高三数学作抛物线的切线

合集下载

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.(本小题满分12分)已知椭圆:的焦点分别为、,点在椭圆上,满足,.(Ⅰ)求椭圆的方程;(Ⅱ)已知点,试探究是否存在直线与椭圆交于、两点,且使得?若存在,求出的取值范围;若不存在,请说明理由.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)本题求椭圆的方程只需确定一个未知数,建立一个方程即可,利用椭圆定义及焦点三角形,结合余弦定理可解:由,得,由余弦定理得,(Ⅱ)表明点在线段DE中垂线上,利用韦达定理列等量关系,求出与的关系,再根据判别式大于零,可解出的取值范围试题解析:(1)由,得,由余弦定理得,∴所求的方程为.(2)假设存在直线满足题设,设,将代入并整理得,由,得①又设中点为,,得②将②代入①得化简得,解得或所以存在直线,使得,此时的取值范围为.【考点】直线与椭圆位置关系2.抛物线:的准线的方程是____;以的焦点为圆心,且与直线相切的圆的方程是____.【答案】,.【解析】分析题意可知,∴准线方程为,焦点为,半径,∴所求圆方程为.【考点】1.抛物线的标准方程;2.直线与圆的位置关系.3.如图,为外一点,是切线,为切点,割线与相交于点,,且,为线段的中点,的延长线交于点,若,则__________;_________.【答案】,.【解析】由切割线定理,∴,,再由相交弦定理,∵是的中点,∴,,则.【考点】1.切割线定理;2.相交弦定理.4.椭圆的左焦点为,若关于直线的对称点是椭圆上的点,则椭圆的离心率为()A.B.C.D.【答案】D.【解析】设关于直线的对称点的坐标为,则,所以,,将其代入椭圆方程可得,化简可得,解得,故应选.【考点】1、椭圆的定义;2、椭圆的简单几何性质;5.如图所示,过⊙O外一点A作一条直线与⊙O交于C,D两点,AB切⊙O于B,弦MN过CD的中点P.已知AC=4,AB=6,则MP·NP= .【答案】【解析】由已知及圆的弦切割线定理得,,又知点P是CD的中点,所以,再由相交弦定理得;故答案为:.【考点】圆的性质.6.已知椭圆C:,为左右焦点,点在椭圆C上,△的重心为,内心为,且有(为实数),则椭圆方程为()A.B.C.D.【答案】A【解析】设点距轴的距离为,因为IG∥,则点距轴的距离为,连接,则,,所以,所以,所以椭圆方程为.【考点】椭圆的标准方程.7.已知双曲线(,)的焦距为,若、、顺次组成一个等比数列,则其离心率为.【答案】【解析】根据题意,有,即,式子两边同时除以,得,结合双曲线的离心率的取值范围,可求得.【考点】双曲线的离心率.8.设椭圆E:的右顶点为A、右焦点为F,B为椭圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC,则椭圆E的离心率是.【答案】【解析】如图,设AC中点为M,连接OM,则OM为的中位线,于是,且,即.【考点】椭圆的离心率.9.点M(χ,)是抛物线χ2=2P(P>0)上一点,若点M到该抛物线的焦点的距离为2,则点M到坐标原点的距离为()A.B.C.D.【答案】D【解析】抛物线()的准线方程是,因为点到该抛物线的焦点的距离为,所以,解得:,所以该抛物线的方程是,因为点是抛物线上的一点,所以,所以点到坐标原点的距离是,故选D.【考点】1、抛物线的定义;2、抛物线的标准方程.10.已知抛物线的焦点为,准线为,过点的直线交抛物线于两点,过点作准线的垂线,垂足为,当点的坐标为时,为正三角形,则此时的面积为()A.B.C.D.【答案】A【解析】如图所示,过点作的垂线,垂足为,则为的中点.因为点的坐标为,所以,,所以,即,所以抛物线的方程为,此时,,所以直线的方程为,将其代入抛物线方程可得,,解得或,所以或,所以的面积为,故应选.【考点】1、抛物线的定义;2、抛物线的简单几何性质.【思路点睛】本题考查了抛物线的定义、标准方程及其简单的几何性质的应用,属中档题.其解题的一般思路为:首先过点作的垂线,垂足为,则为的中点,然后利用点的坐标为,可求出,进而得出抛物线的方程,从而得出直线的方程,最后将其与抛物线的方程联立求出点的坐标,即可求出的面积.其解题的关键是求出抛物线的方程和直线的方程.11.已知、、c为正数,(1)若直线2x-(b-3)y+6=0与直线bx+ay-5=0互相垂直,试求的最小值;(2)求证:.【答案】(1)25;(2)证明见解析.【解析】(1)先利用两直线垂直得到关于正数的关系,再利用基本不等式进行求解;(2)先对不等式左边的每个括号进行因式分解,再利用基本不等式进行证明.试题解析:(1)由已知,有:即:、为正数,当且仅当时取等号,此时:故当时,的最小值是25.(2)、、c为正数,【考点】基本不等式.12.如图,已知抛物线的焦点为,椭圆的中心在原点,为其右焦点,点为曲线和在第一象限的交点,且.(1)求椭圆的标准方程;(2)设为抛物线上的两个动点,且使得线段的中点在直线上,为定点,求面积的最大值.【答案】(1)椭圆的标准方程为;(2)面积的最大值为.【解析】(1)由已知得,跟据抛物线定义,得,所以点;据椭圆定义,得.所以椭圆的标准方式是.(2)因为为线段的中点,得直线的方程为;联立,得,由弦长公式和点到直线的距离,得.再根据函数的单调性得面积的最大值为.试题解析:(1)设椭圆的方程为,半焦距为.由已知,点,则.设点,据抛物线定义,得.由已知,,则.从而,所以点.设点为椭圆的左焦点,则,.据椭圆定义,得,则.从而,所以椭圆的标准方式是.(2)设点,,,则.两式相减,得,即.因为为线段的中点,则.所以直线的斜率.从而直线的方程为,即.联立,得,则.所以.设点到直线的距离为,则.所以.由,得.令,则.设,则.由,得.从而在上是增函数,在上是减函数,所以,故面积的最大值为.【考点】1、抛物线的定义;2、椭圆的方程;3、最值问题.【方法点睛】本题考查抛物线的定义和简单几何性质、待定系数法求椭圆的标准方程、直线和椭圆相交中的有关中点弦的问题,综合性强,属于难题;对于直线和圆锥曲线相交中的中点弦问题,解决此类题目的最有效方法是点差法,两式直接相减就可以表示出斜率;而第二问中面积公式求出后,函数单调性的研究更是加深了此题的难度,运算量也比较大,不容易拿高分.13.已知抛物线()的焦点与双曲线的右焦点重合,抛物线的准线与轴的交点为,点在抛物线上且,则点的横坐标为()A.B.C.D.【答案】B【解析】抛物线的焦点为,准线为.双曲线的右焦点为,所以,即,即,过作准线的垂线,垂足为,则,即,设,则代入,解得.故应选B.【考点】圆锥曲线的性质.【思路点睛】根据双曲线得出其右焦点坐标,可知抛物线的焦点坐标,从而得到抛物线的方程和准线方程,进而可求得的坐标,设,过点向准线作垂线,则,根据及,进而可求得点坐标.14.已知抛物线:,过焦点F的直线与抛物线交于两点(在第一象限).(1)当时,求直线的方程;(2)过点作抛物线的切线与圆交于不同的两点,设到的距离为,求的取值范围.【答案】(1);(2)【解析】(1)因为,故,设,,则可得则,由此可求直线的方程;(2)由于,因此故切线的方程为,化简得,则圆心(0,-1)到的距离为,且,故则,则点F到距离,则,然后再根据基本不等式即可求出结果.试题解析:(1)因为,故设,,则故则因此直线的方程为;(2)由于,因此故切线的方程为,化简得则圆心(0,-1)到的距离为,且,故则,则点F到距离则今则,故.【考点】1.直线与抛物线的位置关系;2.点到直线的距离公式;2.基本不等式.15.在直角坐标系中,直线的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为.(1)求圆C的直角坐标方程;(2)设圆C与直线将于点、,若点的坐标为,求的值.【答案】(1);(2).【解析】(1)极坐标与直角坐标之间的关系是,由此可实现极坐标方程与直角坐标方程的转化;(2)由直线参数方程的标准形式(即参数的几何意义),直线过点,直线上的标准参数方程为,把它代入圆的方程,其解满足,.试题解析:(1)由得,又,则有,配方得圆的标准方程为.(2)直线的普通方程为,点在直线上的标准参数方程为,代入圆方程得:.设对应的参数分别为,则,,于是.【考点】极坐标方程与直角坐标方程的互化,直线参数方程的应用.16.如图,在平面直角坐标系中,已知椭圆:的离心率,左顶点为,过点作斜率为的直线交椭圆于点,交轴于点.(1)求椭圆的方程;(2)已知为的中点,是否存在定点,对于任意的都有,若存在,求出点的坐标;若不存在说明理由;(3)若过点作直线的平行线交椭圆于点,求的最小值.【答案】(1);(2);(3)【解析】(1)确定椭圆标准方程,只需两个独立条件即可:一个是左顶点为,所以,另一个是,所以,(2)实质利用斜率k表示点,P ,E,假设存在定点,使得,因此,即恒成立,从而即(3)利用斜率k表示点M,因此,本题思路简单,但运算量较大.试题解析:(1)因为左顶点为,所以,又,所以又因为,所以椭圆C的标准方程为.(2)直线的方程为,由消元得,.化简得,,所以,.当时,,所以.因为点为的中点,所以的坐标为,则.直线的方程为,令,得点坐标为,假设存在定点,使得,则,即恒成立,所以恒成立,所以即因此定点的坐标为.(3)因为,所以的方程可设为,由得点的横坐标为,由,得,当且仅当即时取等号,所以当时,的最小值为.【考点】直线与椭圆位置关系17.选修4-4:坐标系与参数方程:在直角坐标系中,直线的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为。

河北省衡水中学2023届高三上学期期末数学试题(含答案解析)

河北省衡水中学2023届高三上学期期末数学试题(含答案解析)

河北省衡水中学2023届高三上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若集合3(1)(4)ln log (1)x x M x y x ⎧⎫--==⎨⎬-⎩⎭∣,{}2R 4N yy =>∣ð,则()A .2M N∈⋂B .{[2,2](4,)}M N aa ∞⋃=∈-⋃+∣C .{(,2)(2,)}N aa ∞∞=∈-⋃+∣D .()R {[2,1]}M N aa ⋂=∈-∣ð2.若i 1|1|i -=--z z ,则||z z -=()A .1BC .2D .123.在△ABC 中,O 为重心,D 为BC 边上近C 点四等分点,DO mAB nAC =+uuu r uu u r uuu r,则m+n =()A .13B .13-C .53D .53-4.一个灯罩可看作侧面有布料的圆台,在原形态下测得的布料最短宽度为13,将其压扁变为圆环,测得布料最短宽度为5,则灯罩占空间最小为()A .175πB .325π3C .100πD .不存在5.若六位老师前去某三位学生家中辅导,每一位学生至少有一位老师辅导,每一位老师都要前去辅导且仅能辅导一位同学,由于就近考虑,甲老师不去辅导同学1,则有()种安排方法A .335B .100C .360D .3406.已知函数()πsin ,(0)6f x x ωω⎛⎫=+> ⎪⎝⎭将其向右平移π3个单位长度后得到()g x ,若()g x 在π,π3⎡⎤⎢⎥⎣⎦上有三个极大值点,则()f x 一定满足的单调递增区间为()A .4π2π,5757⎡⎤-⎢⎥⎣⎦B .4π2π,3939⎡⎤-⎢⎥⎣⎦C .3π5π,1313⎡⎤⎢⎥⎣⎦D .5π7π,1919⎡⎤⎢⎣⎦7.已知0.99e 0.01100100e ,ln ,ln ln (0.99)9999a b a c c c -⎛⎫===-≠ ⎪⎝⎭,则()A . 1.01b a c >>>B . 1.01b a c >>>C . 1.01a b c>>>D . 1.01a b c >>>8.若已知函数()e x af x +=,()lng x x ka =+,()0,a ∞∃∈+,若函数()()()F x f x g x =-存在零点(参考数据ln 20.70≈),则k 的取值范围充分不必要条件为()A .()0.7 1.3e ,eB .)0.71,e⎡⎣C .)2.23.1e ,e ⎡⎣D .()1.32.2e ,e 二、多选题9.在正方体1111ABCD A B C D -中,2,,,AB E F G =分别为棱1,,BB AB BC 中点,H 为1CC 近C 三等分点,P 在面11AA D D 上运动,则()A .1BC ∥平面1D FGB .若(,R)GP GF GH μϕμϕ=+∈uu u r uu u r uuu r,则C 点到平面PBH 的距离与P 点位置有关C .1BD EG⊥D .若(,R)GP GF GH μϕμϕ=+∈uu u r uu u r uuu r ,则P 10.若数列{}n a 有2142n n n a a a ++=-,n S 为{}2n a +前n 项积,{}n b 有112n n n n b b b b ++-=,则()A .(){}log log 2b a n a ⎡⎤+⎣⎦为等差数列(,0a b >)B .可能()()21112n n n S a -=-+C .1n b ⎧⎫⎨⎬⎩⎭为等差数列D .{}n b 第n 项可能与n 无关11.已知抛物线C :22x py =,过点P (0,p )直线{,}l C A B ⋂=,AB 中点为1Q ,过A ,B 两点作抛物线的切线121221,,,l l l l Q l y ⋂=⋂轴=N ,抛物线准线与2Q P 交于M ,下列说法正确的是()A .21Q Q x ⊥轴B .O 为PN 中点C .22AQ BQ ⊥D .M 为2PQ 近2Q 四等分点12.已知奇函数()f x ,x ∈R ,且()()πf x f x =-,当π0,2x ⎡⎫∈⎪⎢⎣⎭时,()()cos sin 0f x x f x x '+>,当π2x →时,()2cos f x x →,下列说法正确的是()A .()f x 是周期为2π的函数B .()cos f x x 是最小正周期为2π的函数C .()cos f x x关于π,02⎛⎫ ⎪⎝⎭中心对称D .直线y kx =与()cos f x x若有3个交点,则4444,,3553k ππππ⎛⎤⎡⎫∈--⋃ ⎪⎥⎢⎝⎦⎣⎭三、填空题13.6212x x ⎛⎫-+ ⎪⎝⎭中常数项是_________.(写出数字)14.若⊙C :()()221x a y b -+-=,⊙D :()()22684x y -+-=,M ,N 分别为⊙C ,⊙D上一动点,MN 最小值为4,则34a b +取值范围为_________.15.已知双曲线22221x y a b-=,1F ,2F 分别为双曲线左右焦点,2F 作斜率为a b -的直线交by x a=于点A ,连接1AF 交双曲线于点B ,若21AB AF BF ==,则双曲线的离心率_________.16.已知函数()ln cos f x x kx x =+-,1212(0,,,)x x x x ∀∈∞≠+,使得()()12123f x f x x x ->-,k 的取值范围为_________.四、解答题17.已知O 为△ABC 外心,S 为△ABC 面积,r 为⊙O 半径,且满足()2222342cos cos 23CB AO r A B a S⋅+---=uu r uuu r (1)求∠A 大小;(2)若D 为BC 上近C 三等分点(即13CD BC =),且AD =S 最大值.18.张老师在2022年市统测后统计了1班和3班的数学成绩如下图所示22()()()()()n ad bc K a b b d c d a c -=++++,n a b c d =+++,()20P K k ≥0.0500.0250.0100.0050.0010k 3.8415.0246.6357.87910.828(1)根据卡方独立进行检验,说明是否有99.9%的把握数学成绩与班级有关;(2)现在根据分层抽样原理,从1班和3班中抽取10人,再让数学评价优秀的同学辅导一位数学评价一般的同学,每个人必有一人辅异,求在抽到甲辅导乙的情况下丙辅导丁的概率.(3)以频率估计概率,若从全年级中随机抽取3人,求至少抽到一人数学成绩为优秀的概率.(4)以频率估计概率,若从三班中随机抽取8人,求抽到x 人数学成绩为优秀的分布列(列出通式即可)及期望()E x ,并说明x 取何值时概率最大.19.在△ABC 中,π3BAC ∠=,A 、B 、C 、D 四点共球,R (已知)为球半径,O 为球心,O '为ABC 外接圆圆心,r (未知)为⊙O '半径.(1)求()max A BCD V -和此时O 到面ABC 距离h ;(2)在()max A BCD V -的条件下,面OAB (可以无限延伸)上是否存在一点K ,使得KC ⊥平面OAB ?若存在,求出K 点距OO '距离1d 和K 到面ABC 距离2d ,若不存在请给出理由.20.在高中的数学课上,张老师教会了我们用如下方法求解数列的前n 项和:形如()1212nn a n ⎛⎫=+ ⎪⎝⎭的数列,我们可以错位相减的方法对其进行求和;形如()()122121nn nn b +=++的数列,我们可以使用裂项相消的方法对其进行求和.李华同学在思考错位相减和裂项相消后的本质后对其进行如下思考:错位相减:设11(1)n n a a q q -=≠,()()1212111,n nn n n S a a a a q q qS a q q q -=++⋅⋅⋅+=++⋅⋅⋅+=+⋅⋅⋅+()()()()11111(1)111n n n n n n q S a q q q a q q q a q --⎡⎤-=+⋅⋅⋅+--⋅⋅⋅-=+⋅⋅⋅+-+⋅⋅⋅+=-⎣⎦111n n q S a q -=-综上:当中间项可以相消时,可将求解n S 的问题用错位相减化简裂项相消:设1111111(1)11n n n k k k n n n n n n n ++=-==-⇒-=-⇒=+++1n n n b k k 或1n k n ⎧⎫-⎨⎬⎩⎭为公比为1的等比数列;①当1n k n =时,111n b n n =-+②当1n k n ⎧⎫-⎨⎬⎩⎭为公比为1的等比数列时,()11111,1n n k k b n n n =++=-+;故可为简便计算省去②的讨论,111n n nS k k n +=-=+综上:可将求解n S 的问题用裂项相消转化为求解n k 的问题你看了他的思考后虽觉得这是“废话文学”,但是你立刻脑子里灵光一闪,回到座位上开始写下了这三个问题:(1)用错位相减的方法“温故”张老师课堂上举的例子,求解数列{n a }前n 项和n S ;(2)用裂项相消的方法“知新”张老师课堂上举的例子,求解数列{n a }前n 项和n S ;(3)融会贯通,求证:()21232nn c n n ⎛⎫=++ ⎪⎝⎭前n 项和n T 满18n n S T +<.请基于李华同学的思考做出解答,并写出裂项具体过程.21.在平面直角坐标系中,12,F F 分别为(1,0)-,(1,0),⊙()222:116x y F -+=,E 为⊙2F 上一点,C 为线段2EF 上一点,⊙C 过1F 和E .(1)求C 点轨迹方程,并判断轨迹形状;(2)过12,F F 两直线12,l l 交C 分别于A 、B 和M 、N ,P ,Q 分别为AB 和MN 中点,求P 、Q 轨迹方程,并判断轨迹形状;(3)在(2)的条件下,若PQ //x 轴,12l l D ⋂=,求D 点轨迹方程,并判断轨迹形状.22.已知函数()11e ln-=-+kx f x x kx x.(1)求证:()0f x ≥;(2)若()0,x ∀∈+∞,都()211e ≥+f x ,求k 满足的取值范围.参考答案:1.B【分析】先求出集合,M N ,然后再逐个分析判断即可.【详解】由33(1)(4)0log (1)log (1)0x x x x --⎧>⎪-⎨⎪-≠⎩,得3(1)(4)log (1)011x x x x --->⎧⎨-≠⎩,解得>4x 或12x <<,所以{4M x x =>或}12x <<,因为{}2R 4N yy =>∣ð,所以{}{}2422N y y y y =≤=-≤≤,对于A ,因为(1,2)M N = ,所以2M N ∉⋂,所以A 错误,对于B ,因为{4M x x =>或}12x <<,{}22N y y =-≤≤,所以[2,2](4,)M N =-+∞ ,所以B 正确,对于C ,因为{}22N y y =-≤≤,所以C 错误,对于D ,因为{4M x x =>或}12x <<,所以R (,1][2,4]M =-∞ ð,因为{}22N y y =-≤≤,所以(){}R [2,1]2M N ⋂=-ðU ,所以D 错误,故选:B 2.A【分析】设i z a b =+,利用复数相等求出a b ,,即可求解.【详解】设i z a b =+,(,R,i a b ∈为虚数单位).因为i 1|1|i -=--z z ,所以()1i=1a b +--,所以11a b =⎧⎪⎨-=⎪⎩,解得:112a b =⎧⎪⎨=⎪⎩.所以111i,1i 22z z =+=-,所以||i 1z z -==故选:A 3.B【分析】连接AO 延长交BC 于E 点,则E 点为BC 的中点,连接AD OD 、,利用向量平面基本定理表示DO可得答案.【详解】连接AO 延长交BC 于E 点,则E 点为BC 的中点,连接AD OD 、,所以()23213432=++=-+⨯+=+DB BA AE CB AB AB A DO DA CAO uuu r uu u r uuu r uu u r uu r uu u r uu r uu u r uu u r uuu r ()()3115431212=--++=-AB AC AB AB AC AB AC uu u r uuu r uu u r uu u r uuu r uu u r uuu r ,所以15,1212==-m n ,15112123+=-=-m n .故选:B.4.D【分析】设圆台的上、下底面圆的半径分别为,r R ,母线长为l ,高为h ,由题意可知5R r -=,13l =,则12h =,利用圆台的体积公式求出体积表达式,利用二次函数的性质即可得到答案.【详解】设圆台的上、下底面圆的半径分别为,r R ,母线长为l ,高为h由题意可知5R r -=,13l =,则12h ==则圆台的体积为()()()()2222211ππ124π315255353V h R r Rr r r r r r r ⎡=++=⨯⨯+⎤++=⎣⎦+++2512π25π2r ⎛⎫=++ ⎪⎝⎭当0r >时,V 单调递增,故V 不存在最小值.故选:D .5.C【分析】把6位老师按照4,1,1或3,2,1或2,2,2人数分为三组;每种分组再分同学1安排的几位老师辅导解答.【详解】把6位老师按照4,1,1或3,2,1或2,2,2人数分为三组;①把6为老师平均分为3组的不同的安排方法数有22264233C C C 15A ⋅⋅=在把这三组老师安排给三位不同学生辅导的不同安排方案数为:33A 6=,根据分步计数原理可得共有不同安排方案为:2223642333C C C A 15690A ⋅⋅=⨯=如果把甲老师安排去辅导同学1的方法数为:2212425222C C 1C A 30A ⋅⋅⋅=所以把6位老师平均安排给三位学生辅导且甲老师不安排去辅导同学1的方法数为903060-=②把6位老师按照4,1,1分为3组给三位学生辅导的方法数为:若1同学只安排了一位辅导老师则11425542C C C A 50⋅=若1同学安排了四位辅导老师则4252C A 10=所以把6位老师按照4,1,1分为3组给三位学生辅导,甲老师不安排去辅导同学1的方法数为60③把6位老师按照3,2,1分为3组给三位学生辅导的方法数为;若1同学只安排了一位辅导老师则12325532C C C A 100⋅=若1同学只安排了两位辅导老师则21325432C C C A 80⋅=若1同学只安排了三位辅导老师则31225322C C C A 60⋅=所以把6位老师按照3,2,1分为3组给三位学生辅导,甲老师不安排去辅导同学1的方法数为6080100240++=综上把6位老师安排给三位学生辅导,甲老师不安排去辅导同学1的方法数为2406060360++=故选:C 6.A【分析】根据平移变换得函数()ππsin ,(0)36g x x ωωω⎛⎫=-+> ⎪⎝⎭,由()g x 在π,π3⎡⎤⎢⎥⎣⎦上有三个极大值点,结合正弦函数图象可得131922ω≤<,再求π6x ω+的范围,结合正弦函数的单调性,由此可判断答案.【详解】解:有题意可得()πππsin ,(0)336g x f x x ωω⎛⎫⎛⎫=-=-+> ⎪ ⎪⎝⎭⎝⎭,由π,π3x ⎡⎤∈⎢⎥⎣⎦得πππ2ππ,36636x ωωω⎛⎫⎡⎤-+∈+ ⎪⎢⎥⎝⎭⎣⎦,由于()g x 在π,π3⎡⎤⎢⎥⎣⎦上有三个极大值点,所以9π2ππ13π2362ω≤+<,解得131922ω≤<,当4π2π,5757x ⎡⎤∈-⎢⎥⎣⎦,π42[,]6576576x ππππωωω+∈-++而42[,[,)57657622ππππππωω-++⊂-,故A 正确,当4π2π,3939x ⎡⎤∈-⎢⎥⎣⎦,π42[,]6396396x ππππωωω+∈-++而426351[,][,)3963967878ππππππωω-++⊂-,故B 不正确,当3π5π,1313x ⎡⎤∈⎢⎥⎣⎦,π35[,]6136136x ππππωωω+∈++,而355298[,[,136136378ππππππωω++⊂,故C 不正确,当5π7π,1919x ⎡⎤∈⎢⎥⎣⎦,π57[,]6196196x ππππωωω+∈++,而5721411[,][,)1961961143ππππππωω++⊂,故D 不正确,故选:A.7.D【分析】变形a ,b ,构造函数e ()ln xf x x x x=-+比较a ,b 的大小,构造函数()ln g x x x=-比较,e b 的大小,利用极值点偏移的方法判断1.01,c 的大小作答.【详解】依题意,0.99e 0.99a =,e 0.01ln 0.99e 10.99ln 0.99b =--=-+-,令e ()ln x f x x x x =-+,22e (1)1(e )(1)()1x x x x x f x x x x ---'=-+=,当01x <<时,e 10x x >>>,即()0f x '<,函数()f x 在(0,1)上单调递减,(0.99)(1)e 1f f >=-,即0.99e 0.99ln 0.99e 10.99-+>-,因此a b >,令()ln g x x x =-,1()1g x x'=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,函数()g x 在(0,1)上单调递减,(0.99)(1)1g g >=,而e 1(0.99)e>1.01b g =-+>,函数()g x 在(1,)+∞上单调递增,显然11(e)e 1,()1e eg g =-=+,则方程1(),(1,1]e g x k k =∈+有两个不等实根12,x x ,1201x x <<<,有12()()g x g x k ==,ln ln 0.99ln 0.99ln (0.99)()a c c c c g g c =-⇔-=-⇔=,而0.99c ≠,则有1c >,令()()(2)h x g x g x =--,01x <<,2112(1)()()(2)1102(2)x h x g x g x x x x x -'''=+-=-+-=-<--,即函数()h x 在(0,1)上单调递减,当(0,1)x ∈时,()(1)0h x h >=,即()(2)g x g x >-,因此11()(2)g x g x >-,即有211()()(2)g x g x g x =>-,而211,21x x >->,()g x 在(1,)+∞上单调递增,于是得212x x >-,即122x x +>,取10.99x =,2x c =,于是得20.99 1.01c >-=,又()(0.99))1()(e eg g c g g <<=,()g x 在(1,)+∞上单调递增,从而1.01e c <<,所以 1.01a b c >>>,D 正确.故选:D【点睛】思路点睛:某些数或式大小关系问题,看似与函数的单调性无关,细心挖掘问题的内在联系,抓住其本质,构造函数,分析并运用函数的单调性解题,它能起到化难为易、化繁为简的作用.8.C【分析】因为求的是充分不必要条件,而非充要条件,所以采用特殊值法,只要满足()()11f g ≤,则有()()()F x f x g x =-存在零点,求出1e ak a+≥时k 的取值范围,即为一个充分条件,再由选项依次判断即可.【详解】 当0a =时,()e x af x +=的图象恒在()lng x x ka =+上方,∴若满足()()11f g ≤,即1eln1aka +≤+,1e ak a+≥,则()f x 与()g x 的图象必有交点,即()()()F x f x g x =-存在零点.令()1e x h x x+=()0x >,()()12e 1x x h x x +-'=,有当01x <<时,()0h x '<,()h x 单调递减;当1x >时,()0h x '>,()h x 单调递增.()()21e h x h ∴≥=.即当2e k ≥时,一定存在()10,a =∈+∞,满足()()11f g ≤,即()()()F x f x g x =-存在零点,因此)2e ,k ⎡∈+∞⎣是满足题意k 的取值范围的一个充分条件.由选项可得,只有)2.2 3.1e ,e ⎡⎣是)2e ,⎡+∞⎣的子集,所以)2.2 3.1e ,e ⎡⎣是k 的取值范围的一个充分不必要条件.故选:C .9.BCD【分析】建立空间直角坐标系,利用空间向量逐一解答即可.【详解】解:根据题意建立如图所示的坐标系:因为正方体的边长为2,所以1(0,0,0)A ,(0,0,1)A ,1(2,0,0)B ,1(2,2,0)C ,1(0,2,0)D ,(2,0,2)B ,(2,2,2)C ,(0,2,2)D ,(2,0,1)E ,(1,0,2)F ,(2,1,2)G ,4(2,2,3H ,对于A ,因为1(0,2,2)BC =-u u u u r ,1(1,2,2)FD =--u u u u r ,(1,1,0)FG =u u u r,设平面1D FG 的法向量为(,,)n x y z = ,则有2200x y z x y -+-=⎧⎨+=⎩,则有23y zy x⎧=⎪⎨⎪=-⎩,取(2,2,3)n =-r,因为120n BC ⋅=-≠r u u u u r,所以1n BC ⊥ru u u u r不成立,所以1BC ∥平面1D FG 不成立,故错误;对于B ,设00(0,,)P y z ,则00(2,1,2)G y z P =---uu u r ,(1,1,0)GF =--uu u r ,2(0,1,)3GH =-uuu r ,又因为(,R)GP GF GH μϕμϕ=+∈uu u r uu u r uuu r,所以0021223y z μμϕϕ⎧⎪-=-⎪-=-+⎨⎪⎪-=-⎩,所以有002433z y =-+,所以P 点轨迹为如图所示的线段1MD ,在平面11BCC B 内作出与1MD 平行的直线1NC ,易知1MD 与1NC 的距离等于平面11ADD A 与平面11BCC B 的距离为2,因为1NC 与BH 不平行,所以1MD 与BH 不平行,所以点P 到BH 的距离不是定值,所以PBH S 不是定值,又因为P BCH C BPH V V --=,即1121223233PBH S h ⨯⨯⨯⨯=⋅V ,(h 为C 点到平面PBH 的距离),所以43PHBh S =V 不是定值,所以C 点到平面PBH 的距离与P 点位置有关,故正确;对于C ,因为1(2,2,2)BD =--uuu r ,(0,1,1)EG =uu u r,1220BD EG ⋅=-=uuu u r uu r ,所以1BD EG ⊥uuu r uuu r,即有1BD EG ⊥,故正确;对于D ,由B 可知P 点轨迹为002433z y =-+,令00y =,则043z =;令02z =,则02y =,所以P 3=,故正确.故选:BCD 10.BD【分析】结合递推式2142n n n a a a ++=-,取12a =-,求{}n a 的通项公式判断选项A 错误,求n S 判断B ,由递推式112n n n n b b b b ++-=,取10b =,判断C ,求数列{}n b 的通项公式判断D.【详解】因为2142n n n a a a ++=-,所以()1222n n a a +=++,所以当2,N n n *≥∈时,20n a +≥,若12a =-,则2,N n a n *=-∈,()log 2a n a +不存在,A 错误;因为12a =-时,2,N n a n *=-∈,所以20n a +=,所以0n S =,又()()211012nn a -+=-,所以可能()()21112n nn S a -=-+,B 正确;因为112n n n n b b b b ++-=,取10b =,则0,N n b n *=∈,此时1nb 不存在,C 错误;D 正确;故选:BD.11.AD【分析】设直线l 的斜率为k ,不妨设0p >,直线l 的方程为y kx p =+,()()1122,,,A x y B x y ,与抛物线方程联立求出12x x +,12x x ,12y y +,得()21,+Q pk pk p ,令12=-pk x 求出1y ,求出xy p '=,可得直线1l 的方程、直线2l 的方程,由22122⨯=AQ BQ x x k k p可判断C ;联立直线1l 、直线2l 的方程可得()2,-Q pk p 可判断A ;令0x =由()1110-=-x y y x p得()0,P p 可判断B ;由()0,P p 、M 点的纵坐标为2p-、()2,-Q pk p 可判断D.【详解】由题意直线l 的斜率存在,设为k ,不妨设0p >,()()1122,,,A x y B x y ,则直线l 的方程为y kx p =+,与抛物线方程联立22y kx px py=+⎧⎨=⎩,可得22220x pkx p --=,222480∆=+>p k p ,所以122x x pk +=,2122x x p =-,21222+=+y y pk p ,所以()21,+Q pk pk p ,不妨令1222==x pk x p k所以221222=+-=++y pk p ky pk p由22x y p=得x y p '=,所以直线1l 的方程为()111x y y x x p -=-,直线2l 的方程为()222x y y x x p-=-,所以2221222221-⨯===-≠-AQ BQ x x p k k p p ,故C 错误;由()()111222x y y x x p x y y x x p ⎧-=-⎪⎪⎨⎪-=-⎪⎩解得11x pk y kx y =⎧⎨=-⎩,可得((222x pk y k pk pk p k p =⎧⎪⎨=--+-=-⎪⎩,所以()2,-Q pk p ,所以21Q Q x ⊥轴,故A 正确;令0x =所以由()1110-=-x y y x p得212-=-=-+y y k p p(220,-+-N p k p ,而()0,P p,且222200pk p p pk k --+=-+=⇒=,故B 错误;因为()0,P p ,M 点的纵坐标为2p-,()2,-Q pk p ,所以322⎛⎫--= ⎪⎝⎭p p p ,()22---=p p p ,故M 为2PQ 近2Q 四等分点,故D 正确.故选:AD.12.AC【分析】根据奇函数()f x ,x ∈R ,且()()πf x f x =-,可确定函数()f x 的周期,即可判断A ;设()()cos f x g x x=确定函数()g x 的奇偶性与对称性即可判断函数B ,C ;根据()()cos sin 0f x x f x x '+>可判断函数()g x 在π0,2x ⎡⎫∈⎪⎢⎣⎭上的单调性,结合对称性与周期性即可得函数()g x 的大致图象,根据直线y kx =与()cos f x x若有3个交点,列不等式即可求k 的取值范围,即可判断D.【详解】解:因为()()πf x f x =-,所以()f x 的图象关于π2x =对称,又因为()f x 为奇函数,所以()()f x f x =--,则()()()πf x f x f x +=-=-,则()()()2ππf x f x f x +=-+=,故()f x 是周期为2π的函数,故A 正确;设()()cos f x g x x =,其定义域为ππ2π,2π,Z 22k k k ⎛⎫-++∈ ⎪⎝⎭,则()()()()()()()ππ0cos cos πcos cos f x f x f x f x g x g x xx x x -+-=+=+=--,所以()g x 关于π,02⎛⎫⎪⎝⎭中心对称,即()cos f x x关于π,02⎛⎫⎪⎝⎭中心对称,故C 正确;又()()()()()cos cos f x f x g x g x x x---===--,所以()g x 为上的奇函数,结合()()π0g x g x +-=可得()()π0g x g x --+-=,即()()πg x g x -=-故()cos f x x是周期为π的函数,故B 错误;当π0,2x ⎡⎫∈⎪⎢⎣⎭,所以()()()2cos sin 0cos f x x f x x g x x '+'=>,故()g x 在π0,2x ⎡⎫∈⎪⎢⎣⎭上单调递增,由于()g x 关于π,02⎛⎫ ⎪⎝⎭中心对称,所以()g x 在π,π2x ⎛⎤∈ ⎥⎝⎦上单调递增,且当π2x →时,()2cos f x x →,又函数()g x 的周期为π,则可得()g x 大致图象如下:若直线y kx =与()()cos f x g x x =若有3个交点,则03π225π22k k k ⎧⎪>⎪⎪<⎨⎪⎪≥⎪⎩或03π22π22k k k ⎧⎪<⎪⎪-≥⎨⎪⎪-<⎪⎩,解得445π3πk ≤<或44π3πk -<≤-,故4444,,π3π5π3πk ⎛⎤⎡⎫∈--⋃ ⎪⎥⎢⎝⎦⎣⎭,故D 错误.故选:AC.13.559【分析】将21x x-看作一项,利用展开式的通项,找两项中的常数项即可求解.【详解】261(2)x x-+的展开式的通项公式是26122316661C ()22C (1)C r r r r r s s r sr r T x xx ---+-=-⋅=-,令12230r s --=,则2312r s +=,故32r s =⎧⎨=⎩或60r s =⎧⎨=⎩或04r s =⎧⎨=⎩,所以261(2)x x-+的展开式中常数项为:3322660044636662C (1)C 2C 2C (1)C 4806415559⨯⨯-⨯+⨯+⨯⨯-⨯=++=,故答案为:559.14.[]15,85【分析】先根据MN 的最小值求出7CD =,即()()226849a b -+-=,再使用柯西不等式求出取值范围.【详解】由于MN 最小值为4,圆C 的半径为1,圆D 的半径为2,故两圆圆心距离4127CD =++=,即()()226849a b -+-=,由柯西不等式得:()()()()()2222268343648a b a b ⎡⎤-+-⋅+≥-+-⎡⎤⎣⎦⎣⎦,当且仅当6834a b --=,即5168,55a b ==时,等号成立,即()234502549a b +-≤⨯,解得:153485a b ≤+≤.故答案为:[]15,8515【分析】首先求出2AF 的方程,联立两直线方程,即可取出A 点坐标,由21AB AF BF ==,即可得到B 为A 、1F 的中点,得到B 点坐标,再代入双曲线方程,即可求出226c a =,从而求出双曲线的离心率.【详解】解:依题意()2,0F c ,所以2AF :()ay x c b=--,由()a y x c b b y x a ⎧=--⎪⎪⎨⎪=⎪⎩,解得2a x c ab y c ⎧=⎪⎪⎨⎪=⎪⎩,即2,a ab A c c ⎛⎫ ⎪⎝⎭,所以2AF b =,又21AB AF BF ==,所以B 为A 、1F 的中点,所以2,22a c ab c B c ⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭,所以22222122a c b c c ab a ⎛⎫ ⎪ ⎪⎛⎫⎪ ⎪ ⎝⎭⎝-⎭-=,即44224b a c a -=,即()()222222+4b a b a c a -=,所以2224b a a -=,即225b a =,即2225c a a -=,所以226c a =,则离心率ce a==16.[)4,∞+【分析】不妨设12x x <,把1212()()f x f x x x -->3化为()()11223f x x f x x <--3,构造函数()()3g x f x x =-,利用()g x 的导数()0g x '≥,求出k 的取值范围.【详解】不妨设1212,(0,),x x x x ∀∈+∞<,∵()()12123f x f x x x ->-,即()()1212)3(f x f x x x <--,()()11223f x x f x x <--3,构造函数()()3g x f x x =-,∴()g x 在(0)+∞,是单调递增函数,∴()()13sin 30g x f x k x x ''=-=++-≥,∴()1sin 3,0,k x x x ∞⎛⎫≥-++∈+ ⎪⎝⎭当0x >时,10x >,[]sin 1,1x ∈-,所以1sin 1x x+>-,所以1sin 34x x ⎛⎫-++< ⎪⎝⎭,所以k 的取值范围为[)4,∞+故答案为:[)4,∞+17.(1)π3【分析】(1)由向量的运算整理可得221122c b CB AO =-⋅uu r uuu r ,结合正弦定理、余弦定理和面积公式运算求解;(2)根据题意结合向量可得1233AD AB AC =+ ,再结合数量积可得221242999c bc b =++,利用基本不等式可得3bc ≤,再结合面积公式即可得结果.【详解】(1)取,AB AC 的中点,M N ,连接,OM ON ,则,OM AB ON AC ⊥⊥,可得:()cos cos NC AC AB AO AC AO AB AO OA A M A B O AB A A O C O OA =-=⋅-⋅=∠-∠⋅⋅uu r uuu r uu u r uuu r uuu r uu u r uuu r uuu r uuu r uu u r u u r uuu r uuu r222211112222AB AC c b =-=-uu u r uuu r由()2222342cos cos 23CB AO r A B a S ⋅+---=uu r uuu r ,可得()2222223141cos 1cos 11sin 22322r A B a c b bc A +--+--=⨯,则()()2222232sin 2s 1in sin 2122r A r B a c b b c A --=++,即222223sin 21221a b a b A c b c +-=-+,整理得2222sin b A c a bc +⨯-,由余弦定理222cos sin 23b c a A A bc +-==,可得tan A =∵()0,πA ∈,故π3A =.(2)由题意可得:()22123333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,则22221214433999AD AB AC AB AB AC AC ⎛⎫=+=+⋅+ ⎪⎝⎭uuu r uu u r uuu r uu u r uu u r uuu r uuu r ,可得:221242999c bc b =++,则2218244bc c b bc -=+≥,当且仅当224c b =,即2c b =时等号成立,即3bc ≤,则11sin 322S bc A =≤⨯故S18.(1)有,理由见解析(2)14(3)78(4)分布列见解析,()2E x =,2x =时,概率最大,理由见解析【分析】(1)计算卡方,与10.828比较后得到结论;(2)先根据分层抽样求出1班和3班抽到的学生分布情况,再根据条件概率求出概率;(3)计算出1班和3班的总人数,以及数学评价优秀的学生总人数,求出相应的频率作为全校数学评价优秀的概率,求出随机抽取3人,抽到0人数学评价优秀的概率,再利用对立事件求概率公式计算出答案;(4)由题意得到18,4x B ⎛⎫⎪⎝⎭,从而求出分布列,数学期望,并利用不等式组,求出2x =时,概率最大.【详解】(1)22100(10204030)5010.828406050503K ⨯⨯-⨯==>⨯⨯⨯,故有99.9%的把握数学成绩与班级有关;(2)1班有40+20=60人,3班有10+30=40人,故抽取10人,从1班抽取人数为601066040⨯=+,从3班抽取的人数为401046040⨯=+,由于1班数学评价优秀和一般人数比为4:2,故抽取的6人中有4人数学评价优秀,2人评价一般,而3班数学评价优秀和一般的人数之比为1:3,故抽取的4人中有1人数学评价优秀,3人评价一般,设抽到甲辅导乙为事件A ,抽到丙辅导丁为事件B ,则()4455A 1A 5P A ==,()3355A 1A 20P AB ==,()()()1112054P AB P B A P A ==÷=;(3)1班和3班总人数为100人,其中两班学生数学评价优秀的总人数为104050+=,故频率为5011002=,以频率估计概率,全年级的数学评价优秀的概率为12,从全年级中随机抽取3人,抽到0人数学评价优秀的概率为30311C 128⎛⎫-= ⎪⎝⎭,所以从全年级中随机抽取3人,至少抽到一人数学成绩为优秀的概率为17188-=.(4)由题意得:3班的数学评价优秀概率为101404=,故18,4x B ⎛⎫⎪⎝⎭ ,所以分布列为8811C 144xxx -⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭,1,2,,8x = ;数学期望()1824E x =⨯=,2x =时,概率最大,理由如下:令8171881111C 1C14444xxx xx x -+-+⎛⎫⎛⎫⎛⎫⎛⎫-≥- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,解得:54x ≥,令8191881111C 1C14444x xx xx x ----⎛⎫⎛⎫⎛⎫⎛⎫-≥- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,解得:94x ≤,故5944x ≤≤,因为N x ∈,所以2x =.19.(1)()max A BCD V -3,此时13h R =,(2)存在K ,满足KC ⊥平面OAB ,理由见解析;1d =,223d R =.【分析】(1)设线段O O '的延长线与球的交点为1D ,则1A BCD D ABC V V --≤,设OAO θ'∠=,表示1D ABC -的体积,通过换元,利用导数求其最大值.(2)取AB 的中点E ,连接OE ,CE ,过C 作KC OE ⊥,根据线面垂直判定定理证明KC ⊥平面OAB ,再通过解三角形求1d ,2d .【详解】(1)当点D 为线段O O '的延长线与球的交点时,点D 到平面ABC 的距离最大,所以1A BCD D ABC D ABC V V V ---=≤,由球的截面性质可得'⊥O O 平面ABC ,设OAO θ'∠=,π02θ≤<,则sin ,cos OO OA AO OA θθ''==,又,OA R AO r '==,所以sin ,cos OO R r R θθ'==,所以sin DO R R θ'=+,在ABC 中,π3BAC ∠=,由正弦定理可得π2sin cos 3BC r θ==,由余弦定理可得222π2cos3AB AC AB AC BC +-⋅=,所以22AB AC AB AC BC ⋅-⋅≤,故223cos AB AC R θ⋅≤,所以ABC 的面积221πsin cos 23S AB AC θ=⋅≤,当且仅当AB AC =时等号成立,所以()()12232111cos sin cos sin 133D ABC V S D O R R R θθθθ-=⋅≤⋅⋅+=⋅⋅+',设()2cos sin 1y θθ=⋅+,令sin t θ=,则()()211y t t =-⋅+,01t ≤<所以()()2321311y t t t t '=--+=--+,当103t ≤<时,0y >' ,函数()()211y t t =-⋅+在10,3⎡⎫⎪⎢⎣⎭上单调递增,当113t <<时,0'<y ,函数()()211y t t =-⋅+在1,13⎛⎫ ⎪⎝⎭上单调递减,所以当13t =时,函数()()211y t t =-⋅+,01t ≤<取最大值,最大值为3227,所以13D ABC V -≤,所以()max A BCD V -为327R ,此时1sin 3h OO R R θ'===,(2)由(1)点D 与点1D 重合,33AB AC BC R ===,又π3BAC ∠=,取AB 的中点E ,连接OE ,CE ,则,OE AB CE AB ⊥⊥,OE CE E ⋂=,,OE CE ⊂平面OCE ,所以AB ⊥平面OCE ,过C 作KC OE ⊥,垂足为K ,因为KC ⊂平面OCE ,所以AB KC ⊥,AB OE E ⋂=,,AB OE ⊂平面OAB ,所以KC ⊥平面OAB ,由(1)AB BC AC ===,OA OB OC R ===,1133OO OA R '==,所以3OE R ==,CE ==,所以3O E '=,因为π2OO E CKE OEO CEK ''∠=∠=∠=∠,,所以CEK OEO ' ,所以EK CE EO OE =',所以3EK R =,所以2EK OE =,所以O 为EK 的中点,又EO OO '⊥,所以E 到直线OO '的距离为3EO R '=,过K 作KM OO '⊥,垂足为M ,故点K 到OO '的距离为KM ,所以K 到直线OO '的距离为13d KM EO R '===,因为OO '⊥平面ABC ,O '为垂足,所以点O 到平面ABC 的距离为13OO R '=,过K 作KN CE ⊥,垂足为N ,则//KN OO ',所以KN ⊥平面ABC ,故点K 到平面ABC 的距离为KN ,又223KN OO R '==所以点K 到平面ABC 的距离为223d R =.20.(1)()15252⎛⎫=-+ ⎪⎝⎭nn S n ;(2)()15252⎛⎫=-+ ⎪⎝⎭nn S n ;(3)裂项过程见解析,证明见解析.【分析】(1)写出n S 的表达式,两边同乘12,与原式相减,利用等比数列求和公式化简即可;(2)对()1212nn ⎛⎫+ ⎪⎝⎭进行裂项,结合裂项相消法求和;(3)对()21232nn c n n ⎛⎫=++ ⎪⎝⎭进行裂项,利用裂项相消法求和,由此证明结论.【详解】(1)因为()1212nn a n ⎛⎫=+ ⎪⎝⎭,所以()()123111111357212122222n nn S n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+-++ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以()()12341111113572121222222nn n S n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+-++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以()1123111111322221222222nn n S n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,所以()1111112212222n n n S n -+⎛⎫⎛⎫=+-+ ⎝⎝-⎪⎪⎭⎭,所以()15252⎛⎫=-+ ⎪⎝⎭nn S n ;(2)因为()1212nn a n ⎛⎫=+ ⎪⎝⎭,设()()111122n nn a A n B An B --⎭⎛⎫⎛⎫⎡⎤=-++ ⎪ ⎪⎣⎦⎝⎝⎭,则()122nn a An A B ⎛⎫=-+ ⎪⎝⎭,所以2A =,5B =,故()()111232522n nn a n n -⎛⎫⎛⎫=++ ⎪⎝⎝-⎪⎭⎭所以()()112171111115723252292222n nn S n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+++ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭-⎝⎝-⎭⎭-,所以()15252⎛⎫=-+ ⎪⎝⎭nn S n ;(3)因为()21232nn c n n ⎛⎫=++ ⎪⎝⎭,设()()()122111122n nn c Dn En F D n E n F -⎛⎫⎛⎫⎡⎤=++++++ ⎪⎪⎣⎦-⎝⎭⎝⎭,则()2122nn c Dn E D n F D E ⎛⎫⎡⎤=+-+- ⎦⎝-⎪⎣⎭,则1,4,8D E F ===,所以()()122114861322n nn c n n n n -⎛⎫⎛⎫=++++ ⎪⎪⎝⎭⎝⎭-,即()()12211243422n nn c n n -⎛⎫⎛⎫⎡⎤⎡⎤=++++ ⎪⎪⎣⎦⎦⎝⎝-⎣⎭⎭,所以()()()()()()2111222222111111342444445434222222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤⎡⎤=+++⋅⋅⋅+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭⎝-⎭⎝⎭⎝+--⎭++所以()21613132nn T n n ⎛⎫=++ -⎪⎝⎭,所以()()()22811152513613188182212nnn nn n n n n n S T ⎛⎫⎛⎫⎛⎫=-++-++=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭+<⎝⎭21.(1)C 点轨迹方程为22143x y +=,轨迹形状是以12,F F 为焦点,4为长轴长的椭圆.(2)点P 的轨迹方程为:221()2113416x y ++=,其轨迹形状是以1(,0)2-为对称中心,焦点在x 轴上,长轴长为1的椭圆;点Q 的轨迹方程为:221()2113416x y -+=,其轨迹形状是以1(,0)2为对称中心,焦点在x 轴上,长轴长为1的椭圆.(3)点D 的轨迹方程为:22134y x +=,其轨迹形状是焦点在x 轴上,以11(,0),(,0)22-为焦点,以2为长轴长的椭圆.【分析】(1)根据椭圆的定义即可求解;(2)设出直线12,l l 的方程,与曲线方程联立,利用韦达定理和中点坐标公式即可求解;(3)根据(2)的结论,先得出340mt +=,再求出D 点的坐标,结合,m t 的关系式即可求解.【详解】(1)由题意可知:24F E =,1CF CE =,因为12221242CF CF CE CF EF F F +=+==>=,所以C 点的轨迹是以12,F F 为焦点,24a =为长轴长的椭圆,则2223b a c =-=,所以C 点轨迹方程为22143x y +=,轨迹形状是以12,F F 为焦点,4为长轴长的椭圆.(2)当直线1l 与x 轴重合时,点(0,0)P ;当直线1l 与x 轴不重合时,设直线1l 的方程为:1x ty =-,1122(,),(,)A x y B x y ,联立方程组221431x y x ty ⎧+=⎪⎨⎪=-⎩,整理可得:22(34)690t y ty +--=,则122634t y y t +=+,122934y y t -=+,所以212122268()223434t x x t y y t t -+=+-=-=++,则12212242343234P P x x x t y y t y t +-⎧==⎪⎪+⎨+⎪==⎪+⎩,消参可得:221212160x x y ++=,即221()21(0)13416x y x ++=≠,综上所述:点P 的轨迹方程为:221()2113416x y ++=,点P 的轨迹形状是以1(,0)2-为对称中心,焦点在x 轴上,长轴长为1的椭圆;同理当直线2l 与x 轴重合时,点(0,0)Q ;当直线2l 与x 轴不重合时,设直线2l 的方程为:1x my =+,3344(,),(,)M x y N x y ,联立方程组221431x y x my ⎧+=⎪⎨⎪=+⎩,整理可得:22(34)690m y my ++-=,则342634my y m -+=+,342934y y m -=+,所以234342268()223434m x x t y y m m -+=++=+=++,则34234242343234Q Qx x x m y y m y m +⎧==⎪⎪+⎨+-⎪==⎪+⎩,消参可得:221212160x x y -+=,即221()21(0)13416x y x -+=≠,综上所述:点Q 的轨迹方程为:221()2113416x y -+=,点Q 的轨迹形状是以1(,0)2为对称中心,焦点在x 轴上,长轴长为1的椭圆;(3)由(2)知:2243(,)3434tP t t -++,2243(,)3434m Q m m -++,因为//PQ x 轴,所以22333434t mt m -=++,即(34)()0mt m t ++=,又因为且12l l D ⋂=,所以340mt +=,也即43m t=-,联立12,l l 可得:11x ty x my =-⎧⎨=+⎩,解得:212D D t x t my t m ⎧=-⎪⎪-⎨⎪=⎪-⎩消参可得:24123(1)y x x ++=+,即22134y x +=,所以点D 的轨迹方程为:22134y x +=,其轨迹形状是焦点在x 轴上,以11(,0),(,0)22-为焦点,以2为长轴长的椭圆.22.(1)证明见解析;(2)(],1-∞-【分析】(1)利用同构,转化为()()1e ln e e kx kx f x x x =-.构造函数1ln ey t t =-,利用导数求出最小值,即可证明;(2)把()211e≥+f x 转化为()()ln 12e ln 1e 2x kx kx x +---+-≥--对()0,x ∀∈+∞恒成立.构造函数()e mg m m =-,利用导数判断出单调性,转化为2ln 1kx x +-≤-对()0,x ∀∈+∞恒成立,分离参数后,构造函数()()ln ,01xh x x x=-->,利用导数求出()min h x ,即可求解.【详解】(1)函数()11e ln -=-+kx f x x kx x 的定义域为()0,∞+.()11e ln-=-+kx f x x kx x 1e ln e kxx kx x =--()1e ln e ekx kx x x =-.令(),0e kxt x t =>,则1ln ey t t =-.因为11e e e t y t t -'=-=,所以当0<e t <时,0'<y ,1ln ey t t =-单减;当t e >时,0'>y ,1ln ey t t =-单增.所以1e ln e=0ey ≥⨯-,即0y ≥,所以()0f x ≥成立.(2)()211e≥+f x 即为121e ln e 1kx x kx x ---+≥+,亦即为ln 12e e ln 1e 2x kx kx x ----+≥+,可化为()()ln 12eln 1e 2x kx kx x +---+-≥--对()0,x ∀∈+∞恒成立.不妨设()e m g m m =-,则()e 1mg m '=-.当0m <时,()0g m '<,()e m g m m =-单减;当0m >时,()0g m '>,()e mg m m =-单增.所以当0ln 1kx x +-<时,有2ln 1kx x +-≤-对()0,x ∀∈+∞恒成立.即l 1n xk x--≤.令()()ln ,01x h x x x =-->,则()2ln xh x x'=.所以当01x <<时,()0h x '<,()h x 单减;当1x >时,()0h x '>,()h x 单增所以()()min 11h x h ==-.即1k ≤-.综上所述:k 的取值范围为(],1-∞-.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数证明不等式.。

2021高考理科数学一轮总复习课标通用版作业:第9章 平面解析几何 课时作业51

2021高考理科数学一轮总复习课标通用版作业:第9章 平面解析几何 课时作业51

课时作业51 圆锥曲线的综合问题一、选择题1.椭圆x 216+y 24=1上的点到直线x +2y -2=0的最大距离为( )A .3 B.11 C .2 2 D.10 答案:D2.(2019年内蒙古集宁一中高三上学期期末)设某曲线上一动点M 到点F (3,0)的距离与到直线x =-3的距离相等,经过点P (2,1)的直线l 与该曲线相交于A ,B 两点,且点P 恰为等线段AB 的中点,则|AF |+|BF |=( )A .6B .10C .12D .14解析:由曲线上一动点M 到点F (3,0)的距离与到直线x =-3的距离相等知该曲线为抛物线,其方程为y 2=12x ,分别过点A ,B ,P 向抛物线的准线x =-3作垂线,垂足分别为A 1,B 1,P 1,由梯形的中位线定理知|P 1P |=12(|AA 1|+|BB 1|)=12(|F A |+|FB |)=2-(-3)=5,所以|AF |+|BF |=10,故选B. 答案:B3.(2019年新疆乌鲁木齐高三考试)AB 是过抛物线y 2=2px 焦点F 的弦,其垂直平分线交x 轴于点G ,设|AB |=λ|FG |,则λ的值是( )A.32 B .2C .4D .与p 的值有关解析:如图1,设A (x 1,y 1),B (x 2,y 2),图1则k AB =y 2-y 1x 2-x 1=y 2-y 1y 222p -y 212p =2py 2+y 1, 故线段AB 的垂直平分线的方程为 y -y 2+y 12=-y 2+y 12p ⎝ ⎛⎭⎪⎫x -x 2+x 12, 令y =0,得x =p +x 2+x 12,故点G 的坐标为⎝ ⎛⎭⎪⎫p +x 2+x 12,0. ∴|FG |=⎝⎛⎭⎪⎫p +x 2+x 12-p 2=x 2+x 1+p2, 又|AB |=x 2+x 1+p ,∴|AB |=2|FG |.选B. 答案:B4.(2019年湖北省武汉市高中毕业生调研)已知不过坐标原点O 的直线交抛物线y 2=2px 于A ,B 两点,若直线OA ,AB 的斜率分别为2和6,则直线OB 的斜率为( )A .3B .2C .-2D .-3解析:设A ⎝ ⎛⎭⎪⎫y 2A 2p ,y A ,B ⎝ ⎛⎭⎪⎫y 2B 2p ,y B , 那么k AB =y A -y B y 2A -y 2B 2p =2py A +y B =6,所以y A +y B =p 3,而k OA =y A y 2A2p=2py A=2,故y A =p ,y B =-23p ,所以x B =29p ,k OB =-3,选D. 答案:D5.(2019年重庆市高二上学期期末)已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线与抛物线C 相交于P ,Q 两点,与y 轴交于A 点,若AF→=FQ →,O 为坐标原点,则△OPQ 的面积为( ) A. 2 B.32 2 C .2 2 D .4解析:AF →=FQ →⇒x Q =2⇒y Q =22, 从而可设直线FQ 为y =22(x -1),联立方程有: ⎩⎪⎨⎪⎧y =22(x -1),y 2=4x⇒y 2-2y -4=0,由韦达定理: y p ×22=-4⇒y P =-2, 所以S =12|OF ||y Q -y P |=12×1×(22+2) =322,答案:B6.(2019年河南省郑州市高三毕业年级第二次质量预测)如图2,已知抛物线C 1的顶点在坐标原点,焦点在x 轴上,且过点(2,4),圆C 2:x 2+y 2-4x +3=0,过圆心C 2的直线l 与抛物线和圆分别交于P ,Q ,M ,N ,则|PN |+4|QM |的最小值为( )图2A .23B .42C .12D .52解析:由题意抛物线过定点(2,4),得抛物线方程y 2=8x ,焦点为F (2,0).圆的标准方程为(x -2)2+y 2=1,所以圆心为(2,0),半径r =1.由于直线过焦点,所以有1|PF |+1|QF |=2P =12,又|PN |+4|QM |=(|PF |+1)+(4|QF |+4)=|PF |+4|QF |+5=2(|PF |+4|QF |)⎝ ⎛⎭⎪⎫1|PF |+1|QF |+5=2⎝ ⎛⎭⎪⎫5+4|QF ||PF |+|PF ||QF |+5≥23, 当且仅当PF =2QF 时等号成立.选A.7.(2019年浙江省宁波市高三模拟)设抛物线y 2=4x 的焦点为F ,过点P (5,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,若|BF |=5,则△BCF 与△ACF 的面积之比S △BCFS △ACF=( )A.56B.2033 C.1531 D.2029解析:抛物线的准线方程为l :x =-1, 分别过A ,B 作准线l 的垂线AM ,BN , 则|BN |=|BF |=5,图3∴B 点横坐标为4,不妨设B (4,-4), 则直线AB 的方程为y =4x -20,联立方程组⎩⎪⎨⎪⎧y =4x -20,y 2=4x ,得4x 2-41x +100=0,设A 横坐标为x 0,则x0+4=414,故而x 0=254. ∴|AM |=x 0+1=294,∴S △BCFS △ACF=2029.答案:D8.(2019年湖南省邵阳市高三上学期期末)过圆P :(x +1)2+y 2=14的圆心P 的直线与抛物线C :y 2=3x 相交于A ,B 两点,且PB →=3P A →,则点A 到圆P 上任意一点的距离的最大值为( )A.116 B .2 C.136 D.73解析:由题意可知:P (-1,0),设A (x 1,y 1),B (x 2,y 2), 不妨设点A 位于第一象限,如图4所示,图4则:PB →=(x 2+1,y 2),P A →=(x 1+1,y 1),据此可得方程组:⎩⎪⎨⎪⎧y 2=3y 1,x 2+1=3(x 1+1),y 21=3x 1,y 22=3x2解方程可得:x 1=13,y 1=1, 则|AP |=⎝ ⎛⎭⎪⎫13+12+12=53,故点A 到圆P 上任意一点的距离的最大值为53+12=136. 本题选择C 选项. 答案:C9.(2019年内蒙古乌兰察布市北京八中分校高二上学期期末)经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A, B 两点,设O 为坐标原点,则OA→·OB →等于( ) A .-3 B .-13 C .-13或-3 D .±13解析:由x 22+y 2=1 ,得a 2=2,b 2=1,c 2=a 2-b 2=1 ,焦点为(±1,0).设直线l 过右焦点,倾斜角为45°,直线l 的方程为y =x -1.代入x 22+y 2=1得x 2+2(x -1)2-2=0,即3x 2-4x =0.设A (x 1,y 1),B (x 2,y 2),则x 1·x 2=0,x 1+x 2=43,y 1y 2=(x 1-1)·(x 2-1)=x 1x 2-(x 1+x 2)+1=1-43=-13,OA →·OB →=x 1x 2+y 1y 2=0-13=-13.故选B. 答案:B10.(2019年河南省平顶山高二第一学期期末)过点M (1,1) 的直线与椭圆x 24+y 23=1 交于A, B 两点,且点M 平分AB ,则直线AB 的方程为( )A .4x +3y -7=0B .3x +4y -7=0C .3x -4y +1=0D .4x -3y -1=0解析:设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得⎩⎪⎨⎪⎧x 214+y 213=1,x 224+y 223=1两式相减并化简得y 1-y 2x 1-x 2=-34,所以直线的斜率为-34,由点斜式得到直线方程为3x +4y -7=0.答案:B11.(2019年湖南省三湘名校教育联盟高三第三次联考)已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过点F 的直线交拋物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点坐标为(3,y 0)时, △AEF 为正三角形,则此时△OAB 的面积为( )A.433 B. 3 C.233 D.33图5解析:如图5所示,过点F 作AE 的垂线,垂足为H ,则H 为AE 的中点,则AE =3+p2,EH =p, ∴2p =3+p2,解得p =2, ∴y 2=4x ,A (3,23),F (1,0),∴k AF =3,直线AF 为y =3(x -1),代入抛物线方程为3(x -1)2=4x ,解得x =3或x =13,∴y =23或y =-233,∴B ⎝⎛⎭⎪⎫13,-233∴S △OAB =S △OFB +S △OF A=12×1×⎝⎛⎭⎪⎫23+233 =433,故选A. 答案:A12.(2019年普通高校全国卷一(A))已知抛物线x 2=2py (p >0)的焦点为F ,过焦点F 的直线l 分别交抛物线于点A ,B ,过点A ,B 分别作抛物线的切线l 1,l 2,两切线l 1,l 2交于点M ,若过点M 且与y 轴垂直的直线恰为圆x 2+y 2=1的一条切线,则p 的值为( )A.14B.12 C .2 D .4解析:由题可知抛物线x 2=2py (p >0)的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,且过焦点F 的直线斜率存在,所以可设直线l :y =kx +p2,联立方程组⎩⎨⎧y =kx +p 2,x 2=2py ∴x 2-2kpx -p 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1x 2=-p 2,x 1+x 2=2kp .又由x 2=2py 得y =x 22p ,∴y ′=xp ,所以过A 点的切线方程为l 1:y -y 1=x 1p (x -x 1),∴y =y 1+x 1p x -x 21p =x 1p x -x 212p .同理可知过点B 的切线方程为l 2:y =x 2p x -x 222p ,联立方程组⎩⎪⎨⎪⎧y =x 1p x -x 212p ,y =x 2p x -x 222p ,∴⎩⎨⎧x =x 1+x 22,y =x 1x 22p =-p 2,因此点M ⎝ ⎛⎭⎪⎫x 1+x 22,-p 2,过点M 与y 轴垂直的直线为y =-p 2(p >0),而圆x 2+y 2=1与y 轴负半轴交于点(0,-1),所以-p2=-1,∴p =2.故选C.答案:C 二、填空题13.(2019年高三数学训练题)F 是双曲线C: x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B.若2AF→=FB →,则C 的离心率是________. 解析:双曲线C: x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为y =±b a x ,由题意,得|AF |=b ,|BF |=2b ,在Rt △AOF 中, |OF |=c ,则|OA |=c 2-b 2=a .设l 1的倾斜角为θ,即∠AOF =θ,则∠AOB =2θ,tan θ=b a ,tan2θ=3b a ,即3ba =2b a 1-b 2a 2,即a 2=3b 2,则e =c a =1+b 2a 2=233.答案:23314.(2019年高三数学训练题)设F 1,F 2为椭圆C 1: x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2的公共的左,右焦点,椭圆C 1与双曲线C 2在第一象限内交于点M ,△MF 1F 2是以线段MF 1为底边的等腰三角形,且|MF 1|=2,若椭圆C 1的离心率e ∈⎣⎢⎡⎦⎥⎤38,49,则双曲线C 2的离心率的取值范围是________.解析:设双曲线C 2的方程为x 2a 22-y 2b 22=1(a 2>0,b 2>0),由题意知|MF 1|=2,|F 1F 2|=|MF 2|=2c ,其中c 2=a 22+b 22=a 21-b 21,又根据椭圆与双曲线的定义得⎩⎪⎨⎪⎧|MF 1|+|MF 2|=2a 1,|MF 1|-|MF 2|=2a 2,则⎩⎪⎨⎪⎧2+2c =2a 1,2-2c =2a 2即a 1-a 2=2c ,其中2a 1,2a 2分别为椭圆的长轴长和双曲线的实轴长.因为椭圆的离心率38≤e ≤49,所以38≤c a 1≤49,所以9c 4≤a 1≤8c 3,而a 2=a 1-2c ,所以c4≤a 2≤2c 3,所以32≤ca 2≤4,即双曲线C 2的离心率的取值范围是⎣⎢⎡⎦⎥⎤32,4.答案:⎣⎢⎡⎦⎥⎤32,415.(2019年新疆兵团农二师华山中学期末)P 为抛物线y 2=4x 上任意一点,点P 在y 轴上的射影为Q ,点M (4,5),则PQ 与PM 长度之和的最小值为________.解析:抛物线的准线方程为x =-1,焦点F (1,0), 由抛物线的几何性质得|PQ |=|PF |-1, |PQ |+|PM |=|PF |+|PM |-1 ≥|MF |-1=34-1,当P ,M ,F 三点共线时等号成立. 答案:34-116.过抛物线y 2=2px (p >0)焦点F 的直线与抛物线交于A ,B 两点,作AC ,BD 垂直抛物线的准线l 于C ,D 两点,O 为坐标原点,则下列结论正确的是________(填写序号).①AC→+CD →=BD →-BA →;②存在λ∈R ,使得AD →=λAO →成立;③FC→·FD →=0;④准线l 上任意点M ,都使得AM →·BM →>0.图6解析:如图6,可见AC→+CD →=BD →-BA →=AD →,所以①正确;设A (x 1,y 1),B (x 2,y 2),则C ⎝ ⎛⎭⎪⎫-p 2,y 1,D ⎝ ⎛⎭⎪⎫-p 2,y 2,“存在λ∈R ,使得AD →=λAO →成立”等价于“D ,O ,A 三点共线”,等价于“y 2-p 2=y 1x 1”,等价于“y 1y 2=-p 2(*)”.又因为F ⎝ ⎛⎭⎪⎫p 2,0,直线AB 可设为x =my +p 2,与y 2=2px 联立,消去x ,得y 2-2pmy -p 2=0,于是,y 1y 2=-p 2,(*)成立,所以②正确;“FC →·FD →=0”等价于“p 2+y 1y 2=0”,据y 1y 2=-p 2,(*)成立,知③正确;据抛物线定义知|AB |=|AC |+|BD |,所以以AB 为直径的圆半径长与梯形ACDB 中位线长相等,所以该圆与CD 相切,设切点为M ,则AM ⊥BM ,所以AM→·BM →=0,④不正确. 答案:①②③ 三、解答题17.(2019年内蒙古乌兰察布市北京八中分校高二上学期期末)在平面直角坐标系xOy 中,直线l 与抛物线y 2=4x 相交于不同的A 、B 两点.(1)如果直线l 过抛物线的焦点,求OA→·OB →的值; (2)如果OA→·OB →=-4,证明直线l 必过一定点,并求出该定点. 解:(1)由题意:抛物线焦点为(1,0),设l :x =ty +1,代入抛物线y 2=4x ,消去x 得y 2-4ty -4=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-4,∴OA →·OB →=x 1x 2+y 1y 2 =(ty 1+1)(ty 2+1)+y 1y 2 =t 2y 1y 2+t (y 1+y 2)+1+y 1y 2 =-4t 2+4t 2+1-4=-3.(2)设l :x =ty +b 代入抛物线y 2=4x ,消去x 得y 2-4ty -4b =0,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4t ,y 1y 2=-4b ,∴OA →·OB →=x 1x 2+y 1y 2=(ty 1+b )(ty 2+b )+y 1y 2 =t 2y 1y 2+bt (y 1+y 2)+b 2+y 1y 2 =-4bt 2+4bt 2+b 2-4b =b 2-4b .令b 2-4b =-4,∴b 2-4b +4=0,∴b =2, ∴直线l 过定点(2,0).∴若OA →·OB →=-4,则直线l 必过一定点(2,0).图718.(2019年内蒙古乌兰察布市北京八中分校高二上学期期末)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解:(1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2·x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12, 且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝ ⎛⎭⎪⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立. 故△AOB 面积的最大值为22.19.(2019年百校联盟TOP20高三三月联考(全国Ⅱ卷))在平面直角坐标系xOy 中,与点M (-2,3)关于直线2x -y +2=0对称的点N 位于抛物线C :x 2=2py (p >0)上.(1)求抛物线C 的方程;(2)过点N 作两条倾斜角互补的直线交抛物线C 于A ,B 两点(非N 点),若AB 过焦点F ,求|AF ||BF |的值.解:(1)设N (m ,n ),则⎩⎨⎧n -3m +2=-12,m -22×2-n +32+2=0,解之得N (2,1),代入x 2=2py (p >0)得p =2, 所以抛物线C 的方程为x 2=4y . (2)显然直线NA 的斜率是存在的, 设直线NA 的方程y -1=k (x -2), 设直线NB 的方程y -1=-k (x -2), 设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 2=4y ,y -1=k (x -2)消元,得x 2-4kx +8k -4=0, 所以2+x 1=4k ,∴x 1=4k -2,∴y 1=4k (k -1)+1, 故A (4k -2,4k (k -1)+1), 同理,B (-4k -2,4k (k +1)+1),所以k AB =4k (k +1)+1-4k (k -1)-1-4k -2-4k +2=-1,若|AF ||BF |<1,因为cos45°=|BF |-|AF ||BF |+|AF |,∴|AF ||BF |=2-22+2=3-22,若|AF ||BF |>1,同理可求|AF ||BF |=2+22-2=3+2 2.20.(2019年辽宁省朝阳市普通高中高三第一次模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2且F 2关于直线x -y +a =0的对称点M 在直线3x +2y =0上.(1)求椭圆的离心率;(2)若过焦点F 2垂直x 轴的直线被椭圆截得的弦长为3,斜率为12的直线l 交椭圆于A ,B 两点,问是否存在定点P ,使得P A ,PB 的斜率之和为定值?若存在,求出所有满足条件的P 点坐标;若不存在,说明理由.解:(1)依题知F 2(c ,0),设M (x 0,y 0),则y 0x 0-c=-1且x 0+c 2-y 02+a =0,解得⎩⎪⎨⎪⎧x 0=-a ,y 0=a +c ,即M (-a ,a +c )∵M 在直线3x +2y =0上,∴-3a +2(a +c )=0,a =2c ,∴e =c a =12. (2)由(1)及题设得:c a =12且2b 2a =3, ∴a =2,b =3,∴椭圆方程为x 24+y 23=1设直线l 方程为y =12x +t ,代入椭圆方程消去y 整理得x 2+tx +t 2-3=0.依题Δ>0,即t 2<4设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-t ,x 1x 2=t 2-3如果存在P (m ,n )使得k P A +k PB 为定值,那么k P A +k PB 的取值将与t 无关k P A +k PB=y 1-n x 1-m +y 2-n x 2-m=⎝⎛⎭⎪⎫n -32m t +2mn -3t 2+mt +m 2-3,令⎝⎛⎭⎪⎫n -32m t +2mn -3t 2+mt +m 2-3=M则Mt 2+⎝ ⎛⎭⎪⎫mM +32m -n t +m 2M -3M -2mn +3=0为关于t (t 2<4)的恒等式∴⎩⎨⎧M =0,n =32m ,2mn =3,解得⎩⎨⎧m =1,n =32或⎩⎨⎧m =-1,n =-32综上可知,满足条件的定点P 是存在的,坐标为⎝ ⎛⎭⎪⎫-1,-32及⎝⎛⎭⎪⎫1,32.。

四川省德阳市重点高中2022届高三上学期第四阶段考试 数学(理)试卷

四川省德阳市重点高中2022届高三上学期第四阶段考试 数学(理)试卷

2021年秋高2019级第四阶段考试数学试卷(理科)考试时间:120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、单选题(本题共12小题,每小题5分,共60分)1.已知集合{1,2,3}A =,{}(1)(2)0B x Z x x =∈+-<,则A B =( ) A .{1,2,3}B .{1,2}C .{2,3}D .{1}2.已知命题:,cos 1p x x ∀∈<R ﹔命题:q x ∀∈R ﹐||11x e ⎛⎫≤ ⎪⎝⎭,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨3.双曲线2212x y -=-的离心率是( )A 3B 2C 2D 34.已知数列{}n a 的前n 项和n S ,且{}n a 满足122n n n a a a ++=+,532a a -=,若424S S =,则9a =( ) A .9 B .172C .10D .1925.执行如图所示的程序框图,输出的结果是( )A .16B .2524C .34D .11126.已知实数,x y 满足条件:0301x y x y x -≥⎧⎪+-≤⎨⎪≥⎩,则1yx +的最大值为( )A .12B .2C .35D .17.经数学家证明:“在平面上画有一组间距为a 的平行线,将一根长度为()l l a ≤的针任意掷在这个平面上,此针与平行线中任一条相交的概率为2lp aπ=(其中π为圆周率)”某试验者用一根长度为2cm 的针,在画有一组间距为3cm 平行线所在的平面上投掷了n 次,其中有120次出现该针与平行线相交,并据此估算出π的近似值为103,则n =( )A .300B .400C .500D .6008.已知()63212x a x x ⎛⎫+- ⎪⎝⎭的展开式中各项系数的和为3,则该展开式中常数项为( )A .80B .160C .240D .3209.已知函数32()2727f x x x x =--+,在下列说法中正确的是( ) A .(1,0)是函数()f x 的一个零点 B .函数()f x 只有两个零点 C .函数()f x 在(3,4)上至少有一个零点 D .函数()f x 在(3,4)上没有零点10.设向量()()()0,1,21b OC ,a OB ,,OA -=-=-=其中O 为坐标原点,0a >,0b >,若A ,B ,C 三点共线,则12a b +的最小值为( ) A .4B .6C .8D .911.已知一圆锥底面圆的直径为333a 的正四面体,并且正四面体在该几何体内可以任意转动,则a 的最大值为( )A .3B 2C .9322D 3212.已知实数a 、b ,满足526log 6log 25a =+,345a a b +=,则关于a 、b 下列判断正确的是( ) A .a <b <2B .b <a <2C .2<a <bD .2<b <a二、填空题(本大题共4小题,每小题5分,共20分)13.复数12i=-z (i 为虚数单位),则z z ⋅=__. 14.某市举行高三数学竞赛,有6个参赛名额分给甲乙丙三所学校,每所学校至少分得一个名额,共有______种不同的分配方法.(用数字作答) 15.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()12p a b c =++,则三角形的面积()()()S p p a p b p c =---中,故称该公式为海伦公式.将海伦公式推广到凸四边形(凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧)中,即“设凸四边形的四条边长分别为a ,b ,c ,d ,()12p a b c d =+++,凸四边形的一对对角和的一半为θ,则凸四边形的面积()()()()2cos S p p a p b p c p d abcd θ=-----.如图,在凸四边形ABCD 中,若2AB =,4BC =,5CD =,3DA =,则凸四边形ABCD 面积的最大值为________.16.已知点A 在抛物线23y x =上,过点A 作抛物线的切线与x 轴交于点B ,抛物线的焦点为F ,若30BAF ∠=︒,则A 的坐标为___________.三、解答題:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(本题满分12分)已知函数 f (x) = sin 2 x - sin x cos x .(1)求函数f (x)的最小正周期;(2)把 f (x)的图象沿x 轴向右平移8π个单位得到函数g(x)的图象,求不等式g(x)≤0的解集.18.(本小题满分12分)已知公差不为0的等差数列{n a }满足1a =1,且1a ,2a ,5a 成等比数列.(1)求数列{n a }的通项公式; (2)若12-=n n b 求数列{n n b a ⋅}的前n 项和n T ;19.(本小题满分12分)某高中生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价x 和销售量y 之间的一组数据如表所示:月份 1 2 3 4 5 6 销售单价(元) 9 9.5 10 10.5 11 8 销售量(件) 111086514.2(1)根据1至5月份的数据,y 与x 近似满足线性回归方程,求出y 关于x 的线性回归方程;(2)若由回归方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归方程是理想的,试问是否可以认为所得到的回归方程是理想的?(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本)20.(本题满分12分)如图,四边形ABEF 为正方形,若平面ABEF 丄平面ABCD , AD//BC , AD ⊥DC, AD=2DC=2BC .(1)求二面角A-CF-D 的余弦值;(2)判断点D 与平面CEF 的位置关系,并说明理由.21.(本小题满分12分)已知函数()x f = 1ln +-ax x (R a ∈). (1)函数()0≤x f 在定义域内恒成立,求实数a 的取值范围; (2)求证:当*N n ∈,2≥n 时,311311211222<⎪⎭⎫⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+n ; (3)若()x f 有两个不同的零点1x ,2x ,求证:2211a x x <.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本题满分10分)选修4-4:坐标系与参数方程如图,在极坐标系Ox 中,正方形OBCD 的边长为2.(1)求正方形OBCD 的边BC , CD 的极坐标方程;(2)若以O 为原点,OB ,OD 分别为x 轴,y 轴正方向建立平面直角坐标系,曲线E :522=+y x 与边BC , CD 分别交于点P,Q ,求直线PQ 的参数方程.23.(本小题满分10分)选修4-5:不等式选讲已知函数()x f =|x + 2| + |x -l|. (1)求不等式()x f <5的解集;(2)设函数()x f 的最小值为m ,若c b a ,,均为正数,且m c b a =++222 .求证:3≤++c b a .参考答案1.D【分析】先求得集合{}0,1B =,再根据交集定义得解.【详解】∵{}{}{}(1)(2)0120,1B x Z x x x Z x =∈+-<=∈-<<=,{1,2,3}A =, ∴A B ={1},故选:D. 2.B【分析】根据题意得命题p 是假命题,命题q 是真命题,再依次判断即可. 【详解】解:当0x =,cos 1x =,命题:,cos 1p x x ∀∈<R 是假命题;命题:q x ∀∈R ﹐||111x e e ⎛⎫⎛⎫≤= ⎪ ⎪⎝⎭⎝⎭是真命题,所以p q ∧,p q ∧⌝,()p q ⌝∨是假命题,p q ⌝∧是真命题故选:B 3.D【分析】根据双曲线方程求出,,a b c ,即可求出离心率. 【详解】 解:根据题意得2212x y -=-,即2212x y -=故21a =,22b =,2223c a b =+=,即1,a b c ===ce a∴=D 4.B【分析】根据122n n n a a a ++=+判断出{}n a 是等差数列,然后将条件化为基本量,进而解出答案.【详解】由122n n n a a a ++=+可知,{}n a 是等差数列,设公差为d ,所以53221a a d d -==⇒=,由()1421114642241S S a a a ⇒+=⨯+⇒==,所以9117822a =+=. 故选:B.5.D 【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量1110246S =+++的值,计算求解即可. 【详解】模拟的运行,可得该程序的功能是利用循环结构计算并输出变量1110246S =+++的值, 由于11111024612S =+++= 故选:D .6.C 【分析】画出可行域,利用斜率的几何意义求解. 【详解】根据约束条件画出可行域如图所示,1yx +表示可行域内的点与定点()1,0-的连线的斜率.解方程组030x y x y -=⎧⎨+-=⎩的33,22A ⎛⎫⎪⎝⎭,1yx +的最大值为3323512=+ 故选C. 7.A【分析】根据题意此针与平行线中任一条相交的概率为2lp aπ=列出关系式2120lnπα=,从而求n . 【详解】根据题意,得2120lnπα=,即221201033n ⨯=⨯,所以300n =. 故选:A. 8.D【分析】令1x =解得2a =,再求得6212x x ⎛⎫- ⎪⎝⎭展开式的通项公式求解.【详解】令1x =得6(1)(21)3a +-=,解得2a =,则6212x x ⎛⎫- ⎪⎝⎭展开式的通项为666316621C (2)(1)2C rr r r r r rr T x x x ---+⎛⎫=-=- ⎪⎝⎭, 则()632122x x x ⎛⎫+- ⎪⎝⎭展开式中常数项为26223633662(1)2C (1)2C 320--⨯-+-=.故选:D 9.C【分析】求出函数的零点,根据函数零点的概念依次讨论各选项即可得答案. 【详解】解:对于A 选项,函数的零点不是坐标,故错误;对于B 选项,()()()()()322()27272712711f x x x x x x x x x =--+=--=--+,故()0f x =得7,12x x ==±,即函数有三个零点,故错误;对于C 、D 选项,7(3,4)2x =∈,故函数()f x 在(3,4)上至少有一个零点,故C 正确,D 错误; 故选:C 10.C【分析】根据向量共线定理可得21a b +=,再应用基本不等式“1”的代换求12a b+的最小值,注意等号成立条件.【详解】由题设,(1,1)AB OB OA a =-=-,(1,2)AC OC OA b =-=--,A ,B ,C 三点共线,∴AB AC λ=且R λ∈,则1(1)21a b λλ-=-+⎧⎨=⎩,可得21a b +=,∴11()(2)42244428a b a b a b a b b ba b a a+=++=++≥+⋅=,当且仅当122b a ==时等号成立.∴112+a b的最小值为8 故选:C. 11.B【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a 的最大值. 【详解】依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球 设球心为P ,球的半径为r ,下底面半径为R ,轴截面上球与圆锥母线的切点为Q ,圆锥的轴截面如图:则32OA OB ==,因为332SO =,故可得:223SA SB SO OB ==+=;所以SAB △为等边三角形,故P 是SAB △的中心, 连接BP ,则BP 平分SBA ∠, 所以30PBO ∠=︒; 所以tan 30r R︒=,即33333322r R ==⨯=,即四面体的外接球的半径为32r =.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a 2, 而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以12r==,所以a=即a.故选:B.【点睛】本题考查了正四面体的外接球,将正四面体的外接球转化为正方体的外接球,是一种比较好的方法,本题属于难题.12.D【分析】先根据526log6log25a=+判断a接近2,进一步对a进行放缩,536log6log25a>+,进而通过对数运算性质和基本不等式可以判断a>2;根据b的结构,构造函数()341,R55x xf x x⎛⎫⎛⎫=+-∈⎪ ⎪⎝⎭⎝⎭,得出函数的单调性和零点,进而得到a,b的大小关系,最后再判断b和2的大小关系,最终得到答案.【详解】225265365565651 log6log25log6log25log6log5log6log5log6log6a=+>+=+=+=+2>=.构造函数:()341,R55x xf x x⎛⎫⎛⎫=+-∈⎪ ⎪⎝⎭⎝⎭,易知函数()f x是R上的减函数,且()20f=,由2a>,可知:()341034555a aa a af a⎛⎫⎛⎫=+-<⇒+<⎪ ⎪⎝⎭⎝⎭,又345a a b+=,∴55b a<,则a>b.又∵2253434252b a a b=+>+=⇒>,∴a>b>2.故选:D.【点睛】对数函数式比较大小通常借助中间量,除了0和1之外,其它的中间量需要根据题目进行分析,中间会用到指对数的运算性质和放缩法;另外,构造函数利用函数的单调性比较大小是比较常用的一种方法,需要我们对式子的结构进行仔细分析,平常注意归纳总结.13.15【分析】根据复数的除法运算化简z ,再求出z ,利用复数的乘法运算计算即可求解.【详解】()()12i 21i 2i 2i 2i 55z +===+--+,则21i 55z =-2121411i i 555525255z z ⎛⎫⎛⎫+-=+= ⎪⎪⎝⎭⋅=⎝⎭, 故答案为:15. 14.10【分析】名额之间无差别,用隔板法即可得出结果.【详解】6个名额分给其他3个学校,由隔板法知有25=10C 种方法,故答案为:10 15.2102【分析】由已知,将边长代入后可将面积转化为2cos θ的最值问题 【详解】因为()12p a b c d =+++,且2AB =,4BC =,5CD =,3DA =, 所以()172p AB BC CD DA =+++=,∴S =θ2cos 840abcd - 当2cos θ=0即当90θ=︒的时候,S 取到最大值2102 故答案为:210216.9,4⎛ ⎝⎭【分析】设出A 点坐标,求得切线方程,由此求得B 点坐标,根据cos 30BAF ∠=︒列方程,解方程求得A 点的坐标.【详解】3,04F ⎛⎫⎪⎝⎭,设200,3y A y ⎛⎫ ⎪⎝⎭,00y ≠,依题意可知过A 点的切线斜率存在且不为0,设为k ,则切线方程为203y y y k x ⎛⎫-=- ⎪⎝⎭,即2003kyy kx y =+-,由200233ky y kx y y x⎧=+-⎪⎨⎪=⎩,化简得2200330k y y y ky ⋅-+-=,()2009430k y ky ∆=--=,220041290k y ky -+=,()20230ky -=,032k y =,故切线方程为2000323y y y x y ⎛⎫-=⋅- ⎪⎝⎭,令0y =得203y x =-,故20,03y B ⎛⎫- ⎪⎝⎭,2002,3y AB y ⎛⎫-=-⎪⎝⎭,20094,12y AF y ⎛⎫-=- ⎪⎝⎭, 依题意,3cos 2AB AF BAF AB AF⋅∠==⋅222000294y y y --⋅+=, 204y =42004270y y -=,由于00y ≠,故20027,4y y ==,此时20027193434yx ==⨯=,所以A 点坐标为9,4⎛⎝⎭.故答案为:9,4⎛ ⎝⎭【点睛】本题的难点有两个,一个是求过A 的切线方程,另一个是利用30BAF ∠=︒来列方程,解方程的过程中要注意运算的准确性.18.19.21.。

2020年高三理科数学一轮讲义案第九章9.7《抛物线》附答案解析

2020年高三理科数学一轮讲义案第九章9.7《抛物线》附答案解析

【训练 2】 (1)如图,过抛物线 y2=2px(p>0)的焦点 F 的直线交抛物线于点 A,B,交其准线 l 于点 C, 若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为________.
(2)已知点 A(3,0),过抛物线 y2=4x 上一点 P 的直线与直线 x=-1 垂直相交于点 B,若|PB|=|PA|,则 P 的横坐标为( )
y=ax2(a≠0)可化为
x2=1y,是焦点在 a
y
轴上的抛物线,且其焦点坐标是
0, 1 4a
,准线方程是
y
=-41a.
(3)抛物线是只有一条对称轴的轴对称图形.
(4)一条直线平行抛物线的对称轴,此时与抛物线只有一个交点,但不相切.
答案 (1)× (2)× (3)× (4)× (5)√
2.(选修 2-1P72A1 改编)顶点在原点,且过点 P(-2,3)的抛物线的标准方程是________________.
(4)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( )
(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线 x2 =-2ay(a>0)的通径长为 2a.( )
解析 (1)当定点在定直线上时,轨迹为过定点 F 与定直线 l 垂直的一条直线,而非抛物线.
(2)方程
A.1
B.32
C.2
D.52
解析 (1)设 A,B 在准线上的射影分别为 A1,B1,
由于|BC|=2|BF|=2|BB1|,则直线的斜率为 3,
故|AC|=2|AA1|=6,从而|BF|=1,|AB|=4,
故 p =|CF|=1,即 p=3,从而抛物线的方程为 y2=3x.

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析

高三数学抛物线试题答案及解析1.设双曲线的离心率为2,且一个焦点与抛物线的焦点相同,则此双曲线的方程为__________.【答案】.【解析】抛物线的焦点坐标为(0,2),所以双曲线的焦点在y轴上且c=2,所以双曲线的方程为,即a2=n>0,b2=-m>0,所以a=,又e=,解得n=1,所以b2=c2-a2=4-1=3,即-m=3,m=-3,所以双曲线的方程为,故答案为:.【考点】1.抛物线的简单性质;2.双曲线的简单性质.2.已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(1)证明: 为定值;(2)若△POM的面积为,求向量与的夹角;(3)证明直线PQ恒过一个定点.【答案】(1)见解析; (2) ;(3)直线PQ过定点E(1,-4).【解析】(1)设点根据、M、A三点共线,得计算得到=5;(2)设∠POM=α,可得结合三角形面积公式可得tanα="1."根据角的范围,即得所求.(3)设点、B、Q三点共线,据此确定进一步确定的方程,化简为得出结论.试题解析:(1)设点、M、A三点共线,2分5分(2)设∠POM=α,则由此可得tanα=1. 8分又 10分(3)设点、B、Q三点共线,即 12分即 13分由(*)式,代入上式,得由此可知直线PQ过定点E(1,-4). 14分【考点】抛物线及其几何性质,直线方程,直线与抛物线的位置关系,转化与化归思想.3.已知抛物线C: y2 =2px(p>0)的准线L,过M(l,0)且斜率为的直线与L相交于A,与C的一个交点为B,若,则p=____ 。

【答案】2【解析】由题意可得,抛物线的焦点为,准线为.,为AB的中点.直线方程为,由题意可得,故由中点公式可得,把点B的坐标代入抛物线可得,解得.【考点】直线与抛物线的位置关系4.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).(1)求双曲线C的方程;(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.【答案】(1)-y2=1(2)(-1,-)∪(,1)【解析】(1)设双曲线C的方程为-=1(a>0,b>0).由已知得a=,c=2,再由c2=a2+b2得b2=1,所以双曲线C的方程为-y2=1.(2)将y=kx+代入-y2=1中,整理得(1-3k2)x2-6kx-9=0,由题意得,故k2≠且k2<1①.设A(xA ,yA),B(xB,yB),则xA+xB=,xAxB=,由·>2得xA xB+yAyB>2,x A xB+yAyB=xAxB+(kxA+)(kxB+)=(k2+1)xAxB+k(xA+xB)+2=(k2+1)·+k·+2=,于是>2,即>0,解得<k2<3②.由①②得<k2<1,所以k的取值范围为(-1,-)∪(,1).5.已知圆P:x2+y2=4y及抛物线S:x2=8y,过圆心P作直线l,此直线与上述两曲线的四个交点,自左向右顺次记为A,B,C,D,如果线段AB,BC,CD的长按此顺序构成一个等差数列,则直线l的斜率为( )A.B.C.D.【答案】A【解析】圆的方程为,则其直径长圆心为,设的方程为,代入抛物线方程得:设,有∴线段的长按此顺序构成一个等差数列,,即,解得,故选A.【考点】1.抛物线的几何性质;2.直线与抛物线相交问题.6.已知F是抛物线的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为()A.B.1C.D.【答案】C【解析】过A,B及线段AB的中点C向抛物线的准线作垂线,垂足分别为M,N,Q,CQ交y轴于T,由抛物线的定义知|AM|+|BN|=|AF|+|BF|=3,因为CQ是直角梯形AMNB的中位线所以CQ|=(|AM|+|BN)=,所以|CT|=|CQ|-|TQ|=-=7.已知抛物线的准线与x轴交于点M,过点M作圆的两条切线,切点为A、B,.(1)求抛物线E的方程;(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.【答案】(1)y2=4x;(2)点N坐标为或.【解析】本题主要考查抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质等基础知识,考查学生分析问题解决问题的能力和计算能力.第一问,利用抛物线的准线,得到M点的坐标,利用圆的方程得到圆心C的坐标,在中,可求出,在中,利用相似三角形进行角的转换,得到的长,而,从而解出P的值,即得到抛物线的标准方程;第二问,设出N点的坐标,利用N、C点坐标写出圆C的方程,利用点C的坐标写出圆C的方程,两方程联立,由于P、Q是两圆的公共点,所以联立得到的方程即为直线PQ的方程,而O点在直线上,代入点O的坐标,即可得到s、t的值,即得到N点坐标.试题解析:(1)由已知得,C(2,0).设AB与x轴交于点R,由圆的对称性可知,.于是,所以,即,p=2.故抛物线E的方程为y2=4x. 5分(2)设N(s,t).P,Q是NC为直径的圆D与圆C的两交点.圆D方程为,即x2+y2-(s+2)x-ty+2s=0.①又圆C方程为x2+y2-4x+3=0.②②-①得(s-2)x+ty+3-2s=0.③ 9分P,Q两点坐标是方程①和②的解,也是方程③的解,从而③为直线PQ的方程.因为直线PQ经过点O,所以3-2s=0,.故点N坐标为或. 12分【考点】抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质.8.如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点.(1)若直线PQ过定点,求点A的坐标;(2)对于第(1)问的点A,三角形APQ能否为等腰直角三角形?若能,试确定三角形APD的个数;若不能,说明理由.【答案】(1),(2)一个【解析】(1)确定抛物线标准方程只需一个独立条件,本题条件为已知通径长所以抛物线的方程为.直线过定点问题,实际是一个等式恒成立问题.解决问题的核心是建立变量的一个等式.可以考虑将直线的斜率列为变量,为避开讨论,可设的方程为,与联立消得,则,设点坐标为,则有,代入化简得:因此,点坐标为,(2)若三角形APQ为等腰直角三角形,则的中点与点A连线垂直于.先求出的中点坐标为,再讨论方程解的个数,这就转化为研究函数增减性,并利用零点存在定理判断零点有且只有一个.试题解析:(1)设抛物线的方程为,依题意,,则所求抛物线的方程为. (2分)设直线的方程为,点、的坐标分别为.由,消得.由,得,,.∵,∴.设点坐标为,则有.,,∴或.∴或, ∵恒成立. ∴.又直线过定点,即,代入上式得注意到上式对任意都成立,故有,从而点坐标为. (8分)(2)假设存在以为底边的等腰直角三角形,由第(1)问可知,将用代换得直线的方程为.设,由消,得.∴,.∵的中点坐标为,即,∵,∴的中点坐标为.由已知得,即.设,则,在上是增函数.又,,在内有一个零点.函数在上有且只有一个零点,所以满足条件的等腰直角三角形有且只有一个. (12分)【考点】直线与抛物线关系,零点存在定理9.在平面直角坐标系中,已知三点,直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为,而直线AB恰好经过抛物线)的焦点F并且与抛物线交于P、Q两点(P在Y轴左侧).则()A.9B.C.D.【答案】A【解析】由题意得,且.令,,则,所以,且,由此可解得.由抛物线的方程知焦点为,因此设直线的方程为,代入抛物线方程,得,解得或,所以由题意知,.由图形特征根据三角形相似易知.【考点】1、直线的斜率;2、直线方程;3、直线与抛物线的位置关系.10.抛物线y2=-8x的准线方程是________.【答案】x=2【解析】∵2p=8,∴p=4,故所求准线方程为x=2.11.下图是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m.水位下降1m后,水面宽________m.【答案】2【解析】设抛物线的方程为x2=-2py,则点(2,-2)在抛物线上,代入可得p=1,所以x2=-2y.当y=-3时,x2=6,即x=±,所以水面宽为2.12.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y).若点M到该抛物线焦点的距离为3,则|OM|等于()A.2B.2C.4D.2【答案】B【解析】由题意设抛物线方程为y2=2px(p>0),则M到焦点的距离为xM+=2+=3,∴p=2,∴y2=4x. ∴=4×2,∴|OM|===2.故选B.13.已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=.【答案】2【解析】设A(x0,y),由抛物线定义知x+1=2,∴x=1,则直线AB⊥x轴,∴|BF|=|AF|=2.14.已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A、B两点,若·=0,则k等于()(A) (B) (C) (D)2【答案】D【解析】法一设直线方程为y=k(x-2),A(x1,y1)、B(x2,y2),由得k2x2-4(k2+2)x+4k2=0,∴x1+x2=,x 1x2=4,由·=0,得(x1+2,y1-2)·(x2+2,y2-2)=(x1+2)(x2+2)+[k(x1-2)-2][k(x2-2)-2]=0,代入整理得k2-4k+4=0,解得k=2.故选D.法二如图所示,设F为焦点,取AB中点P,过A、B分别作准线的垂线,垂足分别为G、H,连接MF,MP,由·=0,知MA⊥MB,则|MP|=|AB|=(|AG|+|BH|),所以MP为直角梯形BHGA的中位线,所以MP∥AG∥BH,所以∠GAM=∠AMP=∠MAP,又|AG|=|AF|,|AM|=|AM|,所以△AMG≌△AMF,所以∠AFM=∠AGM=90°,则MF⊥AB,所以k=-=2.15.已知F是抛物线y2=4x的焦点,P是圆x2+y2-8x-8y+31=0上的动点,则|FP|的最小值是() A.3B.4C.5D.6【答案】B【解析】圆x2+y2-8x-8y+31=0的圆心C坐标为(4,4),半径为1,∵|PF|≥|CF|-1,∴当P、C、F三点共线时,|PF|取到最小值,由y2=4x知F(1,0),∴|PF|min=-1=4.故选B.16.已知点A(4,4)在抛物线y2=px(p>0)上,该抛物线的焦点为F,过点A作直线l:x=-的垂线,垂足为M,则∠MAF的平分线所在直线的方程为.【答案】x-2y+4=0【解析】点A在抛物线上,所以16=4p,所以p=4,所以抛物线的焦点为F(1,0),准线方程为x=-1,垂足M(-1,4),由抛物线的定义得|AF|=|AM|,所以∠MAF的平分线所在的直线就是线段MF的垂直平分线,kMF==-2,所以∠MAF的平分线所在的直线方程为y-4=(x-4),即x-2y+4=0.17.设M(x0,y)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x的取值范围是()A.(2,+∞)B.(4,+∞) C.(0,2)D.(0,4)【答案】A【解析】∵(x0,y)为抛物线C:y2=8x上一点,∴x≥0,又∵以F为圆心,|FM|为半径的圆和抛物线C的准线相交,∴在水平方向上,点M应在点F的右侧,∴x>2.18.过抛物线y2=2px(p>0)上一定点P(x0,y)(y>0)作两直线分别交抛物线于A(x1,y1),B(x2,y2),当PA与PB的斜率存在且倾斜角互补时,的值为.【答案】-2【解析】设直线PA的斜率为kPA ,PB的斜率为kPB,由=2px1,=2px,得kPA==,同理kPB=,由于PA与PB的斜率存在且倾斜角互补,因此=-,即y1+y2=-2y(y>0),那么=-2.19.若抛物线y2=2px(p>0)的焦点在圆x2+y2+2x-3=0上,则p=()A.B.1C.2D.3【答案】C【解析】由已知(,0)在圆x2+y2+2x-3=0上,所以有+2×-3=0,即p2+4p-12=0,解得p=2或p=-6(舍去).20.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线共有()A.1条B.2条C.3条D.4条【答案】C【解析】作出图形,可知点(0,1)在抛物线y2=4x外.因此,过该点可作抛物线y2=4x的切线有两条,还能作一条与抛物线y2=4x的对称轴平行的直线,因此共有三条直线与抛物线只有一个交点.21.如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.(1)求实数b的值.(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.【答案】(1) b=-1 (2) (x-2)2+(y-1)2=4【解析】(1)由得x2-4x-4b=0(*)因为直线l与抛物线C相切,所以Δ=(-4)2-4×(-4b)=0.解得b=-1.(2)由(1)可知b=-1,故方程(*)为x2-4x+4=0.解得x=2,代入x2=4y,得y=1,故点A(2,1).因为圆A与抛物线C的准线相切,所以圆A的半径r就等于圆心A到抛物线的准线y=-1的距离,即r=|1-(-1)|=2,所以圆A的方程为(x-2)2+(y-1)2=4.22.过抛物线焦点的直线交其于,两点,为坐标原点.若,则的面积为()A.B.C.D.2【答案】C【解析】设直线的倾斜角为及,∵,∴点到准线的距离为,∴,则.∴的面积为.故选C.【考点】抛物线的几何性质,直线与抛物线的位置关系.23.如图X15-3所示,已知圆C1:x2+(y-1)2=4和抛物线C2:y=x2-1,过坐标原点O的直线与C2相交于点A,B,定点M的坐标为(0,-1),直线MA,MB分别与C1相交于点D,E.(1)求证:MA⊥MB;(2)记△MAB,△MDE的面积分别为S1,S2,若=λ,求λ的取值范围.【答案】(1)见解析(2)【解析】(1)证明:设直线AB的方程为y=kx,A(x1,y1),B(x2,y2),则x2-kx-1=0,所以x1+x2=k,x1x2=-1.又·=(x1,y1+1)·(x2,y2+1)=(k2+1)x1x2+k(x1+x2)+1=-k2-1+k2+1=0,∴MA⊥MB.(2)设直线MA的方程为y=k1x-1,MB的方程为y=k2x-1,k1k2=-1.解得或∴A(k1,-1),同理可得B(k2,-1),∴S1=|MA||MB|=|k1k2|.又解得或∴D ,同理可得E . ∴S 2=|MD||ME|=.=λ==≥.故λ的取值范围是.24. 已知抛物线C :y 2=2px(p>0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP|=|PB|,求△FAB 的面积. 【答案】(1) y 2=8x (2) 24【解析】解:(1)易知直线与抛物线的交点坐标为(8,-8),∴82=2p×8, ∴2p =8,∴抛物线方程为y 2=8x. (2)直线l 2与l 1垂直,故可设l 2:x =y +m ,A(x 1,y 1),B(x 2,y 2),且直线l 2与x 轴的交点为M. 由得y 2-8y -8m =0,Δ=64+32m>0,∴m>-2. y 1+y 2=8,y 1y 2=-8m , ∴ x 1x 2==m 2.由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍), ∴l 2:x =y +8,M(8,0).故S △FAB =S △FMB +S △FMA =·|FM|·|y 1-y 2|=3=24.25. 已知抛物线方程为x 2=4y ,过点M (0,m )的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,且x 1x 2=-4,则m 的值为________. 【答案】1【解析】设直线方程为y =kx +m ,代入抛物线方程得x 2-4kx -4m =0,所以x 1x 2=-4m ,所以m =1.26. 抛物线的焦点坐标是( ) A .(2,0) B .(0,2) C .(l ,0) D .(0,1)【答案】D 【解析】因为,所以,因为焦点在的正半轴,所以焦点坐标为即。

高中数学《抛物线切线2》导学案

高中数学《抛物线切线2》导学案

抛物线切线的性质2例1:过点P (3,4)作抛物线x 2=2y 的两条切线,切点分别为A 、B ,则直线AB 的斜率为 . 解:根据定理1的公式得,AB 直线方程为:()4300+=⇒+=y x y y p xx ,故斜率为3。

切点弦性质定理1:设过点P 与抛物线对称轴平行的直线交抛物线于M ,交切点弦于点Q ,则Q 点平分切点弦AB 。

(无论点P 在曲线的什么位置,上述结论均成立)。

且M 处的切线平行于抛物线的切点弦。

(图1,3) 定理2:直线:l y kx m =+上一动点Q 引抛物线两切线,QA QB ,则过两切点的直线AB 必过定点G (图2,4)如图1,点()00,y x P 为抛物线py x 22=外任意一点,过点P 作抛物线两条切线分别切于A 、B 两点,AB 的中点为Q ,直线PQ 交抛物线于点M ,求证:(1)()轴上的截距在为直线,y AB m m y x x G -==00;且直线AB 方程为()00y y p xx +=;(2)设点M 处的切线l ,求证AB //l 。

证明:(1) 点()11,y x A ()22,y x B 在抛物线上∴2221212;2py x py x ==求导得pxp x y =='22;在点()11,y x A ()22,y x B 的切线方程为:()()⎪⎪⎩⎪⎪⎨⎧-=--=-222111x x p x y y x x p x y y 即()()()()⎩⎨⎧+=+=212211y y p xx y y p xx ()()12-得:()1212)(y y p x x x -=-,即222)(12212212x x x p x p x p x x x +=⇒⎪⎪⎭⎫⎝⎛-=-∴Q x x x x =+=2120 将点Q ),2(012y x x +代入切线方程得:()0211011222py x x y y p x x x =⇒+=+令AB 方程为y kx m =+,代入22x py =得:0222=--pm pkx x 02122py pm x x =-=∴所以直线AB 过定点(0,0y -);故AB 方程为()()0000x y x y xx p y y p=+-⇒=+ (2)p x k pk x x x pm pkx x 012022022=⇒=+=⇒=--,M 点坐标为⎪⎪⎭⎫ ⎝⎛p x x 2,200,以M 点为切点的切线斜率为px p x y 0022==',故AB //l 。

历年高三数学高考考点之抛物线必会题型及答案

历年高三数学高考考点之抛物线必会题型及答案

历年高三数学高考考点之<抛物线>必会题型及答案体验高考1.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( ) A.(1,3) B.(1,4)C.(2,3) D.(2,4) 答案 D解析 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),当直线l 的斜率不存在时,符合条件的直线l 必有两条;当直线l 的斜率k 存在时,如图x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2, 由CM ⊥AB 得,k ·y 0-0x 0-5=-1,y 0·k =5-x 0, 2=5-x 0,x 0=3,即M 必在直线x =3上, 将x =3代入y 2=4x ,得y 2=12, ∴-23<y 0<23, ∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16, 又y 20+4>4,∴4<r 2<16,∴2<r <4.故选D.2.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 答案 A解析 由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1. 3.(2016·四川)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.33B.23C.22D.1 答案 C 解析 如图,由题意可知F ⎝ ⎛⎭⎪⎫p 2,0,设P 点坐标为⎝ ⎛⎭⎪⎫y 202p ,y 0,显然,当y 0<0时,k OM <0;y 0>0时,k OM >0,要求k OM 的最大值,不妨设y 0>0.则OM →=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF →=⎝ ⎛⎭⎪⎫y 26p +p 3,y 03,k OM =y 03y 206p +p 3=2y 0p +2p y 0≤222=22,当且仅当y 20=2p 2时等号成立.故选C.4.(2016·课标全国乙)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2B.4C.6D.8 答案 B解析 不妨设抛物线C :y 2=2px (p >0),则圆的方程可设为x 2+y 2=r 2(r >0),如图,又可设A (x 0,22),D ⎝ ⎛⎭⎪⎫-p2,5, 点A (x 0,22)在抛物线y 2=2px 上,∴8=2px 0, ① 点A (x 0,22)在圆x 2+y 2=r 2上,∴x 20+8=r 2, ②点D ⎝ ⎛⎭⎪⎫-p2,5在圆x 2+y 2=r 2上,∴⎝ ⎛⎭⎪⎫p 22+5=r 2, ③联立①②③,解得p =4,即C 的焦点到准线的距离为p =4,故选B.5.(2015·上海)抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =______. 答案 2解析 根据抛物线的性质,我们知道当且仅当动点Q 运动到原点的时候,才与抛物线焦点的距离最小,所以有|PQ |min =p2=1⇒p =2.高考必会题型题型一 抛物线的定义及其应用例1 已知P 为抛物线y 2=6x 上一点,点P 到直线l :3x -4y +26=0的距离为d 1.(1)求d 1的最小值,并求此时点P 的坐标;(2)若点P 到抛物线的准线的距离为d 2,求d 1+d 2的最小值. 解 (1)设P (y 206,y 0),则d 1=|12y 20-4y 0+26|5=110|(y 0-4)2+36|,当y 0=4时,(d 1)min =185,此时x 0=y 206=83,∴当P 点坐标为(83,4)时,(d 1)min =185.(2)设抛物线的焦点为F , 则F (32,0),且d 2=|PF |,∴d 1+d 2=d 1+|PF |,它的最小值为点F 到直线l 的距离|92+26|5=6110,∴(d 1+d 2)min =6110.点评 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.变式训练1 (1)(2016·浙江)若抛物线y 2=4x 上的点M 到焦点的距离为10,则点M 到y 轴的距离是________.(2)已知点P 在抛物线y 2=4x 上,那么点P 到Q (2,1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A.(14,1) B.(14,-1)C.(1,2) D.(1,-2) 答案 (1)9 (2)B解析 (1)抛物线y 2=4x 的焦点F (1,0).准线为x =-1,由M 到焦点的距离为10,可知M 到准线x =-1的距离也为10,故M 的横坐标满足x M +1=10,解得x M =9,所以点M 到y 轴的距离为9.(2)抛物线y 2=4x 焦点为F (1,0),准线为x =-1, 作PQ 垂直于准线,垂足为M ,根据抛物线定义,|PQ |+|PF |=|PQ |+|PM |,根据三角形两边之和大于第三边,直角三角形斜边大于直角边知:|PQ |+|PM |的最小值是点Q 到抛物线准线x =-1的距离. 所以点P 纵坐标为-1,则横坐标为14,即(14,-1).题型二 抛物线的标准方程及几何性质例2 (2015·福建)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.方法一 (1)解 由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明 因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223.所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切. 方法二 (1)解 同方法一.(2)证明 设以点F 为圆心且与直线GA 相切的圆的半径为r . 因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0.解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0. 从而r =|22+22|8+9=4217.又直线GB 的方程为22x +3y +22=0.所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.点评 (1)由抛物线的标准方程,可以首先确定抛物线的开口方向、焦点的位置及p 的值,再进一步确定抛物线的焦点坐标和准线方程.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.变式训练2 已知抛物线C 的顶点在坐标原点O ,其图象关于y 轴对称且经过点M (2,1). (1)求抛物线C 的方程;(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;(3)过点M 作抛物线C 的两条弦MA ,MB ,设MA ,MB 所在直线的斜率分别为k 1,k 2,当k 1+k 2=-2时,试证明直线AB 的斜率为定值,并求出该定值. 解 (1)设抛物线C 的方程为x 2=2py (p >0), 由点M (2,1)在抛物线C 上,得4=2p , 则p =2,∴抛物线C 的方程为x 2=4y .(2)设该等边三角形OPQ 的顶点P ,Q 在抛物线上, 且P (x P ,y P ),Q (x Q ,y Q ), 则x 2P =4y P ,x 2Q =4y Q ,由|OP |=|OQ |,得x 2P +y 2P =x 2Q +y 2Q , 即(y P -y Q )(y P +y Q +4)=0.又y P >0,y Q >0,则y P =y Q ,|x P |=|x Q |, 即线段PQ 关于y 轴对称. ∴∠POy =30°,y P =3x P , 代入x 2P =4y P ,得x P =43,∴该等边三角形边长为83,S △POQ =48 3. (3)设A (x 1,y 1),B (x 2,y 2), 则x 21=4y 1,x 22=4y 2,∴k 1+k 2=y 1-1x 1-2+y 2-1x 2-2=14x 21-1x 1-2+14x 22-1x 2-2=14(x 1+2+x 2+2)=-2.∴x 1+x 2=-12,∴k AB =y 2-y 1x 2-x 1=14x 22-14x 21x 2-x 1=14(x 1+x 2)=-3.题型三 直线和抛物线的位置关系例3 已知圆C 1的方程为x 2+(y -2)2=1,定直线l 的方程为y =-1.动圆C 与圆C 1外切,且与直线l 相切.(1)求动圆圆心C 的轨迹M 的方程;(2)直线l ′与轨迹M 相切于第一象限的点P ,过点P 作直线l ′的垂线恰好经过点A (0,6),并交轨迹M 于异于点P 的点Q ,记S 为△POQ (O 为坐标原点)的面积,求S 的值. 解 (1)设动圆圆心C 的坐标为(x ,y ),动圆半径为R , 则|CC 1|=x 2+(y -2)2=R +1,且|y +1|=R , 可得x 2+(y -2)2=|y +1|+1.由于圆C 1在直线l 的上方,所以动圆C 的圆心C 应该在直线l 的上方, ∴有y +1>0,x 2+(y -2)2=y +2,整理得x 2=8y ,即为动圆圆心C 的轨迹M 的方程.(2)设点P 的坐标为(x 0,x 208),则y =x 28,y ′=14x ,k l ′=x 04,k PQ =-4x 0,∴直线PQ 的方程为y =-4x 0x +6.又k PQ =x 208-6x 0,∴x 208-6x 0=-4x 0,x 20=16,∵点P 在第一象限,∴x 0=4,点P 的坐标为(4,2),直线PQ 的方程为y =-x +6.联立⎩⎪⎨⎪⎧y =-x +6,x 2=8y ,得x 2+8x -48=0,解得x =-12或4,∴点Q 的坐标为(-12,18). ∴S =12|OA |·|x P -x Q |=48.点评 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.变式训练3 (2015·课标全国Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a(x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.高考题型精练1.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线l ′于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A.y 2=9x B.y 2=6x C.y 2=3x D.y 2=3x 答案 C解析 如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得: |BC |=2a ,由定义得:|BD |=a , 故∠BCD =30°. 在直角三角形ACE 中,∵|AF |=3,∴|AE |=3,|AC |=3+3a , ∴2|AE |=|AC |,∴3+3a =6, 从而得a =1,∵BD ∥FG , ∴1p =23,求得p =32, 因此抛物线方程为y 2=3x ,故选C.2.已知抛物线y 2=2px (p >0)的焦点为F ,P 、Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( ) A.2±3B.2+3C.3±1D.3-1 答案 A解析 依题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 212p ,y 1,Q ⎝ ⎛⎭⎪⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p 2,∴y 21=y 22,∴y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝ ⎛⎭⎪⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2±3,故选A.3.设F 为抛物线y 2=8x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA →|+|FB →|+|FC →|的值是( ) A.6B.8C.9D.12 答案 D解析 由抛物线方程,得F (2,0),准线方程为x =-2. 设A ,B ,C 坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),则由抛物线的定义,知|FA |+|FB |+|FC |=x 1+2+x 2+2+x 3+2=x 1+x 2+x 3+6. 因为FA →+FB →+FC →=0,所以(x 1-2+x 2-2+x 3-2,y 1+y 2+y 3)=(0,0), 则x 1-2+x 2-2+x 3-2=0,即x 1+x 2+x 3=6, 所以|FA →|+|FB →|+|FC →|=|FA |+|FB |+|FC | =x 1+x 2+x 3+6=12,故选D.4.已知抛物线C :y 2=8x 的焦点为F ,点M (-2,2),过点F 且斜率为k 的直线与C 交于A ,B 两点,若∠AMB =90°,则k 等于( )A.2B.22C.12D.2 答案 D解析 抛物线C :y 2=8x 的焦点为F (2,0),由题意可知直线AB 的斜率一定存在,所以设直线方程为y =k (x -2),代入抛物线方程可得 k 2x 2-(4k 2+8)x +4k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k2,x 1·x 2=4, 所以y 1+y 2=8k,y 1·y 2=-16, 因为∠AMB =90°,所以MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=16k 2-16k+4=0, 解得k =2,故选D.5.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12B.23C.34D.43答案 D解析 抛物线y 2=2px 的准线为直线x =-p 2,而点A (-2,3)在准线上,所以-p2=-2,即p =4,从而C :y 2=8x ,焦点为F (2,0).设切线方程为y -3=k (x +2),代入y 2=8x 得k 8y 2-y +2k +3=0(k ≠0),①由于Δ=1-4×k 8(2k +3)=0,所以k =-2或k =12. 因为切点在第一象限,所以k =12. 将k =12代入①中,得y =8,再代入y 2=8x 中得x =8, 所以点B 的坐标为(8,8),所以直线BF 的斜率为86=43. 6.已知A (x 1,y 1)是抛物线y 2=8x 的一个动点,B (x 2,y 2)是圆(x -2)2+y 2=16上的一个动点,定点N (2,0),若AB ∥x 轴,且x 1<x 2,则△NAB 的周长l 的取值范围是( )A.(6,10)B.(10,12)C.(8,12)D.(8,10)解析 抛物线的准线l :x =-2,焦点F (2,0),由抛物线定义可得|AF |=x 1+2,圆(x -2)2+y 2=16的圆心为(2,0),半径为4,又定点N (2,0),∴△NAB 的周长即为△FAB 的周长=|AF |+|AB |+|BF |=x 1+2+(x 2-x 1)+4=6+x 2, 由抛物线y 2=8x 及B (x 2,y 2)在圆(x -2)2+y 2=16上,∴x 2∈(2,6),∴6+x 2∈(8,12),故选C.7.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x -y -10=0上的点N ,经直线反射后又回到点M ,则x 0=________.答案 6解析 由题意得P (2,4),F (2,0)⇒Q (2,-4),因此N (6,-4),因为QN ∥PM ,所以MN ⊥QN ,即x 0=6.8.已知直线l 过点(0,2),且与抛物线y 2=4x 交于A (x 1,y 1),B (x 2,y 2)两点,则1y 1+1y 2=_____.答案 12解析 由题意可得直线的斜率存在且不等于0,设直线l 的方程为y =kx +2,代入抛物线y 2=4x 可得y 2-4k y +8k=0, ∴y 1+y 2=4k ,y 1y 2=8k ,∴1y 1+1y 2=y 1+y 2y 1y 2=12. 9.已知抛物线y 2=4x 与经过该抛物线焦点的直线l 在第一象限的交点为A ,A 在y 轴和准线上的投影分别为点B ,C ,|AB ||BC |=2,则直线l 的斜率为________.解析 设A (x 0,y 0),则|AB |=x 0,|BC |=1,由|AB ||BC |=x 01=2,得x 0=2,y 0=4×2=22, 又焦点F (1,0),所以直线l 的斜率为k =222-1=2 2. 10.已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.答案 0或-8解析 因为点M ,N 关于直线y =x +m 对称,所以MN 的垂直平分线为y =x +m ,所以直线MN 的斜率为-1.设线段MN 的中点为P (x 0,x 0+m ),直线MN 的方程为y =-x +b ,则x 0+m =-x 0+b ,所以b =2x 0+m .由⎩⎪⎨⎪⎧ y =-x +b ,x 2-y 23=1得2x 2+2bx -b 2-3=0, 所以x M +x N =-b ,所以x 0=-b 2,所以b =m2, 所以P (-m 4,34m ). 因为MN 的中点在抛物线y 2=18x 上,所以916m 2=-92m ,解得m =0或m =-8. 11.(2016·课标全国丙)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. (1)证明 由题意知,F ⎝ ⎛⎭⎪⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0.由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-ab a=-b =k 2. 所以AR ∥FQ .(2)解 设过AB 的直线为l ,l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题意可得|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=1,x 1=0(舍去),设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =y x -1(x ≠1).而a +b 2=y , 所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0)满足y 2=x -1.所以,所求轨迹方程为y 2=x -1.12.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:(1)y 1y 2=-p 2,x 1x 2=p 24; (2)1|AF |+1|BF |为定值; (3)以AB 为直径的圆与抛物线的准线相切.证明 (1)由已知得抛物线焦点坐标为(p 2,0). 由题意可设直线方程为x =my +p 2,代入y 2=2px , 得y 2=2p ⎝⎛⎭⎪⎫my +p 2,即y 2-2pmy -p 2=0.(*) 则y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2. 因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24. (2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24. 因为x 1x 2=p 24,x 1+x 2=|AB |-p , 代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值). (3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |.所以以AB 为直径的圆与抛物线的准线相切.。

求曲线(圆、椭圆、抛物线和一般曲线)的切线方程专题讲义-云南民族大学附属中学高三数学复习

求曲线(圆、椭圆、抛物线和一般曲线)的切线方程专题讲义-云南民族大学附属中学高三数学复习

求曲线(圆、椭圆、抛物线和一般曲线)的切线方程专题一 考纲解析:曲线的切线方程是近几年高考的重点和难点,一般出现在选择、填空和大题等位置。

常出现的题型包括圆的切线方程,椭圆、双曲线、抛物线以及一般曲线的切线方程。

处理方法有用直线与曲线联立∆判别式为零确定相切情况和利用导数几何意义求曲线的切线方程。

二、题型解析题型一 圆的切线方程方法指导:圆切线问题处理步骤首先看点),(000y x P 是在圆上还是圆外:若过圆上一点且与圆相切的切线方程只要一条;若过圆外一点且与圆相切需结合图形分析,过圆外一点且与圆相切要考虑切线斜率是否存在?如果斜率存在一般设切线方程:)(00x x k y y -=-切通过点到切线距离等于圆半径求出切线斜率,最后可通过图形检验切线斜率的正负性。

典例一 过点M (0,5)、N (3,-4)的圆圆心C 在直线:-2x+3y+3=0.求过点H (-2,4)且与圆C 相切的切线方程【解】:根据圆知识点圆内两条相交弦的交点即为圆心,3354-=--=MN k ,M,N 的中点为 (21,23),直线MN 的中垂线为:)23(3121-=-x y ,设圆心坐标为(a,b) 联立方程⎪⎩⎪⎨⎧-=-=++-)23(31210332a b b a 解得圆心坐标(3,1),故圆C 方程:25)1()3(22=-+-y x 如上图所示,H 点在圆外部,其中一条切线方程显然为:x=-2另外一条存在斜率,设为:)2(4+=-x k y ,圆心C(3,1)到直线的距离51|35|2=++=k k d ,解出,158则方程为:8x-15y+16=0,综述切线方程为:x=-2或8x-15y+16=0. 变式训练:(1)(2010年课标全国)圆心在原点且与直线x+y+2=0相切的圆的方程为【解】设圆的方程为:222r y x =+,根据题意,得22|2|=-=r ,所以圆的方程为:222=+y x(2) (2020.浙江)已知直线1)4(1)0(2222=+-=+>+=y x y x k b kx y 和圆与圆均相切,则k= ,b= .【解】: 如下图所示:满足k>0的直线方程即与122=+y x 圆相切且又与1)4(22=+-y x 圆相切的直线为直线AB ,则设直线AB方程为:)2(-=x k y ,圆心O (0,0)到直线AB的距离11|2|2=+-=k k d ,解得332,33-==b k 进而得到。

2020届高三文科数学总复习习题:9.5 抛物线及其性质 Word版含答案

2020届高三文科数学总复习习题:9.5 抛物线及其性质 Word版含答案

§9.5抛物线及其性质【考点集训】考点一抛物线的定义及其标准方程1.(2019届广东顶级名校期中联考,3)已知抛物线x2=ay(a≠0)的焦点为F,准线为l,该抛物线上的点M到x轴的距离为5,且|MF|=7,则焦点F到准线l的距离是()A.2B.3C.4D.5答案C2.(2018河南中原名校12月联考,11)已知双曲线C1:-=1(a>0,b>0)的离心率为3,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐的方程为()近线的距离为2,则抛物线C2A.x2=yB.x2=4yC.x2=12yD.x2=24y答案D3.(2018云南玉溪模拟,14)已知F是抛物线y=x2的焦点,M、N是该抛物线上的两点,|MF|+|NF|=3,则线段MN的中点到x轴的距离为.答案考点二抛物线的几何性质1.(2015陕西,3,5分)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为()A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)答案B2.(2017广东中山一调,5)已知抛物线x2=2py(p>0)的准线与椭圆+=1相切,则p的值为()A.4B.3C.2D.1答案A3.(2019届安徽皖中地区9月调研,9)抛物线E:y2=2px(p>0)的焦点为F,点A(0,2),若线段AF的中点B在抛物线上,则|BF|=()A. B. C. D.答案D考点三直线与抛物线的位置关系1.(2019届安徽皖东第二次联考,8)若抛物线x2=2y在点(a>0)处的切线与两条坐标轴围成的三角形的面积是8,则此切线方程是()A.x-4y-8=0B.4x-y-8=0C.x-4y+8=0D.4x-y+8=0答案B2.(2014课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=()A. B.6 C.12 D.7答案C3.(2019届福建福州9月质检,9)抛物线C的顶点在原点,焦点在x轴上,直线x-y=0与抛物线C交于A、B两点,若P(1,1)为线段AB 的中点,则抛物线C的方程为()A.y=2x2B.y2=2xC.x2=2yD.y2=-2x4.(2018广东深圳二模,15)设过抛物线y2=2px(p>0)上任意一点P(异于原点O)的直线与抛物线y2=8px(p>0)交于A,B两点,直线OP 与抛物线y2=8px(p>0)的另一个交点为Q,则△=.△答案3炼技法【方法集训】方法1求抛物线的标准方程的方法1.(2018河南顶级名校12月联考,7)已知直线l过抛物线y2=-2px(p>0)的焦点,且与抛物线交于A、B两点,若线段AB的长是8,AB的中点到y轴的距离是2,则此抛物线的方程是()A.y2=-12xB.y2=-8xC.y2=-6xD.y2=-4x答案B2.(2019届湖南八校第一次调研,9)在平面直角坐标系xOy中,动点P到圆(x-2)2+y2=1上的点的最小距离与其到直线x=-1的距离相等,则P点的轨迹方程是()A.y2=8xB.x2=8yC.y2=4xD.x2=4y答案A3.(2017河北六校模拟,14)抛物线C:y2=2px(p>0)的焦点为F,点O是坐标原点,过点O,F的圆与抛物线C的准线相切,且该圆的面积为36π,则抛物线的方程为.答案y2=16x方法2抛物线定义的应用策略1.(2014课标Ⅰ,10,5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=()A.1B.2C.4D.8答案A2.过抛物线y2=2px(p>0)的焦点F的直线l与抛物线交于B、C两点,l与抛物线的准线交于点A,且|AF|=6,=2,则|BC|=()A.8B.C.6D.答案D3.(2019届河南顶级名校高三入学测试,15)抛物线y2=8x的焦点为F,点A(6,3),P为抛物线上一点,且P不在直线AF上,则△PAF周长的最小值为.答案13方法3与直线和抛物线位置关系有关问题的求解方法1.(2018福建莆田模拟,6)已知O为坐标原点,F为抛物线C:y2=8x的焦点,过F作直线l与C交于A,B两点.若|AB|=10,则△OAB的重心的横坐标为()A. B.2 C. D.3答案B2.(2018湖北武汉模拟,9)过点P(2,-1)作抛物线x2=4y的两条切线,切点分别为A,B,PA,PB分别交x轴于E,F两点,O为坐标原点,则△PEF与△OAB的面积之比为()A. B. C. D.3.(2019届河南洛阳期中检测,20)已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点P的纵坐标为3,且|PF|=4,过M(m,0)作抛物线C的切线MA(斜率不为0),切点为A.(1)求抛物线C的方程;(2)求证:以FA为直径的圆过点M.解析(1)∵|PF|=yP+,∴4=3+,∴p=2.∴抛物线C的方程为x2=4y.(4分)(2)证明:设A(x0≠0),切线MA的斜率为k(k≠0).∵x2=4y,∴y=,∴y'=,∴k=.(5分)∴切线MA的方程为y-=(x-x0),即y=x-.(6分)∵切线过M(m,0),∴-=0.又∵x0≠0,∴x=2m.(8分)∵F(0,1),M(m,0),A(x0≠0),∴·=(-m,1)·-=(-m,1)·(m,m2)=0,(10分)∴∠FMA=90°,因此,以FA为直径的圆过点M.(12分)过专题【五年高考】A组统一命题·课标卷题组1.(2016课标全国Ⅱ,5,5分)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=()A. B.1 C. D.2答案D2.(2018课标全国Ⅰ,20,12分)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.解析(1)当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,-2).所以直线BM的方程为y=x+1或y=-x-1.(2)证明:当l与x轴垂直时,AB为MN的垂直平分线,所以∠ABM=∠ABN.当l与x轴不垂直时,设l的方程为y=k(x-2)(k≠0),M(x1,y1),N(x2,y2),则x1>0,x2>0.由-得ky2-2y-4k=0,可知y1+y2=,y1y2=-4.直线BM,BN的斜率之和为k BM+k BN=+=.①将x 1=+2,x 2=+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)==-=0.所以k BM +k BN =0,可知BM,BN 的倾斜角互补,所以∠ABM=∠ABN.综上,∠ABM=∠ABN.3.(2016课标全国Ⅲ,20,12分)已知抛物线C:y 2=2x 的焦点为F,平行于x 轴的两条直线l 1,l 2分别交C 于A,B 两点,交C 的准线于P,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 解析 由题设知F.设l 1:y=a,l 2:y=b,易知ab ≠0, 且A ,B ,P - ,Q - ,R -. 记过A,B 两点的直线为l,则l 的方程为2x-(a+b)y+ab=0.(3分) (1)证明:由于F 在线段AB 上,故1+ab=0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则 k 1=- = - - = =-=-b=k 2. 所以AR ∥FQ.(5分)(2)设l 与x 轴的交点为D(x 1,0),则S △ABF =|b-a||FD|=|b-a| -,S △PQF = -. 由题设可得2×|b-a| -=-, 所以x 1=0(舍去)或x 1=1.设满足条件的AB 的中点为E(x,y). 当AB 与x 轴不垂直时, 由k AB =k DE 可得 =-(x ≠1). 而=y,所以y 2=x-1(x ≠1). 当AB 与x 轴垂直时,E 与D 重合. 所以,所求轨迹方程为y 2=x-1.(12分) B 组 自主命题·省(区、市)卷题组考点一 抛物线的定义及其标准方程1.(2014辽宁,8,5分)已知点A(-2,3)在抛物线C:y 2=2px 的准线上,记C 的焦点为F,则直线AF 的斜率为( )A.-B.-1C.-D.-答案 C2.(2016浙江,19,15分)如图,设抛物线y 2=2px(p>0)的焦点为F,抛物线上的点A 到y 轴的距离等于|AF|-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N,AN 与x 轴交于点M.求M 的横坐标的取值范围.解析(1)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=-1的距离,由抛物线的定义得=1,即p=2.(2)由(1)得,抛物线方程为y2=4x,F(1,0),可设A(t2,2t),t≠0,t≠±1.因为AF不垂直于y轴,可设直线AF:x=sy+1(s≠0),由消去x得y2-4sy-4=0,故y1y2=-4,所以,B-.又直线AB的斜率为-,故直线FN的斜率为--.从而得直线FN:y=--(x-1),直线BN:y=-.所以N--.设M(m,0),由A,M,N三点共线得-=--,于是m=-.所以m<0或m>2.经检验,m<0或m>2满足题意.综上,点M的横坐标的取值范围是(-∞,0)∪(2,+∞).思路分析(1)利用抛物线的定义来解题;(2)由(1)知抛物线的方程,可设A点坐标及直线AF的方程,与抛物线方程联立可得B点坐标,进而得直线FN的方程与直线BN的方程,联立可得N点坐标,最后利用A,M,N三点共线可得kAN=k AM,最终求出结果.考点二抛物线的几何性质1.(2016四川,3,5分)抛物线y2=4x的焦点坐标是()A.(0,2)B.(0,1)C.(2,0)D.(1,0)答案D2.(2014安徽,3,5分)抛物线y=x2的准线方程是()A.y=-1B.y=-2C.x=-1D.x=-2答案A3.(2018北京,10,5分)已知直线l过点(1,0)且垂直于x轴.若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为. 答案(1,0)4.(2017天津,12,5分)设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为.答案(x+1)2+(y-)2=1考点三直线与抛物线的位置关系1.(2014湖南,14,5分)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=-1的距离相等.若机器人接触不到过点P(-1,0)且斜率为k的直线,则k的取值范围是.答案(-∞,-1)∪(1,+∞)2.(2015浙江,19,15分)如图,已知抛物线C1:y=x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.解析(1)由题意知直线PA的斜率存在,故可设直线PA的方程为y=k(x-t),由-消去y,整理得x2-4kx+4kt=0,由于直线PA与抛物线相切,得k=t.因此,点A的坐标为(2t,t2).设圆C2的圆心为D(0,1),点B的坐标为(x,y0),由题意知:点B,O关于直线PD对称,故--解得因此,点B的坐标为.(2)由(1)知|AP|=t·,和直线PA的方程tx-y-t2=0.点B到直线PA的距离是d=,设△PAB的面积为S(t),所以S(t)=|AP|·d=.C组教师专用题组考点一抛物线的定义及其标准方程1.(2013课标Ⅰ,8,5分)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2B.2C.2D.4答案C2.(2011课标,9,5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP 的面积为()A.18B.24C.36D.48答案C3.(2017山东,15,5分)在平面直角坐标系xOy中,双曲线-=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点.若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.答案y=±x考点二抛物线的几何性质1.(2013课标Ⅱ,10,5分)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x-1或y=-x+1B.y=(x-1)或y=-(x-1)C.y=(x-1)或y=-(x-1)D.y=(x-1)或y=-(x-1)答案C2.(2014陕西,11,5分)抛物线y2=4x的准线方程为.答案x=-13.(2014上海,4,4分)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为.答案x=-2考点三直线与抛物线的位置关系1.(2015四川,10,5分)设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)答案D2.(2014四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO 与△AFO面积之和的最小值是()A.2B.3C.D.答案B3.(2014浙江,22,14分)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.(1)若||=3,求点M的坐标;(2)求△ABP面积的最大值.解析(1)由题意知焦点F(0,1),准线方程为y=-1.设P(x,y0),由抛物线定义知|PF|=y0+1,得到y0=2,所以P(2,2)或P(-2,2).由=3,分别得M-或M.(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0).由得x2-4kx-4m=0,于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,所以AB中点M的坐标为(2k,2k2+m).由=3,得(-x,1-y0)=3(2k,2k2+m-1),所以---由=4y得k2=-m+.由Δ>0,k2≥0,得-<m≤.又因为|AB|=4·,点F(0,1)到直线AB的距离为d=-,所以S△ABP=4S△ABF=8|m-1|=-.记f(m)=3m3-5m2+m+1-.令f'(m)=9m2-10m+1=0,解得m=,m2=1.1可得f(m)在-上是增函数,在上是减函数,在上是增函数.又f=>f,所以,当m=时,f(m)取到最大值,此时k=±.所以,△ABP面积的最大值为.4.(2014福建,21,12分)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=-3的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P处的切线l与x轴交于点A,直线y=3分别与直线l及y轴交于点M,N.以MN为直径作圆C,过点A作圆C的切线,切点为B.试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.解析(1)解法一:设S(x,y)为曲线Γ上任意一点,依题意,点S到F(0,1)的距离与它到直线y=-1的距离相等,所以曲线Γ是以点F(0,1)为焦点、直线y=-1为准线的抛物线,所以曲线Γ的方程为x2=4y.解法二:设S(x,y)为曲线Γ上任意一点,则|y-(-3)|---=2,依题意,知点S(x,y)只能在直线y=-3的上方,所以y>-3,所以--=y+1,化简得,曲线Γ的方程为x2=4y.(2)当点P在曲线Γ上运动时,线段AB的长度不变.证明如下:由(1)知抛物线Γ的方程为y=x2,设P(x,y0)(x0≠0),则y0=,由y'=x,得切线l的斜率k=y'=x,所以切线l的方程为y-y=x0(x-x0),即y=x0x-.由-得A.由-得M.又N(0,3),所以圆心C,半径r=|MN|=,|AB|=-=--=.所以点P在曲线Γ上运动时,线段AB的长度不变.5.(2014湖北,22,14分)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1).求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.解析(1)设点M(x,y),依题意得|MF|=|x|+1,即-=|x|+1,化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=(2)在点M的轨迹C中,记C1:y2=4x,C2:y=0(x<0),依题意,可设直线l的方程为y-1=k(x+2).由方程组-可得ky2-4y+4(2k+1)=0.①(i)当k=0时,y=1.把y=1代入轨迹C的方程,得x=.故此时直线l:y=1与轨迹C恰好有一个公共点.(ii)当k≠0时,方程①的判别式为Δ=-16(2k2+k-1).②设直线l与x轴的交点为(x,0),则由y-1=k(x+2),令y=0,得x=-.③若由②③解得k<-1或k>,即当k∈(-∞,-1)∪∞时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.若或由②③解得k∈-或-≤k<0,即当k∈-时,直线l与C1只有一个公共点,与C2有一个公共点.当k∈-时,直线l与C1有两个公共点,与C2没有公共点.故当k∈-∪-时,直线l与轨迹C恰好有两个公共点.若由②③解得-1<k<-或0<k<,即当k∈--∪时,直线l与C1有两个公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有三个公共点.综合(i)(ii)可知,当k∈(-∞,-1)∪∞∪{0}时,直线l与轨迹C恰好有一个公共点;当k∈-∪-时,直线l与轨迹C恰好有两个公共点;当k∈--∪时,直线l与轨迹C恰好有三个公共点.6.(2014大纲全国,22,12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A、B两点,若AB的垂直平分线l'与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.解析(1)设Q(x,4),代入y2=2px得x0=.所以|PQ|=,|QF|=+x=+.由题设得+=×,解得p=-2(舍去)或p=2.所以C的方程为y2=4x.(5分)(2)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0).代入y2=4x得y2-4my-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.故AB的中点为D(2m2+1,2m),|AB|=|y1-y2|=4(m2+1).又l'的斜率为-m,所以l'的方程为x=-y+2m2+3.将上式代入y2=4x,并整理得y2+y-4(2m2+3)=0.设M(x3,y3),N(x4,y4).则y3+y4=-,y3y4=-4(2m2+3).故MN的中点为E-,|MN|=|y3-y4|=.(10分)由于MN垂直平分AB,故A、M、B、N四点在同一圆上等价于|AE|=|BE|=|MN|,从而|AB|2+|DE|2=|MN|2,即4(m2+1)2++=,化简得m2-1=0,解得m=1或m=-1.所求直线l的方程为x-y-1=0或x+y-1=0.(12分)7.(2012课标全国,20,12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(1)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.解析(1)由已知可得△BFD为等腰直角三角形,|BD|=2p,圆F的半径|FA|=p.由抛物线定义可知A到l的距离d=|FA|=p.因为△ABD的面积为4,所以|BD|·d=4,即·2p·p=4,解得p=-2(舍去)或p=2.所以F(0,1),圆F的方程为x2+(y-1)2=8.(2)因为A,B,F三点在同一直线m上,所以AB为圆F的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=|AB|,所以∠ABD=30°,m的斜率为或-.当m的斜率为时,由已知可设n:y=x+b,代入x2=2py得x2-px-2pb=0.由于n与C只有一个公共点,故Δ=p2+8pb=0.解得b=-.因为m在y轴上的截距b1=,所以=3,所以坐标原点到m,n距离的比值为3.当m的斜率为-时,由图形对称性可知,坐标原点到m,n距离的比值为3.8.(2010全国Ⅰ,22,12分)已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(1)证明:点F在直线BD上;(2)设·=,求△BDK的内切圆M的方程.解析设A(x1,y1),B(x2,y2),D(x1,-y1),l的方程为x=my-1(m≠0).(1)证明:将x=my-1代入y2=4x并整理得y2-4my+4=0,从而y1+y2=4m,y1y2=4.①直线BD的方程为y-y2=-·(x-x2),即y-y2=-·-.令y=0,得x==1.所以点F(1,0)在直线BD上.(2)由(1)知,x1+x2=(my1-1)+(my2-1)=4m2-2,x1x2=(my1-1)(my2-1)=1.因为=(x1-1,y1),=(x2-1,y2),·=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+4=8-4m2,故8-4m2=,解得m=±.所以l的方程为3x+4y+3=0,或3x-4y+3=0.又由①知y2-y1=±-=±,故直线BD的斜率为-=±,因而直线BD的方程为3x+y-3=0,或3x-y-3=0.因为KF为∠BKD的平分线,故可设圆心M(t,0)(-1<t<1),M(t,0)到l及BD的距离分别为,-.由=-得t=或t=9(舍去),故圆M的半径r==.所以圆M的方程为-+y2=.【三年模拟】时间:60分钟分值:65分一、选择题(每小题5分,共40分)1.(2019届安徽淮北第一中学期中考试,11)已知抛物线的顶点在原点,焦点在y轴上,其上的点P(m,-3)到焦点的距离为5,则抛物线的方程为()A.x2=8yB.x2=4yC.x2=-4yD.x2=-8y答案D2.(2019届贵州贵阳重点中学第一次联考,11)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=3,则||=()A.3B.2C.D.答案D3.(2019届福建泉州五中11月月考,9)已知抛物线C:y2=4x,那么过抛物线C的焦点,长度不超过2015的整数的弦的条数是()A.4024B.4023C.2012D.2015答案B4.(2019届湖南湖北八市十二校第一次调研,9)已知点A(0,2),抛物线C:y2=2px(p>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若=,则p的值等于()A. B. C.2 D.4答案C5.(2019届湖北武汉重点中学期初调研,12)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN 的中点,则|FN|=()A.4B.6C.8D.10答案B6.(2019届广东韶关第一中学9月月考,11)直线l过抛物线y2=ax(a>0)的焦点F且与抛物线交于A,B两点,则·=()A. B. C.2a D.4a答案B7.(2019届广东佛山第一中学9月月考,11)已知P为抛物线y=ax2(a≠0)准线上一点,过点P作抛物线的切线PA,PB,切点分别为A,B.若切线PA的斜率为,则切线PB的斜率为()A.-aB.-3C.-D.-答案B8.(2017江西新余、宜春联考,11)抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB=,设线段AB 的中点M在l上的投影为N,则的最大值是()A. B. C. D.答案C二、填空题(共5分)9.(2017安徽黄山二模,14)已知抛物线C:y2=8x,焦点为F,点P(0,4),点A在抛物线上,当点A到抛物线准线l的距离与点A到点P的距离之和最小时,延长AF交抛物线于点B,则△AOB的面积为.答案4三、解答题(共20分)10.(2018广东惠州调研,20)已知圆x2+y2=12与抛物线x2=2py(p>0)相交于A,B两点,点B的横坐标为2,F为抛物线的焦点.(1)求抛物线的方程;(2)若过点F且斜率为1的直线l与抛物线和圆交于四个不同的点,从左至右依次为P1,P2,P3,P4,求|P1P2|-|P3P4|的值.解析(1)设B(2,y),由题意得解之得所以抛物线的方程为x2=4y.(2)设点P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4),由题意知P1,P3在圆上,P2,P4在抛物线上.因为直线l过点F且斜率为1,所以直线l的方程为y=x+1.联立得2x2+2x-11=0,所以x1+x3=-1,x1x3=-,所以|P1P3|=-=×---=.由得x2-4x-4=0,所以x2+x4=4,x2x4=-4.所以|P2P4|=-=×--=8.由题意易知|P1P2|=|P1P3|-|P2P3|①,|P3P4|=|P2P4|-|P2P3|②,①-②得|P1P2|-|P3P4|=|P1P3|-|P2P4|,∴|P1P2|-|P3P4|=-8.11.(2019届广东佛山第一中学9月月考,20)已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C上的点M(2,y0)到F的距离为3.(1)求抛物线C的方程;(2)斜率存在的直线l与抛物线相交于相异的两点A(x1,y1),B(x2,y2),且x1+x2=4.若线段AB的垂直平分线交x轴于点G,且·=5,求直线l的方程.解析(1)由抛物线定义知|MF|=2+,所以2+=3,解得p=2,所以,抛物线C的方程为y2=4x.(2)设线段AB的中点坐标为(2,m),则y1+y2=2m.因为直线l的斜率存在,所以m≠0,k AB=--=--=,所以直线AB的方程为y-m=(x-2),即2x-my+m2-4=0.由--得y2-2my+2m2-8=0,其中Δ>0,即m2<8,①-②线段AB的垂直平分线方程为y-m=-(x-2),令y=0,得x=4,所以G(4,0),所以=(x1-4,y1),=(x2-4,y2).因为·=5,所以(x1-4)(x2-4)+y1y2=5,即xx2-4(x1+x2)+16+y1y2=5,也即-4×4+16+y1y2=5③, 1把②代入③得(m2-4)2+8(m2-4)-20=0,化简,得(m2+6)(m2-6)=0,所以m2=6<8,所以m=±.所以直线l的方程为2x-y+2=0或2x+y+2=0.。

2021届 与名师对话 高三理科数学第一轮复习资料 第九章 解析几何 第九节 抛物线(二)

2021届 与名师对话 高三理科数学第一轮复习资料 第九章 解析几何 第九节 抛物线(二)

踪 训


第9页
第9章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(理)








回 顾
(3)直线 l 过(2p,0),与抛物线 y2=2px 交于 A、B 两点,
导 学
O 为原点,则 OA⊥OB.( √ )
(4)过准线上一点 P 作抛物线的切线,A、B 为切点,则
核 心
直线 AB 过抛物线焦点.( √
训 练
第24页
第9章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(理)




知 识
(2)直线 MH 与 C 除 H 以外没有其他公共点.理由如下:
微 课



直线 MH 的方程为 y-t=2ptx,即 x=2pt(y-t).

代入 y2=2px 得 y2-4ty+4t2=0,解得 y1=y2=2t,即直











核心
考点突破













第17页
第9章 第9节
与名师对话·系列丛书
高考总复习·课标版·数学(理)
基 础
考点一 直线与抛物线的位置关系
名 师


识 回
【例 1】 (1)过点(0,3)的直线 l 与抛物线 y2=4x 只有一
课 导


个公共点,则直线 l 的方程为__y_=__13_x_+__3_或___y_=__3_或___x_=__0_.

高考数学一轮总复习课件:抛物线(二)

高考数学一轮总复习课件:抛物线(二)
答案 (1)× (2)× (3)√ (4)√ (5)√ (6)√
2.(课本习题改编)过点(0,1)作直线,使它与抛物线y2=4x
仅有一个公共点,这样的直线有( C )
A.1条
B.2条
C.3条
D.4条
解析 两条切线,另一条平行于对称轴.
3.(2020·辽宁五校期末联考)已知AB是抛物线y2=2x的一条
【解析】 设斜率为k,则切线为y=k x+p2 ,代入y2=2px 中,得k2x2+p(k2-2)x+k24p2=0.
Δ=0,即p2(k2-2)2-4·k2·k24p2=0.解得k2=1,∴k=±1.
(2)(2021·河南新乡市模拟)若抛物线x2=ay(a≠0)的准线与抛
物线y=-x2-2x+1相切,则a=( B )
=2.故选C.
5.(2021·湖南长沙质检)设经过抛物线C的焦点的直线l与抛
物线C交于A,B两点,那么抛物线C的准线与以AB为直径的圆
的位置关系为( B )
A.相离
B.相切
C.相交但不经过圆心 D.相交且经过圆心
解析 设圆心为M,过点A,B,M分别作准线l的垂线,垂
足分别为A1,B1,M1(图略),则|MM1|=
【证明】 (1)∵y2=2px(p>0)的焦点为Fp2,0, 当k不存在时,直线方程为x=p2. 这时y1=p,y2=-p,则y1y2=-p2,x1x2=p42.
当k存在时,设直线方程为y=kx-p2(k≠0). 由y=kx-p2,消去x,得ky2-2py-kp2=0.①
y2=2px ∴y1y2=-p2,x1x2=(y41py22)2=p42. 因此,总有y1y2=-p2,x1x2=p42成立.
斜角为
π 6
的直线交C于A,B两点.若线段AB中点的纵坐标为

高中数学:曲线上一点的切线方程

高中数学:曲线上一点的切线方程

曲线上一点的切线方程定理高三数学00222200222200(,),1,:2,(,)()()()()()()P x y x y r x x y y r a b x a y b r x a x a y b y b r +=+=-+-=--+--=设曲线上一点下面就是各种常用曲线上的点的切线方程。

一,圆的切线方程圆心在原点的圆:的切线方程圆心的圆的切线方程00220022222200222200220022222200222(,)1,112,11(,)1,112,1P x y x x y y x y x a b a by y x x y x y a b a bP x y x x y y x y x a b a by y x x y x y a b a b +=+=+=+=-=-=-=-二,椭圆上一点的切线方程焦点在轴上椭圆的切线方程:焦点在轴上椭圆的切线方程:三,双曲线上一点的切线方程焦点在轴上双曲线的切线方程:焦点在轴上双曲线的切线方程:21=00200200200200(0)(,)1,2:()2,2:()3,2:()4,2:()p P x y x y px y y p x x x y px y y p x x y x py x x p y y y x py x x p y y >==+=-=-+==+=-=-+四,抛物线上一点的切线方程焦点在轴正半轴上的切线方程焦点在轴负半轴上的切线方程焦点在轴正半轴上的切线方程焦点在轴负半轴上的切线方程椭圆上一点的切线方程推导抛物线的切线方程的推导过程设过抛物线22y px =上一点M(x 0,y 0)的切线的斜率为k,则,由点斜式得切线方程为:)(00x x k y y -=-联合抛物线方程,有:整理,得:消去,,2),(200y px y x x k y y ⎩⎨⎧=-=-,0)2(4)](2[0,0)2()(2002022*********022000222=-+⨯-+--=∆∴=-+++--y kx x k y k p ky x k y kx x k y x p ky x k x k 即:,相切, 整理,得:,022020=+-p k y k x )(),(,2,2),(2),(2,2,084,22),(,2284200002020002000000000200202000200x x p y y x x y y pyp y x px y x x y y x x x x yy y x y k px y px y px y y x M x px y y k +=+=⨯=∴=+=-=-=∴=-∴=∴=⨯-±=∴即:代入上式,得:又整理,得:代入,得:上的点,是抛物线点 所以,过抛物线px y 22=上一点M(x 0,y 0)的切线的方程为:)(00x x p y y +=.同理:过抛物线px y 22-=上一点M(x 0,y 0)的切线的方程为:)(00x x p y y +-=过抛物线py x 22=上一点M(x 0,y 0)的切线的方程为:)(00y y p x x +=过抛物线py x 22-=上一点M(x 0,y 0)的切线的方程为:)(00y y p x x +-=。

抛物线的几何性质课件-2022届高三数学一轮复习

抛物线的几何性质课件-2022届高三数学一轮复习

当 90 时,| AB | 2 p 也成立 sin 2
抛物线y2=2px ( p> 0 ) 的焦点弦的性质
如图所示:已知线段AB是抛物线y2=2px 弦,设A(x1, y1), B(x2, y2)
(
p>y0
l
)
的焦A点
3、当直线AB的倾斜角为θ时,
2p
| AB | sin2
2P
当直线AB⊥x轴时,即θ=900时,
y y0
与 y2 2 px联立,可得B点的纵坐标为 y p2 .
x p 2
y02 p 2p 2
.
BB1 / / x轴.
y0
典例9.
y2 3x
y l
A
o
F
x
DB
方法二:对f(θ)求导,研究单调性更简单
抛物线y2=2px ( p> 0 ) 的焦点弦的性质
如图所示:已知线段AB是抛物线y2=2px
x0= x1 2 x2
点P到准线的距离d=
x1
x2
p
x1
x2
p
OF B
x
点P到准线的距离d
2AB
2 r
2
2
抛物线y2=2px ( p> 0 ) 的焦点弦的性质
如弦图,所过示A,B:两已点知分线别段作A准B是线抛的物垂线线y,2A=21pxl y( p> 0 ) 的焦点
垂足分别为A1,B1,准线l与对称轴相
y
A
x2 y2
如图所示:在椭圆 a2 b2 1 和
x2
双曲线 a2
y2 b2
1 中,我们把过一
个焦点且垂直于对称轴的弦叫作
OF
x
通径

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.(本小题满分10分)选修4-1:几何证明选讲如图,是圆的直径,是半径的中点,是延长线上一点,且,直线与圆相交于点、(不与、重合),与圆相切于点,连结,,.(Ⅰ)求证:;(Ⅱ)若,求.【答案】(Ⅰ)详见解析(Ⅱ)【解析】(Ⅰ)证明目标可看做线段成比例,即证明思路确定为证明三角形相似:利用切割线定理得:,又由与相似,得;所以(Ⅱ)由(1)知,,与相似,则,所以试题解析:(1)连接,,,为等边三角形,则,可证与相似,得;又,则(2)由(1)知,,与相似,则因为,所以【考点】三角形相似,切割线定理2.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下,圆的方程为.(Ⅰ)求直线的普通方程和圆的圆心的极坐标;(Ⅱ)设直线和圆的交点为、,求弦的长.【答案】(Ⅰ)的普通方程为,圆心;(Ⅱ).【解析】(Ⅰ)消去参数即可将的参数方程化为普通方程,在直角坐标系下求出圆心的坐标,化为极坐标即可;(Ⅱ)求出圆心到直线的距离,由勾股定理求弦长即可.试题解析:(Ⅰ)由的参数方程消去参数得普通方程为 2分圆的直角坐标方程, 4分所以圆心的直角坐标为,因此圆心的一个极坐标为. 6分(答案不唯一,只要符合要求就给分)(Ⅱ)由(Ⅰ)知圆心到直线的距离, 8分所以. 10分【考点】1.参数方程与普通方程的互化;2.极坐标与直角坐标的互化.:的焦点,且抛物线3.(本题满分12分)如图,O为坐标原点,点F为抛物线C1C1上点P处的切线与圆C2:相切于点Q.(Ⅰ)当直线PQ的方程为时,求抛物线C1的方程;(Ⅱ)当正数变化时,记S1,S2分别为△FPQ,△FOQ的面积,求的最小值.【答案】(Ⅰ);(Ⅱ).【解析】第一问要求抛物线的方程,任务就是求的值,根据导数的几何意义,设出切点坐标,从而求得,再根据切点在切线上,得,从而求得,进而得到抛物线的方程,第二问根据三角形的面积公式,利用题中的条件,将两个三角形的面积转化为关于和切点横坐标的关系式,从而有,利用基本不等式求得最值.试题解析:(Ⅰ)设点,由得,,求导,……2分因为直线PQ的斜率为1,所以且,解得,所以抛物线C1的方程为.(Ⅱ)因为点P处的切线方程为:,即,根据切线又与圆相切,得,即,化简得,由,得,由方程组,解得,所以,点到切线PQ的距离是,所以,,所以,当且仅当时取“=”号,即,此时,,所以的最小值为.【考点】导数的几何意义,三角形的面积,基本不等式.4.(本小题满分12分)已知椭圆的左、右焦点分别为F1(-3,0),F2(3,0),直线y=kx与椭圆交于A、B两点.(Ⅰ)若三角形AF1F2的周长为,求椭圆的标准方程;(Ⅱ)若,且以AB为直径的圆过椭圆的右焦点,求椭圆离心率e的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)直接由题意和椭圆的概念可列出方程组,进而可求出椭圆的标准方程即可;(Ⅱ)首先设出点,然后联立直线与椭圆的方程并整理可得一元二次方程,进而由韦达定理可得,再结合可列出等式并化简即可得到等式,最后结合已知,即可求出参数的取值范围,进而得出椭圆离心率e的取值范围即可.试题解析:(Ⅰ)由题意得,得.结合,解得,.所以,椭圆的方程为.(Ⅱ)由得.设.所以,易知,,因为,,所以.即,将其整理为.因为,所以,即,所以离心率.【考点】1、椭圆的标准方程;2、直线与椭圆的相交综合问题;5.(本小题满分12分)椭圆()的上顶点为,是上的一点,以为直径的圆经过椭圆的右焦点.(1)求椭圆的方程;(2)动直线与椭圆有且只有一个公共点,问:在轴上是否存在两个定点,它们到直线的距离之积等于?如果存在,求出这两个定点的坐标;如果不存在,说明理由.【答案】(1);(2)存在两个定点,.【解析】(1)由题设可得①,又点P在椭圆C上,可得②,又③,由①③联立解得c,b2,即可得解.(2)设动直线l的方程为y=kx+m,代入椭圆方程消去y,整理得(﹡),由△=0,得,假设存在,满足题设,则由对任意的实数k恒成立.由即可求出这两个定点的坐标.试题解析:(1),,由题设可知,得①又点在椭圆上,,②③①③联立解得,,故所求椭圆的方程为(2)当直线的斜率存在时,设其方程为,代入椭圆方程,消去,整理得()方程()有且只有一个实根,又,所以,得假设存在,满足题设,则由对任意的实数恒成立,所以,解得,或当直线的斜率不存在时,经检验符合题意.总上,存在两个定点,,使它们到直线的距离之积等于.……12分【考点】1、直线与圆锥曲线的关系;2、椭圆的标准方程.【方法点晴】本题主要考查了椭圆的标准方程的解法,考查了直线与圆锥曲线的关系,综合性较强,属于中档题.处理直线与圆锥曲线的关系问题时,注意韦达定理的应用,同时还得特别注意直线斜率不存在时的情况的验证.6.直线被圆截得的弦长为()A.1B.2C.4D.【答案】C【解析】圆心,圆心到直线的距离,半径,所以最后弦长为.故选C.【考点】点到直线的距离.7.(本小题12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。

与抛物线相切有关的三种直线方程的统一形式

与抛物线相切有关的三种直线方程的统一形式

与抛物线相切有关的三种直线方程的统一形式吴家华(四川省遂宁中学 629000)在高三数学复习中,笔者惊奇地发现与抛物线相切的三类问题的三种直线方程的形式是完全一样的. 现介绍如下:(1)过抛物线py x 22=上一点),(00y x P 的切线方程为)(00y y p x x +=.(2) 过抛物线py x 22=外一点),(00y x P 引抛物线的两条切线,切点为B A ,,则直线AB 的直线方程为)(00y y p x x +=.(3) 过不在抛物线py x 22=上一点),(00y x P 的直线与抛物线相交于B A ,两点,则过B A ,两点的切线的交点的轨迹是一条直线,其方程也为)(00y y p x x +=. 证明 (1) 由py x 22=得:221x p y =,对x 求导,得:x py 1=', ∴ 01|0x py x x ='= 又∵点),(00y x P 在抛物线py x 22=上,∴0202py x =。

∴切线方程为)(1000x x x py y -=-,即0020002py x x x x x py py -=-=-, ∴切线方程为)(00y y p x x +=.(2)设),(11y x A ,),(22y x B ,则由(1)可得:切线PB 、PA 的方程分别为: )(11y y p x x += , )(22y y p x x +=。

∵点),(00y x P 在切线PB 、PA 上,∴)(1001y y p x x += ,)(2002y y p x x += 由此可见,B A ,两点在直线)(00y y p x x +=上,即直线AB 的方程为)(00y y p x x +=。

(3)设)21,(211x p x A ,)21,(222x px B )(21x x ≠,则直线AB 的方程为 )(212121112212221x x x x x p x p x p y ---=-,即 2121)(2x x x x x py -+=,∵点),(00y x P 在直线AB 上, ∴210210)(2x x x x x py -+= ①又由(1)知:过抛物线上A 点的切线方程为)21(211x py p x x += ,即 21122x x x py -= ② 同理:过抛物线上B 点的切线方程为22222x x x py -= ③由②、③解得:x x x 221=+, py x x 221=,代入①,得:)(00y y p x x +=,即为过B A ,两点的切线的交点的轨迹方程.同理,对于抛物线标准方程的其它几种形式:py x 22-=,px y 22=,px y 22-=,它们对应的直线方程的统一形式分别为:)(00y y p x x +-=,)(00x x p y y +=,)(00x x p y y +-=.类似地,可以证明,对于解析几何中的圆、椭圆、双曲线的类似于抛物线的上述三种情形,我们也有相应的直线方程的统一形式,它们是1. 圆222R y x =+,对应的直线方程的统一形式为200R y y x x =+; 2. 椭圆12222=+by a x ,对应的直线方程的统一形式为12020=+b y y a x x ; 3. 双曲线12222=-by a x ,对应的直线方程的统一形式为12020=-b y y a x x . 应用上述结论,我们可迅速地解答和编拟一些新问题.。

高三数学抛物线的概念、性质、几何意义

高三数学抛物线的概念、性质、几何意义

高 三 数 学(第17周)【教学内容】抛物线的概念、性质、几何意义及其直线与抛物线的位置关系、抛物线的应用等。

【教学目标】1、掌握抛物线的定义;动点到定点的距离等于动点到定直线的距离;则动点的轨迹是抛物线。

熟练掌握顶点在原点;对称轴为坐标轴的抛物线的四种标准形式:y 2=2px 、y 2=-2px 、x 2=2py 、x 2=-2py (p >0)及其它们的焦点坐标、对称轴方程。

2、焦参数p (p >0)的几何意义为抛物线的焦点到其准线的距离。

若已知了抛物线顶点在顶点;焦点在x 轴上;则可设抛物线的方程为y 2=2ax (a ≠0);若抛物线的顶点在原点;焦点在y 轴上;则可设抛物线的方程为x 2=2ay (a ≠0);再由另外一个条件就可以求出抛物线标准方程了。

若顶点在原点;焦点在坐标上;则就要分焦点在x 轴上和焦点在y 轴上两种情况来设抛物线的方程。

3、抛物线标准方程中;判别焦点在哪个轴上的方法是看方程的一次项;若一次项的变量为x ;则焦点在x 轴上;若一次项的变量为y ;则焦点在y 轴上。

另外;对于抛物线y 2=2ax (a ≠0);焦点坐标为(2a ;0);准线方程为2a x -=;对于抛物线x 2=2ay (a ≠0)焦点坐标为(0;2a );准线方程为2ay -=。

这一结论对a >0及a <0均成立。

4、在抛物线中;抛物线上的动点到焦点的距离我们常常转化为动点到准线的距离来处理;这一思想方法在抛物线中有着广泛的应用。

我们在学习时要引起重视。

【知识讲解】例1、求经过定点A (-3;2)的抛物线的坐标准方程。

解:抛物线过第二象限内的点A (-3;2);应考虑开口向上及向左两种情形。

(1)若开口向左;设抛物线方程为y 2=-2px ;因为抛物线过点A (-3;2);∴22=-2p(-3)即342=p ;则抛物线方程为x y 342-=。

(2)若开口向上;设其方程为x 2=2py ;因为抛物线过点A (-3;2);∴22)3(2⋅=-p ;即292=p ;故得抛物线方程为y x 292=。

2021-2022年高三数学上学期解析几何14抛物线的方程及其性质(1)教学案(无答案)

2021-2022年高三数学上学期解析几何14抛物线的方程及其性质(1)教学案(无答案)

2021年高三数学上学期解析几何14抛物线的方程及其性质(1)教学案(无答案)【教学目标】掌握抛物线的定义、标准方程、几何图形,以及它的简单几何性质.【教学重点】能利用抛物线的定义、几何性质解决一些简单的数学问题.【教学难点】抛物线标准方程的四种不同形式.【教学过程】一、知识梳理:1.抛物线定义:平面内到一个定点F和一条定直线l(Fl)的距离的点的轨迹叫做抛物线;点F叫做抛物线的,直线l叫做抛物线的.2.标准方程、焦点、准线、图形(其中,表示焦点F到准线的距离)标准方程抛物线的图形焦点坐标准线方程开口方向焦半径3(1)范围:.(2)对称性:.(3)顶点:.(4)开口方向:.二、基础自测:1.抛物线2x2+y=0的焦点坐标是.2.抛物线y=4x2的准线方程为.3.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为________.4.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上的点P (m ,-2)到焦点的距离为4, 则m 的值为________.三、典型例题: 反思: 例1.根据下列条件求抛物线的标准方程.(1)抛物线的焦点是双曲线16x 2-9y 2=144的左顶点;(2)过点P (2,-4);(3)抛物线的焦点在x 轴上,直线y =-3与抛物线交于点A ,AF =5.【变式拓展】如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于A ,B 两点,交其准线于点C .若BC =2BF ,且AF =3,则此抛物线的方程为__________________.例2.已知曲线上的每一点到点A (0,2)的距离减去它到x 轴的距离的差都是2,求曲线的方程.【变式拓展】已知动圆P 过点F (0,14)且与直线y =-14相切,动圆的圆心为P . (1)求点P 的轨迹C 的方程;(2)过点F 作一条直线交轨迹C 于A ,B 两点,轨迹C 在A ,B 两点处的切线相交于点N ,M 为线段AB 的中点,求证:MN ⊥x 轴.例3.已知抛物线y 2=2x 焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求PA +PF 的最小值,并求出取最小值时P 点的坐标.【变式拓展】(xx 年南京模拟)已知点A (-2,1),y 2=-4x 的焦点是F ,P 是y 2=-4x 上的点,为使PA +PF 取得最小值,求P 点的坐标.四、课堂反馈:1.若抛物线y 2=2px (p >0)的焦点也是双曲线x 2-y 2=8的一个焦点,则p = .2.若抛物线x 2=ay 过点A ⎝ ⎛⎭⎪⎫1,14,则点A 到此抛物线的焦点的距离为 . 3.若抛物线y 2=2px (p >0)上的点A (2,m )到焦点的距离为6,则p = .4.若点P 到直线y =-1的距离比它到点(0,3)的距离小2,则点P 的轨迹方程是 .五、课后作业: 学生姓名:___________1.抛物线y =-12x 2的焦点坐标是 . 2.抛物线y 2=8x 的焦点到准线的距离是 .3.点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是 . 4.若双曲线x 23-16y 2p 2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为________. 5.已知双曲线x 24-y 212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则p 的值为 . 6.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为 . 7.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若x 1+x 2=6, 那么AB 等于 .8.直线l 过抛物线y 2=ax 焦点,并且垂直于x 轴,若直线l 被抛物线截得线段长为4,则a = .9.若动圆与圆(x -2)2+y 2=1外切,又与直线x +1=0相切,求动圆圆心的轨迹方程.10.在路边安装路灯,灯柱与地面垂直,灯杆与灯柱所在平面与道路垂直,且,路灯采用锥形灯罩,射出的光线如图中阴影部分所示,已知,路宽米,设灯柱高(米),(1)求灯柱的高(用表示);(2)若灯杆与灯柱所用材料相同,记此用料长度和为,求关于的函数表达式,并求出的最小值. CB A D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:先将点 ( a ,3) 代入 y 2ax 2 1 得 a 1 ,然后求切线斜率,故选 B 3、若曲线 y=- x 2 +4x 的一条切线 l 与直线 2x-y-5=0 平行,则 l 的方程 为( ) B.2x+y=0 C.2x-y+1=0 D.2x+y-5=0
A.2x-y-4=0
长沙家教网
f ( x0 t) f ( x0 ) (t 0) (t 2 x0 )(t 0) 2 x0 2 t
x0 1
y0 2 x0 1 3
长沙家教网
2
点P的坐标为( 1 , 3)。
点评:直线与抛物线相切,一般的解题方法是将直线方程代入抛物线 方程消元,,利用 0 求解. 点击双基 1. 抛物线 f(x)=x2-3x+1 在点(1,-1)处的切线方程为( A.y=-x-1 解: B.y=x C.y=-x D.y=x+1 )
长沙家教网
Δy = x +2 Δ x
题型二 抛物线的切线 例 2. 求抛物线 y=f(x)=2 x 2 -x 在(1,1)点处的切线斜率 解:
f (1 x) f (1) =3+2 x ,令 x 趋于 0,则 3+2 x 趋于 3. 切线 x
的斜率 k=3, 评析: 以上三种类型的问题中例 1 是平均变化率, 而例 2 与例 3 都是 瞬时变化率。瞬时变化率就是平均变化率在改变量 x 趋于 0 时的极 限值。 备选题
3 3 9 解: y ' =2x=tan = 3 ,x= ,则切点坐标为( , )
3
3
2
2
4
11、设 P 为曲线 C: y x 2 2 x 3 上的点,且曲线 C 在点 P 处切线倾
斜角的取值范围为 0, ,则点 P 横坐标的取值范围为 4
解:设切点 P 的横坐标为 x0 , 且 y ' 2 x0 2 tan ( 为点 P 处切线的 倾斜角) ,又∵ [0, ] ,∴ 0 2 x0 2 1 ,∴ x0 [1, ].
( x x)2 1 ( x 2 1) =2x+ x ,所以斜率 k=2x=2, 得 x
x=1,Y=1. 故选 A 3 过点M (-1, 0) 作抛物线 y x 2 x 1 的切线, 则切线方程为 ( (A)3x+y+3=0 或 x y 1 0 (C) x y 1 0 (B) 3x y 3 0 或 x y 1 0 )
f ( x0 t) f ( x0 ) (t 0) (2t 4 x0 )(t 0) 4 x0 4, x0 1 ,点 M t
的坐标是(-1,3) 课外作业: 一.选择题 1、 若曲线
y f ( x)在点P(a, f (a))处的切线方程为:x y 1 0, 那么在点P处的切线
解:易得 f ' (x)=-2x+4,则-2x+4=2 ,得 x=1; 切点(1,3) ,切线斜 率 k=2; 故选 C 4、 若曲线 f(x)= x 2 的一条切线 l 与直线 x 4 y 8 0 垂直, 则 l 的方程为 ( ) A . 4x-y-4=0 D. x 4 y 3 0 解:易得 f ' (x)=2x ,则 2x=4,x=2 ;切点(2,4) ,切线斜率 k=4,故 选 A, 5、已知直线 x y 1 0 与抛物线 y= x 2 +a 相切,则 a=( A.4 B.3 4
B . x 4y 5 0
C . 4x y 3 0
) D.
1 2
C.-
1 4
1 1 1 ( x x)2 a ( x 2 a) 解; =2x+ x , f ' (x)=2x=1, 得 x= .切点 ( , +a) x 2 2 4
在切线 x y 1 0 上,a=- .
y0 2 x0 1 3
点P的坐标为( 1 , 3)。
2
14、已知抛物线 y=f(x)= x 2 +3 与直线 y=2x+2,求它们交点处的切线 方程。 解 由方程组
y x 2 3, y 2 x 2,
得 x 2 -2x+1=0
解得 x=1,y=4,,4 Nhomakorabea
1 2
三解答题: 12. 求抛物线 y=f(x)=2 x 2 -x 在(1,1)点处的切线斜率. 解:
f (1 x) f (1) =3+2 x ,令 x 趋于 0,则 3+2 x 趋于 3. 切线 x
长沙家教网
的斜率 k=3, 13、曲线 y x 2 1 在点 P 的切线斜率为 2, 求点 P 的坐 (x 0 , y0) (x 0 , y0) 标. 解:设 f ( x) x 2 1
(x 0 , y0) (x 0 , y0) 例 3: 曲线 y x 2 1 在点 P 的切线斜率为 2, 求点 P 的坐
标. 解:设 f ( x) x 2 1 则

f ( x0 t ) f ( x0 ) ( x t )2 1 x 2 1 t 2 x0 t t
问题探索
求作抛物线的切线
典例剖析 题型一 平均变化率 例 1:在曲线 y x 2 1 的图象上取一点(1 ,2)及邻近一点(1+Δ x ,2
Δy +Δ y)求 Δ x
解:Δ y= (1 x) 2 1 -(12 +1)= x 2 +2 x , 评析:平均变化率
f ( x0 x) f ( x0 ) y ( x0 x) x0 x
(D) 3x y 3 0
a2 a 1 b 解:设切点 N(a,b),则切线斜率 k=2a+1= k MN = = ,得 a=0 a 1 a 1
或 a=-2 切线斜率 k=1 或 k=-3 ,故选 A
长沙家教网
4. 已知曲线 y 2 x x 2 上有两点 A(2,0) ,B(-2,-8) ,则割线 AB 的 斜率 k AB 为 解:由斜率公式求得 k AB =2 5.已知曲线 y 2 x 2 1 在点 M 处的瞬时变化率为-4,则点 M 的坐标是 为___ __ 解:
f ( x0 t ) f ( x0 ) ( x t )2 1 x 2 1 则 t 2 x0 t t
f ( x0 t) f ( x0 ) (x 0) (t 2 x0 )(x 0) 2 x0 2 t
x0 1
斜率( ) A.大于 0 号不定 B. 小于 0 C.等于 0 D.符
解:由切线方程得斜率为-1<0,故选 B 2、已知曲线 y 2ax 2 1 过点 ( a ,3) , 则该曲线在该点处的切线方程为 ( ) A . y 4x 1 D. y 4x 7 B y 4x 1 . C . y 4x 11
长沙家教网
当割线 PQ 的斜率为 k (u, d ) f (u d ) f (u) 趋于确定的数值 k (u) 时, k (u)
d
就是曲线上点 P 处切线的斜率,则曲线上点 P(u,f(u))处的切线方程 为 y f (u) k (u)(x u) 。
3 4
故选 B )
6、曲线 f(x)= x 2 6x 在点(1,-5)处的切线斜率为( A.k=3 解:平均变化率= 变化率 趋于 -4,故选 C 7、函数 y= a x +1 的图象与直线 y=x 相切,则 a = A.
1 8
2
B .k=-3
C .k=-4
D .k=4
(1 x) 2 6(1 x) 1 6 = x-4.当 x 趋向 0 时, 平均 (1 x) 1
( D.1
1 4
)
B.
1 4
2
C.
1 2
解:把两个解析式联立得方程 a x -x+1=0, 由 =0 即得 a = ,故选 B 8、过点(-1,0)作抛物线 y x 2 x 1 的切线,则其中一条切线为
长沙家教网

) (B) 3x y 3 0 (C ) x y 1 0 (D)
(1 x)2 3(1 x) 1 (1 3 1) =-1+ x ,当 x 趋于 0 时,得切线斜率 x
k=-1,切线方程为 y+1=-1(x-1),故选 C
2.若抛物线 y= x 2 +1 的一条切线与直线 y=2x-1 平行,则切点坐标为 ( ) A. (1,1) 解:平均变化率= B (1,2) C (2,5) D (3,10)
交点坐标为(1 ,4 )
(x 1) 2 3 (12 3) 又 = x +2.当 x 趋于 0 时( x +2.)趋于 2.所以在 x
点 (1, 4) 处的切线斜率 K=2.所以切线方程为 y-4=2(x-1) 即 y=2x+2
( 不难发现对于 x 2 -2x+1=0,因为 =0,所以已知的直线 y=2x+2,就是 切线.) 思悟小结 曲线上一点 P(u,f(u))处的切线方程
(A) 2x y 2 0
x y 1 0
解: f ( x) 2x 1 ,设切点坐标为 ( x0 , y0 ) ,则切线的斜率为 2 x0 1 ,
2 2 且 y0 x0 x0 1 (2 x0 1)( x x0 ) ,因为点 x0 1 ,于是切线方程为 y x0
(-1,0)在切线上,可解得
x0 =0 或-4,故选
D。
二.填空题: 9、 设曲线 y ax 2 在点 (1,a ) 处的切线与直线 2x y 6 0 平行, 则a 解: y' 2ax ,于是切线的斜率 k y'
相关文档
最新文档