2017年四川省成都市青羊区中考数学二诊试卷含详解

合集下载

四川中考仿真模拟考试《数学试卷》含答案解析

四川中考仿真模拟考试《数学试卷》含答案解析

四川数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列各数中,比﹣2小的数是( )A. 3B. 1C. ﹣1D. ﹣32. 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A. B. C. D. 3.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为( )A. 30.210-⨯B. 40.210-⨯C. 3210-⨯D. 4210-⨯ 4.将A (﹣4,1)向右平移5个单位,再向下平移2个单位,平移后点的坐标是( )A. (﹣9,3)B. (1,﹣1)C. (﹣9,1)D. (1,3) 5.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A. 45°B. 60°C. 75°D. 85° 6.下列计算正确的是( ).A. (x+y)2=x 2+y 2B. (-12xy 2)3=-16 x 3y 6C. x 6÷x 3=x 2D. 2(2)-7.方程22111x x x x -=-+的解是( )A. x =12B. x =15C. x =14D. x =148.成都市某小区5月1日至5日每天用水量(单位:吨)分别是:30,32,36,28,34,则这组数据的中位数是( )A. 32吨B. 36吨C. 34吨D. 30吨9.如图,正方形ABCD 四个顶点都在O 上,点是在弧AB 上的一点,则CPD ∠的度数是( )A 35 B. 40 C. 45 D. 6010.对于二次函数y =2(x+1)(x ﹣3),下列说法正确的是( )A. 图象开口向下B. 当x >1时,y 随x 的增大而减小C. 图象的对称轴是直线x =﹣1D. 当x <1时,y 随x 的增大而减小二.填空题(共9小题)11.已知2|2|(1)0a b ++-=,则+a b 的值为________.12.若一次函数y=(1-m )x+2,函数值y 随x 增大而减小,则m 的取值范围是___________.13.如图,在等边△ABC 中,D 是BC 边上的一点,延长AD 至E ,使AE =AC ,∠BAE 的平分线交△ABC 的高BF 于点O ,则∠E =_____.14.如图,在菱形ABCD 中,AB =4,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 的长为半径画弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE ,则BE 的值为_____.15.已知m 是方程x 2﹣3x+1=0的一个根,则(m ﹣3)2+(m+2)(m ﹣2)的值是_____.16.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy 中,矩形ABCD 的边AB 在x 轴上,(3,0)A ,(4,0)B,边AD长为5. 现固定边AB,”推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.17.如图,△ABC是边长为4的等边三角形,点D是AB上异于A,B的一动点,将△ACD绕点C逆时针旋转60°得△BCE,则旋转过程中△BDE周长的最小值_____18.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D,若BC=6,sin∠BAC=35,则AC=_____,CD=_____.19.如图,在Rt△ABC中,∠C=90°,BC=23,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE 的长为_____.三.解答题(共9小题)20.计算:(1)计算:(π﹣314)0+(13)﹣2﹣|12|+4cos30°(2)解不等式组:()3242113x x x x ⎧-->⎪⎨+≥-⎪⎩21.先化简,再求值:2211x x yx y y x ⎛⎫-÷ ⎪-+-⎝⎭,其中x =2,y =2﹣2. 22.”树德之声”结束后,王老师和李老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如图频数直方图和扇形统计图:(1)求本次比赛参赛选手总人数,并补全频数直方图;(2)求扇形统计图中扇形D 的圆心角度数;(3)成绩在D 区域的选手中,男生比女生多一人,从中随机抽取两人,求恰好选中一名男生和一名女生的概率.23.如图是小花在一次放风筝活动中某时段的示意图,她在A 处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA 1表示小花身高1.5米,当她从点A 跑动92米到达点B 处时,风筝线与水平线构成45°角,此时风筝到达点E 处,风筝的水平移动距离CF =103米,这一过程中风筝线的长度保持不变,求风筝原来的高度C 1D .24.如图,在平面直角坐标系中,直线y 1=2x ﹣2与双曲线y 2=k x交于A 、C 两点,AB ⊥OA 交x 轴于点B ,且AB =OA .(1)求双曲线的解析式;(2)连接OC ,求△AOC 的面积.25.如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.(1)求DE是⊙O的切线;(2)设△CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan∠BAC的值;(3)在(2)的条件下,连接AE,若⊙O的半径为2,求AE的长.26.铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?27.如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明:四边形CEGF正方形;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图3所示,当B,E,F三点在一条直线上时,延长CG交AD于点H,若AG=6,GH=22,求BC的长.28.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(3)在(2)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.答案与解析一.选择题(共10小题)1.下列各数中,比﹣2小的数是( )A. 3B. 1C. ﹣1D. ﹣3【答案】D【解析】分析】根据正数都大于0、负数都小于0,再根据两个负数、绝对值大的反而小即可解答.【详解】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2故答案为D .【点睛】本题考查了有理数的大小比较,其方法为①负数<0<正数;②两个负数,绝对值大的反而小.2. 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( ) A. B. C. D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上. 故选C.考点:三视图3.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为( )A. 30.210-⨯B. 40.210-⨯C. 3210-⨯D. 4210-⨯【答案】D【解析】【分析】根据科学记数法的表示形式写出即可.【详解】解:将数0.0002用科学记数法表示为4210-⨯.故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,为整数,表示时关键要正确确定的值以及的值.4.将A (﹣4,1)向右平移5个单位,再向下平移2个单位,平移后点的坐标是( )A. (﹣9,3)B. (1,﹣1)C. (﹣9,1)D. (1,3)【答案】B【解析】【分析】根据向右平移横坐标加,向下平移纵坐标减即可解答.【详解】解:∵点A (﹣4,1)向右平移5个单位长度,再向下平移2个单位长度,∴平移后点的横坐标为﹣4+5=1,纵坐标为1﹣2=﹣1,即平移后点的坐标为(1,﹣1).故答案为B .【点睛】本题考查了坐标与图形变化-平移,其平移规律为:横坐标右移加,左移减;纵坐标上移加,下移减. 5.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( ).A. 45°B. 60°C. 75°D. 85°【答案】C【解析】 分析:先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB 可得答案.详解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选C.点睛:本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.6.下列计算正确的是().A. (x+y)2=x2+y2B. (-12xy2)3=-16x3y6C. x6÷x3=x2=2【答案】D【解析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.详解:(x+y)2=x2+2xy+y2,A错误;(-12xy2)3=-18x3y6,B错误;x6÷x3=x3,C错误;,D正确;故选D.点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.7.方程22111x xx x-=-+的解是( )A. x=12B. x=15C. x=14D. x=14【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x2+2x=2x2﹣3x+1,解得:x=15,经检验x=15是分式方程的解,故选B.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.成都市某小区5月1日至5日每天用水量(单位:吨)分别是:30,32,36,28,34,则这组数据的中位数是( )A. 32吨B. 36吨C. 34吨D. 30吨【答案】A【解析】【分析】先将这组数据从小到大排列,然后找出最中间的数即可.【详解】解:把这些数从小到大排列为:28,30,32,34,36,最中间的数是32吨,则这5天用水量的中位数是32吨;故答案为A.【点睛】本题考查了中位数,掌握确定中位数的方法是解答本题的关键.的度数是( )9.如图,正方形ABCD四个顶点都在O上,点是在弧AB上的一点,则CPDA. 35B. 40C. 45D. 60【答案】C【解析】【分析】连AC,由四边形ABCD为正方形,得到∠CAD=45°,由∠CPD=∠CAD=45°.【详解】连接AC,如图,∵四边形ABCD为正方形,∴∠CAD=45°.又∵∠CPD=∠CAD,∴∠CPD=45°.故选C.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.也考查了正方形的性质.10.对于二次函数y=2(x+1)(x﹣3),下列说法正确的是( )A. 图象开口向下B. 当x >1时,y 随x 的增大而减小C. 图象的对称轴是直线x =﹣1D. 当x <1时,y 随x 的增大而减小【答案】D【解析】【分析】 先将二次函数化为顶点式,然后再根据二次函数的性质解答即可.【详解】解:二次函数y =2(x+1)(x ﹣3)可化为y =2(x ﹣1)2﹣8的形式,∵二次函数的解析式为y =2(x ﹣1)2﹣8,∴抛物线开口向上,对称轴为x =1,∴当x >1时,y 随x 的增大而增大;当x <1时,y 随x 的增大而减小.故答案为D .【点睛】本题考查的是二次函数的性质,将二次函数的解析式化为顶点式的形式是解答本题的关键.二.填空题(共9小题)11.已知2|2|(1)0a b ++-=,则+a b 的值为________.【答案】【解析】【分析】根据非负数的性质得到关于a,b 的方程,解出a,b 的值代入计算即可.【详解】解:由已知得20a +=,10b -=,解得2a =-,1b =.则1a b +=-.故答案为-1【点睛】本题考查了非负数的性质和一元一次方程的应用,根据性质列出方程是解题关键.12.若一次函数y=(1-m )x+2,函数值y 随x 的增大而减小,则m 的取值范围是___________.【答案】m >1.【解析】【分析】对于一次函数y=kx+b(k ,b 为常数,且k≠0),当k >0时,y 随着x 的增大而增大;当k <0时,y 随着x 的增大而减小.【详解】解:∵函数值y 随着x 的增大而减小, ∴1-m <0,解得:m >1.故答案为:m >1.【点睛】本题主要考查的是一次函数的性质,属于基础题型.理解k 与增减性的关系是解题的关键. 13.如图,在等边△ABC 中,D 是BC 边上的一点,延长AD 至E ,使AE =AC ,∠BAE 的平分线交△ABC 的高BF 于点O ,则∠E =_____.【答案】30°【解析】【分析】先证△ABO ≌△AEO ,可得∠ABO=∠AEO ,再根据等边三角形的性质可得∠ABF=30°,进而得到∠AEO=30°即可解答.详解】解:∵OA 平分∠BAE ,∴∠BAO =∠EAO ,∵三角形ABC 是等边三角形,AE =AC ,∴AE =AC=AB ,在△ABO 和△AEO 中AB AE BAO AEO AO AO =⎧⎪∠=∠⎨⎪=⎩∴△ABO ≌△AEO ,∴∠ABO =∠AEO ,∵BF 为等边△ABC 的高,∴BF 平分∠ABC ,∴∠ABF =30°,∴∠AEO =30°.故答案为30°.【点睛】本题考查了全等三角形的判定与性质和等边三角形,证明三角形全等是解答本题的关键. 14.如图,在菱形ABCD 中,AB =4,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 的长为半径画弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE ,则BE 的值为_____.【答案】7【解析】【分析】利用基本作法得到得MN 垂直平分CD ,即CE =DE ,AE ⊥CD ,再利用菱形的性质得到AD =CD =AB =4,CD ∥AB ,则利用勾股定理先计算出AE ,然后计算出BE .【详解】解:由作法得MN 垂直平分CD ,即CE =DE ,AE ⊥CD ,∵四边形ABCD 为菱形,∴AD =CD =AB =4,CD ∥AB ,∴DE =2,AE ⊥AB ,在Rt △ADE 中,AE 224-2=23在Rt △ABE 中,BE ()22423+7.故答案为7【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).15.已知m 是方程x 2﹣3x+1=0的一个根,则(m ﹣3)2+(m+2)(m ﹣2)的值是_____.【答案】3【解析】【分析】将x=m 代入原方程得m 2-3m=-1,然后将原式进行化简,再整体代入即可解答.【详解】解:由题意可知:m 2﹣3m+1=0,∴m 2﹣3m =-1,∴原式=m 2﹣6m+9+m 2﹣4=2m 2﹣6m+5=2(m 2﹣3m )+5=-2+5=3故答案为3.【点睛】本题考查一元二次方程的解和整式的化简求值,解题的关键是正确理解一元二次方程的解的定义并灵活应用.16.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,B,边AD长为5. 现固定边AB,”推”矩形使点D落在y轴的正半轴上(落点记为),相(3,0)A-,(4,0)应地,点C的对应点的坐标为_______.7,4【答案】()【解析】分析:根据勾股定理,可得OD',根据平行四边形的性质,可得答案.详解:由勾股定理得:OD'=224'-=,即(0,4).D A AO矩形ABCD的边AB在x轴上,∴四边形ABC D''是平行四边形,A=B, =AB=4-(-3)=7,与的纵坐标相等,∴ (7,4),故答案为(7,4).点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.17.如图,△ABC是边长为4的等边三角形,点D是AB上异于A,B的一动点,将△ACD绕点C逆时针旋转60°得△BCE,则旋转过程中△BDE周长的最小值_____【答案】3.【解析】【分析】由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论.【详解】∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,∵△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=23,∴△BDE的最小周长=CD+4=23+4,故答案23+4.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,熟练掌握旋转的性质是解题的关键.18.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D,若BC=6,sin∠BAC=35,则AC=_____,CD=_____.【答案】10(2). 90 13【解析】【分析】连接BO延长BO交⊙O于H,连接CH,连接AO延长AO交BC于T.设OD=x,AD=y.再解直角三角形得到BH和CH,再由三角形的中位线定理求出OT,然后再利用勾股定理求出AC,最后根据相似三角形的性质构建方程组并解答即可.【详解】解:连接BO延长BO交⊙O于H,连接CH,连接AO延长AO交BC于T.设OD=x,AD=y.∵BH 是直径,∴∠BCH =90°,∵∠BAC =∠BHC ,∴sin ∠BAC =sin ∠BHC =35BC BH = ∵BC =6,∴BH =10,CH 2222106BH BC --8,∵AB =AC ,∴AB AC =,∴AT ⊥BC ,∴BT =CT =3,∵BO =OH ,BT =TC ,∴OT =12CH =4, ∴AT =AO+OT =5+4=9,∴AC 222293310AT TC +=+=∵AB =AC ,AT ⊥BC ,∴∠DAO =∠CAO ,∵OA =OC ,∴∠CAO =∠OCA ,∴∠DAO =∠OCA ,∵∠ADO =∠CDA ,∴△DAO ∽△DCA , ∴AD AO OD DC CA AD==, ∴5310y x x y==+ ,解得x=2513,∴CD=OD+OC=2513+5=9013,故答案为310,90 13.【点睛】本题考查三角形的外接圆与外心圆周角定理、解直角三角形、相似三角形的判定和性质等知识,正确添加辅助线、构造直角三角形解决问题是解答本题的关键.19.如图,在Rt△ABC中,∠C=90°,BC=23,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE 的长为_____.【答案】3或14 5【解析】【分析】由∠C=90°,BC=3AC=2可得tanB=3323ACBC==,即∠B=30°,再根据直角三角形的性质可得AB=2AC=4;再由翻折的性质可得DB=DC3EB′=EB,∠DB′E=∠B=30°;设AE=x,则BE=4﹣x,EB′=4﹣x.当∠AFB′=90°时,解直角三角形可得EF=x﹣52;又由在Rt△B′EF中,∠EB′F=30°,可得EB′=2EF;再用x表示出来,然后解关于x的方程即可;②当∠AB′F=90°时,即B′不落在C点处时,在进行求解即可.【详解】解:∵∠C=90°,BC=3,AC=2,∴tanB=3323ACBC==,∴∠B=30°,∴AB=2AC=4,∵点D是BC的中点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F∴DB=DC=3,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,当∠AFB′=90°时,在Rt△BDF中,cosB=BF BD,∴BF=3cos30°=32,∴EF=32﹣(4﹣x)=x﹣52,在Rt△B′EF中,∵∠EB′F=30°,∴EB′=2EF,即4﹣x=2(x﹣52),解得x=3,此时AE为3;②当∠AB′F=90°时,即B′不落在C点处时,作EH⊥AB′于H,连接AD,如图,∵DC=DB′,AD=AD,∴Rt△ADB′≌Rt△ADC,∴AB′=AC=2,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=12B′E=12(4﹣x),EH=3B′H=32(4﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴34(4﹣x)2+[12(4﹣x)+2]2=x2,解得x=145,此时AE为145.综上所述,AE的长为3或145.故答案为3或145.【点睛】本题考查了翻折变换、勾殷定理、解直角三角形、相似三角形的判定与性质、全等三角形的判定和性质等知识,学会用分类讨论的思想解决问题是解答本题的关键.三.解答题(共9小题)20.计算:(1)计算:(π﹣3.14)0+(13)﹣2﹣||+4cos30° (2)解不等式组:()3242113x x x x ⎧-->⎪⎨+≥-⎪⎩【答案】(1)10;(2)1<x ≤4.【解析】【分析】(1)先用零次幂、负指数幂、绝对值、特殊角的三角函数值化简,最后计算即可;(2)先分别解出两个不等式的解集,最后求两个解集的公共部分即可.【详解】(1)原式=1+9﹣+4=1+9﹣=10; (2)3(2)42113x x x x -->⎧⎪⎨+≥-⎪⎩①② , 由①得:x >1,由②得:x ≤4,则不等式组的解集为1<x ≤4.【点睛】本题主要考查了零指数幂、解一元一次不等式组等知识点,掌握好基础知识和解不等式组的方法是解答本题的关键.21.先化简,再求值:2211x x y x y y x ⎛⎫-÷ ⎪-+-⎝⎭,其中x,y =2. 【答案】y x y -+【解析】【分析】先根据分式的四则混合运算法则对原式进行化简,然后将x、y的值代入即可解.【详解】解:原式=﹣()()()x x yx y x y--+-•(x﹣y)=﹣yx+y,当x=2,y=2﹣2时,原式=22222--+-=222-.【点睛】本题考查了分式的化简求值,熟练掌握运算法则和良好的计算能力是解答本题的关键.22.”树德之声”结束后,王老师和李老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如图频数直方图和扇形统计图:(1)求本次比赛参赛选手总人数,并补全频数直方图;(2)求扇形统计图中扇形D的圆心角度数;(3)成绩在D区域的选手中,男生比女生多一人,从中随机抽取两人,求恰好选中一名男生和一名女生的概率.【答案】(1)本次比赛参赛选手总人数36人,补图见解析;(2)50°;(3)35.【解析】【分析】(1)先求出C区域的人数和所占的百分比,然后用C区域的人数除以其所占的百分比,即可求得总人数,再用总人数乘以每个区域所占的百分比求出每个区域的人数,最后完成直方图即可;(2)用360°乘以D区域的人数所占的百分比即可;(3)先求出D区域男生、女生的人数,再画树状图求出等可能的结果数和所求的结果数,最后根据概率公式求解即可.【详解】解:(1)本次比赛参赛选手总人数是9÷90360︒︒=36(人),80≤x<90的人数有:36×50%=18(人),则80≤x<85的人数有18﹣11=7(人),95≤x<100的人数有:36﹣4﹣18﹣9=5(人),补图如下:(2)求扇形统计图中扇形D的圆心角度数是360°×536=50°;(3)∵D区域的选手共有5人,其中男生比女生多一人,∴男生有3人,女生有2人,画图如下:共有20种等情况数,其中选中一名男生和一名女生的有12种,则恰好选中一名男生和一名女生的概率是123 205=.【点睛】本题考查了扇形统计图、直方图以及树状图法求概率,掌握树形图是解答本题的关键.23.如图是小花在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小花身高1.5米,当她从点A跑动2米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=3米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.【答案】风筝原来高度为2762⎛+⎝米. 【解析】【分析】 设AF =x ,则BF =AB+AF =92+x ,在Rt △BEF 中求得AD=BE=182cos BF x EBF =+∠,由cos ∠CAD=AC AD,然后建立关于x 的方程,解之求得x 的值,确定AD 的长,最后由CD= A Dsin ∠CAD 即可求出C 1D .【详解】解:设AF =x ,则BF =AB+AF =2+x ,在Rt △BEF 中,BE =182cos BF x EBF=+∠, 由题意知AD =BE =2x ,∵CF =3∴AC =AF+CF =3+x ,由cos ∠CAD =AC AD 3103182x x+=+ , 解得:x =2 3则AD =2(23)=6,∴CD =ADsin ∠CAD =(6)×12=6,则C 1D =CD+C 1C =6+32=2726; 答:风筝原来的高度C 1D 为(2726)米 【点睛】本题主要考查解直角三角形的应用,三角函数的定义以及根据题意找到两直角三角形间的关联是解答本题的关键.24.如图,在平面直角坐标系中,直线y 1=2x ﹣2与双曲线y 2=k x交于A 、C 两点,AB ⊥OA 交x 轴于点B ,且AB =OA .(1)求双曲线的解析式;(2)连接OC ,求△AOC 的面积.【答案】(1)24y x=;(2)3. 【解析】【分析】 (1)作AH ⊥OB 于H ,先证△OAB 为等腰直角三角形,可得OH=BH=AH ,设A (t,t ),把A (t,t )代入解析式即可求得t 的值,进一步可得A 的坐标,最后利用待定系数法即可求解;(2)先确定一次函数与y 轴的交点坐标为(0,-2),再联立一次函数和反比例函数解析式求得C 的坐标,最后根据三角形面积公式求解即可.【详解】(1)作AH ⊥OB 于H ,如图,∵AB ⊥OA 交x 轴于点B ,且AB =OA .∴△OAB 为等腰直角三角形,∴OH =BH =AH ,设A (t ,t ),把A (t ,t )代入y =2x ﹣2得2t ﹣2=t ,解得t =2,∴A (2,2),把A (2,2)代入y 2=k x得k =2×2=4, ∴双曲线的解析式为y 2=k x ; (2)当x =0时,y =2x ﹣2=﹣2,则一次函数与y 轴的交点坐标为(0,﹣2), 解方程422y x y x ⎧=⎪⎨⎪=-⎩ 得22x y =⎧⎨=⎩或14x y =-⎧⎨=-⎩,则C (﹣1,﹣4), ∴△AOC 的面积=12×(2+1)×2=3.【点睛】本题考查了反比例函数与一次函数的交点问题以及待定系数法求函数解析式,解题的关键在于灵活运用一次函数和反比例函数知识以及数形结合思想.25.如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.(1)求DE是⊙O的切线;(2)设△CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan∠BAC的值;(3)在(2)的条件下,连接AE,若⊙O的半径为2,求AE的长.【答案】(1)证明见解析;(2)22;(3)32【解析】【分析】(1)连接OD,由圆周角定理就可得∠ADB=90°和∠CDB=90°,又由E为BC的中点可以得出DE=BE,进一步得到∠EDO=∠EBO,由等式的性质就可以得出∠ODE=90°即可证明;(2)由S2=5S1,即△ADB的面积是△CDE面积的4倍,可得AD:CD=2:1,AD:BD=2,则可求tan∠BAC;(3)由(2)的关系即可知AD:BD=2,在Rt△AEB中,运用勾股定理解答即可.【详解】(1)证明:连接OD,∴OD=OB∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB =90°.∵E 为BC 的中点,∴DE =BE ,∴∠EDB =∠EBD ,∴∠ODB+∠EDB =∠OBD+∠EBD ,即∠EDO =∠EBO .∵BC 是以AB 为直径的⊙O 的切线,∴AB ⊥BC ,∴∠EBO =90°,∴∠ODE =90°,∴DE 是⊙O 的切线;(2)解:∵S 2=5S 1,∴S △ADB =2S △CDB , ∴AD DC =21, ∵△BDC ∽△ADB , ∴AD DB =DB DC, ∴DB 2=AD •DC ,∴DB AD 2= ,∴tan ∠BAC =DB AD 2=;(3)解:∵tan ∠BAC =DB AD 2=,∴BC AB =BC AB = , ∵E 为BC 中点,∴BE =12BC ,∴AE ==【点睛】本题考查了圆周角定理的运用、直角三角形的性质的运用、等腰三角形的性质的运用、切线的判定定理的运用、勾股定理的运用、相似三角形的判定和性质等知识点,正确添加辅助线是解答本题的关键.26.铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?【答案】(1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】【分析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y与x之间的函数关系式为:y=kx+b,把(2,120)和(4,140)代入得,2120 4140 k bk b+=⎧⎨+=⎩,解得:10100 kb=⎧⎨=⎩,∴y与x之间的函数关系式为:y=10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x =1或x =9,∵为了让顾客得到更大的实惠,∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元,商贸公司获得利润是w 元,根据题意得,w =(60﹣40﹣x)(10x+100)=﹣10x 2+100x+2000,∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生”用数学”的意识.27.如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明:四边形CEGF 是正方形;(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图3所示,当B ,E ,F 三点在一条直线上时,延长CG 交AD 于点H ,若AG =6,GH =22,求BC 的长.【答案】(1)证明见解析;(2)AG 2BE ,理由见解析;(3)5【解析】【分析】(1)先说明GE ⊥BC 、GF ⊥CD ,再结合∠BCD=90°可证四边形CEGF 是矩形,再由∠ECG=45°即可证明;(2)连接CG ,证明△ACG ∽△BCE ,再应用相似三角形的性质解答即可;(3)先证△AHG ∽△CHA 可得AG GH AH AC AH CH ==,设BC =CD =AD =a ,则AC =2a ,求出AH=23a ,DH=13a ,CH=103a ,最后代入AG AH AC CH =即可求得a 的值. 【详解】(1)∵四边形ABCD 是正方形,∴∠BCD =90°,∠BCA =45°,∵GE ⊥BC 、GF ⊥CD ,∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°,∴EG =EC ,∴四边形CEGF 是正方形.(2)结论:AG =2BE ;理由:连接CG ,由旋转性质知∠BCE =∠ACG =α,在Rt △CEG 和Rt △CBA 中,CE CG =cos45°=22,2cos 452CB CA ︒== , ∴2CE CA CG CB==, ∴△ACG ∽△BCE , ∴2AG CA BE CB == ∴线段AG 与BE 之间的数量关系为AG 2BE ;(3)∵∠CEF =45°,点B 、E 、F 三点共线,∴∠BEC =135°,∵△ACG ∽△BCE ,∴∠AGC =∠BEC =135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴AG GH AH AC AH CH==,设BC=CD=AD=a ,则AC=2a,则由AG GHAC AH=,得6222AHa=,∴AH=23 a,则DH=AD﹣AH=13a,2210CH CD DH3a=+=,∴AG AHAC CH=,得2632103aa=,解得:a=35,即BC=35.【点睛】本题属于四边形综合题,主要考查相似形的判定和性质、正方形的性质等知识点,解题的关键是正确寻找相似三角形解决问题并利用参数构建方程解决问题.28.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(3)在(2)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.【答案】(1)y=x2+x﹣1;(2)t的值为1或0;(3)满足条件的Q点坐标为:(0,2)、(﹣1,3)、(35,195)、(45,125).【解析】【分析】(1)用待定系数法即可确定函数解析式;(2)根据图形分∠ANM=90°和∠AMN=90°两种情况解答即可;(3)根据题意画出满足条件图形,可以找到AN为△KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余三个点,利用勾股定理进行计算.【详解】(1)∵抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1)∴1421 11a ba b=--⎧⎨-=--⎩解得:a=1 b=1⎧⎨⎩∴抛物线C1:解析式为y=x2+x﹣1(2)∵动直线x=t与抛物线C1交于点N,与抛物线C2交于点M∴点N的纵坐标为t2+t﹣1,点M的纵坐标为2t2+t+1∴MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2①当∠ANM=90°,AN=MN时,由已知N(t,t2+t﹣1),A(﹣2,1) ∴AN=t﹣(﹣2)=t+2∵MN=t2+2∴t2+2=t+2∴t1=0(舍去),t2=1∴t=1②当∠AMN=90°,AM=MN时,由已知M(t,2t2+t+1),A(﹣2,1) ∴AM=t﹣(﹣2)=t+2,∵MN=t2+2∴t2+2=t+2∴t1=0,t2=1(舍去)∴t=0故t的值为1或0;。

2017青羊区二诊数学试卷

2017青羊区二诊数学试卷

2017年四川成都青羊区初三二模数学试卷选择题(本大题共10个小题,每小题3分,共30分)1.A.加号 B.减号 C.乘号 D.除号在算式的中填上运算符号,使结果最小,运算符号是( ).−2□−3□2.A.米 B.米 C.米 D.米国家卫生和计划生育委员会公布禽流感病毒的直径约为米,这一直径用科学计数法表示( ).H7N90.000000121.2×10−9 1.2×10−812×10−8 1.2×10−73.A. B. C. D.下面的图形中,既是轴对称图形,又是中心对称图形的是( ).4.A. B. C. D.下列运算正确的是( ).3−5=−2x x 3x 26÷2=3x x 3x 2=()13x 22x 6−3(2x −4)=−6x −125.A. B. C. D.如图,将直角三角尺的顶点放在直尺的一边上,,则( ).∠1=30∘∠3=20∘∠2=55∘30∘50∘60∘6.如图,是⊙的直径,、是⊙上的点,,过点作⊙的切线交的延长线于,则的值为( ).AB O C D O ∠CDB =30∘C O AB E sin ∠E填空题(本大题共4个小题,每小题4分,共16分)A. B. C. D.123√22√23√37.A.把向左平移个单位,再向下平移个单位B.把向右平移个单位,再向下平移个单位C.把向右平移个单位,再向上平移个单位D.把向左平移个单位,再向上平移个单位如图所示,经过怎样的平移得到( ).△DEF △ABC △DEF 42△DEF 42△DEF 42△DEF 428.A.倍 B.倍 C.倍 D.倍把一个三角形改成与它相似的三角形,如果面积扩大为原来的倍,那么周长扩大为原来的( ).99381189.A., B., C., D.,某小区户家庭日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)户数那么这户家庭的日用电量的众数和中位数分别是( ).204567810136541206 6.56767.577.510.A. B.C. D.某电子元件厂准备生产个电子元件,甲车间独立生产了半后,由于要尽快投入市场,乙车间也加入电子元件的生产,乙车间每天生产的电子元件是甲车间倍,结果用天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲每天生产电子元件个,根据题意可得方程( ).4600 1.333x +=332300x 23001.3x +=332300x 2300x +1.3x +=332300x 4600x +1.3x +=334600x 2300x +1.3x 11.分解因式: .−3+12−12x =x 3x 212.如图已知⊙的半径为,弦,则点到的距离 .O 30mm AB =36mm O AB mm解答题(本大题共6个小题,共54分)13.如图,一个人乘雪橇沿坡比的斜坡笔直下滑,那么他下降的高度为 米.1:3√72m 14.关于的方程有实根,则偶数最大值为 .x (m −2)+2x +1=0x 2m 15.计算:.+++|−2sin 60|(−1)2017()12−3(cos 76−)∘3π03√∘16.用公式法解方程:.2+3x −1=0x 217.(1)求证:.(2)若,,求的值.如图,在中,,.△ABC AB =AC BD =CD CE ⊥AB △ABD ∽△CBE BD =3BE =2AC 18.如图放在水平桌面上的台灯的灯臂长为,灯罩长为,底座厚度为,灯臂与底座构成.使用发现光线最佳时灯罩与水平线所成角为,此时灯罩顶端到到桌面的高度是多少?(精确到参考数据:,)AB 40cm BC 30cm 2cm∠BAD =60∘BC 30∘C CEcm 0.1cm ≈1.7323√≈1.4142√19.(1)本次调查抽取的人数为,估计全校同学在暑假期间平均每天做家务活的时间在分钟以上(含分钟)的人数为 .(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.某校将举办“心怀感恩∙孝敬父母”的活动,为此,校学生会就全校名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.1 000404020.(1)求一次函数、反比例函数的解析式.(2)反比例函数图象上是否存在点,使四边形为菱形?如果存在,求出点的坐标.如果不存在,说明理由.如图,一次函数的图象与反比例函数的图象交于点,与轴交于点,与轴交于点,轴于点,且.y =kx +b y =(x >0)m xP (n ,2)x A (−4,0)y C P B ⊥x B AC =BC D BCP D D 21.在中,,为角平分线.交于点,的外接圆⊙与边交于点,过作垂线交点,交⊙于点,交于点,连接.Rt △ABC ∠C =90∘BD ∠ABC DF ⊥BD AB F △BDF O BC M M AB BD E O N AB H FNB卷一、填空题(本大题共5个小题,每小题4分,共20分)(1)求证:是⊙的切线.(2)若,,求⊙的半径的长.(3)在()的条件下求的长.AC O AF =1tan ∠N =43O r 2BE 22.如图在一个直角三角形的内部作一个矩形,其中和分别在两直角边上.在斜边上,设矩形的一边,矩形的面积为,则的最大值为 .ABCD AB AD C AB =x my m 2y 23.在张背面分别标有数,,,,的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将卡片上的数字记为,则使关于的方程有正整数的概率为 .−20134a x +2=1−ax x −212−x 24.如图,已知四边形是矩形,把矩形沿折叠,点落在点处,连接,若,则的值为 .ABCD AC B E DE DE :AC =3:5AD AB25.如图,,,,,都是等腰直角三角形,其中、、、在轴上,点、、,在直线上,已知,则的长为 .△A 1B 1A 2△A 2B 2A 3△A 3B 3A 4⋯△A n B n A n +1A 1A 2⋯A n xB 1B 2⋯B n y =x O =1A 2OA 2017B卷二、解答题(本大题共3个小题,共30分)26.如图在正方形中,点是上的一动点(不与、重合),对角线,相交于点,过点分别作,的垂线,分别交,与点,.下列结论:①≌;②;③;④;⑤当时,点是的中点.其中正确的结论有 .(填番号)ABCD P AB A B AC BD O P AC BD AC BD M N △AP E △AME P M +P N =AC P +P =P E 2F 2O 2△P OF ∽△BNF △P MN ∽△AMP P AB 27.(1)汽车行驶 后加油中途加油 .(2)求加油前油箱剩余油量与行驶时间的关系.(3)已知加油前、后汽车都以匀速行驶如果加油站距目的地那么要到达目的地,油箱中的油是否够用请说明理由.王师傅开车去外地卖水果,出发前汽车有油,行驶若干小时后,在加油站加油若干升.图象表示的是从出发后,油箱中剩余的油量与行驶时间之间的关系.50L y L t h h L 70km/h 210km 28.(1)如图,当点在边上时,求证:.如图,在正方形与等腰直角三角形中,,连接,点是的中点,连接,.ABCD BEF ∠BEF =90∘BE =EF DF P DF P E P C 1E CP P E =CE 2√229.(1)求这条抛物线的表达式及顶点的坐标.(2)若平行于轴的动直线与抛物线交于点,与直线交于点,点的坐标为,问:是否存在这样的直线,使得最小,若存在,请求出点的坐标;若不存在,请说明理由.(3)回答下列问题:1若为抛物线上的一动点,且,求出的坐标.2在抛物线上的第三象限上有两点和(点在点的右侧),且轴,过点作轴的垂线,连接,在线段上有一点,作射线交垂线于点,当且时,求的长及的面积.如图,在平面直角坐标系中,抛物线与轴交于点和,与轴交于点,抛物线的顶点为,连接,.xOy y =a +bx +c x 2x A (−3,0)B (1,0)y C D AC BC D x l P AC F M (−1,0)l OF +MF P P ′∠AC =∠BCO P ′P ′R E R E RE //x A x AN ′AE AE G RG AN ′N ∠EGR +2∠GRE =90∘AE :RN =32RE △REG。

2024年四川省南充市中考真题数学试卷含答案解析

2024年四川省南充市中考真题数学试卷含答案解析

2024年四川省南充市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1 )A .点AB .点BC .点CD .点D2.学校举行篮球技能大赛,评委从控球技能和投球技能两方面为选手打分,各项成绩均按百分制计,然后再按控球技能占60%,投球技能占40%计算选手的综合成绩(百分制人选手李林控球技能得90分,投球技能得80分.李林综合成绩为( )A .170分B .86分C .85分D .84分【答案】B【分析】本题考查求加权平均数,利用加权平均数的计算方法,进行求解即可.【详解】解:9060%8040%86⨯+⨯=(分);故选B .3.如图,两个平面镜平行放置,光线经过平面镜反射时,1240∠=∠=︒,则3∠的度数为( )A .80︒B .90︒C .100︒D .120︒【答案】C 【分析】本题考查利用平行线的性质求角的度数,平角的定义求出4∠的度数,再根据平行线的性质,即可得出结果.【详解】解:∵1240∠=∠=︒,∴418012100∠=︒-∠-∠=︒,∵两个平面镜平行放置,∴经过两次反射后的光线与入射光线平行,∴34100∠=∠=︒;故选C .4.下列计算正确的是( )A .235a a a +=B .842a a a ÷=C .236a a a ⋅=D .()326327a a =【答案】D【分析】本题考查整式的运算,根据合并同类项,同底数幂的乘除法则,积的乘方和幂的乘方法则,逐一进行判断即可.【详解】解:A 、23,a a 不能合并,原选项计算错误,不符合题意;B 、844a a a ÷=,原选项计算错误,不符合题意;C 、235a a a ⋅=,原选项计算错误,不符合题意;D 、()326327a a =,原选项计算正确,符合题意;故选D .5.如图,在Rt ABC 中,90306C B BC ∠=︒∠=︒=,,,AD 平分CAB ∠交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A B C .2D .3【答案】C 【分析】本题主要考查解直角三角形和角平分线的性质,垂线段最短,根据题意求得BAC ∠和AC ,结合角平分线的性质得到CAD ∠和DC ,当DE AB ⊥时,线段DE 长度的最小,结6.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A .779(1)x y x y+=⎧⎨-=⎩B .779(1)x y x y +=⎧⎨+=⎩C .779(1)x y x y -=⎧⎨-=⎩D .779(1)x y x y-=⎧⎨+=⎩【答案】A 【分析】根据“如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房”分别列出两个方程,联立成方程组即可.【详解】根据题意有779(1)x y x y+=⎧⎨-=⎩故选:A .【点睛】本题主要考查列二元一次方程组,读懂题意找到等量关系是解题的关键.7.若关于x 的不等式组2151x x m -<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <,∴13m +≥,∴2m ≥;故选B .8.如图,已知线段AB ,按以下步骤作图:①过点B 作BC AB ⊥,使12BC AB =,连接AC ;②以点C 为圆心,以BC 长为半径画弧,交AC 于点D ;③以点A 为圆心,以AD 长为半径画弧,交AB 于点E .若AE mAB =,则m 的值为( )A B C 1D 29.当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为( )A .3-或0B .0或1C .5-或3-D .5-或1【答案】A【分析】本题主要考查了一次函数的性质,以及解一元二次方程,分两种情况,当10m +>时和当10+<m ,根据一次函数性质列出关于m 的一元二次方程,求解即可得出答案.【详解】解:当10m +>即1m >-时,一次函数y 随x 的增大而增大,∴当5x =时,6y =,即25(1)16m m +++=,整理得:250m m +=解得:0m =或5m =-(舍去)当10+<m 即1m <-时,一次函数y 随x 的增大而减小,∴当2x =时,6y =,即22(1)16m m +++=,整理得:2230m m +-=解得:3m =-或1m =(舍去)综上,0m =或3m =-,故选:A10.如图是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成.在正方形ABCD 中,10AB =.下列三个结论:①若3tan 4ADF ∠=,则2EF =;②若Rt ABG △的面积是正方形EFGH 面积的3倍,则点F 是AG 的三等分点;③将ABG 绕点A 逆时针旋转90︒得到ADG '△,则BG '的最大值为5.其中正确的结论是( )A.①②B.①③C.②③D.①②③∴2255BO OA AB =+=∴555BG BO OG ''≤+=+即:BG '的最大值为55+故选D .【点睛】本题考查解直角三角形,勾股定理,旋转的性质,解一元二次方程,求圆外一点到圆上一点的最值,熟练掌握相关知识点,并灵活运用,是解题的关键.二、填空题11.计算---a b a b a b 的结果为 .12.若一组数据6,6,m ,7,7,8的众数为7,则这组数据的中位数为.【答案】7【分析】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据13.如图,AB 是O 的直径,位于AB 两侧的点C ,D 均在O 上,30BOC ∠=︒,则ADC ∠= 度.14.已知m 是方程2410x x -=+的一个根,则(5)(1)m m +-的值为.【答案】4-【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x -=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解.【详解】解:∵m 是方程2410x x -=+的一个根,∴241m m +=(5)(1)m m +-255m m m =-+-245m m =+-15=-4=-,故答案为:4-.15.如图,在矩形ABCD 中,E 为AD 边上一点,30ABE ∠=︒,将ABE 沿BE 折叠得FBE ,连接CF ,DF ,若CF 平分BCD ∠,2AB =,则DF 的长为 .∴90CMF CNF ∠=∠=︒,∵四边形ABCD 是矩形,∴90DCM ABC ∠=∠=︒,∴四边形CMFN 是矩形,16.已知抛物线21:C y x mx m =++与x 轴交于两点A ,B (A 在B 的左侧),抛物线22:()C y x nx n m n =++≠与x 轴交于两点C ,D (C 在D 的左侧),且AB CD =.下列四个结论:①1C 与2C 交点为(1,1)-;②4m n +=;③0mn >;④A ,D 两点关于(1,0)-对称.其中正确的结论是 .(填写序号)【点睛】本题考查了二次函数的图象与性质,二次函数与一元二次方程的关系,解一元二次方程,根的判别式,熟练掌握知识点的应用是解题的关键.三、解答题17.先化简,再求值:()23(2)3x x x x +-+÷,其中2 x =-.【答案】41x +,7-【分析】本题主要考查了整式的化简求值,运用完全平方公式展开,先算除法,再算加减法,最后代入求值即可.【详解】解:原式()()22443x x x =++-+22443x x x =++--41x =+,当2x =-时,原式4(2)17=⨯-+=-.18.如图,在ABC 中,点D 为BC 边的中点,过点B 作BE AC ∥交AD 的延长线于点E .(1)求证:BDE CDA ≌ .(2)若AD BC ⊥,求证:BA BE =【答案】(1)见解析(2)见解析【分析】本题考查全等三角形的判定和性质,中垂线的判定和性质:(1)由中点,得到BD CD =,由BE AC ∥,得到,E DAC DBE C ∠=∠∠=∠,即可得证;(2)由全等三角形的性质,得到ED AD =,进而推出BD 垂直平分AE ,即可得证.【详解】(1)证明:D 为BC 的中点,BD CD ∴=.,BE AC ∥,E DAC DBE C ∴∠=∠∠=∠;在BDE 和CDA 中,E DAC DBE C BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS BDE CDA ∴ ≌;(2)证明:,BDE CDA △≌△ED AD∴=,AD BC ⊥ BD ∴垂直平分AE ,BA BE ∴=.19.某研学基地开设有A ,B ,C ,D 四类研学项目.为了解学生对四类研学项目的喜爱情况,随机抽取部分参加完研学项目的学生进行调查统计(每名学生必须选择一项,并且只能选择一项),并将调查结果绘制成两幅不完整的统计图,(如图).根据图中信息,解答下列问题:(1)参加调查统计的学生中喜爱B 类研学项目有多少人?在扇形统计图中,求C 类研学项目所在扇形的圆心角的度数.(2)从参加调查统计喜爱D 类研学项目的4名学生(2名男生2名女生)中随机选取2人接受访谈,求恰好选中一名男生一名女生的概率.20.已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.【答案】(1)1k >(2)2【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨21.如图,直线y kx b =+经过(0,2),(1,0)A B --两点,与双曲线(0)my x x=<交于点(,2)C a .(1)求直线和双曲线的解析式.(2)过点C 作CD x ⊥轴于点D ,点P 在x 轴上,若以O ,A ,P 为顶点的三角形与BCD △相似,直接写出点P 的坐标.综上:点P 坐标为(4,0)-或(1,0)-或(1,0)或(4,0).22.如图,在O 中,AB 是直径,AE 是弦,点F 是»AE 上一点,AF BE =,,AE BF 交于点C ,点D 为BF 延长线上一点,且CAD CDA ∠=∠.(1)求证:AD 是O 的切线.(2)若4,BE AD ==,求O 的半径长.23.2024年“五一”假期期间,阆中古城景区某特产店销售A ,B 两类特产.A 类特产进价50元/件,B 类特产进价60元/件.已知购买1件A 类特产和1件B 类特产需132元,购买3件A 类特产和5件B 类特产需540元.(1)求A 类特产和B 类特产每件的售价各是多少元?(2)A 类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A 类特产降价x 元,每天的销售量为y 件,求y 与x 的函数关系式,并写出自变量x 的取值范围.(3)在(2)的条件下,由于B 类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w 元,求w 与x 的函数关系式,并求出每件A 类特产降价多少元时总利润w 最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A 类特产的售价为60元/件,B 类特产的售价为72元/件(2)1060y x =+(010x ≤≤)(3)A 类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,()1根据题意设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x -元,进一步得到关于x 的一元一次方程求解即可;()2根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x 得取值范围;()3结合(2)中A 类特产降价x 元与每天的销售量y 件,得到A 类特产的利润,同时求得B类特产的利润,整理得到关于x 的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x -元.根据题意得()35132540x x +-=.解得60x =.则每件B 类特产的售价1326072-=(元).答:A 类特产的售价为60元/件,B 类特产的售价为72元/件.(2)由题意得1060y x =+∵A 类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴010x ≤≤.答:1060y x =+(010x ≤≤).(3)(6050)(1060)100(7260)w x x =--++⨯-221040180010(2)1840x x x =-++=--+.100,-<Q ∴当2x =时,w 有最大值1840.答:A 类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.24.如图,正方形ABCD 边长为6cm ,点E 为对角线AC 上一点,2CE AE =,点P 在AB 边上以1cm /s 的速度由点A 向点B 运动,同时点Q 在BC 边上以2cm /s 的速度由点C 向点B 运动,设运动时间为t 秒(03t <≤).(1)求证:AEP CEQ ∽.(2)当EPQ △是直角三角形时,求t 的值.(3)连接AQ ,当1tan 3AQE ∠=时,求AEQ △的面积.①当90EPQ ∠=︒时,有即22416324t t t -+=-解得12623,6t t =-=②当90PEQ ∠=︒时,有又2CE AE = ,13AE AE AC AF ∴==1tan 3AFE ∴∠=.125.已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值;(3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.l y=,则(N'由题意得直线:4。

四川省成都市青羊区2024年小升初数学重难点模拟卷含解析

四川省成都市青羊区2024年小升初数学重难点模拟卷含解析

四川省成都市青羊区2024年小升初数学重难点模拟卷一、选择题。

(选择正确答案的序号填在括号内。

每小题2分,共10分)1.至少要再放()个才能拼成一个大正方体。

A.3 B.4 C.52.甲数的45等于乙数的23(甲数、乙数不为0),那么甲数与乙数的比是().A.23∶45B.6∶5 C.5∶6 D.45∶233.如图,连接在一起的两个正方形,边长都是1cm。

一个微型机器人由点A开始,按ABCDEFCGA……的顺序,沿正方形的边循环移动。

当微型机器人移动了2019cm时,它停在点()处。

A.A B.B C.C D.D4.把1000元存入银行三年,到期时取出1045元,则取出的1045元叫().A.本金B.利息C.本金和利息5.根据12×15=180,请你推算出得数是0.18的算式是()。

A.12×1.5 B.0.12×1.5 C.1.2×1.5 D.0.12×0.15二、填空题。

(每小题2分,共28分)6.4m2=________dm232L=________m39L=________ml7.求下面各角的度数。

∠1=(______)°。

∠2=(______)°。

∠3=(______)°。

8.营业税=______×______. 9.3.05立方分米=(________)立方厘米 90分=(________)时450千克=(________)吨 1.25时=(________)分10.3.9,7.0,8.4,6.6,7.0,6.4,7.0,8.6,9.4,7.0这组数据的众数是________,中位数是________,平均数是________。

11.一个长方形的宽是38米,长是宽的43。

这个长方形的面积是________平方米。

12.( )︰40 =40÷( )=5÷8=( )%=()55a + 。

成都市青羊区九年级二诊数学试题及答案

成都市青羊区九年级二诊数学试题及答案

(2017年四川省成都市青羊区中考数学二诊试卷)A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分)1. 在算式(-2)□(-3),□的中填上运算符号,使结果最小,运算符号是( )A. 加号B. 减号C. 乘号D. 除号2. 国家卫生和计划生育委员会公布H 7N 9禽流感病毒直径约为0.00000012米,这一直径用科学计数法表示为( )A. 1.2×10-9米B. 12×10-8米C. 1.2×10-8米D. 1.2×10-7米3. 下面的图形中,既是轴对称图形又是中心对称图形的是( )A B C D4. 下列计算正确的是( )A. x x x 25332-=-B.x x x 32623=÷C.623)31(x x =D.126)42(3--=--x x5. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为( )A. 21 B.23 C.22 D.336. 如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=( )A. 55°B. 30°C. 50°D. 60°7. 如图,△DEF 经过怎样的平移得到△ABC ( )A. 把△DEF 向左平移4个单位,再向下平移2个单位B. 把△DEF 向右平移4个单位,再向下平移2个单位C. 把△DEF 向右平移4个单位,再向上平移2个单位D. 把△DEF 向左平移4个单位,再向上平移2个单位8. 将一个三角形改成与它相似的三角形,如果面积扩大为原来的9倍,那么周长扩大为原来的( )A. 9倍B. 3倍C. 81倍D. 18倍9. 某小区20户家庭的日用电量(单位:千瓦时)统计如下:这20户家庭日用电量的众数、中位数分别是( )A. 6,6.5B. 6,7C. 6,7.5D. 7,7.510. 某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( )第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,第小题4分,共16分)11. 分解因式:=-+-x x x 1212323 .12. 如图,已知⊙O 的半径为30mm ,先AB=36mm ,则点O 到AB 的距离为 mm.13. 如图,一人乘雪橇沿坡比1:3的斜坡笔直滑下72米,那么他下降的高度为 米.14. 关于x 的方程012)2(2=++-x x m 有实数根,则偶数m 的最大值为 .三、解答题(本大题共6个小题,共54分)15.(每小题6分,共12分)(1)计算:︒-+-︒++--60sin 23)376(cos )21()1(032017π(2)解方程:01322=-+x x16、(本小题满分6分)如图,在△ABC 中,AB=AC ,BD=CD ,CE ⊥AB 于E.(1)求证:△ABD ∽△CBE ;(2)若BD=3,BE=2,求AC 的值.第16题图如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1m)(参考数据:2≈1.414,3≈1.732)第17题图18.(本小题满分8分)某校将举办“心怀感恩孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.如图,一次函数b kx y +=的图象与反比例函数x m y =(x >0)的图象交于点P(n ,2),与x 轴交于点A ,与y 轴交于点C ,PB ⊥x 轴于点B ,且AC=BC ,S △PBC =4.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第19题图如图,在Rt △ABC 中,∠C=90°,BD 为∠ABC 的平分线,DF ⊥BD 交AB 于点F ,△BDF 的外接圆⊙O 与边BC 相交于点M ,过点M 作AB 的垂线交BD 于点E ,交⊙O 于点N ,交AB 于点H ,连接FN.(1)求证:AC 是⊙O 的切线;(2)若AF=1,tan ∠N=34,求⊙O 的半径r 的长; (3)在(2)的条件下,求BE 的长.B 卷(满分50分)一、填空题(本大题共5小题,每小题4分,共20分)21.如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上,设矩形的一边AB=x m ,矩形的面积为y m 2,则y 的最大值为 .22.有五张正面分别标有数2,0,1,3,4的不透明卡片,它们除了数字不同外其余全部相同。

2021年四川中考二模检测《数学试卷》含答案解析

2021年四川中考二模检测《数学试卷》含答案解析

四川中考数学仿真模拟测试题一、选择题(36)1. -2的相反数是( )A. 2B. -2C.D. -2. 下列运算正确的是( )A. m6÷m2=m3B. 3m2-2m2=m2C. (3m2)3=9m6D. m·2m2=m23. 函数y =中自变量x的取值范围是( )A.x≤2B. x≥2C. x<2D. x>2 4. 已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( )A. 14B. -14C. 4D. -15. 如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD6. 下列命题中,真命题是( )A. 任何数的零次幂都等于1B. 对角线相等且垂直的四边形是正方形C. 有一条边相等的两个等腰直角三角形全等D. 有两条直角边对应相等的两个直角三角形全等7. 如图,正方形ABCD四边的中点分别是E、F、G、H,若四边形EFGH的面积是2,则正方形ABCD的周长是( )A. 4B. 4C. 8D. 88. 如图所示几何体的俯视图是( )A. B. C. D.9. 为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人,根据题意,所列方程组正确的是( ) A. B. C. D.10. (2016山东省泰安市)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)根据图表提供的信息,下列结论错误的是( ) A. 这次被调查的学生人数为400人B. 扇形统计图中E部分扇形的圆心角为72°C. 被调查的学生中喜欢选修课E、F的人数分别为80,70 D. 喜欢选修课C的人数最少11. 如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( ) A. 45︒ B. 50︒ C. 60︒ D. 75︒12. 如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为( )A. 36B. 12C. 6D. 3二、填空题13. 函数y=中自变量x的取值范围是__________.14. 某水库的正常库容是6880万立方米,6880万立方米用科学记数法表示为_____________立方米.15. 如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为________.16. 在Rt△ABC中,∠ACB=90°,AC=23,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D 为AB的中点,则阴影部分的面积是________.17. 关于x的一元二次方程x2-3x+m=0有实数根α、β,且α2+β2=17,则m的值是______.18. 如图①,△ABC中,∠ABC=45°,AH⊥BC于H,点D在AH上,且DH=CH,连结BD.将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.如图②,当点F落在AC上时(F不与C重合),若BC =4,tan∠ACH=3,则AE=_____.三、解答题19. 计算:2sin45°-+(2017-π)0+()-1.20. 先化简,再求值:(+2-x )÷,其中x满足x2-4x+3=021. 如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).⑴若△ABC关于x轴对称的图形是△A1B1C1,直接写出A1、B1、C1的坐标;⑵将△ABC绕点O按顺时针方向旋转90°得到△A2B2C2,画出△A2B2C2,并写出点A的对称点A2的坐标;⑶计算△OA1A2的面积. 22. 南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向东南方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后在C处成功拦截不明船只,问我国海监执法船在前往监视巡查的过程中行驶了多少海里?23. 为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3 名、4名、5名、6名,共五种情况,并将其制成了如下两幅不完整的统计图:⑴求该校一共有多少个班?并将条形图补充完整;⑵某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.24. 某市了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?25. 如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.26. 如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过点A(-1,0)和点B(4,0),且与y轴交于点C,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点,连接CA,CD,PD,PB.⑴求抛物线的解析式;⑵当△PDB的面积等于△CAD的面积时,求点P的坐标;⑶当m>0,n>0时,过点P作直线PE⊥y轴于点E交直线BC于点F,过点F作FG⊥x轴于点G,连接EG,请直接写出随着点P的运动,线段EG的最小值.答案与解析一、选择题(36)1. -2的相反数是( )A. 2B. -2C.D. -【答案】A【解析】根据只有符号不同的两个数互为相反数,由此可得-2的相反数是2,故选A.2. 下列运算正确的是( )A. m6÷m2=m3B. 3m2-2m2=m2C. (3m2)3=9m6D. m·2m2=m2【答案】B【解析】试题分析:分别利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则、单项式乘以单项式运算法则分别分析得出答案.A、m6÷m2=m4,故此选项错误;B、3m2﹣2m2=m2,正确;C、(3m2)3=27m6,故此选项错误;D、m•2m2=m3,故此选项错误;考点:(1)同底数幂的除法运算;(2)合并同类项;(3)积的乘方运算;(4)单项式乘以单项式3. 函数y=中自变量x的取值范围是( )A. x≤2B. x≥2C. x<2D. x>2【答案】D【解析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,x-2>0,解得x>2,故选D.4. 已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( )A. 14B. -14C. 4D. -1【答案】A【解析】【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=12 -,∴b a=(12-)2=14.故选A.5. 如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD【答案】D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.6. 下列命题中,真命题是( )A. 任何数的零次幂都等于1B. 对角线相等且垂直的四边形是正方形C. 有一条边相等的两个等腰直角三角形全等D. 有两条直角边对应相等的两个直角三角形全等【答案】D【解析】选项A,任何不等于的数的零次幂都等于1,选项A错误;选项B. ,对角线相等且互相垂直平分的四边形是正方形,选项B错误;选项C,有一条边相等的两个等腰直角三角形不一定全等,选项C错误;选项D,有两条直角边对应相等的两个直角三角形全等,选项D 正确,故选D.7. 如图,正方形ABCD四边中点分别是E、F、G、H,若四边形EFGH的面积是2,则正方形ABCD的周长是( )A. 4B. 4C. 8D. 8【答案】C【解析】 正方形ABCD 四边的中点分别是E 、F 、G 、H ,可判定中点四边形EFGH 是正方形,24ABCD EFGH S S ==正方形正方形 ,所以正方形ABCD 的边长为2,即可得正方形ABCD 的周长是8,故选C. 8. 如图所示几何体的俯视图是( )A. B. C. D.【答案】D【解析】试题分析:从上往下看,得一个长方形,由3个小正方形组成.故选D .考点:简单组合体的三视图.9. 为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人,根据题意,所列方程组正确的是( ) A.B. C. D.【答案】B【解析】设该班男生有x 人,女生有y 人,根据有30名学生可得x+y=30,男生每人种3棵,女生每人种2棵,共种78棵树苗可得3x+2y=78,即可得方程组303278x y x y +=+=⎧⎨⎩ ,故选B. 10. (2016山东省泰安市)某学校将为初一学生开设ABCDEF 共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)根据图表提供的信息,下列结论错误的是()A. 这次被调查的学生人数为400人B. 扇形统计图中E 部分扇形的圆心角为72°C. 被调查的学生中喜欢选修课E 、F 的人数分别为80,70D. 喜欢选修课C 的人数最少【答案】D【解析】【分析】通过计算得出选项A 、B 、C 正确,选项D 错误,即可得出结论.【详解】解:被调查的学生人数为60÷15%=400(人),∴选项A 正确;扇形统计图中D 的圆心角为100400×360°=90°,∵40400×360°=36°,360°(17.5%+15%+12.5%)=162°,∴扇形统计图中E 的圆心角=360°﹣162°﹣90°﹣36°=72°,∴选项B 正确;∵400×72360︒︒=80(人),400×17.5%=70(人),∴选项C 正确;∵12.5%>10%, ∴喜欢选修课A 的人数最少,∴选项D 错误;11. 如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A. 45︒B. 50︒C. 60︒D. 75︒【解析】【分析】根据平行四边形的性质和圆周角定理可得出答案. 【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=12∠AOC,因此∠B+∠D=∠AOC+12∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.12. 如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为( )A. 36B. 12C. 6D. 3【答案】D【解析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数6yx第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S△OAC﹣S△BAD=12a2﹣12b2=12(a2﹣b2)=12×6=3.点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.二、填空题13. 函数y=中自变量x的取值范围是__________.【答案】x≥2【解析】根据二次根式的性质,被开方数大于等于0,可得x-2≥0,解得x≥2.14. 某水库的正常库容是6880万立方米,6880万立方米用科学记数法表示为_____________立方米.【答案】6.88×107【解析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,用原数的整数位数减1,即6880万=6.88×107.15. 如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为________.【答案】42【解析】已知BC=8,AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得AC CDBC AC,即可得AC2=CD•BC=4×8=32,解得AC=42.16. 在Rt△ABC中,∠ACB=90°,AC=23,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D 为AB的中点,则阴影部分的面积是________.【答案】2 33【解析】【详解】解:已知BC 的长为半径作弧,交AB 于点D ,点D 为AB 的中点,可得12BC AB = ,即可得∠B=60°,由tan ∠B=ACBC,可求得BC=2, 216022360ABC DBCS S S BC AC π∆⋅=-=⋅-阴影扇形 =160422322323603ππ⨯⨯⨯-=- . 点睛:本题考查了特殊角的三角函数值、扇形的面积公式等知识.此题难度适中,注意掌握转化思想的应用.17. 关于x 的一元二次方程x 2-3x +m =0有实数根α、β,且α2+β2=17,则m 的值是______. 【答案】-4 【解析】一元二次方程x 2-3x+m=0有实数根,可得△=b 2-4ac=9-4m≥0,解得m≤94.根据根与系数的可得3,m αβαβ+== ,所以α2+β2=222()29217m αβαβαβ+=+-=-=,解得m=-4.18. 如图①,△ABC 中,∠ABC =45°,AH ⊥BC 于H ,点D 在AH 上,且DH =CH ,连结BD .将△BHD 绕点H 旋转,得到△EHF (点B ,D 分别与点E ,F 对应),连接AE .如图②,当点F 落在AC 上时(F 不与C 重合),若BC =4,tan∠ACH =3,则AE =_____.【答案】【解析】在Rt △AHC 中,由tan ∠ACH =3,可得AHHC=3, 设CH =x ,则BH =AH=3x ,由BC=4, 可得 3x +x =4,解得x =1.即可得AH =3,CH =1.由旋转知:∠EHF =∠BHD =∠AHC =90°,EH =AH =3,CH =DH =FH. 所以∠EHA =∠FHC ,EH FHAH HC= =1,即可判定△EHA ∽△FHC ,所以∠EAH =∠C ,即可得tan ∠EAH =tanC =3 ,如图②,过点H 作HP ⊥AE 于P ,则HP =3AP ,AE =2AP. 在Rt △AHP 中,AP 2+HP 2= AH 2,∴AP 2+(3AP)2= 9,解得AP 310,所以AE 310.三、解答题19. 计算:2sin45°-+(2017-π)0+()-1.【答案】2+1 【解析】试题分析:根据特殊角的三角函数值、二次根式化简、零指数幂、负整数指数幂分别计算各项,然后根据实数的运算法则求得计算结果. 试题解析: 原式=2×-3+1+3=+120. 先化简,再求值:(+2-x )÷,其中x 满足x 2-4x +3=0【答案】15【解析】试题分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答. 试题解析:原式=()()222421(2)11x x x x x x x-++--+÷-- =2211(2)x xx x +-⨯-+ =-12x +. 解方程x 2-4x+3=0得,(x-1)(x-3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=-11 325=-+.考点:1.分式的化简求值;2.解一元二次方程-因式分解法.21. 如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).⑴若△ABC关于x轴对称的图形是△A1B1C1,直接写出A1、B1、C1的坐标;⑵将△ABC绕点O按顺时针方向旋转90°得到△A2B2C2,画出△A2B2C2,并写出点A的对称点A2的坐标;⑶计算△OA1A2的面积.【答案】(1)A1(-3,-5), B1 (-2,-1),C1(-1,-3);(2)作图见解析;(3)8.【解析】试题分析:(1)根据关于x轴对称的两点的坐标特点:横坐标相等,纵坐标互为相反数,即可写出点A1、B1、C1的坐标;(2)将△ABC绕点O顺时针方向旋转90°即可得到的△A2B2C2,直接写出A2的坐标即可;(3)根据图形,利用三角形的面积公式计算即可.试题解析:(1)A1(-3,-5), B1 (-2,-1),C1(-1,-3)(2)如图所示:△A2B2C2,即为所求;A2(5,3)(3)S△O A1 A2=822. 南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向东南方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后在C处成功拦截不明船只,问我国海监执法船在前往监视巡查的过程中行驶了多少海里?【答案】即我海监执法船在前往监视巡查的过程中行驶了106102+海里.【解析】试题分析:过B作BD⊥AC,在Rt△ABD中,利用勾股定理求出BD与AD的长,在Rt△BCD中,求出CD的长,由AD+DC求出AC的长即可.试题解析:过B作BD⊥AC,∵∠BAC=75°﹣30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得:BD=AD=×20=10(海里),在△ABC中, ∠BAC=45°,∠ABC=75°,可得∠C=60°∴在Rt△CBD中,∴tan∠BCD =,即tan60°=,即CD=则AC=AD+DC=10+答:即我海监执法船在前往监视巡查的过程中行驶了10+海里.23. 为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3 名、4名、5名、6名,共五种情况,并将其制成了如下两幅不完整的统计图:⑴求该校一共有多少个班?并将条形图补充完整;⑵某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【答案】(1)20;(2)13.【解析】试题分析:(1)根据留守儿童有4名的班级有6个,占30%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列表可得出来自一个班的共有4种情况,继而可得所选两名留守儿童来自同一个班级的概率.试题解析:(1)该校的班级共有6÷30%=20(个),有2名贫困生的班级有20﹣5﹣6﹣5﹣2=2(个),补全条形图如图:(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为=.考点:列表法与树状图法;扇形统计图;条形统计图.24. 某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m 元收费;若每月用水量超过14吨,则超过部分每吨按市场价n 元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元. (1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,请写出y 与x 之间的函数关系式; (3)小明家5月份用水26吨,则他家应交水费多少元?【答案】(1)每吨水的政府补贴优惠价2元,市场调节价为3.5元;(2) (014)3.521(14)x x y x x ≤≤⎧=⎨->⎩;(3)69. 【解析】试题分析:(1)设每吨水的政府补贴优惠价为m 元,市场调节价为n 元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y 与x 之间的函数关系,注意自变量的取值范围; (3)根据小英家5月份用水26吨,判断其在哪个范围内,代入相应的函数关系式求值即可.试题解析:(1)设每吨水的政府补贴优惠价为m 元,市场调节价为n 元.14(2014)48{14(1814)42m n m n +-=+-=,解得:2{ 3.5m n ==. 答:每吨水的政府补贴优惠价2元,市场调节价为3.5元. (2)当0≤x≤14时,y=2x ;当x >14时,y=14×2+(x ﹣14)×3.5=3.5x ﹣21,故所求函数关系式为: (014){3.521(14)x x y x x ≤≤=->;(3)∵26>14,∴小英家5月份水费为3.5×26﹣21=69元. 答:小英家5月份水费69元.考点:一次函数的应用;分段函数.25. 如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.【答案】(1)证明见解析;(2)BM=MC.理由见解析.【解析】【分析】(1)根据正方形的性质可得AB=BC,∠ABC=∠C,然后利用“边角边”证明△ABM和△BCP全等,根据全等三角形对应边相等可得AM=BP,∠BAM=∠CBP,再求出AM⊥BP,从而得到MN∥BP,然后根据一组对边平行且相等的四边形是平行四边形证明即可;(2)根据同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根据相似三角形对应边成比例可得AB AMMC MQ=,再求出△AMQ∽△ABM,根据相似三角形对应边成比例可得AB AMBM MQ=,从而得到AB ABMC BM=,即可得解.【详解】(1)证明:在正方形ABCD中,AB=BC,∠ABC=∠C,在△ABM和△BCP中,,∴△ABM≌△BCP(SAS),∴AM=BP,∠BAM=∠CBP,∵∠BAM+∠AMB=90°,∴∠CBP+∠AMB=90°,∴AM⊥BP,∵AM并将线段AM绕M顺时针旋转90°得到线段MN,∴AM ⊥MN ,且AM=MN , ∴MN ∥BP ,∴四边形BMNP 是平行四边形; (2)解:BM=MC .理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°, ∴∠BAM=∠CMQ , 又∵∠ABC=∠C=90°, ∴△ABM ∽△MCQ , ∴AB AMBM MQ=, ∵△MCQ ∽△AMQ , ∴△AMQ ∽△ABM , ∴AB AMBM MQ=, ∴AB ABMC BM=, ∴BM=MC .26. 如图,在平面直角坐标系中,抛物线y =ax 2+bx +2经过点A (-1,0)和点B (4,0),且与y 轴交于点C ,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点,连接CA ,CD ,PD ,PB . ⑴求抛物线的解析式;⑵当△PDB 的面积等于△CAD 的面积时,求点P 的坐标;⑶当m >0,n >0时,过点P 作直线PE ⊥y 轴于点E 交直线BC 于点F ,过点F 作FG ⊥x 轴于点G ,连接EG ,请直接写出随着点P 的运动,线段EG 的最小值.【答案】(1)y=﹣0.5x 2+1.5x+2;(2)可得点P 的坐标是(1,3)或(2,3)或(5,-3)或(-2,-3);(3)线段EG 45.【解析】【分析】(1)已知抛物线y=ax 2+bx+2经过点A (﹣1,0)和点B (4,0),用待定系数法,求出该抛物线的解析式即可.(2)已知△PDB 的面积等于△CAD 的面积,根据已知条件求出△CAD 的面积,即可求出△PDB 的面积,然后根据点D 、点B 的坐标求出BD 的长,即可求出△PDB 边BD 上的高,也就是点P 的纵坐标,分两种情况,•点P 在x 轴的上方,‚点P 在x 轴的下方,再把它分别代入抛物线的解析式,求出x 的值,即可判断出点P 的坐标.(3)已知点B 、点C 的坐标,用待定系数法,求出直线BC 的解析式;然后根据点P 的坐标是(m ,n ),PF ∥x 轴,且点F 在直线BC 上,求出点F 的坐标,再由勾股定理得出EG 2与n 之间的二次函数关系,利用二次函数的性质求得EG 2的最小值,即可得线段EG 的最小值.【详解】解: 解:(1)把A (﹣1,0),B (4,0)两点的坐标代入y=ax 2+bx+2中,可得2016420a b a b -+=⎧⎨++=⎩ 解得0.51.5a b =-⎧⎨=⎩∴抛物线的解析式为:y=﹣0.5x 2+1.5x+2.(2)∵抛物线的解析式为y=﹣0.5x 2+1.5x+2,∴点C 的坐标是(0,2),∵点A (﹣1,0)、点D (2,0),∴AD=2﹣(﹣1)=3,∴△CAD 的面积=13232⨯⨯=, ∴△PDB 的面积=3,∵点B (4,0)、点D (2,0),∴BD=2,∴|n|=3×2÷2=3,∴n=3或﹣3,①当n=3时,-0.5m 2+1.5m+2=3,解得m=1或m=2,∴点P 的坐标是(1,3)或(2,3).②当n=﹣3时,-0.5m2+1.5m+2=﹣3,整理,可得m2+3m-10=0,解得m=5或m=-2,∴点P的坐标是(5,-3)或(-2,-3).综上,可得点P的坐标是(1,3)或(2,3)或(5,-3)或(-2,-3).(3)如图1,,设BC所在的直线的解析式是:y=mx+n,∵点C的坐标是(0,2),点B的坐标是(4,0),∴240 nm n=⎧⎨+=⎩解得0.52mn=-⎧⎨=⎩∴BC所在的直线的解析式是:y=﹣0.5x+2,∵点P的坐标是(m,n),∴点F的坐标是(4-2n,n),∴EG2=(4-2n)2+n2=5n2﹣16n+16=5281655m⎛⎫⎪⎭+-⎝,∵n>0,∴n=85时,线段EG2的最小值是165,即线段EG的最小值是455.。

2023年四川省成都市青羊区一诊 数学 试题(学生版+解析版)

2023年四川省成都市青羊区一诊 数学 试题(学生版+解析版)

2023年四川省成都市青羊区一诊数学试题A 卷(共100分〉第I卷〈选择题,共30分〉一、选择题〈本大题共8个小题,每小题4分,共32分〉l.如图是由5个相同的正方体搭成的几何休,这个几何体的左视图是(A日B.DcI I I I 1°Al2.下列方粮是一元二次方程的是(〉A.x 2+x -y =OB.a.x 2+2x -3=0C.x 2+2x+5=x(x-1) D.x 2-l=O3.下列各式计算正确的是〈)A.(x+y/=x 2+y2 B.(x 2)3=x 电C.x i 泸x5D.4x 2-y2 = (4x+ y)(4x-y)4.在一个不透明的口袋中浆有2个红球和!若干个臼球,官们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有()A.5个 B.6个C. 7个D.8个5.若点A(-3,只)• B(l ,川,C(3,为)在反比例函数y =三的图象上,则Y 1、Y 2、灼的大小关系是λ’()A.Y 1 >Y 2 >)'3B.Y 2 >)'3 > Y 1C.Y 1 > Y 3 > Y 2D.Y3>Y 2 > Y 16.如图,点P在A ABC 的边AC 上,要判断A A8PV>6.AC8,添加一个条件,不正确的是()Bc/气pAA.L三ABP=ζCPB=ζABCC.A P AB AB AC一一=一- D.一一=一-AB AC BP CB7.如图,小红居住的小区内有一条笔茧的小路,小路的正中间有一路灯,晚上小红囱A处径直走到8处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是(〉纤夕弓/A. B.8.下列说法中,正确的是〈)A.有一个角是蕴角的平行四边形是正万形B.对角线相等的四边形是矩形C.对角线互相垂直平分的四边形是菱形c.·s。

一组对边平行,另一组对:ill相等的四边形是平行四边形第E卷(非选择题,共68分〉二、填空题(本大题共5个小题,每小题4分,共20分〉, (5)9.比较大小: 3 +l 一.(;填“〉’\气”,或“=”〉守v2D.’Sk10.如囱,已知A为反比例函数y=一(x<O)的图像上一ι过点A作AB.ly轴,垂足为B若...OABx的商积为3,则k的值为一一-川如图,在缸4B C中,LACB=90。

2024年四川省内江市中考地理试题(含解析)

2024年四川省内江市中考地理试题(含解析)
A.天津市B.吉林省C.山西省D.辽宁省
第Ⅱ卷(综合题共52分)
二、综合题(共52分)
17.“一方水土养育一方人”,自然环境与人们的生产和生活息息相关。下图为我国两省(区)位置及地理示意图。据此完成下列要求。
(1)比较台东和台南夏季降水量的差异,并分析原因。
(2)塔里木河是我国最大的____(选填“内流”或“外流”)河,河水来源以冰雪融水为主,流量季节变化____。
A.冶炼锌B.冶炼铜C.冶炼铝D.冶炼铅
12.李白从秋浦(今安徽贵池)前往铜陵的直线距离约为()
A 45千米B.100千米C.155千米D.210千米
13.当时冶炼产品通过河流运往南京、武汉,这条河流是()
A.珠江B.长江C.黄河D.黑龙江
下表为我国第六次(2010年)、第七次(2020年)人口普查四省(市)占全国人口比重(单位:%)。据此完成下面小题。
11.这首诗描写的劳动场景是()
A.冶炼锌B.冶炼铜C.冶炼铝D.冶炼铅
12.李白从秋浦(今安徽贵池)前往铜陵的直线距离约为()
A.45千米B.100千米C.155千米D.210千米
13.当时冶炼产品通过河流运往南京、武汉,这条河流是()
A.珠江B.长江C.黄河D.黑龙江
【答案】11. B 12. A 13. B
4.肯尼亚首都的经纬度为()
A.(1.2°N,36.8°E)B.(1.2°S,36.8°E)C.(1.2°N,36.8°W)D.(1.2°S,36.8°W)
5.肯尼亚地势总体呈()
A.南高北低B.北高南低C.西高东低D.东高西低
6.奈瓦沙湖畔早晨采摘的玫瑰,次日早晨抵达荷兰,采用的运输方式是()
A.海洋运输B.公路运输C.航空运输D.铁路运输

2023-2024学年四川省成都市高新区八年级(下)期末数学试卷(含详解)

2023-2024学年四川省成都市高新区八年级(下)期末数学试卷(含详解)

2023-2024学年四川省成都市高新区八年级(下)期末数学试卷一、选择题(共8小题,每小题4分,共32分)1.下列图案中,是中心对称图形的是( )A. B. C. D.2.若a <b ,则下列不等式变形正确的是( )A. −2a <−2bB. a 2>b 2C. a−b >0D. 3a−1<3b−13.下列各式从左到右的变形,属于因式分解的是( )A. a(a−1)=a 2−aB. a 2−4=(a−2)2C. x 2+x +14=(x +12)2D. a 2−b 2+3=(a−b)(a +b)+34.如图,在△ABC 中,BC =15,AB 的垂直平分线交AB 于点D ,交边AC 于点E.若△BCE 的周长等于35,则线段AC 的长为( )A. 15B. 17.5C. 20D. 255.化简分式1a−1−1a(a−1),正确的结果是( )A. 1a−1B. 1aC. a a−1D. a−1a 6.在平面直角坐标系中,把点A(m,2)先向右平移3个单位,再向上平移2个单位得到点B.若点B 的横、纵坐标相等,则m 的值为( )A. 1B. 2C. 3D. 77.如图,在四边形ABCD 中,对角线AC 、BD 交于点O.下列条件不能判断四边形ABCD 是平行四边形的是( )A. AD =BC ,AB =DCB. AD//BC ,AB =DCC. OA =OC ,OB =ODD. AO =CO ,AB//DC8.如图,△ABC 中,∠ACB =75°,将△ABC 绕点C 顺时针方向旋转一定角度得到△EDC.若点D 恰好落在AB 边上,且AD =CD ,则∠E 的度数为( )A. 20°B. 25°C. 30°D. 35°二、填空题(共5小题,每小题4分,共20分)9.分解因式:2ab +4a = ______.10.如果分式2x−3x +2的值为0,那么x 的值是______.11.数学实践活动中,为了测量校园内一建筑物底部A ,B 两点之间的距离,如图,小明同学在A ,B 两点外选择一点C ,分别定出线段AC ,BC 中点D ,E ,测得D ,E 两点之间的距离为8m ,则A ,B 两点之间的距离是______m.12.如图,直线y =−2x +2与直线y =kx +b(k 、b 为常数,k ≠0)相交于点A(m,4),则关于x 的不等式−2x +2<kx +b 的解集为______.13.如图,在▱ABCD 中,AB =6,BC =8,∠ABC 的平分线交AD 于点E ,∠BCD 的平分线交AD 于点F ,则线段EF 的长为______.三、解答题(共98分)14.(1)解不等式组:{5x−1<3(x +1)2x−13−5x +12<1;(2)解方程:1x−2+3=x−1x−2.15.若两数的平方差能被整数m 整除,则将这两数称为“幸运m 倍数组合”.如:证明两个连续偶数是“幸运4倍数组合”,设较小的偶数为2n(n 为整数),则较大的偶数为2n +2,因为(2n +2)2−(2n )2=8n +4,8n +44=2n +1,2n +1为整数,所以,两个连续偶数是“幸运4倍数组合”.你认为两个连续奇数是“幸运8倍数组合”吗?为什么?16.如图,在平面直角坐标系中xOy ,已知△ABC 三个顶点的坐标分别为A(1,3),B(−1,1),C(−2,2).(1)画出△ABC 绕原点O 顺时针旋转90°得到的△A 1B 1C 1;(2)在y 轴上取点P ,使△ABP 的面积是△ABC 面积的32倍,求点P 的坐标.17.如图,Rt△ABC中,∠ABC=90°,将△ABC绕点A逆时针旋转α°(0<α<180)得到△ADE点B的对应点为D,射线CB与射线DE交于点F,连接AF.(1)求证:BF=DF;(2)若AB=2BC=4,AE//CF,求线段BF长.18.【基础巩固】(1)如图1,在△ABC中,D是BC中点,AD平分∠BAC,求证:AB=AC.【深入探究】(2)如图2,在△ABD中,∠ADB>90°,点C在线段BD的延长线上,且BD=DC.在射线DA上取点E,若AB=CE,请写出∠BAD与∠CED的数量关系,并说明理由.【拓展延伸】(3)如图3,在▱ABCD中,对角线AC与BD交于点O,已知AC=4,BC=5,∠ACB=30°,点E在边BC 上,连接EO,EO的延长线交AD于点F,点G在对角线AC上,若FG=AE,且△AEO的面积是△GOF面积的2倍,求线段BE 的长.19.化简:(1−2a−1)÷a 2−6a +9a−1= ______.20.某兴趣小组在用边长相同的正多边形纸板铺平面图形时,将两块正方形纸板和一块正三角形纸板绕点O 如图放置.若将一块正多边形纸板恰好无空隙、不重叠的拼在∠AOB 处,则这块正多边形纸板的边数是______.21.关于x 的不等式组{x−3>0x−2m <1无解,则m 的取值范围是______.22.如图,△ABC 中,∠BAC =70°,延长BC 至点D ,使CD =CA ,连接AD ,过点C 作AD 的垂线,交∠ABC 的平分线于点E ,则∠CDE 的度数为______.23.在平面直角坐标系中,已知线段AB 的两端点分别为A(−1,1),B(−3,3),将线段AB 沿直线y =x +b 翻折得到线段A 1B 1(点A 的对应点为A 1),再将线段A 1B 1向右平移1个单位,向上平移5个单位得到线段A 2B 2(点A 1的对应点为A 2),此时的线段A 2B 2可看作是由线段AB 绕点P 旋转得到(点A 的对应点为A 2),则△ABP 周长的最小值为______.24.2024年汤尤杯比赛于4月27日至5月5日在成都高新体育中心举行.作为世界羽毛球界的重要赛事,它的周边产品(如熊猫挂件)深受球迷喜爱.已知每件A型熊猫挂件比每件B型熊猫挂件多15元,用1200元购买的A 型熊猫挂件与900元购买的B型熊猫挂件数量相同.(1)每件A型熊猫挂件与每件B型熊猫挂件的售价是多少元?(2)若某球迷决定用不超过2000元购买A,B两种型号的熊猫挂件共40件,则最多购买A型熊猫挂件多少件?25.如图,已知直线l1:y=−2x+3与x轴,y轴分别交于A,B两点,过点A的直线l2与y轴负半轴交于点C,且OA:OC=1:3.(1)求直线l2的函数表达式;(2)点D在x轴负半轴上,在直线l2上是否存在点E,使以A,B,D,E为顶点的四边形为平行四边形,若存在,求出点E的坐标,若不存在,请说明理由;(3)直线l3:y=kx+k与y轴正半轴交于点F,与直线l2交于点P,若∠FPA=45°,求k的值.26.已知△ABC为等边三角形,点D是边AC上一动点,连结BD,将△BCD沿BD翻折,点C的对应点为E.(1)如图1,若BE⊥BC,CD=2,求线段BE的长;(2)如图2,连结AE,若DE所在直线与BC垂直,求AE的值;CD(3)如图3,过点A的直线l//BC,射线DE与直线l交于点F.若AB=6,EF=1,求线段CD的长.答案解析1.【答案】B【解析】解:选项A、C、D的图形均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形;选项B的图形能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形.故选:B.2.【答案】D【解析】解:A.∵a<b,∴−2a>−2b,故本选项不符合题意;B.∵a=−5,b=6,∴a2<b2,故本选项不符合题意;C.∵a<b,∴a−b<0,故本选项不符合题意;D.∵a<b,∴3a<3b,∴3a−1<3b−1,故本选项符合题意;故选:D.3.【答案】C【解析】解:a(a−1)=a2−a,是乘法运算,则A不符合题意;a2−4≠(a−2)2,则B不符合题意;x2+x+14=(x+12)2,符合因式分解的定义,则C符合题意;a2−b2+3=(a−b)(a+b)+3,等式的右边不是几个整式的积的形式,不是因式分解,则D不符合题意;故选:C.4.【答案】C【解析】解:∵DE是边AB的垂直平分线,∴AE=BE.∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=35.又∵BC=15,∴AC=35−15=20.故选:C..5.【答案】B【解析】解:原式=aa(a−1)−1a(a−1)=a−1a(a−1)=1a.故选:B.6.【答案】A【解析】解:将点A(m,2)先向右平移3个单位,再向上平移2个单位得到点B,所以点B的坐标为(m+3,4),因为点B的横纵坐标相等,所以m+3=4,解得m=1.故选:A.7.【答案】B【解析】解:A、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据一组对边平行,另一组对边相等的四边形不能判定四边形ABCD是平行四边形,故此选项符合题意;C、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形根据一组对边相等且平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,故此选项不符合题意;D、∵AB//DC,∴∠BAO=∠BCO,∵∠AOB=∠COD,AO=CO,∴△AOB≌△COD(ASA),∴OB=OD,∴四边形ABCD是平行四边形,故此选项不符合题意;故选:B.8.【答案】D【解析】解:∵AD=CD,∴∠A=∠ACD,∴∠CDB=∠A+∠ACD=2∠A,∵△ABC绕点C顺时针方向旋转一定角度得到△EDC,∴∠E=∠A,CD=CB,∴∠B=∠CDB=2∠A,∵∠B+∠A+∠ACB=180°,∴2∠A+∠A+75°=180°,解得∠A=35°,∴∠E=35°.故选:D.9.【答案】2a(b+2).【解析】解:原式=2a(b+2),故答案为:2a(b+2).10.【答案】32【解析】解:由题可知,2x−3=0且x+2≠0,.解得x=32故答案为:3.211.【答案】16【解析】解:∵点D,E分别为线段AC,BC中点∴DE是△ABC的中位线,∴AB=2DE=2×8=16(m),故答案为:16.12.【答案】x>−1【解析】解:∵直线y=−2x+2与直线y=kx+b(k、b为常数,k≠0)相交于点A(m,4),∴4=−2m+2,∴m=−1,∴当x>−1时,−2x+2<kx+b,∴不等式−2x+2<kx+b的解集为x>−1,故答案为:x>−1.13.【答案】4【解析】解:∵四边形ABCD是平行四边形,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∵AB=6,AD=BC=8,∴2AB−BC=AE+FD−BC=EF=4.故答案为:4.14.【答案】解:(1)解第一个不等式得:x<2,解第二个不等式得:x>−1,故原不等式组的解集为−1<x<2;(2)原方程去分母得:1+3x−6=x−1,解得:x=2,检验:当x=2时,x−2=0,则x=2是分式方程的增根,故原方程无解.15.【答案】解:两个连续奇数是“幸运8倍数组合”,理由如下:设较小的奇数为2n−1(n为整数),则较大的奇数为2n+1,∵(2n +1)2−(2n−1)2=8n ,8n 8=n ,n 为整数,∴两个连续奇数是“幸运8倍数组合”. 16.【答案】解:(1)如图,△A 1B 1C 1即为所求.(2)△ABC 的面积为12×(1+2)×3−12×1×1−12×2×2=92−12−2=2.设点P 的坐标为(0,m),∵△ABP 的面积是△ABC 面积的32倍,∴12|m−2|×1+12|m−2|×1=32×2,解得m =5或−1,∴点P 的坐标为(0,5)或(0,−1). 17.【答案】(1)证明:∵将△ABC 绕点A 逆时针旋转α°(0<α<180)得到△ADE ,∴AB =AD ,∠ADE =∠ABC =∠ABF =90°,在Rt △ABF 与Rt △ADF 中,{AF =AF AB =AD ,∴Rt △ABF ≌Rt △ADF(HL),∴BF =DF ;(2)解:将△ABC 绕点A 逆时针旋转α°(0<α<180)得到△ADE ,∴AB =AD =4,DE =BC =2,AE =AC ,∠ADE =∠ABC =∠ABF =90°,∴AC = AB 2+BC 2=2 5,∵AB =AD ,∠ADE =∠ABF =90°,∴∠AFB=∠AFD,∵AE//CF,∴∠AFB=∠EAF,∴∠AFE=∠EAF,∴AE=EF=25,∴DF=DE+EF=25+2,∴BF=25+2.18.【答案】(1)证明:如图,延长AD至E,使DE=AD,连接CE,∵点D是BC中点,∴BD=CD,在△ABD和△ECD中,{AD=DE∠ADB=∠EDC,BD=CD∴△ABD≌△ECD(SAS),∴AB=CE,∠BAD=∠E,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAD=∠E,∴AC=CE,∴AC=AB;(2)解:结论:∠BAD=∠CED,理由如下:如图2,延长ED至F,使DF=DE,连接BF,∵点D是BC中点,∴BD=CD,在△BDF和△CDE中,{BD=CD∠BDF=∠CDE,DF=DE∴△BDF≌△CDE(SAS),∴BF=CE,∵AB=CE,∴AB=BF,∴∠BAD=∠CED;(3)如图3,连接AE,CF,过点F作FH⊥AC于H,∵四边形ABCD是平行四边形,∴OA=OC,AD//BC,∴∠FAO=∠ECO,在△AFO和△CEO中,{∠FAO =∠ECO OA =OC ∠AOF =∠COE,∴△AFO ≌△CEO(ASA),∴OE =OF ,AF =CE ,∴S △AOE =S △AOF ,∵△AEO 的面积是△GOF 面积的2倍,即S △AOE =2S △GOF ,∴S △AOF =2S △GOF ,∴OA =2OG ,∴OC =2OG =12AC =12×4=2,∴OG =1,CG =1,在△AOE 和△COF 中,{OA =OC∠AOE =∠COF OE =OF ,∴△AOE ≌△COF(SAS),∴AE =CF ,∵FG =AE ,∴CF =FG ,∵FH ⊥AC ,∴GH =CH =12CG =12,∴AH =AC−CH =4−12=72,∵AD//BC ,∠ACB =30°,∴∠CAD =∠ACB =30°,∴FH =12AF ,在Rt △AFH 中,AH 2+FH 2=AF 2,∴(72)2+(12AF )2=AF 2,∴AF =7 33,∴CE =7 33,∴BE=BC−CE=5−733,∴线段BE的长为5−733.19.【答案】1a−3【解析】解:原式=a−1−2a−1⋅a−1 (a−3)2=a−3a−1⋅a−1(a−3)2=1a−3.故答案为:1a−3.20.【答案】6【解析】解:∵正三角形、正方边的内角分别为60°、90°,∴∠AOB=360°−90°−90°−60°=120°,∴这块正多边形纸板的边数是:360180−120=6.故答案为:6.21.【答案】m≤1【解析】解:由x−3>0得:x>3,由x−2m<1得:x<1+2m,∵不等式组无解,∴1+2m≤3,解得m≤1,故答案为:m≤1.22.【答案】55°【解析】解:过E作EH⊥BC于H,作EG⊥AC于G,EM⊥BA于M,连接AE,∵BE平分∠ABC,∴EM =EH ,∵AC =DC ,CE ⊥AD ,∴CE 平分∠ACD ,CE 平分AD ,∴EG =EH ,CE 是AD 的垂直平分线,∴EM =EG ,AE =DE ,又∵EG ⊥AC ,EM ⊥BA ,∴AE 平分∠CAM ,∴∠CAE =12∠CAM ,∵∠BAC =70°,∴∠CAE =12∠CAM =12(180°−∠BAC)=55°,∵AC =DC ,AE =DE ,∴∠CAD =∠CDA ,∠EAD =∠EDA ,∴∠CAD +∠EAD =∠CDA +∠EDA ,即∠EAC =∠CDE ,∴∠CDE =55°,故答案为:55°.23.【答案】2 2+ 26【解析】解:∵A(−1,1),B(−3,3),∴AB = [−3−(−1)]2+(3−1)2=2 2,设直线AB 的解析式为y =kx +b ,把A(−1,1),B(−3,3)代入,{−k +b =1−3k +b =1,解得:{k =−1b =0,∴直线AB 的解析式为y =−x ,则{y =−x y =x +b ,解得:{x =−b 2y =b2,∵点A 的对应点为A 1,设A 1(m,n),则有m−12=−b 2,n +12=b 2,∴m =−b +1,n =b−1,∴A 1(−b +1,b−1),由平移规律知,A 2(−b +2,b +4),设点P(x,y),则x =−b−2+12=−b +12,y =b +4+12=b +52,∴P(−b +12,b +52),∴PA = (−b +12+1)2+(b +52−1)2,PB = (−b +12+3)2+(b +52−3)2,∴△ABP 的周长为AB +PA +PB =2 2+ (−b +12+1)2+(b +52−1)2+ (−b +12+3)2+(b +52−3)2≥2 2+2 (−b +12)2+(b +52−1)2⋅ (−b +12+3)2+(b +52−3)2,而 (−b +12+1)2+(b +52−1)2= (−b +12+3)2+(b +52−3)2,解得:b =2,∴当b =2时,△ABP 的周长最小值为2 2+2 264× 264=2 2+ 26.故答案为:2 2+ 26.24.【答案】解:(1)设每件B 型熊猫挂件的售价是x 元,则每件A 型熊猫挂件的售价是(x +15)元,根据题意得:1200x +15=900x ,解得:x =45,经检验,x =45是所列方程的解,且符合题意,∴x +15=45+15=60.答:每件A 型熊猫挂件的售价是60元,每件B 型熊猫挂件的售价是45元;(2)设购买y 件A 型熊猫挂件,则购买(40−y)件B 型熊猫挂件,根据题意得:60y +45(40−y)≤2000,解得:y ≤403,又∵y 为正整数,∴y 的最大值为13.答:最多购买A 型熊猫挂件13件.25.【答案】解:(1)y =−2x +3与x 轴,y 轴分别交于A ,B 两点,则点A 、B 的坐标分别为:(32,0)、(0,3),∵OA :OC =1:3,则CO =−92,即点C(0,−92),设直线l 2的表达式为:y =kx−92,将点A 的坐标代入上式得:0=32k−92,则k =3,则直线l 2的表达式为:y =3x−92;(2)设点D(x,0)、点E(m,3m−4.5),当AB 为对角线时,由中点坐标公式得:3=3m−4.5,则m =2.5,即点E(2.5,3);当AD 或AE 为对角线时,同理可得:0=3m−4.5+3或3m−4.5=3,解得:m =2.5或0.5,即点E(2.5,3)或(0.5,0);综上,E(2.5,3)或(0.5,0);(3)设点P(n,3n−4.5)、点M(m,3m−4.5),设直线PF 交x 轴于点T(−1,0),过点T 作TM ⊥PF 交AC 于点M ,则△PMT 为等腰直角三角形,则TP =TM ,过点T 作GN//y 轴,交过点P 和x 轴的平行线于点G ,交过点M 和x 轴的平行线于点N ,∵∠GTP +∠MTN =90°,∠MTN +∠TMN =90°,∴∠GTP=∠TMN,∴△GTP≌△TMN(AAS),则GP=TN且GT=MN,则n+1=4.5−3m且m+1=3n−4.5,解得:n=2,则点P(2,1.5),将点P的坐标代入y=kx+k得:1.5=2k+k,解得:k=0.5.26.【答案】解:(1)如图,过D作DH⊥BC于H,∵△ABC是等边三角形,∴∠C=∠ABC=∠BAC=60°,AB=BC=AC,∴∠HDC=30°,∴CH=1CD=1,2∴DH=CD2−CH2=3,∵翻折,∴BE=BC,∠EBD=∠CBD,∵BE⊥BC,∴∠EBD=∠CBD=45°,∴∠BDH=45°=∠DBC,∴BH=DH=3,∴BE=BC=BD+CD=3+1;(2)如图,延长ED交BC于M,在AC取点F,使AF=EF,∵DE⊥BC,∴∠CDM=30°,∵翻折,∴∠BDC=∠BDE,∠EBD=∠CBD,∵∠BDC−∠CDM+∠BDE=180°,∴∠BDC=∠BDE=105°,∴∠EBD=∠CBD=180°−∠BDC−∠C=15°,∴∠CAE=30°=1∠ABC=∠ABE,2∵AB=BC,∴BE⊥AC,即∠ANE=90°,∵AB=BC=BE,∠ABE=30°,∴∠BAE=∠AEB=1(180°−∠ABE)=75°,2∴∠BAC=60°,∴∠NAE=∠BAE−∠BAC=15°,∵AF=EF,∴∠FEA=∠FAE=15°,∴∠EFN=30°,设NE=x,∴AF=EF=2x,∴NF=3x,∴AE=AN2+NE2=(2x+3x)2+x2=(2+6)x,∵∠NDE=∠CDM=30°,∴DE=CD=2x,∴AE CD =2+62;(3)当F在A的右侧时,如图,过D作DG⊥l于G,过B作BH⊥l于H,BN⊥AD于N,BM⊥DE于M,连接BF,∵翻折,∴∠BDC=∠BDE,BC=BE=AB,∠C=∠BED=60°,CD=DE,又∵∠CDM=∠EDN,∴∠BDM=∠BDN,∴BM=BN,∵l//BC,∴∠HAB=∠ABC=60°=∠BAC,∠CAF=∠C=60°,又∵BH⊥l,BN⊥AD,∴BH=BN,∴BH=BM,∴BF平分∠AFE,∴∠AFB=∠EFB,∵∠CAF=60°,∠BAC=60°,∠BED=60°,∴∠BAF=∠BAC+∠CAF=120°,∠BEF=180°−∠BED=120°,∴∠BAF=∠BEF,又∵BF=BF,∴△ABF≌△EBF(AAS),∴AF=EF=1,设CD=x,则DE=x,AD=6−x,∵DG⊥AG,∠CAF=60°,∴∠ADG=30°,∴AG =12AD =3−12x ,∴FG =AG−AF =2−12x ,在Rt △ADG 中,DG 2=AD 2−AG 2=(6−x )2−(3−12x )2,在Rt △FD 中,DG 2=FD 2−FG 2=(x +1)2−(2−12x )2,∴(6−x )2−(3−12x )2=(x +1)2−(2−12x )2,解得x =3013,∴CD =3013,当F 在A 的左侧时,如图,过D 作DG ⊥l 于G ,过B 作BH ⊥l 于H ,BN ⊥AD 于N ,BM ⊥DE 于M ,连接BF ,同理可证BF 平分∠HFM ,∴∠HFB =∠MFB ,又∵∠EFH =∠AFM ,∴∠BFE =∠BFA ,又∵∠BEF =∠BAF =60°,BF =BF ,∴△ABF ≌△EBF(AAS),∴AF =EF =1,设CD =x ,则DE =x ,AD =6−x ,∵DG ⊥AG ,∠CAF =60°,∴∠ADG =30°,∴AG =12AD =3−12x ,∴FG =AG +AF =4−12x ,在Rt △ADG 中,DG 2=AD 2−AG 2=(6−x )2−(3−12x )2,在Rt △FDG 中,DG 2=FD 2−FG 2=(x−1)2−(4−12x )2,∴(6−x )2−(3−12x )2=(x−1)2−(4−12x )2,解得x =4211,∴CD =4211;综上,CD 的长为3013或4211.。

2024年四川省成都市青羊区中考数学二诊试卷及答案解析

2024年四川省成都市青羊区中考数学二诊试卷及答案解析

2024年四川省成都市青羊区中考数学二诊试卷一、选择题(本大题共8个小题,每小题4分,共32分)1.(4分)﹣2024的相反数是()A.2024B.C.﹣2024D.2.(4分)下列运算正确的是()A.3x2+2x2=6x4B.(﹣2x2)3=﹣6x6C.(x+2)2=x2﹣4x+4D.﹣6x2y3÷2x2y2=﹣3y3.(4分)光线在不同介质中的传播速度是不同的,因此当光线从空气射向水中时,要发生折射,由于折射率相同,所以在水中是平行的光线,在空气中也是平行的,如图,水面和杯底互相平行,∠1+∠2=130°,∠3=100°,则∠1的度数为()A.55°B.50°C.45°D.40°4.(4分)如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.5.(4分)关于反比例函数,下列说法正确的是()A.图象分布在第一、二象限B.在各自的象限内,y随x的增大而增大C.函数图象关于y轴对称D.函数图象与直线y=2x有两个交点6.(4分)某校为了解学生在校一周体育锻炼时间,随机调查了40名学生,调查结果列表如下:锻炼时间/h5678人数913126则这40名学生在校一周体育锻炼时间的中位数为()A.5h B.6h C.7h D.8h7.(4分)我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗,设清酒有x斗,那么可列方程为()A.3x+10(5﹣x)=30B.C.D.10x+3(5﹣x)=308.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴相交于A(﹣1,0),B(2,0)两点,则以下结论:①ac<0;②对称轴为x=1;③2a+c=0;④a+b+c>0.其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)因式分解3x(x﹣2)+2(x﹣2)=.10.(4分)2023年12月22日成都市政府新闻办召开解读《成都大运会绿色低碳办赛报告》新闻通气会,记者在会上获悉,成都大运会通过新能源汽车使用、无纸化办公、办公租赁、减少塑料制品等措施产生碳减排3.2万吨,3.2万用科学记数法表示为.11.(4分)若点A(m,﹣3)与点B(﹣4,n)关于原点对称,则m+2n=.12.(4分)如图是中国共产主义青年团团旗上的图案,该图案绕中心至少旋转度后能与原图案重合.13.(4分)如图,在▱ABCD中,按以下步骤作图:①以点B为圆心,以适当长为半径作弧分别交AB,BC于M,N两点;②以点M和点N为圆心,大于长为半径作弧,两弧交于点P;③作射线BP 交AD于点E,过E作EF⊥BE交BC延长线于F.若AB=4,BC=5,则CF=.三、解答题(本大题共5个小题。

2021-2022学年四川省成都市简阳市中考二模数学试题含解析

2021-2022学年四川省成都市简阳市中考二模数学试题含解析

2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C3.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°4.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为()A.2 B.23C.3D.435.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为10003π cm2,则扇形圆心角的度数为()A .120°B .140°C .150°D .160°6.某车间20名工人日加工零件数如表所示: 日加工零件数 4 5 6 7 8 人数 2 6 5 4 3 这些工人日加工零件数的众数、中位数、平均数分别是( )A .5、6、5B .5、5、6C .6、5、6D .5、6、67.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )A .24d h πB .22d h πC .2d h πD .24d h π8.下列二次根式中,为最简二次根式的是( )A .45B .22a b +C .12D . 3.69.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )A .πB .32πC .2πD .3π 10.如图,在边长为的等边三角形ABC 中,过点C 垂直于BC 的直线交∠ABC 的平分线于点P ,则点P 到边AB 所在直线的距离为( )A .B .C .D .1二、填空题(共7小题,每小题3分,满分21分)11.点(-1,a )、(-2,b )是抛物线2y x 2x 3=+-上的两个点,那么a 和b 的大小关系是a_______b (填“>”或“<”或“=”).12.若关于x 的一元二次方程x 2﹣2x+m=0有实数根,则m 的取值范围是 .13.据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为____________. 14.在某一时刻,测得一根长为1.5m 的标杆的影长为3m ,同时测得一根旗杆的影长为26m ,那么这根旗杆的高度为_____m . 15.用换元法解方程221231x x x x +-=+时,如果设21x y x +=,那么原方程化成以y 为“元”的方程是________. 16.如图,⊙O 的半径为1cm ,正六边形ABCDEF 内接于⊙O ,则图中阴影部分面积为_____cm 1.(结果保留π)17.已知边长为2的正六边形ABCDEF 在平面直角坐标系中的位置如图所示,点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2018次翻转之后,点B 的坐标是______.三、解答题(共7小题,满分69分)18.(10分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(I)本次随机抽样调查的学生人数为,图①中的m的值为;(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.19.(5分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.20.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC 平移,使点A变换为点D,点E、F分别是B、C的对应点.请画出平移后的△DEF .连接AD 、CF ,则这两条线段之间的关系是________.21.(10分)先化简,再求值:(231x x --﹣2)÷11x -,其中x 满足12x 2﹣x ﹣4=0 22.(10分)先化简,再求值:2(m ﹣1)2+3(2m+1),其中m 是方程2x 2+2x ﹣1=0的根23.(12分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?24.(14分)计算:(20113232-⎛⎫+-- ⎪⎝⎭﹣3tan30°.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义2、A【解析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.3、B【解析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.考点:旋转的性质.4、B【解析】分析:连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求解即可.详解:如图所示,连接OC、OB∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OC=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OBsin ∠故选B. 点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM 是解决问题的关键.5、C【解析】根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm ,AB=20cm ,∴OA=OB+AB=30cm ,设扇形圆心角的度数为α, ∵纸面面积为10003π cm 2, ∴22301010003603603a a πππ⋅⨯⋅⨯-=, ∴α=150°,故选:C .【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=2360n R π . 6、D【解析】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6; 平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6; 故答案选D .7、A【解析】圆柱体的底面积为:π×(2d )2, ∴矿石的体积为:π×(2d )2h = 2π4d h .故答案为2π4d h . 8、B【解析】 最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).【详解】A.不是最简二次根式;B. ,最简二次根式;C. =2,不是最简二次根式;D.,不是最简二次根式. 故选:B【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.9、D【解析】根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【详解】∵△ABC 为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积= 21203360π⨯=3π. 故选D .【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键. 10、D【解析】试题分析:∵△ABC 为等边三角形,BP 平分∠ABC ,∴∠PBC=∠ABC=30°,∵PC ⊥BC ,∴∠PCB=90°,在Rt △PCB 中,PC=BC•tan ∠PBC==1,∴点P 到边AB 所在直线的距离为1,故选D .考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.二、填空题(共7小题,每小题3分,满分21分)11、<【解析】把点(-1,a )、(-2,b )分别代入抛物线223y x x =+-,则有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b ,故答案为<.12、m≤1.【解析】试题分析:由题意知,△=4﹣4m≥0,∴m≤1.故答案为m≤1.考点:根的判别式.13、3.86×108 【解析】根据科学记数法的表示(a×10n ,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数)形式可得:3.86亿=386000000=3.86×108.故答案是:3.86×108.14、13【解析】根据同时同地物高与影长成比列式计算即可得解.【详解】解:设旗杆高度为x 米,由题意得,1.5x =326,解得x=13.故答案为13.【点睛】本题考查投影,解题的关键是应用相似三角形.15、y-23y = 【解析】 分析:根据换元法,可得答案.详解:21x x +﹣221x x +=1时,如果设21x x +=y ,那么原方程化成以y 为“元”的方程是y ﹣2y =1. 故答案为y ﹣2y=1. 点睛:本题考查了换元法解分式方程,把21x x+换元为y 是解题的关键. 16、6π 【解析】试题分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.试题解析:如图所示:连接BO ,CO ,∵正六边形ABCDEF 内接于⊙O ,∴AB=BC=CO=1,∠ABC=110°,△OBC 是等边三角形,∴CO ∥AB ,在△COW 和△ABW 中{BWA OWCBAW OCW AB CO∠=∠∠=∠=,∴△COW ≌△ABW (AAS ),∴图中阴影部分面积为:S扇形OBC=26013606ππ⨯=.考点:正多边形和圆.17、(4033【解析】根据正六边形的特点,每6次翻转为一个循环组循环,用2018除以6,根据商和余数的情况确定出点B的位置,经过第2017次翻转之后,点B的位置不变,仍在x轴上,由A(﹣2,0),可得AB=2,即可求得点B离原点的距离为4032,所以经过2017次翻转之后,点B的坐标是(4032,0),经过2018次翻转之后,点B在B′位置(如图所示),则△BB′C为等边三角形,可求得BN=NC=1,,由此即可求得经过2018次翻转之后点B的坐标.然后求出翻转前进的距离,过点C作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后写出点C的坐标即可.【详解】设2018次翻转之后,在B′点位置,∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组,∵2018÷6=336余2,∴经过2016次翻转为第336个循环,点B在初始状态时的位置,而第2017次翻转之后,点B的位置不变,仍在x轴上,∵A(﹣2,0),∴AB=2,∴点B离原点的距离=2×2016=4032,∴经过2017次翻转之后,点B的坐标是(4032,0),经过2018次翻转之后,点B在B′位置,则△BB′C为等边三角形,此时BN=NC=1,故经过2018次翻转之后,点B的坐标是:(4033.故答案为(4033.【点睛】本题考查的是正多边形和圆,涉及到坐标与图形变化-旋转,正六边形的性质,确定出最后点B 所在的位置是解题的关键.三、解答题(共7小题,满分69分)18、(I )150、14;(II )众数为3天、中位数为4天,平均数为3.5天;(III )700人【解析】(I )根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m 的值;(II )根据众数、中位数和平均数的定义计算可得;(III )用总人数乘以样本中5天、6天的百分比之和可得.【详解】解:(I )本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14, 故答案为150、14;(II )众数为3天、中位数为第75、76个数据的平均数,即平均数为4+42=4天, 平均数为118+221+363+334+275+156150⨯⨯⨯⨯⨯⨯=3.5天; (III )估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.19、解:(1)如图,△A 1B 1C 1即为所求,C 1(2,-2).(2)如图,△A 2BC 2即为所求,C 2(1,0),△A 2BC 2的面积:10【解析】分析:(1)根据网格结构,找出点A 、B 、C 向下平移4个单位的对应点1A 、1B 、1C 的位置,然后顺次连接即可,再根据平面直角坐标系写出点1C 的坐标;(2)延长BA 到2A 使A 2A =AB ,延长BC 到2C ,使C 2C =BC ,然后连接A 2C 2即可,再根据平面直角坐标系写出2C 点的坐标,利用△2A B 2C 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.本题解析:(1)如图,△A 1B 1C 1即为所求,C 1(2,-2)(2)如图,△2A B 2C 为所求,2C (1,0),△2A B 2C 的面积: 6×4−12×2×6−12×2×4−12×2×4=24−6−4−4=24−14=10, 20、见解析【解析】(1)如图:(2)连接AD 、CF ,则这两条线段之间的关系是AD =CF ,且AD ∥CF .21、1【解析】首先运用乘法分配律将所求的代数式去括号,然后再合并化简,最后整体代入求解.【详解】解:(231x x --﹣2)÷11x - ==x 2﹣3﹣2x+2=x 2﹣2x ﹣1,∵12x2﹣x﹣4=0,∴x2﹣2x=8,∴原式=8﹣1=1.【点睛】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.注意整体代入思想在代数求值计算中的应用.22、2m2+2m+5;1;【解析】先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可.【详解】解:原式=2(m2﹣2m+1)+1m+3,=2m2﹣4m+2+1m+3=2m2+2m+5,∵m是方程2x2+2x﹣1=0的根,∴2m2+2m﹣1=0,即2m2+2m=1,∴原式=2m2+2m+5=1.【点睛】此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.23、10,1.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.24、1.【解析】直接利用零指数幂的性质、绝对值的性质和负整数指数幂的性质及特殊角三角函数值分别化简得出答案.【详解】(201122-⎛⎫+- ⎪⎝⎭﹣3tan30°1﹣1﹣3×3=1.【点睛】 此题主要考查了实数运算及特殊角三角函数值,正确化简各数是解题关键.。

2024年四川省成都市中考真题数学试卷含答案解析

2024年四川省成都市中考真题数学试卷含答案解析

2024年四川省成都市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A .B .C .D .【答案】A【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A .3.下列计算正确的是()A .()2233x x =B .336x y xy+=C .()222x y x y +=+D .()()2224x x x +-=-【答案】D【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4.在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是()A .()1,4--B .()1,4-C .()1,4D .()1,4-【答案】B【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5.为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A .53B .55C .58D .646.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A .AB AD =B .AC BD ⊥C .AC BD =D .ACB ACD∠=∠【答案】C【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为()A .142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B .142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩C .142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D .142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩8.如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是()A .ABE CBE ∠=∠B .5BC =C .DE DF =D .53BE EF =【答案】D【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF 为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AEEF DF ED ==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .二、填空题9.若m ,n 为实数,且()240m +=,则()2m n +的值为.10.分式方程2x x=-的解是.【答案】x=3【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11.如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为.12.盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为.13.如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为.【答案】5【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,三、解答题14.(1)计算:()0162sin60π20242+︒--+-.(2)解不等式组:2311123x x x+≥-⎧⎪⎨--<⎪⎩①②15.2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”16.中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17.如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18.如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =-(3)1-【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【详解】(1)解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;(2)解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004t s+=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;(3)解:如图,设点(),0D x ,则(),0E x -,0x <,四、填空题19.如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为.【答案】100︒/100度【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20.若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.21.在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为;若24n =,则k 的值为.【答案】9144【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.22.如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =.∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =∴112CF DF CD ===,EAC ∠23.在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y 2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是.五、解答题24.推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克,B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【详解】(1)解:设A 种水果购进x 千克,B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克(2)设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25.如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.∴(12ACD D S CE x x =⋅- ∵ACD 的面积与ABD △∴222461n n n -++=-720⎛⎫则21,23AM n DM an an a =+=-++,∵AD DE =,∴1EM n =+,∵将ADB 沿DE 方向平移得到A EB '' ,()()1,0,3,0,A B -∴()()22,23,4,23,A n an an aB n an an a -+++-++''由题意知抛物线L 平移得到抛物线L ',设抛物线L '解析式为()20y ax bx c a =++>,∵点A ',B '都落在抛物线L '上∴()()2222232344an an a an bn c an an a a n b n c ⎧-++=++⎪⎨-++=++++⎪⎩,解得2463b an a c an a =--⎧⎨=+⎩,则抛物线L '解析式为()22463y ax an a x an a=+--++∵()22232463ax ax a ax an a x an a--=+--++整理得()133n x n +=+,解得3x =,∴抛物线L '与L 交于定点()3,0.【点睛】本题主要考查二次函数的性质、两点之间的距离、一次函数的性质、求正切值、二次函数的平移、等腰三角形的性质和抛物线过定点,解题的关键是熟悉二次函数的性质和平移过程中数形结合思想的应用.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.(2)连接CE,延长BM交∠=∠,∴ABD ACE∵中线BM(3)如图,当AD与故1·2CDES CD DE==如图,当AD 在CA 的延长线上时,此时故(11·22CDE S CD DE ==⨯ 如图,当DE EC ⊥时,此时过点A 作AQ EC ⊥于点Q ∵5AE AC ==,1EQ QC EC ==,如图,当DC EC ⊥时,此时过点A 作AQ EC ⊥于点∴12EQ QC EC x ===,1EN EQ ==【点睛】本题考查了旋转的性质,用,三角形全等的判定和性质,三角函数的应用,勾股定理,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键.。

2024年四川省成都市中考数学真题卷(含答案与解析)_1953

2024年四川省成都市中考数学真题卷(含答案与解析)_1953

2024年四川省成都市初中学业水平考试数 学本试卷满分150分,考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( ) A. 5B. ﹣5C. 15-D.152. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.3. 下列计算正确的是( ) A. ()2233x x = B. 336x y xy += C. ()222x y x y +=+D. ()()2224x x x +-=-4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( ) A. ()1,4--B. ()1,4-C. ()1,4D. ()1,4-5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 646. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D. ACB ACD ∠=∠7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D. 142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE ∠=∠B. 5BC = CDE DF=D.53BE EF = 第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m ++=,则()2m n +的值为______. 10. 分式方程132x x=-解是____. 11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______..的12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为______. 13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①②15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表. 游园线路人数 国风古韵观赏线 44世界公园打卡线 x 亲子互动慢游线48的园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______: (2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0ky k x=<图象上.(1)求a ,b ,m 值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.21. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.的23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______. 二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg . (1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26. 数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BDCE的值.的【深入探究】(2)如图2,在纸片ADE绕点A旋转过程中,当点D恰好落在ABC的中线BM的延长线上时,延长ED交AC于点F,求CF的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.参考答案一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是()A. 5B. ﹣5C.15D.15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D. 【答案】A【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可. 【详解】解:该几何体的主视图为,故选:A .3. 下列计算正确的是( ) A. ()2233x x = B. 336x y xy += C. ()222x y x y +=+ D. ()()2224x x x +-=-【答案】D 【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可. 【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意; B .3x 和3y 不是同类项,不能合并,故该选项不符合题意; C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意; D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( ) A. ()1,4-- B. ()1,4-C. ()1,4D. ()1,4-【答案】B 【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-; 故选:B .5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 64【答案】B 【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可. 【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55, 把这6个数从小到大排序:50,51,55,55,61,64, ∴这组数据的中位数是:5555552+=, 故选:B .6. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A AB AD =B. AC BD ⊥C. AC BD =D. ACB ACD ∠=∠【答案】C 【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠, ∴选项A 中AB AD =不一定正确,故不符合题意; 选项B 中AC BD ⊥不一定正确,故不符合题意; 选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意, 故选:C .7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( ).A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D. 142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩【答案】B 【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可. 【详解】解:设人数为x ,琎价为y , 根据每人出12钱,会多出4钱可得出1y x 42=-, 每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,故选:B .8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE ∠=∠B. 5BC =C.DE DF =D.53BE EF = 【答案】D 【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF 为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定. 【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC ∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△, ∴BE AB AE EF DF ED==, ∴332BE EF DF ==, ∴32BE EF =,2DF =,故D 错误; ∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m ++=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m +=,∴40m +=,50n -=,解得4m =-,5n =,∴()()22451m n +=-+=,故答案为:1.10. 分式方程132x x=-的解是____. 【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得 AB 的长为π120π64π180180n r ⨯==, 故答案为:4π12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______. 【答案】35【解析】 【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可. 【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38, ∴38x x y =+,则35x y =, 故答案为:35. 13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO ' 中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①② 【答案】(1)5;(2)29x -≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可;(2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π+︒---4212=+-+-5=+-5=;(2)解不等式①,得2x ≥-,解不等式②,得9x <,∴该不等式组的解集为29x -≤<.15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表. 游园线路人数 国风古韵观赏线44 世界公园打卡线x 亲子互动慢游线48 园艺小清新线 y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息 是解答的关键.(1)根据选择“亲子互动慢游线”人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.【小问1详解】解:调查总人数为4830160÷%=(人), 的选择“世界公园打卡线”的人数为9016040360⨯=(人), 故答案为:160,40;【小问2详解】 解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒; 【小问3详解】 解:选择“园艺小清新线”的人数为16044404828---=(人),∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人). 16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺. ∴tan ∠=AB ACB BC ,即8 2.393.35BC ≈≈, ∵26.6ADB ∠=︒, ∴tan AB ADB BD ∠=,即8160.50BD ≈=, ∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈. 答:春分和秋分时日影长度9.2尺.17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径. 【答案】(1)见详解;(2.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠即CB AC CF BC==CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C ∴∠=︒=∠又CEB FDB ∠∠=EBC DBF ∴ ∽EC CB DF FB∴= BC DF BF CE ⋅=⋅∴【小问2详解】由(1)可知,EBC DBF ∽EBC DBF ∴∠=∠EBC FBE DBF FBE ∴∠-∠=∠-∠CBF EBA ∴∠=∠A CBF ∠=∠A EBA ∴∠=∠AE BE ∴=A CBF ∠=∠9090A CBF ∴︒-∠=︒-∠ABC CFB ∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CB AC CF BC∴==不妨设CF x =,那么CB =AF ==x ∴=CF ∴=5CB ===不妨设EF y =,那么AE AF EF y BE =-==在Rt CEB △中,CE EF CF y =+=,5CB =,BE y =222(5)y y ∴++=-y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB ∠∠=tan tan CEB FDB ∴∠=∠CB BF CE DF ∴==DF ∴=BD ∴===∴O 的直径是故答案为:CF =,O 直径是.【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键. 18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =-(3)1-【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩, ∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004t s +=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩, ∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;【小问3详解】解:如图,设点(),0D x ,则(),0E x -,0x <,若ABD EBA △∽△,则AB BD BE AB =,即2AB BE BD =⋅, ∴()()()()22264066x x -+-=+-,即24x =,解得2x =±,∵0x <,∴2x =-,则()2,0D -,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨-+=⎩,解得12p q =⎧⎨=⎩, ∴直线AC 的表达式为2y x =+, 联立方程组2y x k y x =+⎧⎪⎨=⎪⎩,得220x x k +-=, ∵有且只有一点C ,∴方程220x x k +-=有且只有一个实数根,∴2402k +==∆,解得1k =-;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1-.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n -+=,5b m n a+=-=,从而得到252n n =-,再将原式利用完全平方公式展开,利用252n n =-替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x -+=的两个实数根,∴2520n n -+=,5b m n a+=-=, 则252n n =-∴()22m n +- 244m n n =+-+5244m n n =+--+2m n =++52=+7=故答案为:721. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】①. 9 ②. 144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==; 故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==; 依次类推,当n 为偶数时,()()2135314n k n n =-+-++++= , 故当24n =时,2242321195311444k =++++++== , 故答案为:9,144.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【解析】 【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EFCD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =, ∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠, ∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽, ∴CE CB CD CE=,2CBE CED CAE ∠=∠=∠, ∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==-=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽, ∴AC BC BF EF= ∴221m x x m +=+,则()()2212m x x =++, ∴()()()23212x x x +=++,即240x x --=,解得x =(负值已舍去),. 【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】①. > ②. 112m -<< 【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =-+-=--+得抛物线对称轴为直线2x =,开口向下,∵101x <<,24x >, ∴1222x x -<-,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+, 的∴123x x x <<,∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近, ∴132222x x x ->->-,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>, 解得112m -<<, 故答案为:>;112m -<<. 二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克, B 种水果购进y 千克,根据题意列出二元一次方程组求解即可. (2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克, B 种水果购进y 千克, 根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩, ∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB =(2)10tan 3ABD ∠= (3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a --=,整理得2230x x --=,即可知()()1,0,3,0,A B -则有4AB =;(2)由题意得抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --是。

2022-2023学年成都市青羊区数学四上期末质量检测试题(含解析)

2022-2023学年成都市青羊区数学四上期末质量检测试题(含解析)

2022-2023学年四上数学期末模拟测试卷一、快乐填一填。

1.由54÷6=9,写出下面算式的商。

108÷6=(________)54÷2=(________)108÷12=(________)2.47÷46,如果商是两位数,里最小填(_______);如果商是一位数,里最小填(______)。

3.在括号里填上“>”“<”或“=”。

500500(________)505000 1010000(________)70万49×7(________)350 1平方千米(________)99990平方米36÷3(________)3600÷300 7公顷(________)9000平方米4.图中∠1=40°∠2=(________)°∠3=(________)°5.钟面上9时整,时针和分针组成的角是(________)°,如果时间经过20分钟,那么分针在钟面上转过的角是(________)°。

6.在同一平面内,经过一点可以画(______)条射线,经过两个点可以画(______)条直线.7.850÷21,可以把除数看作(________)去试商比较简便,850÷21的商是(________)位数。

8.(1)84+78×25,如果先算加法,应改为:__________________________________(2)180+497-32×13,如果先算减法,再算乘法,最后算加法,应改为:__________________________________(3)42×600-400÷25,如果先算减法,再算除法,最后算乘法,应改为:__________________________________9.一个八位数,它的最高位是(________)位;一个数的最高位是亿位,它是(________)位数。

四川省成都市青羊区中考数学二诊试卷含答案解析教学内容

四川省成都市青羊区中考数学二诊试卷含答案解析教学内容

2016年四川省成都市青羊区中考数学二诊试卷一、选择题(共10小题,每小题3分,满分30分)1.下列各数中,最小的数是()A.B.0 C.﹣1 D.﹣32.计算2x2?(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x63.如图,装修工人向墙上钉木条.若∠2=110°,要使木条b与a平行,则∠1的度数等于()A.55° B.70° C.90° D.110°4.不等式5+2x<1的解集在数轴上表示正确的是()A.B.C.D.5.自成都地铁4号线开通以来,成都地铁1、2、4号线线网客流增加明显,再遇到春季糖酒会、桃花节、通勤客流等三股主要客流汇集,2016年3月25日,成都地铁再创单日线网客流历史新高,达到1738200乘次,用科学记数法表示1738200为(保留三个有效数字)()A.1.74×106B.1.73×106C.17.4×105D.17.3×1056.下列如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是()A.B.C.D.7.一组数据3、5、8、3、4的众数与中位数分别是()A.3,8 B.3,3 C.3,4 D.4,38.同学们玩过滚铁环吗?当铁环的半径是30cm,手柄长40cm.当手柄的一端勾在环上,另一端到铁环的圆心的距离为50cm时,铁环所在的圆与手柄所在的直线的位置关系为()A.相离B.相交C.相切D.不能确定9.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000 B.3000(1+x)2=5000C.3000(1+x%)2=5000 D.3000(1+x)+3000(1+x)2=500010.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)二、填空题(共4小题,每小题4分,满分16分)11.点M(2,﹣3)关于y轴对称的对称点N的坐标是.12.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是°.13.一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是.14.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A、B两点,则四边形MAOB的面积为.三、解答题(共14小题,满分104分)15.(1)计算:|﹣3|+?tan30°﹣﹣0+(﹣)﹣2(2)解不等式组,并把其解集在数轴上表示出来.16.化简,求值:,其中m=.17.如图所示,秋千链子的长度为3m,静止时的秋千踏板(大小忽略不计)距地面0.5m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为53°,则秋千踏板与地面的最大距离约为多少?(参考数据:sin53°≈0.8,cos53°≈0.6)18.某校七年级有200名学生参加了全国中小学生安全知识竞赛初赛,为了了解本校初赛的成绩情况,从中抽取了50名学校,将他们的初赛成绩(得分为整数,满分100分)分成五组:第一组49.5﹣59.5;第二组59.5﹣69.5;第三组69.5﹣79.5;第四组79.5﹣89.5;第五组89.5﹣100.5.统计后得到如图所示的频数分布直方图(部分).观察图形的信息,回答下列问题:(1)第四组的频数为(直接写答案);(2)若将得分转化为等级,规定:得分低于59.5分评为“D”,59.5﹣69.5分评分“C”,69.5﹣89.5分评为“B”,89.5﹣100.5分评为“A”,那么这200名参加初赛的学生中,参赛成绩评为“D”的学生约有个(直接填空答案).(3)若将抽取出来的50名学生中成绩落在第四、第五组的学生组成一个培训小组,再从这个培训小组中随机挑选2名学生参加决赛,用列表法或画树状图法求:挑选的2名学生的初赛成绩恰好都在90分以上的概率.19.如图,点P的坐标为(2,),过点P作x轴的平行线交y轴于点A,作PB⊥AP交反比例函数y=(x>0)于点B,连结AB.已知tan∠BAP=.(1)求k的值;(2)求直线AB的解析式.20.如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且∠DBA=∠BCD.(1)证明:BD是⊙O的切线.(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为16,cos∠BFA=,那么,你能求出△ACF的面积吗?若能,请你求出其面积;若不能,请说明理由.21.已知一元二次方程x2﹣4x﹣3=0的两根为m、n,则m2﹣3mn+n2=.22.如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M 在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行分钟可使渔船到达离灯塔距离最近的位置.23.已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A 在点B的左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“关联”抛物线,直线AC′为抛物线p 的“关联”直线.若一条抛物线的“关联”抛物线和“关联”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.24.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.25.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④AD2=OD?DH中,正确的是.26.今年清明假期,小王组织朋友取九寨沟三日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同.针对组团三日游的游客,甲旅行社表示,每人都按8.5折收费;乙旅行设表示,若人数不超过20人,每人都按9折收费;超过20人,则超出部分每人按7.5折收费.假设组团参加甲、乙两家旅行社三日游的人数均为x人.(1)请分别写出甲、乙两家旅行设收取组团三日游的总费用y(元)与x(人)之间函数关系式.(2)若小王组团参加三日游的人数共有25人,请你通过计算,在甲、乙两家旅行社中,帮助小王选择收取总费用较少的一家.27.如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2所示).将纸片△AC1D1沿直线D2B(A→B方向)平移(点A,D1,D2,B始终在同一直线上),当D1与点B重合时,停止平移.在平移的过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.(1)当△AC1D1平移到如图3所示位置时,猜想D1E与D2F的数量关系,并说明理由.(2)设平移距离D2D1为x,△AC1D1和△BC2D2重复部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的x,使得重复部分面积等于原△ABC 纸片面积的?若存在,请求出x的值;若不存在,请说明理由.28.已知抛物线y=(a>0)与x轴交于A、B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点D(2,﹣2),求实数a的值.(2)在(1)的条件下,在抛物线的对称轴上找一点E,使AE+CE最小,求出点E的坐标.(3)在第一象限内,抛物线上是否存在点M,使得以A、B、M为顶点的三角形与△ACB相似?若存在,求出a的值,若不存在,请说明理由.2016年四川省成都市青羊区中考数学二诊试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列各数中,最小的数是()A.B.0 C.﹣1 D.﹣3【考点】有理数大小比较.【分析】根据有理数大小比较的法则依次判断即可:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【解答】解:根据有理数大小比较的法则可直接判断出:﹣3<﹣1<0<,即D<C<B<A.故选D.2.计算2x2?(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x6【考点】同底数幂的乘法;单项式乘单项式.【分析】根据单项式乘单项式的法则和同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:2x2?(﹣3x3),=2×(﹣3)?(x2?x3),=﹣6x5.故选:A.3.如图,装修工人向墙上钉木条.若∠2=110°,要使木条b与a平行,则∠1的度数等于()A.55° B.70° C.90° D.110°【考点】平行线的性质.【分析】由已知木条b与a平行,所以得到∠3=∠2,又∠3+∠1=180°,从而求出∠1的度数.【解答】解:已知a∥b,∴∠3=∠2=110°,又∠3+∠1=180°,∴∠1=180°﹣∠3=180°﹣110°=70°.故选:B.4.不等式5+2x<1的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先解不等式得到x<﹣2,根据数轴表示数的方法得到解集在﹣2的左边.【解答】解:5+2x<1,移项得2x<﹣4,系数化为1得x<﹣2.故选C.5.自成都地铁4号线开通以来,成都地铁1、2、4号线线网客流增加明显,再遇到春季糖酒会、桃花节、通勤客流等三股主要客流汇集,2016年3月25日,成都地铁再创单日线网客流历史新高,达到1738200乘次,用科学记数法表示1738200为(保留三个有效数字)()A.1.74×106B.1.73×106C.17.4×105D.17.3×105【考点】科学记数法与有效数字.【分析】根据科学记数法的表示方法:a×10n,有效数字是从第一个不为零的数字起都是有效数字,可得答案.【解答】解:用科学记数法表示1738200为 1.74×106,故选:A.6.下列如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为1,1,2,故选C.7.一组数据3、5、8、3、4的众数与中位数分别是()A.3,8 B.3,3 C.3,4 D.4,3【考点】众数;中位数.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:把这组数据从小到大排列:3、3、4、5、8,3出现了2次,出现的次数最多,则众数是3.处于中间位置的那个数是4,由中位数的定义可知,这组数据的中位数是4;故选C.8.同学们玩过滚铁环吗?当铁环的半径是30cm,手柄长40cm.当手柄的一端勾在环上,另一端到铁环的圆心的距离为50cm时,铁环所在的圆与手柄所在的直线的位置关系为()A.相离B.相交C.相切D.不能确定【考点】直线与圆的位置关系.【分析】根据题意画出相应的图形,由三角形ABC的三边,利用勾股定理的逆定理得出∠ACB=90°,根据垂直定义得到AC与BC垂直,再利用切线的定义:过半径外端点且与半径垂直的直线为圆的切线,得到AC为圆B的切线,可得出此时铁环所在的圆与手柄所在的直线的位置关系为相切.【解答】解:根据题意画出图形,如图所示:由已知得:BC=30cm,AC=40cm,AB=50cm,∵BC2+AC2=302+402=900+1600=2500,AB2=502=2500,∴BC2+AC2=AB2,∴∠ACB=90°,即AC⊥BC,∴AC为圆B的切线,则此时铁环所在的圆与手柄所在的直线的位置关系为相切.故选C.9.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000 B.3000(1+x)2=5000C.3000(1+x%)2=5000 D.3000(1+x)+3000(1+x)2=5000【考点】由实际问题抽象出一元二次方程.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设教育经费的年平均增长率为x,根据“2012年投入3000万元,预计2014年投入5000万元”,可以分别用x表示2012以后两年的投入,然后根据已知条件可得出方程.【解答】解:设教育经费的年平均增长率为x,则2013的教育经费为:3000×(1+x)万元,2014的教育经费为:3000×(1+x)2万元,那么可得方程:3000×(1+x)2=5000.故选B.10.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2)B.(4,1)C.(3,1)D.(4,0)【考点】坐标与图形变化-旋转.【分析】利用网格结构找出点B绕点D顺时针旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.【解答】解:如图,点B绕点D顺时针旋转90°到达点B′,点B′的坐标为(4,0).故选:D.二、填空题(共4小题,每小题4分,满分16分)11.点M(2,﹣3)关于y轴对称的对称点N的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点M(2,﹣3)关于y轴对称的对称点N的坐标是(﹣2,﹣3),故答案为:(﹣2,﹣3).12.如图,人民币旧版壹角硬币内部的正多边形每个内角度数是140°.【考点】多边形内角与外角.【分析】根据多边形的内角和公式即可得出结果.【解答】解:∵九边形的内角和=(9﹣2)?180°=1260°,又∵九边形的每个内角都相等,∴每个内角的度数=1260°÷9=140°.故答案为:140.13.一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是.【考点】概率公式.【分析】先求出球的总个数,再用红球的个数÷球的总个数可得红球的概率.【解答】解:∵口袋中有3个白球,5个红球,∴共有8个球,∴摸到红球的概率是;故答案为:.14.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A、B两点,则四边形MAOB的面积为8.【考点】反比例函数系数k的几何意义.【分析】设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab=2,cd=2,进而得到S△AOC=|ab|=1,S△B OD=|cd|=1,S矩形M CDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△B OD+S矩形M C DO,即可解答.【解答】解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=2,cd=2,∴S△AOC=|ab|=1,S△B OD=|cd|=1,∵点M(﹣3,2),∴S矩形M CDO=3×2=6,∴四边形MAOB的面积=S△AOC+S△B OD+S矩形M C DO=1+1+6=8,故答案为:8.三、解答题(共14小题,满分104分)15.(1)计算:|﹣3|+?tan30°﹣﹣0+(﹣)﹣2(2)解不等式组,并把其解集在数轴上表示出来.【考点】实数的运算;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用立方根定义计算,第四项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分求出不等式组的解集,表示在数轴上即可.【解答】解:(1)原式=3+×﹣2﹣1+9=3+1﹣3+9=10;(2),由①得:x≤5,由②得:x>2,则不等式组的解集为2<x≤5.16.化简,求值:,其中m=.【考点】分式的化简求值.【分析】先根据分式的混合运算法则把分式化简,再把m=代入求解即可求得答案.【解答】解:原式=,=,=,=,=,=.∴当m=时,原式=.17.如图所示,秋千链子的长度为3m,静止时的秋千踏板(大小忽略不计)距地面0.5m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为53°,则秋千踏板与地面的最大距离约为多少?(参考数据:sin53°≈0.8,cos53°≈0.6)【考点】解直角三角形的应用.【分析】如图所示,在△ABC中,BC⊥AC,AB=3,∠CAB=53°,故有AC=3cos53°≈3×0.6=1.8,CD≈3+0.5﹣1.8=1.7,即BE=CD=1.7m.【解答】解:设秋千链子的上端固定于A处,秋千踏板摆动到最高位置时踏板位于B处.过点A,B的铅垂线分别为AD,BE,点D,E在地面上,过B 作BC⊥AD于点C.在Rt△ABC中,AB=3,∠CAB=53°,∵cos53°=,∴AC=3cos53°≈3×0.6=1.8(m),∴CD≈3+0.5﹣1.8=1.7(m),∴BE=CD≈1.7(m),答:秋千摆动时踏板与地面的最大距离约为 1.7m.18.某校七年级有200名学生参加了全国中小学生安全知识竞赛初赛,为了了解本校初赛的成绩情况,从中抽取了50名学校,将他们的初赛成绩(得分为整数,满分100分)分成五组:第一组49.5﹣59.5;第二组59.5﹣69.5;第三组69.5﹣79.5;第四组79.5﹣89.5;第五组89.5﹣100.5.统计后得到如图所示的频数分布直方图(部分).观察图形的信息,回答下列问题:(1)第四组的频数为2(直接写答案);(2)若将得分转化为等级,规定:得分低于59.5分评为“D”,59.5﹣69.5分评分“C”,69.5﹣89.5分评为“B”,89.5﹣100.5分评为“A”,那么这200名参加初赛的学生中,参赛成绩评为“D”的学生约有64个(直接填空答案).(3)若将抽取出来的50名学生中成绩落在第四、第五组的学生组成一个培训小组,再从这个培训小组中随机挑选2名学生参加决赛,用列表法或画树状图法求:挑选的2名学生的初赛成绩恰好都在90分以上的概率.【考点】列表法与树状图法;用样本估计总体;频数(率)分布直方图.【分析】(1)由抽取了50名学生,结合直方图,即可求得第四组的频数;(2)利用样本即可估算总体,即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与挑选的2名学生的初赛成绩恰好都在90分以上的情况,再利用概率公式即可求得答案.【解答】解:(1)第四组的频数为:50﹣16﹣20﹣10﹣2=2,故答案为:2;(2)参赛成绩评为“D”的学生约有:200×=64(个);故答案为:64;(3)画树状图得:∵共有12种等可能的结果,挑选的2名学生的初赛成绩恰好都在90分以上的有2种情况,∴挑选的2名学生的初赛成绩恰好都在90分以上的概率为:=.19.如图,点P的坐标为(2,),过点P作x轴的平行线交y轴于点A,作PB⊥AP交反比例函数y=(x>0)于点B,连结AB.已知tan∠BAP=.(1)求k的值;(2)求直线AB的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点P的坐标可得出A点的坐标以及线段AP的长度,通过解直角三角形可求出BP的长度,结合点P的坐标即可得出B点的坐标,再利用待定系数法即可求出反比例函数的解析式;(2)设直线AB的解析式y=ax+b.结合A、B点的坐标利用待定系数法即可求出直线AB的解析式.【解答】解:(1)∵点P的坐标为(2,),∴AP=2,点A的坐标为(0,).在Rt△ABP中,∠APB=90°,tan∠BAP=,AP=2,∴BP=AP?tan∠BAP=2×=3,∴点B的坐标为(2,).∵点B(2,)在反比例函数y=(x>0)图象上,∴=,解得:k=9.(2)设直线AB的解析式y=ax+b,则有,解得:.∴直线AB的解析式为y=x+.20.如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且∠DBA=∠BCD.(1)证明:BD是⊙O的切线.(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为16,cos∠BFA=,那么,你能求出△ACF的面积吗?若能,请你求出其面积;若不能,请说明理由.【考点】切线的判定.【分析】(1)BD是⊙O的切线.先连接OB,由于AC是直径,那么∠ABC=90°,得到∠BAC+∠C=90°,由OA=OB,得到∠BAC=∠OBA,证明∠OBD=90°,根据切线的判定定理证明;(2)由于cos∠BFA=,那么=,证明△EBF∽△CAF,根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:(1)BD是⊙O的切线,理由:如右图所示,连接OB,∵AC是⊙O的直径,∴∠ABC=90°,∴∠BAC+∠C=90°,∵OA=OB,∴∠BAC=∠OBA,∴∠OBA+∠C=90°,∵∠ABD=∠C,∴∠ABD+∠OBA=90°,即∠OBD=90°,∴DB是⊙O的切线;(2)在Rt△ABF中,∵cos∠BFA=,∴=,∵∠E=∠C,∠EBF=∠FAC,∴△EBF∽△CAF,∴S△B FE:S△AFC=()2=,∵△BEF的面积为16,∴△ACF的面积为36.21.已知一元二次方程x2﹣4x﹣3=0的两根为m、n,则m2﹣3mn+n2=31.【考点】根与系数的关系.【分析】由m与n为已知方程的解,利用根与系数的关系求出m+n与mn的值,将所求式子利用完全平方公式变形后,代入计算即可求出值.【解答】解:∵m,n是一元二次方程x2﹣4x﹣3=0的两个根,∴m+n=4,mn=﹣3,则m2﹣3mn+n2=(m+n)2﹣5mn=16+15=31.故答案为:31.22.如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M 在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行15分钟可使渔船到达离灯塔距离最近的位置.【考点】解直角三角形的应用-方向角问题.【分析】过M作AB的垂线,设垂足为N.由题易知∠MAB=30°,∠MBN=60°;则∠BMA=∠BAM=30°,得BM=AB.由此可在Rt△MBN中,根据BM(即AB)的长求出BN的长,进而可求出该船需要继续航行的时间.【解答】解:作MN⊥AB于N.易知:∠MAB=30°,∠MBN=60°,则∠BMA=∠BAM=30°.设该船的速度为x,则BM=AB=0.5x.Rt△BMN中,∠MBN=60°,∴BN=BM=0.25x.故该船需要继续航行的时间为0.25x÷x=0.25小时=15分钟.23.已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A 在点B的左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“关联”抛物线,直线AC′为抛物线p 的“关联”直线.若一条抛物线的“关联”抛物线和“关联”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为y=x2﹣2x﹣3.【考点】抛物线与x轴的交点.【分析】先求出y=x2+2x+1和y=2x+2的交点C′的坐标为(1,4),再求出“关联”抛物线y=x2+2x+1的顶点A坐标(﹣1,0),接着利用点C和点C′关于x 轴对称得到C(1,﹣4),则可设顶点式y=a(x﹣1)2﹣4,然后把A点坐标代入求出a的值即可得到原抛物线解析式.【解答】解:∵y=x2+2x+1=(x+1)2,∴A点坐标为(﹣1,0),解方程组,得或,∴点C′的坐标为(1,4),∵点C和点C′关于x轴对称,∴C(1,﹣4),设原抛物线解析式为y=a(x﹣1)2﹣4,把A(﹣1,0)代入得4a﹣4=0,解得a=1,∴原抛物线解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3.故答案为:y=x2﹣2x﹣3.24.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.【考点】一次函数综合题.【分析】根据直线y=kx﹣3k+4必过点D(3,4),求出最短的弦CB是过点D 且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.【解答】解:∵直线y=kx﹣3k+4=k(x﹣3)+4,∴k(x﹣3)=y﹣4,∵k有无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24;故答案为:24.25.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④AD2=OD?DH中,正确的是①②③④.【考点】相似三角形的判定与性质;全等三角形的判定与性质;菱形的性质.【分析】由菱形ABCD中,AB=AC,易证得△ABC是等边三角形,则可得∠B=∠EAC=60°,由SAS即可证得△ABF≌△CAE;则可得∠BAF=∠ACE,利用三角形外角的性质,即可求得∠AHC=120°;在HD上截取HK=AH,连接AK,易得点A,H,C,D四点共圆,则可证得△AHK是等边三角形,然后由AAS即可证得△AKD≌△AHC,则可证得AH+CH=DH;易证得△OAD∽△AHD,由相似三角形的对应边成比例,即可得AD2=OD?DH.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△ADC是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠AC B=60°+60°=120°;故②正确;在HD上截取HK=AH,连接AK,∵∠AHC+∠ADC=120°+60°=180°,∴点A,H,C,D四点共圆,∴∠AHD=∠ACD=60°,∠ACH=∠ADH,∴△AHK是等边三角形,∴AK=AH,∠AKH=60°,∴∠AKD=∠AHC=120°,在△AKD和△AHC中,,∴△AKD≌△AHC(AAS),∴CH=DK,∴DH=HK+DK=AH+CH;故③正确;∵∠OAD=∠AHD=60°,∠ODA=∠ADH,∴△OAD∽△AHD,∴AD:DH=OD:AD,∴AD2=OD?DH.故④正确.故答案为:①②③④.26.今年清明假期,小王组织朋友取九寨沟三日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同.针对组团三日游的游客,甲旅行社表示,每人都按8.5折收费;乙旅行设表示,若人数不超过20人,每人都按9折收费;超过20人,则超出部分每人按7.5折收费.假设组团参加甲、乙两家旅行社三日游的人数均为x人.(1)请分别写出甲、乙两家旅行设收取组团三日游的总费用y(元)与x(人)之间函数关系式.(2)若小王组团参加三日游的人数共有25人,请你通过计算,在甲、乙两家旅行社中,帮助小王选择收取总费用较少的一家.【考点】一次函数的应用.【分析】(1)根据甲乙两家旅行社的收费标准列出式子即可.(2)利用(1)的结论代入计算即可.【解答】解:(1)y甲=544x,y乙=,即y乙=.(2)x=25时,y甲=13600,y乙=13920,∴甲比较便宜.27.如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2所示).将纸片△AC1D1沿直线D2B(A→B方向)平移(点A,D1,D2,B始终在同一直线上),当D1与点B重合时,停止平移.在平移的过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.(1)当△AC1D1平移到如图3所示位置时,猜想D1E与D2F的数量关系,并说明理由.(2)设平移距离D2D1为x,△AC1D1和△BC2D2重复部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的x,使得重复部分面积等于原△ABC 纸片面积的?若存在,请求出x的值;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)根据AD1=BD2就可以证明AD2=BD1,根据等角对等边证明AD2=D2F,D1E=D1B即可.(2)由于△AC1D1与△BC2D2重叠部分为不规则图形,所以将其面积转化为S△B C2D2﹣S△B ED1﹣S△FC2P,再求各三角形的面积即可.(3)先假设存在x的值使得y=S△AB C,再求出△ABC的面积,然后根据(2)所求y=﹣x2+x(0≤x≤5)建立等量关系,通过根的判别式来判定是否有这样的x值存在.【解答】解:(1)D1E=D2F.理由如下:∵C1D1∥C2D2,∴∠C1=∠AFD2.又∵∠ACB=90°,CD是斜边上的中线,∴DC=DA=DB,即C1D1=C2D2=BD2=AD1∴∠C1=∠A,∴∠AFD2=∠A∴AD2=D2F.同理:BD1=D1E.又∵AD1=BD2,∴AD2=BD1.∴D1E=D2F.(2)∵在Rt△ABC中,AC=8,BC=6,∴由勾股定理,得AB=10.即AD1=BD2=C1D1=C2D2=5又∵D2D1=x,∴D1E=BD1=D2F=AD2=5﹣x.∴C2F=C1E=x在△BC2D2中,C2到BD2的距离就是△ABC的AB边上的高,为.设△BED1的BD1边上的高为h,由探究,得△BC2D2∽△BED1,∴=.∴h=.S△BED1=×BD1×h=(5﹣x)2又∵∠C1+∠C2=90°,∴∠FPC2=90度.又∵∠C2=∠B,sinB=,cosB=.∴PC2=x,PF=x,S△FC2P=PC2×PF=x2而y=S△B C2D2﹣S△B ED1﹣S△FC2P=S△AB C﹣(5﹣x)2﹣x2∴y=﹣x2+x(0≤x≤5).(3)不存在.当y=S△AB C时,即﹣x2+x=9,整理得6x2﹣40x+75=0.∵△=1600﹣4×6×75=﹣200<0,∴该方程无解,即对于(2)中的结论不存在这样的x,使得重复部分面积等于原△ABC纸片面积的.28.已知抛物线y=(a>0)与x轴交于A、B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点D(2,﹣2),求实数a的值.(2)在(1)的条件下,在抛物线的对称轴上找一点E,使AE+CE最小,求出点E的坐标.(3)在第一象限内,抛物线上是否存在点M,使得以A、B、M为顶点的三角形与△ACB相似?若存在,求出a的值,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将点D坐标代入抛物线解析式中即可;(2)用两点之间线段最短,确定出AE+CE最小时,点E的位置即可;(3)根据△ABC的特点分析出存在满足条件的点,经过简单的计算即可.【解答】解:(1)∵抛物线过点D(2,﹣2),∴×4+(﹣1)×2﹣2=﹣2,∴a=4,(2)如图1,∵点A,B是抛物线与x轴的交点,∴点B是点A关于抛物线对称轴的对称点,∴连接BC交对称轴于点E,∵a=4,抛物线解析式为y=x2﹣x﹣2,∴点C(0,﹣2),D(4,0),对称轴x=1∴CD解析式为y=x﹣2,∴E(1,﹣);(3)如图 2由(2)有,抛物线解析式为y=x2﹣x﹣2,∴A(﹣2,0),B(4,0),C(0,﹣2),∴AB=6,AC=2,BC=2,∴△ABC是锐角三角形,点M在x轴上方的抛物线上时,△AMB为钝角三角形,∴点M在x轴下方的抛物线上,∵抛物线的顶点到x轴的距离为,∴△ABM和△ACB中最大的边都是AB,∴△BMA∽△ACB,∵AB=AB,∴△BMA≌△ACB,∴M(2,﹣2)∴存在点M,M坐标为(2,﹣2).2016年6月30日。

2017年四川省成都市青羊区中考数学二诊试卷附答案

2017年四川省成都市青羊区中考数学二诊试卷附答案

(2017年四川省成都市青羊区中考数学二诊试卷)A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分)1. 在算式(-2)□(-3),□的中填上运算符号,使结果最小,运算符号是( ) A. 加号 B. 减号 C. 乘号 D. 除号2. 国家卫生和计划生育委员会公布H 7N 9禽流感病毒直径约为0.00000012米,这一直径用科学计数法表示为( )A. 1.2×10-9米B. 12×10-8米C. 1.2×10-8米D. 1.2×10-7米 3. 下面的图形中,既是轴对称图形又是中心对称图形的是( )A B C D 4. 下列计算正确的是( )A. x x x 25332-=- B.x x x 32623=÷ C.623)31(x x = D.126)42(3--=--x x5. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为( ) A.21B.23C.22D.336. 如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=( )A. 55°B. 30°C. 50°D. 60°7. 如图,△DEF 经过怎样的平移得到△ABC ( ) A. 把△DEF 向左平移4个单位,再向下平移2个单位 B. 把△DEF 向右平移4个单位,再向下平移2个单位 C. 把△DEF 向右平移4个单位,再向上平移2个单位 D. 把△DEF 向左平移4个单位,再向上平移2个单位 8. 将一个三角形改成与它相似的三角形,如果面积扩大为原来的9倍,那么周长扩大为原来的( )A. 9倍B. 3倍C. 81倍D. 18倍9. 某小区20户家庭的日用电量(单位:千瓦时)统计如下:这20户家庭日用电量的众数、中位数分别是( ) A. 6,6.5 B. 6,7 C. 6,7.5 D. 7,7.510. 某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( )第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,第小题4分,共16分) 11. 分解因式:=-+-x x x 1212323.12. 如图,已知⊙O 的半径为30mm ,先AB=36mm ,则点O 到AB 的距离为 mm.13. 如图,一人乘雪橇沿坡比1:3的斜坡笔直滑下72米,那么他下降的高度为 米. 14. 关于x 的方程012)2(2=++-x x m 有实数根,则偶数m 的最大值为 .三、解答题(本大题共6个小题,共54分) 15.(每小题6分,共12分) (1)计算:︒-+-︒++--60sin 23)376(cos )21()1(032017π(2)解方程:01322=-+x x16、(本小题满分6分)如图,在△ABC 中,AB=AC ,BD=CD ,CE ⊥AB 于E. (1)求证:△ABD ∽△CBE ;(2)若BD=3,BE=2,求AC 的值.第16题图17.(本小题满分8分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1m )(参考数据:2≈1.414,3≈1.732)第17题图 18.(本小题满分8分)某校将举办“心怀感恩孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为 ,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为 ;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率. 19.(本小题满分10分) 如图,一次函数b kx y +=的图象与反比例函数xmy =(x >0)的图象交于点P(n ,2),与x 轴交于点A ,与y 轴交于点C ,PB ⊥x 轴于点B ,且AC=BC ,S △PBC =4. (1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第19题图 20.(本小题满分10分)如图,在Rt △ABC 中,∠C=90°,BD 为∠ABC 的平分线,DF ⊥BD 交AB 于点F ,△BDF 的外接圆⊙O 与边BC 相交于点M ,过点M 作AB 的垂线交BD 于点E ,交⊙O 于点N ,交AB 于点H ,连接FN. (1)求证:AC 是⊙O 的切线; (2)若AF=1,tan ∠N=34,求⊙O 的半径r 的长; (3)在(2)的条件下,求BE 的长.B 卷(满分50分)一、填空题(本大题共5小题,每小题4分,共20分)21.如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上,设矩形的一边AB=x m ,矩形的面积为y m 2,则y 的最大值为 .22.有五张正面分别标有数20,1,3,4的不透明卡片,它们除了数字不同外其余全部相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2017年四川省成都市青羊区中考数学二诊试卷)
A 卷(共100分)
第Ⅰ卷(选择题,共30分)
一、选择题(本大题共10个小题,每小题3分,共30分)
1. 在算式(-2)□(-3),□的中填上运算符号,使结果最小,运算符号是( ) A. 加号 B. 减号 C. 乘号 D. 除号
2. 国家卫生和计划生育委员会公布H 7N 9禽流感病毒直径约为0.00000012米,这一直径用科学计数法表示为( )
A. 1.2×10-9米
B. 12×10-8米
C. 1.2×10-8米
D. 1.2×10-7米 3. 下面的图形中,既是轴对称图形又是中心对称图形的是( )
A B C D 4. 下列计算正确的是( )
A. x x x 2533
2
-=- B.x x x 3262
3
=÷ C.6
23)3
1(x x = D.126)42(3--=--x x
5. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为( ) A.
2
1
B.23
C.22
D.33
6. 如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=( )
A. 55°
B. 30°
C. 50°
D. 60°
7. 如图,△DEF 经过怎样的平移得到△ABC ( ) A. 把△DEF 向左平移4个单位,再向下平移2个单位 B. 把△DEF 向右平移4个单位,再向下平移2个单位 C. 把△DEF 向右平移4个单位,再向上平移2个单位 D. 把△DEF 向左平移4个单位,再向上平移2个单位 8. 将一个三角形改成与它相似的三角形,如果面积扩大为原来的9倍,那
么周长扩大为原来的( )
A. 9倍
B. 3倍
C. 81倍
D. 18倍
9. 某小区20户家庭的日用电量(单位:千瓦时)统计如下:
这20户家庭日用电量的众数、中位数分别是( ) A. 6,6.5 B. 6,7 C. 6,7.5 D. 7,7.5
10. 某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( )
第Ⅱ卷(非选择题,共70分)
二、填空题(本大题共4个小题,第小题4分,共16分) 11. 分解因式:=-+-x x x 121232
3
.
12. 如图,已知⊙O 的半径为30mm ,先AB=36mm ,则点O 到AB 的距离为 mm.
13. 如图,一人乘雪橇沿坡比1:3的斜坡笔直滑下72米,那么他下降的高度为 米. 14. 关于x 的方程012)2(2
=++-x x m 有实数根,则偶数m 的最大值为 .
三、解答题(本大题共6个小题,共54分) 15.(每小题6分,共12分) (1)计算:︒-+-︒++--60sin 23)3
76(cos )21()1(032017
π
(2)解方程:01322
=-+x x
16、(本小题满分6分)如图,在△ABC 中,AB=AC ,BD=CD ,CE ⊥AB 于E. (1)求证:△ABD ∽△CBE ;
(2)若BD=3,BE=2,求AC 的值.
第16题图
17.(本小题满分8分)
如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1m )(参考数据:2≈1.414,3≈1.732)
第17题图 18.(本小题满分8分)
某校将举办“心怀感恩孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.
(1)本次调查抽取的人数为 ,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为 ;
(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率. 19.(本小题满分10分) 如图,一次函数b kx y +=的图象与反比例函数x
m
y =
(x >0)的图象交于点P(n ,2),与x 轴交于点A ,与y 轴交于点C ,PB ⊥x 轴于点B ,且AC=BC ,S △PBC =4. (1)求一次函数、反比例函数的解析式;
(2)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.
第19题图 20.(本小题满分10分)
如图,在Rt △ABC 中,∠C=90°,BD 为∠ABC 的平分线,DF ⊥BD 交AB 于点F ,△BDF 的外接圆⊙O 与边BC 相交于点M ,过点M 作AB 的垂线交BD 于点E ,交⊙O 于点N ,交AB 于点H ,连接FN. (1)求证:AC 是⊙O 的切线; (2)若AF=1,tan ∠N=
3
4
,求⊙O 的半径r 的长; (3)在(2)的条件下,求BE 的长.
B 卷(满分50分)
一、填空题(本大题共5小题,每小题4分,共20分)
21.如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上,C 点在斜边上,设矩形的一边AB=x m ,矩形的面积为y m 2,则y 的最大值为 .
22.有五张正面分别标有数2,0,1,3,4的不透明卡片,它们除了数字不同外其余全部相同。

现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a ,则使关于x 的方程x
x ax -=+--21
221有正整数解的概率为 .
23.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 出,连接DE ,若DE:AC=3:5,则
AB
AD
的值为 . 24. 如图,211A B A ∆,322A B A ∆,433A B A ∆,…,1+∆n n n A B A 都是等腰直角三角形,其中点1A 、2A 、…、n A 在x 轴上,点1B 、2B 、…、n B 在直线y=x 上,已知12=OA ,则2017OA 的长为 .
25. 如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC ,BD 相交于点O ,过点P 分别作AC ,BD 的垂线,分别交AC ,BD 于点E ,F ,交AD ,BC 于点M ,N. 下列结论:
①△APE ≌△AME ;②PM+PN=AC ;③PE 2+PF 2=PO 2;
④△POF ∽△BNF ;⑤当△PMN ∽△AMP 时,点P 是AB 的中点. 其中正确的结论有 (填番号).
二、解答题(本大题共3个小题,共30分) 26.(本小题满分8分)
王师傅开车去外地卖水果,汽车出发前油箱有油50升,行驶若干小时后,在加油站加油若干升,图象表示的是从出发后,油箱中剩余油量y (L )与行驶时间t (h )之间的关系.
(1)汽车行驶 h 后加油,中途加油 L ;
(2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;
(3)已知加油前、后汽车都以70km/h 匀速行驶,如果加油站距目的地210km ,那么要到达目的地,油箱中的油是否够用?请说明理由. 27.(本小题满分10分)
如图,在正方形ABCD 与等腰直角三角形BEF 中,∠BEF=90°,BE=EF=,连接DF ,点P 是FD 的中点,连接PE ,PC.
(1)如图1,当点E 在CB 边上时,求证:PE=
2
2
CE ; (2)如图2,当点E 在CB 边的延长线上时,线段PC 、CE 有怎样的数量关系,写出你的猜想,并给出证明.
28.(本小题满分12分)
如图,在平面直角坐标系xOy 中,抛物线c bx ax y ++=2
与x 轴相交于点A(-3,0)和点B(1,0),与y 轴相交于点C(0,-3),抛物线的顶点为点D ,连接AC 、BC. (1)求这条抛物线的表达式及顶点D 的坐标;
(2)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点M 的坐标为(-1,0). 问:是否存在这样的直线l ,使得OF+MF 最小?若存在,请求出点P 的坐标;若不存在,请说明理由. (3)①若'P 为抛物线上一动点,且∠ACP'=∠BCO ,请求出点'P 的坐标; ②在抛物线第三象限的图象上有两点R 与E (点R 在点E 右侧),且RE ∥x 轴, 过点A 作x 轴的垂线AN',连接AE ,在线段AE 上有一点G ,作射线RG 交垂线AN'于 点N ,当2∠ERG+∠EGR=90°,且AE:RN=3:2时,求RE 的长及△REG 的面积.。

相关文档
最新文档