§3.4 二次函数(试题部分).pptx

合集下载

《二次函数》-完整版PPT课件

《二次函数》-完整版PPT课件

列二次函数关系式 3.两个数的和为 8,设其中一个数为 x,这两个数的乘积 是 y,则 y 与 x 之间的函数关系式为_y=__x_(_8_-__x_)_,这是___二__次___ 函数.
4.正方形的边长是 3,若边长增加 x,则面积增加 y,写出 y 与 x 之间的关系式.
答案:增加的面积为 y=(x+3)2-9=x2+6x.
二次函数的概念
1.自由落体公式 h=12gt2(g 为常量),h 与 t 之间的关系是 ( C)
A.正比例函数 C.二次函数
B.一次函数 D.以上答案都不对
2.请分别指出二次函数 y=4(x-1)(x-3)中的二次项系数, 一次项系数及常数项.
答案:二次项系数为 4,一次项系数为-16,常数项为 12.
ቤተ መጻሕፍቲ ባይዱ
1.二次函数是一个整式函数. 2.容易忽略二次函数定义中的 a≠0,当 a=0,b≠0 时,y =ax2+bx+c 是 x 的一次函数.
二次函数
1.二次函数的概念 形如 y=ax2+bx+c(a、b、c 是常数,a≠0)的函数叫做二次 函数. 2.列二次函数关系式 列函数表达式的基本思路: (1)认真审题,弄清题中的自变量和因变量; (2)确定一共有几个条件,每个条件和变量可以列出什么意 义的代数式; (3)确定等量关系,得到表达式.

《二次函数》PPT优秀课件

《二次函数》PPT优秀课件


• 3.观察上述函数函数关系有哪些共同之处? 。
归纳总结
• 一般地,形如y=ax2+bx+c(a,b,c为常数且a≠0)的函数,叫 做二次函数。其中x是自变量,a叫做二次项系数,b叫做一次项 系数,c叫做常数项.
• 注意:判断二次函数注意自变量最高次数为2,且二次项系数不为0
03 例题练习
例题
练习
• 1.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率
都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=

• 2.多边形的对角线条数d与边数n之间的关系式为

;当d=35时,多边形的边数n=

,自变量n的取值范围是 且
练习
3.已知两个变量x,y之间的关系为y=(m-2)xm2-2+x-1,若x,y之间是二次函数关系, 求m的值.
4.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为10米)围成的中间隔有一道 篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米. (1)求S与x的函数关系式; (2)如果要围成面积为45平方米的花圃,AB的长为多少米?
04 作业布置
作业布置
1.下列函数是二次函数的是( )
A.y=2x+1
二次函数
01
教学目标
目录
02 03
知识点框架
例题练习
04
作业布置
01
教学目标
掌握二次函数的定义并能根据实际问题列出二次函数解析式
02 知识点框架
二、新课讲授
• 1.设一个正方形的边长为x,则该正方形的面积y=

• 2.用一根长为40的铁丝围成一个半径为的扇形,求扇形的面积与它的半径之

二次函数知识点复习PPT课件

二次函数知识点复习PPT课件

=
=
二次函数y=ax2+bx+c(a≠0) 中 a、b、c的符号判别:



①a的符号判别由开口方向确定:当开口向 上时,a>0;当开口向下时,a<0; ②c的符号判别由与Y轴的交点来确定:若交 点在X轴的上方,则c>0;若交点在X轴的下 方,则C<0; ③b的符号由对称轴来确定:对称轴在Y轴的 左侧,则a、b同号;若对称轴在Y 轴的右侧, 则a、b异号;(a与b左同右异)
5.(杭州中考题)已知某二次项系数为1的一元二 次方程的两根为p,q,且满足关系式p+q(p+1)=5 和 p2q+pq2=6,求这个一元二次方程
两式分别化为(p+q)+pq=5, (p+q)pq=6后得 p+q=3,pq=2或p+q=2,pq=3,所以方程为: x2-2x+3=0 或x2-3x+2=0
韦达定理
ax2+bx+c=0(a 0, 0)的两根为x1,x2 则x1+x2= ,x1.x2=
1.已知一元二次方程,不解方程,求与根有关
的代数式; 2.构造一元二次方程;(减和加积等于0): X2-(x1+x2)x+(x1.x2)=o 3.分解二次三项式.(两根双减,a放最前): ax2+bx+c=a(x-x1)(x-x2) 4.构造一元二次方程来解方程或方程组


图象与X轴的交点个数 当Δ=b2-4ac>0时,函数与X轴有两个交点; Δ=b2-4ac <0时,函数与X轴没有交点; Δ=b2-4ac =0时;函数与X轴只有一个交点;


(1)二次函数y=ax2+bx+c(a≠0)与X轴只 有一个交点或二次函数的顶点在X轴上,则 Δ=b2-4ac=0; (2)二次函数y=ax2+bx+c(a≠0)的顶点在 Y轴上或二次函数的图象关于Y轴对称,则 b=0; (3)二次函数y=ax2+bx+c(a≠0)经过原点, 则c=0;

二次函数图ppt课件

二次函数图ppt课件

02 二次函数的图像性质
CHAPTER
开口方向
总结词:由二次项系数决定 a>0时,向上开口;a<0时,向下开口。
顶点坐标
01
总结词:由公式 y=ax^2+bx+c(a≠0)直接读
02
顶点的横坐标为x=-b/2a,纵坐 标为y=4ac-b^2/4a。
对称轴
总结词:对称轴是直线x=-b/2a
二次函数图像是轴对称图形,对称轴为直线x=-b/2a,对称轴与y轴平行。
二次函数的表达式由三部分组成,分 别是二次项系数$a$、一次项系数$b$ 和常数项$c$。这些系数可以根据实际 情况进行选择和调整。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个开口方向由系数$a$决定的抛物线。当$a > 0$时,抛物 线开口向上;当$a < 0$时,抛物线开口向下。同时,抛物线的对称轴为直线$x = -frac{b}{2a}$,顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$ 。
二次函数图PPT课件
目录
CONTENTS
• 二次函数的基本概念 • 二次函数的图像性质 • 二次函数的应用 • 二次函数与其他知识点的联系 • 练习题与答案
01 二次函数的基本概念
CHAPTER
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
详细描述
二次函数是数学中一类重要的函数,其定义形式为$f(x) = ax^2 + bx + c$,其 中$a, b, c$为常数,且$a neq 0$。

二次函数阶段专题复习课件ppt

二次函数阶段专题复习课件ppt

详细描述
根据二次函数的单调 性,判断函数在某个 区间的单调性;
根据二次函数的奇偶 性,判断函数的奇偶 性并求出函数的对称 轴;
根据二次函数的周期 性,求函数的周期并 观察图像的变化规律 。
综合练习题及答案
详细描述
根据二次函数与实际问题的综合 应用,解决实际问题并求出最优 解;
总结词:二次函数与其他知识点 的综合应用
求二次函数的最大值或最小值的方法是:先确定函数的对称 轴,再根据a的符号确定最大值或最小值的坐标,最后代入函 数解析式计算最大值或最小值。
02
知识点详解
二次函数的表达式及求解
表达式
$y = ax^{2} + bx + c$
求法
通过已知的三个点或顶点及对称轴可求得 $a$、$b$、$c$的值,进而得到二次函数 的表达式
2023
二次函数阶段专题复习课 件ppt
目 录
• 知识点概述 • 知识点详解 • 经典例题解析 • 易错点及应对策略 • 练习题及答案
01
知识点概述
什么是二次函数
1
二次函数是指形如`y = ax^2 + bx + c`(其中a 、b、c为常数,且a≠0)的函数。
2
二次函数的图像是一个抛物线,其顶点坐标为(b/2a,c-b^2/4a),对称轴为x=-b/2a。
二次函数与实际问题的结合
要点一
总结词
要点二
详细描述
了解二次函数与实际问题的联系,能 够建立数学模型并解决实际问题。
二次函数与实际问题结合广泛,如最 优化问题、经济问题、物理问题等。 通过对实际问题的分析,可以更好地 理解二次函数的应用价值。
要点三
示例题目

中考数学复习---二次函数考点归纳与典型例题讲解PPT课件

中考数学复习---二次函数考点归纳与典型例题讲解PPT课件

【解析】解:(1)设 y 与 x 之间的函数关系式为 y kx b ( k 0 ),根据题意,得:
12k 14k
b b
90 80
,解得
k b
5 150
,∴
y

x
之间的函数关系式为
y
5x
150(10≤x≤15,
且 x 为整数);
(2)根据题意,得:w (x 10)(5x 150) 5x2 200x 1500 5(x 20)2 500 ,
舍去);
Байду номын сангаас
函数的应用
(2)∵ a 3 ,∴ C(0, 3) ,∵ SABP SABC .∴ P 点的纵坐标为±3,
把 y 3 代入 y x2 2x 3 得 x2 2x 3 3 ,解得 x 0 或 x 2 ,
把 y 3 代入 y x2 2x 3 得 x2 2x 3 3 ,解得 x 1 7 或 x 1 7 , ∴ P 点的坐标为 (2,3) 或 (1 7, 3) 或 (1 7, 3) .
得 810 40x=0 ,解得 x 20.25 .∴排队人数最多时是 490 人,全部考生都完成体温检测
需要 20.25 分钟.
(3)设从一开始就应该增加 m 个检测点,根据题意,得12 20(m 2) 810 ,解得 m 1 3 . 8
∵ m 是整数,∴ m 1 3 的最小整数是 2.∴一开始就应该至少增加 2 个检测点. 8
【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的应用.
本课结束
2、函数动点问题 (1)函数压轴题主要分为两大类:一是动点函数图像问题;二是与动点、存在点、相似等有关的二次函数 综合题. (2)解答动点函数图像问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表 达式,进而确定函数图像;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总 成最终答案. (3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或 抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计 算.

二次函数经典习题ppt课件

二次函数经典习题ppt课件

精选ppt课件
5
• 解:(1)∵a= —>0
(5)由图象可知
∴抛物线的开口向上 ∵y= — (x2+2x+1)-2= —(x+1)2-
当-3 < x < 1时,y < 0
∴对称轴直线x=-1,顶点坐标M(-1,-2) (2)由x=0,得y= - -—
当x< -3或x>1时,y > 0
抛物线与y轴的交点C(0,- -—)
由y=0,得—x2+x- —=0
x1=-3
x2=1
y
与x轴交点A(-3,0)B(1,0)
(3)当x<-1时,y随x的增大而减少;
当x=-1时,y有最小值为y最小值=-2 (4)由对称性可知 MA=MB=√22+22=2√2
•(-3,0)
•(1,0) x
0
AB=|x1-x2|=4 ∴ ΔMAB的周长=2MA+AB =2 √2×2+4=4 √2+4 ΔMAB的面积= —AB×MD
有两个不同的 解x=x1,x=x2
y
O
x y
有两个相等的

x1=x2=
b 2a
没有实数根
O
x
18
例(1)如果关于x的一元二次方程 x2-2x+m=0有两 个相等的实数根,则m1=____,此时抛物线 y=x22x+m与x轴有1____个交点.
(2)已知抛物线 y=x2 – 8x +c的顶点在 x轴 上,则c=_1_6__.
• 定义要点:①a ≠ 0 ②最高次数为2

③代数式一定是整式
• 练习:1、y=-x²,y=2x²-2/x,y=100-5 x²,y=3 x²-2x³+5,其中是二次函数的有____个。

《二次函数》PPT优秀课件

《二次函数》PPT优秀课件

探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的步骤: (1)将函数解析式右边整理为含自变量的代数式,左边是 函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1 (是)
素养目标
2. 能根据实际问题中的数量关系列出二次函数解析式 ,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数是否是 二次函数.
探究新知
知识点 1 二次函数的概念
问题1
正方体的六个面是全等的正方形(如下图),设正方形的棱长为x,表面 积为y,显然对于x的每一个值, y都有一个对应值,即y是x的函数,它们的 具体关系可以表示为
探究新知
【分析】认真观察以上出现的三个函数解析式,分别说出哪些 是常数、自变量和函数.
函数解析式 y=6x2
自变量 x
函数 y
这些函数有什么 共同点?
n
d
x
y
这些函数自变量的最高次项都是二次的!
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数,叫做二 次函数.
y =-2x2+40x=-2×122+40×12=192(m2).
xm
xm
y m2
(40-2x )m
方法点拨:确定实际问题中的二次函数关系式时,常常用到生活中的经验及数 学公式(例长方形和圆的面积、周长公式)等.
巩固练习
做一做: ①已知圆的面积y(cm2)与圆的半径x(cm),写出y与x之间的函数关系式; ②王先生存入银行2万元,先y=存πx一2 个(x一>0年) 定期,一年后银行将本息自动转存为 又一个一年定期,设一年定期的存款年利率为x,两年后王先生共得本息和y万 元,写出y与x之间的函数关系式; ③一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式.

《二次函数》参考PPT课件

《二次函数》参考PPT课件

y=kx(k≠0),
反比x2+bx+c(a≠0).
可以发现,这些函数的名称都反映了函数 表达式与自变量的关系.
布置作业
• 预习下一章节
x
即: y =-2x2+40x (0<x<20) m
y m2
x m
当x=12m时,菜园的面积为:(40-2x )m
y =-2x2+40x=-2×122+40×12
=192(m2)
在实践中感悟
横看成岭侧成峰,远近高低各不同
——变换角度分析问题
若函数y=x2m+n - 2xm-n+3是以x为自变量的二次函 数,求m、n的值。
这种产品的原产量是20 t, 一年后的产量是 20(1+x) t,再经过一年后的产量是 20(1+x)2 t,即两年
后的产量为 y 201 x2
即 y 20 x2 40x 20③
③式表示了两年后的产量y与计划增产 的倍数x之间的关系,对于x的每一个值 , y都有一个对应值,即y是x的函数.
观察
场,甲队对乙队的比赛与乙队对甲队的比赛
是同一场比赛,所以比赛的场次数
m 1 n(n 1) 2

m1n21n 22

②式表示比赛的场次
数m与球队数n的关系,对
于n的每一个值,m都有一
个对应值,即m是n的函数
.
问题:
问题2 某种产品现在的年产量是20 t,计划今后两年增加产量
.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产 量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?
3.一个圆柱的高等于底面半径,写出它 的表面积 s 与半径 r 之间的关系式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档