四边形1、2节

合集下载

中考数学第十一单元四边形课标解读典例诠释复习1

中考数学第十一单元四边形课标解读典例诠释复习1

第十一单元四边形第一节多边形与平行四边形课标解读知识要点1.多边形的内角和与外角和(1)n边形内角和为;多边形外角和为 .(2)如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和 .2.正多边形定义:各个角,各条边的多边形叫做正多边形.对称性:正多边形都是对称图形,边数为偶数的正多边形也是对称图形.3.平行四边形(1)定义:有两组对边分别平行的四边形叫做平行四边形.(2)性质:①平行四边形的对边;②平行四边形的对角,邻角;③平行四边形的对角线;(3)平行四边形的对称性:,是它的对称中心;(4)平行四边形的面积:;同底(等底)同高(等高)的平行四边形面积.(5)平行四边形的判定方法①两组对边分别的四边形是平行四边形(定义);②两组对边分别的四边形是平行四边形;③一组对边的四边形是平行四边形;④对角线的四边形是平行四边形.典例诠释考点一多边形的内角和与外角和例1 正十边形的每个外角等于( )A.18°B.36°C.45°D.60°【答案】 B【名师点评】根据正多边形的每一个外角等于多边形的外角和除以边数,计算即可得解.例2 (2016·丰台一模)如图1-11-1,在同一平面内,将边长相等的正三角形、正五边形的一边重合,则∠1= °.图1-11-1【答案】 48【名师点评】此题先要求出正五边形的每个内角度数(利用多边形的内角和或外角和来求,外角和比较简单,学生应掌握),从而问题得解.例3 (2016·燕山一模)如图1-11-2,一个正n边形纸片被撕掉了一部分,已知它的中心角是40°,那么n=.图1-11-2【答案】 9考点二平行四边形性质与判定的综合应用,四边形的计算例4 (2016·平谷一模)如图1-11-3,ABCD中点E是BC边的一点,将边AD延长至点F,使∠AFC=∠DEC,连接CF,DE.(1)求证:四边形DECF是平行四边形;(2)若AB=13,DF=14,tan A=,求CF的长.图1-11-3(1)【证明】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠DEC.∵∠AFC=∠DEC,∴∠AFC=∠ADE,∴DE∥FC.∴四边形DECF是平行四边形.(2)【解】如图1-11-4,过点D作DH⊥BC于点H,图1-11-4∵四边形ABCD是平行四边形,∴∠BCD=∠A,AB=CD=13.∵ tan A=,AB=13,∴DH=12,CH=5.∵DF=14,∴CE=14,∴EH=9.∴ED==15,∴CF=DE=15.【名师点评】 (1)考查平行四边形的性质和判定,易知AF∥BC,结合条件∠AFC= ∠DEC,可以推导出∠AFC+∠EDF=180°(也可以用内错角和同位角),从而得到DE∥FC,问题得证,此问解答方法不唯一.(2)将分散的条件集中到一个三角形里,如△DCF中(或△DEC中),出现了∠A的正切值,考虑要构造直角三角形,故可以过D点作BC的垂线,从而问题得解.基础精练1.(2016·大兴一模)若正多边形的一个内角是120°,则这个正多边形的边数为( )【答案】 C2.(2016·东城一模)已知一个正多边形的每个外角都等于72°,则这个正多边形的边数是 .【答案】 53.(2016·延庆一模)如图1-11-5,AB∥DC,要使四边形ABCD是平行四边形,还需补充一个..条件: .图1-11-5【答案】AD∥BC或AB=DC或∠A+∠B=180°等4.(2016·海淀一模)如图1-11-6,在ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为( )图1-11-6A.5 B.4 C.3 D.2【答案】 D5.(2014·河南)如图1-11-7,ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=4,AC=6,则BD的长是( )图1-11-7【答案】 C6.(2014·昆明)如图1-11-8,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )图1-11-8∥CD,AD∥BC=OC,OB=OD=BC,AB∥CD=CD,AD=BC【答案】 C7.(2014·十堰)如图1-11-9,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD 于点E,则△CDE的周长是( )图1-11-9【答案】 B8.(2014·临沂)如图1-11-10,在ABCD中,BC=10,sin B=,AC=BC,则ABCD的面积是 .图1-11-10【答案】 189.(2014·自贡)一个多边形的内角和比它的外角和的3倍少180°,则它的边数是 . 【答案】 710.(2016·海淀二模)如图1-11-11,边长相等的正方形、正六边形的一边重合,则∠1的度数为( )图1-11-11°°°°【答案】 C11.(2016·西城二模)有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图1-11-12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为.图1-11-12【答案】105°12.(2016·通州二模)在数学课上,老师提出如下问题:已知:如图1-11-13,线段AB,BC,求作:平行四边形ABCD.图1-11-13小明的作法如下:如图1-11-14:(1)以点C为圆心,AB长为半径画弧;(2)以点A为圆心,BC长为半径画弧;(3)两弧在BC上方交于点D,连接AD,CD,四边形ABCD为所求作平行四边形.图1-11-14老师说:“小明的作法正确.”请回答:小明的作图依据是 .【答案】两组对边分别相等的四边形是平行四边形13.(2016·房山一模)如图1-11-15,在ABCD中,E为BC中点,过点E作EG⊥AB于G,连接DG,延长DC,交GE的延长线于点H.已知BC=10,∠GDH=45°,DG=8.求CD的长.图1-11-15【解】∵四边形ABCD是平行四边形,∴AB∥CD.∵EG⊥AB于点G,∴∠BGE=∠EHC=90°.在△DHG中,∠GHD=90°,∠GDH=45°,DG=8,∴DH=GH=8.∵E为BC中点,BC=10,∴BE=EC=5.∵∠BEG=∠CEH,∴△BEG≌△CEH,∴GE=HE=GH=4.在△EHC中,∠H=90°,CE=5,EH=4,∴CH=3,∴CD=5.14.(2016·怀柔一模)如图1-11-16,在△ABC中,D为AB边上一点,F为AC的中点,过点C作CE∥AB交DF的延长线于点E,连接AE.(1)求证:四边形ADCE为平行四边形;(2)若EF=2,∠FCD=30°,∠AED=45°,求DC的长.图1-11-16(1)【证明】∵CE∥AB,∴∠DAF=∠ECF.∵F为AC的中点,∴AF=CF.在△DAF和△ECF中,∴△DAF≌△ECF,∴AD=CE.∵CE∥AB,∴四边形ADCE为平行四边形.(2)【解】如图1-11-17,作FH⊥DC于点H.图1-11-17∵四边形ADCE为平行四边形,∴AE∥DC,DF=EF=2,∴∠FDC=∠AED=45°.在Rt△DFH中,∠DHF=90°,DF=2,∠FDC=45°,∴ sin∠FDC==,得FH=2,tan∠FDC==1,得DH=2.在Rt△CFH中,∠FHC=90°,FH=2,∠FCD=30°,∴FC=4.由勾股定理,得HC=2.∴DC=DH+HC=2+2.15.(2016·昌平二模)在△OAB中,∠OAB=90°,∠AOB=30°,OB=4.以OB为边,在△OAB 外作等边△OBC,E是OC上的一点.(1)如图1-11-18,当点E是OC的中点时,求证:四边形ABCE是平行四边形;(2)如图1-11-19,点F是BC上的一点,将四边形ABCO折叠,使点C与点A重合,折痕为EF,求OE的长.图1-11-18 图1-11-19(1)【证明】如图1-11-18,∵△OBC为等边三角形,∴OC=OB,∠COB=60°.∵点E是OC的中点,∴EC=OC=OB.在△OAB中,∠OAB=90°,∵∠AOB=30°,∴AB=OB,∠COA=90°.∴CE=AB,∠COA+∠OAB=180°,∴CE∥AB,∴四边形ABCE是平行四边形.(2)【解】如图1-11-19,∵四边形ABCO折叠,点C与点A重合,折痕为EF,∴△CEF≌△AEF,∴EC=EA.∵OB=4,∴OC=BC=4.在△OAB中,∠OAB=90°,∵∠AOB=30°,∴OA=2.在Rt△OAE中,由(1)知:∠EOA=90°,设OE=x,∵ ,∴ +,解得x=,∴OE=.16.(2016·西城一模)有这样一个问题:如图1-11-20,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:图1-11-20(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图1-11-20,在筝形ABCD中,AB=AD,CB=CD求证:.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明;如果不成立,请举出一个反例,画出图形,并加以说明.【解】 (1)已知:如图1-11-21,筝形ABCD中,AB=AD,CB=CD.求证:∠B=∠D.图1-11-21【证明】连接AC.如图1-11-21,在△ABC和△ADC中,∴△ABC≌△ADC,∴∠B=∠D.(2)筝形的其他性质:①筝形的两条对角线互相垂直,②筝形的一条对角线平分一组对角,③筝形是轴对称图形,……(写出一条即可)(3)不成立.反例如图1-11-22所示.图1-11-22在平行四边形ABCD中,AB≠AD.对角线AC,BD相交于点O,由平行四边形性质可知此图形满足∠ABC=∠平分BD.但是该四边形不是筝形.(答案不唯一)17.(2014·浙江嘉兴)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1-11-23,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.图1-11-23(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图1-11-24),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;图1-11-24②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.【解】 (1)∵等对角四边形ABCD中,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°-70°-80°-80°=130°.(2)①如图1-11-25,连接BD.图1-11-25∵AB=AD,∴∠ABD=∠ADB.∵∠ABC=∠ADC,∴∠ABC-∠ABD=∠ADC-∠ADB,∴∠CBD=∠CDB,∴CB=CD,②不正确.反例:如图1-11-26,∠A=∠C=90°,AB=AD.但CB≠CD.图1-11-26 图1-11-27(3)①如图1-11-27,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E.∵∠ABC=90°,∠DAB=60°,AB=5,∴AE=10,∴DE=AE-AD=10-4=6.∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2,②如图1-11-28,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,图1-11-28∵DE⊥AB,∠DAB=60°,AD=4,∴AE=2,DE=2,∴BE=AB-AE=5-2=3.∵四边形BFDE是矩形,∴DF=BE=3,BF=DE=2.∵∠BCD=60°,∴CF=,∴BC=CF+BF=+2=3,∴AC===2.18.(2016·东城一模)在课外活动中,我们要研究一种四边形——筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1-11-29①).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.①②图1-11-29下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图1-11-29②,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积. 【解】 (1)菱形(正方形).(2)它是一个轴对称图形;一组对角相等;一条对角线所在的直线垂直平分另一条对角线.(写出其中的两条就行)已知:筝形ABCD.求证:∠B=∠D.证明:连接AC,如图1-11-30.图1-11-30∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC,∴∠B=∠D.(3)过点C作CE⊥AB交AB的延长线于E.∵∠ABC=120°,∴∠EBC=60°.又∵BC=2,∴BE=1,CE=.∴=2××AB·CE=2××4×=4.真题演练1.(2016·北京)内角和为540°的多边形是( )A B C D【答案】 C2.如图1-11-31,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.图1-11-31【证明】∵四边形ABCD是平行四边形,∴AB∥DC,∴AB∥DE,∴∠AED=∠BAE.∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠EAD=∠AED,∴DA=DE.3.(2015·北京)图1-11-32是由射线AB,BC,CD,DE组成的平面图形,则∠1+∠2+∠3+ ∠4+∠5= .图1-11-32【答案】360°第二节特殊的平行四边形课标解读知识要点1.矩形(1)定义:有一个角是直角的叫做矩形.(2)性质:①具有平行四边形的所有性质; ②对角线 ;③四个角都是直角.(3)矩形的对称性:既是中心对称图形又是轴对称图形,它有对称轴.(4)矩形的面积: .(5)矩形的判定方法①的平行四边形;②对角线的平行四边形;③有三个角是直角的四边形.图1-11-332.菱形(1)定义:有一组邻边相等的平行四边形叫做菱形.(2)性质:①具有平行四边形的一切性质;②都相等;③两条对角线,并且 .(3)菱形的对称性:既是中心对称图形又是轴对称图形,其对称轴为对角线所在的直线.(4)菱形的面积:方法1:= ; 方法2:= .(5)菱形的判定方法:①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等的四边形.图1-11-343.正方形(1)定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.拓展: 正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.(2)性质:①边——四条边都相等,邻边垂直,对边平行;②角——四个角都是直角;③对角线——相等;互相垂直平分;每一条对角线平分一组对角.(3)正方形的对称性:是轴对称图形,有___条对称轴;又是中心对称图形,对称中心就是两条对角线的交点.(4)正方形的面积:方法1:= ; 方法2:= .(5)正方形的判定方法:①根据定义;②有一组邻边相等的矩形是正方形;③有一个角是直角的菱形是正方形.图1-11-35典例诠释考点一特殊平行四边形的对称性例1 下列图形中,既是中心对称图形又是轴对称图形的是( )A.等边三角形B.平行四边形C.梯形D.矩形【答案】 D【点评】本题主要考查中心对称图形与轴对称图形的概念,找轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;找中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.例2 (2016·房山一模)有五张形状、大小、质地都相同的卡片,这些卡片上面分别画有下列图形:①正方形;②等边三角形;③平行四边形;④等腰三角形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,抽出的纸片正面图形是轴对称图形,但不是中心对称图形的概率是( )A. B. C. D.【答案】 B【名师点评】准确理解轴对称图形和中心对称图形的概念和性质,注意②不是中心对称图形,③不是轴对称图形.考点二运用特殊平行四边形性质进行简单计算例3 如图1-11-36,菱形ABCD的对角线AC,BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH= .图1-11-36【答案】【名师点评】此题考查菱形的性质、勾股定理、“双垂直”的基本图形,学生要熟练掌握,求OH的长可利用“等面积法”求解.学生最好能记住“双垂直图形”中的四个常见等积式. 考点三特殊平行四边形性质与判定的综合应用例4 (2016·东城一模)如图1-11-37,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.图1-11-37(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【证明】由尺规作∠BAD的平分线的过程可知,AB=AF,且∠BAE=∠FAE.又∵四边形ABCD为平行四边形,∴∠FAE=∠AEB.∴∠BAE=∠AEB.∴AB=BE.∴BE=FA.∴四边形ABEF为平行四边形.∴四边形ABEF为菱形.(2)【解】∵四边形ABEF为菱形,∴AE⊥BF,OB=BF=3,AE=2AO.在Rt△AOB中,AO==4.∴AE=2AO=8.【名师点评】此题结合尺规作图,考查了菱形的判定和性质,准确记忆和应用菱形的判定和性质是关键.考点四利用特殊平行四边形性质简拼图形例5 问题:现有5个边长为1的正方形,排列形式如图1-11-38,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.图1-11-38小东同学的做法是:设新正方形的边长为x(x>0). 依题意,割补前后图形面积相等, 有=5, 解得x=.由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图1-11-39所示的分割线,拼出如图1-11-40所示的新正方形.图1-11-39 图1-11-40请你参考小东同学的做法,解决如下问题:(1) 如图1-11-41是由边长为1的5个小正方形组成,请你通过分割,把它拼成一个正方形(在图1-11-41上画出分割线,并在图1-11-41的右侧画出拼成的正方形简图);(2)如图1-11-42,是由边长分别为a和b的两个正方形组成,请你通过分割,把它拼成一个正方形(在图1-11-42上画出分割线,并在图1-11-42的右侧画出拼成的正方形简图).图1-11-41 图1-11-42【答案】如图1-11-43所示.图1-11-43【名师点评】分割图形和图形的重新组合问题由于解题策略多样,方法多样,剪裁线的不定性,使得组合图形变得多姿多彩,对于图形面积的思考是解题关键.基础精练1.(2016·顺义二模)四张质地、大小相同的卡片上,分别画上如图1-11-44所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是轴对称图形的概率为( )图1-11-44A. B. C.【答案】 A2.(2016·平谷二模)如图1-11-45,已知:矩形ABCD中对角线AC,BD交于点O,E是AD中点,连接OE.若OE=3,AD=8,则对角线AC的长为( )图1-11-45【答案】 D3.(2016·昌平二模)为了研究特殊四边形,李老师制作了这样一个教具(如图1-11-46中左图):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图1-11-46中右图). 观察所得到的四边形,下列判断正确的是图1-11-46A.∠BCA=45°B.BD的长度变小C.AC=BD D.AC⊥BD【答案】 C4.(2016·石景山一模)如图1-11-47,方格纸中有一四边形ABCD(A,B,C,D四点均为格点),若方格纸中每个小正方形的边长为1,则该四边形的面积为 .图1-11-47【答案】 125.(2014·西城一模)如图1-11-48,菱形ABCD中,∠DAB=60°,DF⊥AB于点E,且DF=DC,连接FC,则∠ACF的度数为度.图1-11-48【答案】 156.(2014·房山一模)如图1-11-49,在边长为9的正方形ABCD中, F为AB上一点,连接CF.过点F作FE⊥CF,交AD于点E,若AF=3,则AE等于( )图1-11-49【答案】 C7.(2014·大兴一模)若菱形两条对角线的长分别为10 cm和24 cm,则这个菱形的周长为( )cm cm cm cm【答案】 D8.(2014·大兴一模)已知正方形ABCD的边长为2,E为BC边的延长线上一点,CE=2,连接AE与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为 .【答案】9.(2014·海淀二模)已知一个菱形的周长是20 cm,两条对角线的比是4∶3,则这个菱形的面积是( )【答案】 B10.(2014·珠海)边长为3 cm的菱形的周长是( )cm cm cm cm【答案】 C11.(2014·娄底)如图1-11-50,要使平行四边形ABCD是矩形,则应添加的条件是(添加一个条件即可).图1-11-50【答案】AC=BD12.(2014·陕西)如图1-11-51,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )图1-11-51B. C.【答案】 C13.(2014·淄博)如图1-11-52,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C,则矩形的一边AB的长度为( )图1-11-52B. C.【答案】 C14.(2014·兰州)下列命题中正确的是( )A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【答案】 B15.(2014·吉林)如图1-11-53,四边形ABCD、AEFG是正方形,点E、G分别在AB,AD上,连接FC,过点E作EH∥FC,交BC于点H.若AB=4,AE=1,则BH的长为( )图1-11-53【答案】 C16.(2014·青岛)如图1-11-54,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,若AB=6,BC=9,则BF的长为( )图1-11-54【答案】 A17.(2016·房山二模)已知,如图1-11-55,四边形ABCD是平行四边形,延长边AB到点E,使BE=AB,连接DE、BD和EC,设DE交BC于点O,∠BOD=2∠A,求证:四边形BECD是矩形.图1-11-55【证明】∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∠A=∠BCD.∵BE=AB,∴BE∥CD,BE=DC.∴四边形BECD为平行四边形.∴OD=DE,OC=BC.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD.∴DE=BC.∴平行四边形BECD为矩形.18.(2016·丰台一模)如图1-11-56,在ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,AE与BF相交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=3,求ABCD的面积.图1-11-56(1)【证明】在ABCD中,∵AD∥BC,∴∠DAE=∠AEB.∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE.∴∠BAE=∠BEA.∴AB=BE.同理可得AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∴ABEF是菱形.(2)【解】如图1-11-57,过F作FG⊥BC于G.图1-11-57∵ABEF是菱形,AE=6,BF=8,∴AE⊥BF,OE=AE=3,OB=BF=4.∴BE==5.∵ =AE·BF=BE·FG,∴FG=,∴ =BC·FG=.19. (2016·海淀一模)如图1-11-58,矩形ABCD的对角线AC,BD相交于点O,过点B作AC 的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)若BE=10,CE=6,连接OE,求tan∠OED的值.图1-11-58(1)【证明】∵四边形ABCD为矩形,∴AC=BD,AB∥DC.∵AC∥BE,∴四边形ABEC为平行四边形.∴AC=BE,∴BD=BE.(2)【解】如图1-11-59,过点O作OF⊥CD于点F.图1-11-59∵四边形ABCD为矩形,∴∠BCD=90°.∵BE=BD=10,∴CD=CE=6.同理,可得CF=DF=CD=3,∴EF=9.在Rt△BCE中,由勾股定理可得BC=8.∵OB=OD,∴OF为△BCD的中位线.∴OF=BC=4.∴在Rt△OEF中,tan∠OED==.20.(2016·海淀二模)如图1-11-60,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:四边形BDCF为菱形;(2)若四边形BDCF的面积为24,tan∠EAC=,求CF的长.图1-11-60(1)【证明】∵∠ACB=90°,∴AC⊥BC.∵DE⊥BC,∴AC∥DE.又∵CF∥AD,∴四边形ACFD为平行四边形,∴AD=CF.∵CD为AB边上的中线,∴AD=BD,∴BD=CF.∴四边形BDCF为平行四边形.∵DE⊥BC,∴四边形BDCF为菱形.(2)【解】在Rt△ACE中,∵ tan∠EAC==,∴设CE=2x,AC=DF=3x.∵菱形BDCF的面积为24,∴DF·BC=24,∴DF·EC=24,∴ 3x·2x=24,∴ =2,=-2(舍去).∴CE=4,EF=DF=3,∴CF=5.21.(2016·门头沟一模)如图1-11-61,在矩形ABCD中,AE平分∠BAD,交BC于E,过E作EF⊥AD于F,连接BF交AE于P,连接PD.图1-11-61(1)求证:四边形ABEF是正方形;(2)如果AB=4,AD=7,求tan∠ADP的值.(1)【证明】∵四边形ABCD是矩形,∴∠FAB=∠ABE=90°,AF∥BE.又∵EF⊥AD,∴∠FAB=∠ABE=∠AFE=90°,∴四边形ABEF是矩形.又∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB,∴AB=BE.∴四边形ABEF是正方形.(2)【解】如图1-11-62,过点P作PH⊥AD于H.图1-11-62∵四边形ABEF是正方形,∴BP=PF,BA⊥AD,∠PAF=45°.∴AB∥PH.∵AB=4,∴AH=PH=2.∵AD=7,∴DH=AD-AH=7-2=5.在Rt△PHD中,∠PHD=90°,∴ tan∠ADP==.22.(2016·石景山一模)如图1-11-63,在△ABC中,∠ABC=90°,过点B作AC的平行线交∠CAB的平分线于点D,过点D作AB的平行线交AC于点E,交BC于点F,连接BE,交AD于点G.(1)求证:四边形ABDE是菱形;(2)若BD=14,cos∠GBH=,求GH的长.图1-11-63(1)【证明】∵AC∥BD,AB∥ED,∴四边形ABDE是平行四边形.∵AD平分∠CAB,∴∠CAD=∠BAD.∵AC∥BD,∴∠CAD=∠ADB.∴∠BAD=∠ADB,∴AB=BD.∴四边形ABDE是菱形.(2)【解】∵∠ABC=90°,∴∠GBH+∠ABG=90°.∵AD⊥BE,∴∠GAB+∠ABG=90°,∴∠GAB=∠GBH,∵ cos∠GBH=,∴ cos∠GAB=.∴ ==.∵四边形ABDE是菱形,BD=14,∴AB=BD=14,∴AH=16,AG=,∴GH=AH-AG=.23.(2016·石景山二模)如图1-11-64,CD垂直平分AB于点D,连接CA,CB,将BC沿BA 的方向平移,得到线段DE,交AC于点O,连接EA,EC.图1-11-64(1)求证:四边形ADCE是矩形;(2)若CD=1,AD=2,求sin∠COD的值.(1)【证明】由已知得BD∥CE,BD=CE.∵CD垂直平分AB,∴AD=BD,∠CDA=90°.∴AD∥CE,AD=CE.∴四边形ADCE是平行四边形.∴平行四边形ADCE是矩形.(2)【解】如图1-11-65,过D作DF⊥AC于F,图1-11-65在Rt△ADC中,∠CDA=90°,∵CD=1,AD=2,由勾股定理可得AC=.∵O为AC中点,∴OD=.∵AC·DF=AD·DC,∴DF=.在Rt△ODF中,∠OFD=90°,∴ sin∠COD==.24.(2016·东城二模)如图1-11-66,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的等腰三角形.(要求:画出三个..大小不同,符合题意的等腰三角形,只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)图1-11-66【解】满足条件的所有图形如图1-11-67所示:①②③④⑤图1-11-6725.(2016·石景山二模)阅读下面材料:小骏遇到这样一个问题:画一个和已知矩形ABCD面积相等的正方形.小骏发现:如图1-11-68,延长AD到E,使得DE=CD,以AE为直径作半圆,过点D作AE的垂线,交半圆于点F,以DF为边作正方形DFGH,则正方形DFGH即为所求.请回答:AD,CD和DF的数量关系为 .图1-11-68参考小骏思考问题的方法,解决问题:画一个和已知ABCD面积相等的正方形,并写出画图的简要步骤.【解】 =AD·CD.解决问题:方法一:过点A作AM⊥BC于点M,延长AD到E,使得DE=AM,以AE为直径作半圆,过点D作AE的垂线,交半圆于点F,以DF为边作正方形DFGH,正方形DFGH即为所求.如图1-11-69.图1-11-69方法二:如图1-11-70,过点A作AM⊥BC于点M,过点D作DN⊥BC交BC延长线于点N,将平行四边形转化为等面积矩形后同小骏的画法.图1-11-70真题演练1.(2015·北京)如图1-11-71,在ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.图1-11-71【证明】 (1)∵四边形ABCD为平行四边形,∴DC∥AB,即DF∥BE.又∵DF=BE,∴四边形DEBF为平行四边形.又∵DE⊥AB,即∠DEB=90°,∴四边形BFDE为矩形.(2)∵四边形BFDE为矩形,∴∠BFD=90°.∵∠BFC+∠BFD=180°,∴∠BFC=90°.在Rt△BFC中,∵CF=3,BF=4,∴BC===5.∴AD=BC=5.∵DF=5,∴AD=DF=5,∴∠DAF=∠DFA.∵∠DFA=∠FAB,∴∠DAF=∠FAB,即AF平分∠DAB.2.(2014·北京)如图1-11-72,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.图1-11-72(1)【证明】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB.∵AE平分∠BAD,∴∠FAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE.同理可得AF=AB.∴AF=BE.∵AD∥BC,∴四边形ABEF是平行四边形.又∵AB=BE,∴平行四边形ABEF是菱形.(2)【解】如图1-11-73,作PH⊥AD于H.图1-11-73∵四边形ABEF是菱形,∠ABC=60°,∴△ABE是等边三角形.∴∠PAH=60°,∴PA=AE=AB=2.在Rt△PAH中,PH=2sin 60°=,AH=2cos 60°=1,∴DH=AD-AH=6-1=5.∴ tan∠ADP==.3.(2013·北京)如图1-11-74,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.图1-11-74(1)【证明】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵F是AD的中点,∴FD=AD.∵CE=BC,∴FD=CE.∵FD∥CE,∴四边形CEDF是平行四边形.(2)【解】如图1-11-75,过点D作DG⊥CE于点G.图1-11-75∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=4,BC=AD=6.∴∠1=∠B=60°.在Rt△DGC中,∠DGC=90°,∴CG=CD·cos∠1=2,DG=CD·sin∠1=2.∵CE=BC=3,∴GE=1.在Rt△DGE中,∠DGE=90°,∴DE==.4.(2013·北京)如图1-11-76,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为 .图1-11-76【答案】 20。

中考数学 精讲篇 考点系统复习 第五章 四边形 第一节 多边形与平行四边形

中考数学 精讲篇 考点系统复习 第五章 四边形 第一节 多边形与平行四边形

(1)AE=CF.
(2)证明:∵AE⊥BD,CF⊥BD, ∴AE∥CF, ∵AE=CF, ∴四边形 AECF 为平行四边形.
8.(2021·怀化第 20 题 10 分)已知:如图,四边形 ABCD 为平行四边形, 点 E,A,C,F 在同一直线上,AE=CF.求证: (1)△ADE≌△CBF; (2)ED∥BF.
命题点 1:多边形(2021 年考查 4 次,2020 年考查 4 次,2019 年考查 2
次)
1.(2021·怀化第 3 题 4 分)以下说法中错误的是
( A)
A.多边形的内角大于任何一个外角
B.图形
D.圆内接四边形的对角互补
2.(2021 ·常德第 3 题 3 分)一个多边形的内角和为 1 800°,则这个多
6.(2020·衡阳第 7 题 3 分)如图,在四边形 ABCD 中,对角线 AC 和 BD 相交于点 O,下列条件不能判断四边形 ABCD 是平行四边形的是( C ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OB=OD
7.(2021·岳阳第 18 题 6 分)如图,在四边形 ABCD 中,AE⊥BD, CF⊥BD, 垂足分别为点 E, F. (1)请你只添加一个条件(不另加辅助线),使得四边形 AECF 为平行四边 形,你添加的条件是________; (2)添加了条件后,证明四边形 AECF 为平行四边形.
【易错提醒】易误用平行四边形的判定方法 1.一组对边平行,而另一组对边相等的四边形不一定是平行四边形. 2.一组对边相等且一组对角相等的四边形不一定是平行四边形. 3.一组对角相等且这组对角的顶点所连对角线被另一条对角线平分的四 边形不一定是平行四边形. 4.一组对角相等且一条对角线平分另一条对角线的四边形不一定是平行 四边形.

四边形初步认识教案

四边形初步认识教案

四边形初步认识教案篇一:小学数学四边形的初步认识教学设计方案四边形的初步认识(小学三年级数学上册)厦门市天安小学:魏婧妮一、概述·《四边形》是人教版《义务教育课程标准实验教科书——数学》三年级上册第三单元的教学内容。

,这部分内容是在前面“空间与图形”的基础上教学的,教材一方面注意挖掘几何知识之间的内在联系,另一方面提供了与空间观念密切相关的素材,并遵循儿童学习数学的规律,选择了活动化的呈现方式,目的是加强有关空间观念的内容。

四边形是本单元的起始内容中的第一课时。

通过涂一涂、说一说、围一围等系列活动,充分感知四边形,抽象出四边形的特征。

教学重点是认识四边形、了解四边形(长方形、正方形)的特征。

所以在教学中,安排了2次分类。

二、教学目标分析·知识与技能1、直观感知四边形,能区分和辨认四边形。

2、能根据四边形的特点对四边形进行分类,进一步认识长方形和正方形,知道它们的角都是直角。

3、通过找一找、涂一涂、说一说、围一围活动,培养学生的观察比颐和园教学设计较和概括抽象的能力。

·情感态度:通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,受到美的熏陶,进一步激发学生的学习兴趣。

三、教学重难点:教学重点:能直观感知四边形,能区分和辨认四边形。

教学难点:根据四边形的特点对四边形进行分类,掌握长方形、正方形的特点。

四、教学过程设计:一、喜羊羊开店主题图引入,揭示课题师:小朋友们喜欢看喜羊羊与灰太狼的故事吗?故事里的小羊聪明机智,经常发生一些有趣的事情。

最近在羊村里又发生了一件大事,原来,喜羊羊开了一家图形店,打算出售各种各样的图形。

瞧,这是喜羊羊打算出售的图形。

二、初步感知,发现特征店里的生意真好,喜羊羊一个人忙不过来,他打算招聘一些营业员,要求营业员懂一些有关图形的知识,聪明的小朋友,你们敢试一试吗?(真有自信)【设计意图:利用贴近学生生活的动画主题图,激发学生的兴趣,注重学生已有的生活经验,将视野从课堂拓展到生活的空间,把数学中的图形带入生活中,引导他们去观察生活,从现实世界中发现有关空间与图形的问题。

【2014中考复习方案】中考数学复习权威专题课件第10单元四边形

【2014中考复习方案】中考数学复习权威专题课件第10单元四边形

∵AO=CO,
∴△AOD≌△COB. ∴OD=OB, ∴四边形ABCD是平行四边形.
考点聚焦
包考探究
第3 节
矩形
第3节┃考点聚焦
考 点 聚 焦
考点 矩形 直角 的平行四边形叫做矩形 有一个角是________
矩形是一个轴对称图形,它有两条对称轴
矩 形 的 性 质 对称性 矩形是中心对称图形,它的对称中心就是对角线 的交点
方法点析
考点聚焦
包考探究
第2节
平行四边形
第2节┃考点聚焦
考 点 聚 焦
考点1 平行四边形的定义与性质
两组对边分别平行的四边形是平行四边形 (1)平行四边形的两组对边分别________ 平行 ; 相等 ; (2)平行四边形的两组对边分别________ 相等 ; (3)平行四边形的两组对角分别________ (4)平行四边形的对角线互相________ 平分 ; (5)平行四边形是中心对称图形,它的对称中心是两条对 角线的交点
第1 节 第2 节 第3 节 第4 节 第5 节 第6 节
多边形 平行四边形 矩形 菱形 正方形 梯形
第1 节
多边形
第1节┃考点聚焦
考 点 聚 焦
考点1
多边形 的定义
多边形
在同一平面内,不在同一直线上的一些线段____________ 首尾顺次 相 接组成的图形叫做多边形
内角和 外角和
(n-2)•180° n(n≥3)边形的内角和为__________________
考点聚焦
包考探究
第1节┃考点聚焦
(3)用三种不同的正多边形镶嵌 用正三角形、正四边形和正六边形进行镶嵌,设用m个正三 常见 角形、n个正方形、k个正六边形,则有60m+90n+120k=

2023年中考数学复习第一部分考点梳理第五章四边形第1节多边形与平行四边形

2023年中考数学复习第一部分考点梳理第五章四边形第1节多边形与平行四边形

第五章四边形5.1多边形与平行四边形1.如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为(D)A.40°B.50°C.60°D.70°第1题图第2题图2.如图,AC是正五边形ABCDE的对角线,∠ACD的度数是(A)A.72°B.36°C.74°D.88°3.(2022·安庆模拟)如图,在△ABC中,D,E分别是边AB,BC的中点,点F在DE的延长线上.若添加一个条件使四边形ADFC为平行四边形,则这个条件可以是(B)A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF第3题图第4题图4.(2022·四川内江)如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为(B)A.2B.4C.6D.85.(2022·马鞍山一模)如图,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则(C)A.S 1+S 2>S2 B.S 1+S 2<S 2C.S 1+S 2=S 2D.S 1+S 2的大小与P 点位置有关6.如图,在▱ABCD 中,∠ADC =119°,BE ⊥DC 于点E ,DF ⊥BC 于点F ,BE 与DF 交于点H ,则∠BHF = 61 °.7.(2021·湖南怀化)如图,四边形ABCD 为平行四边形,点E ,A ,C ,F 在同一条直线上,AE =CF.求证: (1)△ADE ≌△CBF ; (2)ED ∥BF.证明:(1)∵四边形ABCD 为平行四边形, ∴AD =CB ,AD ∥CB ,∴∠DAC =∠BCA.∵∠DAC +∠EAD =180°,∠BCA +∠FCB =180°, ∴∠EAD =∠FCB.在△ADE 和△CBF 中,{AE =CF,∠EAD =∠FCB,AD =CB,∴△ADE ≌△CBF (SAS). (2)由(1)知△ADE ≌△CBF , ∴∠E =∠F ,∴ED ∥BF.8.如图,在▱ABCD 中,将△ADC 沿AC 折叠后,点D 恰好落在DC 延长线上的点E 处.若∠B =60°,AB =3,则△ADE 的周长为 (C )A.12B.15C.18D.21第8题图第9题图9.如图,在▱ABCD 中,∠ABC 和∠BCD 的平分线交于AD 边上的一点E ,且BE =4,CE =3,则AB 的长是 (A ) A.52 B.3 C.4 D.5【解析】∵AB ∥CD ,∴∠ABC +∠BCD =180°.∵BE 平分∠ABC ,CE 平分∠BCD ,∴∠EBC +∠ECB =90°,∴∠BEC =90°,∴BC =√BE 2+CE 2=5,∴AD =BC =5.∵AD ∥BC ,∴∠ABE =∠EBC =∠AEB ,∴AB =AE.同理DC =DE.∵AB =CD ,∴AB =12AD =52.10.(2022·江苏宿迁)如图,在正六边形ABCDEF 中,AB =6,点M 在边AF 上,且AM =2.若经过点M 的直线l 将正六边形面积平分,则直线l 被正六边形所截的线段长是 4√7 .【解析】设正六边形ABCDEF 的中心为O ,连接MO 并延长交CD 于点N ,则MN 将正六边形的面积平分,过点O 作OH ⊥AF 于点H ,连接AC.由题知AF =AB =6,易得AH =12AF =3,AC =6√3,∴OH =12AC =3√3,MH =AH -AM =1,∴OM =√MH 2+OH 2=√(3√3)2+1=2√7,∴MN =2OM =4√7.11.如图,在▱ABCD 中,E 为CD 边的中点,连接AE ,已知AE 的延长线和BC 的延长线相交于点F. (1)[一题多解]求证:BC =CF.(2)连接DF ,AC ,BE ,AC 和BE 相交于点G ,作CM ∥BE 交DF 于点M.求证:△ABG ≌△DCM.证明:(1)解法1:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴∠ADC =∠FCE.∵E 为CD 边的中点,∴ED =EC. ∵∠AED =∠CEF ,∴△ADE ≌△FCE , ∴AD =CF ,∴BC =CF.解法2:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD. ∵E 为CD 边的中点, ∴CE =12CD =12AB ,∴CE 为△ABF 的中位线,∴BC =CF. (2)∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AB =DC ,∴∠BAD +∠ADC =180°,∠ABC =∠DCF , ∴∠BAC +∠CAD +∠ADC =180°. ∵CM ∥BE ,∴∠CBE =∠FCM , ∴∠ABG =∠DCM.由(1)可知,AD =CF ,∴四边形ADFC 是平行四边形,∴AC ∥DF , ∴∠CAD +∠ADF =180°, 即∠CAD +∠ADC +∠CDM =180°, ∴∠BAC =∠CDM , ∴△ABG ≌△DCM.解法1:证明△ADE ≌△FCE ,得AD =CF ,即可得证; 解法2:根据CE 为△ABF 的中位线,即可得证.12.(2021·马鞍山二模)如图,△ABC 与△ADE 均为等腰三角形,且△ABC ≌△ADE ,连接CE ,BD 交于点F. (1)求证:BD =CE ;(2)当四边形ABFE 是平行四边形,且AB =2,∠BAC =30°时,求CF 的长.解:(1)∵△ABC ≌△ADE ,△ABC 与△ADE 均为等腰三角形, ∴AB =AC =AD =AE ,∠BAC =∠DAE ,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE. 在△BAD 和△CAE 中,{AD =AE,∠BAD =∠CAE,AB =AC,∴△BAD ≌△CAE (SAS),∴BD =CE. (2)过点A 作AH ⊥CE 于点H. ∵四边形ABFE 是平行四边形, ∴EF =AB =2,EF ∥AB , ∴∠ACH =∠BAC =30°. 由(1)知AE =AC =AB =2, ∴∠AEH =∠ACH =30°. 在Rt △ACH 中,AH =12AC =1, ∴CH =√AC 2−AH 2=√22−12=√3. ∵AC =AE ,AH ⊥CE , ∴CE =2CH =2√3, ∴CF =CE -EF =2√3-2.。

人教版小学数学三年级上册说课稿四边形

人教版小学数学三年级上册说课稿四边形

人教版小学数学三年级上册说课稿四边形今天我说课的内容是人教版实验教科三年级上册的内容《四边形》。

本节课是在学生学习了简单的空间图形、认识了长方形与正方形的基本特征的基础上进行教学的,也是以后进一步学习其它空间与图形的基础。

本单元的内容只要求学生能够从具体的实物或图形中识别出哪个是平行四边形,对它的一些特点有个初步的直观认识即可。

同时对四边形、平行四边形、都不要求下严格意义上的定义。

因此,我觉得本堂课的教学目标应该定为:①直观感知四边形,能区分和辨认四边形,了解四边形的特征。

②通过找一找、涂一涂、剪一剪等活动,培养学生观察比较和概括抽象的能力。

③通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,让学生感受数学的奥秘。

4、教学的重点、难点:在以往的知识当中,学生只对各种图形有所认识,而对什么是四边形还不是很清楚,所以引导学生认识四边形的特征是本堂课的重点。

而三年级的学生对事物的观察、比较能力还很弱,要正确的说出四边形的分类标准是一个难点。

二、说教法学法三、说教学的过程(1)创设问题情境,激发兴趣;我直接出示主题图(课件),让学生寻找认识的图形,如:长方形的篮球场、通道、窗户;正方形的地砖;平行四边形的推拉门、楼梯、护栏等。

根据学生所说,概括说出:看来图形在我们的生活当中无处不在,图形让我们生活变得多姿多彩。

所以今天我们先研究图形中的一类——四边形,从而顺利出示课题。

这个环节创设了参观光明小学的情境,从学生熟悉的校园场景引入,比较贴近学生生活实际,容易让学生产生亲近感。

使学生感受到数学知识的日常化、生活化,激发了学生的学习兴趣。

给学生充分的时间来观察光明小学的校园,既培养了学生的观察能力,又很自然引入课题。

(2)探究交流,学习新知;第一步,用一个问题“你认为什么样的图形是四边形呢?把你脑中的四边行画下来。

”第二步,展示学生的作品,不管正确与否。

在这个过程中让学生根据自己的经验判一判。

第三步,自主探究四边形的特点,让学生交流自己概括出的特点。

认识4边形

认识4边形

《四边形》教学实践与思考教学内容:义务教育课程标准实验教科书第五册第35-36页四边形。

设计思想:本节课力图体现“学生是课堂教学活动的主体”的思想:1、课堂设计以学生为本为了解学生起点,我曾做了课前调查,调查表明:大部分学生对于四边形并不是一无所知,但也并不十分清晰,而且不同学生的认识存在差异。

因此,我设计了几个活动,在画一画、评一评、找一找等活动中自我完善、修正对四边形的认识;在分类活动中通过研究四边形的角、边、各四边形之间的联系等等,使学生进一步认识四边形,进一步掌握长方形、正方形的特征。

这些都让学生在亲身的体验和交流中得到。

2、课堂教学以学生为主学生是课堂教学的主体,小学生学习数学不是让学生仔细地吸收课本上的或教师的现成结论,而应该是一个由学生亲自参与的充满丰富、生动的概念活动或思维活动的过程。

在本节课中,教师注意与学生建立平等的师生关系,注重生生之间的交流,力图创建和谐、积极向上的课堂氛围,让学生在自我评价、互动交流的过程中学习新知,获得良好的学习体验。

教学目标:1、学生在交流中不断修正、完善对四边形的认识,能够区分和正确辨认四边形。

2、掌握四边形的特征,进一步掌握长方形和正方形的特征。

3、学生在学习中获得良好的学习体验,培养积极的学习情感。

课堂实录:一、初识四边形1、了解起点——画一画师:这节课我们学习四边形,你认为四边形是什么样的?请你画一画。

请学生到黑板画。

学生画的有:2、四边形的特征——评一评①师:同学们画的这些图形都是四边形吗?有好多同学有不同意见,把你认为不是的图形下面画个叉,有疑问的画个问号。

生自由上来作记号。

师:指着没有意见的图形:这些图形都是四边形吗?四边形有什么特点?生1:四边形有四条边师:大家同意吗?(板书)生2:四边形可能是对称的,也可能不是师:你观察的角度很特别。

生3:有四个角师:同意吗?生:同意。

(师板书)生4:四边形有不同的形状。

生5:有四个直角生6:我反对,四边形有四个角但不一定有四个直角师:大家同意哪种意见?生:四边形有四个角。

2022年九年级数学上册第一章特殊平行四边形1.2矩形的性质与判定第2课时矩形的判定教案新版北师大版

2022年九年级数学上册第一章特殊平行四边形1.2矩形的性质与判定第2课时矩形的判定教案新版北师大版

1.2矩形的性质与判定第2课时矩形的判定教学目标【知识与能力】熟练运用矩形的定义和判定定理判定四边形是矩形.【过程与方法】经历探索、猜想、证明的过程,进一步发展推理论证的能力.【情感态度价值观】通过学生独立完成证明的过程,体会数学是严谨的科学,增强学生严谨的治学态度,从而养成良好的习惯.教学重难点【教学重点】能够用综合法证明矩形的判定定理并利用定义和定理进行证明.【教学难点】灵活运用矩形的性质和判定定理及其相关结论解决问题.课前准备多媒体课件、三角板.教学过程学生:定义,符合定义就是,不符合就不是.教师:说得非常好,我们来看一看下面的四边形是否符合矩形的定义.(课件展示)图1-2-441.已知:如图1-2-44,在ABCD中,AC=BD.求证:四边形ABCD是矩形,注意:学生思考、交流后,教师可以适当地引导:给出的条件与矩形的定义相比,少了哪个条件?怎么办?教师:分析后课件展示过程.证明:∵AB=DC,CA=BD,BC=CB,∴△ABC≌△DCB(SSS),∴∠ABC=∠DCB.在ABCD中,∵AB∥CD,∴∠ABC+∠DCB=180°,∴2∠ABC=180°,即∠ABC=90°,∴四边形ABCD是矩形.教师:在菱形中,对角线互相垂直,而对角线互相垂直的平行四边形是菱形.类似地,在矩形中,对角线相等,反过来,对角线相等的平行四边形是矩形.我们判定的着手点就是看看图形“特殊”的地方,比如菱形的边也比较特殊,四条边都相等,所以四条边都相等的四边形是菱形.那么矩形有没有比较特殊的地方呢?学生:矩形的角特殊,四个角都是直角.教师:如果一个四边形的四个角都是直角,那么这个四边形是不是矩形呢?我们来试一试(课件展示):2. 如图1-2-45,已知∠A=∠B=∠C=∠D=90°,则四边形ABCD是矩形吗?图1-2-45学生:思考、交流后尝试给出证明过程.教师:学生展示过程后点评、规范相应的步骤.证明:在四边形ABCD中,∵∠A=∠B=∠C=90°,∴∠A+∠B=180°,∠B+∠C=180°,∴AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.又∵∠A=90°,∴四边形ABCD是矩形.教师:我怎么感觉有一个条件没有用到呢?学生:∠D=90°.。

初三数学复习 第五章 四边形 第二节 矩形、菱形、正方形(1)

初三数学复习 第五章 四边形 第二节 矩形、菱形、正方形(1)

第二节 矩形、菱形、正方形姓名:________ 班级:________ 限时:______分钟1.(2019·无锡)下列结论中,矩形具有而菱形不一定具有的性质是( ) A .内角和360° B .对角线互相平分 C .对角线相等 D .对角线互相垂直2.(2019·合肥模拟)如图,在菱形ABCD 中,AB =13,对角线BD =24.若过点C 作CE⊥AB,垂足为E ,则CE 的长为( )A.12013 B .10 C .12 D.240133.(2019·台州)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2 cm ,BC =FG =8 cm ,把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且点D 与点G 重合.当两张纸片交叉所成的角α最小时,tan α等于( )A.14B.12C.817D.8154.(2019·绵阳)如图,在平面直角坐标系中,四边形OABC 为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E 的坐标为( )A .(2,3)B .(3,2)C .(3,3)D .(3,3)5.(2019·临沂)如图,在平行四边形ABCD 中,M ,N 是BD 上两点,BM =DN ,连接AM ,MC ,CN ,NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .OM =12AC B .MB =MOC .BD⊥ACD .∠AMB=∠CND6.(2019·乐山)把边长分别为1和2的两个正方形按如图的方式放置,则图中阴影部分的面积为( )A.16B.13C.15D.147.(2019·庐阳区二模)在矩形ABCD 中,E 是BC 边的中点,AE⊥BD,垂足为点F ,则tan∠AED 的值是( )A.63B.263C .2 3D .2 2 8.(2019·庐江县模拟)如图,矩形ABCD 中,AB =5,BC =12,点E 在边AD 上,点G 在边BC 上,点F 、H 在对角线BD 上.若四边形EFGH 是正方形,则AE 的长是( )A .5 B.11924 C.13024 D.169249.(2019·鸡西)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,AB∶BC=3∶2,过点B 作BE∥AC,过点C 作CE∥DB,BE ,CE 交于点E ,连接DE ,则tan∠EDC =( )A.29B.14C.25D.31010.如图,在菱形 ABCD 中,∠BAD=60°,AC 与 BD 交于点 O ,E 为 CD 延长线上的一点,且 CD =DE, 连接 BE 分别交 AC ,AD 于点 F ,G ,连接 OG ,AE ,则下列结论: ①OG=12BD;②与△EGD 全等的三角形共有 5 个; ③S △ABF ∶S △CEF =1∶4;④由点 A ,B ,D ,E 构成的四边形是菱形. 其中正确的是( )A .①④B .①③④C .①②③D .②③④11.(2019·达州)矩形OABC 在平面直角坐标系中的位置如图所示,已知B(23,2),点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD⊥PC 交x 轴于点D.下列结论: ①OA =BC =23;②当点D 运动到OA 的中点处时,PC 2+PD 2=7; ③在运动过程,∠CDP 是一个定值;④当△ODP 为等腰三角形时,点D 的坐标为(233,0).其中正确结论的个数是( )A .1个B .2个C .3个D .4个12.(2019·江西)我国古代数学名著《孙子算经》有估算方法:“方五,邪(通‘斜’)七,见方求邪,七之,五而一.”译文为:如果正方形的边长为五,则它的对角线长为七,已知正方形的边长,求对角线长,则先将边长乘七再除以五.若正方形的边长为1,由勾股定理得对角线长为2,依据《孙子算经》的方法,则它的对角线的长是________.13.(2019·广西)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AH⊥BC 于点H.已知BO =4,S 菱形ABCD =24,则AH =________.14.(2019·扬州)如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M ,N 分别是DC ,DF 的中点,连接MN.若AB =7,BE =5,则MN =________.15.(2019·兰州)如图,矩形ABCD ,∠BAC=60°,以点A 为圆心,以任意长为半径作弧分别交AB ,AC 于M ,N 两点,再分别以点M ,N 为圆心,以大于12MN 的长为半径作弧交于点P ,作射线AP 交BC 于点E.若BE =1,则矩形ABCD 的面积等于________.16.(2019·怀化)已知:如图,在▱ABCD 中,AE⊥BC,CF⊥AD,E ,F 分别为垂足.(1)求证:△ABE≌△CDF; (2)求证:四边形AECF 是矩形.17.(2019·长丰县二模)已知,如图,四边形ABCD 是正方形,点E 是边BC 上任意一点,∠AEF=90°,且EF 交正方形外角平分线CF 于点F.求证:AE =EF.18.(2019·宿迁)如图,矩形ABCD 中,AB =4,BC =2,点E ,F 分别在AB ,CD 上,且BE =DF =32.(1)求证:四边形AECF 是菱形; (2)求线段EF 的长.19.(2019·昆明二模)如图,在▱ABCD 中,E 是对角线BD 上的一点,过点C 作CF∥DB,且CF =DE ,连接AE ,BF ,EF. (1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE 是什么特殊四边形?说明理由.20.(2019·甘肃)如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG⊥ED 于点F ,交CD 于点G. (1)求证:△ADG≌△DCE; (2)连接BF ,证明:AB =FB.1.(2019·深圳)已知菱形ABCD ,E ,F 是动点,边长为4,BE =AF ,∠BAD=120°,则下列结论中正确的个数是( )①△BEC≌△AFC;②△ECF 为等边三角形;③∠AGE=∠AFC;④若AF =1,则GFEG=13.A .1B .2C .3D .42.(2019·广元)如图,在正方形ABCD 的对角线AC 上取一点E ,使得∠CDE=15°,连接BE 并延长BE 到F ,使CF =CB ,BF 与CD 相交于点H.若AB =1,有下列结论:①BE=DE ;②CE+DE =EF ;③S △DEC =14-312;④DHHC =23-1,则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④3.(2019·孝感)如图,正方形ABCD 中,点E ,F 分别在CD ,AD 上,BE 与CF 交于点G.若BC =4,DE =AF =1,则GF 的长为( )A.135B.125C.195D.1654.(2019·金华)如图,矩形ABCD 的对角线交于点O.已知AB =m ,∠BAC=α,则下列结论错误的是( )A .∠BDC=αB .BC =m·tan α C .AO =m 2sin αD .BD =mcos α5.(2019·安顺)如图,在Rt△ABC 中,∠BAC=90°,且BA =3,AC =4,点D 是斜边BC 上的一个动点,过点D 分别作DM⊥AB 于点M ,DN⊥AC 于点N ,连接MN ,则线段MN 的最小值为________.6.(2019·温州)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2 cm.若点C 落在AH 的延长线上,则△ABE 的周长为________cm.7.(2019·哈尔滨)已知:在矩形ABCD 中,BD 是对角线,AE⊥BD 于点E ,CF⊥BD 于点F.(1)如图1,求证:AE =CF ;(2)如图2,当∠ADB=30°时,连接AF ,CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.8.(2019·合肥模拟)如图1,点E为正方形ABCD内部一点,AF⊥BE于点F,G 为线段AF上一点,且AG=BF.(1)求证:BG=CF;(2)如图2,在图1的基础上,延长BG交AE于点M,交AD于点H,连接EH,移动E点的位置使得∠ABH=∠GAM.①若∠EAH=40°,求∠EBH的度数;②求证:HE∥AF.参考答案基础训练1.C 2.A 3.D 4.D 5.A 6.A 7.D 8.B9.A 10.B 11.C12.1.413.245 14.13215.3 316.(1)证明:∵四边形ABCD 是平行四边形, ∴∠B =∠D,AB =CD ,AD∥BC. ∵AE⊥BC,CF ⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°. 在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠B=∠D,∠AEB=∠CFD,AB =CD ,∴△ABE≌△CDF(AAS). (2)证明:∵AD∥BC, ∴∠EAF=∠AEB=90°, ∴∠EAF=∠AEC=∠AFC=90°, ∴四边形AECF 是矩形. 17.证明:如解图,在AB 上截取BM =BE ,连接ME. ∵∠B=90°,BM =BE , ∴∠BME=∠BEM=45°, ∴∠AME=∠B+∠BEM=135°. ∵CF 是∠DCG 的平分线, ∴∠DCF=12∠DCG=45°,∴∠ECF=∠ECD+∠DCF=135°,∴∠AME=∠ECF. ∵AB=BC ,BM =BE , ∴AM=EC.在△AME 和△ECF 中⎩⎪⎨⎪⎧∠MAE=∠CEF,AM =EC ,∠AME=∠ECF,∴△AME≌△ECF(ASA).18.(1)证明:∵四边形ABCD 中,AB =4,BC =2, ∴CD=AB =4,AD =BD =2,CD∥AB,∠D=∠B=90°. ∵BE=DF =32,∴CF=AE =4-32=52.又∵AF=CE =22+(32)2=52,∴AF=CF =CE =AE =52,∴四边形AECF 是菱形.(2)解:如解图,过点F 作FH⊥AB 于H ,则四边形AHFD 是矩形,∴AH=DF =32,FH =AD =2,∴EH=AE -AH =52-32=1,∴EF=FH 2+HE 2=22+12= 5.19.(1)证明:∵四边形ABCD 是平行四边形,∴AD=BC ,AD∥BC, ∴∠ADB=∠DBC. ∵CF∥DB, ∴∠BCF=∠DBC, ∴∠ADB=∠BCF.在△ADE 与△BCF 中,⎩⎪⎨⎪⎧DE =CF ,∠ADE=∠BCF,AD =BC ,∴△ADE≌△BCF(SAS). (2)解:四边形ABFE 是菱形. 理由:∵CF∥DE,且CF =DE , ∴四边形CFED 是平行四边形, ∴CD=EF ,CD∥EF.∵四边形ABCD 是平行四边形, ∴AB=CD ,AB∥CD, ∴AB=EF ,AB∥EF,∴四边形ABFE 是平行四边形. ∵△ADE≌△BCF, ∴∠AED=∠BFC. ∵∠ABE+∠BCF=180°, ∴∠ABE+∠AED=180°. ∵∠AED+∠AEB =180°, ∴∠ABE=∠AEB, ∴AB=AE ,∴四边形ABFE是菱形.20.解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°.又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE.在△ADG和△DCE中,⎩⎪⎨⎪⎧∠DAG=∠CDE,AD=DC,∠ADG=∠C,∴△ADG≌△DCE(ASA).(2)如解图,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE.又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点.又∵∠AFH=90°,∴Rt△AFH中,BF=12AH=AB.拔高训练 1.D 2.A 3.A4.C 【解析】A.∵四边形ABCD 是矩形,∴∠ABC=∠DCB=90°,AC =BD ,∴AO =OB =CO =DO ,∴∠DBC=∠ACB,∴由三角形内角和定理得∠BAC=∠BDC=α,故本选项不符合题意;B.在Rt△ABC 中,tan α=BCm ,即BC =m·tan α,故本选项不符合题意;C.在Rt△ABC 中,AC =m cos α,即AO =m2cos α,故本选项符合题意;D.∵四边形ABCD 是矩形,∴DC=AB =m ,∵∠BAC=∠BDC=α,∴在Rt△DCB 中,BD =mcos α,故本选项不符合题意.故选C.5.1256.12+8 2 7.(1)证明:∵四边形ABCD 是矩形, ∴AB=CD ,AB∥CD, ∴∠ABE=∠CDF.∵AE⊥BD 于点E ,CF⊥BD 于点F , ∴∠AEB=∠CFD=90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠ABE=∠CDF,∠AEB=∠CFD,AB =CD ,∴△ABE≌△CDF(AAS), ∴AE=CF.(2)解:S △ABE =S △CDF =S △BCE =S △ADF =18S 矩形ABCD .∵AD∥BC,∵∠ABC=90°,∴∠ABE =60°. ∵AE⊥BD, ∴∠BAE=30°, ∴BE=12AB ,AE =12AD ,∴S △ABE =12BE×AE=12×12AB×12AD =18AB×AD=18S 矩形ABCD ,∵△ABE≌△CDF, ∴S △CDF =18S 矩形ABCD .作EG⊥BC 于G ,如图解所示.∵∠CBD=30°,∴EG=12BE =12×12AB =14AB ,∴S △BCE =12BC×EG=12BC×14AB =18BC×AB=18S 矩形ABCD ,同理S △ADF =18S 矩形ABCD .8.(1)证明:∵四边形ABCD 是正方形, ∴AB=BC ,∠ABC=∠BAD=90°, ∴∠ABF+∠CBF=90°, ∵AF⊥BE, ∴∠AFB=90°,∴∠BAG=∠CBF,在△ABG 和△BCF 中,⎩⎪⎨⎪⎧AB =BC ,∠BAG=∠CBF,AG =BF ,∴△ABG≌△BCF(SAS), ∴BG=CF.(2)①解:∵∠EAH=40°, ∴∠BAM=90°-40°=50°. ∵∠ABH=∠GAM,∴∠BGF=∠BAG+∠ABG=∠BAG+∠GAM=∠BAM=50°, ∴在Rt△BGF 中,∠EBH=90°-∠BGF=40°. ②证明:∵正方形ABCD 中,AF⊥BE, ∴∠ABH+∠AHB=90°,∠GAM+∠AEF=90°. 又∵∠ABH=∠GAM, ∴∠AHB=∠AEF. 又∵∠AMH=∠BME, ∴△AMH∽△BME. ∴AM∶BM=HM∶EM, 即AM∶HM=BM∶EM, 又∠AMB=∠EMH, ∴△ABM∽△HEM, ∴∠ABH=∠AEH, 又∵∠ABH=∠GAM,∴∠AEH=∠GAM,∴HE∥AF.。

《四边形》教案(10篇)

《四边形》教案(10篇)

《四边形》教案(10篇)《四边形》教案 1一、教学内容:第34-36页四边形.二、教学目标:1.直观感知四边形,能区分和辨认四边形,知道四边形的特征。

进一步认识长方形和正方形,知道它们的角都是直角。

2.通过画一画、找一找、拼一拼等活动,培养学生的观察比较和概括抽象的能力,发展空间想象能力。

3.通过情境图和生活中的事物进入课堂,感受生活中的四边形无处不在,进一步激发学生的学习兴趣。

三、教学重点:认识四边形的共同特点,分辨不同四边形的的不同之处。

四、教具、学具:例2的四边形组图每生一份、钉子板、投影仪、三角尺、剪刀、小棒等。

五、设计理念:在实际情景中丰富学生对四边形的认识,关注学生的学习过程,培养学生动手能力以及合作与交流的能力,发展空间观念和创新意识;激发学生对数学学习的'兴趣。

六、教学过程:(一)、出示主题图:1、师:这是哪儿?在这幅图中你能发现哪些图形?(学生从中找一找图形,一边看一边汇报。

)2.师:大家真能干!在我们的校园中,同学们发现了这么多的图形,看来啊,图形在我们生活中无处不在。

这节课我们来认识其中的一个图形──四边形,你们愿意和它成为好朋友吗?(板书课题:四边形)(二)、初步感知,发现特征1.师:同学们,你想像中的四边形应该是什么样的?(指名回答,让学生充分发表意见。

)2、师:四边形到底是什么样的图形呢?今天我们进一步来研究。

看,数学王国里有这么多的图形(做一做第2题)。

把你认为是四边形的涂上相同的颜色,同桌互相检查评价。

请学生上台展示。

3.师:观察,我们找出的“四边形”有什么共同的特征吗?(在小组内说一说,学生汇报、互相交流。

)师根据学生的汇报,结合图形得出:像这样有四条直直的边围成,有四个角的图形就是四边形,教师板书。

师:看着这么多的四边形,现在你能说说到底什么样的图形是四边形?4.生活中我们见过许多四边形,现在又知道了四边形的特点,你能不能说一说生活中哪些物体表面的形状是四边形的。

中考数学 提升作业 考点系统复习 第五章 四边形 第一节 多边形与平行四边形

中考数学 提升作业 考点系统复习 第五章 四边形 第一节 多边形与平行四边形
AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是1166.
8.(2022·内江)如图,在▱ ABCD中,点E,F在对角线BD上,且BE=DF.
求证:(1)△ABE≌△CDF;
证明:(1)∵四边形ABCD为平行四边形,
∴AB=CD,AB∥CD,∴∠ABD=∠CDB, AB=CD,
在△ABE和△CDF中,∠ABE=∠CDF, BE=DF,
∴△ABE≌△CDF(SAS).
求证:(2)四边形AECF是平行四边形. 证明:(2)由(1)可知△ABE≌△CDF, ∴AE=CF,∠AEB=∠CFD, ∴180°-∠AEB=180°-∠CFD, 即∠AEF=∠CFE, ∴AE∥CF,∵AE=CF, ∴四边形 AECF 是平行四边形.
9.(2022·乐山)如图,在▱ ABCD中,过点D作DE⊥AB,垂足为点E,过点 B作BF⊥AC,垂足为点F.若AB=6,AC=8,DE22·广州)如图,在▱ ABCD中,AD=10,对角线AC与BD相交于点 O,AC+BD=22,则△BOC的周长为 21.
( D)
3.(2022·湘潭)如图,在▱ ABCD中,连接AC,已知∠BAC=40°,∠ACB
=80°,则∠BCD的度数为
( C)
A.80°
B.100°
C.120°
D.140°
4.(2022·达州)如图,在△ABC中,点D,E分别是AB,BC边的中点,点
F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则
1 ∴S△ABC=2EF·(AB+BC)=84.
14.★(2022·青岛)图①是艺术家埃舍尔的作品,他将数学与绘画完美 结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边 长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后, 再次镶嵌便得到图①,则图④中∠ABC 的度数是 660°.

18.1.2平行四边形的判定教案

18.1.2平行四边形的判定教案
其次,实践活动中的分组讨论,我发现有些小组在讨论时可能会偏离主题。这让我意识到,我需要在讨论前给出更明确的指导,比如提供一些具体的讨论问题或者案例,帮助学生集中思考。
在小组讨论的引导过程中,我发现开放性问题对于启发学生思考非常有效。他们提出了一些很有创意的想法,这让我感到很惊喜。但同时,我也注意到有些学生在讨论中比较沉默,可能是因为害羞或者不够自信。未来我需要找到方法,鼓励每个学生都参与到讨论中来,提高他们的参与度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
d.有一组对边平行且相等的四边形是平行四边形。
3.能够运用以上判定方法判断实际问题中是否存在平行四边形,并能够证明其正确性。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的空间观念和几何直观能力,使其能够从图形中抽象出平行四边形的性质,形成对平行四边形的直观认识。
2.提升学生的逻辑推理能力,通过学习平行四边形的判定方法,能够运用逻辑推理进行证明,并解决实际问题。
3.增强学生的数学建模能力,使其在解决实际问题时能够构建平行四边形的模型,运用所学知识进行求解。
4.培养学生的数学抽象能力,通过探究平行四边形的判定方法,学会从特殊到一般、从具体到抽象的思考方式。
5.激发学生的合作意识和探究精神,鼓励在小组讨论和合作中发现问题、解决问题,培养团队协作能力。

二年级苏教版数学上册《四边形、五边形、六边形的认识》教案

二年级苏教版数学上册《四边形、五边形、六边形的认识》教案

二年级苏教版数学上册《四边形、五边形、六边形的认识》教案一. 教材分析《四边形、五边形、六边形的认识》这一课是二年级苏教版数学上册的教学内容。

本节课主要让学生认识四边形、五边形、六边形,了解它们的特征,能够区分不同类型的多边形,并为后续学习多边形的面积、周长等知识打下基础。

二. 学情分析二年级的学生已经学习了平面图形的认识,对三角形、四边形有一定的了解。

但是,对于五边形、六边形,学生可能还比较陌生。

因此,在教学过程中,需要通过生活中的实例,让学生感受五边形、六边形,并引导学生通过观察、操作、比较等方法,发现五边形、六边形的特征。

三. 教学目标1.让学生认识四边形、五边形、六边形,了解它们的特征。

2.能够区分不同类型的多边形。

3.通过观察、操作等方法,培养学生的空间观念和观察能力。

四. 教学重难点1.重难点:认识四边形、五边形、六边形,了解它们的特征。

2.难点:能够区分不同类型的多边形。

五. 教学方法采用情境教学法、观察操作法、对比教学法等多种教学方法,引导学生通过观察、操作、比较等方法,发现五边形、六边形的特征。

六. 教学准备1.准备一些四边形、五边形、六边形的图片,和生活用品,如绳子、剪刀等。

2.制作课件,展示四边形、五边形、六边形的特征。

七. 教学过程1.导入(5分钟)通过课件展示四边形、五边形、六边形的图片,让学生初步认识这些图形。

引导学生观察这些图形的特点,引出本节课的主题。

2.呈现(10分钟)教师展示一些生活中的实物,如绳子、剪刀等,让学生找出四边形、五边形、六边形。

学生通过观察、操作,找出这些图形,并观察它们的特征。

3.操练(10分钟)教师发放一些五边形、六边形的卡片,让学生两两组合,尝试找出相同的多边形。

然后,教师邀请几名学生上台,展示他们的组合结果,并解释为什么这些多边形是相同的。

4.巩固(10分钟)教师出示一些四边形、五边形、六边形的图片,让学生判断它们属于哪种类型的多边形。

学生通过观察,判断出这些多边形的类型,并说出判断的理由。

四边形(竞赛题)[1]

四边形(竞赛题)[1]

第一节 四边形的分类与判定【知识点拨】1、四边形的性质:四边形的内角和等于360°.2、四边形的的分类:(1)对边平行;(2)对边不平行。

本节研究是对边不平行的四边形,常用方法是转化为三角形进行研究。

【赛题精选】【例1】如图,四边形ABCD 有4个直角三角形拼凑而成,它们的公共顶点为O,已知△AOB 、△BOC 、△COD 的面积分别为20、10、16,求△AOD 的面积。

(1992年北京市“迎春杯”竞赛题)【注释】求三角形的面积,通常需要求出底和高,当这两个值不易求出时,常把它们的积作为一个整体,设法求出它们的积。

【例2】如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数。

(1999年重庆市竞赛题)【注释】求凹多边形的内角和,常利用四边形和三角形的内角和进行计算,有事需要添加辅助线,将其转化为求一个凸多边形的和或一个凸多边形和一个三角形的内角和,如本题连接BF 、CE ,则所求的值等于四边形ABFG 的内角和加上△DCE 的内角和。

【例3】如图,在四边形ABCD 中,∠B=∠D=90°,∠A=60°,AB=4,AD=5,求CDBC 的值。

(1993年“祖冲之杯”邀请赛试题)【注释】有些几何题,按原有的图形很难求解,可根据图形的特点,将原图形补成特殊图形,利用特殊图形的性质进行求解。

【例4】(1)是否存在这样的四边形,它的4条边依次是1、2、4、7?(2)是否存在这样的四边形,它的一组对角是直角,其中一个直角的两条边分别为3、4,另一个直角的边为6?【注释】探索存在型问题是指在一定条件下,判断是否存在某个结论。

解答这类问题,先假设结论存在,从假设出发,根据题设条件及有关性质进行推理论证,若推出矛盾,则不定假设,若推出合理的结果,则说明假设正确。

这种方法叫“假设法"。

【例5】如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形ABCD的周长为32,求BC和CD的长。

小学三年级数学《四边形》教案(4篇)

小学三年级数学《四边形》教案(4篇)

小学三年级数学《四边形》教案(4篇)小学三年级数学《四边形》教案1一、教学内容:义务教育课程标准实验教科书(人教版)三年级上册第35页。

二、教学目标:1、能从各种图形中区分出四边形,认识四边形的特征。

2、通过对四边形进行分类,对不同的四边形各自的特征有所了解,特别是长方形、正方形的特征。

3、通过实践操作活动,培养学生的空间观念。

三、教学准备:课件。

每人准备水彩笔一支。

四人小组:一袋四边形的图片。

四、教学过程:(一)主题图引入。

1、同学们,你们喜欢参加体育活动吗?你喜欢什么体育运动?2、光明小学校园里,同学们也正在进行各种活动,我们一起去看看。

(课件出示主题图)(1)仔细观察,在这美丽的校园里你发现了什么图形?(先自己找一找,再同桌交流)(2)交流汇报,学生可能找到的图形有:(指名回答,课件单一闪动)3、导入课题。

在美丽的校园里有许多的图形,像长方形、正方形、平行四边形、菱形、梯形(同时闪动这些图形)这些都是平面图形,都叫四边形。

今天这节课我们就一起来研究四边形。

板书:四边形的认识。

4、初步感知:你认为怎样的图形是四边形?(二)探索交流、概括特征。

1、动手操作。

(1)涂一涂(让学生感知面)同学们,数学书第35也有许多的图形,你能从中找出四边形吗?并涂上你自己喜欢的颜色。

比一比,看谁涂得又快又好看。

(2)涂完后,同桌交流,说说理由。

(3)集体反馈,为什么这些是四边形,而那些却不是?2、讨论,概括四边形的特征。

(1)仔细观察一下,这些四边形有什么特点?(先小组,再反馈)(2)根据学生的反馈,板书。

3、判断四边形。

老师这里还有一些图形请你判断一下他们是四边形吗?(集体用手势判断,并说明理由)如果不是,你能把他变成四边形吗?(课件演示)4、我们知道了四边形的特征,你能说说我们生活中哪些物体的。

表面也是四边形?(三)动手操作,获取新知。

1、分一分:每一小组一信封,内有六种图形:正方形、长方形、平行四边形、菱形、不规则四边形和梯形。

人教版数学三年级上册(2014年新编)第七单元《 第1课时 认识四边形》(教案)

人教版数学三年级上册(2014年新编)第七单元《 第1课时 认识四边形》(教案)

人教版数学三年级上册(2014年新编)第七单元《第1课时认识四边形》(教案)一. 教材分析《人教版数学三年级上册》第七单元《认识四边形》是学生在学习了二元一次方程组和简单几何图形的基础上,进一步研究四边形的性质和分类。

本节课通过观察、操作、探究等活动,让学生认识四边形的特征,学会识别和分类四边形,并为后续学习四边形的面积和应用打下基础。

二. 学情分析三年级的学生已经具备了一定的空间想象能力和观察能力,能够通过观察和操作发现图形的特征。

但是,对于四边形的分类和性质的理解还需要通过具体的实践活动来培养。

此外,学生对于图形的认知还停留在直观层面,需要通过实例和操作来加深对四边形特征的认识。

三. 教学目标1.知识与技能:学生能够识别和分类四边形,了解四边形的特征,掌握四边形的定义和性质。

2.过程与方法:学生通过观察、操作、探究等活动,培养空间想象能力和观察能力,提高自主学习和合作学习的能力。

3.情感态度与价值观:学生体验数学学习的乐趣,培养对数学的兴趣,增强自信心,培养良好的学习习惯和合作精神。

四. 教学重难点1.重点:学生能够识别和分类四边形,了解四边形的特征,掌握四边形的定义和性质。

2.难点:学生能够通过实例和操作,深入理解四边形的性质,并能够运用到实际问题中。

五. 教学方法1.情境教学法:通过生活实例和实物模型,引发学生的兴趣,激发学生的学习热情。

2.观察操作法:学生通过观察和操作,发现四边形的特征,培养学生的空间想象能力和观察能力。

3.问题驱动法:教师提出问题,引导学生思考和探究,培养学生的自主学习和合作学习的能力。

六. 教学准备1.教学材料:准备四边形的实物模型、图片、卡片等教学材料。

2.教学工具:准备白板、投影仪、教学课件等教学工具。

3.学习环境:创设轻松、愉快的学习氛围,准备小组合作的学习桌椅。

七. 教学过程1. 导入(5分钟)教师通过展示生活中的四边形图片,如教室的窗户、篮球场地的边界等,引导学生观察和思考:这些图形有什么共同的特点?让学生初步感受四边形的特征。

北师大版二年级数学下册第六单元《认识四边形》第1课时教案教学设计优秀公开课

北师大版二年级数学下册第六单元《认识四边形》第1课时教案教学设计优秀公开课

第六单元认识图形第2节认识四边形【第一课时】《长方形与正方形》(长方形与正方形的特征)一、教学目标1.结合观察、操作活动,能够用自然的语言描述长方形和正方形的特征。

2.了解折、画、比、量等多种认识图形的方法,体会研究图形方法的多样性。

3.在探索长方形和正方形的特征中,激发对图形研究的好奇心。

二、教学重点结合观察、操作活动,能够用自然的语言描述长方形和正方形的特征。

三、教学难点了解折、画、比、量等多种认识图形的方法,体会研究图形方法的多样性。

四、教学具准备1、教具准备:直尺、三角板、几何图形、多媒体课件2、学具准备:直尺、三角板五、教学过程(一)创设问题情境,引出课题。

(1)小朋友们,今天我们认识图形王国里的一位新朋友,你们想知道它是谁吗?那我们欣赏一些图片,它就藏在这些图片中,请小朋友们仔细观察,看看它是谁?(2)认识长方形、正方形小结:今天我们就来研究长方形与正方形。

(二)探索研究,学习新知(1)折一折、量一量,探究长方形的特征(2)你发现了什么?(播放视频)预设:①长方形对边平行且相等。

②长方形的四个角都是直角。

(3)折一折、量一量①用验证长方形的方法验证正方形。

②思考:正方形是长方形吗,它的边还有什么特殊的地方?③验证的结果写在“我的发现”中。

(4)探究正方形的特征(播放视频)预设:④正方形对边平行且相等。

(且四条边都相等)⑤正方形的四个角都是直角。

(5)比较一下长方形和正方形的特征的相同点和不同点。

(6)折一折。

一张纸如何能折出直角、锐角和钝角?(三)巩固练习1. 练一练2. 练一练3. 看一看、做一做。

(四)小结通过今天的学习,你们有了什么新的收获?。

小学三年级数学《四边形的认识》教学设计

小学三年级数学《四边形的认识》教学设计

【导语】四条线段⾸尾相接,并且最后⼀条的尾端和最初⼀条的⾸端重合,就组成⼀个四边形,如果四个顶点不共⾯,那么这样的四边形叫做空间四边形。

以下是整理的⼩学三年级数学《四边形的认识》教学设计相关资料,希望帮助到您。

【篇⼀】⼩学三年级数学《四边形的认识》教学设计 教材分析: ⼀、课标中对本节内容的要求 1、建⽴空间观念,能够认识⽣活中的四边形; 2、进⼀步认识长⽅形和正⽅形的特征; 3、通过找⼀找、涂⼀涂、剪⼀剪、画⼀画等活动,培养学⽣的观察⽐较和概括抽象的能⼒; 4、通过情境图和⽣活中的事物进⼊课堂,感受⽣活中的四边形⽆处不在,进⼀步激发学⽣的学习兴趣。

⼆、本节内容的知识体系: 1、长⽅形的概述。

2、进⼀步认识长⽅形和正⽅形。

三、本节内容在教材中的地位,前后教材内容的逻辑关系。

本节内容是学⽣学习接下来的平⾏四边形以及周长知识的⼊门基础和铺垫。

四、本节核⼼内容的功能和价值 通过本节内容的学习,学⽣对四边形、长⽅形以及正⽅形都有了⼀定的认识,并且初步了解了它们之间的关系,为以后⽐较深⼊地学习⼏何知识打下坚实的'基础。

学情分析: 1、通过课前的提问,让学⽣复习回顾了以往知识,了解到学⽣学⽣学习了空间与图形之后,对长⽅形、正⽅形和三⾓形已经有了初步的认识。

2、在此基础上,本节将讲授⼀些四边形的简单知识,并进⼀步介绍正⽅形和长⽅形的特征。

3、认识长⽅形、正⽅形和四边形的特点及共性,将抽象的⼏何知识形成表象,发展空间观念将会是学⽣形成本节课知识时最主要的障碍点。

教学⽬标: 1、建⽴空间观念,能够认识⽣活中的四边形; 2、进⼀步认识长⽅形和正⽅形的特征; 3、通过找⼀找、涂⼀涂、画⼀画等活动,培养学⽣的观察⽐较和概括抽象的能⼒; 4、通过情境图和⽣活中的事物进⼊课堂,感受⽣活中的四边形⽆处不在,进⼀步激发学⽣的学习兴趣。

教学重点和难点: 1、知道什么样的图形叫做四边形。

2、掌握长⽅形和正⽅形的特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科组长签名:一、平行四边形1、平行四边形的性质:因为ABCD 是平行四边形二、平行四边形的判定:是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫例1:如图,E F 、是平行四边形ABCD 的对角线AC 上的点,CE AF =,请你猜想:线段BE 与线段DF 有怎样的关系?并对你的猜想加以证明。

猜想:BE DF 。

变式训练:1.如图,在平行四边形ABCD 中,E 是AD 边上的中点.若∠ABE=∠EBC ,AB=2,则平行四边形ABCD 的周长是( ).A .11B .12C .13D .10⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;( B 例1题图2.如图,在ABCD 中,AC 与BD 相交于点O ,点E 是边BC 的中点,4AB ,则OE 的长是( )3.如图,在□ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为( ) A.8 B.9.5 C.10D.11.55.、如图 ,在ABCD 中,已知∠ODA =90°,AC =10cm ,BD =6cm ,则AD 的长为( )A .4cmB .5cmC .6cmD .8cm6.如图,在ABCD 中,对角线AC 、BD 相交于点O ,若AC =14,BD =8,AB =10,则△OAB 的周长为_______.(第6题)7.如图,在□ABCD 中,AE =EB ,AF =2,则FC 等于_____.第7题图FA EBCD EODCBA8.如图,在△ABC 中,AB =BC ,AB =12cm ,F 是AB 边上的一点,过点F 作FE ∥BC 交CA 于点E ,过点E 作ED ∥AB 交于BC 于点D ,则四边形BDEF 的周长是 .9.如图,已知平行四边形ABCD ,E 是AB 延长线上一点,连结DE 交BC 于点F ,在不添加任何辅助线的情况下,请补充一个条件,使CDF BEF △≌△,这个条件是 .(只要填一个)10. 如图,在图(1)中,A 1、B 1、C 1分别是△ABC 的边BC 、CA 、AB 的中点,在图(2)中,A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、C 1 A 1、 A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有 个.11.如图,在平行四边形ABCD 中,CD=10,F 是AB 边上一点,DF 交AC 于点E ,且的面积的面积则CDE AEF EC AE ∆∆=,52= ,BF=.(3)(2)(1)C 3B 3A 3A 2C 1B 11CBAC 2B 2B 2C 2ABC1B 1C 1A 2C 1B 1A 1CBA…第9题ABEFD C第6题12.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,如果AC=14,BD=8,AB=x ,那么x 的取值范围是.12题13.如图,在□ABCD 中,已知点E 在AB 上,点F 在CD 上,且CF AE =. (1)求证:BF DE =;(2)连结BD ,并写出图中所有的全等三角形.(不要求证明)15如图,在□ABCD 中,点E 、F 是对角线AC 上两点,且AE =CF .求证:∠EBF =∠FDE .16如图,已知:平行四边形 ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠的平分线BG 交CE 于F ,交AD 于G .求证:AE DG =.E(第1题)A BCEF G17如图,四边形ABCD是平行四边形,△AB’C和△ABC关于AC所在的直线对称,AD和B’C相交于点O.连结BB’.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△A B’O≌△CDO.18如图(7),在平行四边形ABCD的对角线上AC 上取两点E和F,若AE=CF.求证:∠AFD=∠CEB.19已知:如图,在平行四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=CG,BF=DH。

求证:△AEH≌△CGF。

20.(2010云南曲靖)如图,E 、F 是ABCD 对角线AC 上的两点,且BE//DF.求证:(1)△ABE ≌△CDF ;(2)∠1=∠221如图,在ABCD 中,点E ,F 是对角线BD 上的两点,且BE=DF , 求证:(1)ABE CDF ≅(2)//AE CFB例2:已知四边形ABCD ,有以下四个条件:①//AB CD ;②AB CD =;③//BC AD ;④BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有( )(A )6种 (B )5种 (C )4种 (D )3种变式训练:1、点A 、B 、C 是平面内不在同一条直线上的三点,点D 是平面内任意一点,若A 、B 、C 、D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D 有 ( ) A .1个 B .2个 C .3个 D .4个2、如图 ,四边形ABCD 中,AB//CD ,要使四边形ABCD 为平行四边形,则可添加的条件为 .(填一个即可).DBCA2题3.如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B . 已知:在四边形ABCD 中, , ; 求证:四边形ABCD 是平行四边形.4.如图,分别以Rt ΔABC 的直角边AC 及斜边AB 向外作等边ΔACD 、 等边ΔABE .已知∠BAC=030,EF ⊥AB ,垂足为F ,连结DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.5.已知:如图,把ABC 绕边BC 的中点O 旋转180°得到DCB .求证:四边形ABDC 是平行四边形.CB第5题A B CD6.如图,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O,分别与AB,CD 的延长线交于点E,F.求证:四边形AECF 是平行四边形.7.如图,在平行四边形ABCD 中,点E ,F 分别是AD ,BC 的中点.求证:(1)△ABE ≌△CDF ;(2)四边形BFDE 是平行四边形.8.已知,如图 ,E 、F 是四边形ABCD 的对角线AC 上 的两点,AF =CE ,DF =BE ,DF ∥BE . (1)求证:△AFD ≌△CEB (5分)(2)四边形ABCD 是平行四边形吗?请说明理由.(5分)F ED CBAAEDCF B (第7题图)二、 矩形1、矩形的性质:因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所(2、矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形.例1已知:如图 ,矩形 ABCD ,AB 长8 cm ,对角线比AD 边长4 cm .求AD 的长及点A 到BD 的距离AE 的长.例2 已知:如图,矩形ABCD 中,E 是BC 上一点,DF ⊥AE 于F ,若AE=BC . 求证:CE =EF .变式训练:1.如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.ADBCADBCOC2. 已知矩形ABCD ,分别为AD 和CD 为一边向矩形外作正三角形ADE 和正三角形CDF ,连接BE 和BF ,则BFBE的值等于 。

3. 如图所示,O 为矩形ABCD 的对角线交点,DF 平分∠ADC 交AC 于E ,BC 于F ,∠BDF=15°,则∠COF=______.4. 如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,23AB BC ==,,则图中阴影部分的面积为 .5、如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222AB CD,再顺次连结四边形2222AB CD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是 。

6.平行四边形的周长为28,两邻边的比为4:3,•则较短的一条边的长为_______.例3、中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.变式训练:1.已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E ,(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.O FEDCBAFEDCBAB DN2如图,在□ABCD 中,E 、F 为BC 上的两点,且BE=CF ,AF=DE.求证:(1)△ABF ≌△DCE; (2)四边形ABCD 是矩形.FEDCBA。

相关文档
最新文档