质数和合数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质数
质数又称素数。

指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。

换句话说,只有两个正因数(1和自己)的自然数即为素数。

比1大但不是素数的数称为合数。

1和0既非素数也非合数。

合数是由若干个质数相乘而得到的。

所以,质数是合数的基础,没有质数就没有合数。

这也说明了前面所提到的质数在数论中有着重要地位。

历史上曾将1也包含在质数之内,但后来为了算术基本定理,最终1被数学家排除在质数之外,而从高等代数的角度来看,1是乘法单位元,也不能算在质数之内,并且,所有的合数都可由若干个质数相乘而得到。

个数
质数的个数是无穷的。

最经典的证明由欧几里得证明在他的《几何原本》中就有记载。

它使用了现在证明常用的方法:反证法。

具体的证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,…,pn,设x = (p1·p2·...·pn)+1,如果x是合数,那么它被从p1,p2,...,pn中的任何一个质数整除都会余1,那么能够整除x的质数一定是大于pn的质数,和pn是最大的质数前提矛盾,而如果说x是质数,因为x>pn,仍然和pn是最大的质数前提矛盾。

因此说如果质数是有限个,那么一定可以证明存在另一个更大质数在原来假设的质数范围之外,所以说质数的个数无限。

费马数2^(2^n)+1
被称为“17世纪最伟大的法国数学家”的费马,也研究过质数的性质。

他发现,设F(n)=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。

这便是费马数。

但是,就是在F5上出了问题!费马死后67年,25岁的瑞士数学家欧拉证明:F5=4294967297=641×6700417,它并非质数,而是一个合数!
更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn 值是质数,全部都是合数。

目前由于平方开得较大,因而能够证明的也很少。

现在数学家们取得Fn的最大值为:n=1495。

这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。

梅森质数
17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:
2^p-1 ,当p是质数时,2^p-1是质数。

他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。

p=2,3,5,7时,2^p-1都是素数,但p=11时,所得2047=23×89却不是素数。

还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。

梅森去世250年后,美国数学家科勒证明,
2^67-1=193707721×761838257287,是一个合数。

这是第九个梅森数。

20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。

质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。

现在,数学家找到的最大的梅森质数是一个有9808357位的数:2^32582657-1。

数学家虽然可以找到很大的质数,但质数的规律还是无法循通。

5这两个特殊情况外,所有质数个位数均为1,3,7,9四个数字之一。

那么,质数的个位数是1、3、7、9的概率是否是相等的?
经统计,对1000以内的质数个位数进行调查,可以发现质数个位的分布并非十分均匀,在1000以内的质数中(忽略2、5两个情况特殊的质数,下同),个位为1的质数共40个,占总数(166个)的24.10%;个位为3的质数共42个,占总数的25.30%;个位为7的质数共46个,占总数的27.71%;而个位为9的质数仅38个,占总数的22.89%。

由上,可以估计,在无穷大的质数数列中,个位为7的质数相对较多,而个位为9的质数则相对较少。

值得提出的是,中国数学家和语言学家周海中于1992年提出梅森质数分布的猜测:当2^(2^n)<p<2^(2^(n+1))时,Mp有2^(n+1)-1个是质数。

他还据此作出推论:当p<2^(2^(n+1))时,Mp
有2^(n+2)- n - 2个是质数。

(注:p为素数;n为自然数;Mp为梅森数)
100以内的质数共有25个,这些质数我们经常用到,可以用下面的两种办法记住它们。

一、规律记忆法
首先记住2和3,而2和3两个质数的乘积为6。

100以内的质数,一般都在6的倍数前、后的位置上。

如5、7、11、13、19、23、29、31、37、41、43……只有25、35、49、55、65、77、85、91、95这几个6的倍数前后位置上的数不是质数,而这几个数都是5或7的倍数。

由此可知:100以内6的倍数前、后位置上的两个数,只要不是5或7的倍数,就一定是质数。

根据这个特点可以记住100以内的质数。

二、分类记忆法
我们可以把100以内的质数分为五类记忆。

第一类:20以内的质数,共8个:2、3、5、7、11、13、17、19。

第二类:个位数字是3或9,十位数字相差3的质数,共6个:23、29、53、59、83、89。

第三类:个位数字是1或7,十位数字相差3的质数,共4个:31、37、61、67。

第四类:个位数字是1、3或7,十位数字相差3的质数,共5个:41、43、47、71、73。

第五类:还有2个持数是79和97。

哥德巴赫猜想
哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称“强”或“二重哥德巴赫猜想”后者称“弱”或“三重哥德巴赫猜想”):1、每个不小于6的偶数都可以表示为两个奇素数之和;2、每个不小于9的奇数都可以表示为三个奇质数之和。

黎曼猜想
黎曼猜想是一个困扰数学界多年的难题,最早由德国数学家波恩哈德·黎曼提出,迄今为止仍未有人给出一个令人完全信服的合理证明。

即如何证明“关于质数的方程的所有意义的解都在一条直线上”。

此条质数之规律内的质数经过整形,“关于质数的方程的所有意义的解都在一条直线上”化为球体质数分布。

孪生质数猜想
1849年,波林那克提出孪生质数猜想(the conjecture of twin primes),即猜测存在无穷多对孪生质数。

猜想中的“孪生质数”是指一对质数,它们之间相差2。

例如3和5,5和7,11和13,10016957和10016959等等都是孪生质数。

10016957和10016959是发生在第333899位序号质数月的中旬[18±1]的孪生质数。

质数月定位孪生质数发生位置:
首个质数月孪生质数发生位置:[T-1]*30+【[4±1] [6±1] [12±1] [18±1] [30±1] 】 T=1
其余质数月孪生质数发生位置:[T-1]*30+【[0±1] [12±1] [18±1] [30±1] 】 T=N是自然数代表质数月。

相关文档
最新文档