北师大版高中数学必修三第13讲:概率的应用(学生版)
北师大版高中数学必修3《三章 概率 3 模拟方法——概率的应用 模拟方法——概率的应用》优质课教案_2
模拟方法——概率的应用一.教学目标:1.通过试验初步体会几何概型及其基本特征;2.会把一些简单的实际问题转化为几何概型,会运用几何概型的概率计算公式求简单的几何概型的概率问题;3.通过亲身试验,感受数学不仅仅是抽象的符号,还和我们的生活密切相关。
通过试验体会辩证的唯物主义思想,和实事求是的科学作风。
二.教学重点、难点:重点: 将实际问题转化为几何概型求概率的问题难点:如何实际问题转化为几何概型求概率的问题三.教学方法与教学手段:自主探究、数学试验四.教学过程:(一、)复习巩固1.请同学们回忆下求随机事件的概率的方法有哪些呢?2.古典概型的基本特点是什么呢?(二、)创设情景,引入新课:问题1:取一根长度为3m的绳子,如果拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?问题2:取一个边长为2a的正方形及其内图1切圆(如图1)随机地向正方形内射箭,假设射箭都能中靶,求射中圆内的概率为多少?问题3: 有一杯1 L的水,其中有1个微生物,用一个容器从这杯水中取出10ml,求容器中的水含有这个微生物的概率.归纳上述三个问题的特点,引入几何概型。
同时让学生思考古典概型的方法还能用吗?如何几何概率计算呢?进一步分析上述三个概率问题的求法。
问题1分析:剪刀落在中点的时候,显然能够得到符合要求的两段绳子,我继续剪可以么?到什么时候为止?落在中间的点有无穷多,我把这些点全取出。
总基本事件也有无穷多,古典概型的方法还能用吗?怎么处理?练习:取一根长度为3m的绳子,如果拉直后在任意位置剪断,那么剪得两段的长都不小于2m的概率有多大?问题2分析:由于靶点随机的落在正方形内,而靶点落在圆内时,事件A发生解:记“射中圆内”为事件A,正方形的面积圆的面积=)(A P =4π 答:射中圆内的概率为4π由于问题2的可操作性,下面通过试验“用频率估计概率的方法”来研究它的概率问题。
两人一组合作试验,用扎针来模拟射箭,用针孔代替射箭的靶点。
高中数学第三章概率本章整合课件北师大版必修3
=
1 , 45
所以 P(B)=P(B1+B2)=P(B1)+P(B2)=
方法二:设“至少有一个二级品”为事件 B, 则������指抽出的2 个产品中没有二级品,由(1)知,A= ������. 所以 P(B)=1-P(������ )=1-P(A)=1−
专题一
专题二
专题三
专题四
应用设点(p,q)在|p|≤3,|q|≤3所表示的区域D中均匀分布,试求关 于x的方程x2+2px-q2+1=0的两根都是实数的概率. 提示:根据一元二次方程有实数根的条件找出p,q满足的条件,进 而确定相应的区域. 解:所有基本事件构成的区域D的度量为正方形的面积,即D的度 量值为S正方形=6×6=36.
事件������包含的可能结果数 试验的所有可能结果数 事件������构成的区域范围 总的区域范围
事件
概率 概率模型 几何概型
定义:结果为无限个且等可能发生的概率模型 计算:������(������) =
区别:古典概型的结果有有限个,几何概型的结果有无限个 联系:所出现的结果都是等可能的 求法:随机模拟法和公式法 随机模拟→应用→估计概率、求图形面积等
所以点 P 落在圆 x +y =36
2
2
22 内的概率为 36
=
11 . 18
专题一
专题二
专题三
专题四
专题三 几何概型 高考中涉及的几何概型的概率求解问题,难度不会太大,题型可 能较灵活,涉及面可能较广.几何概型的三种常见类型为长度型、 面积型和体积型,在解题时要准确把握,要把实际问题做合理的转 化;要注意古典概型和几何概型的区别(基本事件的个数的有限性 与无限性),正确选用几何概型解题.
高中数学 第三章 概率 3 模拟方法——概率的应用教案 北师大版必修3-北师大版高一必修3数学教案
§3 模拟方法——概率的应用整体设计教学分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.本节的教学需要一些实物模型为教具,教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.三维目标1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式: P(A)=)(面积或体积的区域长度试验的全部结果所构成的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.重点难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.课时安排1课时教学过程导入新课思路1.复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型.思路2.图1中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?图1为解决这个问题,我们学习几何概型.思路 3.在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.推进新课新知探究提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭,假设射箭能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P(正,正)=P(正,反)=P(反,正)=P(反,反)=41.两次出现相同面的概率为41+41=21. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如图2,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 图2于是事件A 发生的概率为P(A)=31. 第二个问题,如图3,记“射中黄心”为事件B,由于中靶点随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的,而剪断绳子的点和射中靶面的点是无限的,即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability),简称几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式: P(A)=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.应用示例思路1例1 判断下列试验中事件发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如图4所示,有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.图4活动:学生紧紧抓住古典概型与几何概型的区别与联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性,而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.活动:学生分析,教师引导,假设他在0—60之间的任一时刻,打开收音机是等可能的,但0—60之间有无数个时刻,不能用古典概型的公式来计算随机事件发生的概率,因为他在0—60之间的任一时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,所以可用几何概型的概率计算公式计算.解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A 发生.由几何概型的求概率公式得P(A)=6160)5060(=-,即“等待报时的时间不超过10分钟”的概率为61. 打开收音机的时刻X 是随机的,可以是0—60之间的任何时刻,且是等可能的.我们称X 服从[0,60]上的均匀分布,X 称为[0,60]上的均匀随机数.变式训练某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g ={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g )=53=Ω的长度的长度g . 点评:通过实例初步体会几何概型的意义.思路2例 1 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于20分钟的概率.活动:假设他在0—60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A={等待的时间不多于20分钟},我们所关心的事件A 恰好是到站等车的时刻位于[40,60]这一时间段内,因此由几何概型的概率公式,得P(A)=60)4060(-=31. 即此人等车时间不多于20分钟的概率为31. 点评:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.变式训练在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.例2 小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐,则晚报在晚餐开始之前被送到的概率是多少?活动:学生读题,设法利用几何概型公式求得概率.解:建立平面直角坐标系,如图5中x=6,x=7,y=5.5,y=6.5围成一个正方形区域G.设晚餐在x(6≤x≤7)时开始,晚报在y(5.5≤y≤6.5)时被送到,这个结果与平面上的点(x,y)对应.于是试验的所有可能结果就与G 中的所有点一一对应.图5由题意知,每一个试验结果出现的可能性是相同的,因此,试验属于几何概型.晚报在晚餐开始之前被送到,当且仅当y<x,因此图5中的阴影区域g 就表示“晚报在晚餐开始之前被送到”.容易求得g 的面积为87,G 的面积为1.由几何概型的概率公式,“晚报在晚餐开始之前被送到”的概率为P(A)=87=的面积的面积G g . 变式训练在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫升种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率. 解:取出10毫升种子,其中“含有病种子”这一事件记为A,则P(A)=0.01.答:取出的种子中含有麦锈病的种子的概率是0.01.知能训练1.已知地铁列车每10 min 一班,在车站停1 min,求乘客到达站台立即乘上车的概率. 答案:由几何概型知,所求事件A 的概率为P(A)=111. 2.两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m 的概率.答案:记“灯与两端距离都大于2 m”为事件A,则P(A)=62=31. 3.在500 mL 的水中有一个草履虫,现从中随机取出2 mL 水样放到显微镜下观察,则发现草履虫的概率是( )A.0.5B.0.4C.0.004D.不能确定 答案:C提示:由于取水样的随机性,所求事件A :“在取出2 mL 的水样中有草履虫”的概率等于水样的体积与总体积之比5002=0.004. 4.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.图6答案:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM,垂足为M,如图6所示,这样线段OM 长度(记作OM)的取值范围就是[0,a ],只有当r <OM≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P(A)=ar a a a r -=的长度的长度],0[],(. 拓展提升1.约会问题两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.解:因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙两人各自到达的时刻)组成.以8点钟作为计算时间的起点,设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x,y)|0≤x≤60,0≤y≤60},画成图为一正方形.以x,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x-y|≤20.图7这是一个几何概型问题,可能的结果全体是边长为60的正方形里的点,能会面的点的区域用阴影标出(如图7).所求概率为P=95604060222=-=的面积的面积G g . 2.〔蒲丰(Buffon)投针问题〕平面上画很多平行线,间距为a.向此平面投掷长为l(l<a)的针,求此针与任一平行线相交的概率.解:以针的任一位置为样本点,它可以由两个数决定:针的中点与最接近的平行线之间的距离x,针与平行线的交角φ(见图8).样本空间为Ω:{(φ,x)|0≤φ≤π,0≤x≤2a }为一矩形.针与平行线相交的充要条件是g :x≤21sinφ(见图9). 所求概率是P=ππϕϕπa l a d l g 22sin )2(0=••=Ω⎰的面积的面积. 图8 图9注:因为概率P 可以用多次重复试验的频率来近似,由此可以得到π的近似值.方法是重复投针N 次(或一次投针若干枚,总计N 枚),统计与平行线相交的次数n,则P≈N n .又因a 与l 都可精确测量,故从N n a l ≈π2,可解得π≈anlN 2.历史上有不少人做过这个试验.做得最好的一位投掷了3 408次,算得π≈3.141 592 9,其精确度已经达到小数点后第六位.设计一个随机试验,通过大量重复试验得到某种结果,以确定我们感兴趣的某个量,由此而发展的蒙特卡洛(Monte-Carlo)方法为这种计算提供了一种途径.课堂小结几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.作业习题3—3 A 组1、2.设计感想本节课首先对古典概型进行了复习,使学生掌握古典概型的适用条件,巩固了古典概型的概率计算公式,接着设计了多个试验,从课题的引入,到问题的提出都非常有针对性,引人入胜,接着从新的问题中引出几何概型这一不同于古典概型的又一概率模型,并通过探究,归纳出几何概型的概率计算公式,同时比较了古典概型和几何概型的区别和联系,通过思路1和思路2两种不同的例题类型和层次,加深理解和运用,由于它们与实际生活联系密切,所以要反复练习,达到为我们的工作与生活服务,然而这部分内容在高考中是新内容,因此同学们要高度重视,全面把握,争取获得好成绩.。
北师大版高中数学必修三模拟方法——概率的应用精品课件(共18张PPT)
上,聪聪玩掷飞镖游戏,假设飞镖 拉直后在绳子上任意处剪断.剪得
都能射中圆盘, 且射中圆盘上每 的两段绳长都不小于10cm的概率
个点都是等可能的, 则射中红色 是多少?
区域的概率是多少?
高潮部分:00:50-01:50.
思考1:如果放大(或缩小)红色区域的面积,事件A发生的概率会如何变化?
请问:他恰好听到《青花瓷》高潮部分的概率是多少? 点 的距离小于等于1的概率为 . 成正比, 而与其位置、形状无关.
AC D B
成正比, 而与其位置、形状无关.
剪得的两段绳长都不小于10cm的概率是多少?
随机事件A所构成区域?
线段CD的长度 红色区域的面积 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. P(A) 总长度 P(A) 总面积
思考:上述两个概率问题有什么共同点?
A
B
C
D
0
1
2
3
4
解:记“小明恰好听到歌曲的高潮部分”为事件A
设线段
A BP (=A4) cm1 ,CD=1cm.
4 1
答:小明恰好听到歌曲的高潮部分的概率是 4
例3:取一个边长为2a的正方形及其内切圆,随机 地向正方形内丢一粒豆子,那么豆子落入圆内的 概率为多少?
解:记“豆子落入圆内”为事件
A. P(A)
问题1:有多少种不同的剪法? 问题2: 如何选取剪断的位置,使得两段的长都不小于 10cm? 问题3: 如何计算事件A“剪得两段的长都不小于 10cm”的概率?
M
C
D
N
一个基本事件? 所有基本事件所构成区域? 随机事件A所构成区域? 事件A发生的概率?
高中数学 第3章 概率课件 北师大版必修3
北师大版 ·必修3
路漫漫其修远兮 吾将上下而求索
概率 第三章
古代有个王国世代沿袭着一条奇特的法规:凡是死囚在临 刑前都要抽一次“生死签”.如果抽到“死”字的签则立即处 刑;如果抽到“生”字的签则被认为这是神的旨意应予当场赦 免.
一次国王决定处死一个“犯上”的大臣,把“生死签”的 两张纸都写成“死”字,由于走漏了消息,执反应过来, 嚼烂的纸早已吞下,执法官赶忙追问:“你抽到‘死’字签还 是‘生’字签?”囚臣说:“看剩下的签是什么字就清楚 了.”囚臣巧妙地利用了概率的知识救了自己一命.我们要认 真学习概率,正确地利用概率可以很好地服务于我们.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
高中数学 第三章 概率教案 北师大版必修3(2021年最新整理)
高中数学第三章概率教案北师大版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章概率教案北师大版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章概率教案北师大版必修3的全部内容。
高中数学第三章概率教案北师大版必修3错误!教学分析本节是对第三章知识和方法的归纳与总结,从总体上把握本章,使学生的基本知识系统化和网络化,基本方法条理化,本章共有三部分内容,是相互独立的,随机事件的概率是基础,在此基础上学习了古典概型和几何概型,要注意它们的区别和联系,了解人类认识随机现象的过程是逐步深入的,了解概率这门学科在实际中有着广泛的应用.三维目标通过总结和归纳本章的知识,使学生进一步了解随机事件,了解概率的意义,掌握各种概率的计算公式,能够用所学知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,让概率更好地为人类服务.重点难点概率的意义及求法,频率与概率的关系,概率的主要性质,古典概型的特征及概率公式的应用,几何概型意义的理解及会求简单的几何概型问题.课时安排1课时错误!导入新课思路1。
同样一张书桌有的整洁、有的凌乱,同样一支球队,在不同的教练带领下战斗力会有很大的不同,例如达拉斯小牛队在“小将军”约翰逊的带领下攻防俱佳所向披靡,为什么呢?因为书桌需要不断整理,球队需要系统的训练、清晰的战术、完整的攻防体系.我们学习也是一样需要不断归纳整理、系统总结、升华提高,现在我们就概率这一章进行归纳复习,引出课题.思路2。
为了系统掌握本章的知识,我们复习本章内容,教师直接点出课题.推进新课错误!错误!1.随机事件的概率包括几部分?2.古典概型包括几部分?3.几何概型包括几部分?4.本章涉及的主要数学思想是什么?5.画出本章的知识结构图.讨论结果:1.随机事件的概率随机事件是本章的主要研究对象,基本事件是试验中不能再分的最简单的随机事件.(1)概率的概念在大量重复进行的同一试验中,事件A发生的频率错误!总是接近于某一常数,且在它的附近摆动,这个常数就是事件A的概率P(A),概率是从数量上反映一个事件.求某一随机事件的概率的基本方法是:进行大量重复试验,用这个事件发生的频率近似地作为它的概率.(2)概率的意义与性质①概率是描述随机事件发生的可能性大小的度量,事件A的概率越大,其发生的可能性就越大;概率越小,事件A发生的可能性就越小.②由于事件的频数总是小于或等于试验的次数,所以频率在[0,1]之间,从而任何事件的概率在[0,1]之间,即0≤P(A)≤1.概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(3)频率与概率的关系与区别频率是概率的近似值.随着试验次数的增加,频率会越来越接近概率,频率本身也是随机的,两次同样的试验,会得到不同的结果;而概率是一个确定的数,与每次试验无关.2.古典概型(1)古典概型的概念①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.(2)古典概型的概率计算公式为P(A)=错误!.在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.学习古典概型要通过实例理解古典概型的特点:试验结果的有限性和每一个试验结果出现的等可能性.要学会把一些实际问题化为古典概型,不要把重点放在“如何计数”上.3.几何概型(1)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability),简称几何概型.(2)几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等.(3)几何概型的概率公式:P(A)=错误!.几何概型研究的是随机事件的结果有无限多个,且事件的发生只与区域的长度(面积或体积)成比例的概率问题.(4)随机数是在一定范围内随机产生的数,可以利用计算器或计算机产生随机数来做模拟试验,估计概率,学习时应尽可能利用计算器、计算机来处理数据,进行模拟活动,从而更好地体会概率的意义.4.本章涉及的主要思想是化归与转化思想(1)古典概型要求我们从不同的背景材料中抽象出两个问题:一是所有基本事件的个数即总结果数n,二是事件A所包含的结果数m,最后化归为公式P(A)=错误!.(2)几何概型中,要首先求出试验的全部结果所构成的区域长度和构成事件的区域长度,最后化归为几何概型的概率公式求解.5.如图1。
高中数学必修3北师大版3.3模拟方法-概率的应用名师教案
第三章概率3模拟方法——概率的应用一、教学目标1.了解模拟方法估计概率的实际应用,初步体会几何概型的意义;2.使学生能够运用模拟方法估计概率.二、设计思路与教学建议1.教科书首先回顾:可以通过大量重复试验,用随机事件发生的频率来估计其概率,但人工进行试验费时、费力,并且有时很难实现.由此说明用模拟方法来估计某些随机事件发生的概率的必要性.教师可让学生回忆在第一节中所用的一些模拟方法.2.教科书通过举例说明了模拟方法估计概率在实际中的一个应用:可以求出某些不规则图形的近似面积.求区域A的近似面积通常有两种方法.一种方法是几何的方法,比如可以通过几何作图将图中的正方形分成10×10个全等的小正方形,数出区域A中的小正方形的个数(边界处的小正方形如果有不少于一半的部分在区域A中,则认为这个小正方形在区域A中,否则不在区域A中),得出区域A的面积与正方形的面积之比,进而求出区域A的近似面积.要得到更好的估计值,可以把正方形分得更小,比如可以把正方形分成100×100个全等的小正方形,1000×1000个全等的小正方形等等.这种方法比较粗略,并且操作起来很麻烦.另一种方法就是概率的方法,向图1的正方形中随机地撒一粒芝麻,这个试验具有以下特点:(1)正方形有有限的度量即面积,一次试验是向正方形内随机投一点,试验的所有可能结果就是正方形内的所有点,因此有无限个.(2)正方形内任何一点被投到的可能性是相同的.所投的点落在正方形中某个区域A内的可能性与A的面积成正比,而与A在正方形中的位置、形状无关.这类随机试验的数学模型我们称为几何概型(几何概型的相关内容见备用课程资源).在上述几何概型中,P(芝麻落在A内)=区域A的面积/正方形的面积.我们可以大量重复进行向正方形中随机撒一粒芝麻的试验,撒一把芝麻,数出落在A内的芝麻数和落在正方形内的芝麻数,用落在A内的芝麻的频率来估计P(芝麻落在A内),从而求出区域A的面积的近似值.教科书中没有介绍几何概型,而是通过向图2的正方形和图3的长方形中随机地撒芝麻的试验,说明近似地有落在区域A内的芝麻数落在正方形内的芝麻数=区域A的面积正方形的面积,再由这个式子就可求得区域A的近似面积.图2图3教科书在讲解时分3步进行,以帮助学生理解.第一步是向图2的正方形中撒芝麻,区域A是一个面积为大正方形的14的小正方形,由于每一粒芝麻落在正方形内的每一个位置的可能性都是相同的,学生容易得出大约有14的芝麻落在区域A中,因此近似的有落在区域A内的芝麻数/落在正方形内的芝麻数=区域A的面积/正方形的面积.第二步是反过来,向图3的长方形中随机地撒芝麻,利用落在区域B中的芝麻数占整个长方形中的芝麻数的20%,得出区域B的面积近似地是整个长方形的面积的20%,这里区域域B是学生熟悉的长方形.第三步就是利用第二步的思想,来求不规则图形的近似面积?闭庋?设计易于学生接受,教师在讲课时也可按这三步进行.教学中可以根据学生的情况简单介绍一下几何概型.本章的章头图中的“投针问题”就是一个非常有名的几何概型,它是由法国数学家蒲丰提出的.在平面上画有一些平行直线,每两条相邻的平行直线之间的距离都为a,向此平面上任投一长度为b(b<a)的针,利用几何概型的概率计算公式,可以求得针与任一平行直线相交的概率为2bπa.大量重复向平面内投针的试验,投大量的针,数出所投的针数和与平行线相交的针数,用针与平行线相交的频率去估计针与平行线相交的概率,就可求出π的近似值.如果所投针数为n,与平行线相交的针数为m,由2bπa≈mn,可得π≈2bnam.关于“投针问题”的详细内容.可参考《概率论与数理统计》(严士健,刘秀芳,徐承彝编.北京:高等教育出版社.1990).<a)的针,利用几何概型的概率计算公式,可以求得针与任一平行直线相交的概率为2bπa,大量重复向平面内投针的试验,投大量的针,数出所投的针数和与平行线相交的针数,用针与平行线相交的频率去估计针与平行线相交的概率,就可求出π的近似值.如果所投针数为n,与平行线相交的针数为m,由2bπa≈mn,可得π≈2bnam.关于“投针问题”的详细内容,可参考《概率论与数理统计》(严士健,刘秀芳,徐承彝编,北京:高等教育出版社,1990).<A)的针,利用几何概型的概率计算公式,可以求得针与任一平行直线相交的概率为2BΠA.大量重复向平面内投针的试验,投大量的针,数出所投的针数和与平行线相交的针数,用针与平行线相交的频率去估计针与平行线相交的概率,就可求出Π的近似值.如果所投针数为N,与平行线相交的针数为M,由2BΠA≈MN,可得Π≈2BNAM.关于“投针问题”的详细内容,可参考《概率论与数理统计》(严士健,刘秀芳,徐承彝编?北本?:高等教育出版社??1990).【阅读理解】就我国现在的情况,很多地方还没有普及计算机(甚至还没有普及计算器).为体现出学习背景的公平性,教科书在用随机数进行模拟时仅要求用随机数表产生随机数,计算机(计算器)产生随机数作为了解.但随着信息技术的发展,信息技术与课程内容结合是必然的趋势,因此,在教参前面的内容里,我们介绍了如何利用计算器产生随机数;在教科书的这一节,我们在阅读理解栏目里介绍了利用计算机模拟来估计不规则区域A的面积,这种计算方法称为蒙特卡洛(Monte―Carlo)方法.具体的模拟过程见备用课程资源.利用计算机完成1000次模拟,教科书中的表格给出了部分数据.根据模拟结果,区域A的面积约为0.667,其理论值为23,二者非常地接近.教师可通过介绍,让学生了解计算机模拟的优越性.【问题提出】让学生通过自己的分析来判断随机事件发生的可能性的大小.对第(1)问,教师可以先让学生思考,作出自己的判断,再与同学交流各自的看法,并说明理由.【动手实践】让学生用转盘来进行模拟,对“晚报在晚餐开始之前被送到”的概率作出估计.教师应先准备好教科书上所示的转盘,两人一组,一人转动转盘,另一人记录结果,做完50次模拟后一组内两人再交换.记录前可先画出如下表格:晚报晚餐1次2次………50次图4每个班级模拟的结果可能是不一样的,理论上可以算得“晚报在晚餐开始之前被送到”的概率为7/8,即0.875.</a)的针,利用几何概型的概率计算公式,可以求得针与任一平行直线相交的概率为2bπa,大量重复向平面内投针的试验,投大量的针,数出所投的针数和与平行线相交的针数,用针与平行线相交的频率去估计针与平行线相交的概率,就可求出π的近似值.如果所投针数为n,与平行线相交的针数为m,由2bπa≈mn,可得π≈2bnam.关于“投针问题”的详细内容,可参考《概率论与数理统计》(严士健,刘秀芳,徐承彝编,北京:高等教育出版社,1990).在平面上建立如图所示直角坐标系,图中直线x=6,x=7,y=5.5,y=6.5围成一个正方形区域G.设晚餐在x(6≤x≤7)时开始,晚报在y(5.5≤y≤6.5)时被送到,这个结果与平面上的点(x,y)对应.于是试验的所有可能结果就与G中的所有点一一对应.由题意知,每一个试验结果出现的可能性是相同的,因此,试验属于几何概型.晚报在晚餐开始之前被送到,当且仅当yg的面积/G的面积=7/8.【思考交流】教师可先让学生思考,作出自己的判断并说明理由.若晚报在下午5:45~6:45之间的任何一个时间随机地被送到,则晚报在5:45~6:00之间送到,或晚餐在6:45~7:00之间开始,都使得晚报的送达在晚餐开始之前,但相对于上面的问题来说,这个时间段变短了,因此“晚报在晚餐开始之前被送到”的概率相对上面的问题来说变小了.用两个转盘去完成至少50次模拟,估计出“晚报在晚餐开始之前被送到”的概率,模拟的结果与上面的结论应是吻合的.仿照前面的方法,理论上可以算得“晚报在晚餐开始之前被送到”的概率为23/32,这个值比7/8小.【练习】1.因为抛掷一枚硬币只有两个等可能的结果:正面朝上和反面朝上,所以,如果一个随机试验只有两个等可能的结果,就可以用抛掷一枚硬币来模拟,比如甲、乙两人抓阄决定一件奖品的归属,只有甲中奖和乙中奖这两个等可能的结果,因此可以用抛掷硬币来模拟.2.对于第一个转盘,可以在随机数表中去掉0,5,6,7,8,9,用1,2,3,4分别代表转动转盘指针指向转盘的1,2,3,4部分?痹谒婊?数表中随机选择一个开始点,顺次往后,每次产生一个随机数就完成一次模拟.对于第二个转盘,编号为2的部分的面积与编号为1的部分的面积之比为165∶15=11∶1.可以在随机数表中考虑相邻的两个数字,这样产生的随机数为00,01,02,…,99.在产生的两位随机数中去掉12,13,…,99,用00代表转动转盘指针指向转盘的编号为1的部分,用01,02,…,11这11个数代表转动转盘指针指向转盘的编号为2的部分.在随机数表中随机选择一个开始点,顺次往后,每次产生一个两位随机数就完成一次模拟.用模拟方法估计概率,每个人的模拟结果可能是互不相同的.。
高中数学北师大版必修三3.3 教学课件 《模拟方法--概率的应用》
北京师范大学出版社 | 必修三
探索新知
基 (1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的 本 长度(面积或体积)成比例,则称这样的概率模型为几何概率模型。 概 念
(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个。
2)每个基本事件出现的可能性相等。
北京师范大学出版社 | 必修三
方法小结:
北京师范大学出版社 | 必修三
1.几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适 用条件:每个事件发生的概率只与构成该事件区域的长度成比例 。 2.均匀随机数在日常生活中,有着广泛的应用,我们可以利用计算器或计算机来产生均匀随 机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量 (如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量 。
北京师范大学出版社 | 必修三
3.利用概率来估计数值的题目的两个步骤: (1)求概率:先利用频率等方法求出事件的概率。 (2)估计值:利用概率的稳定性,根据频率公式估计数值。
作业
北京师范大学出版社 | 必修三
1.做一做(请把正确的答案写在横线上) (1)在区间[0,3]内任意取一个数,则此数大于 2 的概率为______。 (2)如图所示,转盘上有 8 个面积相等的扇形,转动转盘,则转盘停止转动时指 针落在阴影部分的概率为________。
北京师范大学出版社 | 必修三
例题解析
例 1 (1)(2013·福建高考)利用计算机产生 0~1 的均匀随机数 a,则事件“3a-1>0”的概率 为________。 (2)(2013·宝鸡高二检测)已知实数 a 满足下列两个条件:
高中数学必修3北师大版 概率的应用及章节复习 教案
3.3模拟方法――概率的应用一、教学目标:1、通过实例进一步丰富对概率的认识。
2、紧密结合实际,培养应用数学的意识。
二、教学重难点:1、重点:体验概率和实际生活的密切联系。
2、难点:对例2题意的理解。
三、教学方法:探究交流,讲练结合四、教学过程:(一)人寿保险随着经济的发展,人的保险意识也随之而提高,知道为什么不同年龄的人人寿保险费是不一样吗?中国人寿保险是根据什么来确定人寿保险费的呢?我们一起来看一个表格。
例2.生命表又称死亡表,是人寿保险费率计算的主要依据,如下图是1996年6月中国人民银行发布的中国人寿保险经验生命表,(1990-1993年)的部分摘录,根据表格估算下列概率(结果保留4个有效数字)(1)某人今年61岁,他当年死亡的概率.(3)一个80岁的人在当年死亡的概率是多少?(4)如果有10000个80岁的人参加寿险投保,当年死亡的人均赔偿金为a元,那么估计保险公司需支付当年死亡的人的赔偿金额为多少元?师提示:对lx、dx 的含义举例说明:对于出生的每百万人,活到30岁的人数l30=976611人(x=30),其中有部分人活不到31岁,我们看看在30岁这一年龄死亡的人数d30=755人,活到30岁的人数l30=976611人减去当年死亡的人数755就等于活到31岁的人数l31975856(人).师提示:活到61岁的人数有多少?当年死亡的人数有多少?如何求一个61的人当年死亡的概率?解(1) 由表知,61岁的生存人数l61=867685,61岁的死亡人数=d6110853,所以所求死亡的概率师提示:活到30岁的人数有多少?其中能活到62岁的人有多少?一个31岁的人能活到62岁的概率怎么求?2) 由表知,l31=975856, l62=856832,所以所求的概率: (二)交通事故寿命的增长、保险意识的提高侧面反映了社会经济的飞速发展;经济的发展,带动了道路建设,交通发展,从而安全隐患随之增长。
数学北师大版必修3知识导航3.3模拟方法——概率的应用
§3 模拟方法——概率的应用知识梳理 概率,但确定随机事件发生的频率常常需要人工做大量的重复模拟方法来估计某些随机事件发生的概率.大量的重复试验,可以节约大量的时间和金钱,所以它是一种非常有效而且应用广泛的方法.例如,使用随机数来模拟大量的抛掷硬币的试验;求不规则图形的近似面积或不规则物体的近似体积;利用计算机模拟自然灾害的发生等.当现实中的试验难以实施或不可能实施时,模拟可以给我们提供一个解决问题的方案. 知识导学在古典概型中利用等可能性的概念,成功地计算了某一类问题的概率,不过,古典概型要求的可能结果的总数必须是有限个.但现实中许多问题的结果却是无限多个,我们希望把这种做法推广到无限多结果,而又有某种等可能性的场合,得到随机事件的概率,这便用到模拟方法,如前面我们利用随机数表产生随机数来模拟抛掷硬币的试验、通过4人依次摸球来模拟摸奖活动等都是模拟方法.模拟方法的基本思想可以通过几何概型来体现.几何概型也是一种概率模型,它是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个;它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.大家可以通过一些实物模型(落在某区域内的芝麻、转盘等模型),体会几何概型的意义和几何概型的概率公式;结合实例弄清几何概型的两个基本特征:(1)无限性,在一次试验中,可能出现的结果有无限个;(2)等可能性,每个结果的发生是等可能的.利用模拟方法,可以来估计现实生活中某些随机事件的概率.疑难突破1.古典概型与几何概型的区别剖析:几何概型与古典概型中基本事件发生的可能性都是相等的(等可能性是一致的);但几何概型的基本事件总数有无限多个,古典概型的基本事件总数有有限个.古典概型中试验的所有结果只有有限个,每次试验只出现其中的一个结果,并且每一次试验结果出现的可能性相同;而几何概型中进行一次试验相当于向几何体G 中取一点,对G 内任意子集,事件“点取自g ”的概率与g 的测读(长度、面积或体积)成正比,而与g 在G 中的位置、形状无关.例如,抛掷硬币出现正面或者反面的概率属于古典概型问题,而向一个大小一定的正方形及其内切圆内随机丢一粒种子,求种子落入内切圆的概率,这就属于几何概型问题. 古典概型中随机事件A 的概率可以通过公式P (A )=n m 来计算;而几何概型事件A 的概率的计算公式为P (A )=.)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构造事件A 2.用随机模拟估算几何概率剖析:随机模拟试验是研究随机事件的概率的重要方法.用计算机或计算器模拟试验,关键是把实际问题中的事件A 及基本事件总体对应的区域转化为随机数的范围,即转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数来刻画影响随机事件结果的量.可从以下几个方面考虑:(1)由影响随机事件结果的量的个数确定需要产生的随机数的组数;如长度、角度型只用一组,而面积型需要两组;(2)由所有基本事件总体对应区域确定产生随机数的范围;(3)由事件A 发生的条件确定随机数所应满足的关系式.典题精讲例1 某人午觉醒来,发现表停了,他打开收音机,想收听电台报时,求他等待的时间不多于10分钟的概率.思路分析:假设他在0~60分钟之间任何一个时刻打开收音机是等可能的,但0~60分钟之间有无穷多个时刻,故不能用古典概型的公式计算随机事件发生的概率,我们可以通过随机模拟的方法得到事件发生的概率的近似值,也可以通过几何概型的求概率公式得到.因为电台每隔1小时报时一次,他在0~60之间任何一个时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A ={等待的时间不多于10分钟},我们所关心的事件A 恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型的求概率的公式得P (A )=61605060=-,即“等待报时的时间不超过10分钟”的概率为61. 绿色通道:本例中,打开收音机的时刻x 是随机的,可以是0~60分钟之间的任一时刻,并且是等可能的,我们称x 服从[0,60]上的均匀分布,x 是[0,60]上的均匀随机数.变式训练 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段都不少于1 m 的概率有多大?思路分析:从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,其基本事件有无限多个,所以,可用几何概型考虑.解:记“剪得两段都不少于1 m”为事件A ,把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生,由于中间一段的长度等于绳长的31,所以事件A 发生的概率是P (A )=31. 例2 某汽车站每隔10分钟有一班汽车通过,求乘客候车时间不超过4分钟的概率,并尝试用计算机模拟该试验.思路分析:本题为一道综合性问题,先分析出所求的问题为几何概型,再根据几何概型的计算公式计算结果,最后设计出模拟试验.解:设乘客到达车站的时间是随机的,则由题意可得,P (A )=.52)10,0()4,0(=的长度区间的长度区间 模拟试验:用计数器n 记录做了多少次试验,用计数器m 记录其中有多少次出现在(0,4)内,变换rand()*产生随机数,并判断随机数是否在[10n ,10n +4]之中,如果在,则为m+1,如果不在则m 保持不变.变式训练 甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白三种颜色的球各2个,从两个盒子中各取1个球.(1)求取出的两个球是不同颜色的概率.(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).解:(1)设A =“取出的两球是相同颜色”,B =“取出的两球是不同颜色”.则事件A 的概率为:P (A )=.92692323=⨯⨯+⨯ 由于事件A 与事件B 是对立事件,所以事件B 的概率为:P (B )=1P (A )=1.9792 (2)随机模拟的步骤:第1步:利用计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N 个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球. 第2步:统计两组对应的N 对随机数中,每对中的两个数字不同的对数n .第3步:计算N n Nn 就是取出的两个球是不同颜色的概率的近似值. 例3 某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?思路分析:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%. 解:S1:利用计算机或计算器可以产生0到9之间的取整数值的随机数.S2:1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%. 因为是投篮三次,所以每三个随机数作为一组.例如:产生20组随机数:812,932,569,683,271,989,730,537,925,907,113,966,191,431,257,393,027,556,156,278.这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为205=25%. 变式训练 同时抛掷两枚骰子,计算都是1点的概率.思路分析:抛掷两枚骰子,相当于产生两个1到6的随机数,因而我们可以产生随机数,然后两个一组分组,每组第一个数表示一枚骰子的点数,第二个数表示第二枚骰子的点数.解:利用计算器或计算机产生1到6的取整数值的随机数,两个随机数作为一组,统计随机数总组数N 及其中两个随机数都是1的组数N 1,则频率NN 1即为抛掷两枚骰子都是1点的概率的近似值.问题探究问题 如图3-3-1的正方形中随机撒一大把豆子,设计一个可以估计出落在圆中的豆子数与落在正方形中的豆子数之比的模拟试验,你能以此估计出圆周率吗?图3-3-1探究:利用计算机或计算器产生随机数模拟上述过程,步骤如下:第一步:产生0~1区间的均匀随机数,a 1=rand,b 1=rand;第二步:经平移和伸缩变换,a =(a 10.5)*2,b =(b 10.5)*2;第三步:数出落在圆a 2+b 2<1内的豆子数N 1,计算π=NN 14(N 表示落在正方形中的豆子数).同时我们会发现,随着试验次数的增加,得到的π的近似值精度会越来越高.。
2020-2021学年北师大版数学必修三课件:3.3 模拟方法——概率的应用
P(A)=
构成事件A的区域长度
试验的全部结果所构成的区域长度.
2.与长度有关的几何概型解题三步骤
(1)找到区域D,这时区域D可能是一条线段或几条线段或曲线段,并计算区域D的
长度.
(2)找到事件A发生时对应的区域d,确定d的边界点是问题的关键.
(3)利用几何概型概率公式求概率.
【跟踪训练】 取一根长度为4 m的绳子,拉直后在任意位置剪断,那么剪得的两段都不少于 1 m的概率是________.
(2)解与面积有关的几何概型问题应注意:
①根据题意确认所求问题的基本事件是否与面积有关;
②找出或构造随机事件对应的几何图形,并能求出有关图形的面积;
③在研究射击、射箭、射门、投掷等问题时,常转化为几何概型,利用面积计算
来求其概率.
【题组训练】
1.在长为12 cm的线段AB上任取一点C,现作一矩形,邻边长分别等于线段AC,CB
的长,则该矩形的面积大于20 cm2的概率为
()
A. 1
B. 1
C. 2
D. 4ቤተ መጻሕፍቲ ባይዱ
6
3
3
5
【解析】选C.设|AC|=x,则|BC|=12-x,所以x(12-x)>20,解得2<x<10,故所求概
率P= 10 2 2 .
12 3
2.(2020·芜湖高一检测)中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于 装点生活或配合其他民俗活动的民间艺术,蕴含了极致的数学美和丰富的传统 文化信息.现有一幅剪纸的设计图,其中的4个小圆均过正方形的中心,且内切于 正方形的两邻边.若在正方形内随机取一点,则该点取自黑色部分的概率为 ()
4
________.
【思路导引】1.结合汽车停留时间与乘客到达车站的时刻,应用几何概型计算.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版高中数学概率的应用
__________________________________________________________________________________ __________________________________________________________________________________
1.学会古典概型、几何概型在实际问题中的应用。
2.能在具体问题中分析出问题是那种类型的概率。
1. 概率的应用
概率是描述随机事件发生可能性大小的度量,它已经渗透到人们的日常生活中,成为一个常用
的词汇.任何事件的概率是________之间的一个数,它度量该事件发生的可能性.小概率事件
(__________)很少发生,而大概率事件(__________)则经常发生.
2. 极大似然法
如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性
最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.极大似然法是统计中重要的思
想方法之一.
类型一概率的应用
例1:在一场乒乓球比赛前,要决定由谁先发球,裁判员拿出一个象大硬币似的均匀塑料圆板
抽签器,一面是红圈,一面是绿圈,然后随意指定一名运动员,要他猜抛出的抽签器落到球台上时,是红圈朝上还是绿圈朝上,如果他猜对了就由他发球,否则由对方发球,请就裁判员的这一做法作
出解释.
练习:下面给出的游戏规则,哪些是公平的?
(1)抛掷一枚均匀硬币,正面朝上甲胜,反面朝上乙胜;
(2)抛掷两枚均匀硬币,朝上一面相同甲胜,朝上一面一正一反乙胜;
(3)抛掷一枚均匀骰子,出现奇数点甲胜,出现偶数点乙胜;
(4)抛掷一枚均匀骰子,出现小点(1,2,3点)甲胜,出现大点(4,5,6点)乙胜;
(5)抛掷两枚均匀骰子,点数相邻(如4,5点)或相同(如1,1点)甲胜,点数不相邻(如1,3点)乙胜;
(6)口袋中有一红一白两个球,从中摸出一球得红球甲胜,得白球乙胜;
(7)口袋中有两红、两白共4个球取出两球,这两球同色甲胜,不同色乙胜;
(8)口袋中有3个红球,1个白球,摸取两球这两球同色甲胜,不同色乙胜.
类型二古典概型及其应用
例2:连续抛掷两颗骰子,设第一颗点数为m,第二颗点数为n,则求
(1)m+n=7的概率;
(2)m=n的概率;
(3)m·n为偶数的概率.
练习1:有2个人在一座11层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一
层离开是等可能的,求2个人在不同层离开的概率.
类型三几何概型及其应用
例3:在间隔时间T(T>2)内的任何瞬间,两个信号等可能地进入收音机.若这两个信号的间隔
时间小于2,则收音机将受到干扰,试求收音机受到干扰的概率(单位:秒).
练习1:设有一个等边三角形网格,如图所示,等边三角形的边长是43cm,现有直径等于2cm 的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.
练习2:在0~1之间随机选择两个数,这两个数对应的点把0~1之间的线段分成了三条,试
求这三条线段能构成三角形的概率.
类型四极大似然数
例4:抛掷10枚硬币,全部正面朝上.试就这一现象,分析这些硬币的质地是否均匀.
1.从4名选手甲、乙、丙、丁中选取2人组队参加奥林匹克竞赛,其中甲被选中的概率为( )
A.1
3
B.
1
2
C.
2
3
D.
3
5
2.在120个零件中,有一级品24个,二级品36个,三级品60个,从中抽取容量为20的一个样本,则每个个体被抽到的概率为( )
A.
1
120
B.
1
20
C.
1
60
D.
1
6
3.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为( )
A.π
4
B.1-
π
4
C.
π
8
D.1-
π
8
4.口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一球,
摸出白球的概率为0.23,那么摸出黑球的概率为________,摸出红球或黑球的概率为________.5.某公共汽车站每隔10 min就有一趟车经过,小王随机赶到车站,则小王等车时间不超过 4 min 的概率是_______.
6.甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.
(1)若以A表示和为6的事件,求P(A);
(2)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是
否为互斥事件?为什么?
(3)这种游戏规则公平吗?试说明理由.
_________________________________________________________________________________
_________________________________________________________________________________
基础巩固
一、选择题
1.从一篮鸡蛋中取1个,如果其重量小于30克的概率是0.30,重量在[30,40]克的概率是0.50,则重量不小于30克的概率是()
A.0.30B.0.50
C.0.80D.0.70
2.调查运动员服用兴奋剂的时候,应用Warner随机化方法调查300名运动员,得到80个“是”的回答,由此,我们估计服用过兴奋剂的人占这群人的()
A.3.33% B.53%
C.5% D.26%
3.袋中有红、黄、白色球各一个,每次任取一个,有放回地抽取3次,则下列事件中概率是8 9的
是()
A.颜色全相同B.颜色不全相同
C.颜色全不相同D.颜色无红色
4.4名学生与班主任站成一排照相,班主任站在正中间的概率是()
A.1
5
B.
1
4
C.1
3
D.
1
2
5.甲、乙乒乓球队各有运动员三男两女,其中甲队一男与乙队一女是种子选手,现在两队进行混合双打比赛,则两个种子选手都上场的概率是()
A.1
6
B.
5
36
C.
5
12
D.
1
3
6.x是[-4,4]上的一个随机数,则使x满足x2+x-2<0的概率为()
A.1
2
B.
3
8
C.5
8
D.0
二、填空题
7.在3名女生和2名男生中安排2人参加一项交流活动,其中至少有一名男生参加的概率为
________.
8.口袋中装有100个大小相同的红球、白球和黑球,从中任意摸出一个,摸出红球或白球的概
率为0.75,摸出白球或黑球的概率为0.60,那么口袋中共有白球、红球、黑球各________个.
三、解答题
9.今有长度不等的电阻丝放在一起,已知长度在84~85 mm间的有三条,长度在85~86 mm 间的有四条,长度在86~87 mm间的有五条,从中任取一条,求:
(1)长度在84~86 mm间的概率;
(2)长度在85~87 mm间的概率.
能力提升
一、选择题
1.甲、乙、丙、丁四人做相互传递球练习,第一次甲传给其他三人中的一人(假设每个人得到球的概率相同),第二次由拿球者再传给其他三人中的一人,这样共传了三次,则第三次球仍传回到
甲手中的概率为()
A.3
9
B.
2
9
C.
3
10
D.
7
10
2.一只蚂蚁在一直角边长为1cm的等腰直角三角形ABC(∠B=90°)的边上爬行,则蚂蚁距A 点不超过1cm的概率为()
A.
2
2
B.
2
3
C.2- 3 D.2- 2
二、填空题
3.从甲、乙、丙、丁四人中选两名代表,甲被选中的概率是____________.
4.取一个边长为2a的正方形及其内切圆如图,随机向正方形内丢一粒豆子,豆子落入圆内的概率为______________________.
三、解答题
5.已知直线Ax+By+1=0,若A、B从-3,-1,0,2,7这5个数中选取不同的两个数,求斜率
小于0的直线的概率.
6.某饮料公司对一名员工进行测试以便确定考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,测评为优秀;若3杯选对2杯测评为良好;否则测评为合格.假设此人对A和B饮料没有鉴别能力.
(1)求此人被评为优秀的概率;
(2)求此人被评为良好及以上的概率.。