Study on Dim Target Detection and Discrimination from Sea Clutter
基于一维距离像的目标检测与鉴别方法
Target Detection and Discrimination using One Dimensional Range Profile DataA thesis submitted toXIDIAN UNIVERSITYin partial fulfillment of the requirementsfor the degree of Masterin Information and Communication EngineeringByLi boSupervisor: Prof. Du lanDecember 2014西安电子科技大学学位论文独创性(或创新性)声明秉承学校严谨的学风和优良的科学道德,本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成果;也不包含为获得西安电子科技大学或其它教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
学位论文若有不实之处,本人承担一切法律责任。
本人签名:日期:西安电子科技大学关于论文使用授权的说明本人完全了解西安电子科技大学有关保留和使用学位论文的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属于西安电子科技大学。
学校有权保留送交论文的复印件,允许查阅、借阅论文;学校可以公布论文的全部或部分内容,允许采用影印、缩印或其它复制手段保存论文。
同时本人保证,获得学位后结合学位论文研究成果撰写的文章,署名单位为西安电子科技大学。
保密的学位论文在年解密后适用本授权书。
本人签名:导师签名:日期:日期:摘要摘要随着距离分辨率的提高,目标能量分布在雷达回波中的多个距离单元内,被称作距离扩展目标或者分布式目标。
距离扩展目标的回波之中包含目标更多的信息,如何有效地利用这些信息成为雷达技术领域迫切需要解决的问题。
hinton中文版深度学习解析
深度学习Yann LeCun1,2, Yoshua Bengio3 & Geoffrey Hinton4,5深度学习是指由多个处理层组成的计算模型来学习表示具有多个抽象层次的数据。
这个方法可以显着地改进语音识别,视觉对象识别,对象检测和许多其他领域,如药物发现和基因组学的先进技术。
深度学习可以通过反向传播算法发现大数据集的复杂结构,来说明一台机器如何从前一层的特征改变其用于计算在每一层中的特征内部参数。
深度卷积网在处理图像、视频、语音和音频等方面带来了突破性的进展,而递归网络已经为顺序数据方面,如文本和语音,指明了方向。
机器学习技术促进了现代社会的许多方面:从网络搜索到社交网络的内容过滤,到对电子商务网站的建议,并且它越来越多地出现在消费类产品之中,如相机和智能手机。
机器学习系统是用来识别图像中的对象、把语音记录成文字,把新闻、海报或者产品与用户的兴趣进行匹配,并选择相关的搜索结果。
逐渐地,这些应用程序使用的一类技术就被称为深度学习。
传统的机器学习技术在处理原始形式的自然数据只有有限的能力。
几十年来,创建一个模式识别或需要精心的工程和相当大的专业知识的机器学习系统,以设计一个将原始数据(如图像的像素值)转换一个合适的内部表示或特征向量学习子系统的特征提取器,通常这可以是一个分类器,它可以在输入中检测或分类模式。
表示学习是允许一台机器被输入原始数据,并自动发现检测或分类所需特征的一组方法。
深度学习方法是一种具有多层次表示的学习方法,通过简单的非线性模块组成,每个模块转换一个级别上的特征(从原始输入开始)到一个更高,更抽象的层级上的特征。
足够多的这样的层级转换,可以学习非常复杂的功能。
对于分类任务,更高层次的表示会放大输入在区分方面的重要性和抑制不相关的变化。
例如,一个图像以像素阵列的形式出现,并且第一表示层中的学习特征通常表示图像中特定取向和位置处的边缘存在或不存在。
第二层通常通过点样颗粒排列来检测图案边缘,而不考虑边缘位置的小变化。
目标检测参考文献
目标检测参考文献目标检测是计算机视觉领域中的一个重要研究方向,主要目标是在图像或视频中识别和定位特定目标物体。
近年来,随着深度学习技术的兴起,目标检测取得了显著的进展,在许多实际应用中得到了广泛应用。
以下是一些关于目标检测的重要参考文献。
1. Viola, P., & Jones, M. (2001). Rapid Object Detection using a Boosted Cascade of Simple Features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (Vol.1, pp. I-511-I-518).这篇经典论文提出了基于级联AdaBoost算法的人脸检测方法,该方法将输入图像的特征与级联分类器相结合,实现了高效的目标检测。
这种方法为后续的目标检测方法奠定了基础,并被广泛应用于人脸检测等领域。
2. Dalal, N., & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (Vol.1, pp. 886-893).这篇论文提出了一种基于梯度方向直方图的特征表示方法,称为“方向梯度直方图”(Histograms of Oriented Gradients,简称HOG),并将其应用于行人检测。
HOG特征具有旋转不变性和局部对比度归一化等优点,在目标检测中取得了显著的性能提升。
基于改进型U-Net卷积神经网络的磁片表面缺陷检测
(a) 脏污 (b) 划痕
(c) 缺角
图1 部分样本图
割的先河,实现像素级别的分类与端到端的网络训 1 . 2 图像标注
练 ,并为后续使用卷积神经网络(CNN)作为基础的
图像标注在计算机视觉中起着至关重要的作
图像语义分割模型提供重要基础。 Tao Xian等人121提 用 ,在进 行 训 练 任 务 时 ,对于获取到的磁片图像数
出了一种用于金属表面缺陷的检测方法,借助自编 据 ,需 要 提 取 其 中 的 R0 I区 域 进 行 标 注 ,作为网络 码器在图像重建上的性能,设计一种级联自编码器 训练的和后续测试时的样本。由于磁片表面缺陷检
(CASAE)体系结构,用于金属表面异常的分割和定 测需要计算缺陷的长度、面积等具体的数值,环境
鉍SA
私签A
图3 样本配对流程
经样本配对处理后可使训练集的规模扩增。 在具体训练过程中需要交替禁用与使用样本配对 操作:
S te p l:使 用 传 统 的 数 据 增 强 方 式 训 练 网 络 ,不 使用样本配对数据增强训练。
Step2:在自己数据集上完成100个 周 期 (epoch) 后 ,加 人 样 本 配 对 数 据 增 强 训 练 。
检测认证
基于改进型U -N et卷积神经网络的磁片表面 缺陷检测
丁勇洪涛+ (中国计量大学质量与安全工程学院)
摘 要 : 为了对磁片质量检测过程中常见的缺角、划 痕 、脏污缺陷准确地分割,利用U- Net卷积神经网络的编码解码功 能 ,提 出 了一种改进的U - N e t 网络的磁片缺陷图像分割算法。该方法采用深度可分离卷 积 来 减 小 计 算 量 与 模 型 参 数 量 , 结合注意力机制sSE block提 炼 图 像 特 征 图 ,提 高 模 型 的 准 确 率 。实 验 结 果 表 明 ,所提出算法在磁片缺陷检测中网络的输 出图像失真更小,针 对 缺 角 、划 痕 、脏 污 缺 陷 检 测 取 得 了 良 好 的 表 现 ,网 络 检 测 结 果 的 准 确 率 (A C ) 分 别 达 到 98.23% 、 9 7 . 2 5 % 、9 6 . 5 7 % , 与原始网络相比提高了 1.1%〜2.8 6 % , 平 均 交 互 比 (M l o U ) 分别达到了8 4 . 7 2 % 、7 7 . 3 6 % 、7 5 . 8 1 % , 提高了 1 . 5 % ~ 3 °/。,图像分割的效果良好。将 改 进 后 的 网 络 在 车 间 现 场 进 行 测 试 ,误 报 率 小 于 5 % , 漏报率为0 。 关 键 词 :磁片 表 面 缺 陷 ,语 义 分 割 ,自动检测,深度学习,卷et卷积神经网络的磁片表面缺陷检测
广告翻译的策略
广告翻译的策略Prescriptive vs. descriptiveBirds of a feather flock together.同毛鸟,飞一道; ///物以类聚,鸟以群分 ///Laugh off one’s head.笑掉脑袋; ////笑掉大牙/捧腹大笑 ///To kill two birds with one stone.一石二鸟; ///一箭双雕 ////1)Featherwater: Light as a feather.法泽瓦特眼镜:轻如鸿毛。
///Adidas:Impossible is nothing!阿迪达斯:没有什么是不可能的。
///Ricoh: We lead Others copy!理光复印机:我们领先,他人仿效。
////为你未来,做好现在Striving today for all your tomorrow. //// 培育新一代,携手创未来Nurture the Young. Create the future. /////2)IBM: No business too small, no problem too big.没有不做的小生意,没有解决不了的大问题。
////Sony: Hi—fi, Hi—fun, Hi—fashion, only from Sony.高保真,高乐趣,高时尚,只来自索尼。
(索尼音响) ////Life is a journey. Travel it well.人生如旅程,应尽情游历。
///来是他乡客,去时故人心。
When you come, you are a guest of ours.When you leave, we are the friends of yours. /////原意较为明确、句法结构简单、完整,按字面意思便可直接表达原文的表层意思和深层意思。
一、直译(literal translation),或语义翻译(semantic translation)、异化翻译 (foreignisation translation)Ask for more!渴望无限(百事可乐) ////Rossini watch: Time always follows me.罗西尼表:时间因我存在。
目标检测算法 选择题
目标检测算法选择题In recent years, target detection algorithms have become increasingly important in various fields such as autonomous driving, surveillance systems, and medical imaging. These algorithms play a crucial role in identifying and locating objects within images or video streams. One of the key challenges in target detection is achieving high accuracy while maintaining real-time performance.近年来,目标检测算法在自动驾驶、监控系统和医学成像等领域变得越来越重要。
这些算法在识别和定位图像或视频流中的对象方面发挥着关键作用。
目标检测中的一个关键挑战是在保持实时性能的同时实现高准确度。
There are several popular target detection algorithms in use today, including YOLO (You Only Look Once), SSD (Single Shot MultiBox Detector), and Faster R-CNN (Region-based Convolutional Neural Networks). Each of these algorithms has its own strengths and weaknesses, and the choice of algorithm depends on the specific requirements of the application. YOLO, for example, is known for its speed and efficiency, making it a popular choice for real-timeapplications. On the other hand, Faster R-CNN is often preferred for its high accuracy and robustness.如今,有几种流行的目标检测算法,包括YOLO(You Only Look Once)、SSD(Single Shot MultiBox Detector)和Faster R-CNN(Region-based Convolutional Neural Networks)。
基于YOLOv5和重识别的行人多目标跟踪方法
第37卷第7期2022年7月Vol.37No.7Jul.2022液晶与显示Chinese Journal of Liquid Crystals and Displays基于YOLOv5和重识别的行人多目标跟踪方法贺愉婷1,2,车进1,2*,吴金蔓1,2(1.宁夏大学物理与电子电气工程学院,宁夏银川750021;2.宁夏沙漠信息智能感知重点实验室,宁夏银川750021)摘要:针对目前遵循基于检测的多目标跟踪范式存在的不足,本文以DeepSort为基础算法展开研究,以解决跟踪过程中因遮挡导致的目标ID频繁切换的问题。
首先改进外观模型,将原始的宽残差网络更换为ResNeXt网络,在主干网络上引入卷积注意力机制,构造新的行人重识别网络,使模型更关注目标关键信息,提取更有效的特征;然后采用YOLOv5作为检测算法,加入检测层使得模型适应不同尺寸的目标,并在主干网络加入坐标注意力机制,进一步提升检测模型精度。
在MOT16数据集上进行多目标跟踪实验,多目标跟踪准确率达到66.2%,多目标跟踪精确率达到80.8%,并满足实时跟踪的要求。
关键词:多目标跟踪;行人重识别;YOLOv5;注意力机制;深度学习中图分类号:TP391文献标识码:A doi:10.37188/CJLCD.2022-0025Pedestrian multi-target tracking method based on YOLOv5and person re-identificationHE Yu-ting1,2,CHE Jin1,2*,WU Jin-man1,2(1.School of Physics and Electronic-Electrical Engineering,Ningxia University,Yinchuan750021,China;2.Ningxia Key Laboratory of Intelligent Sensing for Desert Information,Yinchuan750021,China)Abstract:Aiming at the shortcomings of current detection-based multi-target tracking paradigm,a research is conducted based on the algorithm of DeepSort to address the issue of frequent switching of targeted ID resulting from occlusion in tracking process.Firstly,focus should be placed on improving appearance model.Efforts should be made in replacing broadband and residual networks with ResNeXt networks,which introduces the mechanism for convolution attention into the backbone network and establish a new person re-identification network.In doing so,the model can pay more attention to critical information of targets and obtain effective features.Then,YOLOv5serves as a detection algorithm. Adding detection layer enables the model to respond to targets of different sizes.Moreover,the mechanism for coordinate attention is introduced into the backbone networks.These efforts can further 文章编号:1007-2780(2022)07-0880-11收稿日期:2022-01-24;修订日期:2022-02-11.基金项目:国家自然科学基金(No.61861037)Supported by National Natural Science Foundation of China(No.61861037)*通信联系人,E-mail:koalache@第7期贺愉婷,等:基于YOLOv5和重识别的行人多目标跟踪方法improve the accuracy of detection model.The multi-target tracking experiment is carried out on data sets of MOT16,the multi-target tracking accuracy rate is up to66.2%,and the multi-target tracking precision ratio is up to80.8%.All these can meet the needs of real-time tracking.Key words:multi-target tracking;person re-identification;YOLOv5network;attention mechanism;deep learning1引言多目标跟踪(Multiple Target Tracking,MTT)主要任务是在给定视频中同时对多个特定目标进行定位,同时保持目标的ID稳定,最后跟踪记录他们的轨迹[1]。
辽宁省近5年痰培养主要病原菌分布及临床意义
WANGDecheng,GUANZhongying
(2ndAffil.Hosp.,LiaoningUni.ofTCM,Shenyang110034)
2 结果与分析
21 病原菌分布 2015年 1月至 2019年 12月共收集痰标本
微生物学杂志 2021年 4月第 41卷 第 2期 JOURNALOFMICROBIOLOGYApr.2021Vol41No2
73
辽宁省近 5年痰培养主要病原菌分布及临床意义
王德成,管仲莹
(辽宁中医药大学 附属第二医院,辽宁 沈阳 110034)
摘 要 了解住院患者痰培养的病原菌分布及其对常用抗菌药物的耐药情况,为临床合理用药提供参考。 回顾性分析辽宁省 2015年 1月至 2019年 12月共 3878份痰标本感染菌鉴定结果和铜绿假单胞菌 (Pseudo monasaeruginosa) 的药敏试验结果。采用法国梅里埃 VITEK2Compact全自动微生物鉴定仪进行菌种鉴定, 并对从门诊和住院下呼吸道感染患者中分离的 785株铜绿假单胞菌进行药物敏感试验分析。结果表明,痰 培养病原菌以革兰阴性杆菌为主,占 689%,其次为真菌。在革兰阴性杆菌中,铜绿假单胞菌占 202%。 铜绿假单胞菌对氨苄西林、呋喃妥英、复方新诺明、头孢呋辛 (酯)、头孢曲松、头孢替坦、头孢唑啉的耐 药性较高,每年的耐药率均高于 95%。而对于阿米卡星、环丙沙星、头孢吡肟、头孢他啶、左氧氟沙星则 出现较低的耐药性,5年的耐药率均低于 50%。铜绿假单胞菌对阿米卡星、哌拉西林、头孢吡肟、美罗培 南、亚胺培南的耐药率有逐年下降的趋势,而对环丙沙星、左氧氟沙星的耐药率有逐年上升的趋势。以上 结果表明辽宁省近 5年痰培养主要致病菌为革兰阴性杆菌,其中铜绿假单胞菌占很大的比例。铜绿假单胞 菌易产生多重耐药性,必须加强耐药性监测,为临床提供最新的耐药性资料,以便更好地控制铜绿假单胞 菌的感染,同时也对临床合理使用抗生素有指导意义。 关键词 痰培养;铜绿假单胞菌;耐药性;革兰阴性菌;阿米卡星 中图分类号 Q93993 文献标识码 A 文章编号 1005-7021(2021)02-0073-05 doi:103969/jissn1005-7021202102010
基于空洞卷积与特征增强的单阶段目标检测算法
基 金 项 目 :国 家 自 然 科 学 基 金(6 1 9 6 1 0 3 8)。 作者简介:姜 竣(1996—),男,硕士研究生,主研方向为目标检测、计算机视觉;翟东海,副教授、博士。 收稿日期:2020-05-13 修回日期:2020-06-16 E⁃mail:junjiang@
基于空洞卷积与特征增强的单阶段目标检测算法
姜 竣 1,翟东海 1,2
(1. 西南交通大学 信息科学与技术学院,成都 611756;2. 西藏大学 工学院,拉萨 850000)
摘 要:基于卷积神经网络目标检测算法的浅层特征图包含丰富的细节信息,但缺乏语义信息,而深层特征图则相 反 。 为 充 分 利 用 浅 层 和 深 层 特 征 图 特 征 ,解 决 多 尺 度 目 标 检 测 问 题 ,提 出 一 种 新 的 单 阶 段 目 标 检 测 算 法 (AFESSD)。 以 SSD 算 法 为 基 础 ,分 别 对 该 算 法 中 相 邻 的 2 个 特 征 图 进 行 特 征 融 合 ,从 而 丰 富 浅 层 特 征 层 的 语 义 信 息 。 通过对并行空洞卷积机制进行改进 ,构建多尺度特征提取模块 ,将融合后的特征图通入多尺度特征提取模块的方 式丰富其多尺度信息,同时提升主干网络的特征提取能力。在 PASCAL VOC2007 测试集上的实验结果表明,AFE-SSD 算法的 mAP 为 79.8%,检测速度为 58.8 frame/s,与 SSD、DSSD 算法相比,mAP 分别提升了 2.4 和 1.2 个百分点,验证 了所提特征融合方式及多尺度提取模块的有效性。 关键词:卷积神经网络;SSD 算法;特征融合;空洞卷积;目标检测
开 放 科 学(资 源 服 务)标 志 码(O S ID):
中文引用格式:姜竣,翟东海 .基于空洞卷积与特征增强的单阶段目标检测算法[J].计算机工程,2021,47(7):232-238,248. 英文引用格式:JIANG J,ZHAI D H. Single-stage object detection algorithm based on dilated convolution and feature enhancemen[t J].Computer Engineering,2021,47(7):232-238,248.
基于深度卷积神经网络的目标检测
第35卷 第8期 福 建 电 脑 Vol. 35 No.82019年8月Journal of Fujian ComputerAug. 2019———————————————程胜月,男,1995生,硕士研究生,研究方向为深度学习。
E-mail:2968365693@ 。
张德贤,男,1961生,博士,研究方向为模式识别、人工智能信息处理。
基于深度卷积神经网络的目标检测程胜月 张德贤(河南工业大学信息科学与工程学院 郑州 450001)摘 要 目标检测是计算机视觉领域中最基本、最具挑战性的课题之一,由于传统检测方法已经不能满足其在精度和速度上需求,深度学习利用其对图像特征强大地分析处理能力,逐渐成为目标检测的主流方向。
本文首先对主流卷积神经网络框架进行简述,其次对目标检测中的几种重要的方法具体分析,最后对未来可能的发展方向进行讨论。
关键词 目标检测;卷积神经网络;RCNN ;YOLO ;SSD 中图法分类号 TP183 DOI:10.16707/ki.fjpc.2019.08.009Target Detection Based on Deep Convolutional Neural NetworksCHENG Shengyue, ZHANG Dexian(School of Information Science and Engineering, Henan University of Technology, Zhengzhou,China, 450001)1引言目标检测作为计算机视觉的基本问题之一,是许多其他计算机视觉任务的基础,如实例分割、图像处理、对象跟踪等[1]。
目前,目标检测已广泛应用于无人驾驶、安防监管、视频分析等领域。
传统目标检测方法包含预处理、窗口滑动、特征提取、特征选择、特征分类、后处理等步骤。
而卷积神经网络本身具有特征提取、特征选择和特征分类的功能,所以在现在计算能力充足的情况下得到充分发展。
基于深度学习的人工智能技术在结直肠癌医学影像诊断中的应用进展
基于深度学习的人工智能技术在结直肠癌医学影像诊断中的应用进展张凯璇,丁康南京中医药大学附属南京中医院肛肠中心,南京210000摘要:结直肠癌(CRC)是我国常见的消化系统恶性肿瘤之一,近年来其发病率和死亡率逐年上升。
目前,CRC 的诊断主要依靠内镜下活检定位和定性诊断,内镜下准确定位和临床分期判断可指导临床医生选择最佳治疗方案,从而改善患者预后。
但结肠镜检查的准确率很大程度上取决于内镜医师的技术水平,主观性较强,存在误诊或漏诊情况。
近年来,随着机器学习、深度学习和深度神经网络技术在计算机视觉领域的快速发展,基于人工智能的计算机辅助系统在结肠镜检查方面取得了显著进展,不仅能显著提高结直肠息肉的检出效率,还能早期识别T1期CRC,从而避免部分患者接受不必要的手术切除,已成为内镜医生不可或缺的辅助诊断工具。
医学影像AI技术在提高CRC的诊断效率方面虽然具有很好的应用前景,但在临床实施中仍面临一些困难与挑战,在临床应用之前必须进行大样本、多中心的模型训练。
关键词:结直肠癌;人工智能;医学影像学doi:10.3969/j.issn.1002-266X.2024.04.026中图分类号:R735.3 文献标志码:A 文章编号:1002-266X(2024)04-0107-04结直肠癌(CRC)起源于结直肠黏膜上皮,是临床常见的消化系统恶性肿瘤之一,在全球恶性肿瘤中其发病率居第三位、死亡率居第二位。
CRC的发生大多遵循“息肉-腺瘤-癌”序列,通常由良性癌前息肉的局灶性变化发展而来,从息肉发展到癌症往往需要5~10年。
越来越多的证据表明,早期筛查及早诊早治可以降低CRC的发病率和死亡率[1]。
在当前的临床实践中,结肠镜是CRC筛查的“金标准”[2]。
内镜医师可通过镜头完整地探查整个肠腔,发现可疑病灶后取活体组织进行病理学检查。
近年来,随着人工智能(AI)技术在疾病诊断中得到快速发展,结肠镜下AI计算机辅助诊断技术(CAD)为CRC的精确诊断提供了新的途径[3]。
62-脊柱-骨盆矢状面力线参数与腰椎退行性疾病的关系 北仑人民医院 康信勇
脊柱-骨盆矢状面力线参数与腰椎退行性疾病的关系康信勇1,贺振年1,徐洪伟1,顾杰1,李永甫1,徐荣明2(1.宁波市北仑区人民医院 2.浙江省宁波市第六医院)摘要腰椎退行性疾病是骨科临床的常见病,也是导致腰腿痛的常见原因。
骨盆投射角、骨盆倾斜角和骶骨倾斜角等脊柱-骨盆矢状面力线参数可反映腰椎退行性疾病的进展,骨盆投射角是其中唯一恒定的解剖学参数,它的增大可能是退行性腰椎滑脱症进一步发展的重要因素;脊柱-骨盆矢状面力线参数的变化并不是退行性腰椎间盘疾病的致病因素,但可以预测其进展;骶骨倾斜角和腰椎前凸角都与退行性腰椎后凸畸形的发生有一定关系。
目前,有关脊柱-骨盆矢状面力线参数与腰椎退行性疾病相关性的研究甚少,有待于进一步研究。
关键词脊柱骨盆矢状面人体测量术腰椎退行性疾病综述正常的脊柱和骨盆形态曲线能使身体处于最佳平衡和最小的能量消耗状态,一旦脊柱骨盆矢状面力线发生改变,这种平衡状态将被打破,导致腰椎在矢状面失平衡、能量消耗增加,进而加速腰椎退行性改变。
既往的研究表明,脊柱畸形及腰椎退行性疾病患者的脊柱-骨盆矢状面力线均有不同程度的变化。
本文就有关脊柱-骨盆矢状面力线与腰椎退行性疾患关系的研究进展进行综述,以期阐明二者的关系。
1 脊柱-骨盆矢状面力线参数目前临床常用的脊柱-骨盆矢状面力线参数包括骨盆投射角(pelvic incidence,PI),骨盆倾斜角(pelvic tilt,PT)和骶骨倾斜角(sacral slope,SS),三者的几何关系为PI=SS+PT(图1[1])。
PI是指垂直穿过骶骨终板中点的直线与骶骨终板中点和股骨头中心(hip axis,HA;若两侧股骨头不重叠,则取两侧HA 连线的中点)连线的夹角,由Duval-Beaupère等[2]首先提出。
它可充分反映骨盆的代偿能力,虽然存在个体差异,但同一个体的测量值自骨骼停止生长后就一直保持恒定,且不随体位的变化而改变[2-6]。
基于神经网络的多特征轻度认知功能障碍检测模型
第 62 卷第 6 期2023 年11 月Vol.62 No.6Nov.2023中山大学学报(自然科学版)(中英文)ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI基于神经网络的多特征轻度认知功能障碍检测模型*王欣1,陈泽森21. 中山大学外国语学院,广东广州 5102752. 中山大学航空航天学院,广东深圳 518107摘要:轻度认知功能障是介于正常衰老和老年痴呆之间的一种中间状态,是老年痴呆诊疗的关键阶段。
因此,针对潜在MCI老年人群进行早期检测和干预,有望延缓语言认知障碍及老年痴呆的发生。
本文利用患者在语言学表现变化明显的特点,提出了一种基于神经网络的多特征轻度认知障碍检测模型。
在提取自然会话中的语言学特征的基础上,融合LDA模型的T-W矩阵与受试者资料等多特征信息,形成TextCNN网络的输入张量,构建基于语言学特征的神经网络检测模型。
该模型在DementiaBank数据集上达到了0.93的准确率、1.00的灵敏度、0.8的特异度和0.9的精度,有效提高了利用自然会话对老年语言认知障碍检测的准确率。
关键词:轻度认知功能障碍;自然会话;神经网络模型;多特征分析;会话分析中图分类号:H030 文献标志码:A 文章编号:2097 - 0137(2023)06 - 0107 - 09A neural network-based multi-feature detection model formild cognitive impairmentWANG Xin1, CHEN Zesen21. School of Foreign Languages, Sun Yat-sen University, Guangzhou 510275, China2. School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, ChinaAbstract:Mild cognitive impairment (MCI) is both an intermediate state between normal aging and Alzheimer's disease and the key stage in the diagnosis of Alzheimer's disease. Therefore, early detec‐tion and treatment for potential elderly can delay the occurrence of dementia. In this study, a neural net‐work-based multi-feature detection model for mild cognitive impairment was proposed, which exploits the characteristics of patients with obvious changes in linguistic performance. The model is based on ex‐tracting the linguistic features in natural speech and integrating the T-W matrix of the LDA model with the subject data and other multi-feature information as the input tensor of the TextCNN network. It achieved an accuracy of 0.93, a sensitivity of 1.00, a specificity of 0.8, and a precision of 0.9 on the DementiaBank dataset, which effectively improved the accuracy of cognitive impairment detection in the elderly by using natural speech.Key words:mild cognitive impairment; natural speech; neural network model; multi-feature detec‐tion; speech analysisDOI:10.13471/ki.acta.snus.2023B049*收稿日期:2023 − 07 − 18 录用日期:2023 − 07 − 30 网络首发日期:2023 − 09 − 21基金项目:教育部人文社会科学基金(22YJCZH179);中国科协科技智库青年人才计划(20220615ZZ07110400);中央高校基本科研业务费重点培育项目(23ptpy32)作者简介:王欣(1991年生),女;研究方向:应用语言学;E-mail:******************第 62 卷中山大学学报(自然科学版)(中英文)轻度认知障碍(MCI,mild cognitive impair‐ment)是一种神经系统慢性退行性疾病,也是阿尔茨海默病(AD,Alzheimer's disease)的早期关键阶段。
基于深度学习的目标检测技术研究(英文中文双语版优质文档)
基于深度学习的目标检测技术研究(英文中文双语版优质文档)Object detection is one of the important research directions in the field of computer vision, and it has a wide range of applications in the fields of automatic driving, intelligent security, medical image analysis and so on. In recent years, with the development of deep learning technology, object detection technology based on deep learning has made remarkable progress. This paper will review the research progress of object detection technology based on deep learning in recent years, and analyze its advantages, disadvantages and future development directions.1. Research background of target detection technologyObject detection is one of the important research directions in the field of computer vision. Its main task is to detect the location, size and category of objects in images or videos. Object detection technology is widely used in autonomous driving, intelligent security, medical image analysis and other fields.In traditional target detection techniques, commonly used methods include methods based on feature extraction and traditional machine learning algorithms, such as Haar features and HOG features, and methods based on background modeling, such as ViBe and MoG. However, there are many problems in these traditional methods, such as the feature is not learnable, the robustness is poor, and it is limited by the background model.With the development of deep learning technology, object detection technology based on deep learning has become a research hotspot. These techniques perform end-to-end training on images by using deep neural networks, without the need to manually design features, and thus have better learnability and robustness.2. Overview of target detection technology based on deep learningAt present, object detection techniques based on deep learning are mainly divided into two categories: two-stage detection and one-stage detection. Among them, the two-stage detection method first generates a series of candidate boxes through a Region Proposal Network (RPN), and then classifies and regresses these candidate boxes to obtain the final target detection result. The one-stage detection method directly classifies and regresses the entire image to obtain the target detection result.1. Two-stage detection method(1) Faster R-CNNFaster R-CNN is a typical two-stage object detection method, which proposes an RPN to generate candidate boxes, and classifies and regresses the candidate boxes through the R-CNN network. RPN network is a sliding window framework based on convolutional neural network, which can extract multiple regions that may contain targets in the image, and classify and regress these regions to generate candidate boxes. Then, these candidate boxes are input into the R-CNN network, and they are classified and regressed to obtain the final target detection result.Compared with traditional target detection methods, Faster R-CNN has greatly improved its accuracy and speed. However, there are two problems: one is that the candidate frame generated by RPN requires a lot of calculation, resulting in a slow calculation speed; the other is that the network needs to perform two forward propagations, resulting in a large amount of calculation.(2) Mask R-CNNMask R-CNN is an extension of Faster R-CNN. It adds a segmentation branch to Faster R-CNN, which can simultaneously complete target detection and pixel-level semantic segmentation. Based on Faster R-CNN, Mask R-CNN adds a fully convolutional network to generate target masks to achieve pixel-level semantic segmentation. Mask R-CNN has achieved excellent results on multiple datasets, proving its effectiveness on object detection and semantic segmentation tasks.(3) Cascade R-CNNCascade R-CNN is improved on the basis of Faster R-CNN, and its idea is to perform cascaded classification and regression on candidate frames. Cascade R-CNN improves the detection accuracy by cascading multiple R-CNN networks, and each R-CNN network performs stricter screening of samples that were misclassified by the previous network. Cascade R-CNN achieves state-of-the-art performance on multiple datasets, proving its effectiveness in the field of object detection.2. One-stage detection method(1) YOLO seriesYOLO (You Only Look Once) is a typical one-stage target detection method. YOLO obtains target detection results by classifying and regressing the entire image. YOLO is characterized by being fast and simple, and can be used in real-time scenarios. The YOLO series has now been developed to the fourth edition, and its detection speed and accuracy have been greatly improved. However, there are also some problems in the YOLO series, such as poor detection of small targets.(2) SSD seriesSSD (Single Shot MultiBox Detector) is another typical one-stage target detection method. Unlike YOLO, SSD uses multi-scale feature maps to detect targets, thereby improving the detection effect on small targets. The SSD series has also experienced multiple versions of development, and its detection speed and accuracy have been greatly improved. However, compared with YOLO, the detection speed of SSD is relatively slow, and there are also problems such as poor detection effect on objects with high aspect ratio.(3) RetinaNetRetinaNet is a one-stage target detection method based on Focal Loss. RetinaNet improves the detection effect of small targets by improving the loss function to pay more attention to positive and negative samples that are difficult to distinguish. RetinaNet has achieved excellent results on multiple datasets, proving its effectiveness in the field of object detection.(4) EfficientDetEfficientDet is a one-stage object detection method based on EfficientNet. EfficientDet builds a series of efficient network structures by using different expansion coefficients and depth and width scaling factors, thus achieving a good balance between detection speed and accuracy. EfficientDet achieves state-of-the-art performance on multiple datasets, proving its effectiveness in the field of object detection.In general, the one-stage object detection method has faster detection speed than the two-stage method, but the detection effect on small objects and high aspect ratio objects is relatively poor. Different methods have their own advantages and disadvantages, and the appropriate method needs to be selected according to the specific application scenario.目标检测是计算机视觉领域的重要研究方向之一,其在自动驾驶、智能安防、医学图像分析等领域都有广泛的应用。
引用次数最多的100篇SCI文章
Rank Authors1Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J.2Laemmli, U. K.3Bradford, M. M.4Sanger. F., Nicklen, S. & Couslon, A. R.5Chomczynski, P. & Sacchi, N.6Towbin, H., Staehelin, T. & Gordon, J.7Lee. C., Yang, W. & Parr, R. G.8Becke, A. D.9Folch, J., Lees, M. & Stanley, G. H. S.10Thompson, J. D., Higgins, D. G. & Gibson, T. J11Kaplan, E. L. & Meier, P.12Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D.13Sheldrick, G. M.14Altschul, S. F. et al.15Murashige, T. & Skoog, F.16Perdew, J. P., Burke, K. & Ernzerhof, M.17Folstein, M. F., Folstein, S. E. & McHugh, P. R.18Bligh, E. G. & Dyer, W. J.19Southern, E. M.20Saitou, N. & Nei, M.21Livak, K. J. & Schmittgen, T. D.22Shannon, R. D.23Otwinowski, Z. & Minor, W.24Cox, D. R.25Becke, A. D.26DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith27Reynolds, E. S.28Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & H 29Bland, J. M. & Altman, D. G.30Weber, K. & Osborn, M.31Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W.32Scatchard, G.33Baron, R. M. & Kenny, D. A.34Kohn, W. & Sham, L. J.35Mosmann, T.36Iijima, S.37Fiske, C. H. & Subbarow, Y38Davis, B. J.39Hohenberg, P. & Kohn, W.40Feinberg, A. P. & Vogelstein, B.41Felsenstein, J.42Grynkiewicz, G., Poenie, M. & Tsien, R. Y.43Kresse, G. & Furthmüller, J.44O’Farrell, P. H.45Tamura, K., Dudley, J., Nei, M. & Kumar, S.46Zadeh, L. A.47Sheldrick. G. M.48McKhann, G. et al.49Monkhorst, H. J. & Pack, J. D50Burton, K.51Radloff, L. S.52Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. 53Hamilton, M.54Beck, A. T., Ward, C. H., Mendelsohn, M., Mock, J. & Erbaugh, 55Kyte, J. & Doolittle, R. F.56Gornall, A. G., Bardawill, C. J. & David, M. M.57Dempster, A. P., Laird, N. M. & Rubin, D. B.58Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. 59Benjamini, Y. & Hochberg, Y.60Smith, P. K. et al.61Oldfield, R. C.62Friedewald, W. T., Levy, R. I. & Fredrickson, D. S.63Saiki, R. K. et al.64Duncan, D. B.65Novoselov, K. S. et al.66Ellman, G. L.67Böyum, A.68Landis, J. R. & Koch, G. G.69Brünger, A. T. et al.70Dunning, T. H. Jr71Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J 72Ware, J. E. Jr & Sherbourne, C. D.73Akaike, H.74Yanisch-Perron, C., Vieira, J. & Messing, J.75Devereux, J., Haeberli, P. & Smithies, O.76Posada, D. & Crandall, K. A.77Kresse, G. & Joubert, D.78Hsu, S.-M., Raine, L. & Fanger, H.79Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W 80Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P 81Bartlett, G. R.82Kraulis, P. J.83Bondi, A.84Ellman, G. L., Courtney, K. D., Andres, V. Jr & Featherstone, R. 85Blöchl, P. E86Kirkpatrick. S., Gelatt, C. D. & Vecchi, M. P.87Moncada, S., Palmer, R. M. & Higgs, E. A.88Marquardt, D. W.89Kresse, G. & Furthmüller, J.90O’Regan, B. & Grätzel, M.91Spurr, A. R.92Berman, H. M. et al.93Perdew, J. P. & Wang, Y.94Bimboim, H. C. & Doly, J.95Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M.96Vosko, S. H., Wilk, L. & Nusair, M.97Köhler, G. & Milstein, C.98Matthews, D. R. et al.99Brunauer, S., Emmett, P. H. & Teller, E.100Ronquist, F. & Huelsenbeck, J. P.101Ross, R.Numbers from Thomson Reuters; extracted 7 October 2014TitleProtein measurement with the folin phenol reagent. Cleavage of structural proteins during the assembly of A rapid and sensitive method for the quantitation of mi DNA sequencing with chain-terminating inhibitors.Single-step method of RNA isolation by acid guanidini Electrophoretic transfer of proteins from polyacrylamid Development of the Colle-Salvetti correlation-energy f Density-functional thermochemistry. III. The role of ex A simple method for the isolation and purification of to Clustal W: improving the sensitivity of progressive mu Nonparametric estimation from incomplete observation Basic local alignment search tool.A short history of SHELX.Gapped BLAST and PSI-BLAST: A new generation o A revised medium for rapid growth and bio assays with Generalized gradient approximation made simple. "Mini-mental state": A practical method for grading co A rapid method of total lipid extraction and purificatio Detection of specific sequences among DNA fragment The neighbor-joining method: A new method for recon Analysis of relative gene expression data using real-tim Revised effective ionic radii and systematic studies of interatom Processing of X-ray diffraction data collected in oscillation mod Regression models and life-tables.Density-functional exchange-energy approximation with correct Colorimetric method for determination of sugars and re Use of lead citrate at high pH as an electron-opaque stain in elec The CLUSTAL_X Windows interface: Flexible strateg Statistical methods for assessing agreement between two method Reliability of molecular weight determinations by dodecyl sulfat Isolation of biologically-active ribonucleic-acid from so The attractions of proteins for small molecules and ions.The moderator–mediator variable distinction in social psycholog Self-consistent equations including exchange and correlation eff Rapid colorimetric assay for cellular growth and survival — app Helical microtubules of graphitic carbon.The colorimetric determination of phosphorus.Disc electrophoresis — II. Method and application to human se Inhomogeneous electron gas.A technique for radiolabeling DNA restriction endonuclease fra Confidence limits on phylogenies: an approach using the bootst A new generation of Ca2+ indicators with greatly impr Efficient iterative schemes for ab initio total-energy calculations High-resolution 2-dimensional electrophoresis of prote MEGA4: Molecular Evolutionary Genetics Analysis (M Fuzzy sets.Phase annealing in SHELX-90: direct methods for larg Clinical diagnosis of Alzheimer’s disease: Report of the NINCD Special points for Brillouin-zone integrations.Study of the conditions and mechanism of the diphenylamine re The CES-D scale: a self-report depression scale for res Improved patch-clamp techniques for high-resolution c A rating scale for depression.An inventory for measuring depression.A simple method for displaying the hydropathic character of a p Determination of serum proteins by means of the biure Maximum likelihood from incomplete data via EM algorithm. Equation of state calculations by fast computing machi Controlling the false discovery rate: a practical and pow Measurement of protein using bicinchoninic acid.The assessment and analysis of handedness: the Edinbu Estimation of concentration of low-density lipoprotein Primer-directed enzymatic amplification of DNA with a thermo Multiple range and multiple F tests.Electric field effect in atomically thin carbon films.Tissue sulfhydryl groups.Isolation of mononuclear cells and granulocytes from human blo The measurement of observer agreement for categorical data. Crystallography & NMR system: a new software suite Gaussian-basis sets for use in correlated molecular calculations. PROCHECK: a program to check the stereochemical q The MOS 36-item short-form health survey (SF-36): I. Concept A new look at statistical-model identification.Improved M13 phage cloning vectors and host strains A comprehensive set of sequence-analysis programs for the vax. MODELTEST: Testing the model of DNA.From ultrasoft pseudopotentials to the projector augme Use of avidin-biotin-peroxidase complex (ABC) in immunopero Comparison of simple potential functions for simulating The development and use of quantum-mechanical mole Phosphorus assay in column chromatography. MOLSCRIPT: a program to produce both detailed and Van der Waals volumes and radii.A new and rapid colorimetric determination of acetylch Projector augmented-wave method.Optimization by simulated annealing.Nitric oxide: physiology, pathophysiology, and pharmacology. An algorithm for least-squares estimation of nonlinear Efficiency of ab initio total energy calculations for metals and se A low-cost, high-efficiency solar-cell based on dye-sen A low-viscosity epoxy resin embedding medium for ele The Protein Data Bank.Accurate and simple analytic representation of the elecRapid alkaline extraction procedure for screening recom Improved methods for building protein models in elect Accurate spin-dependent electron liquid correlation ene Continuous cultures of fused cells secreting antibody o Homeostasis model assessment: insulin resistance and bet Adsorption of gases in multimolecular layers. MrBayes 3: Bayesian phylogenetic inference under mixed Atherosclerosis — an inflammatory disease.Journal Volume Pages Year Times cited J. Biol. Chem.193265–2751951305148 Nature227680–6851970213005 Anal. Biochem.72248–2541976155530 Proc. Natl Acad. Sci. USA745463–5467197765335 Anal. Biochem.162156–159198760397 Proc. Natl Acad. Sci. USA764350–4354197953349 Phys. Rev. B37785–789198846702 J. Chem. Phys.985648–5652199346145 J. Biol. Chem.226497–509195745131 Nucleic Acids Res.224673–4680199440289 J. Am. Stat. Assoc.53457–481195838600 J. Mol. Biol.215403–410199038380 Acta Crystallogr. A64112–122200837978 Nucleic Acids Res.253389–3402199736410 Physiol. Plant.15473–497196236132 Phys. Rev. Lett.773865–3868199635405 J. Psychiatr. Res.12189–198197534532 Can. J. Biochem. Physiol.37911–917195932131 J. Mol. Biol.98503197531904 Mol. Biol. Evol.4406–425198730176 Methods25402–408200128870 Acta Crystallogr. A32751–767197628658 Method. Enzymol. A276307–326199728647 J. R. Stat. Soc., B34187–220197228439 Phys. Rev. A383098–3100198826475 Anal. Chem.28350–356195625735 J. Cell Biol.17208196324449 Nucleic Acids Res.254876–4882199724098 Lancet327307–310198623826 J. Biol. Chem.2444406196923642 Biochemistry185294–5299197923435 Ann. New York Acad. Sci.51660-672194923421 J. Pers. Soc. Psychol.511173–1182198623356 Phys. Rev.140A1133196523059 J. Immunol. Methods6555–63198323011 Nature35456–58199122899 J. Biol. Chem.66375–400192522690 Ann. New York Acad. Sci.121404–427196422074 Phys. Rev. B136B864196421931 Anal. Biochem.1326–131******** Evolution39783–791198521373 J. Biol. Chem.2603440–3450198519561 Phys. Rev. B5411169–1118199618856 J. Biol. Chem.2504007–4021197518489 Mol. Biol. Evol.241596–1599200718286 Inform. Control8338–353196518203Acta Crystallogr. A46467–473199017728 Neurology34939–944198417220 Phys. Rev. B135188–5192197617087 Biochem. J.62315-323195617067 Appl. Psychol. Meas.1385–401197717055 Pflug. Arch. Eur. J. Physiol.39185–100198117025 J. Neurol. Neurosurg. Psychiatry2356–62196016734 Arch. Gen. Psychiatry4561196116264 J. Mol. Biol.157105–132198216059 J. Biol. Chem.177751–766194916009 J. R. Stat. Soc., B391–38197715993 J. Chem. Phys.211087–1092195315902 J. R. Stat. Soc. B57289–300199515898 Anal. Biochem.15076–85198515802 Neuropsychologia997–113197115517 Clin. Chem.18499197215469 Science239487–491198815160 Biometrics111–42195515047 Science306666–669200415022 Arch. Biochem. Biophys.8270–77195915019 Scand. J. Clin. Lab. Invest.21S77–S89196814934 Biometrics33159–174197714903 Acta Crystallogr. D54905–921199814898 J. Chem. Phys.901007–1023198914617 J. Appl. Crystallogr.26283–291199314462 Med. Care30473–483199214332 IEEE Trans. Automat. Contr.19716–723197414275 Gene33103–119198514232 Nucleic Acids Res.12387–395198414226 Bioinformatics14817–818199814099 Phys. Rev. B591758–1775199914049 J. Histochem. Cytochem.29577–580198113881 J. Chem. Phys.79926–935198313774 J. Am. Chem. Soc.1073902–3909198513718 J. Biol. Chem.234466–468195913523 J. Appl. Crystallogr.24946–950199113496 J. Phys. Chem.68441–451196413417 Biochem. Pharmacol.788196113332 Phys. Rev. B5017953–1797199413330 Science220671–680198313293 Pharmacol. Rev.43109–142199113267 J. Soc. Ind. Appl. Math.11431–441196313258 Comput. Mater. Sci.615–50199613084 Nature353737–740199112873 J. Ultrastruct. Res.2631196912807 Nucleic Acids Res.28235–242200012754 Phys. Rev. B4513244–1324199212748Nucleic Acids Res.71513–1523197912721 Acta Crystallogr. A47110–119199112649 Can. J. Phys.581200–1211198012583 Nature256495–497197512391 Diabetologia28412-419198512257 J. Am. Chem. Soc.60309–319193812252 Bioinformatics191572-1574200312209 N. Engl. J. Med.340115–126199912119DOI Hyperlink/content/193/1/265.long10.1038/227680a0/10.1038/227680a010.1016/0003-2697(76)905/10.1016/0003-2697(76)90527-310.1073/Pnas.74.12.5463 h /10.1073/Pnas.74.12.5463/10.1016/0003-2697(87)90021-210.1016/0003-2697(87)9002110.1073/pnas.76.9.4350/10.1073/pnas.76.9.435010.1103/PhysRevB.37.785/10.1103/PhysRevB.37.78510.1063/1.464913/10.1063/1.464913/content/226/1/497.long10.1093/nar/22.22.4673/10.1093/nar/22.22.4673/10.1080/01621459.1958.1050145210.1080/01621459.1958.10501410.1016/S0022-2836(05)80360-/10.1016/S0022-2836(05)80360-210.1107/S0108767307043930/10.1107/S010876730704393010.1093/nar/25.17.3389/10.1093/nar/25.17.338910.1111/j.1399-3054.1962.tb08/10.1111/j.1399-3054.1962.tb08052.x10.1103/PhysRevLett.77.3865/10.1103/PhysRevLett.77.386510.1016/0022-3956(75)900/10.1016/0022-3956(75)90026-610.1139/o59-099/10.1139/o59-09910.1016/S0022-2836(75)80083-/10.1016/S0022-2836(75)80083-0/content/4/4/406.long10.1006/meth.2001.1262/10.1006/meth.2001.126210.1107/S0567739476001551/10.1107/S056773947600155110.1016/S0076-6879(97)76/10.1016/S0076-6879(97)76066-X/discover/10.2307/2985181?uid=3739256& 10.1103/PhysRevA.38.3098/10.1103/PhysRevA.38.309810.1021/ac60111a017/10.1021/ac60111a01710.1083/jcb.17.1.208/10.1083/jcb.17.1.20810.1093/nar/25.24.4876/10.1093/nar/25.24.487610.1016/S0140-6736(86)90837-/10.1016/S0140-6736(86)90837-8/content/244/16/440610.1021/bi00591a005/10.1021/bi00591a00510.1111/J.1749-6632.1949/10.1111/J.1749-6632.1949.Tb27297.X10.1037/0022-3514.51.6.11/10.1037/0022-3514.51.6.117310.1103/PhysRev.140.A1133/10.1103/PhysRev.140.A113310.1016/0022-1759(83)90303-4/10.1016/0022-1759(83)90303-410.1038/354056a0/10.1038/354056a0/content/66/2/375.citation10.1111/J.1749-6632.1964/10.1111/J.1749-6632.1964.Tb14213.X10.1103/PhysRev.136.B864/10.1103/PhysRev.136.B86410.1016/0003-2697(83)90418-9/10.1016/0003-2697(83)90418-910.2307/2408678/10.2307/2408678/content/260/6/3440.long10.1103/PhysRevB.54.11169/10.1103/PhysRevB.54.11169/content/250/10/4007.long10.1093/molbev/msm092/10.1093/molbev/msm09210.1016/S0019-9958(65)90241-/10.1016/S0019-9958(65)90241-X10.1107/S0108767390000277/10.1107/S010876739000027710.1212/WNL.34.7.939/10.1212/WNL.34.7.93910.1103/PhysRevB.13.5188/10.1103/PhysRevB.13.5188/pmc/articles/PMC1215910/10.1177/014662167700100306/10.1177/01466216770010030610.1007/BF00656997/10.1007/BF0065699710.1136/jnnp.23.1.56/10.1136/jnnp.23.1.56/10.1001/archpsyc.1961.0171012003100410.1001/archpsyc.1961.017101210.1016/0022-2836(82)90515-0/10.1016/0022-2836(82)90515-0/content/177/2/751.citation/discover/10.2307/2984875?uid=3739256& 10.1063/1.1699114/10.1063/1.1699114/discover/10.2307/2346101?uid=3739256& 10.1016/0003-2697(85)90442-7/10.1016/0003-2697(85)90442-710.1016/0028-3932(71)90067-4/10.1016/0028-3932(71)90067-4/content/18/6/499.long10.1126/science.2448875/10.1126/science.244887510.2307/3001478/10.2307/300147810.1126/science.1102896/10.1126/science.110289610.1016/0003-9861(59)90090-6/10.1016/0003-9861(59)90090-6/pubmed/417906810.2307/2529310/10.2307/252931010.1107/S0907444998003254/10.1107/S090744499800325410.1063/1.456153/10.1063/1.45615310.1107/S0021889892009944/10.1107/S002188989200994410.1097/00005650-199206000-/10.1097/00005650-199206000-0000210.1109/TAC.1974.1100705/10.1109/TAC.1974.110070510.1016/0378-1119(85)90120-9/10.1016/0378-1119(85)90120-910.1093/nar/12.1Part1.387/10.1093/nar/12.1Part1.38710.1093/bioinformatics/14.9.81/10.1093/bioinformatics/14.9.81710.1103/PhysRevB.59.1758/10.1103/PhysRevB.59.175810.1177/29.4.6166661/10.1177/29.4.616666110.1063/1.445869/10.1063/1.44586910.1021/ja00299a024/10.1021/ja00299a024/content/234/3/466.long10.1107/S0021889891004399/10.1107/S002188989100439910.1021/j100785a001/10.1021/j100785a00110.1016/0006-2952(61)90145-9/10.1016/0006-2952(61)90145-910.1103/PhysRevB.50.17953/10.1103/PhysRevB.50.1795310.1126/science.220.4598.671/10.1126/science.220.4598.671/entrez/query.fcgi?cmd=Retrieve&db=Pub 10.1137/0111030/10.1137/011103010.1016/0927-0256(96)00008-0/10.1016/0927-0256(96)00008-010.1038/353737a0/10.1038/353737a010.1016/S0022-5320(69)90033-/10.1016/S0022-5320(69)90033-110.1093/nar/28.1.235/10.1093/nar/28.1.23510.1103/PhysRevB.45.13244/10.1103/PhysRevB.45.1324410.1093/nar/7.6.1513/10.1093/nar/7.6.151310.1107/S0108767390010224/10.1107/S010876739001022410.1139/p80-159/10.1139/p80-15910.1038/256495a0/10.1038/256495a0/article/10.1007%2FBF00280883#page-1 10.1021/ja01269a023/10.1021/ja01269a02310.1093/bioinformatics/btg1/10.1093/bioinformatics/btg180/10.1056/NEJM19990114340020710.1056/NEJM19990114340020SubjectBiology lab technique Biology lab technique Biology lab technique Biology lab technique Biology lab technique Biology lab technique Physical chemistry Physical chemistry Biology lab technique Bioinformatics Medical statistics Bioinformatics Crystallography Bioinformatics Biology lab technique Physical chemistry Psychology/psychiatry Biology lab technique Biology lab technique Phylogenetics Biology lab technique Physical chemistry Crystallography Medical statistics Physical chemistry Biology lab technique Biology lab technique Bioinformatics Medical statistics Biology lab technique Biology lab technique Biology lab technique Psychology/psychiatry Physical chemistry Biology lab technique PhysicsBiology lab technique Biology lab technique Physical chemistry Biology lab technique Phylogenetics Biology lab technique Physical chemistry Biology lab technique Phylogenetics Mathematics/statisticsCrystallography MedicinePhysicsBiology lab technique Psychology/psychiatry Biology lab technique Psychology/psychiatry Psychology/psychiatry Biology lab technique Biology lab technique Mathematics/statistics Mathematics/statistics Mathematics/statistics Biology lab technique Psychology/psychiatry MedicineBiology lab technique Mathematics/statistics PhysicsBiology lab technique Biology lab technique Mathematics/statistics Crystallography Mathematics/statistics Crystallography Medicine Mathematics/statistics Biology lab technique Bioinformatics Bioinformatics Physical chemistry Biology lab technique Biology lab technique Physical chemistry Biology lab technique Crystallography Crystallography Biology lab technique Physical chemistry Physical chemistry Biology lab technique Mathematics/statistics Physical chemistry Physical chemistry Biology lab technique Crystallography Physical chemistryBiology lab technique Crystallography Physical chemistry Biology lab technique MedicinePhysics Phylogenetics Medicine。
基于被动探测的目标磁扰动信号检测与定位
·工程应用·航天电子对抗2021年第1期基于被动探测的目标磁扰动信号检测与定位李荣浩1,王毅1,王琦2,颜坤3(1.南京航空航天大学,江苏南京211106;2.中国航天科工集团8511研究所,江苏南京210007;3.北京临近空间飞艇技术开发有限公司,北京100160)摘要:针对目标探测定位的快速发展中,军事领域主动雷达存在的缺陷和实现具有高度隐蔽性的目标检测技术的需求,提出一种基于被动磁矢量测量的目标扰动信号检测与定位技术。
该方法利用磁传感器阵列测量目标产生的磁矢量扰动信息,通过滤波、门限检测、基函数展开等技术将有效扰动从复杂的背景场中提取出来,并结合速度估计、磁梯度张量矩阵算法研究任意目标位置的定位技术。
理论和仿真结果证明了所提出的信号检测与定位技术的正确性,实地测试结果表明该方法具有较高的可行性和实用潜质。
关键词:被动探测;信号检测;定位估计;磁梯度张量中图分类号:TN97文献标志码:AMagnetic turbulence detection of targets based on passive probing systemLi Ronghao1,Wang Yi1,Wang Qi2,Yan Kun3(1.Nanjing University of Aeronautics and Astronautics,Nanjing211106,Jiangsu,China;2.No.8511Research Institute of CASIC,Nanjing211106,Jiangsu,China;3.Beijing Near Space Airship Technology Research Company Limited,Beijing100160,China)Abstract:With the rapid development of target detection techniques,shortcomings of active radar in the mili‑tary field become obvious and the requirements for invisible detection methods become more straightforward.Apassive detection system to detect magnetic vectors for target signal detection and position is proposed.The meth‑od is based on using magnetic sensor arrays to measure background geomagnetic turbulence,and use techniquesincluding filtering,threshold detection,basis function expansion to obtain useful signals.Then through velocityprediction,vector localization to predict the moving status of the target.Both theoretical analysis and simulationproves the method is correct,and the on-site measurement shows the method is highly applicable.Key words:passive probing;signal detection;location;magnetic gradient tensor0引言现代战争中,目标探测技术是决定战争胜负的关键技术之一。
计算机视觉在物理中的应用文献
计算机视觉在物理中的应用文献以下是一些计算机视觉在物理中的应用文献:1. "Automated detection of atomic lattice defects using machine learning and computer vision" (2018) by A. Azizi et al. This paper describes how machine learning and computer vision techniques can be used to automatically detect atomic lattice defects in materials, which is an important problem in materials science.2. "Real-time tracking and analysis of single nanoparticles with deep learning" (2019) by J. P. Long et al. This paper describes how deep learning methods can be used for real-time tracking and analysis of single nanoparticles, which has applications in both materials science and biology.3. "Computer vision techniques for quantitative analysis of the dynamics of granular materials" (2017) by E. Kaxiras et al. This paper describes how computer vision techniques can be used for quantitative analysis of the dynamics of granular materials, which has applications in geology, engineering, and materials science.4. "Automated identification of microstructures in material science using machine learning and computer vision" (2019) by R. D. Hanwell et al. This paper describes how machinelearning and computer vision techniques can be used for automated identification of microstructures in materials science, which is an important problem for understanding the properties of materials.5. "High-throughput identification of nanoparticles using machine learning and computer vision" (2020) by H. T. Ng et al. This paper describes how machine learning and computer vision techniques can be used for high-throughput identification of nanoparticles, which is an important problem in materials science and nanotechnology.。
基于信任随机森林的不确定手写数字识别研究
基于信任随机森林的不确定手写数字识别研究摘要随着信息技术的发展,海量数据如潮水般涌入社会生产中,这些来自不同渠道的数据夹杂的不确定信息逐渐增多。
例如在手写数字识别的图像采集和存储过程中,常因多种因素导致图像局部缺失或污损进而引入不确定性,实践中的处理方法多是通过人工标注完成不确定推理,而后基于确定数据集进行学习建模,这种处理方式效率低、成本高、稳定性差。
如何高效处理不确定信息并基于不确定数据集完成分类器的学习与构建,成了手写数字识别研究面临的新挑战。
信任函数理论为不确定数据处理提供了崭新的思想与方法,近年来受到广泛关注。
本文沿着先驱指引的方向继续前行,针对不确定手写数字数据集学习与建模困难问题,提出了基于机器学习决策树理论改进而来的信任随机森林算法,通过引入信任函数理论和集成学习思想,给出了有效建模不确定数据集并完成手写数字识别的新尝试:为解决训练样本输出类标缺失不确定,改进算法引入了证据理论信任函数思想方法,通过构建样本间距离到基本信任分配函数的映射,计算不确定样本基本信任分配函数值,运用证据组合规则完成对样本输出类别标记的预测推理;对于训练样本属性值缺失不确定,通过调整样本的权重,优化相关计算,完成最优划分属性选择和缺失样本的类别划分,并在决策树结点划分过程中引入随机属性子集选取规则来降低决策树“过拟合”风险,实现了信任随机决策树的构建;为了提高学习器的泛化性能,运用集成学习思想将若干棵基信任随机决策树结合起来生成信任随机森林,最终完成对不确定手写数字数据集的学习与建模。
为了评估信任随机森林算法建模不确定数据集并实现手写数字识别的实际泛化性能,本文进行了实验验证研究:首先,对数据集中图像进行二值化和细化处理,生成手写数字实验数据集;然后,对训练集数据样本从统计和几何两个层面进行多特征提取,完成手写数字训练集输入特征向量的构建;最后,利用Python 编程语言完成信任随机森林算法的计算机编程实现,并在不确定手写数字数据集上运行算法进行验证实验,通过对模型参数的调整优化和实验结果的研究分析,论证了信任随机森林算法建模不确定数据集并实现手写数字识别的可行性和高效性。
深度学习目标检测方法研究综述
深度学习目标检测方法研究综述作者:李一男来源:《中国新通信》2021年第09期【摘要】为了更准确的对图像中的目标物体进行识别,科学家研发了目标检测技术,其是计算机视觉的重要组成。
最近几年深度学习越来越普及,基于深度学习的目标检测技术具有更高的准确率和检测效率,可以应用在很多领域,然而应用过程中还存在一些影响深度学习目标检测的发展的问题急需解决,基于此,本文对目标检测概念进行了简单介绍,并对深度学习目标检测算法进行了归纳总结,对深度学习目标检测中存在的问题和未来发展进行了探究,希望可以为目标检测实现更好发展提供助力。
【关键词】深度学习目标检测研究Abstract: In order to more accurately identify target objects in images, scientists have developed target detection technology, which is an important component of computer vision. In recent years, deep learning has become more and more popular. The target detection technology based on deep learning has higher accuracy and detection efficiency, and can be applied in many fields. However, there are still some problems that affect the development of deep learning target detection in the application process. Based on this, this article briefly introduces the concept of target detection, summarizes the deep learning target detection algorithm, and explores the problems and future development of deep learning target detection, hoping to achieve better target detection Good development provides assistance.Keywords: deep learning; target detection; research引言:深度学习最近几年得到了很大的发展,计算机视觉技术也得到了很大的提升,基于深度学习的目标检测方法在很多领域都实现了广泛应用。
海运固体散装货物的水尺计重
海运固体散装货物的水尺计重海运固体散装货物的水尺计重浙江国际海运职业技术学院陈亚飞汪益兵内容提要:论文就水尺计重过程出现的各种算法不同及数据取值不一等问题,结合国内外不同计重习惯进行了对比分析与探讨.并对船中吃水的修正及静水力查表进行了探讨,旨在规范水尺计重工作.关键词:水尺计重固体公估纵倾修正水尺标志DiscussionOiltheCalculationofDraftSurveyinSolidBulkCargoesAbstract:Thispaperexpatiatessomephenomenonduringdraftsurvey,suchasdifferentalgor ithmsanddifferentvsluestaken. Contrasitiveexplorationiscarriedoutcombiningwiththedifferentweighingwaysathomean dabroad.Correctionformidshipsdraftandhydrostatictableisdiscussed.Thepaperaimstoprovidethejobholdersinthisareawiththe guidelinesandstandardizethedraftsurvey.Keywords:DraftsurveySolidweightsurveyTrimcorrectionDraftmark水尺计重亦称"固体公估",系指通过对承运船舶装卸前后排水量及船用物料的测定,依据船舶的准确图表,计算载运货物重量的鉴定方式.其计重的结果既可作为商品的交接结算,处理索赔,计算运费和通关计税等的依据,又可广泛用以核对衡器计重等方式确定的重量.然而,在水尺计重过程中,存在算法不同,数据取值不一等现象.导致所测得的船舶载货重量不同,进而因货物短重而产生贸易纠纷.为此,本文重点就水尺计重的算法问题作以下探讨.l水尺计重原理及相关概念1.1水尺计重原理在方法上,水尺计重有完整算法和非完整算法(又称一次水尺)Ⅲ之分.在完整算法中,货物装(卸)量由公式∑QII(△一∑G)一(△.一∑G,)计算求得,式中:△,△分别为装货后(或卸货前),装货前(或卸货后)的排水量;∑G2,∑G,分别为装货后(或卸货前),装货前(或卸货后)的油水储备量.而非完整算法中,货物装(卸)量由公式∑Q=A—A.一∑G—C求取,式中:C为船舶常数.在正常情况下,无论采取哪种算法,其计算结果应当一致.但前者不涉及空船自重和船舶常数.所以计算结果较为准确(如果船舶制表准确度在l%.,其水尺计重误差可在5%o之内脚),是标准的计重方法,在欧美,日本及中国等国家广泛应用;而后者由于要确定船舶常数,因而易产生误差,但计重过程只有一次,较为简单,灵活,常在东南亚一些国家和地区使用.为规范计算,统一标准,文章中所涉及专业概念及公式编写采用国家行业推荐标准:"进出口商品重量鉴定规程一水尺计重[21".部分内容介绍如下:①船舶吃水差:江一d,,首倾取"一",尾倾取"+";②漂心距船中距离X:船中前取"一",船中后取"+";③吃水标志至相应垂线(或船中)水平距离值:在垂线前为"+",在垂线后为"一";④艏吃水修正值',:由于艏吃水标志一般在艏垂线后,故首倾时为"+",尾倾时为"一";⑤艉吃水修正值及船中吃水修正值':吃水标志在垂线前,首倾时为"一",尾倾时为"+";吃水标志在垂线后,首倾时为"+",尾倾时为"一".如图l所示.艉吃水标志}\艏吃水标,一.,图1吃水标志与对应垂线关系示意图1.2相关数据的不同取值方式1.2.I对船长L的不同取值在水尺计重过程中,对船长的取值常见有两种,其一是"即+.,一"",以国内采用较为常见;其二是"',以国外采用较为常见,但在进行艏,舯及艉吃水垂线修正时仍使用"L+一"".1.2.2对船舶吃水差t的不同取值测定船舶六面吃水后,未经垂线修正的船首,船舯及船尾平均吃水:d,=(如+d)/2,da=(+s)/2,=(+如)/2,对应的首尾吃水差z=一经首尾垂线修正后,:.dF+t?I(LBe+'F—h),=+t?"I(L~e+'一'),故经首尾垂线修正后的吃水差tI=dAl-dn.在进行船舶排水量纵倾修正时.目前对吃水差t的取值有两种不同方式:其一是取未经垂线修正的首尾吃水差t,该种取值法以国内采用较为常见;其二则取经首尾垂线修正后的吃水差t,以国外采用较为常见,但在进行艏,舯及艉吃水垂线修正时仍使用t.2水尺计重中几个问题的探讨2.1船中吃水d修正的探讨由于船舶实际首尾吃水应以水线与首尾垂线交点处的读数为准.而船舶首尾吃水标志不在首尾垂线上《航海技术》2010年第3期(一般首吃水标志在首垂线后3m以内.尾吃水标志在尾垂线前后6m左右),故在船舶存在吃水差时应进行首尾垂线修正.但船舯吃水标志往往也不在船中,而是在船中前,后lm左右.尽管这一水平距离较首尾相对比较小,但从拱垂修正后的平均吃水计算式=(d+6+以.)/8,不难得知:船中吃水精度对平均吃水的影响是船首,尾吃水精度对其影响的6倍,所以对船中吃水进行相应修正也是十分必要的,其修正式为:d薹『1=d+t?c/(+'F一£A)2.2相关查表引数的选取根据水尺计重原理,由经拱垂修正后的平均吃水查取排水量△.时,其具体方法为:先以邻近的吃水整数值(以下简称)查取对应的排水量基数,再将差额吃水乘以相应的每厘米吃水吨数TPC,得出差额吨数,用排水量基数加(或减)差额吨数,即为对应的排水量△..由于这里出现了两个吃水(即和),故在查取漂心距船中距离和每厘米吃水吨数TPC,其查表(如"静水力参数表")引数就会出现两种不同取值:其一是d.";其二是.现就不同取值的差异分析如下:如果dM=9.912m,则=lOm,分别以两者作为查表引数得出的结果十分接近,对随后的计算结果产生的偏差也相应较小; 但如果=9.412m,则d=9m,再分别以两者作为查表引数得出的结果就存在较大差异,对随后的计算结果产生的偏差也就较大.笔者认为在水尺计重过程中应采用作为查取和TPC的查表引数较为合理,准确,因为更能反映船舶当时的实际吃水.据此,在查取每厘米纵倾力矩变化率dM/dZ所对应的2 个MTC时,其查表引数分别为+0.5和dM一0.5.2.3船舶排水量的纵倾修正经拱垂修正后的平均吃水是船舯处的吃水,而船舶的实际平均吃水是指漂心处的吃水,当船舶存在纵倾时,按d查取的排水量并非船舶实际排水量,为此,应进行排水量纵倾修正.2.3.1应用欧拉定律(Eulertheorem)修正欧拉定律:"在某水线正浮漂浮的船舶,不改变其排水量,而纵倾时新的水线必定通过原来水线面的面积中心——漂心".由此可以导出:实际平均吃水(漂心处吃水)与经拱垂修正后的吃水相差"漂心修正量",其大小为t,?£.从而实际平均吃水对应的排水量修正值为:6△=t1?F?100TPC/LBp.需要强调的是, 应用欧拉定律进行排水量修正只能适用于微小的纵倾,即吃水差小于0.3m的情况.2.3.2应用根本氏公式修正20世纪60年代,Et本播磨造船厂工程师根本广太郎对船舶处于纵倾状态下排水量修正问题得出了一个修正公式,同时提出了两个论点:第一个论点是:"小纵倾时,吃水面如围绕其漂心旋转,排水量不变";第二个论点是:"大纵倾时,吃水面如以其微分定倾中心(differentialmetacenter)旋转,排水量不变".通过4O多年的实践证明,根本氏修正公式计算准确,容易计算,已被国际上所接受并广为采用.在船舶具备排水量纵倾修正表(二次修正)时,经校对后可据以进行相应修正.在不具备排水量纵倾修正表.且船舶首尾吃水差大于0.3m时.应按根本氏二次修正公式进行修正,其修正式为:.50?tdM+'式中:第一项为一次修正,第二项为二次修正.在进行此项修正时,对吃水差t及船长存在两种对应取值[31:其一是吃水差取未经垂线修正的首尾吃水差t,对应船长取首尾吃水标志之间的长度£+'F一",这种对应取值以国内采用较多;其二是吃水差取经首尾垂线修正后的吃水差t.,对应船长取首尾垂线之间的长度BP,以国外采用较多.根据垂线修正的基本原理,不难得出t/(+F—cA)=t/£,ifJ,可以看出,国内与国外的一次修正值相同;而对二次修正值进行比较:'尝/'=了tl,B口二次修正值之比为垂线修正后的吃水差t与未经垂线修正的吃水差t之比l4l.2.3.3应用叶氏公式修正2008年12月,由深圳蛇口检验检疫局承担完成的《船舶排水量纵倾校正方法——叶氏公式》在深圳通过鉴定.鉴定委员会认为叶氏公式在推导过程中充分考虑了船舶漂心随吃水差变化的规律,解决了根本氏公式推导所存在的问题.叶氏修正式为:6△:f'(Xf+)?100?TPC]LRp即:6A=+LBpjLBp与根本氏公式比较后发现,两公式的前半部是相同的,均为t?F?IOOTPC/LRp;后半部叶氏公式以TPC/3 替换了根本氏公式的dM/dZ(其中50t/L卵为公共项).由于叶氏公式减少了公式因子,且不涉及船舶纵倾力矩,故叶氏公式具有相对优势,既可提高工作效率,又可解决船舶在不具备纵倾力矩资料时无法进行水尺计重的问题.据悉,国家质检总局确定将"叶氏公式"作为鉴定业务和技术的新理论,新方法写进新编教材.2.3.4其它修正法在船舶具备其他纵倾排水量表(如菲儿索夫曲线图等),亦可据以进行相应修正,但应先作首尾吃水纵倾修正后进行查算,然后再作拱垂修正.其公式如下:海运固体散装货物的水尺计重——陈亚飞汪益兵卫星探测AIS的分析及其发展的研究山东海事局研究中心张哲马桂山内容提要:近年来,随着人们对船舶远距离跟踪探测的需求不断增强,卫星探测AIS 技术应运而生.文章介绍了卫星探测AIS技术的概念及各国对待该技术的态度,分析了其核心结构功能及性能特点,并从技术层面和应用层面探讨了卫星探测AIS技术的发展研究方向.关键词:卫星探测AIS核心结构功能性能特点发展研究方向AnalysisofSatelliteDetectionofAISandStudyonitsDevelopmentAbstract:Recently,satellitedetectionofAISdevelopswiththerequestofthelongrangedetect ionofships.Thispaperintroducesthe conceptofsatellitedetectionofAISandtheattitudesofcountriesintheworld,analyzesitscapa bilitycharactersandsystemcorestructurefunction,anddiscussestheresearchmethodsofthistechnologyfromtheaspectsofte chniqueandapplication.Keywords:SatelliteDetectionofAIScorestructurefunetioncapabilitycharactersresearch methods1背景近年来,人们不断地发展远距离探测技术来加强对远离陆地航行船舶的跟踪探测.在国际上,几年前美国,挪威等国家就开始了对卫星探测AIS技术的研究,并在ITU和IMO相关分委会框架下提出了使用卫星探测船载AIS信息的议案.即在近地轨道上使用一颗或者多颗卫星.来接收并解码AIS信息并通过卫星转发给相应的地球站,以便陆上管理机构获取这些船舶信息,实现对远海海域航行船舶的监控.但是各国对该技术持有不同的观点,IMO目前也没有就该问题的发展和应用做出明确的政策指导,人们还在不断地开展对该技术的深人研究.本文将对该技术进行分析,并针对其发展的相关事项进行探讨.2卫星探测AIS从概念上讲,卫星探测AIS即使用一颗或者多颗低轨道的卫星(卫星轨道高度在600km到1000km),在这些卫星上面搭载AIS收发机来接收和解码AIS报文并将信息转发给相应的地球站,从而让陆地管理机构掌握船舶的相关动态信息_l1.卫星AIS系统主要用于传输AIS报文信息,以短消息数据传输为主,且运行卫星数量较少.属于低轨小卫星系统.从小卫星提供的通信业务来划分.卫星AIS属于非实时通信系统.系统对船舶位置的覆盖不是一直持续的,要实现系统全球范围的覆盖并保证一定数量地球站的使用,有必要使用存储转发技术来传输AIS数据.即用户发送的报文在卫星上解调,解码,若信宿站就在当前卫星覆盖范围内,文件就被立即转发到信宿站,否则文件将由卫星同态存储器保存,等待卫星飞临信宿站上空时再被转发.在卫星覆盖区内,系统用户间可以实时地进行通信并下载数据[21.整个过程如图l所示.'一一—+一-—'+一一—+一*+一—.+一一+—.+一一+-—+一-+-+-+一+-+一+-+-+一++一十一++一+-+一+*+一+-+-+-+△=A+3/4?(如一dmf)?100?TPC式中:△为纵倾状态下拱垂修正前的排水量;dm=(dn+)/2.3'其它说明与结语在水尺计重过程中,除上述不同取值及算法外.还需作以下说明:(I)排水量港水密度修正:该项修正计算式常见有两种,即△,=}和△=△+8A(式中=?△),通过公式变形容易看出,这两种公式实质是一样的:(2)排水量横倾修正:当船舶横倾较大时,尤其是大型散货船,应进行该项修正.其修正式为8A=6(一幽)?(TPC2一TPC.),式中:7,TPC,分别为船中两舷吃水的对应值;对载重吨在10000t及以下的小型船舶,由于其横倾修正量非常小,可以忽略:(3)船舶常数的核算:在水尺计重过程中,应将装前或卸后计算出的实际排水量减去空船排水量,淡水,压载水,燃油等重量,计算出船舶常数(即c:A—A.一∑G),然后将其与船方提供的沿用船舶常数进行核对.如果相差较大,应进一步检查核实各项测算数据,如无差错,则以核算得到的船舶常数为准.水尺计重的计算过程较为复杂.且影响计重结果的因素较多.通过上述问题的探讨,希望能为承运人及鉴定人在内的从业人员提供思考,能有效地解决水尺计重工作中出现的问题,进而提高计重的准确度.$作者:陈亚飞.浙江国际海运职业技术学院讲师参考文献1张钢.散装货物运输中水尺计重的原则和方法[J].中国航海,2006,(4). 2SN/T0187—93,进出口商品重量鉴定规程一水尺计重IS].3李清林.水尺检量中吃水差和船舶长度适用问题的分析[J].世界海运.2007.30(3).4潘浩.散装货物的水尺计重『J].航海技术.1995.(1).《航海技术》2010年第3期。