人教版八年级上册数学 三角形解答题易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级上册数学 三角形解答题易错题(Word 版 含答案)
一、八年级数学三角形解答题压轴题(难)
1.(问题探究)
将三角形ABC 纸片沿DE 折叠,使点A 落在点A '处.
(1)如图,当点A 落在四边形BCDE 的边CD 上时,直接写出A ∠与1∠之间的数量关系;
(2)如图,当点A 落在四边形BCDE 的内部时,求证:122A ∠+∠=∠;
(3)如图,当点A 落在四边形BCDE 的外部时,探索1∠,2∠,A ∠之间的数量关系,并加以证明;
(拓展延伸)
(4)如图,若把四边形ABCD 纸片沿EF 折叠,使点A 、D 落在四边形BCFE 的内部点A '、D 的位置,请你探索此时1∠,2∠,A ∠,D ∠之间的数量关系,写出你发现的结论,并说明理由.
【答案】【问题探究】(1)∠1=2∠A ;(2)证明见详解;(3)∠1=2∠A+∠2;【拓展延伸】(4)()212360A D ∠+∠=∠+∠+︒.
【解析】
【分析】
(1)运用折叠原理及三角形的外角性质即可解决问题,
(2)运用折叠原理及四边形的内角和定理即可解决问题,
(3)运用三角形的外角性质即可解决问题,
(4)先根据翻折的性质求出∠AEF、∠EFD,再根据四边形的内角和定理列式整理即可得解.
【详解】
解:(1)如图,∠1=2∠A .
理由如下:由折叠知识可得:∠EA′D=∠A ;
∵∠1=∠A+∠EA′D ,∴∠1=2∠A .
(2)∵∠1+∠A′EA+∠2+∠A′DA=360°,
由四边形的内角和定理可知:∠A+∠A′+∠A′EA+∠A′DA=360°,
∴∠A′+∠A=∠1+∠2,
由折叠知识可得∠A=∠A′,
∴2∠A=∠1+∠2.
(3)如图,∠1=2∠A+∠2
理由如下:∵∠1=∠EFA+∠A ,∠EFA=∠A′+∠2,
∴∠1=∠A+∠A′+∠2=2∠A+∠2,
(4)如图,
根据翻折的性质,()3181201∠=
-∠,()41812
02∠=-∠, ∵34360A D ∠+∠+∠+∠=︒, ∴()()180118023601122
A D ∠+∠+-∠+-∠=︒, 整理得,()212360A D ∠+∠=∠+∠+︒.
【点睛】
本题考查了折叠的性质,三角形外角性质,三角形内角和定理及四边形内角和的应用,主要考查学生运用定理进行推理和计算的能力.
2.(1)如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,
①写出图中一对全等的三角形,并写出它们的所有对应角;
②设AED
的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)
③∠A与∠1、∠2之间有一种数量关系始终保持不变,请找出这个规律.
(2)如图2,把△ABC纸片沿DE折叠,当点A落在四边形BCDE外部时,∠A与∠1、∠2的数量关系是否发生变化?如果发生变化,求出∠A与∠1、∠2的数量关系;如果不发生变化,请说明理由.
【答案】(1)①△EAD≌△EA′D,其中∠EAD=∠EA′D,∠AED=∠A′ED,∠ADE=∠A′DE;
②∠1=180°−2x,∠2=180°−2y;③∠A=1
2
(∠1+∠2);(2)变化,∠A=
1
2
(∠2-∠1),
见详解
【解析】
【分析】
(1)①根据翻折方法可得△ADE≌△A′DE;
②根据翻折方法可得∠AEA′=2x,∠ADA′=2y,再根据平角定义可得∠1=180°-2x,∠2=180°-2y;
③首先由∠1=180°-2x,2=180°-2y,可得x=90-1
2
∠1,y=90-
1
2
∠2,再根据三角形内角
和定理可得∠A=180°-x-y,再利用等量代换可得∠A=1
2
(∠1+∠2);
(2)根据折叠的性质和三角形内角和定理解答即可.【详解】
(1)①根据翻折的性质知△EAD≌△EA′D,
其中∠EAD=∠EA′D,∠AED=∠A′ED,∠ADE=∠A′DE;
②)∵∠AED=x,∠ADE=y,
∴∠AEA′=2x,∠ADA′=2y,
∴∠1=180°-2x,∠2=180°-2y;
③∠A=1
2
(∠1+∠2);
∵∠1=180°-2x ,∠2=180°-2y ,
∴x=90-
12∠1,y=90-12
∠2, ∴∠A=180°-x-y=190-(90-12∠1)-(90-12∠2)=12
(∠1+∠2). (2))∵△A′DE 是△ADE 沿DE 折叠得到,
∴∠A′=∠A,
又∵∠AEA′=180°-∠2,∠3=∠A′+∠1,
∴∠A+∠AEA′+∠3=180°,
即∠A+180°-∠2+∠A′+∠1=180°,
整理得,2∠A=∠2-∠1. ∴∠A=
12
(∠2-∠1). 【点睛】 此题主要考查了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
3.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.
(1)若140∠=︒,2∠=________.
(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.
②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.
【答案】(1)50°;(2)①见解析;②见解析;(3)360°.
【解析】
【分析】
(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;
②利用两次外角定理得出结论;