Elastic energy for reflection-symmetric topologies
用蒙特卡罗方法计算高纯锗探测器的全能峰效率
的基本思想. 结果表 明 , 蒙特卡罗模拟得 到的全能峰效率与实验测量得 到的全能 峰效率具有完 全相 同的特征 . [ 关键词 ] 高纯锗探测器 ; ne a o Mot C d 方法 ; 全能峰探测效率 [ 中图分 类号 ] 5 1 5 0 7. 2 [ 文献标识码 ] A [ 文章编 号] 6 1 0 8 (0 2 0 ~ 2 7 0 17 — 15 2 1 )3 0 5 — 3
测器 的距 离有关. 探 测器对 射 线的探测效 率对不 同的测量 目的有不 同的定义. 我们要测量 的是全 能峰效率 ( ) 是 指全能峰下面 E , 积所对 应的计数与放射源发射 的相应 的光子数之 比, 义为…: 定
全 能 峰 内 的 脉 冲 计 数 放射源发射 的y 光子数 AP y
在 核物理试验 中 , 经常需要对探 测器进行效率刻度. 蒙特卡罗方法在计算射线在探测 器中响应 函数和做探测效率刻度
方 面, 为我们研究提供 了极 大地便 利, 以减少大量 的实验 工作 . 并可 全 能峰效率不 但与 H G 高纯锗探 测器 ) P e( 的灵敏体 积及形状有关 还与探测器对 源张 的立体角 有关 , 而与源至探 从
式 中 N 为测量时问 t 内全能峰 内脉 冲计数 ( 经修正后 的净计 数 )又称峰面积. 为实 验测 量时所用放射源的放射性活度, , A
P iii i i i iE y射线分支 比, 为测量时 间. 的 f
2 计 算模 型及 方 法
21 计 算模 型 .
本 文 计算 所 采用 的探 测器 为 H G P e同轴! 1  ̄I . 测器 灵 敏体 积 为 : 5 .r ×4 . m, i I %i I探 1 I q 5a b 6m 69 a r L 层厚 0 mm, 1 . 7 A 窗厚
用密度函数理论和杜比宁方程研究活性炭纤维多段充填机理
密度函数理论和杜比宁方程可以用来研究活性炭纤维在多段充填过程中的吸附行为。
密度函数理论是一种分子统计力学理论,它建立在分子统计学和热力学的基础上,用来研究一种系统中分子的分布。
杜比宁方程是一种描述分子吸附行为的方程,它可以用来计算吸附层的厚度、吸附速率和吸附能量等参数。
在研究活性炭纤维多段充填过程中,可以使用密度函数理论和杜比宁方程来研究纤维表面的分子结构和吸附行为。
通过分析密度函数和杜比宁方程的解,可以得出纤维表面的分子结构以及纤维吸附的分子的种类、数量和能量。
这些信息有助于更好地理解活性炭纤维的多段充填机理。
在研究活性炭纤维的多段充填机理时,还可以使用其他理论和方法来帮助我们更好地了解这一过程。
例如,可以使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术来观察纤维表面的形貌和结构。
可以使用X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)等技术来确定纤维表面的化学成分和结构。
还可以使用氮气吸附(BET)和旋转氧吸附(BJH)等技术来测量纤维表面的比表面积和孔结构。
通过综合运用密度函数理论、杜比宁方程和其他理论和方法,可以更全面地了解活性炭纤维的多段充填机理,从而更好地控制和优化多段充填的过程。
在研究活性炭纤维多段充填机理时,还可以使用温度敏感性测试方法来研究充填过程中纤维表面的动力学性质。
例如,可以使用动态氧吸附(DAC)或旋转杆氧吸附(ROTA)等技术来测量温度对纤维表面吸附性能的影响。
通过对比不同温度下纤维表面的吸附性能,可以更好地了解充填过程中纤维表面的动力学性质。
此外,还可以使用分子动力学模拟方法来研究纤维表面的吸附行为。
例如,可以使用拉曼光谱或红外光谱等技术来测量纤维表面的分子吸附构型。
然后,使用分子动力学模拟方法来模拟不同分子吸附构型下的纤维表面的动力学性质,帮助我们更好地了解活性炭纤维的多段充填机理。
非平衡格林函数materials studio
非平衡格林函数materials studio
非平衡格林函数是一个描述物质系统非平衡态的量子力学工具。
它可以用来计算电子在周期性势场中的有限时间存在态,如激发态、极化子和激子等。
非平衡格林函数在材料物理、表面科学、凝聚态物理和量子信息等领域得到广泛应用。
Materials Studio是一个功能强大的材料模拟软件,其中包含一些常用的非平衡格林函数计算工具。
例如,CASTEP可以用来计算非平衡态下的能带结构、光子谱和介电函数;DMol3可以用来计算非平衡态下的电子结构和电子传输特性;VASP和QuantumWise可以用来模拟非平衡态下的电子传输过程和光电特性。
非平衡格林函数的计算需要大量的计算资源和专业知识,对于非专业人士而言比较困难。
因此,在使用Materials Studio进行非平衡格林函数计算前,建议先掌握一定的量子力学和计算化学知识,并进行相关的培训和学习。
玻纤增强复合材料蠕变的分数阶maxwell模型
玻纤增强复合材料蠕变的分数阶maxwell模型
玻纤增强复合材料的蠕变行为是由于材料中的聚合物基质在长期负载下受到分子间相互作用而出现的。
为了描述这种行为,可以采用分数阶Maxwell模型。
分数阶Maxwell模型是一个常见的非线性力学模型,可以描述材料的蠕变行为。
该模型可以用以下方程表示:
$$\frac{\partial^\alpha \sigma(t)}{\partial
t^\alpha}+\frac{\sigma(t)}{\tau}=E \epsilon(t)$$。
其中,$\sigma$是应力,$\epsilon$是应变,$\tau$是材料的松弛时间,$E$是弹性模量,$\alpha$是材料的分数阶指数。
在这个模型中,$\alpha=1$表示经典的Maxwell模型;$\alpha<1$表示材料的蠕变行为更显著,即更容易发生蠕变;$\alpha>1$表示材料的蠕变行为较小。
使用该模型可以很好地预测玻纤增强复合材料的蠕变行为,提高材料的设计和使用效果。
On the negative effective mass density in acoustic metamaterials
On the negative effective mass density in acoustic metamaterials
H.H. Huang a, C.T. Sun a,*,G.L. Huang b
a School of Aeronautics and Astronautics, Purdue University, W. Lafayette, IN 47907, USA b Department of Systems Engineering, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
* Corresponding author. Tel.: +1 765 494 5130; fax: +1 765 494 0307. E-mail address: sun@ (C.T. Sun).
双层单晶mote2非中心反演对称
双层单晶mote2非中心反演对称双层单晶mote2非中心反演对称双层单晶mote2材料是一种特殊的二维材料,具有非常独特的性质和结构。
它是由两层二硫化钼(MoS2)单晶片垂直叠加而成的,其中每一层都由一个钼(Mo)原子层和两个硫(S)原子层构成。
与其他材料相比,双层单晶mote2材料具有许多特殊的性质,因此在科学和技术领域中备受关注。
双层单晶mote2材料的一个重要特点是其非中心反演对称性。
这意味着当我们对一个层进行了不可逆转的反演操作时,另一个层也将发生相同的变化,但是两个层之间的相对位置将改变。
换句话说,这种材料的两个层之间存在一种关联性,当我们对其中一个层进行操作时,另一个层也会相应地发生变化。
非中心反演对称性在双层单晶mote2材料中具有重要的意义。
首先,它使得这种材料在物理学和电子学中具有广泛的应用前景。
由于非中心反演对称性使得在材料中可以引入电子自旋解耦的效应,这将导致一系列新奇的物理现象的出现。
例如,由于两个层之间的相互作用,双层单晶mote2材料可以呈现出非常有趣的自旋态调制效应,这在自旋电子学和量子信息存储方面具有很大的潜力。
此外,双层单晶mote2材料的非中心反演对称性还使得它具有优异的光学性质。
这种材料在光的吸收和发射过程中表现出非常高的效率,因此有望应用于光电器件的制备和光学通信技术的发展。
由于非中心反演对称性的存在,双层单晶mote2材料可以呈现出非常高的光学吸收率和量子效率,这使得它成为理想的光电材料。
此外,双层单晶mote2材料还具有优异的电子传输性能。
这种材料可以实现电子的高度自由移动,具有极高的载流子迁移率和低的电阻率。
这使得双层单晶mote2材料在电子学领域中具有广泛的应用前景,例如高速电子器件、太阳能电池和柔性电子器件等。
总之,双层单晶mote2材料的非中心反演对称性是其独特性质和优异性能的重要基础。
这种材料具有广泛应用前景,特别是在物理学、电子学和光学领域。
易用型逻辑PM2120电能表说明书
T h e i n f o r m a t i o n p r o v i d e d i n t h i s d o c u m e n t a t i o n c o n t a i n s g e n e r a l d e s c r i p t i o n s a n d /o r t e c h n i c a l c h a r a c t e r i s t i c s o f t h e p e r f o r m a n c e o f t h e p r o d u c t s c o n t a i n e d h e r e i n .T h i s d o c u m e n t a t i o n i s n o t i n t e n d e d a s a s u b s t i t u t e f o r a n d i s n o t t o b e u s e d f o r d e t e r m i n i n g s u i t a b i l i t y o r r e l i a b i l i t y o f t h e s e p r o d u c t s f o r s p e c i f i c u s e r a p p l i c a t i o n s .I t i s t h e d u t y o f a n y s u c h u s e r o r i n t e g r a t o r t o p e r f o r m t h e a p p r o p r i a t e a n d c o m p l e t e r i s k a n a l y s i s , e v a l u a t i o n a n d t e s t i n g o f t h e p r o d u c t s w i t h r e s p e c t t o t h e r e l e v a n t s p e c i f i c a p p l i c a t i o n o r u s e t h e r e o f .N e i t h e r S c h n e i d e r E l e c t r i c I n d u s t r i e s S A S n o r a n y o f i t s a f f i l i a t e s o r s u b s i d i a r i e s s h a l l b e r e s p o n s i b l e o r l i a b l e f o r m i s u s e o f t h e i n f o r m a t i o n c o n t a i n e d h e r e i n .Product data sheetCharacteristicsMETSEPM2120EasyLogic PM2120, Power & Energy meter,up to the 15th harmonic, LED display, RS485,class 1MainRange EasyLogic Product name EasyLogic PM2100Device short name PM2120Product or component typePower meterComplementaryDevice application Sub billingPower monitoring Power quality analysis Total harmonic distortion Up to the 15th harmonicType of measurementApparent power min/max, totalActive and reactive power min/max, total Current min/max, avg Voltage min/max, avg Frequency min/max, avgTotal current harmonic distortion THD (I) per phase Total voltage harmonic distortion THD (U) per phase Power factor min/max, avg Apparent energy totalActive and reactive energy totalMetering typeCurrent I, I1, I2, I3Peak demand power PM, QM, SMActive, reactive, apparent energy (signed, four quadrant)Peak demand currents Active power P, P1, P2, P3Calculated neutral currentVoltage U, U21, U32, U13, V, V1, V2, V3Unbalance currentReactive power Q, Q1, Q2, Q3Demand power P, Q, SApparent power S, S1, S2, S3Accuracy classClass 1 active energy conforming to IEC 62053-21Class 1 reactive energy conforming to IEC 62053-24Class 5 harmonic distorsion (I THD & U THD)Measurement accuracyApparent power +/- 1 %Active energy +/- 1 %Reactive energy +/- 1 %Active power +/- 1 %Voltage +/- 0.5 %Power factor +/- 0.01Current +/- 0.5 %Frequency +/- 0.05 %Measurement current 5…6000 mAMeasurement voltage35…480 V AC 50/60 Hz between phases20…277 V AC 50/60 Hz between phase and neutral 480…999000 V AC 50/60 Hz with external VT Frequency measurement range 45…65 Hz[Us] rated supply voltage44...277 V AC 45...65 Hz +/- 10 %44...277 V DC +/- 10 %Network frequency50 Hz60 HzRide-through time100 Ms 120 V AC typical400 Ms 230 V AC typical50 ms 125 V DC typicalLine Rated Current1 A5 AMaximum power consumption in VA6 VA 277 V ACMaximum power consumption in W 3.3 W (power lines (AC))2 W at 277 V (power lines (DC))Input impedance Current (impedance <= 0.3 mOhm)Voltage (impedance > 5 MOhm)Tamperproof of settings Protected by access codeDisplay type7 segments LEDDisplay colour RedMessages display capacity 3 fields of 4 charactersDisplay digits12 - 0.56 in (14.2 mm)Demand intervals Configurable from 1 to 60 minInformation displayed Demand current (past value)Demand current (present value)Demand power (past value)Demand power (present value)VoltageCurrentFrequencyEnergy consumptionHarmonic distortionPower factorActive powerApparent powerReactive powerUnbalanced in %Control type 3 x buttonLocal signalling Red LED: output signal 1...9999000 pulse/ k_h (kWh, kVAh, kVARh)Green LED: module operation and integrated communicationNumber of inputs0Number of outputs0Communication port protocol Modbus RTU 4800 bps, 9600 bps, 19200 bps, 38.4 Kbps even/odd or none - 2wires 2500 VCommunication port support Screw terminal block: RS485Data recording Time stampingMin/max for 8 parametersFunction available Real time clockSampling rate64 samples/cycleCybersecurity Enable/disable communication portsCommunication service Remote monitoringProduct certifications CE IEC 61010-1CULus UL 61010-1CULus conforming to CSA C22.2 No 61010-1RCMEACC-TickMounting mode Clip-onMounting position VerticalMounting support FrameworkProvided equipment 1 x Installation guideMeasurement category Category III 480 VCategory II 480…600 VElectrical insulation class Double insulationClass IIFlame retardance V-0 conforming to UL 94Connections - terminals Current transformer screw connection bottom) 6Voltage inputs screw connection top) 4Material PolycarbonateWidth 3.78 in (96 mm)Depth Total 3.00 in (76.09 mm)Embedded 2.43 in (61.64 mm)Height 3.78 in (96 mm)Net Weight10.58 oz (300 g)Compatibility code PM2120EnvironmentService life7 year(s)IP degree of protection IP54 front: conforming to IEC 60529Body IP30 IEC 60529Relative humidity5…95 % 122 °F (50 °C)Pollution degree2Ambient air temperature for operation14…140 °F (-10…60 °C)Ambient air temperature for storage-13…158 °F (-25…70 °C)Operating altitude<= 6561.68 ft (2000 m)Electromagnetic compatibility Electrostatic discharge conforming to IEC 61000-4-2Radiated radio-frequency electromagnetic field immunity test IEC 61000-4-3Electrical fast transient/burst immunity test conforming to IEC 61000-4-4Surge immunity test IEC 61000-4-5Conducted RF disturbances conforming to IEC 61000-4-6Magnetic field at power frequency conforming to IEC 61000-4-8Voltage dips and interruptions immunity test IEC 61000-4-11Emission tests conforming to FCC part 15 class AOvervoltage category IIIOrdering and shipping detailsGTIN03606480800146Nbr. of units in pkg.1Package weight(Lbs)10.67 oz (302.5 g)Packing UnitsUnit Type of Package 1PCEPackage 1 Height 3.78 in (9.6 cm)Package 1 width 2.65 in (6.72 cm)Package 1 Length 4.00 in (10.16 cm)Unit Type of Package 2BB1Number of Units in Package 21Package 2 Weight14.25 oz (404 g)Package 2 Height 4.53 in (11.5 cm)Package 2 width 3.43 in (8.7 cm)Package 2 Length 4.72 in (12 cm)Unit Type of Package 3S03Number of Units in Package 318Package 3 Weight17.04 lb(US) (7.73 kg)Package 3 Height11.81 in (30 cm)Package 3 width11.81 in (30 cm)Package 3 Length15.75 in (40 cm)Offer SustainabilitySustainable offer status Green Premium productREACh Regulation REACh DeclarationEU RoHS Directive Compliant EU RoHS DeclarationMercury free YesRoHS exemption information YesChina RoHS Regulation China RoHS DeclarationEnvironmental Disclosure Product Environmental Profile Circularity Profile End Of Life Information。
2007自然杂志石墨烯诺贝尔得奖者文章
THE RISE OF GRAPHENEA.K. Geim and K.S. NovoselovManchester Centre for Mesoscience and Nanotechnology,University of Manchester, Oxford Road M13 9PL, United KingdomGraphene is a rapidly rising star on the horizon of materials science and condensed matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of “relativistic” condensed matter physics, where quantum relativistic phenomena, some of which are unobservable in high energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.Graphene is the name given to a flat monolayer of carbon atoms tightly packed into a two-dimensional (2D) honeycomb lattice, and is a basic building block for graphitic materials of all other dimensionalities (Figure 1). It can be wrapped up into 0D fullerenes, rolled into 1D nanotubes or stacked into 3D graphite. Theoretically, graphene (or “2D graphite”) has been studied for sixty years1-3 and widely used for describing properties of various carbon-based materials. Forty years later, it was realized that graphene also provides an excellent condensed-matter analogue of (2+1)-dimensional quantum electrodynamics4-6, which propelled graphene into a thriving theoretical toy model. On the other hand, although known as integral part of 3D materials, graphene was presumed not to exist in the free state, being described as an “academic” material5 and believed to be unstable with respect to the formation of curved structures such as soot, fullerenes and nanotubes. All of a sudden, the vintage model turned into reality, when free-standing graphene was unexpectedly found three years ago7,8 and, especially, when the follow-up experiments9,10 confirmed that its charge carriers were indeed massless Dirac fermions. So, the graphene “gold rush” has begun.MATERIALS THAT SHOULD NOT EXISTMore than 70 years ago, Landau and Peierls argued that strictly two-dimensional (2D) crystals were thermodynamically unstable and could not exist11,12. Their theory pointed out that a divergent contribution of thermal fluctuations in low-dimensional crystal lattices should lead to such displacements of atoms that they become comparable to interatomic distances at any finite temperature13. The argument was later extended by Mermin14 and is strongly supported by a whole omnibus of experimental observations. Indeed, the melting temperature of thin films rapidly decreases with decreasing thickness, and they become unstable (segregate into islands or decompose) at a thickness of, typically, dozens of atomic layers15,16. For this reason, atomic monolayers have so far been known only as an integral part of larger 3D structures, usually grown epitaxially on top of monocrystals with matching crystal lattices15,16. Without such a 3D base, 2D materials were presumed not to exist until 2004, when the common wisdom was flaunted by the experimental discovery of graphene7 and other free-standing 2D atomic crystals (for example, single-layer boron nitride and half-layer BSCCO)8. These crystals could be obtained on top of non-crystalline substrates8-10, in liquid suspension7,17 and as suspended membranes18.Importantly, the 2D crystals were found not only to be continuous but to exhibit high crystal quality7-10,17,18. The latter is most obvious for the case of graphene, in which charge carriers can travel thousands interatomic distances without scattering7-10. With the benefit of hindsight, the existence of such one-atom-thick crystals can be reconciled with theory. Indeed, it can be argued that the obtained 2D crystallites are quenched in a metastable state because they are extracted from 3D materials, whereas their small size (<<1mm) and strong interatomic bonds assure that thermal fluctuations cannot lead to the generation of dislocations or other crystal defects even at elevated temperature13,14.Figure 1. Mother of all graphitic forms. Graphene is a 2D building material for carbon materials of all other dimensionalities. It can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D graphite.A complementary viewpoint is that the extracted 2D crystals become intrinsically stable by gentle crumpling in the third dimension on a lateral scale of ≈10nm 18,19. Such 3D warping observed experimentally 18 leads to a gain in elastic energy but suppresses thermal vibrations (anomalously large in 2D), which above a certain temperature can minimize the total free energy 19.BRIEF HISTORY OF GRAPHENEBefore reviewing the earlier work on graphene, it is useful to define what 2D crystals are. Obviously, a single atomic plane is a 2D crystal, whereas 100 layers should be considered as a thin film of a 3D material. But how many layers are needed to make a 3D structure? For the case of graphene, the situation has recently become reasonably clear. It was shown that the electronic structure rapidly evolves with the number of layers, approaching the 3D limit of graphite already at 10 layers 20. Moreover, only graphene and, to a good approximation, its bilayer have simple electronic spectra: they are both zero-gap semiconductors (can also be referred to as zero-overlap semimetals) with one type of electrons and one type of holes. For 3 and more layers, the spectra become increasingly complicated: Several charge carriers appear 7,21, and the conduction and valence bands start notably overlapping 7,20. This allows one to distinguish between single-, double- and few- (3 to <10) layer graphene as three different types of 2D crystals (“graphenes”). Thicker structures should be considered, to all intents and purposes, as thin films of graphite. From the experimental point of view, such a definition is also sensible. The screening length in graphite is only ≈5Å (that is, less than 2 layers in thickness)21 and, hence, one must differentiate between the surface and the bulk even for films as thin as 5 layers.21,22Earlier attempts to isolate graphene concentrated on chemical exfoliation. To this end, bulk graphite was first intercalated (to stage I)23so that graphene planes became separated by layers of intervening atoms or molecules.This usually resulted in new 3D materials23. However, in certain cases, large molecules could be inserted between atomic planes, providing greater separation such that the resulting compounds could be considered as isolated graphene layers embedded in a 3D matrix. Furthermore, one can often get rid of intercalating molecules in a chemical reaction to obtain a sludge consisting of restacked and scrolled graphene sheets24-26. Because of its uncontrollable character, graphitic sludge has so far attracted only limited interest.There have also been a small number of attempts to grow graphene. The same approach as generally used for growth of carbon nanotubes so far allowed graphite films only thicker than ≈100 layers27. On the other hand, single- and few-layer graphene have been grown epitaxially by chemical vapour deposition of hydrocarbons on metal substrates28,29 and by thermal decomposition of SiC30-34. Such films were studied by surface science techniques, and their quality and continuity remained unknown. Only lately, few-layer graphene obtained on SiC was characterized with respect to its electronic properties, revealing high-mobility charge carriers32,33. Epitaxial growth of graphene offers probably the only viable route towards electronic applications and, with so much at stake, a rapid progress in this direction is expected. The approach that seems promising but has not been attempted yet is the use of the previously demonstrated epitaxy on catalytic surfaces28,29 (such as Ni or Pt) followed by the deposition of an insulating support on top of graphene and chemical removal of the primary metallic substrate.THE ART OF GRAPHITE DRAWINGIn the absence of quality graphene wafers, most experimental groups are currently using samples obtained by micromechanical cleavage of bulk graphite, the same technique that allowed the isolation of graphene for the first time7,8. After fine-tuning, the technique8 now provides high-quality graphene crystallites up to 100 µm in size, which is sufficient for most research purposes (see Figure 2). Superficially, the technique looks as nothing more sophisticated than drawing by a piece of graphite8 or its repeated peeling with adhesive tape7 until the thinnest flakes are found. A similar approach was tried by other groups (earlier35 and independently22,36) but only graphite flakes 20 to 100 layers thick were found. The problem is that graphene crystallites left on a substrate are extremely rare and hidden in a “haystack” of thousands thick (graphite) flakes. So, even if one were deliberately searching for graphene by using modern techniques for studying atomically thin materials, it would be impossible to find those several micron-size crystallites dispersed over, typically, a 1-cm2 area. For example, scanning-probe microscopy has too low throughput to search for graphene, whereas scanning electron microscopy is unsuitable because of the absence of clear signatures for the number of atomic layers.The critical ingredient for success was the observation7,8 that graphene becomes visible in an optical microscope if placed on top of a Si wafer with a carefully chosen thickness of SiO2, owing to a feeble interference-like contrast with respect to an empty wafer. If not for this simple yet effective way to scan substrates in search of graphene crystallites, they would probably remain undiscovered today. Indeed, even knowing the exact recipe7,8, it requires special care and perseverance to find graphene. For example, only a 5% difference in SiO2 thickness (315 nm instead of the current standard of 300 nm) can make single-layer graphene completely invisible. Careful selection of the initial graphite material (so that it has largest possible grains) and the use of freshly -cleaved and -cleaned surfaces of graphite and SiO2 can also make all the difference. Note that graphene was recently37,38 found to have a clear signature in Raman microscopy, which makes this technique useful for quick thickness inspection, even though potential crystallites still have to be first hunted for in an optical microscope.Similar stories could be told about other 2D crystals (particularly, dichalcogenides monolayers) where many attempts were made to split these strongly layered materials into individual planes39,40. However, the crucial step of isolating monolayers to assess their properties individually was never achieved. Now, by using the same approach as demonstrated for graphene, it is possible to investigate potentially hundreds of different 2D crystals8 in search of new phenomena and applications.FERMIONS GO BALLISTICAlthough there is a whole class of new 2D materials, all experimental and theoretical efforts have so far focused on graphene, somehow ignoring the existence of other 2D crystals. It remains to be seen whether this bias is justified but the primary reason for it is clear: It is the exceptional electronic quality exhibited by the isolated graphene crystallites7-10. From experience, people know that high-quality samples always yield new physics, and this understanding has played a major role in focusing attention on graphene.Figure 2. One-atom-thick single crystals: the thinnest material you will ever see. a, Graphene visualized by atomic-force microscopy (adapted from ref. 8). The folded region exhibiting a relative height of ≈4Å clearly indicates that it is a single layer. b, A graphene sheet freely suspended on a micron-size metallic scaffold. The transmission-electron-microscopy image is adapted from ref. 18. c, scanning-electron micrograph of a relatively large graphene crystal, which shows that most of the crystal’s faces are zigzag and armchair edges as indicated by blue and red lines and illustrated in the inset (T.J. Booth, K.S.N, P. Blake & A.K.G. unpublished). 1D transport along zigzag edges and edge-related magnetism are expected to attract significant attention.Graphene’s quality clearly reveals itself in a pronounced ambipolar electric field effect (Fig. 3a) such that charge carriers can be tuned continuously between electrons and holes in concentrations n as high as 1013cm-2 and their mobilities µ can exceed 15,000 cm2/Vs even under ambient conditions7-10. Moreover, the observed mobilities weakly depend on temperature T, which means that µ at 300K is still limited by impurity scattering and, therefore, can be improved significantly, perhaps, even up to ≈100,000 cm2/Vs. Although some semiconductors exhibit room-temperature µ as high as ≈77,000 cm2/Vs (namely, InSb), those values are quoted for undoped bulk semiconductors. In graphene, µ remains high even at high n (>1012cm-2) in both electrically- and chemically- doped devices41, which translates into ballistic transport on submicron scale (up to ≈0.3 µm at 300K). A further indication of the system’s extreme electronic quality is the quantum Hall effect (QHE) that can be observed in graphene even at room temperature (Fig. 3b), extending the previous temperature range for the QHE by a factor of 10.An equally important reason for the interest in graphene is a unique nature of its charge carriers. In condensed matter physics, the Schrödinger equation rules the world, usually being quite sufficient to describe electronic properties of materials. Graphene is an exception: Its charge carriers mimic relativistic particles and are easier and more natural to describe starting with the Dirac equation rather than the Schrödinger equation4-6,42-47. Although there is nothing particularly relativistic about electrons moving around carbon atoms, their interaction with a periodic potential of graphene’s honeycomb lattice gives rise to new quasiparticles that at low energies EFigure 3. Ballistic electron transport in graphene. a , Ambipolar electric field effect in single-layer graphene. The insets show its conical low-energy spectrum E (k ), indicating changes in the position of the Fermi energy E F with changing gate voltage V g . Positive (negative) V g induce electrons (holes) in concentrations n =αV g where the coefficient α ≈7.2⋅1010cm -2/V for field-effect devices with a 300 nm SiO 2 layer used as a dielectric 7-9. The rapid decrease in resistivity ρwith adding charge carriers indicates their high mobility (in this case, µ ≈5,000cm 2/Vs and does not noticeably change with temperature up to 300K). b , Room-temperature quantum Hall effect (K.S.N., Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler,J.C. Maan, G.S. Boebinger, P. Kim & A.K.G. Science 2007, in the press). Because quasiparticles in graphene are massless and also exhibit little scattering even under ambient conditions, the QHE survives up to room T . Shown in red is the Hall conductivity σxy that exhibits clear plateaux at 2e 2/h for both electrons and holes. The longitudinal conductivity ρxx (blue) reaches zero at the same gate voltages. The inset illustrates the quantized spectrum of graphene where the largest cyclotron gap is described by δE (K)≈420⋅B (T). are accurately described by the (2+1)-dimensionalDirac equation with an effective speed of lightv F ≈106m/s. These quasiparticles, called masslessDirac fermions, can be seen as electrons that losttheir rest mass m 0 or as neutrinos that acquired theelectron charge e . The relativistic-like descriptionof electron waves on honeycomb lattices has beenknown theoretically for many years, never failingto attract attention, and the experimental discoveryof graphene now provides a way to probe quantumelectrodynamics (QED) phenomena by measuringgraphene’s electronic properties.QED IN A PENCIL TRACEFrom the point of view of its electronic properties,graphene is a zero-gap semiconductor, in whichlow-E quasiparticles within each valley canformally be described by the Dirac-likeHamiltoniank v ik k ik k v H F y x y x F r r h h ⋅=⎟⎟⎠⎞⎜⎜⎝⎛+−=σ00ˆwhere k r is the quasiparticle momentum, σr the2D Pauli matrix and the k -independent Fermivelocity v F plays the role of the speed of light. TheDirac equation is a direct consequence ofgraphene’s crystal symmetry. Its honeycomblattice is made up of two equivalent carbonsublattices A and B , and cosine-like energy bandsassociated with the sublattices intersect at zero Enear the edges of the Brillouin zone, giving rise toconical sections of the energy spectrum for |E | <1eV (Fig. 3).We emphasize that the linear spectrumk v E F h = is not the only essential feature of the band structure. Indeed, electronic states near zeroE (where the bands intersect) are composed ofstates belonging to the different sublattices, andtheir relative contributions in quasiparticles’make-up have to be taken into account by, forexample, using two-component wavefunctions(spinors). This requires an index to indicatesublattices A and B , which is similar to the spinindex (up and down) in QED and, therefore, isreferred to as pseudospin. Accordingly, in theformal description of graphene’s quasiparticles bythe Dirac-like Hamiltonian above, σr refers topseudospin rather than the real spin of electrons(the latter must be described by additional terms inthe Hamiltonian). Importantly, QED-specificphenomena are often inversely proportional to thespeed of light c and, therefore, enhanced ingraphene by a factor c /v F ≈300. In particular, thisρ(kΩ)n(1012 cm-2)σ(4e2/h)277321−21+23255-82-2-4-664Vg(V)σ2EDEdecEFigure 4. Chiral quantum Hall effects.a, The hallmark of massless Dirac fermions is QHE plateaux in σxy at half integers of 4e2/h (adapted from ref. 9). b, Anomalous QHE for massive Dirac fermions in bilayer graphene is more subtle (red curve55): σxy exhibits the standard QHE sequence with plateaux at all integer N of 4e2/h except for N=0. The missing plateau is indicated by the red arrow. The zero-N plateau can be recovered after chemical doping, which shifts the neutrality point to high V g so that an asymmetry gap (≈0.1eV in this case) is opened by the electric field effect (green curve; adapted from ref.59). c-e, Different types of Landau quantization in graphene. The sequence of Landau levels in the density of states D isdescribed by NEN∝ for massless Dirac fermions in single-layer graphene (c) and by )1(−∝NNENfor massive Dirac fermions in bilayer graphene (d). The standard LL sequence )(21+∝NENis expected to recover if an electronic gap is opened in the bilayer (e).means that pseudospin-related effects should generally dominate those due to the real spin.By analogy with QED, one can also introduce a quantity called chirality6 that is formally a projection of σr on the direction of motion kr and is positive (negative) for electrons (holes). In essence, chirality in graphene signifies the fact that k electron and -k hole states are intricately connected by originating from the same carbon sublattices. The concepts of chirality and pseudospin are important because many electronic processes in graphene can be understood as due to conservation of these quantities.6,42-47It is interesting to note that in some narrow-gap 3D semiconductors, the gap can be closed by compositional changes or by applying high pressure. Generally, zero gap does not necessitate Dirac fermions (that imply conjugated electron and hole states) but, in some cases, they may appear5. The difficulties of tuning the gap to zero, while keeping carrier mobilities high, the lack of possibility to control electronic properties of 3D materials by the electric field effect and, generally, less pronounced quantum effects in 3D limited studies of such semiconductors mostly to measuring the concentration dependence of their effective masses m (for a review, see ref. 48). It is tempting to have a fresh look at zero-gap bulk semiconductors, especially because Dirac fermions were recently reported even in such a well-studied (small-overlap) 3D material as graphite.49,50CHIRAL QUANTUM HALL EFFECTSAt this early stage, the main experimental efforts have been focused on electronic properties of graphene, trying to understand the consequences of its QED-like spectrum. Among the most spectacular phenomena reported so far, there are two new (“chiral”) quantum Hall effects, minimum quantum conductivity in the limit of vanishing concentrations of charge carriers and strong suppression of quantum interference effects.Figure 4 shows three types of the QHE behaviour observed in graphene. The first one is a relativistic analogue of the integer QHE and characteristic to single-layer graphene9,10. It shows up as an uninterrupted ladder of equidistant steps in Hall conductivity σxy which persists through the neutrality (Dirac) point, where charge carriers change from electrons to holes (Fig. 4a). The sequence is shifted with respect to the standard QHE sequence by ½, so that σxy= ±4e2/h(N + ½) where N is the Landau level (LL) index and factor 4 appears due to double valley and double spin degeneracy. This QHE has been dubbed “half-integer” to reflect both the shift and the fact that, although it is not a new fractional QHE, it is not the standard integer QHE either. The unusual sequence is now well understood as arising due to the QED-like quantization of graphene’s electronic spectrumin magnetic field B , which is described 44,51-53 by BN e v E F N h 2±= where sign ± refers to electrons and holes. The existence of a quantized level at zero E , which is shared by electrons and holes (Fig. 4c), is essentially everything one needs to know to explain the anomalous QHE sequence.51-55 An alternative explanation for the half-integer QHE is to invoke the coupling between pseudospin and orbital motion, which gives rise to a geometrical phase of π accumulated along cyclotron trajectories and often referred to as Berry’s phase.9,10,56 The additional phase leads to a π-shift in the phase of quantum oscillations and, in the QHE limit, to a half-step shift. Bilayer graphene exhibits an equally anomalous QHE (Fig 4b)55. Experimentally, it shows up less spectacular: One measures the standard sequence of Hall plateaux σxy = ±N 4e 2/h but the very first plateau at N =0 is missing, which also implies that bilayer graphene remains metallic at the neutrality point.55 The origin of this anomaly lies in a rather bizarre nature of quasiparticles in bilayer graphene, which are described 57 by⎟⎟⎠⎞⎜⎜⎝⎛+−−=0)()(02ˆ222y x y x ik k ik k m H h This Hamiltonian combines the off-diagonal structure, similar to the Dirac equation, with Schrödinger-like terms m p2ˆ2. The resulting quasiparticles are chiral, similar to massless Dirac fermions, but have a finite mass m ≈0.05m 0. Such massive chiral particles would be an oxymoron in relativistic quantum theory. The Landau quantization of “massive Dirac fermions” is given 57 by )1(−±=N N E c N ωh with two degenerate levels N =0 and 1 at zero E (c ω is the cyclotron frequency). This additional degeneracy leads to the missing zero-E plateau and the double-height step in Fig. 4b. There is also a pseudospin associated with massive Dirac fermions, and its orbital rotation leads to a geometrical phase of 2π. This phase is indistinguishable from zero in the quasiclassical limit (N >>1) but reveals itself in the double degeneracy of the zero-E LL (Fig. 4d).55It is interesting that the “standard” QHE with all the plateaux present can be recovered in bilayer graphene by the electric field effect (Fig. 4b). Indeed, gate voltage not only changes n but simultaneously induces an asymmetry between the two graphene layers, which results in a semiconducting gap 58,59. The electric-field-induced gap eliminates the additional degeneracy of the zero-E LL and leads to the uninterrupted QHE sequence by splitting the double step into two (Fig. 4e)58,59. However, to observe this splitting in the QHE measurements, one needs to probe the region near the neutrality point at finite V g , which can be achieved by additional chemical doping 59. Note that bilayer graphene is the only known material in which the electronic band structure changes significantly by the electric field effect and the semiconducting gap ∆E can be tuned continuously from zero to ≈0.3eV if SiO 2 is used as a dielectric.CONDUCTIVITY “WITHOUT” CHARGE CARRIERSAnother important observation is that graphene’s zero-field conductivity σ does not disappear in the limit of vanishing n but instead exhibits values close to the conductivity quantum e 2/h per carrier type 9. Figure 5 shows the lowest conductivity σmin measured near the neutrality point for nearly 50 single-layer devices. For all other known materials, such a low conductivity unavoidably leads to a metal-insulator transition at low T but no sign of the transition has been observed in graphene down to liquid-helium T . Moreover, although it is the persistence of the metallic state with σ of the order of e 2/h that is most exceptional and counterintuitive, a relatively small spread of the observed conductivity values (see Fig. 5) also allows one to speculate about the quantization of σmin . We emphasize that it is the resistivity (conductivity) that is quantized in graphene, in contrast to the resistance (conductance) quantization known in many other transport phenomena.Minimum quantum conductivity has been predicted for Dirac fermions by a number of theories 5,44,45,47,60-64. Some of them rely on a vanishing density of states at zero E for the linear 2D spectrum. However, comparison between the experimental behaviour of massless and massive Dirac fermions in graphene and its bilayer allows one to distinguish between chirality- and masslessness- related effects. To this end, bilayer graphene also exhibits a minimum conductivity of the order of e 2/h per carrier type,55,65 which indicates that it is chirality, rather than the linear spectrum, that is more important. Most theories suggest σmin =4e 2/h π, which is of about π times smaller than the typical values observed experimentally. One can see in Fig. 5 that the experimental data do not approach this theoretical value and mostly cluster around σmin =4e 2/h (except for one low-µ sample that is rather unusual by also exhibiting 100%-normal weak localization behaviour at high n ; see below). This disagreement has become known as “the mystery of a missing pie”, and it remains unclear whether it is due toσm i n (4e 2/h )11/µ(cm 2/Vs)012,0004,0008,0000Figure 5. Minimum conductivity of graphene.Independent of their carrier mobility µ, different graphene devices exhibited approximately the same conductivity at the neutrality point (open circles) with most data clusteringaround ≈4e 2/h indicated for clarity by the dashed line (A.K.G. & K.S.N. unpublished; includes the published datapoints from ref. 9). The high-conductivity tail is attributed to macroscopic inhomogeneity: by improving samples’ homogeneity, σmin generally decreases, moving closer to ≈4e 2/h . The green arrow and symbols show one of the devices that initially exhibited an anomalously large value of σmin but after thermal annealing at 400K its σmin moved closer to the rest of the statistical ensemble. Most of thedata are taken in the bend resistance geometry where themacroscopic inhomogeneity plays the least role.theoretical approximations about electron scatteringin graphene or because the experiments probed onlya limited range of possible sample parameters (e.g., length-to-width ratios 47). To this end, note that close to the neutrality point (n ≤1011cm -2) graphene islikely to conduct as a random network of electronand hole puddles (A.K.G. & K.S.N . unpublished).Such microscopic inhomogeneity is probablyinherent to graphene (because of graphene sheet’swarping/rippling)18,66 but so far has not been taken into account by theory. Furthermore, macroscopicinhomogeneity (on the scale larger than the meanfree path l ) also plays an important role in measurements of σmin . The latter inhomogeneity canexplain a high-σ tail in the data scatter in Fig. 5 by the fact that σ reached its lowest values at slightly different V g in different parts of a sample, whichyields effectively higher values of experimentally measured σmin .WEAK LOCALIZATION IN SHORT SUPPLYAt low temperatures, all metallic systems with high resistivity should inevitably exhibit large quantum-interference (localization) magnetoresistance,eventually leading to the metal-insulator transition at σ ≈e 2/h . Until now, such behaviour has been absolutely universal but it was found missing in graphene. Even near the neutrality point, no significant low-field (B <1T) magnetoresistance has been observed down to liquid-helium temperatures 66 and, although sub-100 nm Hall crosses did exhibit giant resistance fluctuations (S.V. Morozov, K.S.N., A.K.G. et al , unpublished), those could be attributed to changes in the distribution of electron and holepuddles and size quantization. It remains to be seen whether localization effects at the Dirac point recover at lower T , as the phase-breaking length becomes increasingly longer,67 or the observed behaviour indicates a “marginal Fermi liquid”68,43, in which the phase-breaking length goes to zero with decreasing E . Further experimental studies are much needed in this regime but it is difficult to probe because of microscopic inhomogeneity.Away from the Dirac point (where graphene becomes a good metal), the situation has recently become reasonably clear. Universal conductance fluctuations (UCF) were reported to be qualitatively normal in this regime, whereas weak localization (WL) magnetoresistance was found to be somewhat random, varying for different samples from being virtually absent to showing the standard behaviour 66. On the other hand, early theories had also predicted every possible type of WL magnetoresistance in graphene, from positive to negative to zero. Now it is understood that, for large n and in the absence of inter-valley scattering, there should be no magnetoresistance, because the triangular warping of graphene’s Fermi surface destroys time-reversal symmetry within each valley.69 With increasing inter-valley scattering, the normal (negative) WL should recover. Changes in inter-valley scattering rates by, for example, varying microfabrication procedures can explain the observed sample-dependent behaviour. A complementary explanation is that a sufficient inter-valley scattering is already present in the studied samples but the time-reversal symmetry is destroyed by elastic strain due to microscopic warping 66,70. The strain in graphene has turned out to be equivalent to a random magnetic field, which also destroys time-reversal symmetry and suppresses WL. Whatever the mechanism, theory expects (approximately 71) normal UCF at high n , in agreement with the experiment 66.。
Principles of Plasma Discharges and Materials Processing9
CHAPTER8MOLECULAR COLLISIONS8.1INTRODUCTIONBasic concepts of gas-phase collisions were introduced in Chapter3,where we described only those processes needed to model the simplest noble gas discharges: electron–atom ionization,excitation,and elastic scattering;and ion–atom elastic scattering and resonant charge transfer.In this chapter we introduce other collisional processes that are central to the description of chemically reactive discharges.These include the dissociation of molecules,the generation and destruction of negative ions,and gas-phase chemical reactions.Whereas the cross sections have been measured reasonably well for the noble gases,with measurements in reasonable agreement with theory,this is not the case for collisions in molecular gases.Hundreds of potentially significant collisional reactions must be examined in simple diatomic gas discharges such as oxygen.For feedstocks such as CF4/O2,SiH4/O2,etc.,the complexity can be overwhelming.Furthermore,even when the significant processes have been identified,most of the cross sections have been neither measured nor calculated. Hence,one must often rely on estimates based on semiempirical or semiclassical methods,or on measurements made on molecules analogous to those of interest. As might be expected,data are most readily available for simple diatomic and polyatomic gases.Principles of Plasma Discharges and Materials Processing,by M.A.Lieberman and A.J.Lichtenberg. ISBN0-471-72001-1Copyright#2005John Wiley&Sons,Inc.235236MOLECULAR COLLISIONS8.2MOLECULAR STRUCTUREThe energy levels for the electronic states of a single atom were described in Chapter3.The energy levels of molecules are more complicated for two reasons. First,molecules have additional vibrational and rotational degrees of freedom due to the motions of their nuclei,with corresponding quantized energies E v and E J. Second,the energy E e of each electronic state depends on the instantaneous con-figuration of the nuclei.For a diatomic molecule,E e depends on a single coordinate R,the spacing between the two nuclei.Since the nuclear motions are slow compared to the electronic motions,the electronic state can be determined for anyfixed spacing.We can therefore represent each quantized electronic level for a frozen set of nuclear positions as a graph of E e versus R,as shown in Figure8.1.For a mole-cule to be stable,the ground(minimum energy)electronic state must have a minimum at some value R1corresponding to the mean intermolecular separation (curve1).In this case,energy must be supplied in order to separate the atoms (R!1).An excited electronic state can either have a minimum( R2for curve2) or not(curve3).Note that R2and R1do not generally coincide.As for atoms, excited states may be short lived(unstable to electric dipole radiation)or may be metastable.Various electronic levels may tend to the same energy in the unbound (R!1)limit. Array FIGURE8.1.Potential energy curves for the electronic states of a diatomic molecule.For diatomic molecules,the electronic states are specifiedfirst by the component (in units of hÀ)L of the total orbital angular momentum along the internuclear axis, with the symbols S,P,D,and F corresponding to L¼0,+1,+2,and+3,in analogy with atomic nomenclature.All but the S states are doubly degenerate in L.For S states,þandÀsuperscripts are often used to denote whether the wave function is symmetric or antisymmetric with respect to reflection at any plane through the internuclear axis.The total electron spin angular momentum S (in units of hÀ)is also specified,with the multiplicity2Sþ1written as a prefixed superscript,as for atomic states.Finally,for homonuclear molecules(H2,N2,O2, etc.)the subscripts g or u are written to denote whether the wave function is sym-metric or antisymmetric with respect to interchange of the nuclei.In this notation, the ground states of H2and N2are both singlets,1Sþg,and that of O2is a triplet,3SÀg .For polyatomic molecules,the electronic energy levels depend on more thanone nuclear coordinate,so Figure8.1must be generalized.Furthermore,since there is generally no axis of symmetry,the states cannot be characterized by the quantum number L,and other naming conventions are used.Such states are often specified empirically through characterization of measured optical emission spectra.Typical spacings of low-lying electronic energy levels range from a few to tens of volts,as for atoms.Vibrational and Rotational MotionsUnfreezing the nuclear vibrational and rotational motions leads to additional quan-tized structure on smaller energy scales,as illustrated in Figure8.2.The simplest (harmonic oscillator)model for the vibration of diatomic molecules leads to equally spaced quantized,nondegenerate energy levelse E v¼hÀv vib vþ1 2(8:2:1)where v¼0,1,2,...is the vibrational quantum number and v vib is the linearized vibration frequency.Fitting a quadratic functione E v¼12k vib(RÀ R)2(8:2:2)near the minimum of a stable energy level curve such as those shown in Figure8.1, we can estimatev vib%k vibm Rmol1=2(8:2:3)where k vib is the“spring constant”and m Rmol is the reduced mass of the AB molecule.The spacing hÀv vib between vibrational energy levels for a low-lying8.2MOLECULAR STRUCTURE237stable electronic state is typically a few tenths of a volt.Hence for molecules in equi-librium at room temperature (0.026V),only the v ¼0level is significantly popula-ted.However,collisional processes can excite strongly nonequilibrium vibrational energy levels.We indicate by the short horizontal line segments in Figure 8.1a few of the vibrational energy levels for the stable electronic states.The length of each segment gives the range of classically allowed vibrational motions.Note that even the ground state (v ¼0)has a finite width D R 1as shown,because from(8.2.1),the v ¼0state has a nonzero vibrational energy 1h Àv vib .The actual separ-ation D R about Rfor the ground state has a Gaussian distribution,and tends toward a distribution peaked at the classical turning points for the vibrational motion as v !1.The vibrational motion becomes anharmonic and the level spa-cings tend to zero as the unbound vibrational energy is approached (E v !D E 1).FIGURE 8.2.Vibrational and rotational levels of two electronic states A and B of a molecule;the three double arrows indicate examples of transitions in the pure rotation spectrum,the rotation–vibration spectrum,and the electronic spectrum (after Herzberg,1971).238MOLECULAR COLLISIONSFor E v.D E1,the vibrational states form a continuum,corresponding to unbound classical motion of the nuclei(breakup of the molecule).For a polyatomic molecule there are many degrees of freedom for vibrational motion,leading to a very compli-cated structure for the vibrational levels.The simplest(dumbbell)model for the rotation of diatomic molecules leads to the nonuniform quantized energy levelse E J¼hÀ22I molJ(Jþ1)(8:2:4)where I mol¼m Rmol R2is the moment of inertia and J¼0,1,2,...is the rotational quantum number.The levels are degenerate,with2Jþ1states for the J th level. The spacing between rotational levels increases with J(see Figure8.2).The spacing between the lowest(J¼0to J¼1)levels typically corresponds to an energy of0.001–0.01V;hence,many low-lying levels are populated in thermal equilibrium at room temperature.Optical EmissionAn excited molecular state can decay to a lower energy state by emission of a photon or by breakup of the molecule.As shown in Figure8.2,the radiation can be emitted by a transition between electronic levels,between vibrational levels of the same electronic state,or between rotational levels of the same electronic and vibrational state;the radiation typically lies within the optical,infrared,or microwave frequency range,respectively.Electric dipole radiation is the strongest mechanism for photon emission,having typical transition times of t rad 10À9s,as obtained in (3.4.13).The selection rules for electric dipole radiation areDL¼0,+1(8:2:5a)D S¼0(8:2:5b) In addition,for transitions between S states the only allowed transitions areSþÀ!Sþand SÀÀ!SÀ(8:2:6) and for homonuclear molecules,the only allowed transitions aregÀ!u and uÀ!g(8:2:7) Hence homonuclear diatomic molecules do not have a pure vibrational or rotational spectrum.Radiative transitions between electronic levels having many different vibrational and rotational initial andfinal states give rise to a structure of emission and absorption bands within which a set of closely spaced frequencies appear.These give rise to characteristic molecular emission and absorption bands when observed8.2MOLECULAR STRUCTURE239using low-resolution optical spectrometers.As for atoms,metastable molecular states having no electric dipole transitions to lower levels also exist.These have life-times much exceeding10À6s;they can give rise to weak optical band structures due to magnetic dipole or electric quadrupole radiation.Electric dipole radiation between vibrational levels of the same electronic state is permitted for molecules having permanent dipole moments.In the harmonic oscillator approximation,the selection rule is D v¼+1;weaker transitions D v¼+2,+3,...are permitted for anharmonic vibrational motion.The preceding description of molecular structure applies to molecules having arbi-trary electronic charge.This includes neutral molecules AB,positive molecular ions ABþ,AB2þ,etc.and negative molecular ions ABÀ.The potential energy curves for the various electronic states,regardless of molecular charge,are commonly plotted on the same diagram.Figures8.3and8.4give these for some important electronic statesof HÀ2,H2,and Hþ2,and of OÀ2,O2,and Oþ2,respectively.Examples of both attractive(having a potential energy minimum)and repulsive(having no minimum)states can be seen.The vibrational levels are labeled with the quantum number v for the attrac-tive levels.The ground states of both Hþ2and Oþ2are attractive;hence these molecular ions are stable against autodissociation(ABþ!AþBþor AþþB).Similarly,the ground states of H2and O2are attractive and lie below those of Hþ2and Oþ2;hence they are stable against autodissociation and autoionization(AB!ABþþe).For some molecules,for example,diatomic argon,the ABþion is stable but the AB neutral is not stable.For all molecules,the AB ground state lies below the ABþground state and is stable against autoionization.Excited states can be attractive or repulsive.A few of the attractive states may be metastable;some examples are the 3P u state of H2and the1D g,1Sþgand3D u states of O2.Negative IonsRecall from Section7.2that many neutral atoms have a positive electron affinity E aff;that is,the reactionAþeÀ!AÀis exothermic with energy E aff(in volts).If E aff is negative,then AÀis unstable to autodetachment,AÀ!Aþe.A similar phenomenon is found for negative molecular ions.A stable ABÀion exists if its ground(lowest energy)state has a potential minimum that lies below the ground state of AB.This is generally true only for strongly electronegative gases having large electron affinities,such as O2 (E aff%1:463V for O atoms)and the halogens(E aff.3V for the atoms).For example,Figure8.4shows that the2P g ground state of OÀ2is stable,with E aff% 0:43V for O2.For weakly electronegative or for electropositive gases,the minimum of the ground state of ABÀgenerally lies above the ground state of AB,and ABÀis unstable to autodetachment.An example is hydrogen,which is weakly electronegative(E aff%0:754V for H atoms).Figure8.3shows that the2Sþu ground state of HÀ2is unstable,although the HÀion itself is stable.In an elec-tropositive gas such as N2(E aff.0),both NÀ2and NÀare unstable. 240MOLECULAR COLLISIONS8.3ELECTRON COLLISIONS WITH MOLECULESThe interaction time for the collision of a typical (1–10V)electron with a molecule is short,t c 2a 0=v e 10À16–10À15s,compared to the typical time for a molecule to vibrate,t vib 10À14–10À13s.Hence for electron collisional excitation of a mole-cule to an excited electronic state,the new vibrational (and rotational)state canbeFIGURE 8.3.Potential energy curves for H À2,H 2,and H þ2.(From Jeffery I.Steinfeld,Molecules and Radiation:An Introduction to Modern Molecular Spectroscopy ,2d ed.#MIT Press,1985.)8.3ELECTRON COLLISIONS WITH MOLECULES 241FIGURE 8.4.Potential energy curves for O À2,O 2,and O þ2.(From Jeffery I.Steinfeld,Molecules and Radiation:An Introduction to Modern Molecular Spectroscopy ,2d ed.#MIT Press,1985.)242MOLECULAR COLLISIONS8.3ELECTRON COLLISIONS WITH MOLECULES243 determined by freezing the nuclear motions during the collision.This is known as the Franck–Condon principle and is illustrated in Figure8.1by the vertical line a,showing the collisional excitation atfixed R to a high quantum number bound vibrational state and by the vertical line b,showing excitation atfixed R to a vibra-tionally unbound state,in which breakup of the molecule is energetically permitted. Since the typical transition time for electric dipole radiation(t rad 10À9–10À8s)is long compared to the dissociation( vibrational)time t diss,excitation to an excited state will generally lead to dissociation when it is energetically permitted.Finally, we note that the time between collisions t c)t rad in typical low-pressure processing discharges.Summarizing the ordering of timescales for electron–molecule collisions,we havet at t c(t vib t diss(t rad(t cDissociationElectron impact dissociation,eþABÀ!AþBþeof feedstock gases plays a central role in the chemistry of low-pressure reactive discharges.The variety of possible dissociation processes is illustrated in Figure8.5.In collisions a or a0,the v¼0ground state of AB is excited to a repulsive state of AB.The required threshold energy E thr is E a for collision a and E a0for Array FIGURE8.5.Illustrating the variety of dissociation processes for electron collisions with molecules.collision a0,and it leads to an energy after dissociation lying between E aÀE diss and E a0ÀE diss that is shared among the dissociation products(here,A and B). Typically,E aÀE diss few volts;consequently,hot neutral fragments are typically generated by dissociation processes.If these hot fragments hit the substrate surface, they can profoundly affect the process chemistry.In collision b,the ground state AB is excited to an attractive state of AB at an energy E b that exceeds the binding energy E diss of the AB molecule,resulting in dissociation of AB with frag-ment energy E bÀE diss.In collision b0,the excitation energy E b0¼E diss,and the fragments have low energies;hence this process creates fragments having energies ranging from essentially thermal energies up to E bÀE diss few volts.In collision c,the AB atom is excited to the bound excited state ABÃ(labeled5),which sub-sequently radiates to the unbound AB state(labeled3),which then dissociates.The threshold energy required is large,and the fragments are hot.Collision c can also lead to dissociation of an excited state by a radiationless transfer from state5to state4near the point where the two states cross:ABÃðboundÞÀ!ABÃðunboundÞÀ!AþBÃThe fragments can be both hot and in excited states.We discuss such radiationless electronic transitions in the next section.This phenomenon is known as predisso-ciation.Finally,a collision(not labeled in thefigure)to state4can lead to dis-sociation of ABÃ,again resulting in hot excited fragments.The process of electron impact excitation of a molecule is similar to that of an atom,and,consequently,the cross sections have a similar form.A simple classical estimate of the dissociation cross section for a level having excitation energy U1can be found by requiring that an incident electron having energy W transfer an energy W L lying between U1and U2to a valence electron.Here,U2is the energy of the next higher level.Then integrating the differential cross section d s[given in(3.4.20)and repeated here],d s¼pe24021Wd W LW2L(3:4:20)over W L,we obtains diss¼0W,U1pe24pe021W1U1À1WU1,W,U2pe24021W1U1À1U2W.U28>>>>>><>>>>>>:(8:3:1)244MOLECULAR COLLISIONSLetting U2ÀU1(U1and introducing voltage units W¼e E,U1¼e E1and U2¼e E2,we haves diss¼0E,E1s0EÀE11E1,E,E2s0E2ÀE1EE.E28>>>><>>>>:(8:3:2)wheres0¼pe4pe0E12(8:3:3)We see that the dissociation cross section rises linearly from the threshold energy E thr%E1to a maximum value s0(E2ÀE1)=E thr at E2and then falls off as1=E. Actually,E1and E2can depend on the nuclear separation R.In this case,(8.3.2) should be averaged over the range of R s corresponding to the ground-state vibrational energy,leading to a broadened dependence of the average cross section on energy E.The maximum cross section is typically of order10À15cm2. Typical rate constants for a single dissociation process with E thr&T e have an Arrhenius formK diss/K diss0expÀE thr T e(8:3:4)where K diss0 10À7cm3=s.However,in some cases E thr.T e.For excitation to an attractive state,an appropriate average over the fraction of the ground-state vibration that leads to dissociation must be taken.Dissociative IonizationIn addition to normal ionization,eþABÀ!ABþþ2eelectron–molecule collisions can lead to dissociative ionizationeþABÀ!AþBþþ2eThese processes,common for polyatomic molecules,are illustrated in Figure8.6.In collision a having threshold energy E iz,the molecular ion ABþis formed.Collisionsb andc occur at higher threshold energies E diz and result in dissociative ionization,8.3ELECTRON COLLISIONS WITH MOLECULES245leading to the formation of fast,positively charged ions and neutrals.These cross sections have a similar form to the Thompson ionization cross section for atoms.Dissociative RecombinationThe electron collision,e þAB þÀ!A þB Ãillustrated as d and d 0in Figure 8.6,destroys an electron–ion pair and leads to the production of fast excited neutral fragments.Since the electron is captured,it is not available to carry away a part of the reaction energy.Consequently,the collision cross section has a resonant character,falling to very low values for E ,E d and E .E d 0.However,a large number of excited states A Ãand B Ãhaving increasing principal quantum numbers n and energies can be among the reaction products.Consequently,the rate constants can be large,of order 10À7–10À6cm 3=s.Dissocia-tive recombination to the ground states of A and B cannot occur because the potential energy curve for AB þis always greater than the potential energycurveFIGURE 8.6.Illustration of dissociative ionization and dissociative recombination for electron collisions with molecules.246MOLECULAR COLLISIONSfor the repulsive state of AB.Two-body recombination for atomic ions or for mol-ecular ions that do not subsequently dissociate can only occur with emission of a photon:eþAþÀ!Aþh n:As shown in Section9.2,the rate constants are typically three tofive orders of magnitude lower than for dissociative recombination.Example of HydrogenThe example of H2illustrates some of the inelastic electron collision phenomena we have discussed.In order of increasing electron impact energy,at a threshold energy of 8:8V,there is excitation to the repulsive3Sþu state followed by dissociation into two fast H fragments carrying 2:2V/atom.At11.5V,the1Sþu bound state is excited,with subsequent electric dipole radiation in the ultraviolet region to the1Sþg ground state.At11.8V,there is excitation to the3Sþg bound state,followedby electric dipole radiation to the3Sþu repulsive state,followed by dissociation with 2:2V/atom.At12.6V,the1P u bound state is excited,with UV emission tothe ground state.At15.4V,the2Sþg ground state of Hþ2is excited,leading to the pro-duction of Hþ2ions.At28V,excitation of the repulsive2Sþu state of Hþ2leads to thedissociative ionization of H2,with 5V each for the H and Hþfragments.Dissociative Electron AttachmentThe processes,eþABÀ!AþBÀproduce negative ion fragments as well as neutrals.They are important in discharges containing atoms having positive electron affinities,not only because of the pro-duction of negative ions,but because the threshold energy for production of negative ion fragments is usually lower than for pure dissociation processes.A variety of pro-cesses are possible,as shown in Figure8.7.Since the impacting electron is captured and is not available to carry excess collision energy away,dissociative attachment is a resonant process that is important only within a narrow energy range.The maximum cross sections are generally much smaller than the hard-sphere cross section of the molecule.Attachment generally proceeds by collisional excitation from the ground AB state to a repulsive ABÀstate,which subsequently either auto-detaches or dissociates.The attachment cross section is determined by the balance between these processes.For most molecules,the dissociation energy E diss of AB is greater than the electron affinity E affB of B,leading to the potential energy curves shown in Figure8.7a.In this case,the cross section is large only for impact energies lying between a minimum value E thr,for collision a,and a maximum value E0thr for8.3ELECTRON COLLISIONS WITH MOLECULES247FIGURE 8.7.Illustration of a variety of electron attachment processes for electron collisions with molecules:(a )capture into a repulsive state;(b )capture into an attractive state;(c )capture of slow electrons into a repulsive state;(d )polar dissociation.248MOLECULAR COLLISIONScollision a 0.The fragments are hot,having energies lying between minimum and maximum values E min ¼E thr þE affB ÀE diss and E max ¼E 0thr þE af fB ÀE diss .Since the AB Àstate lies above the AB state for R ,R x ,autodetachment can occur as the mol-ecules begin to separate:AB À!AB þe.Hence the cross section for production of negative ions can be much smaller than that for excitation of the AB Àrepulsive state.As a crude estimate,for the same energy,the autodetachment rate is ffiffiffiffiffiffiffiffiffiffiffiffiffiM R =m p 100times the dissociation rate of the repulsive AB Àmolecule,where M R is the reduced mass.Hence only one out of 100excitations lead to dissociative attachment.Excitation to the AB Àbound state can also lead to dissociative attachment,as shown in Figure 8.7b .Here the cross section is significant only for E thr ,E ,E 0thr ,but the fragments can have low energies,with a minimum energy of zero and a maximum energy of E 0thr þE affB ÀE diss .Collision b,e þAB À!AB ÀÃdoes not lead to production of AB Àions because energy and momentum are not gen-erally conserved when two bodies collide elastically to form one body (see Problem3.12).Hence the excited AB ÀÃion separates,AB ÀÃÀ!e þABunless vibrational radiation or collision with a third body carries off the excess energy.These processes are both slow in low-pressure discharges (see Section 9.2).At high pressures (say,atmospheric),three-body attachment to form AB Àcan be very important.For a few molecules,such as some halogens,the electron affinity of the atom exceeds the dissociation energy of the neutral molecule,leading to the potential energy curves shown in Figure 8.7c .In this case the range of electron impact ener-gies E for excitation of the AB Àrepulsive state includes E ¼0.Consequently,there is no threshold energy,and very slow electrons can produce dissociative attachment,resulting in hot neutral and negative ion fragments.The range of R s over which auto-detachment can occur is small;hence the maximum cross sections for dissociative attachment can be as high as 10À16cm 2.A simple classical estimate of electron capture can be made using the differential scattering cross section for energy loss (3.4.20),in a manner similar to that done for dissociation.For electron capture to an energy level E 1that is unstable to autode-tachment,and with the additional constraint for capture that the incident electron energy lie within E 1and E 2¼E 1þD E ,where D E is a small energy difference characteristic of the dissociative attachment timescale,we obtain,in place of (8.3.2),s att¼0E ,E 1s 0E ÀE 1E 1E 1,E ,E 20E .E 28>><>>:(8:3:5)8.3ELECTRON COLLISIONS WITH MOLECULES 249wheres 0%p m M R 1=2e 4pe 0E 1 2(8:3:6)The factor of (m =M R )1=2roughly gives the fraction of excited states that do not auto-detach.We see that the dissociative attachment cross section rises linearly at E 1to a maximum value s 0D E =E 1and then falls abruptly to zero.As for dissociation,E 1can depend strongly on the nuclear separation R ,and (8.3.5)must be averaged over the range of E 1s corresponding to the ground state vibrational motion;e.g.,from E thr to E 0thr in Figure 8.7a .Because generally D E (E 0thr ÀE thr ,we can write (8.3.5)in the forms att %p m M R 1=2e 4pe 0 2(D E )22E 1d (E ÀE 1)(8:3:7)where d is the Dirac delta ing (8.3.7),the average over the vibrational motion can be performed,leading to a cross section that is strongly peaked lying between E thr and E 0thr .We leave the details of the calculation to a problem.Polar DissociationThe process,e þAB À!A þþB Àþeproduces negative ions without electron capture.As shown in Figure 8.7d ,the process proceeds by excitation of a polar state A þand B Àof AB Ãthat has a separ-ated atom limit of A þand B À.Hence at large R ,this state lies above the A þB ground state by the difference between the ionization potential of A and the electron affinity of B.The polar state is weakly bound at large R by the Coulomb attraction force,but is repulsive at small R .The maximum cross section and the dependence of the cross section on electron impact energy are similar to that of pure dissociation.The threshold energy E thr for polar dissociation is generally large.The measured cross section for negative ion production by electron impact in O 2is shown in Figure 8.8.The sharp peak at 6.5V is due to dissociative attachment.The variation of the cross section with energy is typical of a resonant capture process.The maximum cross section of 10À18cm 2is quite low because autode-tachment from the repulsive O À2state is strong,inhibiting dissociative attachment.The second gradual maximum near 35V is due to polar dissociation;the variation of the cross section with energy is typical of a nonresonant process.250MOLECULAR COLLISIONS。
elastic单词讲解
elastic是一个英文单词,它的意思是“有弹性的”、“能够恢复原状的”、“柔韧的”等。
在物理学中,elastic通常用来描述材料的弹性特性,即当施加力后能够恢复原状的能力。
例如,弹簧就是一种具有很高弹性的物品,当施加压力后可以压缩,但一旦力量消失,弹簧会迅速恢复原状。
在日常生活中,elastic这个词也常常用来形容衣物或其他物品的质地或特性。
比如弹性裤、弹性头带等都是指其材料有一定的柔韧性和弹性。
此外,在商业和金融领域中,elastic也可以用来形容市场的变动或经济波动的程度等。
此外,elastic还有“伸缩皮筋”和“橡皮筋”等意思,这是因为弹性材料经常被用来制作上述物品。
总之,elastic这个单词的含义十分广泛,具有多种意义和用途,可以根据不同的语境和领域进行理解和应用。
中英文力学对准
一般力学类:分析力学 analytical mechanics拉格朗日乘子 Lagrange multiplier拉格朗日[量] Lagrangian拉格朗日括号 Lagrange bracket循环坐标 cyclic coordinate循环积分 cyclic integral哈密顿[量] Hamiltonian哈密顿函数 Hamiltonian function正则方程 canonical equation正则摄动 canonical perturbation正则变换 canonical transformation正则变量 canonical variable哈密顿原理 Hamilton principle作用量积分 action integral哈密顿-雅可比方程 Hamilton-Jacobi equation作用--角度变量 action-angle variables阿佩尔方程 Appell equation劳斯方程 Routh equation拉格朗日函数 Lagrangian function诺特定理 Noether theorem泊松括号 poisson bracket边界积分法 boundary integral method并矢 dyad运动稳定性 stability of motion轨道稳定性 orbital stability李雅普诺夫函数 Lyapunov function渐近稳定性 asymptotic stability结构稳定性 structural stability久期不稳定性 secular instability弗洛凯定理 Floquet theorem倾覆力矩 capsizing moment自由振动 free vibration固有振动 natural vibration暂态 transient state环境振动 ambient vibration反共振 anti-resonance衰减 attenuation库仑阻尼 Coulomb damping同相分量 in-phase component非同相分量 out-of -phase component超调量 overshoot 参量[激励]振动 parametric vibration模糊振动 fuzzy vibration临界转速 critical speed of rotation阻尼器 damper半峰宽度 half-peak width集总参量系统 lumped parameter system 相平面法 phase plane method相轨迹 phase trajectory等倾线法 isocline method跳跃现象 jump phenomenon负阻尼 negative damping达芬方程 Duffing equation希尔方程 Hill equationKBM方法 KBM method, Krylov-Bogoliu- bov-Mitropol'skii method马蒂厄方程 Mathieu equation平均法 averaging method组合音调 combination tone解谐 detuning耗散函数 dissipative function硬激励 hard excitation硬弹簧 hard spring, hardening spring谐波平衡法harmonic balance method久期项 secular term自激振动 self-excited vibration分界线 separatrix亚谐波 subharmonic软弹簧 soft spring ,softening spring软激励 soft excitation邓克利公式 Dunkerley formula瑞利定理 Rayleigh theorem分布参量系统 distributed parameter system优势频率 dominant frequency模态分析 modal analysis固有模态natural mode of vibration同步 synchronization超谐波 ultraharmonic范德波尔方程 van der pol equation频谱 frequency spectrum基频 fundamental frequencyWKB方法 WKB methodWKB方法Wentzel-Kramers-Brillouin method缓冲器 buffer风激振动 aeolian vibration嗡鸣 buzz倒谱cepstrum颤动 chatter蛇行 hunting阻抗匹配 impedance matching机械导纳 mechanical admittance机械效率 mechanical efficiency机械阻抗 mechanical impedance随机振动 stochastic vibration, random vibration隔振 vibration isolation减振 vibration reduction应力过冲 stress overshoot喘振surge摆振shimmy起伏运动 phugoid motion起伏振荡 phugoid oscillation驰振 galloping陀螺动力学 gyrodynamics陀螺摆 gyropendulum陀螺平台 gyroplatform陀螺力矩 gyroscoopic torque陀螺稳定器 gyrostabilizer陀螺体 gyrostat惯性导航 inertial guidance 姿态角 attitude angle方位角 azimuthal angle舒勒周期 Schuler period机器人动力学 robot dynamics多体系统 multibody system多刚体系统 multi-rigid-body system机动性 maneuverability凯恩方法Kane method转子[系统]动力学 rotor dynamics转子[一支承一基础]系统 rotor-support- foundation system静平衡 static balancing动平衡 dynamic balancing静不平衡 static unbalance动不平衡 dynamic unbalance现场平衡 field balancing不平衡 unbalance不平衡量 unbalance互耦力 cross force挠性转子 flexible rotor分频进动 fractional frequency precession半频进动half frequency precession油膜振荡 oil whip转子临界转速 rotor critical speed自动定心 self-alignment亚临界转速 subcritical speed涡动 whirl固体力学类:弹性力学 elasticity弹性理论 theory of elasticity均匀应力状态 homogeneous state of stress 应力不变量 stress invariant应变不变量 strain invariant应变椭球 strain ellipsoid均匀应变状态 homogeneous state of strain应变协调方程 equation of strain compatibility拉梅常量 Lame constants各向同性弹性 isotropic elasticity旋转圆盘 rotating circular disk 楔wedge开尔文问题 Kelvin problem布西内斯克问题 Boussinesq problem艾里应力函数 Airy stress function克罗索夫--穆斯赫利什维利法 Kolosoff- Muskhelishvili method基尔霍夫假设 Kirchhoff hypothesis板 Plate矩形板 Rectangular plate圆板 Circular plate环板 Annular plate波纹板 Corrugated plate加劲板 Stiffened plate,reinforcedPlate中厚板 Plate of moderate thickness弯[曲]应力函数 Stress function of bending 壳Shell扁壳 Shallow shell旋转壳 Revolutionary shell球壳 Spherical shell[圆]柱壳 Cylindrical shell锥壳Conical shell环壳 Toroidal shell封闭壳 Closed shell波纹壳 Corrugated shell扭[转]应力函数 Stress function of torsion 翘曲函数 Warping function半逆解法 semi-inverse method瑞利--里茨法 Rayleigh-Ritz method松弛法 Relaxation method莱维法 Levy method松弛 Relaxation量纲分析 Dimensional analysis自相似[性] self-similarity影响面 Influence surface接触应力 Contact stress赫兹理论 Hertz theory协调接触 Conforming contact滑动接触 Sliding contact滚动接触 Rolling contact压入 Indentation各向异性弹性 Anisotropic elasticity颗粒材料 Granular material散体力学 Mechanics of granular media热弹性 Thermoelasticity超弹性 Hyperelasticity粘弹性 Viscoelasticity对应原理 Correspondence principle褶皱Wrinkle塑性全量理论 Total theory of plasticity滑动 Sliding微滑Microslip粗糙度 Roughness非线性弹性 Nonlinear elasticity大挠度 Large deflection突弹跳变 snap-through有限变形 Finite deformation 格林应变 Green strain阿尔曼西应变 Almansi strain弹性动力学 Dynamic elasticity运动方程 Equation of motion准静态的Quasi-static气动弹性 Aeroelasticity水弹性 Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波 Cylindrical wave水平剪切波 Horizontal shear wave竖直剪切波Vertical shear wave体波 body wave无旋波 Irrotational wave畸变波 Distortion wave膨胀波 Dilatation wave瑞利波 Rayleigh wave等容波 Equivoluminal wave勒夫波Love wave界面波 Interfacial wave边缘效应 edge effect塑性力学 Plasticity可成形性 Formability金属成形 Metal forming耐撞性 Crashworthiness结构抗撞毁性 Structural crashworthiness 拉拔Drawing破坏机构 Collapse mechanism回弹 Springback挤压 Extrusion冲压 Stamping穿透Perforation层裂Spalling塑性理论 Theory of plasticity安定[性]理论 Shake-down theory运动安定定理 kinematic shake-down theorem静力安定定理 Static shake-down theorem 率相关理论 rate dependent theorem载荷因子load factor加载准则 Loading criterion加载函数 Loading function加载面 Loading surface塑性加载 Plastic loading塑性加载波 Plastic loading wave简单加载 Simple loading比例加载 Proportional loading卸载 Unloading卸载波 Unloading wave冲击载荷 Impulsive load阶跃载荷step load脉冲载荷 pulse load极限载荷 limit load中性变载 nentral loading拉抻失稳 instability in tension加速度波 acceleration wave本构方程 constitutive equation完全解 complete solution名义应力 nominal stress过应力 over-stress真应力 true stress等效应力 equivalent stress流动应力 flow stress应力间断 stress discontinuity应力空间 stress space主应力空间 principal stress space静水应力状态hydrostatic state of stress对数应变 logarithmic strain工程应变 engineering strain等效应变 equivalent strain应变局部化 strain localization应变率 strain rate应变率敏感性 strain rate sensitivity应变空间 strain space有限应变 finite strain塑性应变增量 plastic strain increment 累积塑性应变 accumulated plastic strain 永久变形 permanent deformation内变量 internal variable应变软化 strain-softening理想刚塑性材料 rigid-perfectly plastic Material刚塑性材料 rigid-plastic material理想塑性材料 perfectl plastic material 材料稳定性stability of material应变偏张量deviatoric tensor of strain应力偏张量deviatori tensor of stress 应变球张量spherical tensor of strain应力球张量spherical tensor of stress路径相关性 path-dependency线性强化 linear strain-hardening应变强化 strain-hardening随动强化 kinematic hardening各向同性强化 isotropic hardening强化模量 strain-hardening modulus幂强化 power hardening塑性极限弯矩 plastic limit bending Moment塑性极限扭矩 plastic limit torque弹塑性弯曲 elastic-plastic bending弹塑性交界面 elastic-plastic interface弹塑性扭转 elastic-plastic torsion粘塑性 Viscoplasticity非弹性 Inelasticity理想弹塑性材料 elastic-perfectly plastic Material极限分析 limit analysis极限设计 limit design极限面limit surface上限定理 upper bound theorem上屈服点upper yield point下限定理 lower bound theorem下屈服点 lower yield point界限定理 bound theorem初始屈服面initial yield surface后继屈服面 subsequent yield surface屈服面[的]外凸性 convexity of yield surface截面形状因子 shape factor of cross-section 沙堆比拟 sand heap analogy屈服Yield屈服条件 yield condition屈服准则 yield criterion屈服函数 yield function屈服面 yield surface塑性势 plastic potential能量吸收装置 energy absorbing device能量耗散率 energy absorbing device塑性动力学 dynamic plasticity塑性动力屈曲 dynamic plastic buckling塑性动力响应 dynamic plastic response塑性波 plastic wave运动容许场 kinematically admissible Field静力容许场 statically admissibleField流动法则 flow rule速度间断 velocity discontinuity滑移线 slip-lines滑移线场 slip-lines field移行塑性铰 travelling plastic hinge塑性增量理论 incremental theory ofPlasticity米泽斯屈服准则 Mises yield criterion普朗特--罗伊斯关系 prandtl- Reuss relation特雷斯卡屈服准则 Tresca yield criterion洛德应力参数 Lode stress parameter莱维--米泽斯关系 Levy-Mises relation亨基应力方程 Hencky stress equation赫艾--韦斯特加德应力空间Haigh-Westergaard stress space洛德应变参数 Lode strain parameter德鲁克公设 Drucker postulate盖林格速度方程Geiringer velocity Equation结构力学 structural mechanics结构分析 structural analysis结构动力学 structural dynamics拱 Arch三铰拱 three-hinged arch抛物线拱 parabolic arch圆拱 circular arch穹顶Dome空间结构 space structure空间桁架 space truss雪载[荷] snow load风载[荷] wind load土压力 earth pressure地震载荷 earthquake loading弹簧支座 spring support支座位移 support displacement支座沉降 support settlement超静定次数 degree of indeterminacy机动分析 kinematic analysis 结点法 method of joints截面法 method of sections结点力 joint forces共轭位移 conjugate displacement影响线 influence line三弯矩方程 three-moment equation单位虚力 unit virtual force刚度系数 stiffness coefficient柔度系数 flexibility coefficient力矩分配 moment distribution力矩分配法moment distribution method力矩再分配 moment redistribution分配系数 distribution factor矩阵位移法matri displacement method单元刚度矩阵 element stiffness matrix单元应变矩阵 element strain matrix总体坐标 global coordinates贝蒂定理 Betti theorem高斯--若尔当消去法 Gauss-Jordan elimination Method屈曲模态 buckling mode复合材料力学 mechanics of composites 复合材料composite material纤维复合材料 fibrous composite单向复合材料 unidirectional composite泡沫复合材料foamed composite颗粒复合材料 particulate composite层板Laminate夹层板 sandwich panel正交层板 cross-ply laminate斜交层板 angle-ply laminate层片Ply多胞固体 cellular solid膨胀 Expansion压实Debulk劣化 Degradation脱层 Delamination脱粘 Debond纤维应力 fiber stress层应力 ply stress层应变ply strain层间应力 interlaminar stress比强度 specific strength强度折减系数 strength reduction factor强度应力比 strength -stress ratio横向剪切模量 transverse shear modulus 横观各向同性 transverse isotropy正交各向异 Orthotropy剪滞分析 shear lag analysis短纤维 chopped fiber长纤维 continuous fiber纤维方向 fiber direction纤维断裂 fiber break纤维拔脱 fiber pull-out纤维增强 fiber reinforcement致密化 Densification最小重量设计 optimum weight design网格分析法 netting analysis混合律 rule of mixture失效准则 failure criterion蔡--吴失效准则 Tsai-W u failure criterion 达格代尔模型 Dugdale model断裂力学 fracture mechanics概率断裂力学 probabilistic fracture Mechanics格里菲思理论 Griffith theory线弹性断裂力学 linear elastic fracturemechanics, LEFM弹塑性断裂力学 elastic-plastic fracture mecha-nics, EPFM断裂 Fracture脆性断裂 brittle fracture解理断裂 cleavage fracture蠕变断裂 creep fracture延性断裂 ductile fracture晶间断裂 inter-granular fracture准解理断裂 quasi-cleavage fracture穿晶断裂 trans-granular fracture裂纹Crack裂缝Flaw缺陷Defect割缝Slit微裂纹Microcrack折裂Kink椭圆裂纹 elliptical crack深埋裂纹 embedded crack[钱]币状裂纹 penny-shape crack预制裂纹 Precrack 短裂纹 short crack表面裂纹 surface crack裂纹钝化 crack blunting裂纹分叉 crack branching裂纹闭合 crack closure裂纹前缘 crack front裂纹嘴 crack mouth裂纹张开角crack opening angle,COA裂纹张开位移 crack opening displacement, COD裂纹阻力 crack resistance裂纹面 crack surface裂纹尖端 crack tip裂尖张角 crack tip opening angle,CTOA裂尖张开位移 crack tip openingdisplacement, CTOD裂尖奇异场crack tip singularity Field裂纹扩展速率 crack growth rate稳定裂纹扩展 stable crack growth定常裂纹扩展 steady crack growth亚临界裂纹扩展 subcritical crack growth 裂纹[扩展]减速 crack retardation止裂crack arrest止裂韧度 arrest toughness断裂类型 fracture mode滑开型 sliding mode张开型 opening mode撕开型 tearing mode复合型 mixed mode撕裂 Tearing撕裂模量 tearing modulus断裂准则 fracture criterionJ积分 J-integralJ阻力曲线 J-resistance curve断裂韧度 fracture toughness应力强度因子 stress intensity factorHRR场 Hutchinson-Rice-Rosengren Field守恒积分 conservation integral有效应力张量 effective stress tensor应变能密度strain energy density能量释放率 energy release rate内聚区 cohesive zone塑性区 plastic zone张拉区 stretched zone热影响区heat affected zone, HAZ延脆转变温度 brittle-ductile transitiontemperature剪切带shear band剪切唇shear lip无损检测 non-destructive inspection双边缺口试件double edge notchedspecimen, DEN specimen单边缺口试件 single edge notchedspecimen, SEN specimen三点弯曲试件 three point bendingspecimen, TPB specimen中心裂纹拉伸试件 center cracked tension specimen, CCT specimen中心裂纹板试件 center cracked panelspecimen, CCP specimen紧凑拉伸试件 compact tension specimen, CT specimen大范围屈服large scale yielding小范围攻屈服 small scale yielding韦布尔分布 Weibull distribution帕里斯公式 paris formula空穴化 Cavitation应力腐蚀 stress corrosion概率风险判定 probabilistic riskassessment, PRA损伤力学 damage mechanics损伤Damage连续介质损伤力学 continuum damage mechanics细观损伤力学 microscopic damage mechanics累积损伤 accumulated damage脆性损伤 brittle damage延性损伤 ductile damage宏观损伤 macroscopic damage细观损伤 microscopic damage微观损伤 microscopic damage损伤准则 damage criterion损伤演化方程 damage evolution equation 损伤软化 damage softening损伤强化 damage strengthening 损伤张量 damage tensor损伤阈值 damage threshold损伤变量 damage variable损伤矢量 damage vector损伤区 damage zone疲劳Fatigue低周疲劳 low cycle fatigue应力疲劳 stress fatigue随机疲劳 random fatigue蠕变疲劳 creep fatigue腐蚀疲劳 corrosion fatigue疲劳损伤 fatigue damage疲劳失效 fatigue failure疲劳断裂 fatigue fracture疲劳裂纹 fatigue crack疲劳寿命 fatigue life疲劳破坏 fatigue rupture疲劳强度 fatigue strength疲劳辉纹 fatigue striations疲劳阈值 fatigue threshold交变载荷 alternating load交变应力 alternating stress应力幅值 stress amplitude应变疲劳 strain fatigue应力循环 stress cycle应力比 stress ratio安全寿命 safe life过载效应 overloading effect循环硬化 cyclic hardening循环软化 cyclic softening环境效应 environmental effect裂纹片crack gage裂纹扩展 crack growth, crack Propagation裂纹萌生 crack initiation循环比 cycle ratio实验应力分析 experimental stressAnalysis工作[应变]片 active[strain] gage基底材料 backing material应力计stress gage零[点]飘移zero shift, zero drift应变测量 strain measurement应变计strain gage应变指示器 strain indicator应变花 strain rosette应变灵敏度 strain sensitivity机械式应变仪 mechanical strain gage 直角应变花 rectangular rosette引伸仪 Extensometer应变遥测 telemetering of strain横向灵敏系数 transverse gage factor 横向灵敏度 transverse sensitivity焊接式应变计 weldable strain gage 平衡电桥 balanced bridge粘贴式应变计 bonded strain gage粘贴箔式应变计bonded foiled gage粘贴丝式应变计 bonded wire gage 桥路平衡 bridge balancing电容应变计 capacitance strain gage 补偿片 compensation technique补偿技术 compensation technique基准电桥 reference bridge电阻应变计 resistance strain gage温度自补偿应变计 self-temperature compensating gage半导体应变计 semiconductor strain Gage集流器slip ring应变放大镜 strain amplifier疲劳寿命计 fatigue life gage电感应变计 inductance [strain] gage 光[测]力学 Photomechanics光弹性 Photoelasticity光塑性 Photoplasticity杨氏条纹 Young fringe双折射效应 birefrigent effect等位移线 contour of equalDisplacement暗条纹 dark fringe条纹倍增 fringe multiplication干涉条纹 interference fringe等差线 Isochromatic等倾线 Isoclinic等和线 isopachic应力光学定律 stress- optic law主应力迹线 Isostatic亮条纹 light fringe 光程差optical path difference热光弹性 photo-thermo -elasticity光弹性贴片法 photoelastic coating Method光弹性夹片法 photoelastic sandwich Method动态光弹性 dynamic photo-elasticity空间滤波 spatial filtering空间频率 spatial frequency起偏镜 Polarizer反射式光弹性仪 reflection polariscope残余双折射效应 residual birefringent Effect应变条纹值 strain fringe value应变光学灵敏度 strain-optic sensitivity 应力冻结效应 stress freezing effect应力条纹值 stress fringe value应力光图 stress-optic pattern暂时双折射效应 temporary birefringent Effect脉冲全息法 pulsed holography透射式光弹性仪 transmission polariscope 实时全息干涉法 real-time holographicinterfero - metry网格法 grid method全息光弹性法 holo-photoelasticity全息图Hologram全息照相 Holograph全息干涉法 holographic interferometry 全息云纹法 holographic moire technique 全息术 Holography全场分析法 whole-field analysis散斑干涉法 speckle interferometry散斑Speckle错位散斑干涉法 speckle-shearinginterferometry, shearography散斑图Specklegram白光散斑法white-light speckle method云纹干涉法 moire interferometry[叠栅]云纹 moire fringe[叠栅]云纹法 moire method云纹图 moire pattern离面云纹法 off-plane moire method参考栅 reference grating试件栅 specimen grating分析栅 analyzer grating面内云纹法 in-plane moire method脆性涂层法 brittle-coating method条带法 strip coating method坐标变换 transformation ofCoordinates计算结构力学 computational structuralmecha-nics加权残量法weighted residual method有限差分法 finite difference method有限[单]元法 finite element method配点法 point collocation里茨法 Ritz method广义变分原理 generalized variational Principle最小二乘法 least square method胡[海昌]一鹫津原理 Hu-Washizu principle 赫林格-赖斯纳原理 Hellinger-Reissner Principle修正变分原理 modified variational Principle约束变分原理 constrained variational Principle混合法 mixed method杂交法 hybrid method边界解法boundary solution method有限条法 finite strip method半解析法 semi-analytical method协调元 conforming element非协调元 non-conforming element混合元 mixed element杂交元 hybrid element边界元 boundary element强迫边界条件 forced boundary condition 自然边界条件 natural boundary condition 离散化 Discretization离散系统 discrete system连续问题 continuous problem广义位移 generalized displacement广义载荷 generalized load广义应变 generalized strain广义应力 generalized stress界面变量 interface variable 节点 node, nodal point[单]元 Element角节点 corner node边节点 mid-side node内节点 internal node无节点变量 nodeless variable杆元 bar element桁架杆元 truss element梁元 beam element二维元 two-dimensional element一维元 one-dimensional element三维元 three-dimensional element轴对称元 axisymmetric element板元 plate element壳元 shell element厚板元 thick plate element三角形元 triangular element四边形元 quadrilateral element四面体元 tetrahedral element曲线元 curved element二次元 quadratic element线性元 linear element三次元 cubic element四次元 quartic element等参[数]元 isoparametric element超参数元 super-parametric element亚参数元 sub-parametric element节点数可变元 variable-number-node element拉格朗日元 Lagrange element拉格朗日族 Lagrange family巧凑边点元 serendipity element巧凑边点族 serendipity family无限元 infinite element单元分析 element analysis单元特性 element characteristics刚度矩阵 stiffness matrix几何矩阵 geometric matrix等效节点力 equivalent nodal force节点位移 nodal displacement节点载荷 nodal load位移矢量 displacement vector载荷矢量 load vector质量矩阵 mass matrix集总质量矩阵 lumped mass matrix相容质量矩阵 consistent mass matrix阻尼矩阵 damping matrix瑞利阻尼 Rayleigh damping刚度矩阵的组集 assembly of stiffnessMatrices载荷矢量的组集 consistent mass matrix质量矩阵的组集 assembly of mass matrices 单元的组集 assembly of elements局部坐标系 local coordinate system局部坐标 local coordinate面积坐标 area coordinates体积坐标 volume coordinates曲线坐标 curvilinear coordinates静凝聚 static condensation合同变换 contragradient transformation形状函数 shape function试探函数 trial function检验函数test function权函数 weight function样条函数 spline function代用函数 substitute function降阶积分 reduced integration零能模式 zero-energy modeP收敛 p-convergenceH收敛 h-convergence掺混插值 blended interpolation等参数映射 isoparametric mapping双线性插值 bilinear interpolation小块检验 patch test非协调模式 incompatible mode 节点号 node number单元号 element number带宽 band width带状矩阵 banded matrix变带状矩阵 profile matrix带宽最小化minimization of band width波前法 frontal method子空间迭代法 subspace iteration method 行列式搜索法determinant search method逐步法 step-by-step method纽马克法Newmark威尔逊法 Wilson拟牛顿法 quasi-Newton method牛顿-拉弗森法 Newton-Raphson method 增量法 incremental method初应变 initial strain初应力 initial stress切线刚度矩阵 tangent stiffness matrix割线刚度矩阵 secant stiffness matrix模态叠加法mode superposition method平衡迭代 equilibrium iteration子结构 Substructure子结构法 substructure technique超单元 super-element网格生成 mesh generation结构分析程序 structural analysis program 前处理 pre-processing后处理 post-processing网格细化 mesh refinement应力光顺 stress smoothing组合结构 composite structure流体动力学类:流体动力学 fluid dynamics连续介质力学 mechanics of continuous media介质medium流体质点 fluid particle无粘性流体 nonviscous fluid, inviscid fluid连续介质假设 continuous medium hypothesis流体运动学 fluid kinematics水静力学 hydrostatics 液体静力学 hydrostatics支配方程 governing equation伯努利方程 Bernoulli equation伯努利定理 Bernonlli theorem毕奥-萨伐尔定律 Biot-Savart law欧拉方程Euler equation亥姆霍兹定理 Helmholtz theorem开尔文定理 Kelvin theorem涡片 vortex sheet库塔-茹可夫斯基条件 Kutta-Zhoukowskicondition布拉休斯解 Blasius solution达朗贝尔佯廖 d'Alembert paradox 雷诺数 Reynolds number施特鲁哈尔数 Strouhal number随体导数 material derivative不可压缩流体 incompressible fluid 质量守恒 conservation of mass动量守恒 conservation of momentum 能量守恒 conservation of energy动量方程 momentum equation能量方程 energy equation控制体积 control volume液体静压 hydrostatic pressure涡量拟能 enstrophy压差 differential pressure流[动] flow流线stream line流面 stream surface流管stream tube迹线path, path line流场 flow field流态 flow regime流动参量 flow parameter流量 flow rate, flow discharge涡旋 vortex涡量 vorticity涡丝 vortex filament涡线 vortex line涡面 vortex surface涡层 vortex layer涡环 vortex ring涡对 vortex pair涡管 vortex tube涡街 vortex street卡门涡街 Karman vortex street马蹄涡 horseshoe vortex对流涡胞 convective cell卷筒涡胞 roll cell涡 eddy涡粘性 eddy viscosity环流 circulation环量 circulation速度环量 velocity circulation 偶极子 doublet, dipole驻点 stagnation point总压[力] total pressure总压头 total head静压头 static head总焓 total enthalpy能量输运 energy transport速度剖面 velocity profile库埃特流 Couette flow单相流 single phase flow单组份流 single-component flow均匀流 uniform flow非均匀流 nonuniform flow二维流 two-dimensional flow三维流 three-dimensional flow准定常流 quasi-steady flow非定常流unsteady flow, non-steady flow 暂态流transient flow周期流 periodic flow振荡流 oscillatory flow分层流 stratified flow无旋流 irrotational flow有旋流 rotational flow轴对称流 axisymmetric flow不可压缩性 incompressibility不可压缩流[动] incompressible flow 浮体 floating body定倾中心metacenter阻力 drag, resistance减阻 drag reduction表面力 surface force表面张力 surface tension毛细[管]作用 capillarity来流 incoming flow自由流 free stream自由流线 free stream line外流 external flow进口 entrance, inlet出口exit, outlet扰动 disturbance, perturbation分布 distribution传播 propagation色散 dispersion弥散 dispersion附加质量added mass ,associated mass收缩 contraction镜象法 image method无量纲参数 dimensionless parameter几何相似 geometric similarity运动相似 kinematic similarity动力相似[性] dynamic similarity平面流 plane flow势 potential势流 potential flow速度势 velocity potential复势 complex potential复速度 complex velocity流函数 stream function源source汇sink速度[水]头 velocity head拐角流 corner flow空泡流cavity flow超空泡 supercavity超空泡流 supercavity flow空气动力学 aerodynamics低速空气动力学 low-speed aerodynamics 高速空气动力学 high-speed aerodynamics 气动热力学 aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流 conical flow楔流wedge flow叶栅流 cascade flow非平衡流[动] non-equilibrium flow细长体 slender body细长度 slenderness钝头体 bluff body钝体 blunt body翼型 airfoil翼弦 chord薄翼理论 thin-airfoil theory构型 configuration后缘 trailing edge迎角 angle of attack失速stall脱体激波detached shock wave 波阻wave drag诱导阻力 induced drag诱导速度 induced velocity临界雷诺数critical Reynolds number前缘涡 leading edge vortex附着涡 bound vortex约束涡 confined vortex气动中心 aerodynamic center气动力 aerodynamic force气动噪声 aerodynamic noise气动加热 aerodynamic heating离解 dissociation地面效应 ground effect气体动力学 gas dynamics稀疏波 rarefaction wave热状态方程thermal equation of state喷管Nozzle普朗特-迈耶流 Prandtl-Meyer flow瑞利流 Rayleigh flow可压缩流[动] compressible flow可压缩流体 compressible fluid绝热流 adiabatic flow非绝热流 diabatic flow未扰动流 undisturbed flow等熵流 isentropic flow匀熵流 homoentropic flow兰金-于戈尼奥条件 Rankine-Hugoniot condition状态方程 equation of state量热状态方程 caloric equation of state完全气体 perfect gas拉瓦尔喷管 Laval nozzle马赫角 Mach angle马赫锥 Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数 local Mach number冲击波 shock wave激波 shock wave正激波normal shock wave斜激波oblique shock wave头波 bow wave附体激波 attached shock wave激波阵面 shock front激波层 shock layer压缩波 compression wave反射 reflection折射 refraction散射scattering衍射 diffraction绕射 diffraction出口压力 exit pressure超压[强] over pressure反压 back pressure爆炸 explosion爆轰 detonation缓燃 deflagration水动力学 hydrodynamics液体动力学 hydrodynamics泰勒不稳定性 Taylor instability 盖斯特纳波 Gerstner wave斯托克斯波 Stokes wave瑞利数 Rayleigh number自由面 free surface波速 wave speed, wave velocity 波高 wave height波列wave train波群 wave group波能wave energy表面波 surface wave表面张力波 capillary wave规则波 regular wave不规则波 irregular wave浅水波 shallow water wave深水波deep water wave重力波 gravity wave椭圆余弦波 cnoidal wave潮波tidal wave涌波surge wave破碎波 breaking wave船波ship wave非线性波 nonlinear wave孤立子 soliton水动[力]噪声 hydrodynamic noise 水击 water hammer空化 cavitation空化数 cavitation number 空蚀 cavitation damage超空化流 supercavitating flow水翼 hydrofoil水力学 hydraulics洪水波 flood wave涟漪ripple消能 energy dissipation海洋水动力学 marine hydrodynamics谢齐公式 Chezy formula欧拉数 Euler number弗劳德数 Froude number水力半径 hydraulic radius水力坡度 hvdraulic slope高度水头 elevating head水头损失 head loss水位 water level水跃 hydraulic jump含水层 aquifer排水 drainage排放量 discharge壅水曲线back water curve压[强水]头 pressure head过水断面 flow cross-section明槽流open channel flow孔流 orifice flow无压流 free surface flow有压流 pressure flow缓流 subcritical flow急流 supercritical flow渐变流gradually varied flow急变流 rapidly varied flow临界流 critical flow异重流density current, gravity flow堰流weir flow掺气流 aerated flow含沙流 sediment-laden stream降水曲线 dropdown curve沉积物 sediment, deposit沉[降堆]积 sedimentation, deposition沉降速度 settling velocity流动稳定性 flow stability不稳定性 instability奥尔-索末菲方程 Orr-Sommerfeld equation 涡量方程 vorticity equation泊肃叶流 Poiseuille flow奥辛流 Oseen flow剪切流 shear flow粘性流[动] viscous flow层流 laminar flow分离流 separated flow二次流 secondary flow近场流near field flow远场流 far field flow滞止流 stagnation flow尾流 wake [flow]回流 back flow反流 reverse flow射流 jet自由射流 free jet管流pipe flow, tube flow内流 internal flow拟序结构 coherent structure 猝发过程 bursting process表观粘度 apparent viscosity 运动粘性 kinematic viscosity 动力粘性 dynamic viscosity 泊 poise厘泊 centipoise厘沱 centistoke剪切层 shear layer次层 sublayer流动分离 flow separation层流分离 laminar separation 湍流分离 turbulent separation 分离点 separation point附着点 attachment point再附 reattachment再层流化 relaminarization起动涡starting vortex驻涡 standing vortex涡旋破碎 vortex breakdown 涡旋脱落 vortex shedding压[力]降 pressure drop压差阻力 pressure drag压力能 pressure energy型阻 profile drag滑移速度 slip velocity无滑移条件 non-slip condition 壁剪应力 skin friction, frictional drag壁剪切速度 friction velocity磨擦损失 friction loss磨擦因子 friction factor耗散 dissipation滞后lag相似性解 similar solution局域相似 local similarity气体润滑 gas lubrication液体动力润滑 hydrodynamic lubrication 浆体 slurry泰勒数 Taylor number纳维-斯托克斯方程 Navier-Stokes equation 牛顿流体 Newtonian fluid边界层理论boundary later theory边界层方程boundary layer equation边界层 boundary layer附面层 boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation边界层厚度boundary layer thickness位移厚度 displacement thickness动量厚度 momentum thickness能量厚度 energy thickness焓厚度 enthalpy thickness注入 injection吸出suction泰勒涡 Taylor vortex速度亏损律 velocity defect law形状因子 shape factor测速法 anemometry粘度测定法 visco[si] metry流动显示 flow visualization油烟显示 oil smoke visualization孔板流量计 orifice meter频率响应 frequency response油膜显示oil film visualization阴影法 shadow method纹影法 schlieren method烟丝法smoke wire method丝线法 tuft method。
反射式电子能量损失谱(REELS)和弹性电子散射谱(EPES)
EPES测量技术
• EPES电子能量
E=E0-Er(M)= E0 [1-4Sin2(θ/2) (m/M)]
• 反冲能量计算结果
– 散射角θ≈π,E0=1keV;(ESCALAB 250Xi REELS) – m=0.5489e-3u, ……, M (u) Er(eV) 比例关系
H 1 C 12 N 14 O 16 F 19 2.20 0.18 0.16 0.14 0.12 Er(H) Er(H)/12 Er(H)/14 Er(H)/16 Er(H)/19
在XPS谱上出现的光电子峰(弹性散射峰)和能量损失峰(非弹性 散射峰), Si片表面覆盖厚度不同的SiO2层. 非弹性散射包括:等离激元、背景提升等 O1s Si2s C1s Ar Si2p
Counts / s
XPS中的电子散射:SiO2/Si
在XPS谱上出现的光电子峰(弹性散射峰)和能量损失峰(非弹性 散射峰), Si片表面覆盖厚度不同的SiO2层. 非弹性散射包括:等离激元、背景提升等 O1s C1s O KLL Si2s Si2p
• EPES宽度影响能谱的质量 • W2meas=We2 + W2instr+Wr2 (近似高斯型) • 式中Wmeas为测量出EPES谱峰宽度,We为电 子束能量分散,Winstr为仪器展宽,Wr为碰 撞时原子振动引起的多普勒(Doppler)展 宽。 • Wr=8 Sin(θ/2) (m E kT ln2/M)^0.5 (对于 E~1keV,Wr~10-1eV量级) • 宽度能给出什么信息?……
反射式电子能量损失谱(REELS) 和弹性电子散射谱(EPES)
电子能谱分析技术与应用交流 吴正龙 北京师范大学分析测试中心
主要内容
电子在固体中的散射 REELS谱及应用 弹性峰电子能谱(EPES) EPES谱测量碳材料和聚合物中氢元素 REELS分析技术探讨
ELASTICITY(弹性力学)常用专业名词中英文对照-修改
中文英文英文中文艾利应力函数Airy stress function Airy stress function艾利应力函数板plate anti-sysmetric tensor反对称张量板边bounday of plate applied elasticity应用弹性力学板的抗弯强度flexural rigidity of plate axisymmetry轴对称板的内力internal force of plate base vector基矢量板的中面middle plane of plate basic assumptions ofelasticity弹性力学基本假定贝尔特拉米-米歇尔方程Beltrami-Michellequationbasic equation for thebending of thin plate薄板弯曲的基本方程贝蒂互换定理Betti reciprocal theorem Beltrami consistencyequation贝尔特拉米相容方程变温temperature change Beltrami-Michellequation 贝尔特拉米-米歇尔方程表层波surface wave Betti reciprocal theorem贝蒂互换定理半逆解法semi-inverse method body force体力薄板thin plate boundary condition边界条件薄板弯曲的基本方程basic equation for thebending of thin platebounday of plate板边薄膜比拟membrage analogy Boussinesq problem布西内斯克问题布西内斯克问题Boussinesq problem Boussinesq solution布西内斯克解答布西内斯克解答Boussinesq solution Boussinesq solution布西内斯克解答布西内斯克-伽辽金通解Boussinesq-Galerkingeneral solutionBoussinesq-Galerkingeneral solution布西内斯克-伽辽金通解半空间体semi-infinite body bulk modulus体积模量半平面体semi-infinite plane Castigliano formula卡斯蒂利亚诺公式贝尔特拉米相容方程Beltrami consistencyequationCauchy equation柯西方程边界条件boundary condition Cerruti problem塞路蒂问题变分法(能量法)variationalmethod,energy method characteristic equationof stress state应力状态特征方程薄板内力internal forces of thinplate coefficient of lateralpressure侧压力系数薄板弹性曲面elatic surface of thinplate complex potential复位势薄板弹性曲面微分方程differential equation ofelastic surface of thinplatecondition of single-value displacement位移单值条件薄板弯曲刚度flexural rigidity of thinplateconsistency equation相容方程布西内斯克解答Boussinesq solution contact problem接触问题产熵entropy prodction continuity连续性沉陷settlement continuous hypothesis连续性假设侧压力系数coefficient of lateralpressure coordinate curves坐标曲线ELASTICITY(弹性力学)常用专业名词中英文对照差分法finite-differencemethord coordinate surface坐标曲面差分公式finite-differencefromulate coupling耦合重三角级数double triangle series curvilinear coordinates曲线坐标大挠度问题large deflection problem deflection挠度单位张量unit tensor deformation形变单元分析element analysis density of comlementarystrain energy应变余能密度单元刚度矩阵element stiffness matrix density of internalenergy 内能密度等容波equivoluminal wave diaplacement位移等容的位移场equivoluminaldisplacement field diaplacementcomponents位移分量叠加原理superposition principle diaplacement method位移解法度量张量metric tensor diaplacement method位移法对称张量symmetric tensor diaplacement shapefunction位移的形函数单连体simply connected body diaplacement variationalequation位移变分方程单三角级数解single triangle series differential equation ofelastic surface弹性曲面的微分方程单元节点载荷列阵elemental nodal loadmatrix differential equation ofelastic surface of thinplate薄板弹性曲面微分方程单元劲度矩阵elemental stiffnessmatrix differential equation ofequilibrium平衡微分方程多连体multiply connected body differential equation ofequilibrium in terms ofdisplacement 以位移表示的平衡微分方程二阶张量second order tensor dilatation wave膨胀波反对称张量anti-sysmetric tensor discretization离散化符拉芒解答Flamant soluton discretization structure离散化结构反射reflection displacement boundarycondition位移边界条件傅里叶变换Fourier transform displacement model位移模式傅里叶积分Fourier integral distrotion wave畸变波复位势complex potential double triangle series重三角级数格林公式Green formula dummy index哑指标各向同性假设isotropic hypothesis elastic body弹性体供熵entropy supply elastic constants弹性常数广义变分原理generanized variatianalprincipleelastic matrix弹性矩阵广义胡克定律generanized Hooke law elastic principledirection 弹性主方向刚体位移rigid body displacement elastic symmetric plane弹性对称面各向同性isotropy elastic wave弹性波哈密顿变分原理Hamiton varitionalprincipleelasticity弹性哈密顿作用量Hamiton action elasticity弹性力学赫林格-赖斯纳变分原理Hellinger-Reissnervariational principleelatic surface of thinplate薄板弹性曲面亥姆霍兹定理Helmholtz theorem element analysis单元分析横观各向同性弹性体transverse isotropicelastic bodyelement stiffness matrix单元刚度矩阵横波transverse wave elemental nodal loadmatrix单元节点载荷列阵厚板thick plate elemental stiffnessmatrix 单元劲度矩阵胡海昌-鹫津久一郎变分原理Hu Haichang-Washizuvariational principleenergy method能量法混合边值问题mixed boundary-valueproblementropy prodction产熵胡克定律Hooke law entropy supply供熵混合边界条件mixed boundarycondition equation of stresscompatibility应力协调方程畸变波distrotion wave equivalent shear forcetorsional moment扭矩等效剪力基尔霍夫假设Kirchhoff hypothesis equivoluminaldisplacement field等容的位移场基矢量base vector equivoluminal wave等容波几何方程geometrical equation Euler method欧拉法几何可能的位移geometrically possibledisplacementEuler strain components欧拉应变分量几何可能的应变geometrically possiblestriainexternal force外力几何线性的假设geometrically linearhypothesisfinite element有限元伽辽金法Galerkin method finite element method有限单元法伽辽金矢量Galerkin vector finite-differencefromulate 差分公式结点node finite-differencemethord 差分法结点荷载nodal load first law ofthermodynamics热力学第一定律结点力nodal force first(second,third)kindboundary-value problemof elasticity 弹性力学的第一(第二、第三)类边值条件结点位移nodal displacement Flamant soluton符拉芒解答解的唯一性定理theorem of uniquenesssolutionflexural rigidity of plate板的抗弯强度静力可能的应力statically possible stress flexural rigidity of thinplate薄板弯曲刚度均匀性假设homogeneoushypothesis Fourier integral傅里叶积分局部编码local coding Fourier transform傅里叶变换基尔斯解答Kirsch solution free energy density自由能密度极小势能原理princile of minimumpotential energyfree index自由指标接触问题contact problem Galerkin method伽辽金法均匀性homogeneity Galerkin vector伽辽金矢量卡斯蒂利亚诺公式Castigliano formula generanized Hooke law广义胡克定律开尔文问题Kelvin problem generanized variatianalprinciple广义变分原理扭转刚度torsional rigidity geometrical equation几何方程柯西方程Cauchy equation geometrically linearhypothesis几何线性的假设克罗内克δ符号Kroneckerdelta symbol geometrically possibledisplacement几何可能的位移空间轴对称问题spatial axisymmetryproblem geometrically possiblestriain几何可能的应变孔口应力集中stress concentration ofholesglobal analysis整体分析拉梅解答Lame slution global analysis整体分析离散化结构discretization structure global coding总体编码理想弹性体perfect elastic body global equivalent nodalload vector整体等效结点荷载列阵连续性continuity global nodaldisplacement vector整体结点位移列阵拉格朗日法Lagrange method global stiffness matrix总刚度矩阵拉格朗日函数Lagrange function global stiffness matrix整体劲度矩阵拉格朗日应变函数Lagrange straincomponentsGreen formula格林公式拉梅常数Lamé constants Hamiton action哈密顿作用量拉梅系数Lamé coefficient Hamiton varitionalprinciple哈密顿变分原理拉梅方程Lamé equation heat-conductionequation 热传导方程拉梅应变势Lamé strain potential Hellinger-Reissnervariational principle 赫林格-赖斯纳变分原理莱维方程Lévy equation Helmholtz theorem亥姆霍兹定理勒夫应变函数Love strain function homogeneity均匀性离散化discretization homogeneoushypothesis 均匀性假设连续性假设continuous hypothesis Hooke law胡克定律梁的纯弯曲pure bending of beam Hooke's law of volume体应变胡克定律莱维解Lévy solution Hu Haichang-Washizuvariational principle 胡海昌-鹫津久一郎变分原理面力surface force infinitesimaldeformation hypothesis小变形假设膜板membrane plate internal force内力米歇尔相容方程Michell consistencyequationinternal force of plate板的内力挠度deflection internal forces of thinplate 薄板内力内力internal force inverse method逆解法能量法energy method irrotationaldisplacement field无旋的位移场逆解法inverse method irrotational wave无旋波扭矩等效剪力equivalent shear forcetorsional momentisotropic hypothesis各向同性假设扭转torsion isotropy各向同性纳维解Navier solution Kelvin problem开尔文问题内能密度density of internalenergy Kirchhoff hypothesis基尔霍夫假设纽勃-巴博考维奇通解Neuber-Papkovichgeneral solutionKirsch solution基尔斯解答欧拉法Euler method Kroneckerdelta symbol克罗内克δ符号欧拉应变分量Euler strain components Lagrange function拉格朗日函数耦合coupling Lagrange method拉格朗日法膨胀波dilatation wave Lagrange straincomponents拉格朗日应变函数平衡微分方程differential equation ofequilibriumLamé coefficient拉梅系数平面波plane wave Lamé constants拉梅常数平面应力问题plane stress problem Lamé equation拉梅方程平面应变问题plane strain problem Lame slution拉梅解答泊松比Poisson ratio Lamé strain potential拉梅应变势普朗特比拟Prandtl analogy large deflection problem大挠度问题普朗特应力函数Prandtl stress function Lévy equation莱维方程切变模量shear modulus Lévy solution莱维解切应变shear strain linear elasticity线性弹性力学切应力shear stress linear expansioncoefficient线膨胀系数切应力互等定理reciprocal theorem ofshear stresslinear thermal elasticity线性热弹性力学切应力线shear stress lines local coding局部编码求和约定summation convention longitudinal wave纵波球面波spherical wave Love strain function勒夫应变函数曲线坐标curvilinear coordinates mathematical elasticity数学弹性力学热力学第一定律first law ofthermodynamicsmembrage analogy薄膜比拟热力学第二定律second law ofthermodynamicsmembrane plate膜板热弹性应变势thermal elastic strainpotentialmetric tensor度量张量热应力thermal stress Michell consistencyequation米歇尔相容方程热传导方程heat-conductionequation middle plane of plate板的中面瑞利波Rayleigh wave mixed boundarycondition 混合边界条件瑞利-里茨法Rayleigh-Ritz method mixed boundary-valueproblem混合边值问题三阶张量third order tensor multiply connected body多连体塞路蒂问题Cerruti problem Navier solution纳维解圣维南扭转函数Saint-Venant torsionfunction Neuber-Papkovichgeneral solution纽勃-巴博考维奇通解圣维南方程Saint-Venant equation no initial stresshypothesis 无初始应力的假设圣维南原理Saint-Venant principle nodal displacement结点位移数学弹性力学mathematical elasticity nodal force结点力弹性elasticity nodal load结点荷载弹性波elastic wave node结点弹性常数elastic constants normal strain线应变弹性对称面elastic symmetric plane normal strain正应变弹性力学的平面问题plane problem ofelasticitynormal stress正应力弹性力学的第一(第二、第三)类边值条件first(second,third)kindboundary-value problemof elasticityorthotropic elastic body正交各向异性弹性体弹性曲面的微分方程differential equation ofelastic surfaceperfect elastic body理想弹性体弹性体elastic body perfect elasticity完全弹性弹性体的虚功原理principle of virtual workfor elastic solidperfectly elastic body完全弹性体弹性主方向elastic principledirection perfectly elastichypothesis完全弹性的假设弹性矩阵elastic matrix permulation tensor置换张量体力body force physical equation物理方程体应变胡克定律Hooke's law of volume physically linerhypothesis 物理线性的假设弹性力学elasticity plane problem ofelasticity 弹性力学的平面问题弹性力学基本假定basic assumptions ofelasticityplane strain problem平面应变问题体积模量bulk modulus plane stress problem平面应力问题体积应力volumetric strain plane wave平面波体应变volumetric strain plate板完全弹性的假设perfectly elastichypothesisPoisson ratio泊松比完全弹性体perfectly elastic body potential energy ofexternal force外力势能位移边界条件displacement boundarycondition potential functiondecomposition ofdisplacement field位移场的势函数分解式位移变分方程diaplacement variationalequationPrandtl analogy普朗特比拟位移场的势函数分解式potential functiondecomposition ofdisplacement fieldPrandtl stress function普朗特应力函数位移分量diaplacementcomponentspressure tunnel压力隧道位移解法diaplacement method princile of minimumpotential energy极小势能原理位移的形函数diaplacement shapefunctionprincipal plane主平面无初始应力的假设no initial stresshypothesisprincipal shear stress主切应力无旋波irrotational wave principal strain主应变无旋的位移场irrotationaldisplacement fieldprincipal stress主应力物理线性的假设physically linerhypothesis principle direction ofstrain应变主方向外力external force principle direction ofstress应力主方向外力功work of external force principle of least work最小功原理外力势能potential energy ofexternal force principle of minimum complementary energy最小余能原理完全弹性perfect elasticity principle of minimumpotential energy最小势能原理位移diaplacement principle of virtual workfor elastic solid弹性体的虚功原理位移单值条件condition of single-value displacementprinciple plane of stress应力主面位移法diaplacement method pure bending of beam梁的纯弯曲位移模式displacement model quadratic surface ofstrain 应变二次曲面物理方程physical equation quadratic surface ofstress 应力二次曲面线膨胀系数linear expansioncoefficientRayleigh wave瑞利波线性弹性力学linear elasticity Rayleigh-Ritz method瑞利-里茨法线性热弹性力学linear thermal elasticity reciprocal theorem ofshear stress切应力互等定理相对位移张量relative displacementtensorreflection反射小变形假设infinitesimaldeformation hypothesisrefraction折射小挠度问题small deflection matrix relative displacementtensor相对位移张量形函数矩阵shape function matrix rigid body displacement刚体位移虚位移virtual displacement rotation components转动分量虚位移方程virtual displacementequationrotation vector转动矢量虚应变virtual strain Saint-Venant equation圣维南方程虚应力virtual stress Saint-Venant principle圣维南原理虚应力方程virtual stress equation Saint-Venant torsionfunction圣维南扭转函数线应变normal strain second law ofthermodynamics热力学第二定律相容方程consistency equation second order tensor二阶张量形变deformation semi-infinite body半空间体形变势能strain erergy semi-infinite plane半平面体形函数shape function semi-inverse method半逆解法虚功方程virtual work equation settlement沉陷哑指标dummy index shape function形函数杨氏模量Young modulus shape function matrix形函数矩阵一点的应变状态state of strain at a point shear modulus切变模量一点的应力状态state of stress at a point shear strain切应变以位移表示的平衡微分方程differential equation ofequilibrium in terms ofdisplacementshear stress切应力应变二次曲面quadratic surface ofstrain shear stress lines切应力线应变分量strain components simply connected body单连体应变能密度strain energy density single triangle series单三角级数解应变矩阵strain matrix small deflection matrix小挠度问题应变协调方程strain compatibilityequation spatial axisymmetryproblem空间轴对称问题应变余能密度density of comlementarystrain energyspherical wave球面波应变张量strain tensor state of strain at a point一点的应变状态应变张量不变量strain tensor invariant state of stress at a point一点的应力状态应变主方向principle direction ofstrain statically possible stress静力可能的应力应力变分方程stress variationalequation strain compatibilityequation应变协调方程应力边界条件stress boundarycondition strain components应变分量应力二次曲面quadratic surface ofstress strain energy density应变能密度应力分量stress components strain erergy形变势能应力环量stress circulation strain matrix应变矩阵应力解法stress method strain tensor应变张量应力矩阵stress matrix strain tensor invariant应变张量不变量应力协调方程equation of stresscompatibility stress boundarycondition应力边界条件应力张量stress tensor stress circulation应力环量应力张量不变量stress tensor invariant stress components应力分量应力主方向principle direction ofstress stress concentration ofholes孔口应力集中应力状态特征方程characteristic equationof stress statestress matrix应力矩阵应用弹性力学applied elasticity stress method应力解法有限元finite element stress method应力法圆柱体扭转torsion of circular bar stress tensor应力张量压力隧道pressure tunnel stress tensor invariant应力张量不变量应力法stress method stress variationalequation 应力变分方程应力主面principle plane of stress summation convention求和约定有限单元法finite element method superposition principle叠加原理折射refraction surface force面力整体等效结点荷载列阵global equivalent nodalload vectorsurface wave表层波整体结点位移列阵global nodaldisplacement vectorsymmetric tensor对称张量整体分析global analysis temperature change变温正应变normal strain theorem of uniquenesssolution解的唯一性定理正应力normal stress thermal elastic strainpotential热弹性应变势正交各向异性弹性体orthotropic elastic body thermal stress热应力置换张量permulation tensor thick plate厚板主应变principal strain thin plate薄板主应力principal stress third order tensor三阶张量主平面principal plane torsion扭转主切应力principal shear stress torsion of circular bar圆柱体扭转转动矢量rotation vector torsional rigidity扭转刚度转动分量rotation components total complementaryenergy总余能自由能密度free energy density total potential energy总势能自由指标free index transverse isotropicelastic body横观各向同性弹性体纵波longitudinal wave transverse wave横波总刚度矩阵global stiffness matrix unit tensor单位张量总势能total potential energy variationalmethod,energy method变分法(能量法)总余能total complementaryenergyvirtual displacement虚位移总体编码global coding virtual displacementequation虚位移方程最小功原理principle of least work virtual strain虚应变最小势能原理principle of minimumpotential energyvirtual stress虚应力最小余能原理principle of minimumcomplementary energyvirtual stress equation虚应力方程坐标曲面coordinate surface virtual work equation虚功方程坐标曲线coordinate curves volumetric strain体积应力整体分析global analysis volumetric strain体应变整体劲度矩阵global stiffness matrix work of external force外力功轴对称axisymmetry Young modulus杨氏模量。
利用神经网络预测木材径向导热系数
w ih h s n n l e r r lto i h y wa r p s d.T e g n r lz t n a i t ft e n t r s i r v d b e u a iai n.T e h c a o -i a ea i n h g l sp o o e n h e e aia i b l y o ewo k wa mp o i h o e yrg lr t z o h smu a in r s l h w d t a h e r l n t o k mo e i e n t i p p r i a a l f f r c si g t e b h v o f t e wo d i l t e u t s o e h t t e n u a e w r d l g v n i h s a e s c p b e o o e a t h e a i r o h o o s n
木材是 各 向异性 的天 然高 分子有 机 物 , 子 组成 与 结构 极 其 复 杂 , 致 理 论 上 研 究 导 热 系 数 的 困难 极 分 导 大, 因此长期 以来 , 国内外 从事 木材 热物 理性 质研 究 的科 研 人员 , 本 上都 是从 试验 上进 行 研究 , 试验 所得 基 将 的数据 进行 分析 后 提 出各 种 经 验 方 程 式 ( 铭 , 04 成 俊 卿 , 95 高 瑞 堂 ,9 5 K ln 16 ; 同英 等 , 林 20 ; 18 ; 18 ; o ,9 8 陈 h 2 0 )然 而 , 些经 验方 程式 都难 以从 本质 上揭 示 出木材 导热 系数 的普遍 规 律性 。近 年 来 , 03 , 这 有些 研 究 者从 组 成木材 的分 子结构 、 子分 子 的热运 动规 律 出发 , 用类 比推 理 的物理 力学 方法 , 导 出木 材 导 热 系数 的理 原 应 推 论 表 达式 , 人们 对木 材 热传导 内在机 理 的理 解深 入 了许 多 ( 使 陈瑞 英等 ,0 5 , 是还 存 在运 算 繁 琐 , 度 不 20 ) 但 精 高, 并且 未解 决木材 细 胞 内部热 流 的空 间分布 函数 问题 , 而极大 限制 了在 木材 干燥 实 践 中的应 用 。 从 神 经 网络技术 是模 拟人 脑 生物过 程 的智 能系统 , 无需 解析 系统 内部 的复杂 关 系 , 通过 对样 本 的训练 就 仅 可以建 立输 入与输 出 的映 射关 系 , 在研 究 复杂 系统建 模 的问题 上具 有 独 特 的优 越 性 。神 经 网络 技术 已广 泛
elastic metamaterial 中文 -回复
elastic metamaterial 中文-回复什么是弹性超材料(elastic metamaterial)?在物理学和工程领域中,超材料是指具有非常特殊的性质和能力的材料。
而弹性超材料则是一种特殊类型的超材料,其具有独特的弹性特性。
弹性超材料的研究和开发已经引起了广泛的关注,因为它们在结构设计和能量吸收方面具有巨大的潜力。
弹性超材料是通过改变材料的结构和几何形状来实现的。
与传统材料不同,弹性超材料的弹性行为不仅取决于其化学组成和晶体结构,还取决于其微观结构。
通过精心设计弹性超材料的内部结构,可以实现一系列特殊的力学性能,如负泊松比、负柯西应力关系等。
弹性超材料的设计和制备是一个复杂的过程,需要结合先进的制造工艺和模拟方法。
其中一种常用的制备方法是三维打印技术,它可以实现复杂几何形状的精确控制。
另外,计算机模拟也是设计弹性超材料的重要工具,可以预测材料的性能和行为。
弹性超材料在许多领域都有广泛的应用。
其中之一是结构设计。
通过使用弹性超材料,可以设计出具有特定机械性能的结构,例如轻质和高强度的材料。
这在航空航天和汽车工业中具有重要意义,可以减轻结构的重量并提高其性能。
另一个重要的应用领域是能量吸收。
弹性超材料的特殊结构可以有效地吸收冲击和振动能量,从而降低结构的损伤和噪音。
这对于建筑和交通工程领域的抗震设计和减振控制非常重要。
此外,弹性超材料还有潜力用于声学和光学领域。
通过调整材料的结构和波导特性,可以实现超常的声波和光学性能。
这在声学隔声、声波传感器和光学器件等方面都具有重要的应用前景。
然而,弹性超材料的研究和开发仍然面临一些挑战。
首先,制备复杂结构的弹性超材料仍然是一项技术难题。
其次,弹性超材料的性能和行为的预测仍然需要更加精确和可靠的计算模型。
总之,弹性超材料作为一种具有独特弹性特性的材料,具有广泛的应用潜力。
通过精确设计和制备,弹性超材料可以在结构设计和能量吸收等领域发挥重要作用。
然而,要实现其潜力,还需要进一步的研究和发展。
material attributes ue 材质函数
material attributes ue 材质函数
材质函数是指一种数学函数,用于描述材质表面的特性和外观。
它通常用来计算材质的光照反射、漫反射、镜面反射、折射等属性。
材质函数可以包含多个参数,用于调节材质的不同属性。
常见的材质函数包括:
1. 环境光函数:用于计算材质表面在环境光的照射下的反射率。
环境光函数通常可以考虑材质的颜色、透明度等因素。
2. 漫反射函数:用于计算材质表面在光源照射下的反射率,根据光源的位置和方向来确定光照的强度。
漫反射函数通常可以考虑材质的颜色和纹理等因素。
3. 镜面反射函数:用于计算材质表面在光源照射下的镜面反射效果,根据光源的位置和观察者的位置来确定反射光的强度。
镜面反射函数通常可以考虑材质的反射系数和光源的亮度等因素。
4. 折射函数:用于计算材质表面在光线穿过时的折射效果,根据光线的入射角度和折射率来确定折射光的强度。
折射函数通常可以考虑材质的透明度和折射率等因素。
材质函数的具体形式和参数取值可以根据实际需求进行定义和调整。
不同的材质函数可以使渲染引擎在进行光照计算时更加真实地模拟不同材质表面的光学效果。
elastic metamaterial 中文 -回复
elastic metamaterial 中文-回复什么是弹性超材料(Elastic Metamaterial)弹性超材料(Elastic Metamaterial)是一种具有特殊物理性质的材料,通常由具有重复排列的微结构组成。
它们在材料的尺度上具有特定的重点设计,以实现特定的力学效应。
这些结构可以在实验室中制造,并可以用于在不同行业中实现许多新颖的功能。
弹性超材料的设计为了设计弹性超材料,我们首先需要了解微结构在宏观尺度上的行为。
微结构的形状、大小和排列方式将决定宏观材料的性能。
弹性超材料的设计要考虑以下几个方面:1. 微结构的形状:微结构的形状是设计弹性超材料的首要考虑因素之一。
不同的形状可以导致材料具有不同的弹性特性。
例如,一些具有蜂窝状结构的弹性超材料可以具有异于常规材料的吸能性能。
2. 微结构的大小:微结构的大小也会直接影响弹性超材料的性质。
较小的微结构可以导致材料具有更高的刚度和强度,而较大的微结构则可能产生更好的吸能性能。
因此,在设计过程中需要找到一个平衡点,以确保材料具有所需的力学性能。
3. 微结构的排列方式:微结构的排列方式将决定材料的各向同性或各向异性特性。
通过不同的排列方式,可以实现材料在不同的方向上具有截然不同的刚度和强度。
这种特性使得弹性超材料在结构设计和功能定制方面具有广泛的应用潜力。
应用领域弹性超材料具有广泛的应用潜力,已被用于许多不同的领域。
以下是其中的一些例子:1. 振动和声学控制:弹性超材料可以通过调整微结构的形状和排列方式来控制声波和振动波的传播。
这使得它们在噪音控制、隔音和隔振等方面具有潜在应用。
2. 柔性电子学:弹性超材料可以在电子设备中作为柔性基板使用,以实现可折叠和可拉伸的电子产品。
这使得它们在可穿戴设备、柔性传感器和人机交互技术等领域具有潜在应用。
3. 基础设施工程:弹性超材料可以用于结构健康监测和振动控制,以增强建筑物和桥梁等基础设施的安全性和舒适性。
es 量子点 -回复
es 量子点-回复我们来一起探索一下什么是量子点吧。
量子点是一种微观尺寸的半导体结构,可以用于电子学和光学应用。
它具有独特的特性,使得它在现代科技中扮演着重要的角色。
首先,我们需要了解什么是量子力学。
量子力学是研究微观世界的物理学理论,它描述了微观粒子的行为和性质。
传统的经典物理学无法准确描述微观粒子的行为,而量子力学成功地填补了这个空白。
在量子力学中,能量和动量是离散化的,也就是说它们只能存在于特定的值上。
这种离散化现象被称为量子化,由此引出了量子点的概念。
量子点是一种纳米尺寸的半导体晶体,通常由几十到几百个原子组成。
它们的形状可以是球形、柱形或是其他形状。
量子点的尺寸非常小,通常在2到10纳米之间,这使得它们具有许多特殊的性质。
其中一个最重要的特性是量子点的能量级别。
由于其尺寸非常小,电子在量子点中的能级会被限制在一个离散的范围内。
这种限制使得量子点的能级间隔非常大,而且这些能级的分布与传统的连续能带结构截然不同。
因此,量子点可以用来实现一些特殊的电子学和光学应用。
首先,由于量子点能级间隔的离散性,它们可以用作高精度的能量滤波器。
通过控制量子点的尺寸和形状,可以精确地调节它们吸收和发射光的波长。
这使得量子点在显示、照明和传感器等领域中有着广泛的应用。
其次,量子点还可以用于构建高效的太阳能电池。
传统的太阳能电池只能利用一部分光谱中的能量,而量子点太阳能电池可以通过调整量子点的大小和组合来吸收更多不同波长的光。
这种特性使得量子点太阳能电池在将阳光转化为电能方面更加高效。
此外,量子点还可以用于量子计算和量子通信领域。
量子计算是一种基于量子力学原理的计算模型,它的潜力要远远超过传统的计算技术。
量子点可以用作量子比特的载体,通过在量子点上控制电子态的叠加和干涉来实现量子计算。
同样地,量子点也可以用于构建量子通信系统,其中信息通过量子态的传输来保证安全性和隐私性。
总的来说,量子点是一种具有特殊性质和潜力的纳米尺寸半导体结构。
cst反演时用的材料曲线
cst反演时用的材料曲线
在电磁场数值模拟中,CST(Computer Simulation Technology)是一种常用的工具,用于设计和分析微波和射频设备。
在CST中进行反演(inversion)时,通常需要使用材料曲线(Material Curve)。
材料曲线是一种描述材料电磁特性的图表,通常是频率与相对电磁参数之间的关系。
主要包括:
1.介电常数(Dielectric Constant):描述材料对电场的响应程度。
介电常数是一个与频率相关的复数。
2.磁导率(Permeability):描述材料对磁场的响应程度。
磁导率同样是一个与频率相关的复数。
这些参数通常随着频率的变化而变化,因此材料曲线是一个在频域上的图表。
在CST中,用户可以根据所选材料的实际特性,输入或导入相应的材料曲线,以更准确地模拟实际材料在电磁场中的行为。
反演过程中,通过比较模拟结果与实测数据,可以调整材料曲线的参数,使模拟结果更符合实际情况。
这种调整的过程通常是一个优化问题,目标是找到最佳的材料参数,使模拟结果与实测数据最为吻合。
总体而言,CST中的材料曲线用于描述仿真中所用材料的电磁特性,反演时通过调整这些曲线的参数以匹配实测数据,从而获得更准确的仿真结果。
双层单晶mote2费中心反演对称
双层单晶mote2费中心反演对称双层单晶Mote2费中心反演对称在材料科学领域,研究人员通过设计新型材料,以满足不同领域的需求。
其中,双层单晶Mote2是一种备受关注的材料,具有广泛的应用潜力。
双层单晶Mote2材料具有费中心反演对称性,这一特性使得它在光电器件和量子计算等领域有着重要的应用价值。
让我们来了解一下双层单晶Mote2材料的基本特性。
双层单晶Mote2由两层Mote2单晶材料叠加而成,其中M代表过渡金属,如钼(Mo)或钨(W),而Te代表硫(S)或硒(Se)。
这种结构使得双层单晶Mote2材料具有特殊的电子能带结构。
由于其层间耦合较弱,双层单晶Mote2材料表现出了很多独特的物理性质。
费中心反演对称性是双层单晶Mote2材料的一个重要特征。
费中心反演对称性意味着材料的晶格结构在中心反演操作下保持不变。
中心反演操作是指将坐标原点移动到材料的中心位置,并取反。
这个对称性是由于双层单晶Mote2材料的晶格结构中每个层都具有反演对称性。
这种对称性使得双层单晶Mote2材料的电子能带在费米能级附近出现了一些特殊的性质。
双层单晶Mote2材料的费中心反演对称性对其光电器件的性能有着重要的影响。
由于费中心反演对称性,双层单晶Mote2材料具有零磁场的狄拉克锥结构。
这种特殊的能带结构使得双层单晶Mote2材料在光电转换方面表现出优异的性能。
例如,在光电探测器中,双层单晶Mote2材料可以实现高效的光电转换,将光能转化为电能。
这使得双层单晶Mote2材料在太阳能电池和光通信等领域有着广阔的应用前景。
双层单晶Mote2材料的费中心反演对称性还对其量子计算具有重要意义。
量子计算是一种基于量子力学原理的新型计算方式,具有高度的并行性和计算效率。
双层单晶Mote2材料的费中心反演对称性使得其能够实现量子受限的电子输运,为量子计算提供了一种新的实现方式。
因此,双层单晶Mote2材料在量子计算器件的研究中备受关注。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
arXiv:math-ph/0507055v1 20 Jul 2005
A Majumdar† ‡ , JM Robbins† & M Zyskin† ∗ School of Mathematics University of Bristol, University Walk, Bristol BS8 1TW, UK and Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS12 6QZ, UK February 4, 2008
Abstract Nematic liquid crystals in a polyhedral domain, a prototype for bistable displays, may be described by a unit-vector field subject to tangent boundary conditions. Here we consider the case of a rectangular prism. For configurations with reflection-symmetric topologies, we derive a new lower bound for the one-constant elastic energy. For certain topologies, called conformal and anticonformal, the lower bound agrees with a previous result. For the remaining topologies, called nonconformal, the new bound is an improvement. For nonconformal topologies we derive an upper bound, which differs from the lower bound by a factor depending only on the aspect ratios of the prism.
Байду номын сангаас
∗
a.majumdar@, j.robbins@, m.zyskin@
1
1
Introduction
Present-day liquid crystal displays (eg twisted nematic) are based on monostable cells, wherein, in the absence of external fields, the orientations of the liquid crystal molecules assume a single (spatially varying) mean configuration which is effectively transparent to incident polarised light. To produce and maintain optical contrast, voltage pulses, which reorient the molecules, must be continually applied. There is considerable interest in developing bistable cells, which support two (and possibly more) stable liquid crystal configurations with contrasting optical properties. In bistable cells, power is needed only to switch between the two states. One mechanism for engendering bistability is the cell geometry [1, 2, 3]; nematic liquid crystals in prototype cells with polyhedral geometrical features (eg, ridges, or posts) are found to support multiple configurations. As a simple model for such systems, we consider the mean local orientation of a nematic liquid crystal in a polyhedral domain as described by a director field n subject to suitable boundary conditions. The situation we consider, strong azimuthal anchoring, is described by tangent boundary conditions. Tangent boundary conditions require that, on a face of the domain, n lies tangent to the face, but is otherwise unconstrained. This implies that on the edges of the polyhedron, n is parallel to the edges, and therefore is necessarily discontinuous at the vertices. We restrict our attention to director fields which are continuous away from the vertices (ie, as continuous as possible). In this case we can unambiguously assign an orientation to the director (as the domain is simply connected), and regard n as a unit-vector field. In [4], we give a complete topological classification of continuous tangent unit-vector fields in a convex polyhedron. An extension to the nonconvex and periodic cases, along with a general procedure for analysing a large class of such classification problems, is given in [5]. In [6] we obtain a lower bound for the one-constant energy in terms of certain topological invariants, the trapped areas. The case of a rectangular prism is considered in [7], where we also derive an upper bound for the equilibrium (infimum) energy for a large family of topologies called reflection-symmetric conformal and anticonformal. For these topologies, the ratio of the upper and lower bounds depends only on the aspect ratios of the prism. We also show that topologically nontrivial behaviour of configurations close to equilibrium may concentrate near the edges, or may be smoothly distributed, depending on the aspect ratios. In this paper we consider again the case of a rectangular prism, and improve and extend the previous results of [7]. Specifically, we derive a new lower bound for the energy of reflection-symmetric topologies, expressed in 2
terms of different invariants, namely the wrapping numbers. In general, the new lower bound is an improvement on the previous one. We also extend the analysis to all reflection-symmetric topologies, not just conformal and anticonformal ones. While liquid crystal applications are a principal motivation for this work, the problems are also of intrinsic mathematical interest. Minimizers of the one-constant energy may be regarded as harmonic maps from a Euclidean polyhedron to the two-sphere S 2 . The study of harmonic maps between Riemannian manifolds is an extensive field, and connections to problems in liquid crystals are well known [8]. For manifolds with boundary, the regularity of minimisers for the Dirichlet problem for harmonic maps with sufficiently smooth (C 2 ) boundary and Dirichlet data are investigated in [9]. However, less appears to be known about the case of manifolds with Lipschitz boundary, eg domains with corners, and for natural, eg tangent boundary conditions. There are recent strong results on the existence, uniqueness and regularity of minimisers for the Dirichlet problem for harmonic maps of fixed homotopy type between Riemannian polyhedra for target spaces of negative curvature [10]. However, it appears to be much more difficult to obtain corresponding results for target spaces of positive curvature, eg S 2 , which we encounter in liquid crystals problems. The paper is organised as follows. The topological classification of tangent unit-vector fields in a rectangular prism is reviewed in Section 2. We introduce the reflection-symmetric topologies, which are characterised by certain invariants – the edge signs e, kink numbers k and trapped area Ω – associated with one of the prism vertices. In Section 3 we derive a lower bound for the one-constant elastic energy. This turns out to depend on the absolute values of the wrapping numbers (which may be expressed in terms of e, k and Ω). For certain topologies, called conformal and anticonformal, for which the wrapping numbers all have the same sign, the lower bound can be expressed in terms of the trapped area alone, and coincides with the result previously derived in [6, 7]. Conformal and anticonformal topologies are characterised in Section 4, where it is shown that these are precisely the topologies which have conformal and anticonformal representatives of the type considered in [7]. In Section 5 we introduce representative configurations for nonconformal topologies, and derive from them an upper bound for the elastic energy. This differs from the lower bound of Section 2 by a factor depending only on the aspect ratios. Appendix A contains a derivation of a formula for the kink numbers of conformal and anticonformal configurations.