总有OP //平面BEC ,请指出P 的轨迹,并说明该轨迹上任意点P 都使得OP //平面BEC 的理由. 【解析】 (1)易知OC ⊥面ABD ,OA BD ⊥,以,,OD OA OC 所在直线为,,x y z 轴建立如图的空间直角坐标系,则(0,1,0),(1,0,0),(1,0,0),(0,0,3)A B D C -,(1,0,3),(1,1,0),(1,1,0)BC AD BA ==-=,()1,1,0(1,1,0)(1,1,0)BE BA AE BA t AD t t t =+=+=+-=+-, 易知面BCD 的一个法向量为(0,1,0)OA =,设面BCE 的法向量为(,,)n x y z =,则30(1)(1)0n BC x z n BE t x t y ⎧⋅=+=⎪⎨⋅=++-=⎪⎩,令1x =,则13(1,,)13t n t +=--, 可得222131cos30213113t OA n t OA nt t +⋅-===⋅⎛⎫+⎛⎫++- ⎪ ⎪-⎝⎭⎝⎭,解得13t =或3,又点E 在弦AD 上,故13t =. (2)P 的轨迹为过AD 靠近D 的三等分点及CD 中点的直线,证明如下: 取AD 靠近D 的三等分点即DE 中点M ,CD 中点N ,连接,,MN OM ON , 由O 为BD 中点,易知ON BC ∥,又ON ⊄面BEC ,BC ⊂面BEC , 所以ON //平面BEC ,又MN EC ∥,MN ⊄面BEC ,CE ⊂面BEC ,所以MN //平面BEC , 又ON MN N ⋂=,所以面OMN //平面BEC ,即O 和MN 所在直线上任意一点连线都平行于平面BEC ,又MN ⊂面ACD ,故P 的轨迹即为MN 所在直线, 即过AD 靠近D 的三等分点及CD 中点的直线.(限时:30分钟)1.已知圆C :()22116x y -+=,点()1,0F -,P 是圆C 上一动点,若线段PF 的垂直平分线和CP 相交于点M .(1)求点M 的轨迹方程E .(2)A ,B 是M 的轨迹方程与x 轴的交点(点A 在点B 左边),直线GH 过点()4,0T 与轨迹E 交于G ,H 两点,直线AG 与1x =交于点N ,求证:动直线NH 过定点B .【详解】(1)由圆()22116x y -+=,可得圆心()1,0C ,半径4r =,因为24FC =<,所以点F 在圆C 内,又由点M 在线段PF 的垂直平分线上,所以MF MP =, 所以4MC MF MP MC PC +=+==,由椭圆的定义知,点M 的轨迹是以F ,C 为焦点的椭圆, 其中2a =,1c =,23b =,所以点M 的轨迹方程为22143x y +=.(2)设直线GH 的方程为4x my =+,()11,G x y ,()22,H x y ,()2,0A -,()2,0B ,将4x my =+代入22143x y +=,得()223424360m y my +++=,1222434my y m -+=+,1223634y y m =+, 直线AG 的方程为11(2)2y yxx ,令1x =得1132y y x =+,即1131,2y N x ⎛⎫⎪+⎝⎭,NH 的直线方程为121121323(1)12y y x y y x x x -+=-+-+, 2x =代入得()()()()121211211212133231231212y y y y x y x x y y x x x x --++-+=+=-+-+ 12112213(6)3(3)(1)(2)y y my y my x x -++--=-+12122146()(1)(2)my y y y x x ++=-+222136244634340(1)(2)mm m m x x -⨯+⨯++==-+,所以直线NH 过定点(2,0)B .2.已知定点()22,0O ,点P 为圆1O :()22232x y ++=(1O 为圆心)上一动点,线段2O P 的垂直平分线与直线1O P 交于点G .(1)设点G 的轨迹为曲线C ,求曲线C 的方程;(2)若过点2O 且不与x 轴重合的直线l 与(1)中曲线C 交于D ,E 两点,M 为线段DE 的中点,直线OM (O 为原点)与曲线C 交于A ,B 两点,且满足2MD MA MB =⋅,若存在这样的直线,求出直线l 的方程,若不存在请说明理由. 【详解】(1)依题意有2111||42GO GO GO GP O P +=+==,所以G 点轨迹是以1O ,2O 为焦点的椭圆,长轴长242a =,焦距24c =,故点G 的轨迹C 方程为22184x y +=;(2)设存在直线l 满足2MD MA MB =⋅,因为()()22AM BM AO OMBO OM AO OM ⋅=+-=-,222MD AO OM =-,设l 方程为2x my =+,()11,D x y ,()22,E x y ,222184x my x y =+⎧⎪⎨+=⎪⎩得22(2)440m y my ++-=,12242m y y m -+=+,12242y y m -=+. 22221222241642(1)11()222m m DE m y mm m m -+=+-=++=+++,222(1)m MD += 121228()42x x m y y m +=++=+,∴2242(,)22m M m m -++,2OM m k =-,224m OM +=,AB 方程为2m y x =-,设()00,A x y ,()00,B x y --,由222184m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22162x m =+, ∴22222000224(1)42m m OA x y x m +=+=+⋅=+∴2222222228(1)4(4)4(4)(2)2(2)m m m m m m +++=-+++,解得:22m =或21m =-(舍),2m =±,故存在符合条件的直线l ,其方程为220x y +-=或220x --=.3.已知椭圆E :()222210x y a b a b +=>>的离心率32e =,椭圆E 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,四边形ACBD 的面积为4.(1)求椭圆E 的方程;(2)若P 是椭圆E 上一点(不在坐标轴上),直线PC ,PD 分别与x 轴相交于M ,N 两点,设PC ,PD ,OP 的斜率分别为1k ,2k ,3k ,过点P 的直线l 的斜率为k ,且123k k kk =,直线l 与x 轴交于点Q ,求MQ NQ -的值.【详解】(1)由题:32c a =,且12242a b ⋅⋅=,又222a c b -=, 所以2a =,1b =,所以椭圆的方程为2214x y +=.(2)设()00,P x y ,则220014x y +=即()220041x y =-,不妨设()0,1C ,()0,1D -,直线PC :0011y y x x -=+, 令0y =得001x x y =-,故00,01x M y ⎛⎫ ⎪-⎝⎭;同理可求00,01x N y⎛⎫ ⎪+⎝⎭. 则200012200011114y y y k k x x x -+-=⋅==-,030y k x =,所以004x k y =-,所以直线l 为()00004x y y x x y -=--,令0y =得220004x y x x +=,又220014x y +=, 故04x x =即04,0Q x ⎛⎫⎪⎝⎭. ()()0000000002881111x MQ NQ x x y y x y y x =+-=--++--, 又220014x y +=即()220041x y =-,代入上式得,02002804x x MQ N x Q --==. 4.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别是点A ,B ,直线2:3l x =与椭圆C 相交于D ,E两个不同点,直线DA 与直线DB 的斜率之积为14-,ABD △的面积为23. (1)求椭圆C 的标准方程;(2)若点P 是直线2:3l x =的一个动点(不在x 轴上),直线AP 与椭圆C 的另一个交点为Q ,过P 作BQ 的垂线,垂足为M ,在x 轴上是否存在定点N ,使得MN 为定值,若存在,请求出点N 的坐标;若不存在,请说明理由.【详解】解:(1)设02,3D y ⎛⎫ ⎪⎝⎭,由题意得0002022122433142223419DA DB y y k k a a a y y ab ⎧⋅=⋅=-⎪+-⎪⎪⎪⎪⨯⨯=⎨⎪⎪+=⎪⎪⎪⎩, 2214b a ⎧=∴⎨=⎩,∴椭圆C 的方程为2214x y +=; (2)假设存在这样的点N ,设直线PM 与x 轴相交于点()0,0T x ,由题意得TP BQ ⊥,由(1)得()2,0B ,设2,3P t ⎛⎫ ⎪⎝⎭,()11,Q x y ,由题意可设直线AP 的方程为2x my =-, 由22214x my x y =-⎧⎪⎨+=⎪⎩,得()22440m y my +-=,1244m y m ∴=+或10y =(舍去),212284m x m -=+, 223mt =-,83t m∴=, TP BQ ⊥,()0112203TP BQ x x ty ⎛⎫∴⋅=--+= ⎪⎝⎭, 210212284403233416ty m m x x m m +∴=+=+⋅⋅=-+-, ∴直线PM 过定点()0,0T ,∴存在定点()1,0N ,使得1MN =.5.如图,A ,B ,M ,N 为抛物线22y x =上四个不同的点,直线AB 与直线MN 相交于点()1,0,直线AN 过点()2,0.(1)记A ,B 的纵坐标分别为A y ,B y ,求A B y y 的值;(2)记直线AN ,BM 的斜率分别为1k ,2k ,是否存在实数λ,使得21k k λ=?若存在,求出λ的值;若不存在,说明理由.【详解】解:(1)设直线AB 的方程为1x my =+,代入22y x =得2220y my --=,则2A B y y ⋅=-.(2)由(1)同理得2M N y y ⋅=-设直线AN 的方程为2x ny =+,代入22y x =得2240y ny --=,则4A N y y ⋅=- 又122222N A N A N A N A N A y y y y k y y x x y y --===-+-,同理22M B k y y =+ 则212222A N A N A NB M A N y y y y y y k k y y y y λ++=====--+-+ ∴存在实数2λ=,使得212k k =成立.。

圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧

圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线是数学中的一个重要概念,在高考数学考试中经常出现。

圆锥曲线问题在高考中的题型多样,涉及到椭圆、双曲线和抛物线等各种不同的情况。

学生需要掌握不同类型圆锥曲线的基本知识和解题方法,才能在考试中取得好成绩。

本文将详细介绍圆锥曲线问题在高考中的常见题型及解题技巧。

一、椭圆问题在高考数学中,椭圆问题是圆锥曲线中的一个常见题型。

椭圆是圆锥曲线中的一种,其数学方程一般表示为x²/a² + y²/b² = 1。

椭圆问题在高考中主要涉及到椭圆的性质、方程和相关的几何问题。

下面是一些常见的椭圆问题和解题技巧:1. 椭圆的性质椭圆有许多独特的性质,例如焦点、长轴、短轴等。

解决椭圆问题时,首先需要熟悉椭圆的基本性质,包括焦点的坐标、长轴和短轴的长度等。

了解这些性质可以帮助学生更好地理解和解决椭圆相关的问题。

2. 椭圆的方程学生需要掌握椭圆的标准方程和一般方程,以及如何从一个方程中得到椭圆的相关信息。

如何通过椭圆的方程确定焦点和长轴的长度等。

熟练掌握椭圆的方程和相关的计算方法是解决椭圆问题的关键。

3. 几何问题在高考中,椭圆问题经常涉及到与椭圆相关的几何问题,例如椭圆的切线、法线、焦点、离心率等。

解决这些问题需要学生具有一定的几何直觉和解题技巧,可以通过画图、几何推理等方法来解决。

二、双曲线问题三、抛物线问题在解决圆锥曲线问题时,学生需要注意以下几个解题技巧:1. 画图对于圆锥曲线相关的几何问题,画图是非常重要的。

学生可以通过画图来直观地理解问题,并且可以通过几何推理来解决问题。

2. 几何推理圆锥曲线问题往往需要一定的几何推理能力,例如通过推导得到相关的性质和结论。

学生需要熟练掌握几何推理的方法,以便解决圆锥曲线问题。

3. 代数计算除了几何推理,对于圆锥曲线的方程和相关计算问题,学生还需要掌握代数计算的方法,包括因式分解、配方法、求导等。

圆锥曲线焦点弦长地一个公式在高考中地妙用

圆锥曲线焦点弦长地一个公式在高考中地妙用

文档圆锥曲线焦点弦长的一个公式在高考中的妙用圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第题,几乎每一年都有考察。

由于题目的综合性很高的,21题或者第2022题,理科和各省市一般为第运算量很大,属于高难度题目,考试的得分率极低。

本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简?单明了,中等学习程度的学生完全能够得心应手!,焦点为(或平行于坐标轴)定理已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴?l,通径长两点,记圆锥曲线的离心率为eF,且与圆锥曲线交于A、F,设倾斜角为的直线B经过 H,则为H?||AB的长;(1)当焦点在x轴上时,弦AB22?|cos|1?eH?||AB.的长(2)当焦点在y轴上时,弦AB22?|sin?e|1.轴上,中心在原点的双曲线为例证明,其它情形请读者自证x本文仅对焦点在222b2yxca b?H1???e 所AB>0)证明:设双曲线方程为,通径,弦(,离心率>0,22aaba??l?tanlk)c(x?ky?为直线,其参数方程为在的直线,的方程为的倾斜角)(其中?,tcosx??c??为参数)(t. ??.tsiny??4222222???0??t)?t??(a2sinbb?bcosccos. 代入双曲线方程并整理得: t的几何意义可得:由|AB|?|t?t|212?(t?t)?4tt212122?bcos4?2bc2?(?)?22222222????cosab?bsinsincos?a2ab2?2222??|?|asinbcos2b2?22?|cosa|1?e2b2a?22?|?ecos|1H.?22?|e1|?cos文档推论H|AB|?在椭圆、抛物线或双曲线的一支上时,轴上,当A、B(1)焦点在;当x22?cose1?HH?|?|AB||AB. A、B不在双曲线的一支上时,;当圆锥曲线是抛物线时,222??sin?1ecosH?||AB;当B在椭圆、抛物线或双曲线的一支上时,(2)焦点在y轴上,当A、22?sin?e1HH?|?|ABAB||. ;当圆锥曲线是抛物线时,A、B不在双曲线的一支上时,222??cosesin?1典题妙解下面以近年高考题为例说明上述结论在解题中的妙用.22yx2C?C:?1px2?(y?m)p、,已知椭圆且抛物线例1(06(湖南文第>0)21题),1143CC 的右焦点过椭圆.的公共弦AB12AB?xC的焦点是否在直线AB上;(Ⅰ)当m的值,并判断抛物线轴时,求p,24C p?(Ⅱ)若AB的方程. 且抛物线上,求的焦点在直线ABm的值及直线231x?AB?x0??m.关于轴时,点A、Bx轴对称,的方程为,直线(Ⅰ)当解:AB33),(1)?(1,. 的坐标为或从而点A22C 上,在抛物线A点299p?..?2p?即849C(0),的焦点坐标为此时抛物线上,该焦点不在直线AB. 216????.的倾斜角为,由(Ⅰ)知(Ⅱ)设直线AB2?)?tan1(?x?y. 则直线AB的方程为8Ce?1x?p?2Hmy? ,于是有,离心率平行于AB的对称轴轴,焦点在上,通径抛物线238H.?AB|?|22??)31?cossin(2b21C H3???e 的右焦点,通径AB又,离心率过椭圆. 1a2文档y 12H.??|AB|?A222??cos4cos?|1?e|128F.??222??cos?)4(31?cos Ox12??6??,tancos?.解之得:B72?C)mF(,)1x?y?tan(? 的焦点上,在直线抛物线2361???mtan??m?.,从而336?m0??y?66x;时,直线当AB的方程为36?m?0?y?66x?. 当时,直线AB的方程为322yx FFF1??题)已知椭圆22(07,过全国Ⅰ文第的直线例的左、右焦点分别为2、12123BDAC?F P.的直线交椭圆于A、C两点,且交椭圆于B、D两点,过,垂足为222yx00)y(x,?1.,证明:<)设(1P点的坐标为0023.(2)求四边形ABCD的面积的最小值22yx1??b2,ca?3,1??)证明:在1. (中,23FF,90?PF ?F?是的中点,O2121122.?1x?y.OP?||??1F|F|?c得00212221?y?x?.在圆P上点22yx221??1?x?y在椭圆. 显然,圆的内部2322yx00?1.故<23???BDAC??.(2AC的倾斜角,由的倾斜角为)解:如图,设直线BD可知,直线2文档23342b?e??H.,离心率通径33a FF 、又、BDAC分别过椭圆的左、右焦点,于是2134H?BD,||?y222??cos?e3cos1?A34H.?|AC|?D ?2?sin?322?)cos(1?e?P2F O F x? ABCD的面积四边形B211C?||BD|?AC|S233414???22??2sin?cos3?396.???2???][0,,?sin21 ??0,.2?224?sin96??4?S?,.??25??96. 面积的最小值为ABCD故四边形25l、题文第22题)双曲线的中心为原点O,焦点在x上,两条渐近线分别为(例308全国Ⅰ理第211llll|||ABOB||OA|成等. 、B两点、已知,经过右焦点F垂直于的直线分别交、、于A2121FABF.同向差数列,且与(Ⅰ)求双曲线的离心率;.,求双曲线的方程(Ⅱ)设AB被双曲线所截得的线段的长为422yxa b1??.解:)>(>0,0(Ⅰ)设双曲线的方程为22ba d??OA|OA||AB|||OB||md?|m|?m?|OBAB| ,、,公差为d,成等差数列,设、,则22222222)dm?m(?d)?m?(ddm?m2?dm?d?m?m2??. . 即mm35m?d?OB||?OA||?. 从而. ,444文档b??ll2AOB??x?y. ,则. 又设直线的方程为的倾斜角为11a4AB||b????tan2AOB?tan?..tan??而3||OAa b?2?42tan a y???.b2?3tan1?ll2)(1?12a A 1b M.?解之得:2a xF O5b2N .?(?1?)e?2a B??????., 则F的直线AB的倾斜角为(Ⅱ)设过焦点212)(2?1tan22???sin??cos.?sin???. 而12?5tan1?2)?(1212??cos?.52bb2?bH?2b??通径. aaH4?|MN|? .N. 于是有:又设直线AB与双曲线的交点为M、22?cose1?b4?.即152?1?()526?ab?3.解得,从而22yx1???所求的椭圆方程为. 936金指点睛2y2l1??x|AB|过椭圆的直线=_________. B的上焦点F交椭圆于A、两点,则1. 已知斜率为142?y2l?1x?线则2. 过曲双,两、于曲线的为斜作点左的焦F倾角直交双线AB点36||AB=_________.文档22l0x?2y?2?的最大面AOBA、B两点,O3. 已知椭圆作直线,过左焦点F为坐标原点,求△交. 积yBF xO A2S2px4y?m|AB|?p,弦AB过焦点F,设,△4. 已知抛物线AOB的面积为S(,求证:>0)m y. 为定值Ax F OB2y2?x?1四点都在椭圆N、M、题)为椭圆在上,Fy轴正半轴上的焦5.(05全国Ⅱ文第22P、Q2MFPFFQ FN0?MFPF?的面积的最大值和PQMN共线,共线,且点. 已知与.与求四边形. 最小值yMQFPxO N2?x?8y、A的焦点如图,倾斜角为题重庆文第6. (0722)的直线经过抛物线F,且与抛物线交于. 两点B文档l F的坐标及准线的方程;(Ⅰ)求抛物线的焦点??x2|cos||FP|?FP为定值,P交,证明(Ⅱ)若轴于点为锐角,作线段AB的垂直平分线m. 并求此定值yDC AE?xF O P m Bl)2F(0,0?l:y?31.的距离比它到直线的距离小7. 点M与点 M(1)求点的轨迹方程;.、B;C、D. 求四边形ACBD的最小面积(2)经过点F且互相垂直的两条直线与轨迹相交于A2x22FF1?y?x?y2?与椭圆的焦点相同,且以抛物线、的准线为8. 已知双曲线的左右焦点215.其中一条准线 1()求双曲线的方程;F的面积的ACBDD. ;C、(2)若经过焦点求四边形且互相垂直的两条直线与双曲线相交于A、B2. 最小值参考答案2?b23c?l?1?H?e?3a??2,b?1,c?,通径 .,离心率1. ,直线解:的倾斜角a2a481H???|AB|? .22?5sin1?e2322)(()?1?222?b2c??H?6?2?e?23,c??a1,b?,通径. 2. ,直线的倾斜角,离心率解:a6a6H3AB|???|? .22?|?1ecos|322|)?|1?2(22x2c21?y??e?1?1,c??a2,b)0?F(1,径通解3. 焦,左点:率离,,心,22a文档2b22H??.a2b2x?ll?H|?2AB|?1??c||OF轴,这时的斜率不存在时,的当直线,△,高AOB a21?1?S?2?. 面积22??ll)?(x?1y?tan即为当直线存的斜率在时,设直线,的倾斜角为其,则方程???||0?tan|?0?tantan|?sind?????0tan??x?ytan?.O,原点到直线AB的距离?||sec2?1?tan222H22???|AB|?.2222???sin?coscos2?11?e222?cos)?(?12?sin21?d|?|AB??S?. 的面积△AOB y2?2sin1?B?? <0<,F ?2??sin sin?sin?21?.>0. 从而xO A?22sin?S??.?22sin?2??1sin??. AOB的最大面积为,即”号成立当且仅当. 故△时,“=22)0F(p,p4H?,通径4. 解:焦点为.xAB?p|OF|??|AB|?m4p的面积,△轴,这时,高当直线AB的斜率不存在时,AOB12p?2??|AB|?|OF|S.2424p4pS43p????.,是定值p4mm??)px?ytan??(即为,方倾设存AB当直线的斜率在时,直线的斜角为,则其程??|tanpp|tan||?sin?d??p??0??ant?xyp?tan.ABO,原点到直线的距离?||sec2?1?tan文档p4H??|AB|. 22??sinsin2p21?dS??|AB|??.的面积△AOB y?sin2A2244?sin44pp1S3p??????. 22??pm4msinsin x O F B2S33p?p?在什么位置,均有(不论直线. 为定值)AB m2y2.1c?1,?a?2,b?x?1解:在椭圆5. 中,2)1(0,F PQMN?. 是椭圆的两条弦,相交于焦点,且由已知条件,MN和PQ????.如图,设直线PQ的倾斜角为的倾斜角,则直线MN22b22y??2H?e .,离心率通径于是有Ma2QF2H2P,|?MN|??2?cos?222?)(esin?1?xO 2N2H2.?|?|PQ222??sin2sin?1?e?的面积四边形PQMN1?S|PQ||MN|?222212???22??2sin2?cos?216.???2???]1[0,?sin2, ??0,.2?28?sin16??2S?,?.??9??162. PQMN故四边形面积的最小值和最大值分别为和9),20(4p?,?2p8?,的坐标为6.(Ⅰ)解:抛物线的焦点,F文档lx??2.准线的方程为FD?AClAC?H?2p?8. 于C(Ⅱ)证明:作,D. 通径于H8y??cos|AFcos|,|ADAB|?|??,|EF|?|FP||. 则 D22??sinsin CA?4|cos??AD|p?|AF|AF|?|AC|?|?.E? xO F P 4m ?AF||?.B?cos1??cos4414l??|?|?AF|?|AE||AF|?AB?|EF||?,22???cos21?sinsin|EF|4??||FP. 从而2??cossin42???)2?(1?|cos2cos?|FP?2sin||?8FP|?|FP?. 2?sin?2|cos|?|FP|FP为定值,此定值为故8.F(0,2)l:y??2的距离相等,的距离与它到直线7. 解:(1)根据题意,点M与点F(0,2)l:y??2?是它的准线点是它的焦点,直线.M的轨迹是抛物线,点p?2p?4?. 从而,22?8xy?.所求的点M的轨迹方程是 两条互相垂直的直线与抛物线均有两个交点, 2)(y??的倾斜角为,它们的斜率都存在. 如图,设直线AB DB??90?. 的倾斜角为则直线CD82H?p?,于是有:抛物线的通径FA CH8H8xO ?,||?CD|??|AB.2222????sin?)cos(90?coscos?四边形ACBD的面积1|AB|?|CD|S?2881???22??2sincos128.?2?2sin2???128S?2sin?45??90?,2.,这时当且仅当时,取得最大值1min?四边形ACBD的最小面积为128.文档2x222)(?2,0FF(2,0)1y??2?a??ba?5,b?1,c?,、8. . 解:其焦点为(1中,在椭圆)1251p2x2??y??x1p??. 在抛物线中,其准线方程为,2221a22c?2,?3a?1,b?c??a?在双曲线中,. ,c22y2?1x??所求的双曲线的方程为. 3 两条互相垂直的直线与双曲线均有两个交点,)(2???90??.CD. 如图,设直线AB的倾斜角为的倾斜角为,则直线它们的斜率都存在2b2c?6H?2e??双曲线的通径. 于是有:,离心率aaH6H6?,|CD|??|AB|?.222222????sin4?11?e)cos?1e?cos(41?cos90??四边形ACBD的面积yl A11|CD??|AB||S2C661???xO 22??2sin41?14cos?F B 218.? D 2?2sin4?3?l22???18?S2sin?45?,?2?90.时,1当且仅当,这时取得最大值min?四边形ACBD的最小面积为18.。

点差法与圆锥曲线第三定义的应用举例

点差法与圆锥曲线第三定义的应用举例

点差法与圆锥曲线第三定义的应用举例尹伟云(贵州省仁怀市周林高中ꎬ贵州仁怀564599)摘㊀要:点差法是解决圆锥曲线中点弦问题的有效工具ꎬ亦是高考的常考对象.本文从点差法入手ꎬ探究点差法与圆锥曲线第三定义的联系ꎬ给出5个经典结论及其证明ꎬ并以实例阐述其应用.关键词:点差法ꎻ中点弦ꎻ圆锥曲线第三定义中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)19-0086-05收稿日期:2023-04-05作者简介:严伟云ꎬ从事高中数学教学研究.㊀㊀圆锥曲线中的中点弦和直径问题是高考经常考查的对象.在某些与中点及直径有关的相交弦问题中ꎬ利用点差法或圆锥曲线第三定义可快速得到两直线的斜率之积ꎬ尤其是在小题中ꎬ直接利用结论求解ꎬ可大大地节省解题时间.下面就这些问题进行探讨.1点差法的原理1.1点差法在椭圆中点弦问题中的应用结论1㊀设直线l(不与坐标轴垂直且不过原点)与椭圆x2a2+y2b2=1(a>b>0)相交于A(x1ꎬy1)ꎬB(x2ꎬy2)两点ꎬP(x0ꎬy0)为弦AB的中点ꎬ如图1ꎬ则kOP kAB=y0x0 kAB=-b2a2=e2-1ꎻ若椭圆方程为y2a2+x2b2=1(a>b>0)ꎬ如图2ꎬ则kOP kAB=y0x0 kAB=-a2b2=1e2-1.证明㊀由x21a2+y21b2=1ꎬx22a2+y22b2=1ꎬìîíïïïï两式相减ꎬ得图1㊀椭圆焦点在x轴㊀㊀㊀㊀㊀图2㊀椭圆焦点在y轴x21-x22a2+y21-y22b2=0.即(x1+x2)(x1-x2)a2+(y1+y2)(y1-y2)b2=0.化为(y1+y2)/2(x1+x2)/2 y1-y2x1-x2=-b2a2.所以y0x0 kAB=-b2a2.故kOP kAB=-b2a2=-a2-c2a2=e2-1.如图2ꎬ当椭圆的焦点在y轴上时ꎬ同理得kOP kAB=y0x0 kAB=-a2b2=1e2-1.1.2点差法在双曲线中点弦问题中的应用结论2㊀设直线l(不与坐标轴垂直且不过原点)与双曲线x2a2-y2b2=1(a>0ꎬb>0)相交于A(x1ꎬy1)ꎬB(x2ꎬy2)两点ꎬP(x0ꎬy0)为弦AB的中点ꎬ如图3和图4ꎬ仿照结论1的证明方法ꎬ容易得到kOP kAB=y0x0 kAB=b2a2=e2-1.若双曲线方程为y2a2-x2b2=1(a>0ꎬb>0)ꎬ则kOP kAB=y0x0 kAB=a2b2=1e2-1.图3㊀双曲线中点弦问题㊀㊀㊀㊀图4㊀双曲线中点弦问题根据结论1和结论2ꎬ容易知道椭圆㊁双曲线中点差法的统一公式:设曲线C:x2m+y2n=1ꎬ其中mnʂ0ꎬ直线l(不与坐标轴垂直且不过原点)与曲线C相交于A(x1ꎬy1)ꎬB(x2ꎬy2)两点ꎬP(x0ꎬy0)为弦AB的中点ꎬ则kOP kAB=-nm.①当m=n>0时ꎬ方程x2m+y2n=1表示圆ꎬ由垂径定理可知ꎬkPA kPB=-1ꎻ②当mʂn且m>0ꎬn>0时ꎬ方程x2m+y2n=1表示椭圆ꎻ③当mn<0时ꎬ方程x2m+y2n=1表示双曲线ꎻ④当m<0ꎬn<0时ꎬ方程x2m+y2n=1不表示任何曲线.1.3点差法在抛物线中点弦问题中的应用结论3㊀设直线l(不与抛物线对称轴垂直)与抛物线y2=2px(p>0)相交于A(x1ꎬy1)ꎬB(x2 y2)两点ꎬP(x0ꎬy0)为弦AB的中点ꎬ如图5ꎬ则y0 kAB=p.若抛物线方程为x2=2py(p>0)ꎬ则x0kAB=p.图5㊀抛物线中点弦问题证明㊀由y21=2px1ꎬy22=2px2ꎬ{两式相减ꎬ得y21-y22=2p(x1-x2).化简为y1+y22 y1-y2x1-x2=p.即得y0 kAB=p.若抛物线方程为x2=2py(p>0)ꎬ同理可证x0kAB=p.2圆锥曲线的第三定义已知AꎬB是x轴上关于原点O对称的两点ꎬ设|AB|=2a.若平面内异于AꎬB的动点P满足kPA kPB为定值λꎬ则当-1<λ<0时ꎬ点P的轨迹为椭圆(不含长轴端点AꎬB)ꎬ设短轴长为2bꎬ则λ=-b2a2ꎻ当λ>0时ꎬ点P的轨迹为双曲线(不含实轴端点AꎬB)ꎬ设虚轴长为2bꎬ则λ=b2a2.由上知ꎬλ=e2-1ꎬ其中e为对应轨迹的离心率.将圆锥曲线第三定义进行推广ꎬ得到如下结论:结论4㊀如图6ꎬ过原点的直线与椭圆x2a2+y2b2=1(a>b>0)相交于AꎬB两点ꎬP为椭圆上异于AꎬB的动点ꎬ当直线PAꎬPB的斜率均存在时ꎬ有kPA kPB=e2-1=-b2a2.当椭圆的焦点在y轴上时ꎬ有kPA kPB=1e2-1=-a2b2.证法1㊀设P(x0ꎬy0)ꎬA(x1ꎬy1)ꎬ则B(-x1ꎬ图6㊀结论4图-y1)ꎬ从而直线PAꎬPB的斜率之积为kPA kPB=y0-y1x0-x1y0+y1x0+x1=y20-y21x20-x21=b21-(x20/a2)[]-b21-(x21/a2)[]x20-x21=-b2a2.证法2㊀取AP的中点Mꎬ连接OMꎬ由点差法ꎬ得kPA kPB=kPA kOM=e2-1=-b2a2.当椭圆的焦点在y轴上时ꎬ同理可证kPA kPB=1e2-1=-a2b2.结论5㊀如图7ꎬ过原点的直线与双曲线x2a2-y2b2=1(a>0ꎬb>0)相交于AꎬB两点ꎬP为双曲线上异于AꎬB的动点ꎬ当直线PAꎬPB的斜率均存在时ꎬ有kPA kPB=e2-1=b2a2.图7㊀结论5图当双曲线的焦点在y轴上时ꎬ有kPA kPB=1e2-1=a2b2.证法1㊀设P(x0ꎬy0)ꎬA(x1ꎬy1)ꎬ则B(-x1ꎬ-y1)ꎬ则kPA kPB=y0-y1x0-x1y0+y1x0+x1=b2(x20/a2)-1[]-b2(x21/a2)-1[]x20-x21=b2a2.证法2㊀取PA的中点Mꎬ连接OMꎬ由点差法ꎬ得kPA kPB=kPA kOM=e2-1=b2a2.当椭圆的焦点在y轴上时ꎬ同理可证kPA kPB=1e2-1=a2b2.3实例分析例1㊀已知椭圆C:x24+y2=1上存在两点AꎬB关于直线l:x=my+1对称ꎬ则实数m的取值范围是.解析㊀由题意知ꎬ直线AB与l互相垂直ꎬ所以kAB kl=-1ꎬ得kAB=-m.设线段AB的中点为M(x0ꎬy0)ꎬ由点差法ꎬ得kAB kOM=-b2a2.即(-m)y0x0=-14.与x0=my0+1联立ꎬ得x0=43ꎬy0=13m.ìîíïïïï因为点M43ꎬ13mæèçöø÷在椭圆C的内部ꎬ所以164ˑ9+13mæèçöø÷2<1.解得m>55ꎬ或m<-55.所以实数m的取值范围是-¥ꎬ-55æèçöø÷ɣ55ꎬ+¥æèçöø÷.评注㊀在椭圆中ꎬ由点差法得到的式子 kABkOM=-b2a2 是相交弦中点与原点连线的斜率与弦所在直线斜率的一个等量关系.kAB与直线AB直接相关联ꎬ-b2a2与椭圆C相关联ꎬ因此ꎬ点差法搭建了直线与椭圆之间的桥梁.在本题中ꎬ点差法为弦中点的表示创造了重要条件ꎬ从而通过中点与椭圆的位置关系建立不等关系.例2㊀已知F1(-cꎬ0)ꎬF2(cꎬ0)分别为双曲线C:x2a2-y2b2=1(a>0ꎬb>0)的左㊁右焦点ꎬ直线l:xc+yb=1与C交于MꎬN两点ꎬ线段MN的垂直平分线与x轴交于点T(-5cꎬ0)ꎬ则C的离心率为.解析㊀设线段MN与其垂直平分线交于点Pꎬ连接OPꎬ如图8.图8㊀例2解析图则kPT kMN=-1ꎬkOP kMN=b2a2.ìîíïïï①②两式相比ꎬ得kPTkOP=-a2b2.即y0x0+5c x0y0=-a2b2ꎬ解得x0=-5a2c.又由①得y0x0+5c -bcæèçöø÷=y0-5a2/c+5c -bcæèçöø÷=-1.解得y0=5b.将x0=-5a2cꎬy0=5bꎬìîíïïï代入xc+yb=1中ꎬ得-5a2c2+5bb=1.化简为c2a2=54.所以e=ca=52.评注㊀求离心率的关键是找到关于aꎬbꎬc的一个齐次等量关系ꎬ而点差法的结论 kOP kMN=b2a2 中恰好含有a与b的齐二次关系.对于结论中两直线的斜率ꎬ一般有两种转化途径:一是转化为点的坐标ꎬ二是利用几何图形的特征或位置关系进行转化.本题就是通过点的坐标以及两直线的垂直关系与点的共线关系进行转化.例3㊀抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后ꎬ沿平行于抛物线对称轴的方向射出.今有抛物线C:x2=8yꎬ如图9ꎬ一平行于y轴的光线从上方射向抛物线上的点Pꎬ经抛物线2次反射ꎬ最后从抛物线上的点Q沿平行于y轴方向射出.若直线l:y=x+m与抛物线C交于AꎬB两点ꎬ在坐标平面内作әABNꎬ使әABN的外接圆圆心的坐标为I-12ꎬ11æèçöø÷ꎬ求弦AB的长度.图9㊀例3解析图解析㊀设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ线段AB的中点为M(x0ꎬy0)ꎬ则x21=8y1ꎬx22=8y2.两式相减ꎬ得x21-x22=8(y1-y2).化简为x1+x22=4(y1-y2)x1-x2.解得x0=4kAB=4.即得kAB=1ꎬ从而y0=4+m.由垂径定理ꎬ得ABʅMI.所以kAB kMI=-1.即1 4+m-114+1/2=-1ꎬ解得m=52.联立y=x+52与x2=8yꎬ消去yꎬ得x2-8x-20=0.从而|AB|=k2+1 |x1-x2|=k2+1(x1+x2)2-4x1x2=12+1 82-4ˑ(-20)=122.评注㊀抛物线中点差法的结论x0k=p 体现了相交弦中点横坐标与弦所在直线斜率的等量关系.本题中ꎬ求直线l方程中m的值是关键.点差法与垂径定理的联合ꎬ将问题转化为点的坐标运算ꎬ从而求出m的值.应注意ꎬ对于解答题ꎬ需写出点差法的推导过程ꎬ即先将弦的两端点坐标代入曲线方程中ꎬ作差后再利用平方差公式和中点坐标公式化为中点坐标与斜率的关系[1].例4㊀已知椭圆C:x216+y212=1ꎬ点A(-4ꎬ0)ꎬB(4ꎬ0)ꎬ点P和Q分别是椭圆C和圆M:x2+y2=16上不同于AꎬB的两点ꎬ设直线PBꎬQB的斜率分别为k1ꎬk2ꎬ且k1=34k2ꎬ求证:AꎬPꎬQ三点共线.解析㊀在椭圆C中ꎬ由椭圆第三定义ꎬ得kPB kPA=-b2a2.即k1 kPA=-34.又k1=34k2ꎬ所以34k2 kPA=-34ꎬ得kPA=-1k2.在圆M中ꎬ由kQA kQB=-1ꎬ即kQA k2=-1ꎬ得kQA=-1k2.所以kPA=kQA.又直线PA与QA共点Aꎬ所以AꎬPꎬQ三点共线.评注㊀如果圆的弦经过该圆圆心ꎬ则称该弦为该圆的直径ꎬ类似地ꎬ椭圆的弦经过该椭圆的中心ꎬ则称该弦为该椭圆的直径.本题中ꎬ线段AB是椭圆的直径ꎬ通过椭圆第三定义得到椭圆上一点与另两点连线的两斜率之积.如果把圆看作是特殊的椭圆ꎬ那么在圆中 kQB kQA=-1 可看作是椭圆中kPB kPA=-b2a2 的特殊情形ꎬ由这两组斜率关系和条件中的斜率关系推出的新的斜率关系ꎬ恰好达到证明的目的.例5㊀在平面直角坐标系xOy中ꎬ已知直线l:3x+y+m=0与双曲线C:x2a2-y2b2=1(a>0ꎬb>0)的右支交于MꎬN两点(点M在第一象限).若点Q满足OMң+OQң=0ꎬ且øMNQ=30ʎꎬ则双曲线C的渐近线方程为.解析㊀由3x+y+m=0ꎬ得l的斜率为-3ꎬ故l的倾斜角为120ʎ.又øMNQ=30ʎꎬ所以直线QN的倾斜角为120ʎ+30ʎ=150ʎꎬ如图10.图10㊀例5解析图由OMң+OQң=0知ꎬO为线段MQ的中点.由双曲线第三定义得kMN kQN=b2a2.即b2a2=-3 tan150ʎ=1ꎬ即ba=1.所以双曲线C的渐近线方程为y=ʃx.评注㊀本题由双曲线第三定义快速得到关于aꎬb的齐次分式与kMNꎬkQN的等量关系ꎬ再由直线MN的倾斜角及条件中的已知角求得kQNꎬ从而得到关于aꎬb的齐次方程ꎬ即得双曲线的渐近线方程.利用双曲线第三定义解题ꎬ首先要寻找过双曲线中心的相交弦ꎬ其次在双曲线上另找一点ꎬ向弦两端点引直线ꎬ再将这两直线的斜率转化为可求的量.参考文献:[1]任栋.圆锥曲线第三定义及点差法的应用[J].中学数学ꎬ2019(15):48-49.[责任编辑:李㊀璟]。

用圆锥曲线定义解决高考解析几何问题

用圆锥曲线定义解决高考解析几何问题
于发 展学 生 的创 新思 维 能力 .
2 + 1, 2:+ 1 2‘+ 1 2 + 1. + 1, 2 2。+ 1
故 知 6小 时 后 细 胞 存 活 2 +1 5个 . =6
三 、 炼 方 法 , 拓 思 路 , 化 运 用 提 开 强

通 过 问题 设 计 . 杨 辉 三 角 去 审 视 、 用 提
到 线 = 丢的 离 准 一 距
分别是 d 、 1 6 由 ,

勾 股定 理 , 路清 晰 , 算简 便 , 较解 法 1简单. 思 运 远 例 2 ( 3年上 海题 ) 9 动点 P到直 线 +4= 0 的距离 减去 它 到 M( , ) 2 0 的距离 之 差 等 于 2, 点 则
例 5 一 条信 息 , 一 人 得 知 后 用 一 小 时 将 若 信 息传 给两 个 人 , 两 个人 又用 一 小 时 各 传 给 未 这 知此 信 息 的另 两个 人 , 此 下去 , 由 要传 遍 一 个 1 0 0
万人 口的城 市 , 要 的时 间约 为 ( ) 需 .
( 三 个 月 A) ( 1 C)0天 ( 一 个 月 B) ( 2 J时 D)0/ 、



解 法 2 ‘ (I F —l 1 ! a . P I ‘ I J p ) =4 =4 由勾股 定 理得
I PF I !+ I I

解 法 1 由 双 曲 线 方 程 知 Ⅱ=2 b . , =1
‘ . .
! =( c : 2 , 2) 0
c=±3- 此 l j ! = - , 因 ,, l 2 3,
维普资讯
20 0 2年 第 8期
结 论 . 不 仅 使 学 生 的 双 基 得 有 效 的训 练 . 有 助 这 还

圆锥曲线的最值问题常见类型及解法

圆锥曲线的最值问题常见类型及解法

例1: 在圆x2+y2=4上求一点P,使它到直线L:3x-2y-16=0的距离最短。
略解:
圆心到直线L的距离d1=
所以圆上的点到直线的最短距离为 d=d1-r
问题:直线L的方程改为 3x-2y-6=0, 其结果又如何?
16 32 22
16 13 13
16 13 2 13
思考: 例1是否还有其他解题方法?
∵ |AF’|=
[1(4) ]2 1 26
∴ |MF|+|MA| 的最大值为 问题:本题解题到此结束了吗?
10 26
最小值为
10 26
变式训练:
1 . 已知P点为抛物线
上的点,那么P点到点Q(2,-1)的距离与P点到抛物线焦点的距
离之和的最小值为 _ __,此时P点坐标为
y_. 2 4 x
y
x Q
3
,面积为
的等腰梯形. (1)求椭圆的方程; (2)过点F1的直线和椭圆交于两点A、B,求
33
F2AB面积的最大值.
练习、设椭圆中心在坐标原点A(2,0)、B(0,1)是它的两个顶点,直线 两点,求四边形AEBF面积的最大值.
ykx (k0)
y
与椭圆交于E、F
思维导图: 用k表示四边形的面积
B F
yx2 3
解:设椭圆与
平y行的切x线方程2为 3
y xb
y xb
x2 2
y2
1
3x2 4bx2b2 20 (1) (4b)2 43(2b2 2) 0
b 3
1)当b
3时,代入(1)得dmin
6; 2
2)当b
3时,代入(1)得dmax
3 6. 2
变式训练:

最新高三数学试题及高考分析

最新高三数学试题及高考分析

最新高三数学试题及高考分析本周课题:解析几何专题本周目标:能灵活应用圆锥曲线定义解决有关问题;能灵活处理直线和圆、直线和圆锥曲线的位置关系的有关问题;掌握处理取值范围问题的方法。

本周重点:圆锥曲线定义的应用;位置关系问题;取值范围及最值问题。

本周内容:一、圆锥曲线定义的应用例1.椭圆192522=+y x 上一点P 到焦点F 1的距离为2,O 为原点,Q 为PF 1的中点,则|OQ|为________。

解:令F 2是此椭圆的另一焦点,则由P 是椭圆192522=+y x 上一点, ∴ |PF 1|+|PF 2|=2³5=10, 又|PF 1|=2, ∴|PF 2|=8,如图,在ΔPF 1F 2中,由Q 是PF 1中点,O 是F 1F 2中点知OQ//PF 2且||21||2PF OQ =, ∴ |OQ|=4。

例2.设F 1、F 2为椭圆的两个焦点,点P 是以F 1、F 2为直径的圆与椭圆的交点,若∠PF 1F 2=5∠PF 2F 1,则椭圆离心率为_____。

解:如上图,已知实际为椭圆上一点P 满足PF 1⊥PF 2,且∠PF 1F 2=5∠PF 2F 1。

在ΔPF 1F 2中,有*).........(sin ||sin ||sin ||2121212121PF F F F F PF PF F PF PF ∠=∠=∠∵PF 1⊥PF 2, ∴sin ∠F 1PF 2=1,令此椭圆方程为)0(12222>>=+b a bya x则由椭圆第一定义有 |PF 1|+|PF 2|=2a,|F 1F 2|=2c, ∴由(*)式有**).........(2sin ||sin sin ||||2121211221c PF F F F F PF F PF PF PF =∠=∠+∠+又 ∵∠PF 1F 2=5∠PF 2F 1, ∴∠PF 1F 2=75°,∠PF 2F 1=15°,∴ 21575cos 21575sin 2sin sin 00002112-⋅+=∠+∠F PF F PF .2630cos 45sin 200=⋅=∴由(**)式有c a 2262=,∴3662a c ==, 即36=e 。

圆锥曲线新定义问题(学生版)--2025新高考

圆锥曲线新定义问题(学生版)--2025新高考

专题集合新定义问题解决圆锥曲线的新定义问题的关键在于理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答题型一新定义图形1阿基米德(公元前287年~公元前212年)是古希腊伟大的物理学家,数学家和天文学家,并享有“数学之神”的称号.他研究抛物线的求积法,得出了著名的阿基米德定理.在该定理中,抛物线的弦与过弦的端点的两切线所围成的三角形被称为“阿基米德三角形”.若抛物线上任意两点A ,B 处的切线交于点P ,则△PAB 为“阿基米德三角形”,且当线段AB 经过抛物线的焦点F 时,△PAB 具有以下特征:(1)P 点必在抛物线的准线上;(2)PA ⊥PB ;(3)PF ⊥AB .若经过抛物线y 2=8x 的焦点的一条弦为AB ,“阿基米德三角形”为△PAB ,且点P 在直线x -y +6=0上,则直线AB 的方程为()A.x -y -2=0B.x -2y -2=0C.x +y -2=0D.x +2y -2=0【跟踪训练】1椭圆x 2a 2+y 2b 2=1a >b >0 中,点F 2为椭圆的右焦点,点A 为椭圆的左顶点,点B 为椭圆的短轴上的顶点,若F 2B ⊥AB,此椭圆称为“黄金椭圆”,“黄金椭圆”的离心率为()A.22B.-1+52C.12D.33题型二新定义曲线2中国结是一种手工编织工艺品,因为其外观对称精致,可以代表汉族悠久的历史,符合中国传统装饰的习俗和审美观念,故命名为中国结.中国结的意义在于它所显示的情致与智慧正是汉族古老文明中的一个侧面,也是数学奥秘的游戏呈现.它有着复杂曼妙的曲线,却可以还原成最单纯的二维线条.其中的八字结对应着数学曲线中的双纽线.曲线C :x 2+y 2 2=9x 2-y 2是双纽线,则下列结论正确的是()A.曲线C 的图象关于原点对称B.曲线C 经过5个整点(横、纵坐标均为整数的点)C.曲线C 上任意一点到坐标原点O 的距离都不超过3D.若直线y =kx 与曲线C 只有一个交点,则实数k 的取值范围为-∞,-1 ∪1,+∞【跟踪训练】2在平面直角坐标系xOy 中,点M 不与原点О重合,称射线OM 与x 2+y 2=4的交点N 为点M 的“中心投影点”,曲线y 2-x 23=1上所有点的“中心投影点”构成的曲线长度是题型三新定义方法3古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知椭圆C 的面积为23π,F 1,F 2分别是椭圆C 的两个焦点,过F 1的直线交椭圆C 于A ,B 两点,若△ABF 2的周长为8,则椭圆C 的离心率为.【跟踪训练】3定义:点P 为曲线L 外的一点,A ,B 为L 上的两个动点,则∠APB 取最大值时,∠APB 叫点P 对曲线L 的张角.已知点P 为抛物线C :y 2=4x 上的动点,设P 对圆M :(x -3)2+y 2=1的张角为θ,则cos θ的最小值为.1若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”.下列椭圆中是“对偶椭圆”的是()A.x 28+y 24=1B.x 23+y 25=1C.x 26+y 22=1D.x 26+y 29=12加斯帕尔-蒙日是1819世纪法国著名的几何学家.如图,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”.若长方形G 的四边均与椭圆M :x 26+y 24=1相切,则下列说法错误的是()A.椭圆M 的离心率为33B.椭圆M 的蒙日圆方程为x 2+y 2=10C.若G 为正方形,则G 的边长为25D.长方形G 的面积的最大值为183某数学爱好者以函数图像组合如图“爱心”献给在抗疫一线的白衣天使,向他们表达崇高的敬意!爱心轮廓是由曲线C 1:y =a |x |-x 2与C 2:y =b c -|x |构成,若a ,λb ,c 依次成等比数列,则λ=()A.±23B.23C.±32D.324曲率半径是用来描述曲线上某点处曲线弯曲变化程度的量,已知对于曲线x 2a 2+y 2b 2=1(a >0,b >0)上点P x 0,y 0 处的曲率半径公式为R =a 2b2x 20a 4+y 20b 432,则下列说法:①对于半径为R 的圆,其圆上任一点的曲率半径均为R②椭圆x 2a 2+y 2b 2=1(a >b >0)上一点处的曲率半径的最大值为a③椭圆x 2a 2+y 2b2=1(a >b >0)上一点处的曲率半径的最小值为b 2a ④对于椭圆x 2a 2+y 2=1(a >1)上点12,y 0 处的曲率半径随着a 的增大而减小其中正确的是()A.①③B.①④C.②③D.②④5(多选)在平面内,若曲线C 上存在点P ,使点P 到点A 3,0 ,B -3,0 的距离之和为10,则称曲线C 为“有用曲线”,以下曲线是“有用曲线”的是()A.x +y =5B.x 2+y 2=9C.x 225+y 29=1D.x 2=16y6(多选)已知曲线C 的方程为F (x ,y )=0,集合T =(x ,y )|F (x ,y )=0 ,若对于任意的(x 1,y 1)∈T ,都存在(x 2,y 2)∈T ,使得x 1x 2+y 1y 2=0成立,则称曲线C 为∑曲线.下列方程所表示的曲线中,是∑曲线的有()A.x 24+y 23=1B.x 2-y 2=1C.y 2=2xD. y =x +17在平面直角坐标系中,A -1,0 ,B 1,0 ,若在曲线C 上存在一点P ,使得∠APB 为钝角,则称曲线上存在“钝点”,下列曲线中,有“钝点”的曲线为.(填序号)①x 2=4y ;②x 23+y 22=1;③x 2-y 2=1;④x -2 2+y -2 2=4;⑤3x +4y =4.8城市的许多街道是相互垂直或平行的,因此,乘坐出租车往往不能沿直线到达目的地,只能按直角拐弯的方式行走.在平面直角坐标系中,定义d P ,Q =x 1-x 2 +y 1-y 2 为两点P x 1,y 1 、Q x 2,y 2 之间的“出租车距离”.给出下列四个结论:①若点O 0,0 ,点A 1,2 ,则d O ,A =3;②到点O 0,0 的“出租车距离”不超过1的点的集合所构成的平面图形面积是π;③若点A 1,2 ,点B 是抛物线y 2=x 上的动点,则d A ,B 的最小值是1;④若点A 1,2 ,点B 是圆x 2+y 2=1上的动点,则d A ,B 的最大值是3+2.其中,所有正确结论的序号是.9给定椭圆C :x 2a 2+y 2b 2=1(a >b >0),称圆心在原点O ,半径为a 2+b 2的圆为椭圆C 的“准圆”.若椭圆C 的一个焦点为F (2,0),其短轴上的一个端点到F 的距离为3.(1)求椭圆C 的方程和其“准圆”方程;(2)若点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线l 1,l 2交“准圆”于点M ,N .证明:l 1⊥l 2,且线段MN 的长为定值.(1)椭圆方程为x 23+y 2=1,“准圆”方程为x 2+y 2=4;(2)证明见解析.10焦距为2c 的椭圆Γ:x 2a 2+y 2b 2=1(a >b >0),如果满足“2b =a +c ”,则称此椭圆为“等差椭圆”.(1)如果椭圆Γ:x 2a 2+y 2b2=1(a >b >0)是“等差椭圆”,求ba 的值;(2)对于焦距为12的“等差椭圆”,点A 为椭圆短轴的上顶点,P 为椭圆上异于A 点的任一点,Q 为P 关于原点O 的对称点(Q 也异于A ),直线AP 、AQ 分别与x 轴交于M 、N 两点,判断以线段MN 为直径的圆是否过定点?说明理由.11中国结是一种手工编制工艺品,因其外观对称精致,符合中国传统装饰的审美观念,广受中国人喜爱. 它有着复杂奇妙的曲线,却可以还原成单纯的二维线条,其中的“八字结”对应着数学曲线中的伯努利双纽线. 在xOy平面上,我们把与定点F1-a,0距离之积等于a2的动点的轨迹称为伯努a>0,F2a,0利双纽线,F1,F2为该曲线的两个焦点. 数学家雅各布•伯努利曾将该曲线作为椭圆的一种类比开展研究. 已知曲线C:x2+y2是一条伯努利双纽线.2=9x2-y2(1)求曲线C的焦点F1,F2的坐标;(2)试判断曲线C上是否存在两个不同的点A,B(异于坐标原点O),使得以AB为直径的圆过坐标原点O.如果存在,求出A,B坐标;如果不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线定义在高考中的应用一、教学目标知识与技能通过对一个习题及其引申问题的求解,使学生掌握利用圆锥曲线的定义求解有关最值问题的方法.过程与方法通过对问题的不断引申,精心设问,引导学生学习解题的一般方法及联想、类比、猜测、证明等合情推理与逻辑推理方法,培养学生思维的深刻性、创造性、科学性与批准性.提高学生分析综合能力及探索发现能力.情感、态度、价值观二、教学重点与难点巧用圆锥曲线的定义求有关线段长之和的最值既是重点又是难点.三、教学过程师:我们已经学习了椭圆、双曲线、抛物线的有关概念、标准方程、图形和性质.现在我想请三位同学分别回忆一下椭圆、双曲线、抛物线的定义.生1:平面内与两定点F1、F2距离之和等于常数2a(2a>|F1F2|)的动点的轨迹称为椭圆.生2:平面内与两定点的距离之差的绝对值等于常数2a(2a<|F1F2|)的动点的轨迹称为双曲线.生3:平面内与一个定点及一条定直线距离相等的点的轨迹叫做抛物线.师:生1、生2、生3的回答都是正确的.对于圆锥曲线,除了刚才说的定义以外,还有别的定义方式吗?生4:还有第二定义:平面内与一个定点F和一条定直线l的距离之比等于常数e(e>0)的点的轨迹是椭圆(0<e<1时)、双曲线(e>1时)或抛物线(e=1时).师:很好!圆锥曲线的定义揭示了圆锥曲线中最原始、最本质的数量关系,它有着广泛的应用,本节课我们将利用圆锥曲线定义求解几个最值问题. (板书)例已知动圆A过定圆B:x2+y2+6x-7=0的圆心B,且与定圆C:x2+y2-6x-55=0相内切,求△ABC面积的最大值.师:本题欲求结果是什么?据此你联想到些什么?生5:求ABC的最大面积,应联想:三角形面积公式.师:请回忆,三角形面积怎样表示?师:你们准备选用哪一个公式?请简要说明理由.生6:选第一个公式.这是因为B、C都是定圆圆心,故它们都是定点,因此BC是定长,这样只须求出BC边上高的最大值就可以了,而第二组面积表示式中的3个公式中除了BC边的长即a不变以外,其余的边和角都在变,不易求面积.师:有道理,下面我们就按生6的方案来求解.关键的问题是BC边上的高的最大值怎么求?请大家思考.生7:由于圆A运动,所以BC边上的高随圆A的运动而变化,从而导致△ABC面积的变化,因此如果先求出A的轨迹,那么就不难求出BC边上高的最大值了.师:(赞许地)很好!那么如何求A的轨迹呢?生8:(师板书)将两已知圆配方得⊙B:(x+3)2+y2=16.⊙C:(x-3)2+y2=64.所以B(-3,0),C(3,0)师:很好!圆锥曲线的定义揭示了圆锥曲线中最原始、最本质的数量关系,它有着广泛的应用,本节课我们将利用圆锥曲线定义求解几个最值问题. (板书)例已知动圆A过定圆B:x2+y2+6x-7=0的圆心B,且与定圆C:x2+y2-6x-55=0相内切,求△ABC面积的最大值.师:本题欲求结果是什么?据此你联想到些什么?生5:求ABC的最大面积,应联想:三角形面积公式.师:请回忆,三角形面积怎样表示?师:你们准备选用哪一个公式?请简要说明理由.生6:选第一个公式.这是因为B、C都是定圆圆心,故它们都是定点,因此BC是定长,这样只须求出BC边上高的最大值就可以了,而第二组面积表示式中的3个公式中除了BC边的长即a不变以外,其余的边和角都在变,不易求面积.师:有道理,下面我们就按生6的方案来求解.关键的问题是BC边上的高的最大值怎么求?请大家思考.生7:由于圆A运动,所以BC边上的高随圆A的运动而变化,从而导致△ABC面积的变化,因此如果先求出A的轨迹,那么就不难求出BC边上高的最大值了.师:(赞许地)很好!那么如何求A的轨迹呢?生8:(师板书)将两已知圆配方得⊙B:(x+3)2+y2=16.⊙C:(x-3)2+y2=64.所以B(-3,0),C(3,0) ⊙C的半径r=8.画出⊙C 与⊙A相内切的图形(如图2-64),利用两圆内切的性质及椭圆的定义可判定A的轨迹是椭圆.师:能说得具体些吗?生8:设已知圆C与动圆A内切于点P,则P、A、C必在同一条直线上,且|PC|=8.因为|AP|=|AB|,所以|AB|+|AC|=|AP|+|AC|=|PC|=8.所以点A的轨迹是椭圆.师:生8仅根据|AB|+|AC|=8,就判断A的轨迹是椭圆,对吗?生9:基本正确,但应说明|AB|+|AC|>|BC|.生8:对了,|AB|+|AC|=8>6|BC|.所以,点A的轨迹是椭圆.师:很好!我们已经确认点A的轨迹是椭圆,现在该如何确定△ABC 面积的最大值呢?生10:当△ABC的高等于椭圆的短半轴长时,高最大,从而S△ABC 最大.师:同学们是否赞同生10的判断?生:……(有的赞同,有的相互小声议论.)师:让我们借助于计算机演示一下点A的运动过程,请同学们认真观察A运动到什么位置时,△ABC底边BC上的高最大.⊙C的半径r=8.画出⊙C与⊙A相内切的图形(如图2-64),利用两圆内切的性质及椭圆的定义可判定A的轨迹是椭圆.师:能说得具体些吗?生8:设已知圆C与动圆A内切于点P,则P、A、C必在同一条直线上,且|PC|=8.因为|AP|=|AB|,所以|AB|+|AC|=|AP|+|AC|=|PC|=8.所以点A的轨迹是椭圆.师:生8仅根据|AB|+|AC|=8,就判断A的轨迹是椭圆,对吗?生9:基本正确,但应说明|AB|+|AC|>|BC|.生8:对了,|AB|+|AC|=8>6|BC|.所以,点A的轨迹是椭圆.师:很好!我们已经确认点A的轨迹是椭圆,现在该如何确定△ABC 面积的最大值呢?生10:当△ABC的高等于椭圆的短半轴长时,高最大,从而S△ABC 最大.师:同学们是否赞同生10的判断?生:……(有的赞同,有的相互小声议论.)师:让我们借助于计算机演示一下点A的运动过程,请同学们认真观察A运动到什么位置时,△ABC底边BC上的高最大.生12:求最小值问题,确切地说是求动点A到两定点C、M的距离之和的最小值.师:不错!那么如何求|AM|+|AC|的最小值呢?生:……(似乎一时束手无策) 师:(启发一下)点C在椭圆内,点A在椭圆上,那么点M 相对于椭圆的位置又是怎样的呢? (片刻后)生13:我想先求出Q的方程,画出Q的图形及点M位置,如果点M在Q外,那么由三角形两边之和大于第三边知(|AM|+|AC|)最小=|MC|师:生13给出了求解问题的基本思路,我们请生13具体说说.点M(2,1)在Q内(如图2-66) (|AM|+|AC|)最小=…(一时语塞).师:前面生13曾经就M在Q外时由三角形两边之和大于第三边判定(|AM|+|AC|)最小=|MC|,这里,偏偏点M在Q内,怎么解决?生14:可以利用椭圆定义并结合三角形两边之和大于第三边的结论来求解.只须连MB、AB(如图2-67),那么|BM|+|AM|+|AC|≥|AB|+|AC|=2a,生12:求最小值问题,确切地说是求动点A到两定点C、M的距离之和的最小值.师:不错!那么如何求|AM|+|AC|的最小值呢?生:……(似乎一时束手无策)师:(启发一下)点C在椭圆内,点A在椭圆上,那么点M相对于椭圆的位置又是怎样的呢? (片刻后)生13:我想先求出Q的方程,画出Q的图形及点M位置,如果点M在Q外,那么由三角形两边之和大于第三边知(|AM|+|AC|)最小=|MC|师:生13给出了求解问题的基本思路,我们请生13具体说说.点M(2,1)在Q内(如图2-66) (|AM|+|AC|)最小=…(一时语塞).师:前面生13曾经就M在Q外时由三角形两边之和大于第三边判定(|AM|+|AC|)最小=|MC|,这里,偏偏点M在Q内,怎么解决?生14:可以利用椭圆定义并结合三角形两边之和大于第三边的结论来求解.只须连MB、AB(如图2-67),那么|BM|+|AM|+|AC|≥|AB|+|AC|=2a,生16:我想是否可以利用椭圆定义并结合三角形两边之差小于第三不一定出自学习成绩突出者,而常常出自思维活跃且胆大者.) 师:(欣喜地)能说说你的具体想法吗?生16:联想到刚才我们用椭圆定义及三角形两边之和大于第三边求师:大胆合理的猜想往往是获得重大发现的前奏,同学们不妨都来猜一猜.生:(片刻后绝大多数同学)同意生16的猜想.师:那么,就请同学们来验证这个猜想吧!肯定与否都要说明理由.生17:如图2-67, |AM|+|AC|=|AM|+(2a-|AB|)=2a+(|AM|-|AB|).因为|AM|-|AB|≤|BM|(当点A在MB的延长线上时取等号),师:非常好!生15为我们提出了一个值得思考的问题,生16通过联想对问题的解法及结果作出了大胆的猜想,而生17从理论上给出了严格的证明,三位同学相得益彰,使问题的解决一气呵成,我为同学们祝贺,大家还有新的问题吗? (鼓励学生提出问题,即使是事先未估计到的问题,并通过大胆地猜想,严格地证明,使问题得到满意的解决,这对于培养学生的发现能力,创新精神及实事求是的科学态度无疑是十分有益的.)生:(互相观望)似乎不再有什么问题.师:我再提一个问题 (一石激起千层浪,学生思维的平湖上又一次荡起层层波澜.) 生:(议论纷纷) 师:这里的结论与引申1作比较有何异同?师:还能挖掘出某些相关的因素吗?生:……(一时想不出) 师:|AC|是椭圆Q上的点A到右焦点C的距离,它的系数是离心率的倒数,涉及到焦半径,离心率,你有何新的联想?生19:联想到椭圆第二定义.师:能具体说说吗?生19:……(其余学生似乎也无从下手) 师:利用椭圆第二定义,除了要有离心率、点A的焦半径以外,还 l于D(如图2-69), (师边叙述边板书) 因此,问题转化为求|AM|+|AD|的最小值了,这个最小值是什么呢?生19:应当是点M到准线l的距离师:涉及到圆锥曲线上的点到焦点的距离(即焦半径)及离心率问题,联想第二定义是很自然的,这里不妨再提出一个问题.引申3:将例题中的条件改为“动圆A与定圆B、定圆C都内切,且⊙B、⊙C在⊙A内.师:大家见过与本题相仿的问题吗?能拟出一个大体的求解方案吗?生20:第一个问题与前面的例题类似,只是需要求出Q的方程.所以可利用动圆A与定圆B、定圆C都内切的性质,或许也要用到圆锥曲线的定义来求解.求出了Q的方程后,第(2)个问题就与引申2类似了,我想也可以利用圆锥曲线的第二定义求解.师:请同学们一起来评判生23的求解是否正确?生:“正确”.师:生23的求解既迅速又准确,我们请生23说说解法思路.生23:我是与引申2的解法作类比而得出上述解法的.师:很好,类比的作用是巨大的!生21、生22、生23三位同学的意见合起来,就是本题的完整解法.这里,同学们通过联想、类比、猜测等推理方式,巧用了双曲线的两种定义进行严密推证,使问题的解决显得那样的明快、简捷.事实上,圆锥曲线定义在求圆锥曲线的方程、求点的轨迹、求焦点三角形(以椭圆或双曲线上的点P及两个焦点F1、F2为顶点的△PF1F2)的面积,求解最值问题等方面都有着广泛的应用,希望通过今天的学习能引起同学们的重视(代小结).作业:(略) 设计说明圆锥曲线的定义反映了圆锥曲线的本质属性,利用圆锥曲线的定义解决有关最值问题是重要的解题策略.因此选择这一内容作为一节习题课是很有必要的. 21世纪不仅是一个高新科技处于伟大变革的新世纪,而且更是一个充满竞争的新世纪.这种竞争,归根结底是人才的竞争,特别是高素质,开拓创新型人才的竞争.因此,如何培养跨世纪的高素质人才,怎样培养学生的开拓创新精神,以适应21世纪对人才素质的需求,是我们值得研究的一个课题.据此制定了教学目标2,旨在贯彻教学、学习、发现同步协调原则和既教证明,又教猜想的原则.努力帮助、引导学生发现问题、提出问题、分析问题和解决问题,培养学生良好的思维品质,提高学生的能力和素质.现代教育十分强调课堂教学中双主作用的发挥,在教师的主导下,如何使学生积极参与教学的全过程,真正发挥学生的主体作用,培养学生的主体意识,引导学生大胆、主动地获取知识,这是执教者在进行教学设计时应当注意的一个问题,教学目标3正是基于这样的想法制定的根据制定的教学目标,本节课按如下4个层次逐步深入: (1)求解例题中由3个圆的圆心构成的△ABC的面积的最大值; (2)对例题进行引申(引申1),另给一定点后,求两线段和|AM|+|AC|的最小值;(4)对问题进一步引申(引申3),修改例题的条件,将问题改为⊙A 与定⊙B、定⊙C都内切,且⊙B、⊙C在⊙A内,求A的轨迹Q的方三角形面积的最值及线段长度的最值是常见的一类最值问题,具有一定的典型性和代表性,作为习题课,编拟这样的习题作范例是值得推崇的.引申1中,由条件到结论有一定的跨度.若将引申1改为:在例题的条件下,设点A的轨迹为Q,试判断M(2,1)与Q 的关系,并求|AM|+|AC|的最小值,则可减小跨度,同时也可使引申1显得更自然些.在利用椭圆定义及“三角形两边之和大于第三边”求|AM|+|AC|最小值的过程中,原本只能得到|AM|+|AC|>2a-|BM|,无法获得最值,因此讨论等号是否可取是必要的.事实上,当|AM|+|AC|>2a-|BM|时,A必在BM的延长线上,此时,ABM已退化为一条段线AB.生15提出的“|AM|+|AC|是否有最大值”的问题应当事先有所估计.生16受到引申1解法的启示,猜想可利用椭圆定义及三角形两边之又将问题进行了严格的推算.所有这些都是值得赞誉的,由学生发现问题,提出问题(即使是教师事先未估计到的问题,甚至“一时不能马上解决的“尖锐”的问题),这是对学生最高层次的要求.在全面推进素质教育的今天,教师应当认真保护、积极鼓励、大力支持学生求知的欲望,既教证明,又教猜想,使教学、学习、发现同步协调发展在教学设计时,教师不但要了解学生已有的知识状况,而且要善于洞察学生的心理需求,不失时机地向学生播洒“及时雨”.前面的例题及引申1都是椭圆第一定义的应用,学生一个本能的想法就是能否利用第二定义解决有关问题,引申2的提出满足了学生这方面的心理需求.波利亚的一般解题方法应当是习题课中处理习题方法的首选.在学生已经有了成功的解决例题及引申1与引申2的经验后,引导学生根据波利亚的一般解题方法拟定求解引申3的方案是十分恰当的.联想、类比、猜测、证明,是数学家探求数学命题的有效方法,是合情推理与逻辑推理的有机结合,在数学教学中,有意识地引导学生学习上述两种推理方式,对于学生思维能力、探索精神的培养有着极大的作用,常此以往,学生的数学素质将会不断地提高,学生有所发现、有所发明、有所创新的欲望将会更加强烈,而这正是21世纪高素质人才必须具备的重要条件之一.本教案通过例题、引申1、引申2、引申3由浅入深逐步展开,符合学生的认知规律,符合循序渐进的原则,通过一题多变,层层深入的探索,通过对猜测结果的检测研究,培养了学生思维的深刻性,创造性,科学性和批判性,使学生从学会一个问题的求解到学会一类问题的求解中,领略数学的统一美.。

相关文档
最新文档