2017-2018学年北师大版九年级数学上册检测卷:第6章达标检测卷

合集下载

2017-2018学年北师大版九年级数学上册 期末综合测评

2017-2018学年北师大版九年级数学上册 期末综合测评

时间:90分钟分值:120分一、选择题(每小题3分,共30分)1.已知反比例函数y=10x,当1<x<2时,y的取值范围是(C)A.0<y<5 B.1<y<2 C.5<y<10 D.y>10解析:∵反比例函数y=10x中,当x=1时,y=10;当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.2.若△ABC与△DEF相似且相似比为1∶3,则△ABC与△DEF的面积比为(B)A.1∶3 B.1∶9C.3∶1 D.1∶17 32解析:∵△ABC与△DEF的相似比为1∶3,∴△ABC与△DEF的面积比为1∶9.3.(2015·怀化)设x1,x2是方程x2+5x-3=0的两个根,则x21+x22的值是(C) A.19 B.25 C.31 D.30解析:∵x1,x2是方程x2+5x-3=0的两个根,∴x1+x2=-5,x1x2=-3,∴x21+x22=(x1+x2)2-2x1x2=25+6=31.故选C.4.(2016·大庆)一个盒子里装有除颜色外其他均相同的2个红球和3个白球,现从中任取两个球,则取到的是一个红球、一个白球的概率为(C)A.25B.23C.35D.310解析:画树状图可得20种等可能结果,取到一个红球,一个白球有12种情况,所以取到一个红球、一个白球的概率为1220=35,故选C.5.如图,在△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的面积是(A)A .2 3B .3 3C .4D .4 3解析:∵DE 是AC 的垂直平分线,F 是AB 的中点,∴DF ∥BC ,∴∠C =90°,∴四边形BCDE 是矩形.∵∠A =30°,∠C =90°,BC =2,∴AB =4,∴AC =42-22=2 3.∴CD = 3.∴四边形BCDE 的面积为:2×3=2 3.第5题图 第6题图6.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1 m 的竹竿的影长为0.4 m ,同时另一名同学测量树的影长时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2 m ,一级台阶高为0.3 m ,如图所示,若此时落在地面上的影长为4.4 m ,则树高为(C)A .11.5 mB .11.75 mC .11.8 mD .12.25 m解析:设树高为x m ,由题意可得x -0.34.4+0.2=10.4,解得x =11.8.7.如图,直线y =x -2与y 轴交于点C ,与x 轴交于点B ,与反比例函数y =kx 的图象在第一象限交于点A ,连接OA ,若S △AOB ∶S △BOC =1∶2,则k 的值为(B)A .2B .3C .4D .6解析:∵直线y=x-2与y轴交于点C,与x轴交于点B,∴C(0,-2),B(2,0).∴S△BOC =12OB·OC=12×2×2=2.∵S△AOB ∶S△BOC=1∶2,∴S△AOB =12S△BOC=1.∴12×2×y A=1.∴y A=1.把y A=1代入y=x-2,得1=x A-2,解得x A=3. ∴A(3,1).∵反比例函数y=kx的图象过点A,∴k=3×1=3.故选B.8.一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程x2+px+q=0有实数根的概率是(A)A.12B.13C.23D.56解析:画树状图得所以满足条件的方程个数有6个,分别为x2-x+1=0,x2-x+2=0,x2+x -1=0,x2+x+2=0,x2+2x-1=0,x2+2x+1=0,由根的判别式可知有实数根的方程有3个,所以有实数根的概率是36=12.9.(2015·兰州)如图,线段CD两个端点的坐标分别为C(1,2),D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为(B)A .(2,5)B .(2.5,5)C .(3,5)D .(3,6)解析:根据题意可知,O 为位似中心,∵D (2,0),B (5,0),∴△AOB 与△COD 的位似比为52,∵C (1,2),∴A (2.5,5).10.如图,已知A ,B 是反比例函数 y =kx (k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O →A →B →C (图中“→”所示路线)匀速运动,终点为C .过P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M ,N .设四边形OMPN 的面积为S ,P 点运动时间为t ,则S 关于t 的函数图象大致为(D)A B C D解析:当点P 在OA 上运动时,此时S 随t 的增大而增大,当点P 在AB 上运动时,S 不变,∴A ,C 错误;当点P 在BC 上运动时,S 随t 的增大而逐渐减小,∴B 错误.二、填空题(每小题3分,共24分) 11.方程2x (x -3)=0的解是x 1=0,x 2=3.解析:由2x (x -3)=0,得2x =0或x -3=0,解得x 1=0,x 2=3.12.(2016·潍坊)已知反比例函数y =kx (k ≠0)的图象经过点(3,-1),则当1<y <3时,自变量x 的取值范围是-3<x <-1.解析:由反比例函数的图象经过点(3,-1),可得-1=k3,k =-3 ,所以反比例函数的解析式为y =-3x ,则当1<y <3时,函数的图象位于第二象限,y 随x 的增大而增大.令y =1,得x =-3,令y =3,得x =-1.故当1<y <3时,自变量x 的取值范围为-3<x <-1.13.如图(1),在宽为20 m ,长为32 m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570 m 2,求道路宽为多少?设宽为x m ,从图(2)的思考方式出发列出的方程是(32-2x )(20-x )=570.(1) (2)解析:设宽为x m ,根据题意,得(32-2x )(20-x )=570.14.一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为5个.解析:从主视图与左视图可以得出此图形只有一排,只能得出一共有5个小正方体,从俯视图可以验证这一点,从而确定小正方体总个数为5个.15.在-1,3,-2这三个数中,任选两个数的积作为k 的值,使反比例函数y =k x 的图象在第一、三象限的概率是13.解析:画树状图得:∵共有6种等可能的结果,任选两个数的积作为k 的值,使反比例函数的图象在第一、三象限的有2种情况,∴任选两个数的积作为k 的值,使反比例函数的图象在第一、三象限的概率是:26=13.16.(2015·毕节)一个容器盛满纯药液40 L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10 L ,则每次倒出的液体是20L.解析:设每次倒出液体x L ,由题意得:40-x -40-x40·x =10,解得:x =60(舍去)或x =20.故答案为20.17.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD ,若AD =6 cm ,∠ABC =60°,则四边形ABCD 的面积等于18 3 cm 2.解析:∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形,∵纸条等宽,∴AB =BC ,∴该四边形是菱形,作AE ⊥BC 于点E .∴BE =3 cm ,AE =3 3 cm.∴四边形ABCD 的面积=6×33=183(cm 2).第17题图第18题图18.如图,△ABC 是一块锐角三角形的材料,边BC =120 mm ,高AD =80 mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,这个正方形零件的边长是__48__ mm.解析:∵正方形PQMN 的QM 边在BC 上,∴PN ∥BC ,∴△APN ∽△ABC ,∴PN BC =AE AD .设ED =x mm ,∴PN =MN =ED =x mm ,则x120=80-x 80,∴x =48,∴边长为48 mm.三、解答题(共66分)19.(8分)解下列方程:(1)x2-5x-2=0;(2)(x-1)2+2x-3=0.解:(1)∵a=1,b=-5,c=-2,∴b2-4ac=(-5)2-4×1×(-2)=33>0,∴x=-(-5)±332,∴x1=5+332,x2=5-332;(2)去括号,得x2-2x+1+2x-3=0,合并同类项,得x2-2=0,即x2=2,∴x1=2,x2=- 2.20.(6分)画出下面立体图形的三视图.解:如图所示:21.(8分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5 m,某一时刻AB在阳光下的投影BC=3 m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请你计算DE的长.解:(1)如图,连接AC,过点D作DF∥AC,交直线BC于点F,线段EF 即为DE的投影;(2)如上图,∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°,∴△ABC∽△DEF.∴ABDE=BCEF,∴5DE=36,∴DE=10(m).22.(8分)(2016·郴州)如图,一次函数y1=x+1的图象与反比例函数y2=kx(x >0)的图象交于点M,作MN⊥x轴,N为垂足,且ON=1.(1)在第一象限内,当x取何值时,y1>y2?(根据图象直接写出结果)(2)求反比例函数的表达式.解:(1)∵MN⊥x轴,且ON=1,∴x M=x N=1.由图象可以看出,在交点M的左侧,反比例函数的图象在上方,即y2>y1.在交点M的右侧,一次函数的图象在上方,即y1>y2.∴当x>1时,y1>y2.(2)把x M=1代入到y1=x+1中,得y=2,∴点M(1,2).把点M(1,2)代入到y2=kx中,得k=2,∴y2=2 x.23.(8分)如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.解:(1)△ABC∽△ADE,△ABD∽△ACE;(2)①证△ABC∽△ADE.∵∠BAD=∠CAE,∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.又∵∠ABC=∠ADE,∴△ABC∽△ADE.②证△ABD∽△ACE.∵△ABC∽△ADE,∴ABAD=ACAE.又∵∠BAD=∠CAE,∴△ABD∽△ACE.24.(8分)(2015·淮安)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是________斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+x0.1×20=100+200x(斤);(2)根据题意得:(4-2-x)(100+200x)=300,整理得:2x2-3x+1=0.解得:x=12或x=1,∵每天至少售出260斤,∴x=1.答:张阿姨需将每斤的售价降低1元.25.(10分)学习概率知识之后,小庆和小丽设计了一个游戏,在一个不透明的布袋A里面装有三个分别标有数字5,6,7的小球(小球除数字不同外,其余都相同);同时制作了一个可以自由转动的转盘B,转盘B被平均分成2部分,在每一部分内分别标上数字3,4,现在其中一个人从布袋A中随机摸取一个小球,记下数字x;另一人转动转盘B,转盘停止后,指针指向的数字记为y(若指针指在边界线上时视为无效,重新转动),从而确定点P的坐标为P(x,y).(1)请用树状图或列表的方法写出所有可能得到的点P的坐标;(2)若S=xy,当S为奇数时小庆获胜,否则小丽获胜.你认为这个游戏公平吗?对谁更有利呢?解:(1)列表格如下:或画树状图如下:因此,得到的点P的坐标有6种可能:(5,3),(5,4),(6,3),(6,4),(7,3),(7,4);(2)由(1)S为奇数有(5,3)和(7,3)两种可能,因此P(小庆胜)=26=13,P(小丽胜)=1-13=23,P(小庆胜)< P(小丽胜),∴该游戏不公平,对小丽更有利.26.(10分)已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10 cm,△ABF的面积为24 cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.(1)证明:由题意可知OA=OC,EF⊥AO,∵AD∥BC,∴∠AEO=∠CFO,∠EAO=∠FCO,∴△AOE≌△COF,∴AE=CF,又AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形;(2)解:∵四边形AECF是菱形,∴AF=AE=10 cm,设AB=a,BF=b,∵△ABF的面积为24 cm2,∴a2+b2=100,ab=48,∴(a+b)2=196,∴a+b=14或a+b=-14(不合题意,舍去),∴△ABF的周长为14+10=24(cm);(3)存在,过点E作BC的垂线,交AC于点P,点P就是符合条件的点;证明:∵∠AEP=∠AOE=90°,∠EAO=∠EAP,∴△AOE∽△AEP,∴AEAP=AOAE,∴AE2=AO·AP,∵四边形AECF是菱形,∴AO=12AC,∴AE2=12AC·AP,∴2AE2=AC·AP.。

北师大版九年级上册达标检测卷:第二章《一元二次方程》(含答案)

北师大版九年级上册达标检测卷:第二章《一元二次方程》(含答案)

达标检测卷:第二章《一元二次方程》时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.若(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±22.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定3.有5人患了流感,经过两轮传染后共有605人患流感,则第一轮后患流感的人数为()A.10 B.50 C.55 D.454.方程2x(x﹣5)=6(x﹣5)的根是()A.x=5 B.x=﹣5 C.x1=﹣5,x2=3 D.x1=5,x2=35.方程4x2=81﹣9x化成一般形式后,二次项的系数为4,它的一次项是()A.9 B.﹣9x C.9x D.﹣96.关于x的一元二次方程x2+bx﹣6=0的一个根为2,则b的值为()A.﹣2 B.2 C.﹣1 D.17.如图,把长40cm,宽30cm的长方形纸板剪掉2个小正方形和2个小长方形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm (纸板的厚度忽略不计),若折成长方体盒子的表面积是950cm2,则x的值是()A.3cm B.4cm C.4.8cm D.5cm8.一元二次方程x2﹣ax+2=0的一根是1,则a的值是()A.3 B.﹣3 C.2 D.﹣29.天猫某店铺第2季度的总销售额为662万元,其中4月份的销售额是200万元,设5、6月份的平均增长率为x ,求此平均增长率可列方程为( )A .200(1+x )2=662B .200+200(1+x )2=662C .200+200(1+x )+200(1+x )2=662D .200+200x +200(1+x )2=66210.已知a ,b 是方程x 2+3x ﹣1=0的两根,则a 2b +ab 2+2的值是( )A .5B .6C .7D .8二.填空题(每题4分,共20分)11.已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 .12.若关于x 的方程(a ﹣2)x 2+(2a ﹣3)x +a +1=0有两个不相等的实数根,则a 的取值范围是 .13.设a 2﹣3a +1=0,b 2﹣3b +1=0,且a ≠b ,则代数式+的值为 .14.已知m 是方程x 2﹣2018x +1=0的一个根,则代数式m 2﹣2017m ++3的值等于 .15.2018年我国新能源汽车保有量居世界前列,2016年和2018年我国新能源汽车保有量分别为51.7万辆和261万辆.设我国2016至2018年新能源汽车保有量年平均增长率为x ,根据题意,可列方程为 .三.解答题(每题10分,共50分)16.基本事实:“若ab =0,则a =0或b =0”.方程x 2﹣x ﹣6=0可通过因式分解化为(x ﹣3)(x +2)=0,由基本事实得x ﹣3=0或x +2=0,即方程的解为x =3或x =﹣2.(1)试利用上述基本事实,解方程:3x 2﹣x =0;(2)若实数m 、n 满足(m 2+n 2)(m 2+n 2﹣1)﹣6=0,求m 2+n 2的值.17.关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实数根.(1)求m的取值范围;(2)当m为正整数时,取一个合适的值代入求出方程的解.18.方方同学在寒假社会调查实践活动中,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:①该厂一月份罐头加工量为a吨;②该厂三月份的加工量比一月份增长了44%;③该厂第一季度共加工罐头182吨;④该厂二月、三月加工量每月按相同的百分率增长;⑤该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;⑥六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了46.68吨.利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a的值;(3)该厂第二季度的总加工量.19.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.20.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.参考答案一.选择题1.解:∵(m+2)x|m|+mx﹣1=0是关于x的一元二次方程,∴|m|=2,且m+2≠0,解得:m=2,故选:B.2.解:△=(k﹣3)2﹣4(1﹣k)=k2﹣6k+9﹣4+4k=k2﹣2k+5=(k﹣1)2+4,∴(k﹣1)2+4>0,即△>0,∴方程总有两个不相等的实数根.故选:A.3.解:设每轮传染中每人传染x人,依题意,得:5+5x+x(5+5x)=605,整理,得:x2+2x﹣120=0,解得:x1=10,x2=﹣12(不合题意,舍去),∴5+5x=55.故选:C.4.解:∵2x(x﹣5)﹣6(x﹣5)=0,∴(x﹣5)(2x﹣6)=0,则x﹣5=0或2x﹣6=0,解得x=5或x=3,故选:D.5.解:方程整理得:4x2+9x﹣81=0,则一次项是9x,故选:C.6.解:把x=2代入方程x2+bx﹣6=0得4+2b﹣6=0,解得b=1.故选:D.7.解:依题意,得:40×30﹣2x2﹣2x•(x+)=950,整理,得:x2+20x﹣125=0,解得:x1=5,x2=﹣25(不合题意,舍去).故选:D.8.解:把x=1代入方程x2﹣ax+2=0得1﹣a+2=0,解得a=3.故选:A.9.解:设利润平均每月的增长率为x,又知:第2季度的总销售额为662万元,其中4月份的销售额是200万元,所以,可列方程为:200+200(1+x)+200(1+x)2=662;故选:C.10.解:∵a,b是方程x2+3x﹣1=0的两根,∴a+b=﹣3,ab=﹣1,则原式=ab(a+b)+2=﹣1×(﹣3)+2=3+2=5,故选:A.二.填空题(共5小题)11.解:根据题意得x1+x2=4,x1x2=﹣7所以,x12+4x1x2+x22=(x1+x2)2+2x1x2=16﹣14=2故答案为2.12.解:∵关于x的一元二次方程(a﹣2)x2+2ax+a+1=0有两个不相等的实数根,∴,解得a<且a≠2.故a的取值范围是a<且a≠2.故答案为:a<且a≠2.13.解:∵a2﹣3a+1=0,b2﹣3b+1=0,且a≠b,∴a、b为一元二次方程x2﹣3x+1=0的两个不等实根,∴a+b=3,ab=1,∴+==3.故答案为:3.14.解:∵m是方程x2﹣2018x+1=0的一个根,∴m2﹣2018m+1=0,∴m2=2018m﹣1,m2+1=2018m,∴m2﹣2017m++3=2018m﹣1﹣2017m++3=m++2=+2=+2=2018+2=2020.故答案为2020.15.解:设我国2016至2018年新能源汽车保有量年平均增长率为x,根据题意,可列方程为:51.7(1+x)2=261,故答案为:51.7(1+x)2=261.三.解答题(共5小题)16.解:(1)由原方程,得x(3x﹣1)=0∴x=0或3x﹣1=0解得:x1=0,x2=;(2)t=m2+n2(t≥0),则由原方程,得t(t﹣1)﹣6=0.整理,得(t﹣3)(t+2)=0.所以t=3或t=﹣2(舍去).即m2+n2的值是3.17.解:(1)∵关于x 的一元二次方程(m ﹣2)x 2﹣2x +1=0有实数根, ∴△=(﹣2)2﹣4(m ﹣2)=4﹣4m +8=12﹣4m .∵12﹣4m ≥0,∴m ≤3,m ≠2.(2)∵m ≤3且m ≠2,∴m =1或3,∴当m =1时,原方程为﹣x 2﹣2x +1=0.x 1=﹣1﹣,x 2=﹣1+. 当m =3时,原方程为x 2﹣2x +1=0.x 1=x 2=1.18.解:(1)设该厂第一季度加工量的月平均增长率为x ,由题意得: a (1+x )2=(1+44%)a∴(1+x )2=1.44∴x 1=0.2=20%,x 2=﹣2.2(舍)答:该厂第一季度加工量的月平均增长率为20%.(2)由题意得:a +a (1+x )+a (1+x )2=182将x =20%代入得:a +a (1+20%)+a (1+20%)2=182解得a =50答:该厂一月份的加工量a 的值为50.(3)由题意可知,三月份加工量为:50(1+20%)2=72六月份加工量为:50×2.1=105(吨)五月份加工量为:105﹣46.68=58.32(吨)设四、五两个月的加工量下降的百分率为y ,由题意得:72(1﹣y )2=58.32解得:y 1=0.1=10%,y 2=1.9(舍)∴四、五两个月的加工量下降的百分率为10%∴72×(1﹣10%)+58.32+105=228.12(吨)答:该厂第二季度的总加工量为228.12吨.19.解:(1)设该商品平均每月的价格增长率为m ,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.20.(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3,x2=﹣1(舍去)∴3秒后,PQ的长度等于2;(2)△PQB的面积不能等于7cm2,原因如下:设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.。

2017-2018学年北师大版九年级数学上册《第六章反比例函数》单元检测试题(有答案)

2017-2018学年北师大版九年级数学上册《第六章反比例函数》单元检测试题(有答案)
������
B.
������ = ������ + 1
1
C.������ = ������ ‒ 3
D.
������ = 3������
1
2.反比例函数 在第一象限内的图象如图,点������是图象上一点,������������垂 直������轴于点������,如果 △ ������������������的面积为1,那么������的值是( )
������ = ������(������ > 0)
A.1
B.2
C.4
D. 2
3.三角形的面积为10,底边上的高������与底边������的之间函数关系图象大致为( ) A. B.
C.
D.
4.已知(2, ‒ 3)是函数 是( ) A.(1, ‒ 6)
������ = ������
������
������ = ������
5
的图象上有两点������(1, ������),������(2, ������),则������与������的大小关系是
B.������ < ������ ������ = ������
4
C.������ = ������ 的图象大致是( ) B.
D.不能确定
7.在下图中,反比例函数 A.
������
3
的图象经过点������,则������ = ________.
12.已知,在对物体做功一定的情况下,力������(牛)与此物体在力的方向上移动 的距离������(米)成反比例函数关系,其图象如图所示,则当力达到20牛时,此 物体在力的方向上移动的距离是________米.
������ = ������ 13.已知点������(2, 1)在反比例函数 的图象上,请你再写出一个在此函数图象 上的点________. ������ = ������ 14.如图,直线������ = ������������(������ > 0)与双曲线 交与������(������1, ������1),������(������2, ������2)两点,则 3������1������2 ‒ 4������2������1 = ________.

北师大版2017---2018学年九年级数学上学期期末检测试题卷

北师大版2017---2018学年九年级数学上学期期末检测试题卷

北师大版2017---2018学年九年级数学上学期期末检测试题卷一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分) 1.下列方程中,是一元二次方程的是( )A .32-=y xB .2(1)3x +=C .11322+=-+x x x D .29x = 2.有一实物如下左图,那么它的主视图是( )3.到三角形各顶点的距离相等的点是三角形( ) A .三条角平分线的交点B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点4.甲、乙两地相距60km ,则汽车由甲地行驶到乙地所用时间y (小时)与行驶速度x (千米/时)之间的函数图像大致是( )5.下列命题中,不正确的是( )A .顺次连结菱形各边中点所得的四边形是矩形B .有一个角是直角的菱形是正方形C .对角线相等且垂直的四边形是正方形D .有一个角是60°的等腰三角形是等边三角形 6.在Rt △ABC 中,∠C=90°,a =4,b =3,则sinA 的值是( ) A .45B .35C .43 D .547.电影院呈阶梯或下坡形状的主要原因是( )A .为了美观B .减小盲区C .增大盲区D .盲区不变8.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A .至少有两名学生生日相同B .不可能有两名学生生日相同C .可能有两名学生生日相同,但可能性不大D .可能有两名学生生日相同,且可能性很大A B C DOxyA OxyOxyOxDy二、填空题(本大题共7个小题,每小题3分,满分21分) 9.计算2cos60°+ tan 245°= 。

10.一元二次方程230x x -=的解是 。

11.请你写出一个反比例函数的解析式使它的图象在第一、三象限 。

12.在平行四边形ABCD 中,对角线AC 长为10cm ,∠CAB=30°,AB= 6cm ,则平行四边形ABCD 的面积为2cm 。

高中地理 必修一 试卷 第六章 本章达标检测

高中地理 必修一 试卷 第六章  本章达标检测

本章达标检测(满分:100分;时间:60分钟)一、选择题(每小题2.5分,共50分)台风是影响我国东部地区的重要天气系统,它既给人们带来甘霖,也给人们带来灾难。

下图为某次台风路径图。

读图回答下面两题。

1.9月,当台风中心位于图中甲海域时,台湾东北部暴雨如注,其主要原因是台风气流( )①受山体阻挡影响②与盛行偏西风叠加③受地面增温影响④与盛行东北风叠加A.①②B.②③C.③④D.①④2.图示台风中心向北移动,在浙江北部沿海登陆时,上海近地面天气状况是( )①气压降低②风向偏西③雨势增强④风力减弱A.①③B.②③C.②④D.①④下图为某地区图,读图回答下题。

3.图中甲国是世界上洪涝灾害最严重的国家之一,该国洪涝灾害频繁发生的主要原因有( )①属于热带季风气候区,降水的季节变化大②泥沙淤积严重,阻塞河道③地势低平,排水不畅④气温高,山地冰川融水量大A.①④B.①②C.②③D.①③新京报2019年4月8日快讯:记者今日从国家海洋环境预报中心了解到,今年我国沿海灾害性台风和风暴潮发生次数将较2018年有所上升。

据此完成下面两题。

4.我国台风灾害的空间分布特点是( )A.沿海重,北方重B.内陆重,沿海轻C.沿海重,内陆重D.沿海重,南方重5.台风导致人员伤亡和房屋倒塌是因为( )①特大暴雨引发洪涝、滑坡、泥石流②狂风刮倒建筑物,吹翻船只③风暴潮引发洪水④低温冻害A.①③④B.②③④C.①②④D.①②③下图是“侵入我国的寒潮路径图”。

读图,回答下面两题。

6.下列地区受寒潮影响最大的是( )A.华北平原B.四川盆地C.台湾岛、海南岛D.云贵高原7.青藏高原几乎不受寒潮影响的原因是( )A.地势高B.纬度低C.距海近D.人类活动少我国是个多山的国家,随着山区经济发展,对减轻泥石流灾害提出了更高的要求。

读表,回答下面两题。

某地重点监测沟谷参数表沟谷编号集水面积(km2)平均坡度(°)流域落差(m)植被覆盖率(%)① 5.324.3537.215.7② 2.730.1670.319.6③20.040.8 1 353.713.2④ 4.526.1384.720.58.根据表中参数推测,发生泥石流可能性较大的沟谷是( )A.①B.②C.③D.④9.为了更及时、准确地发出泥石流预警,该地区还应密切关注( )A.气温高低B.风力强弱C.光照强度D.降水量大小2014年第15号台风“海鸥”于9月12日生成,先后在菲律宾东北部、我国海南岛东部和广东南部、越南北部完成四次登陆。

【北师大版】九年级数学上册(1-3)单元检测试卷(含答案)

【北师大版】九年级数学上册(1-3)单元检测试卷(含答案)

北师大版九年级数学上册(1-3)单元试卷(含答案)第一章检测试卷(满分:120分,时间:90分钟)一、选择题(每题3分,共30分)1.如图,已知菱形ABCD的边长为3,∠ABC=60°,则对角线AC的长是( )A.12 B.9 C.6 D.3(第1题)(第4题)(第6题)2.下列命题为真命题的是( )A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形3.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形4.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,那么阴影部分的面积是矩形ABCD 面积的( )A .15B .14C .13D .3105.已知四边形ABCD 是平行四边形,下列结论中错误的有( )①当AB =BC 时,它是菱形;②当AC⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形.A .1个B .2个C .3个D .4个6.如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A .8 2B .4 2C .8D .67.如图,每个小正方形的边长为1,A ,B ,C 是正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.如图,在菱形ABCD 中,点M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接OB.若∠DAC=28°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72°(第7题)(第8题)(第9题)(第10题)9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )A.AF=AE B.△ABE≌△AGF C.EF=2 5 D.AF=EF 10.如图,在正方形ABCD中,点P是AB上一动点(点P不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有( )A.0个 B.1个 C.2个 D.3个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为________时,两条对角线长度相等.12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为________.(第11题)(第12题)(第13题)13.如图是根据四边形的不稳定性制作的边长为15 cm的可活动衣架,若墙上钉子间的距离AB=BC=15 cm,则∠1=________.14.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________.15.如图,矩形OBCD的顶点C的坐标为(1,3),则对角线BD的长等于________.(第15题)(第16题)(第17题)(第18题)16.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD 交BD于点E,则DE=________.17.如图,在矩形ABCD中,M,N分别是AD,BC的中点,E,F分别是线段BM,CM的中点.若AB=8,AD=12,则四边形ENFM的周长为________.18.如图,在边长为1的菱形 ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,…,按此规律所作的第n个菱形的边长是________.三、解答题(19,20题每题9分,21题 10分,22,23题每题12分,24题14分,共66分)19.如图,在四边形ABCD中,AD∥BC,AC的垂直平分线交AD,BC 于点E,F.求证:四边形AECF是菱形.(第19题)20.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.(第20题)21.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)若∠FDC=30°,求∠BEF的度数.(第21题)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.(第22题)23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的角∠EAF绕点A旋转,∠EAF的两边分别交BC,CD于点E,F,且E,F不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形 AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.(第23题)24.如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF 是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE________是菱形(填“可能”或“不可能”).请说明理由.(第24题)答案一、1.D 2.A3.D点拨:首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.4.B5.A 点拨:①当AB=BC时,它是菱形,正确;②当AC⊥BD时,它是菱形,正确;③当∠ABC=90°时,它是矩形,正确;④当AC=BD时,它是矩形,因此④是错误的.6.C7.C 8.C9.D点拨:如图,由折叠得∠1=∠2.∵AD∥BC,∴∠3=∠1.∴∠2=∠3.∴AE=AF.故选项A正确.由折叠得CD=AG,∠D=∠G=90°.∵AB=CD,∴AB=AG.∵AE=AF,∠B=90°,∴Rt△ABE≌Rt△AGF(HL).故选项B正确.设DF=x,则GF=x,AF=8-x.又AG=AB=4,∴在Rt△AGF中,根据勾股定理得(8-x)2=42+x2.解得x=3.∴AF=8-x=5.则AE =AF =5, ∴BE=AE 2-AB 2=52-42=3.过点F 作FM⊥BC 于点M ,则EM =5-3=2.在Rt △EFM 中,根据勾股定理得EF =EM 2+FM 2=22+42=20=25,则选项C 正确.∵AF=5,EF =25,∴AF≠EF.故选项D 错误.(第9题)10.D 点拨:∵四边形ABCD 是正方形,∴∠PAE =∠MAE =45°. ∵PM ⊥AC ,∴∠PEA =∠MEA .又∵AE =AE ,∴根据“ASA”可得△APE ≌△AME .故①正确.由①得PE =ME ,∴PM =2PE .同理PN =2PF .又易知PF =BF ,四边形PEOF 是矩形,∴PN =2BF ,PM =2FO .∴PM +PN =2FO +2BF =2BO =BD .故②正确.在Rt△PFO 中,∵FO 2+PF 2=PO 2,而PE =FO ,∴PE 2+PF 2=PO 2.故③正确.二、11.90° 点拨:对角线相等的平行四边形是矩形.12.12 点拨:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12×6×8=24.∵O 是菱形两条对角线的交点,∴阴影部分的面积=12×24=12. 13.120°(第14题)14.22.5° 点拨:如图,由四边形ABCD 是正方形,可知∠CAD =12∠BAD=45°. 由FE⊥AC,可知∠AEF=90°.在Rt △AEF 与Rt △ADF 中, AE =AD ,AF =AF , ∴Rt △AEF≌Rt △ADF(HL ).∴∠FAD=∠FAE=12∠CAD=12×45°=22.5°.15.10 16.2-117.20 点拨:点N 是BC 的中点,点E ,F 分别是BM ,CM 的中点,由三角形的中位线定理可证EN∥MC ,NF∥ME,EN =12MC ,FN =12MB.又易知MB =MC ,所以四边形ENFM 是菱形.由点M 是AD 的中点,AD =12得AM =6.在Rt △ABM 中,由勾股定理得BM =10.因为点E 是BM 的中点,所以EM =5.所以四边形ENFM 的周长为20.18.(3)n -1三、19.证明:∵EF 垂直平分AC , ∴∠AOE=∠COF=90°,OA =OC. ∵AD∥BC,∴∠OAE=∠OCF. ∴△AOE≌△COF(ASA ). ∴AE=CF.又∵AE∥CF,∴四边形AECF 是平行四边形. ∵EF⊥AC,∴四边形AECF 是菱形. 20.(1)证明:∵DE∥AC,CE∥BD, ∴四边形OCED 为平行四边形. ∵四边形ABCD 为矩形,∴OD=OC. ∴四边形OCED 为菱形. (2)解:∵四边形ABCD 为矩形, ∴BO=DO =12BD.∴S △OCD =S △OCB =12S △ABC =12×12×3×4=3.∴S 菱形OCED =2S △OCD =6.21.(1)证明:在△BCE 与△DCF 中, ⎩⎪⎨⎪⎧BC =DC ,∠BCE=∠DCF,CE =CF , ∴△BCE≌△DCF. (2)解:∵△BCE≌△DCF, ∴∠EBC=∠FDC=30°. ∵∠BCD=90°,∴∠BEC=60°. ∵EC=FC ,∠ECF=90°, ∴∠CEF=45°.∴∠BEF=105°.22.(1)证明:∵在矩形ABCD 中,AD∥BC,∠A=∠C=90°, ∴∠ADB=∠DBC.根据折叠的性质得∠ADB=∠BDF,∠F=∠A=90°, ∴∠DBC=∠BDF ,∠C=∠F. ∴BE=DE.在△DCE 和△BFE 中, ⎩⎪⎨⎪⎧∠DEC=∠BEF,∠C=∠F,DE =BE , ∴△DCE≌△BFE. (2)解:在Rt △BCD 中, ∵CD=2,∠ADB=∠DBC=30°, ∴BD=4.∴BC=2 3.在Rt △ECD 中,易得∠EDC=30°. ∴DE=2EC. ∴(2EC)2-EC 2=CD 2. ∵CD=2, ∴CE=233.∴BE=BC -EC =433.(第23题)23.(1)证明:如图,连接AC. ∵四边形ABCD 为菱形,∠BAD=120°,∴∠ABE=∠ACF=60°,∠1+∠2=60°.∵∠3+∠2=∠EAF=60°,∴∠1=∠3.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形.∴AC=AB.∴△ABE≌△ACF.∴BE=CF.(2)解:四边形AECF的面积不变.由(1)知△ABE≌△ACF,则S△ABE=S△ACF,故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC. 如图,过A作AM⊥BC于点M,则BM=MC=2,∴AM=AB2-BM2=42-22=2 3.∴S△ABC=12BC·AM=12×4×23=4 3.故S四边形AECF=4 3.24.解:(1)OE=OF.理由如下:∵CE是∠ACB的平分线,∴∠ACE=∠BCE.又∵MN∥BC,∴∠NEC=∠BCE.∴∠NEC=∠ACE.∴OE=OC.∵CF是∠ACD的平分线,∴∠OCF=∠FCD.又∵MN∥BC,∴∠OFC=∠FCD.∴∠OFC=∠OCF.∴OF=OC.∴OE=OF.(2)当点O运动到AC的中点,且△ABC满足∠ACB为直角时,四边形AECF是正方形.理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形.∵FO=CO,∴AO=CO=EO=FO.∴AO+CO=EO+FO,即AC=EF.∴四边形AECF是矩形.已知MN∥BC,当∠ACB=90°时,∠AOE =90°,∴AC⊥EF.∴四边形AECF是正方形.(3)不可能理由如下:连接BF,∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=12∠ACB+12∠ACD=12(∠ACB+∠ACD)=90°.若四边形BCFE是菱形,则BF⊥EC.但在一个三角形中,不可能存在两个角为90°,故四边形BCFE不可能为菱形.第二章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列方程一定是一元二次方程的是( )A .3x 2+2x-1=0 B .5x 2-6y -3=0 C .ax 2-x +2=0 D .3x 2-2x -1=02.一元二次方程5x 2-x =-3,其中二次项系数、一次项系数、常数项分别是( )A .5,-x ,3B .5,-1,-3C .5,-1,3D .5x 2,-1,33.由下表估算一元二次方程x 2+12x =15的一个根的范围,正确的是( )A .1.0<x<1.1B .1.1<x<1.2C .1.2<x<1.3D .14.41<x<15.844.设α,β是一元二次方程x 2+2x -1=0的两个根,则αβ的值是( )A .2B .1C .-2D .-15.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( )A .289(1-x)2=256B .256(1-x)2=289C .289(1-2x)=256D .256(1-2x)=2896.下列方程,适合用因式分解法解的是( )A.x2-42x+1=0 B.2x2=x-3C.(x-2)2=3x-6 D.x2-10x-9=07.关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是( )A.-1或5 B.1 C.5 D.-18.一个三角形的两边长分别为3和6,第三边的长是方程(x-2)(x -4)=0的根,则这个三角形的周长是( )A.11 B.11或13 C.13 D.以上选项都不正确9.若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过第( )象限.A.四B.三C.二D.一(第10题)10.如图,将边长为2 cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1 cm2,则它移动的距离AA′等于( )A.0.5 cm B.1 cmC.1.5 cm D.2 cm二、填空题(每题3分,共24分)11.若将方程x2-8x=7化为(x-m)2=n,则m=________.12.如果关于x的方程ax2+2x+1=0有两个不相等的实数根,那么实数a的取值范围是______________.13.已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k=________.14.某市准备加大对雾霾的治理力度,2015年第一季度投入资金100万元,第二季度和第三季度共投入资金260万元,求这两个季度投入资金的平均增长率.设这两个季度投入资金的平均增长率为x,根据题意可列方程为________________________.15.关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.16.小明的妈妈周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,她周三买了________瓶酸奶.17.对于实数a,b,定义运算“*”a* b=22(),(), a ab a b ab b a b ⎧-≥⎪⎨-⎪⎩<例如:4*2,因为4>2,所以4*2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1*x2=________.(第18题)18.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC 边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.三、解答题(19题12分,20~23题每题8分,24题10分,25题12分,共66分)19.用适当的方法解下列方程.(1)x2-x-1=0; (2)x2-2x=2x+1;(3)x(x-2)-3x2=-1; (4)(x+3)2=(1-2x)2.20.已知关于x的一元二次方程(m+1)x2-x+m2-3m-3=0有一个根是1,求m的值及另一个根.21.晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得[(x+2)-2][(x+2)+2]=6.(x+2)2-22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得x1=-2+10,x2=-2-10.我们称这种解法为“平均数法”.(1)下面是晓东用“平均数法”解方程(x+2)(x+6)=5时写的解题过程.解:原方程可变形,得[(x+□)-○][(x+□)+○]=5.(x+□)2-○2=5,(x+□)2=5+○2.直接开平方并整理,得x1=☆,x2=¤.上述过程中的“□”,“○”,“☆”,“¤”表示的数分别为________,________,________,________.(2)请用“平均数法”解方程:(x-3)(x+1)=5.22.已知x1,x2是关于x的一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a 的值;若不存在,请说明理由.(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.23.楚天汽车销售公司5月份销售某种型号汽车.当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30辆.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润为25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价-进价)24.如图,A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P ,Q 分别从点A ,C 同时出发,点P 以3 cm /s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm /s 的速度向D 移动.(1)P ,Q 两点从出发开始到几秒时,四边形PBCQ 的面积为33 cm 2? (2)P ,Q 两点从出发开始到几秒时,点P 和点Q 之间的距离是10cm?(第24题)25.杭州湾跨海大桥通车后,A 地到宁波港的路程比原来缩短了120 km .已知运输车速度不变时,行驶时间将从原来的103h 缩短到2 h .(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8 320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:1车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?答案一、1.D 2.C 3.B 4.D5.A点拨:第一次降价后的价格为289×(1-x)元,第二次降价后的价格为289×(1-x)×(1-x)元,则列出的方程是289(1-x)2=256.6.C7.D8.C9.D10.B点拨:设AC交A′B′于H.∵∠A=45°,∠AA′H=90°,∴△AA′H是等腰直角三角形.设AA′=x cm,则A′H=x cm,A′D=(2-x)cm.∴x(2-x)=1,解得x1=x2=1.即AA′=1 cm.故选B.二、11.412.a<1且a≠013.2 点拨:∵x2-6x+k=0的两根分别为x1,x2,∴x1+x2=6,x1x2=k.∴1x1+1x2=x1+x2x1x2=6k=3.解得k=2.经检验,k=2满足题意.14.100(1+x)+100(1+x)2=260点拨:根据题意知:第二季度投入资金100(1+x)万元,第三季度投入资金100(1+x)2万元,∴100(1+x)+100(1+x)2=260.15.1 点拨:由方程x2-4x+3=0,得(x -1)(x -3)=0, ∴x-1=0或x -3=0. 解得x 1=1,x 2=3; 当x =1时,分式方程1x -1=2x +a 无意义;当x =3时,13-1=23+a, 解得a =1,经检验,a =1是方程13-1=23+a的解.16.4 点拨:设她周三买了x 瓶酸奶,根据题意得(x +2)·⎝ ⎛⎭⎪⎫10x -0.5=10+2,化简得x 2+6x -40=0,解得x 1=4,x 2=-10.经检验.x 1=4,x 2=-10都是分式方程的根,但x =-10不符合题意,故x =4.17.3或-3 点拨:x 2-5x +6=0的两个根为x 1=2,x 2=3或x 1=3,x 2=2.当x 1=2,x 2=3时,x 1*x 2=2×3-32=-3; 当x 1=3,x 2=2时,x 1*x 2=32-2×3=3.18.6 点拨:∵在Rt △ABC 中,∠BAC=90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD=BD =CD =8 2 cm .又∵AP=2t cm ,∴S 1=12AP·BD=12×2t×82=8t(cm 2),PD =(82-2t)cm .易知PE =AP =2t cm ,∴S 2=PD·PE=(82-2t)·2t cm 2.∵S 1=2S 2,∴8t=2(82-2t)·2t.解得t 1=0(舍去),t 2=6. 三、19.解:(1)(公式法)a =1,b =-1,c =-1, 所以b 2-4ac =(-1)2-4×1×(-1)=5. 所以x =-b ±b 2-4ac 2a =1±52,即原方程的根为x 1=1+52, x 2=1-52.(2)(配方法)原方程可化为x 2-4x =1, 配方,得x 2-4x +4=1+4,(x -2)2=5. 两边开平方,得x -2=±5, 所以x 1=2+5,x 2=2- 5.(3)(公式法 )原方程可化为2x 2+2x -1=0,a =2,b =2,c =-1,b 2-4ac =22-4×2×(-1)=12. 所以x =-2±122×2=-1±32,即原方程的根为x 1=-1+32,x 2=-1-32.(4)(因式分解法)移项,得(x +3)2-(1-2x)2=0, 因式分解,得(3x +2)(-x +4)=0, 解得x 1=-23,x 2=4.20.解:∵(m+1)x 2-x +m 2-3m -3=0有一个根是1, ∴(m+1)·12-1+m 2-3m -3=0.整理,得m 2-2m -3=0,∴(m-3)(m +1)=0.又∵方程(m +1)x 2-x +m 2-3m -3=0为一元二次方程, ∴m+1≠0,∴m-3=0.∴m=3. ∴原方程为4x 2-x -3=0, 解得x 1=1,x 2=-34.∴原方程的另一个根为-34.21.解:(1)4;2;-1;-7(最后两空可交换顺序); (2)(x -3)(x +1)=5, 原方程可变形,得[(x -1)-2][(x -1)+2]=5, 整理,得(x -1)2-22=5, (x -1)2=5+22,即(x -1)2=9, 直接开平方并整理,得x 1=4,x 2=-2. 22.解:(1)存在.Δ=4a 2-4a(a -6)=24a , ∵一元二次方程有两个实数根, ∴Δ≥0,即a≥0.又∵a-6≠0,∴a≠6.∴a≥0且a≠6.由题可知x 1+x 2=2a 6-a ,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2,即x 1x 2=4+x 1+x 2,∴a a -6=4+2a6-a .解得a =24,经检验,符合题意.∴存在实数a ,a 的值为24.(2)(x 1+1)(x 2+1)=x 1+x 2+x 1x 2+1=2a 6-a +a a -6+1=-6a -6.∵-6a -6为负整数, ∴实数a 的整数值应取7,8,9,12. 23.解:(1)当x≤5时,y =30.当5<x≤30时,y =30-(x -5)×0.1=-0.1x +30.5. ∴y=⎩⎪⎨⎪⎧30(x≤5,且x 为正整数),-0.1x +30.5(5<x≤30,且x 为正整数).(2)当x≤5时,(32-30)×5=10<25,不合题意. 当5<x≤30时,(32+0.1x -30.5)x =25, ∴x 2+15x -250=0.解得x 1=-25(舍去),x 2=10. ∴该月需售出10辆汽车.(第24题)24.解:(1)设P ,Q 两点从出发开始到x s 时,四边形PBCQ 的面积为33 cm 2,则AP =3x cm ,CQ =2x cm ,所以PB =(16-3x)cm .因为(PB +CQ)×BC×12=33,所以(16-3x +2x)×6×12=33.解得x=5,所以P ,Q 两点从出发开始到5 s 时,四边形PBCQ 的面积为33 cm 2.(2)设P ,Q 两点从出发开始到a s 时,点P 和点Q 之间的距离是10 cm .如图,过点Q 作QE⊥AB 于E ,易得EB =QC ,EQ =BC =6 cm , 所以PE =|PB -BE|=|PB -QC|=|16-3a -2a|=|16-5a|(cm ). 在Rt △PEQ 中,PE 2+EQ 2=PQ 2,所以(16-5a)2+62=102,即25a 2-160a +192=0,解得a 1=85,a 2=245,所以P ,Q 两点从出发开始到85 s 或245s 时,点P 和点Q 之间的距离是10 cm . 25.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x km ,由题意得x +120103=x2,解得x =180.∴A 地经杭州湾跨海大桥到宁波港的路程为180 km . (2)1.8×180+28×2=380(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是380元.(3)设这批货物有y 车,由题意得y[800-20×(y-1)]+380y =8 320,整理得y 2-60y +416=0,解得y 1=8,y 2=52(不合题意,舍去),∴这批货物有8车.第三章达标检测卷 (120分,90分钟)一、选择题(每题3分,共30分)1.小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是( )A .110B .25C .15D .3102.从一定高度抛一个瓶盖100次,落地后盖面朝下的有55次,则下列说法中错误的是( )A .盖面朝下的频数是55B .盖面朝下的频率是0.55C .盖面朝下的概率不一定是0.55D .同样的试验做200次,落地后盖面朝下的有110次3.两道单选题都含A ,B ,C ,D 四个选项,瞎猜这两道题,恰好全部猜对的概率是( )A .12B .14C .18D .1164.事件A :打开电视,它正在播广告;事件B :抛掷一枚均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A),P(B),P(C),则P(A),P(B),P(C)的大小关系正确的是( )A .P(C)<P(A)=P(B)B .P(C)<P(A)<P(B)C .P(C)<P(B)<P(A)D .P(A)<P(B)<P(C)(第5题)5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开.小明从入口1进入并从出口A 离开的概率是( )A .12B .13C .14D .166.王阿姨在网上看中了一款防雾霾口罩,付款时需要输入11位的支付密码,她只记得密码的前8位,后3位由1,7,9这3个数字组成,但具体顺序忘记了,她第一次就输入正确密码的概率是( )A .12B .14C .16D .187.同时抛掷A ,B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两个小立方体朝上的数字分别为x ,y ,并以此确定点P(x ,y),那么点P 落在函数y =-2x +9的图象上的概率为( )A .118B .112C .19D .168.在一个不透明的盒子里装有只颜色不同的黑、白两种球共40个.小亮做摸球试验,他将盒子内的球搅匀后从中随机摸出一个球,记下颜色后放回,不断重复上述过程,对试验结果进行统计后,小亮得到下表中的数据:则下列结论中正确的是( )A .n 越大,摸到白球的概率越接近0.6B .当n =2 000时,摸到白球的次数m =1 200C .当n 很大时,摸到白球的频率将会稳定在0.6附近D .这个盒子中约有28个白球9.让图中的两个转盘分别自由转动一次(两个转盘均被分成4等份),当转盘停止转动时,两个指针分别落在某两个数所表示的区域内,则这两个数的和是5的倍数或3的倍数的概率等于( )A .316B .38C .916D .131610.如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为( )A .14B .25C .23D .59(第9题)(第10题)(第14题)(第18题)二、填空题(每题3分,共24分)11.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面朝上的概率是________.12.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n=________.13.从8,12,18,32中随机抽取一个根式,化简后与2的被开方数相同的二次根式的概率是________.14.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可以使小灯泡发光,任意闭合其中两个开关,使小灯泡发光的概率为________.15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他第一次就能走出迷宫的概率是________.16.某市举办“体彩杯”中学生篮球赛,初中男子组有市区学校的A ,B ,C 三个队和县区学校的D ,E ,F ,G ,H 五个队.如果从A ,B ,D ,E 四个队与C ,F ,G ,H 四个队中各抽取一个队进行首场比赛,那么参加首场比赛的两个队都来自县区学校的概率是________.17.在一个暗盒中放有若干个白色球和2个黑色球(这些球除颜色外无其他区别),若从中随机取出1个球是白色球的概率是35,则在暗盒中随机取出2个球都是白色球的概率是________.18.如图,一个质地均匀的正四面体的四个面上依次标有数-2,0,1,2,连续抛掷两次,朝下一面的数分别是a ,b ,将其作为点M 的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是________.三、解答题(19题8分,20题10分,其余每题12分,共66分)19.如图,小明做了A ,B ,C ,D 四张同样规格的硬纸片,它们的背面完全相同,正面分别画有等腰三角形、圆、平行四边形、正方形.小明将它们背面朝上洗匀后,随机抽取两张.请你用列表或画树状图的方法,求小明抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的概率.(第19题)20.一个瓶中装有一些幸运星,小王为了估计这个瓶中幸运星的颗数,他是这样做的:先从瓶中取出20颗幸运星做上记号,然后把这些幸运星放回瓶中,充分摇匀,再从瓶中取出30颗幸运星,发现有6颗幸运星带有记号,请你帮小王估算出原来瓶中幸运星的颗数.21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.求:(1)取出纸币的总额是30元的概率;(2)取出纸币的总额可购买一件51元的商品的概率.22.学校实施新课程改革以来,学生的学习能力有了很大的提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图①②).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.(第22题)23.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级 (1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.(1)写出所有选购方案(利用树状图或表格求选购方案).(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?(3)现某中学准备购买两个品种的粽子共32盒(价格如下表)发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1 200元,请问:购买了多少盒甲厂家的高档粽子?答案一、1.C 2.D 3.D 4.B 5.C6.C点拨:因为后3位由1,7,9这3个数字组成,所以后3位可能的结果有:179,197,719,791,917,971.所以她第一次就输入正确密码的概率是16.故选C . 7.B 点拨:列表如下:∴有36种等可能情况,点P(x ,y)落在y =-2x +9的图象上的有(2,5)(3,3)(4,1)共3种情况,故其概率为336=112. 8.C9.C 点拨:列表如下:所有等可能的情况有16种,其中两个数的和是5的倍数或3的倍数的情况有9种,则P =916,故选C .(第10题)10.B 点拨:如图,正六边形中连接任意两点可得15条线段,其中AC ,AE ,BD ,BF ,CE ,DF 这6条线段的长度为3,∴所求概率为615=25. 二、11.34点拨:随机掷一枚质地均匀的硬币两次,可能出现的结果有(正,正)、(正,反)、(反,正)、(反,反)4种,且每种结果出现的可能性相同,至少有一次正面朝上的结果有3种,故所求概率是34. 12.10 13.34 14.12 15.1816.38点拨:列表如下:由表格可知共有16种等可能情况,参加首场比赛的两个队都来自县区学校的有6种情况,所以概率为616=38.17.31018.716点拨:列表如下:(第18题)由表格知共有16种等可能的结果,而落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的点有(-2,0),(0,0),(1,0),(2,0),(0,1),(1,1),(0,2),共7种,如图,所以点M落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是716 .三、19.解:列表如下:由表格可看出,所有可能出现的结果共有12种,每种结果出现的可能性都相同,其中抽到的两张硬纸片上的图形既是轴对称图形又是中心对称图形的结果共有2种,故所求概率P =212=16.20.解:设原来瓶中幸运星大约有x 颗,则有20x =630.解得x =100.经检验,符合题意.∴原来瓶中幸运星大约有100颗.21.解:某人从钱包内随机取出2张纸币,可能出现的结果有3种,即10元与20元,10元与50元,20元与50元,并且它们出现的可能性相等.(1)取出纸币的总额是30元(记为事件A)的结果有1种,即10元与20元,所以P(A)=13.(2)取出纸币的总额可购买一件51元的商品(记为事件B)的结果有2种,即10元与50元,20元与50元,所以P(B)=23.22.解:(1)20 (2)补图如图所示.(第22题)(3)列表如下,A 类学生中的两名男生分别记为男A 1和男A 2,共有6种等可能的结果,其中,一男一女的有3种,所以恰好选中一名男生和一名女生的概率为36=12.23.解:(1)所求概率P =36=12.(2)游戏公平. 理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.24.解:(1)画树状图如图所示:(第24题)或列表如下:共有6种选购方案:(高档,精装)、(高档,简装)、(中档,精装)、(中档,简装)、(低档,精装)、(低档,简装).(2)因为选中甲厂家的高档粽子的方案有2种,即(高档,精装)、(高档,简装),所以甲厂家的高档粽子被选中的概率为26=13.(3)由(2)可知,当选用方案(高档,精装)时,设分别购买高档粽子、精装粽子x 1盒、y 1盒,根据题意,得⎩⎪⎨⎪⎧x 1+y 1=32,60x 1+50y 1=1 200. 解得⎩⎪⎨⎪⎧x 1=-40,y 1=72.经检验,不符合题意,舍去.当选用方案(高档,简装)时,设分别购买高档粽子、简装粽子。

新北师大版2017-2018九数学 期末综合测试

新北师大版2017-2018九数学 期末综合测试

2017—2018学年度第一学期九年级数学(期末综合2)班别学号姓名 成绩1、一元二次方程的一般形式是:()A.ax 2+bx +c =0 B . x 2-bx +c =0 C.ax 2+bx =c D.ax 2+bx +c =0 (a ≠0) 2、下列一元二次方程中,没有实数根的方程是()A .x 2-2x +1=0B .x 2+x -2=0C .x 2-2x -1=0D .x 2+x +2=0 3、下列图形中,既是轴对称图形,又是中心对称图形的是()4、抛物线y = (x -2)2+3的顶点坐标是() A .(2,3)B .(2,-3) C .(-2,3)D .(-2,-3)5、如图,四边形ABCD 内接于圆,则图中与∠ABD 相等的角是() A .∠CAD B .∠ACD C .∠CBD D .∠ACB6、如图,AB 是⊙O 的弦,OC 是半径,OC ⊥AB ,AB =8,OD =3,则⊙O 的半径为()A .4B .5C .6D .87、下列事件是必然事件的是()A .抛掷一枚硬币,正面朝上B .打开电视正在播放足球比赛C .射击运动员射击一次命中十环D .方程x 2-2x =0必有实数根 8、在如图的地板行走,随意停下来时,站在黑色地板上的概率是()A .31B .21C .43D .41 9、某扇形的圆心角为120°,半径为3cm,则该扇形的面积为()A 、π B、2π C 、3π D 、4π10、二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示, 关于该二次函数,下列说法不正确的是()A .该函数有最小值B .y 随x 的增大而减小C .对称轴是直线21=x D .当21<<-x 时,0<yA B C D C DB A 第5题图第6题图第8题图第10题图二、填空题(本大题共6小题,每小题4分,共24分)11、方程x 2+2x =0的根是.12、抛物线y = 2(x -3)2+1的对称轴是. 13、点M (-3,2)关于原点对称的点的坐标是. 14、点(1,4)在反比例函数xky =(0≠k )的图象上,则=k . 15、如图,在Rt △ABC 中,∠ABC =90°,∠A=30°,AC =10,把Rt △ABC 绕点B 顺时针旋转到Rt △A'B'C'的位置,点C'在AC 上,A'C'与AB 相交于点D ,则C'D 的长为.16、如图,△OAB 中,OA =OB =4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积是.三、解答题(本大题共4小题,每小题9分,共36分)17、解方程:x 2+4x +1=0.18、如图,△ABC 是等边三角形.(1)作△ABC 的外接⊙O (2)若AB =6cm ,求⊙O 的半径.19、随着人们节能意识的增加,节能产品的销量逐年增加,某商场在2015年销售高效节能灯5万只,在刚过去的2016年达到7.2万只,求该商场2015年到2017年高效节能灯销量的平均增长率.20、如图,AB 是⊙O 的直径,AP 是⊙O 的切线,点A 为切点,BP 与⊙O 交于点C , 点D 是AP 的中点,连结CD .(1)证明:CD 是⊙O 的切线;(2)若AB =2,∠P =30°,求CD 的长;CAC'CA A'D第15题图第16题图CBPO。

北师大版九年级数学上册各章测验汇总(共六套,附答案)

北师大版九年级数学上册各章测验汇总(共六套,附答案)

北师大版九年级数学上册各章测验汇总第一章特殊平行四边形一、选择题(本大题共6小题,共24分)1.下列关于▱ABCD的叙述中,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形2.如图1,在△ABC中,D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF ∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形123.如图2,在菱形ABCD中,对角线AC,BD相交于点O,作OE⊥AB,垂足为E,若∠ADC =130°,则∠AOE的度数为( )A.75° B.65° C.55° D.50°4.如图3,P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( )A.125 B.65 C.245D .不确定345.如图4,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )A .2.5 B. 5 C.322 D .26.如图5,在平面直角坐标系中,四边形OABC 是正方形,点A 的坐标是(4,0),P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形OABC ,折叠后,点B 落在平面内的点B ′处,则点B ′的坐标为( )图5A .(2,2 3)B .(32,2-3)C .(2,4-2 3)D .(32,4-2 3)二、填空题(本大题共6小题,共30分)7.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是________. 8.如图6所示,在矩形纸片ABCD 中,AB =2 cm ,点E 在BC 上,且AE =EC .若将纸片沿AE 折叠,点B 恰好与AC 上的点B ′重合,则AC =________ cm.679.如图7所示,若菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为________.10.如图8,在正方形ABCD的外侧作等边三角形ADE,则∠BED的度数是________.8911.如图9所示,在四边形ABCD中,对角线AC⊥BD,垂足为O,E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.图1012.如图10,在矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为________.三、解答题(共46分)13.(10分)如图11,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形ABCD的边长为4,AE=2,求菱形BEDF的面积.图1114.(10分)如图12,已知平行四边形ABCD的对角线AC,BD相交于点O,AC=20 cm,BD=12 cm,两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,点E到点C,点F到点A时停止运动.(1)求证:当点E,F在运动过程中不与点O重合时,以点B,E,D,F为顶点的四边形为平行四边形;(2)当点E,F的运动时间t为何值时,四边形BEDF为矩形?图1215.(12分)如图13,△ABC是以BC为底的等腰三角形,AD是边BC上的高,E,F分别是AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.图1316.(14分)如图14,四边形ABCD是正方形,E是直线CD上的点,将△ADE沿AE对折得到△AFE,直线EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)当DE是线段CD的一半时,请你在备用图中利用尺规作图画出符合题意的图形(保留作图痕迹,不写作法);(3)在(2)的条件下,求∠EAG的度数.图141.C 2.D 3.B 4.A5.B .6.C 7.6 .8.49.(2+2,2)10.45° . 11.12 12.75813.解:(1)证明:连接BD 交AC 于点O , ∵四边形ABCD 为正方形, ∴BD ⊥AC ,OD =OB =OA =OC . ∵AE =CF ,∴OA -AE =OC -CF , 即OE =OF ,∴四边形BEDF 为平行四边形,且BD ⊥EF , ∴四边形BEDF 为菱形. (2)∵正方形ABCD 的边长为4, ∴BD =AC =4 2.∵AE =CF =2,∴EF =AC -2 2=2 2, ∴S 菱形BEDF =12BD ·EF =12×4 2×2 2=8.14.解:(1)证明:连接DE ,EB ,BF ,FD .∵两动点E ,F 同时以2 cm/s 的速度分别从点A ,C 出发在线段AC 上相对运动, ∴AE =CF .∵平行四边形ABCD 的对角线AC ,BD 相交于点O , ∴OD =OB ,OA =OC (平行四边形的对角线互相平分), ∴OA -AE =OC -CF 或AE -OA =CF -OC ,即OE =OF ,∴四边形BEDF 为平行四边形(对角线互相平分的四边形是平行四边形), 即以点B ,E ,D ,F 为顶点的四边形是平行四边形.(2)当点E 在OA 上,点F 在OC 上,EF =BD =12 cm 时,四边形BEDF 为矩形. ∵运动时间为t , ∴AE =CF =2t ,∴EF =20-4t =12, ∴t =2;当点E 在OC 上,点F 在OA 上时,EF =BD =12 cm ,EF =4t -20=12,∴t =8.因此,当点E ,F 的运动时间t 为2 s 或8 s 时,四边形BEDF 为矩形. 15.解:(1)证明:∵AD ⊥BC ,E ,F 分别是AB ,AC 的中点, ∴在Rt △ABD 中,DE =12AB =AE ,在Rt △ACD 中,DF =12AC =AF .又∵AB =AC , ∴AE =AF =DE =DF , ∴四边形AEDF 是菱形.(2)如图,∵菱形AEDF 的周长为12, ∴AE =3.设EF =x ,AD =y ,则x +y =7, ∴x 2+2xy +y 2=49.①由四边形AEDF 是菱形得AD ⊥EF , ∴在Rt △AOE 中,AO 2+EO 2=AE 2, ∴(12y )2+(12x )2=32, 即x 2+y 2=36.②把②代入①,可得2xy =13, ∴xy =132,∴菱形AEDF 的面积S =12xy =134.16.解:(1)证明:∵四边形ABCD 为正方形, ∴AB =AD ,∠B =∠D =90°. ∵将△ADE 沿AE 对折得到△AFE , ∴AF =AD =AB ,∠AFE =∠D =90°. 在Rt △ABG 和Rt △AFG 中,⎩⎪⎨⎪⎧AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL). (2)如图所示:(3)∵△AFE ≌△ADE ,△ABG ≌△AFG , ∴∠EAF =∠EAD ,∠GAF =∠GAB . ∵在正方形ABCD 中,∠BAD =90°, ∴∠EAG =∠EAF +∠GAF =12×90°=45°.第二章 一元二次方程一、选择题(本大题共7小题,共21分)1.要使方程(a -3)x 2+(b +1)x +c =0是关于x 的一元二次方程,则( )A .a ≠0B .a ≠3C .a ≠3且b ≠-1D .a ≠3且b ≠-1且c ≠02.用配方法解关于x 的一元二次方程x 2-2x -3=0时,配方后的方程可以是( ) A .(x -1)2=4 B .(x +1)2=4 C .(x -1)2=16 D .(x +1)2=163.关于x 的一元二次方程x 2+ax -1=0的根的情况是( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根 D .有两个不相等的实数根4.若x =-2是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( )A .1或4B .-1或-4C .-1或4D .1或-45.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数的年平均增长率为x ,则下列方程中正确的是( )A .12(1+x )=17B .17(1-x )=12C .12(1+x )2=17D .12+12(1+x )+12(1+x )2=176.已知2是关于x 的方程x 2-2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则△ABC 的周长为( )A .10B .14C .10或14D .8或10图17.如图1,一农户要建一个矩形花圃,花圃的一边利用长为12 m 的住房墙,另外三边用25 m 长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门,花圃面积为80 m 2,设与墙垂直的一边长为x m ,则可以列出关于x 的方程是( )A .x (26-2x )=80B .x (24-2x )=80C .(x -1)(26-2x )=80D .x (25-2x )=80二、填空题(本大题共6小题,共24分)8.已知关于x 的方程3x 2+mx -8=0有一个根是23,则另一个根及m 的值分别为________.9.关于x 的方程mx 2+x -m +1=0,有以下三个结论:①当m =0时,方程只有一个实数解;②当m ≠0时,方程有两个不相等的实数解;③无论m 取何值,方程都有一个负数解.其中正确的是________(填序号).10.已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =________. 11.已知一元二次方程x 2-3x -4=0的两根是m ,n ,则m 2+n 2=________. 12.经过两次连续降价,某药品的销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是____________.13.将一条长为20 cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是________cm 2. 三、解答题(共55分)14.(12分)我们已经学习了一元二次方程的四种解法:因式分解法、直接开平方法、配方法和公式法.请选择你认为适当的方法解下列方程:(1)x 2-3x +1=0; (2)(x -1)2=3;(3)x2-3x=0; (4)x2-2x=4.15.(9分)已知关于x的一元二次方程x2-(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.16.(10分)如图2,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m2,求道路的宽.(部分参考数据:322=1024,522=2704,482=2304)图217.(12分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率.(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.小华选择哪种方案更优惠?请说明理由.18.(12分)在图3中,每个正方形由边长为1的小正方形组成:图3(1)观察图形,请填写下列表格:(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为p1,白色小正方形的个数为p2,问是否存在偶数n,使p2=5p1?若存在,请写出n的值;若不存在,请说明理由.答案1.B 2.A 3.D4.B 5.C 6.B 7.A 8.-4,10 9.①③ 10.611.17 12.50(1-x )2=32 13.12.5 14.解:(1)b 2-4ac =9-4=5, x =-b ±b 2-4ac 2a =3±52,x 1=3+52,x 2=3-52. (2)两边直接开平方,得x -1=±3,x 1=1+3,x 2=1- 3.(3)原方程可化为x (x -3)=0,x =0或x -3=0, x 1=0,x 2=3.(4)配方,得x 2-2x +1=4+1, 整理,得(x -1)2=5, 开平方,得x -1=±5,x 1=1+5,x 2=1- 5.15.解:(1)证明:∵在方程x 2-(k +3)x +2k +2=0中,Δ=[-(k +3)]2-4×1×(2k +2)=k 2-2k +1=(k -1)2≥0,∴方程总有两个实数根.(2)∵x 2-(k +3)x +2k +2=(x -2)(x -k -1)=0, ∴x 1=2,x 2=k +1. ∵方程有一个根小于1,∴k+1<1,解得k<0,∴k的取值范围为k<0.16.解:解法1:利用平移,原图可转化为图①,设道路宽为x m,根据题意,得(20-x)(32-x)=540,整理,得x2-52x+100=0,解得x1=50(舍去),x2=2.答:道路的宽为2 m.解法2:利用平移,原图可转化为图②,设道路宽为x m,根据题意,得20×32-(20+32)x+x2=540,整理,得x2-52x+100=0,解得x1=2,x2=50(舍去).答:道路的宽是2 m.17.[解析] 本题考查了一元二次方程的应用,掌握增长率的计算方法是解题的关键.解:(1)设平均每次下调的百分率为x.由题意,得5(1-x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一更优惠.理由:方案一所需费用为3.2×0.9×5000=14400(元),方案二所需费用为3.2×5000-200×5=15000(元).因为14400<15000,所以小华选择方案一更优惠.18.解:(1)1 5 9 13 2n-1 4 8 12 16 2n(2)由(1)可知,当n为偶数时,p1=2n,所以p2=n2-2n.根据题意,得n2-2n=5×2n,整理,得n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得p2=5p1.第三章概率的进一步认识一、选择题(本大题共8小题,共40分)1.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.232.为估计鱼塘中鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘中鱼的数量约为( )A.1250条 B.1750条 C.2500条 D.5000条3.一个不透明的袋子里有若干个小球,它们除颜色不同外,其他都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀……甲同学反复大量试验后,根据白球出现的频率绘制了如图1所示的统计图,则下列说法正确的是( )图1A.袋子里一定有三个白球B.袋子中白球占小球总数的十分之三C.再摸三次球,一定有一次是白球D.再摸1000次,摸出白球的次数会接近330次4.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )A.15B.14C.13D.125.如图2,两个转盘分别自由转动一次,转盘停止转动后,两个指针分别落在某两个数所表示的区域,这两个数的和是2的倍数或是3的倍数的概率等于( )图2A.316B.38C.58D.13166.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面的数字为x,乙立方体朝上一面的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在正比例函数y=2x图象上的概率为( )A.118B.112C.19D.16图37.如图3,每个灯泡能通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )A.0.25 B.0.5 C.0.75 D.0.958.把五张大小、质地完全相同且分别写有1,2,3,4,5的卡片放在一个暗箱中,先由甲随机从里面抽取一张(不放回),并记下数字后,再由乙从里面随机抽取一张,并记下数字,若两数之和为偶数则甲胜,若两数之和为奇数则乙胜,则( )A.两者取胜的概率相同B.甲胜的概率为0.6C.乙胜的概率为0.6D.乙胜的概率为0.7二、填空题(本大题共5小题,共25分)9.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是________.10.纸箱里有两双拖鞋,它们除颜色不同外,其他都相同,从中随机取一只(不放回),再取一只,则两次取出的鞋颜色恰好相同的概率为________.11.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:估计该种幼树在此条件下移植成活的概率为________.(精确到0.01)12.在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是________.13.已知关于x的一元二次方程x2+bx+c=0,从-1,2,3三个数中任取一个数,作为方程中b的值,再从剩下的两个数中任取一个数作为方程中c的值,能使该一元二次方程有实数根的概率是________.三、解答题(共35分)14.(10分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是________;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.15.(12分)端午节当天,小明带了四个粽子(除味道不同外,其他均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用画树状图或列表的方法表示小红拿到的两个粽子的所有可能性;(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.16.(13分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是________;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.1.D 2 A 3.D 4.C .5.C .6.B7.C .8.C 9.14 10.13 11.0.88 12.23 13.12 14.解:(1)12(2)画树状图如下:共有4种等可能的结果,其中至少有一个孩子是女孩的结果数为3, 所以至少有一个孩子是女孩的概率为34.15.解:(1)记两个大枣味的粽子分别为A 1,A 2,两个火腿味的粽子分别为B 1,B 2. 画树状图如下:所有可能情况为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 2,A 1),(A 2,B 1),(A 2,B 2),(B 1,A 1),(B 1,A 2),(B 1,B 2),(B 2,A 1),(B 2,A 2),(B 2,B 1).(2)由(1)可知,一共有12种可能,小红拿到的两个粽子刚好是同一味道有4种可能,所以P (同一味道)=412=13.16.解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,教室里所有灯都亮起的概率是0.故答案为0.(2)用1,2,3,4分别表示第一排、第二排、第三排和第四排灯, 画树状图如下:因为共有12种等可能的结果,其中恰好关掉第一排与第三排灯的结果数为2种, 所以恰好关掉第一排与第三排灯的概率=212=16.第四章 图形的相似一、选择题(本大题共7小题,共28分)1.已知x y =32,那么下列等式中,不一定正确的是( )A .x +2y +2=32 B .2x =3y C .x +y y =52 D .x x +y =352.如图4-Z -1,l 1∥l 2∥l 3,已知AB =6 cm ,BC =3 cm ,A 1B 1=4 cm ,则线段B 1C 1的长为( )A .6 cmB .4 cmC .3 cmD .2 cm4-Z -1图4-Z -23.如图4-Z -2所示,在△ABC 中,D ,E 分别为AC ,BC 边上的点,AB ∥DE ,CF 为AB 边上的中线.若AD =5,CD =3,DE =4,则BF 的长为( )A .323B .163C .103D .83图4-Z -34.如图4-Z -3,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODB S △BDC =13.其中正确的个数为( ) A .1 B .2 C .3 D .45.在Rt △ABC 和Rt △DEF 中,∠C =∠F =90°,下列条件中不能判定这两个三角形相似的是( )A .∠A =55°,∠D =35°B .AC =9,BC =12,DF =6,EF =8 C .AC =3,BC =4,DF =6,DE =8D .AB =10,AC =8,DE =15,EF =96.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( )A .12.36 cmB .13.64 cmC .32.36 cmD .7.64 cm7.如图4-Z -4,在Rt △ABC 中,∠C =90°,AC =BC =6 cm ,点P 从点A 出发,沿AB 方向以每秒 2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′.设点Q 运动的时间为t s ,若四边形QPCP ′为菱形,则t 的值为( )图4-Z -4A . 2B .2C .2 2D .3二、填空题(本大题共6小题,共24分)8.有一块三角形的草地,它的一条边长为25 m .在图纸上,这条边的长为5 cm ,其他两条边的长都为4 cm ,则其他两边的实际长度都是________ m .9.若a 5=b 7=c8,且3a -2b +c =3,则2a +4b -3c =________.10.已知甲、乙两个相似三角形对应中线之比为1∶2,甲三角形的面积为5 cm 2,则乙三角形的面积为__________.11.如图4-Z -5,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6,AD =2.当AB =________时,△ABC ∽△ACD.4-Z -54-Z -612.如图4-Z -6,数学兴趣小组想测量电线杆AB 的高度,他们发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得CD =4 m ,BC =10 m ,CD 与地面成30°角,且此时测得高1 m 的标杆的影长为2 m ,则电线杆的高度为________m (结果保留根号).图4-Z-713.如图4-Z-7,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC相交于点G,则△EBG的周长是________ cm.三、解答题(共48分)14.(10分)如图4-Z-8,矩形ABCD是台球桌面,AD=260 cm,AB=130 cm,球目前在E的位置,AE=60 cm,如果小宝瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到点D的位置.(1)求证:△BEF∽△CDF;(2)求CF的长.图4-Z-815.(12分)如图4-Z-9,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中的第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)求△A′B′C′的面积.图4-Z-916.(12分)如图4-Z-10,一块材料的形状是锐角三角形ABC,边BC=12 cm,高AD =8 cm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?图4-Z-1017.(14分)如图4-Z-11,在▱ABCD中,对角线AC,BD相交于点O,M为AD的中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△CND的面积为2,求四边形ABNM的面积.图4-Z-11参考答案1.A2.D 3.B 4.C 5.C 6.A 7.B 8.20 9.143 10.20 cm 211.312.(7+3) 13.12(cm).14.解:(1)证明:由题意,得∠EFG =∠DFG .∵∠EFG +∠BFE =90°,∠DFG +∠CFD =90°,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF . (2)∵△BEF ∽△CDF ,∴BE CD =BF CF ,即70130=260-CF CF, ∴CF =169(cm).15.解:(1)△A ′B ′C ′如图所示.(2)图中每个小正方形的边长为1个单位长度,由勾股定理可得AC =2,AB =CB =5,AC 边上的高=(5)2-⎝ ⎛⎭⎪⎫222=322,所以△ABC 的面积S =12×2×32 2=32.设△A ′B ′C ′的面积为S ′,因为△ABC ∽△A ′B ′C ′,所以S S ′=⎝ ⎛⎭⎪⎫122,得S ′=4S =4×32=6,即△A ′B ′C ′的面积为6.16.解:如图,∵四边形EFHG 是正方形, ∴EF ∥BC ,∴△AEF ∽△ABC ,而AD ⊥BC , ∴EF BC =AK AD.设正方形EFHG 的边长为x cm ,则AK =(8-x )cm ,∴x 12=8-x 8,解得x =4.8. 答:这个正方形零件的边长为4.8 cm.17.解:(1)∵在▱ABCD 中,AD ∥BC ,AD =BC ,OB =OD , ∴∠DMN =∠BCN ,∠MDN =∠NBC , ∴△MND ∽△CNB , ∴MD CB =DN BN. ∵M 为AD 的中点,∴MD =12AD =12BC ,即MD CB =12,∴DN BN =12,即BN =2DN . 设OB =OD =x ,则BD =2x ,BN =OB +ON =x +1,DN =OD -ON =x -1, ∴x +1=2(x -1),解得x =3,∴BD =2x =6.(2)∵△MND ∽△CNB ,且相似比为1∶2, ∴MN ∶CN =DN ∶BN =1∶2,∴S △MND =12S △CND =1,S △CNB =2S △CND =4,∴S △ABD =S △BCD =S △CNB +S △CND =4+2=6, ∴S 四边形ABNM =S △ABD -S △MND =6-1=5.第五章 投影与视图一、选择题(本大题共7小题,共28分)1.如图5-Z -1所示属于物体在太阳光下形成的影子的图形是( )图5-Z -12.某运动会颁奖台示意图如图5-Z -2所示,它的主视图是( )图5-Z -2图5-Z -3图5-Z-43.某几何体的三视图如图5-Z-4所示,则这个几何体是( )A.圆柱B.长方体C.三棱锥D.三棱柱4.由5个大小相同的小正方体拼成的几何体如图5-Z-5所示,则下列说法正确的是( )A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等5-Z-55-Z-65.如图5-Z-6,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8 m,窗户下檐到地面的距离BC=1 m,EC=1.2 m,那么窗户的高AB为( )A.1.5 m B.1.6 m C.1.86 m D.2.16 m6.一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图5-Z-7,则这张桌子上碟子的总数为( )图5-Z-7A.11 B.12 C.13 D.14图5-Z-87.如图5-Z-8,彬彬同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达点Q时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知彬彬同学的身高是1.5 m,两个路灯的高度都是9 m,则两个路灯之间的距离是( )A.24 m B.25 m C.28 m D.30 m二、填空题(本大题共4小题,共20分)8.图5-Z-9是小红在某天四个时刻看到一根木棒及其影子的情况,那么她看到的先后顺序是________.(填序号)图5-Z-9图5-Z-109.如图5-Z-10,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5 m,在旋转过程中,影长的最大值为5 m,最小值为3 m,且影长最大时,木杆与光线垂直,则路灯EF的高度为________ m.10.平面直角坐标系内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(4,1),则CD在x轴上的影长为________,点C的影子的坐标为________.11.如图5-Z-11是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.图5-Z-11三、解答题(共52分)12.(12分)如图5-Z-12,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明落在地面上的影长BC=2.4 m.(1)请你在图中画出旗杆DE在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面上的影长EG=16 m,请求出旗杆DE的高度.图5-Z-1213.(12分)如图5-Z-13是由一些棱长都为1的小正方体组合成的简单几何体.5-Z-13图5-Z-14(1)该几何体的表面积(含下底面)为________;(2)请在图5-Z-14中画出这个几何体的三视图;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加________个小正方体.14.(14分)如图5-Z-15是一个工件的三视图,图中标有尺寸.(1)该工件是怎样的几何体?(2)该工件的体积是多少?图5-Z-1515.(14分)如图5-Z-16,公路旁有两个高度相等的路灯AB,CD.杨柳上午去学校时发现路灯AB在太阳光下的影子恰好落到里程碑E处,她自己的影子恰好落在路灯CD的底部C处.晚上回家时,站在上午同一个地方,她发现在路灯CD的灯光下自己的影子恰好落在里程碑E处.(1)在图中画出杨柳的位置(用线段FG表示),并画出光线,标明太阳光、灯光;(2)若杨柳上午去学校时高1 m 的木棒在太阳光下的影长为2 m ,杨柳的身高为1.5 m ,她离里程碑E 恰为5 m ,求路灯的高.图5-Z -16参考答案1.A 2.C 3.D 4.B5.A 6.B 7.D 8.④③①② 9.7.510.1 (5,0) 11.22 12.解:(1)影子EG 如图所示.(2)∵DG ∥AC , ∴∠C =∠G .又∵∠ABC =∠DEG =90°, ∴Rt △ABC ∽Rt △DEG ,∴AB DE =BC EG ,即1.6DE =2.416, 解得DE =323(m),∴旗杆DE 的高度为323m.13.解:(1)28故该几何体的表面积(含下底面)为28. (2)如图所示:(3)214.解:(1)该工件是两个圆柱体的组合体.(2)根据三视图可知该几何体是两个圆柱体叠加在一起形成的,上面圆柱的底面直径是2 cm ,高是1 cm ,所以它的体积为π×⎝ ⎛⎭⎪⎫222×1=π(cm 3);下面圆柱的底面直径是4 cm ,高是4 cm ,所以它的体积为π×⎝ ⎛⎭⎪⎫422×4=16π(cm 3),所以该工件的体积为16π+π=17π(cm 3).15.解:(1)如图.(2)∵杨柳上午去学校时高1 m 的木棒在太阳光下的影长为2 m ,杨柳的身高为1.5 m , ∴杨柳的影长CF 为3 m. ∵GF ⊥AC ,DC ⊥AC , ∴GF ∥CD , ∴△EGF ∽△EDC ,∴GF CD =EF EC ,即1.5CD =55+3, 解得CD =2.4(m). 答:路灯的高为2.4 m.第六章 反比例函数一、选择题(本大题共6小题,共30分)1.若反比例函数y =kx的图象过点(3,-7),那么它一定还经过点( )A .(3,7)B .(-3,-7)C .(-3,7)D .(2,-7)2.若函数y =(m +4)x|m|-5是反比例函数,则m 的值为( )A .4B .-4C .4或-4D .03.若反比例函数y =kx的图象经过点(a ,2a),其中a ≠0,则其函数的图象在( )A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限4.在同一平面直角坐标系中,函数y =mx +m(m ≠0)与y =mx(m ≠0)的图象可能是( )图6-Z -15.如图6-Z -2,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为C ,D ,则四边形ACBD 的面积为( )图6-Z -2A .2B .4C .6D .86.根据图6-Z -3(1)所示的程序,得到了y 与x 的函数图象如图(2),过y 轴上一点M 作PQ ∥x 轴交图象于点P ,Q ,连接OP ,OQ.则以下结论:①当x <0时,y =2x ;②△OPQ 的面积为定值;③当x >0时,y 的值随x 值的增大而增大;④MQ =2PM ;⑤∠POQ 可以等于90°.其中正确的结论是( )图6-Z -3A .①②④B .②④⑤C .③④⑤D .②③⑤二、填空题(本大题共5小题,共30分)7.若反比例函数y =m -1x 的图象在同一象限内,y 的值随x 值的增大而增大,则m 的值可以是________(写出一个即可).8.如图6-Z -4所示,反比例函数y =kx (k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D.若矩形OABC 的面积为8,则k 的值为________.6-Z -46-Z -59.如图6-Z -5,A(4,0),B(3,3),以AO ,AB 为边作平行四边形OABC ,则图象经过点C 的反比例函数的表达式为________.10.如果一个正比例函数的图象与反比例函数y =6x 的图象相交于A(x 1,y 1),B(x 2,y 2)两点,那么(x 2-x 1)(y 2-y 1)的值为________.图6-Z -611.函数y 1=x(x ≥0),y 2=4x (x>0)的图象如图6-Z -6所示,则下列结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 1>y 2; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是________. 三、解答题(共40分)12.(12分)如图6-Z -7,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数y =k x 的图象于点B ,AB =32.(1)求反比例函数的表达式;(2)若P(x 1,y 1),Q(x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,指出点P ,Q 各位于哪个象限,并简要说明理由.图6-Z -713.(14分)如图6-Z -8,已知A(-4,0.5),B(-1,2)是一次函数y =ax +b 与反比例函数y =mx(m<0)图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D.(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值?(2)求一次函数表达式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 的面积相等,求点P 的坐标.图6-Z -814.(14分)环保局对某企业排污情况进行检测,结果显示,所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0 mg /L ,环保局要求该企业立即整改,在15天以内(含15天)排污达标,整改过程中,所排污水中硫化物的浓度y(mg /L )随时间x(天)的变化规律如图6-Z -9所示,其中线段AB 表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y 与时间x 成反比例关系.(1)求整改过程中硫化物的浓度y 与时间x 之间的函数表达式(要求标注自变量x 的取值范围);(2)该企业所排污水中硫化物的浓度能否在15天以内(含15天)不超过最高允许的1.0mg /L ?为什么?图6-Z -9参考答案1.C 2.A 3.A4.D 5.D 6.B7.0(答案不唯一) 8.29.y =-3x10.24 11.①②③④12.解:(1)由题意得点B (-2,32),把B (-2,32)代入y =kx 中,得到k =-3,∴反比例函数的表达式为y =-3x.(2)结论:点P 在第二象限,点Q 在第四象限. 理由:∵k =-3<0,∴反比例函数y 在每个象限内y 随x 的增大而增大.又∵P (x 1,y 1),Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2, ∴点P ,Q 在不同的象限,即点P 在第二象限,点Q 在第四象限. 13.解:(1)当-4<x <-1时,一次函数的值大于反比例函数的值.(2)把A (-4,0.5),B (-1,2)代入y =ax +b ,得⎩⎪⎨⎪⎧-4a +b =0.5,-a +b =2,解得⎩⎪⎨⎪⎧a =12,b =52.∴一次函数的表达式为y =12x +52.把B (-1,2)代入y =m x,得m =-1×2=-2. (3)设点P 的坐标为(t ,12t +52).。

2017-2018学年北师大版九年级数学上册检测卷:第4章达标检测卷

2017-2018学年北师大版九年级数学上册检测卷:第4章达标检测卷

第四章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.若m +n n =52,则m n 等于( )A .52B .23C .25D .322.若两个相似多边形的面积之比为,则它们的周长之比为( ) A .B .C .D .3.如图,在△ABC 中,若DE ∥BC ,AD =3,BD =6,AE =2,则AC 的长为( ) A .4 B .5 C .6 D .8(第3题)(第4题)(第5题)(第6题)4.如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)5.如图,在△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是( )A .AB 2=BC·BD B .AB 2=AC·BDC .AB·AD =BD·BC D .AB·AD =AD·CD6.如图,为估算某河的宽度(河两岸平行),在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上,若测得BE=20 m,CE=10 m,CD=20 m,则河的宽度AB等于()A.60 m B.40 m C.30 m D.20 m7.如图,小正方形的边长均为1,则下列图中的三角形与△ABC相似的是()(第7题)8.如图,在矩形ABCD中,AB=2,BC=3,点E是AD的中点,CF⊥BE于点F,则CF等于()A.2 B.2.4 C.2.5 D.2.25(第8题)(第9题)(第10题)(第13题)(第14题)9.如图,在△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC 内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为() A.1 B.2 C.122-6 D.62-610.如图,在钝角三角形ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC的中点D,AC 的中点N ,连接DN ,DE ,DF.下列结论:①EM =DN ;②S △CND =13S 四边形ABDN ;③DE =DF ;④DE ⊥DF.其中正确结论的个数为( )A .1B .2C .3D .4 二、填空题(每题3分,共24分)11.假期,爸爸带小明去A 地旅游,小明想知道A 地与他所居住的城市的距离,他在比例尺为1∶500 000的地图上测得所居住的城市距A 地32 cm ,则小明所居住的城市与A 地的实际距离为________.12.已知a 5=b 7=c8,且3a -2b +c =9,则2a +4b -3c 的值为________.13.如图,已知点C 是线段AB 的黄金分割点,且BC>AC.若S 1表示以BC 为边的正方形的面积,S 2表示长为AD(AD =AB)、宽为AC 的矩形的面积,则S 1与S 2的大小关系为____________.14.如图,已知D ,E 分别是△ABC 的AB ,AC 边上的点,DE ∥BC ,且S △ADE四边形DBCE=,那么=________.15.将一副三角尺如图所示叠放在一起,则BEEC的值是________.(第15题)(第16题)(第17题)(第18题)16.如图,利用标杆BE 测量建筑物的高度,标杆BE 高1.5 m ,测得AB =2 m ,BC =14 m ,则楼高CD 为________.17.如图,已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是点B,若在射线BF上找一点M,使以点B,M,C为顶点的三角形与△ABP相似,则BM 的长为________.18.如图,正三角形ABC的边长为2,以BC边上的高AB1为边作正三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正三角形AB1C1边B1C1上的高AB2为边作正三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2,…,以此类推,则S n=________.(用含n的式子表示,n为正整数)三、解答题(19,21题每题8分,24题14分,其余每题12分,共66分)19.如图,四边形ABCD∽四边形EFGH,试求出x及∠α的大小.(第19题)20.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)求△A1B1C1与△A2B2C2的面积比.(不写解答过程,直接写出结果)21.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.(第21题)22.如图,一条河的两岸BC与DE互相平行,两岸各有一排景观灯(图中黑点代表景观灯),每排相邻两景观灯的间隔都是10 m,在与河岸DE的距离为16 m的A处(AD⊥DE)看对岸BC,看到对岸BC上的两个景观灯的灯杆恰好被河岸DE上两个景观灯的灯杆遮住.河岸DE上的两个景观灯之间有1个景观灯,河岸BC上被遮住的两个景观灯之间有4个景观灯,求这条河的宽度.(第22题)23.如图,在矩形ABCD中,已知AB=24,BC=12,点E沿BC边从点B开始向点C以每秒2个单位长度的速度运动;点F沿CD边从点C开始向点D以每秒4个单位长度的速度运动.如果E,F同时出发,用t(0≤t≤6)秒表示运动的时间.请解答下列问题:(1)当t为何值时,△CEF是等腰直角三角形?(2)当t为何值时,以点E,C,F为顶点的三角形与△ACD相似?(第23题)24.如图,E,F分别是正方形ABCD的边DC,CB上的点,且DE=CF,以AE为边作正方形AEHG,HE与BC交于点Q,连接DF.(1)求证:△ADE≌△DCF.(2)若E是CD的中点,求证:Q为CF的中点.(3)连接AQ,设S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的条件下,判断S1+S2=S3是否成立?并说明理由.(第24题)答案一、1.D 2.B3.C 点拨:因为DE ∥BC ,所以AE ∶AC =AD ∶AB =3∶9=1∶3,则AC =6. 4.A5.A 点拨:因为△ABC ∽△DBA ,所以AB DB =BC BA =ACDA.所以AB 2=BC·BD ,AB·AD =AC·DB.6.B 点拨:∵AB ⊥BC ,CD ⊥BC ,∴∠ABC =∠DCE =90°. 又∵∠AEB =∠DEC , ∴△ABE ∽△DCE. ∴AB DC =BE CE ,即AB 20=2010. ∴AB =40 m . 7.A8.B 点拨:由∠ABC =90°,CF ⊥BE ,易证△ABE ∽△FCB. ∴AB BE =CF BC .由AE =12×3=1.5, AB =2,易得BE =2.5, ∴22.5=CF3.∴CF =2.4.(第9题)9.D 点拨:如图,过点A 作AM ⊥BC 于点M ,交DG 于点N ,延长GF 交BC 于点H.∵AB =AC ,AD =AG ,∴AD ∶AB =AG ∶AC. 又∠BAC =∠DAG , ∴△ADG ∽△ABC. ∴∠ADG =∠B. ∴DG ∥BC.∴AN ⊥DG . ∵四边形DEFG 是正方形, ∴FG ⊥DG.∴FH ⊥BC. ∵AB =AC =18,BC =12,∴BM =12BC =6.∴AM =AB 2-BM 2=12 2. ∵AN AM =DG BC ,即AN 122=612, ∴AN =6 2.∴MN =AM -AN =6 2.∴FH =MN -GF =62-6.故选D .10.D 点拨:∵△ABE 是等腰直角三角形,EM 平分∠AEB , ∴EM 是AB 边上的中线. ∴EM =12AB.∵点D ,点N 分别是BC ,AC 的中点,∴DN 是△ABC 的中位线.∴DN =12AB ,DN ∥AB.∴EM =DN.①正确.由DN ∥AB ,易证△CDN ∽△CBA. ∴S △CND S △CAB =⎝⎛⎭⎫DN AB 2=14. ∴S △CND =13S 四边形ABDN .②正确.(第10题)如图,连接DM ,FN ,则DM 是△ABC 的中位线, ∴DM =12AC ,DM ∥AC.∴四边形AMDN 是平行四边形. ∴∠AMD =∠AND.易知∠ANF =90°,∠AME =90°, ∴∠EMD =∠DNF. ∵FN 是AC 边上的中线, ∴FN =12AC.∴DM =FN.∴△DEM ≌△FDN.∴DE =DF ,∠FDN =∠DEM. ③正确.∵∠MDN +∠AMD =180°,∴∠EDF =∠MDN -(∠EDM +∠FDN)=180°-∠AMD -(∠EDM +∠DEM)=180°-(∠AMD +∠EDM +∠DEM)=180°-(180°-∠AME)=180°-(180°-90°)=90°.∴DE ⊥DF.④正确.故选D .二、11.160 km 点拨:设小明所居住的城市与A 地的实际距离为x km ,根据题意可列比例式为1500 000=32x ×105,解得x =160.12.14 点拨:由a 5=b 7=c8,可设a =5k ,b =7k ,c =8k.∵3a -2b +c =9,∴3×5k -2×7k +8k =9,∴k =1.∴2a +4b -3c =10k +28k -24k =14k =14.13.S 1=S 2 点拨:∵点C 是线段AB 的黄金分割点,且BC>AC , ∴BC 2=AC·AB ,又∵S 1=BC 2,S 2=AC·AD =AC·AB ,∴S 1=S 2. 14.1∶3 15.33点拨:由∠B =45°,∠BAC =90°,可知AC =AB ,由∠D =30°,∠ACD =90°,可知CD =3AC ,则CD =3AB.即AB CD =13=33.易知△ABE ∽△DCE , ∴BE EC =AB CD =33. 16.12 m17.163或3 点拨:∵∠ABC =∠FBP =90°,∴∠ABP =∠CBF.当△MBC ∽△ABP 时,BM ∶AB =BC ∶BP ,得BM =4×4÷3=163;当△CBM ∽△ABP 时,BM ∶BP =CB ∶AB ,得BM =4×3÷4=3.18.32×⎝⎛⎭⎫34n点拨:在正三角形ABC 中,AB 1⊥BC ,∴BB 1=12BC =1.在Rt △ABB 1中,AB 1=AB 2-BB 12=22-12=3, 根据题意可得△AB 2B 1∽△AB 1B ,记△AB 1B 的面积为S , ∴S 1S =⎝⎛⎭⎫322.∴S 1=34S. 同理可得S 2=34S 1,S 3=34S 2,S 4=34S 3,….又∵S =12×1×3=32,∴S 1=34S =32×34,S 2=34S 1=32×⎝⎛⎭⎫342,S 3=34S 2=32×⎝⎛⎭⎫343,S 4=34S 3=32×⎝⎛⎭⎫344,…, S n =32×⎝⎛⎭⎫34n. 三、19.解:因为四边形ABCD ∽四边形EFGH ,所以∠H =∠D =95°,则∠α=360°-95°-118°-67°=80°.再由x ∶7=12∶6,解得x =14.20.解:(1)如图,△A 1B 1C 1即为所求.(2)如图,△A 2B 2C 2即为所求.(3)S △A 1B 1C 1∶S △A 2B 2C 2=1∶4.(第20题)21.(1)证明:∵AB ∥FC ,∴∠A =∠ECF.又∵∠AED =∠CEF ,且DE =FE ,∴△ADE ≌△CFE.(2)解:方法一:∵AB ∥FC ,∴∠GBD =∠GCF ,∠GDB =∠F.∴△GBD ∽△GCF.∴GB GC =BD CF . ∴22+4=1CF.∴CF =3. 由(1)得△ADE ≌△CFE.∴AD =CF =3,∴AB =AD +BD =3+1=4.(第21题)方法二:如图,取BC 的中点H ,连接EH.∵△ADE ≌△CFE ,∴AE =CE.∴EH 是△ABC 的中位线.∴EH ∥AB ,且EH =12AB.∴∠GBD =∠GHE ,∠GDB =∠GEH.∴△GBD ∽△GHE.∴DB EH =GB GH .∴1EH =22+2.∴EH =2.∴AB =2EH =4.22.解:由题意可得DE ∥BC ,所以AD AB =AE AC .又因为∠DAE =∠BAC ,所以△ADE ∽△ABC.所以AD AB =DE BC ,即AD AD +DB =DE BC .因为AD =16 m ,BC =50 m ,DE =20 m ,所以1616+DB =2050.所以DB =24 m .所以这条河的宽度为24 m .23.解:(1)由题意可知BE =2t ,CF =4t ,CE =12-2t.因为△CEF 是等腰直角三角形,∠ECF 是直角,所以CE =CF.所以12-2t =4t ,解得t =2.所以当t =2时,△CEF 是等腰直角三角形.(2)根据题意,可分为两种情况:①若△EFC ∽△ACD ,则EC AD =FC CD ,所以12-2t 12=4t 24,解得t =3,即当t =3时,△EFC ∽△ACD.②若△FEC ∽△ACD ,则FC AD =EC CD ,所以4t 12=12-2t 24,解得t =1.2,即当t =1.2时,△FEC ∽△ACD.因此,当t 为3或1.2时,以点E ,C ,F 为顶点的三角形与△ACD 相似.24.(1)证明:由AD =DC ,∠ADE =∠DCF =90°,DE =CF ,得△ADE ≌△DCF.(2)证明:因为四边形AEHG 是正方形,所以∠AEH =90°.所以∠QEC +∠AED =90°.又因为∠AED +∠EAD =90°,所以∠QEC =∠EAD.又因为∠C =∠ADE =90°,所以△ECQ ∽△ADE.所以CQ DE =EC AD. 因为E 是CD 的中点,所以EC =DE =12CD =12AD.所以EC AD =12.因为DE =CF ,所以CQ DE =CQ CF =12.即Q 是CF 的中点.(3)解:S 1+S 2=S 3成立.理由:因为△ECQ ∽△ADE ,所以CQ DE =QE AE .所以CQ QE =CE AE .又因为∠C =∠AEQ =90°,所以△ECQ ∽△AEQ.所以△AEQ ∽△ECQ ∽△ADE.所以S 1S 3=⎝⎛⎭⎫EQ AQ 2,S 2S 3=⎝⎛⎭⎫AE AQ 2.所以S 1S 3+S 2S 3=⎝⎛⎭⎫EQ AQ 2+⎝⎛⎭⎫AE AQ 2=EQ 2+AE2AQ 2.在Rt △AEQ 中,由勾股定理,得EQ 2+AE 2=AQ 2, 所以S 1S 3+S 2S 3=1,即S 1+S 2=S 3.。

第六章检测卷+复习检测训练提升课件+2024-2025学年北师大版数学(2024)七年级上册

第六章检测卷+复习检测训练提升课件+2024-2025学年北师大版数学(2024)七年级上册
B. 了解某班同学“三级跳远”的成绩情况
C. 调查某品牌汽车的抗撞击情况
D. 调查某电视台“主持人大赛”节目的收视率
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
3. 为了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活
量,这项调查中的样本是(
B )
A. 某市八年级学生的肺活量
B. 从中抽取的500名学生的肺活量
A. 0.2
B. 32
C. 0.25
D. 40
1
2
3
4
5
6
)789来自101112
13
14
15
16
17
8. 某校1500名学生参加知识竞赛,成绩记为A,B,C,D四个等级.从中
随机抽取了部分学生的成绩进行统计,绘制成如图所示的两幅不完整的
统计图.根据图中的信息,下列说法不正确的是(
B )
A. 共调查了200名学生
第六章检测卷
一、 选择题(每小题4分,共32分)
1. 要调查某校学生学业负担是否过重,下列方法最恰当的是(
A. 查阅文献资料
B. 对学生问卷调查
C. 上网查询
D. 对校领导问卷调查
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
B )
2. 下列调查中,适宜采用普查的是(
B )
A. 调查全国中学生视力情况
最合适的统计图是(
C )

2017-2018学年北师大版九年级数学上册检测卷:第6章达标检测卷

2017-2018学年北师大版九年级数学上册检测卷:第6章达标检测卷

第六章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.下面的函数是反比例函数的是( )A .y =3x -1B .y =x 2C .y =13x D .y =2x -132.若反比例函数y =kx 的图象经过点(-2,3),则此函数的图象也经过点( )A .(2,-3)B .(-3,-3)C .(2,3)D .(-4,6)3.若点A(a ,b)在反比例函数y =2x 的图象上,则代数式ab -4的值为( )A .0B .-2C .2D .-6(第4题)4.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg /m 3)与体积V(单位:m 3)满足函数关系式ρ=kV (k 为常数,k ≠0),其图象如图所示,则当气体的密度为3 kg /m 3时,容器的体积为( )A .9 m 3B .6 m 3C .3 m 3D .1.5 m 35.若在同一直角坐标系中,正比例函数y =k 1x 与反比例函数y =k 2x 的图象无交点,则有( )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<0 6.已知点A(-1,y 1),B(2,y 2)都在双曲线y =3+mx上,且y 1>y 2,则m 的取值范围是( )A .m<0B .m>0C .m>-3D .m<-3(第7题)7.如图,在直角坐标系中,直线y =6-x 与函数y =4x (x >0)的图象相交于点A ,B ,设点A 的坐标为(x 1,y 1),那么长为y 1、宽为x 1的矩形的面积和周长分别为( )A .4,12B .8,12C .4,6D .8,68.函数y =kx 与y =kx +k(k 为常数且k ≠0)在同一平面直角坐标系中的图象可能是( )9.如图,在矩形ABCD 中,AB =4,BC =3,点F 在DC 边上运动,连接AF ,过点B 作BE ⊥AF 于E.设BE =y ,AF =x ,则能反映y 与x 之间函数关系的大致图象是( )(第9题)(第10题)10.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x的图象上,若点B 在反比例函数y =kx的图象上,则k 的值是( )A .-4B .4C .-2D .2二、填空题(每题3分,共24分)11.一个反比例函数的图象过点A(-2,-3),则这个反比例函数的表达式是________.12.南宁市五象新区有长24 000 m 的新道路要铺上沥青,则铺路所需时间t(天)与铺路速度v(m /天)的函数关系式是________.13.点(2,y 1),(3,y 2)在函数y =-2x 的图象上,则y 1________y 2(填“>”“<”或“=”).14.若反比例函数y =kx 的图象与一次函数y =mx 的图象的一个交点的坐标为(1,2),则它们另一个交点的坐标为________.15.如图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,且△ABP 的面积为6,则这个反比例函数的表达式为________.(第15题)(第16题)(第17题)(第18题)16.如图,矩形ABCD 在第一象限,AB 在x 轴的正半轴上(点A 与点O 重合),AB =3,BC =1,连接AC ,BD ,交点为M.将矩形ABCD 沿x 轴向右平移,当平移距离为________时,点M 在反比例函数y =1x的图象上.17.如图,过原点O 的直线与反比例函数y 1,y 2的图象在第一象限内分别交于点A ,B ,且A 为OB 的中点,若函数y 1=1x,则y 2与x 的函数表达式是____________.18.如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A ,C 分别在x轴,y轴上,反比例函数的图象与正方形的两边AB,BC分别交于点M,N,ND⊥x轴,垂足为D,连接OM,ON,MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,2+1).其中正确结论的序号是____________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.在平面直角坐标系中,直线y=x向上平移1个单位长度得到直线l,直线l与反比例函数y=k-1x的图象的一个交点为(a,2),求k的值.20.已知反比例函数y=kx,当x=-13时,y=-6.(1)这个函数的图象位于哪些象限?y随x的增大如何变化?(2)当12<x<4时,求y的取值范围.21.已知点A(-2,0)和B(2,0),点P在函数y=-1x的图象上,如果△PAB的面积是6,求点P的坐标.22.如图,一次函数y =kx +5(k 为常数,且k ≠0)的图象与反比例函数y =-8x 的图象交于A(-2,b),B 两点.(第22题)(1)求一次函数的表达式;(2)若将直线AB 向下平移m(m >0)个单位长度后,与反比例函数的图象有且只有一个公共点,求m 的值.23.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A ,C 分别在y 轴,x 轴上,点B 的坐标为(4,2),直线y =-12x +3交AB ,BC 分别于点M ,N ,反比例函数y =kx的图象经过点M ,N.(1)求反比例函数的表达式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.(第23题)24.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10 ℃,待加热到100 ℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20 ℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40 ℃的开水,则他需要在什么时间段内接水?(第24题)25.如图,正比例函数y=2x的图象与反比例函数y=kx的图象交于A,B两点,过点A作AC垂直x轴于点C,连接BC,若△ABC的面积为2.(1)求k的值.(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.(第25题)答案一、1.C 2.A3.B 点拨:∵点A(a ,b)在反比例函数y =2x 的图象上,∴ab =2.∴ab -4=2-4=-2. 4.C5.D 点拨:若k 1,k 2同正或同负其图象均有交点.6.D 点拨:由题意知,反比例函数图象在第二、四象限,所以3+m<0,即m<-3. 7.A 点拨:由反比例函数y =kx (k ≠0)中的比例系数k 的几何意义知矩形的面积为|k|,即为4;因为A(x 1,y 1)在第一象限,即x 1>0,y 1>0,由直线y =6-x 得x 1+y 1=6,所以矩形的周长为2(x 1+y 1)=12.8.A9.C 点拨:连接BF ,则可知S △AFB =12xy =12×4×3,故y =12x ,其自变量的取值范围是3≤x ≤5,对应的函数值的范围为125≤y ≤4,故选C .10.A 点拨:分别过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为点C ,D.易知∠AOC +∠BOD =90°,∠BOD +∠OBD =90°,∴∠OBD =∠AOC.又∠BDO =∠OCA =90°.∴△ODB ∽△ACO.∴OD AC =BD OC =OB OA =2.设点A 的坐标是(m ,n),∵点A 在反比例函数y =1x的图象上,∴mn =1. 易知AC =n ,OC =m ,∴BD =2m ,OD =2n.∴B 点的坐标是(-2n ,2m).∵点B 在反比例函数y =k x 的图象上,∴2m =k-2n,即k =-4mn =-4.二、11.y =6x12.t =24 000v (v>0)13.<14.(-1,-2) 点拨:因为反比例函数y =kx的图象关于原点成中心对称,一次函数y=mx 的图象经过原点,且关于原点成中心对称,所以它们的交点也关于原点成中心对称.又点(1,2)关于原点成中心对称的点为(-1,-2),所以它们另一个交点的坐标为(-1,-2).15.y =12x点拨:连接OA ,则△ABP 与△ABO 的面积都等于6,所以反比例函数的表达式是y =12x.16.12 点拨:将矩形ABCD 沿x 轴向右平移后,过点M 作ME ⊥AB 于点E ,则AE =12AB =32,ME =12BC =12.设OA =m ,则OE =OA +AE =m +32,∴M ⎝⎛⎭⎫m +32,12.∵点M 在反比例函数y =1x的图象上,∴12=1m +32,解得m =12. 17.y 2=4x18.①③④三、19.解:∵直线y =x 向上平移1个单位长度得到直线l , ∴直线l 对应的函数表达式是y =x +1. ∵直线l 与反比例函数y =k -1x的图象的一个交点为(a ,2), ∴2=a +1.∴a =1. ∴这个交点坐标是(1,2). 把点(1,2)的坐标代入y =k -1x, 得2=k -11,∴k =3.20.解:(1)把x =-13,y =-6代入y =k x 中,得-6=k-13,则k =2,即反比例函数的表达式为y =2x.因为k >0,所以这个函数的图象位于第一、第三象限,在每个象限内,y 随x 的增大而减小.(2)将x =12代入表达式中得y =4,将x =4代入表达式中得y =12,所以y 的取值范围为12<y <4.21.解:∵点A(-2,0)和B(2,0),∴AB =4.设点P 坐标为(a ,b),则点P 到x 轴的距离是|b|,又△PAB 的面积是6,∴12×4|b|=6.∴|b|=3.∴b =±3. 当b =3时,a =-13;当b =-3时,a =13.∴点P 的坐标为⎝⎛⎭⎫-13,3或⎝⎛⎭⎫13,-3. 22.解:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得⎩⎪⎨⎪⎧b =-2k +5,b =-8-2.解得⎩⎪⎨⎪⎧b =4,k =12.所以一次函数的表达式为y =12x +5.(2)将直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m.由⎩⎨⎧y =-8x,y =12x +5-m得,12x 2+(5-m)x +8=0.Δ=(5-m)2-4×12×8=0,解得m =1或9.23.解:(1)由题意易得点M 的纵坐标为2. 将y =2代入y =-12x +3,得x =2.∴M(2,2).把点M 的坐标代入y =kx ,得k =4,∴反比例函数的表达式是y =4x .(2)由题意得S △OPM =12OP·AM ,∵S 四边形BMON =S 矩形OABC -S △AOM -S △CON =4×2-2-2=4, S △OPM =S 四边形BMON , ∴12OP·AM =4. 又易知AM =2,∴OP =4. ∴点P 的坐标是(0,4)或(0,-4). 24.解:(1)当0≤x ≤8时,设y =k 1x +b ,将(0,20),(8,100)的坐标分别代入y =k 1x +b ,可求得k 1=10,b =20.∴当0≤x ≤8时,y =10x +20.当8<x ≤a 时,设y =k 2x, 将(8,100)的坐标代入y =k 2x, 得k 2=800.∴当8<x ≤a 时,y =800x. 综上,当0≤x ≤8时,y =10x +20;当8<x ≤a 时,y =800x. (2)将y =20代入y =800x , 解得x =40,即a =40.(3)当y =40时,x =80040=20. ∴要想喝到不低于40 ℃的开水,x 需满足8≤x ≤20,即李老师要在7:38到7:50之间接水.25.解:(1)∵正比例函数图象与反比例函数图象的两个交点关于原点对称,∴S △AOC =S △BOC =12S △ABC =1. 又∵AC 垂直于x 轴,∴k =2.(2)假设存在这样的点D ,设点D 的坐标为(m ,0).由⎩⎪⎨⎪⎧y =2x ,y =2x解得⎩⎪⎨⎪⎧x 1=1,y 1=2,⎩⎪⎨⎪⎧x 2=-1,y 2=-2. ∴A(1,2),B(-1,-2).∴AD =(1-m )2+22,BD =(m +1)2+22,AB =(1+1)2+(2+2)2=2 5.当D 为直角顶点时,∵AB =25,∴OD =12AB = 5. ∴D 的坐标为(5,0)或(-5,0).当A 为直角顶点时,由AB 2+AD 2=BD 2,得(25)2+(1-m)2+22=(m +1)2+22,解得m =5,即D(5,0).当B 为直角顶点时,由BD2+AB2=AD2,得(m+1)2+22+(25)2=(1-m)2+22,解得m=-5,即D(-5,0).∴存在这样的点D,使△ABD为直角三角形,点D的坐标为(5,0)或(-5,0)或(5,0)或(-5,0).。

2017-2018学年北师大版九年级数学上册 第6章综合测评

2017-2018学年北师大版九年级数学上册 第6章综合测评

时间:60分钟分值:100分一、选择题(每小题4分,共32分)1.已知反比例函数y=kx的图象经过点P(-1,2),则这个函数图象位于(D) A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限解析:由题意得:k=-1×2=-2<0,∴函数图象位于第二、四象限,故选D.2.如图是反比例函数y=kx(k为常数,k≠0)的图象,则一次函数y=kx-k 的图象大致是(B)A B C D解析:根据图示知,反比例函数y=kx的图象位于第一、三象限,∴k>0,∴一次函数y=kx-k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,∴一次函数y=kx-k的图象经过第一、三、四象限.故选B.3.(2016·龙东地区)已知反比例y=6x,当1<x<3时,y的最小整数值是(A)A.3 B.4 C.5 D.6解析:在反比例函数y=6x中,k=6>0,∴当x>0时,y随x的增大而减小.当x =3时,y =2;当x =1时,y =6,∴1<x <3时,2<y <6,∴y 的最小整数值为3.4.某公司计划新建一个容积V (m 3)一定的长方体污水处理池,池的底面积S (m 2)与其深度h (m)之间的函数关系式为 S =Vh (h ≠0),这个函数的图象大致是(C)解析:根据题意可知: S =Vh (h >0),所以图象为反比例函数在第一象限内的部分.5.(2015·昆明)如图,直线y =-x +3与y 轴交于点A ,与反比例函数y =kx (k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为(B)A .y =4xB .y =-4x C .y =2xD .y =-2x解析:∵直线y =-x +3与y 轴交于点A , ∴A (0,3),即OA =3.∵AO =3BO ,∴OB =1,∴点C 的横坐标为-1,又∵点C 在直线y =-x +3上, ∴点C (-1,4).∴反比例函数的解析式为y =-4x .故选B.第5题图 第6题图6.函数y 1=x (x ≥0),y 2=4x (x >0)的图象如图所示,下列结论: ①两函数图象的交点坐标为A (2,2);②当x >2时,y 2>y 1;③直线x =1分别与两函数图象相交于B ,C 两点,则线段BC 的长为3; ④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大而减小. 其中正确的是(D) A .只有①② B .只有①③ C .只有②④D .只有①③④解析:根据⎩⎨⎧y 1=x ,y 2=4x ,结合图象,解得A 点的坐标为(2,2),故①正确;应用数形结合判断,当x >2时,y 1>y 2,故②错误;分别令x =1,代入两个函数表达式,解得C 点坐标为(1,4),B 点坐标为(1,1),所以BC =3,故③正确;根据函数的性质或图象可以判断④正确.7.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx (x >0)的图象经过顶点B ,则k 的值为(D)A .12B .20C .24D .32解析:如图,过C 点作CD ⊥x 轴,垂足为点D ,∵点C 的坐标为(3,4),∴OD =3,CD =4,∴OC =OD 2+CD 2=5,∴BC =OC =5,∴点B 坐标为(8,4),∵反比例函数y =kx (x >0)的图象经过顶点B ,∴k =32,故选D.8.如图,正比例函数y 1与反比例函数y 2的图象相交于点E (-1,2),若y 1>y 2>0,则x 的取值范围在数轴上表示正确的是(A)解析:根据函数值在函数图象上的意义可知,当正比例函数图象在反比例函数图象的上方时,y 1>y 2,故由交点为E (-1,2)可知,若y 1>y 2>0,则x 的取值范围为x <-1,在数轴上表示为:开口向左,在-1点处是空心圆圈.故选A.二、填空题(每小题4分,共24分)9.(2016·怀化)已知点P (3,-2)在反比例函数y =k x (k ≠0)的图象上,则k =__-6__;在第四象限,函数值y 随x 的增大而增大.10.已知一个函数的图象与y =6x 的图象关于y 轴对称,则该函数的表达式为y =-6x .解析:关于y 轴对称,纵坐标不变,横坐标互为相反数,即-xy =6,∴y =-6x .11.已知反比例函数y =2x ,当-4≤x ≤-1时,y 的最大值是-12.解析:根据反比例函数的性质,当k >0时,在每一象限内,y 的值随x 值增大而减小,所以当x =-4时,y 取得最大值2-4=-12.12.已知反比例函数y =6x 在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半轴上一点,连接AO ,AB ,且AO =AB ,则S △AOB =6.解析:过点A 作AC ⊥OB ,∵AO =AB ,∴OC =BC ,∴△ABC ≌△AOC ,∴S △AOB =2S △AOC ,∵A 点在反比例函数图象上, ∴S △AOC =12×6=3,∴S △AOB =2S △AOC =6.13.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y =-2x +6的图象无公共点,则这个反比例函数的表达式是y =18x (只要y =kx 中的k 满足k >92即可).(只写出符合条件的一个即可)解析:设反比例函数的表达式为y =kx ,若反比例函数与一次函数没有交点,则方程组⎩⎨⎧y =k x ,y =-2x +6无解,由kx =-2x +6,即2x 2-6x +k =0,则一元二次方程无解,∴Δ<0,∴36-8k <0,解得k >92.14.函数y =1x 与y =x -2的图象交点的横坐标分别为a ,b ,则1a +1b 的值为__-2__.解析:函数y =1x 与y =x -2的图象交点的横坐标分别为a ,b ,即是1x =x -2的解,化简得:x 2-2x -1=0 ,所以a +b =2,ab =-1,1a +1b =a +bab =-2.三、解答题(共44分)15.(12分)(2015·安徽)如图,已知反比例函数y =k 1x 与一次函数y =k 2x +b 的图象交于A (1,8),B (-4,m ).(1)求k 1,k 2,b 的值; (2)求△AOB 的面积;(3)若M (x 1,y 1),N (x 2,y 2)是反比例函数y =k 1x 图象上的两点,且x 1<x 2,y 1<y 2,指出点M ,N 各位于哪个象限,并简要说明理由.解:(1)把A (1,8),B (-4,m )分别代入y =k 1x ,得k 1=8,m =-2. ∵A (1,8),B (-4,-2)在y =k 2x +b 的图象上. ∴⎩⎪⎨⎪⎧k 2+b =8,-4k 2+b =-2.解得k 2=2,b =6; (2)设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15; (3)点M 在第三象限,点N 在第一象限.理由如下:①若x 1<x 2<0,点M ,N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M ,N 在第一象限分支上,则y 1>y 2,不合题意; ③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意.16.(16分)如图,科技小组准备用材料围建一个面积为60 m 2的矩形科技园ABCD ,其中一边AB 靠墙,墙长为12 m .设AD 的长为x m ,DC 的长为y m.(1)求y 与x 之间的函数关系式;(2)若围成的矩形科技园ABCD 的三边材料总长不超过26 m ,材料AD 和DC 的长都是整米数,求出满足条件的所有围建方案.解:(1)AD 的长为x m ,DC 的长为y m ,由题意,得xy=60,即y=60 x.∴所求的函数关系式为y=60 x.(2)由y=60x且x,y都是正整数,x可取1,2,3,4,5,6,10,12,15,20,30,60.∵2x+y≤26,0<y≤12.∴符合条件的有:x=5时,y=12;x=6时,y=10;x=10时,y=6.答:满足条件的围建方案:AD=5 m,DC=12 m或AD=6 m,DC=10 m 或AD=10 m,DC=6 m.17.(16分)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=kx(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线BF的表达式.解:(1)在矩形ABCO中,∵点B的坐标为(2,3),∴BC的中点D的坐标为(1,3).又∵双曲线y=kx经过点D(1,3),∴3=k1,∴k=3.又∵点E在AB上,∴点E的横坐标为2.又∵双曲线y =3x 经过点E , ∴点E 的纵坐标为32. ∴点E 的坐标为(2,32);(2)由(1)得BD =1,BE =32,CB =2. ∵△FBC ∽△DEB ,∴BD CF =BECB ,即1CF =322,∴CF =43,∴OF =53,即点F 的坐标为(0,53).设直线BF 的表达式为y =mx +b ,而直线FB 经过点F (0,53)和B (2,3),∴⎩⎨⎧53=b ,3=2m +b ,∴m =23,b =53.∴直线BF 的表达式为y =23x +53.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.下面的函数是反比例函数的是( )A .y =3x -1B .y =x 2C .y =13x D .y =2x -132.若反比例函数y =kx 的图象经过点(-2,3),则此函数的图象也经过点( )A .(2,-3)B .(-3,-3)C .(2,3)D .(-4,6)3.若点A(a ,b)在反比例函数y =2x 的图象上,则代数式ab -4的值为( )A .0B .-2C .2D .-6(第4题)4.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg /m 3)与体积V(单位:m 3)满足函数关系式ρ=k V (k为常数,k ≠0),其图象如图所示,则当气体的密度为3 kg /m 3时,容器的体积为( )A .9 m 3B .6 m 3C .3 m 3D .1.5 m 35.若在同一直角坐标系中,正比例函数y =k 1x 与反比例函数y =k 2x 的图象无交点,则有( )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<0 6.已知点A(-1,y 1),B(2,y 2)都在双曲线y =3+mx上,且y 1>y 2,则m 的取值范围是( )A .m<0B .m>0C .m>-3D .m<-3(第7题)7.如图,在直角坐标系中,直线y =6-x 与函数y =4x (x >0)的图象相交于点A ,B ,设点A 的坐标为(x 1,y 1),那么长为y 1、宽为x 1的矩形的面积和周长分别为( )A .4,12B .8,12C .4,6D .8,68.函数y =kx与y =kx +k(k 为常数且k ≠0)在同一平面直角坐标系中的图象可能是( )9.如图,在矩形ABCD 中,AB =4,BC =3,点F 在DC 边上运动,连接AF ,过点B 作BE ⊥AF 于E.设BE =y ,AF =x ,则能反映y 与x 之间函数关系的大致图象是( )(第9题)(第10题)10.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x的图象上,若点B 在反比例函数y =kx的图象上,则k 的值是( )A .-4B .4C .-2D .2二、填空题(每题3分,共24分)11.一个反比例函数的图象过点A(-2,-3),则这个反比例函数的表达式是________. 12.南宁市五象新区有长24 000 m 的新道路要铺上沥青,则铺路所需时间t(天)与铺路速度v(m /天)的函数关系式是________.13.点(2,y 1),(3,y 2)在函数y =-2x的图象上,则y 1________y 2(填“>”“<”或“=”).14.若反比例函数y =kx 的图象与一次函数y =mx 的图象的一个交点的坐标为(1,2),则它们另一个交点的坐标为________.15.如图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,且△ABP 的面积为6,则这个反比例函数的表达式为________.(第15题)(第16题)(第17题)(第18题)16.如图,矩形ABCD 在第一象限,AB 在x 轴的正半轴上(点A 与点O 重合),AB =3,BC =1,连接AC ,BD ,交点为M.将矩形ABCD 沿x 轴向右平移,当平移距离为________时,点M 在反比例函数y =1x的图象上.17.如图,过原点O 的直线与反比例函数y 1,y 2的图象在第一象限内分别交于点A ,B ,且A 为OB 的中点,若函数y 1=1x,则y 2与x 的函数表达式是____________.18.如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A ,C 分别在x 轴,y 轴上,反比例函数的图象与正方形的两边AB ,BC 分别交于点M ,N ,ND ⊥x 轴,垂足为D ,连接OM ,ON ,MN.下列结论:①△OCN ≌△OAM ;②ON =MN ;③四边形DAMN 与△MON 面积相等;④若∠MON =45°,MN =2,则点C 的坐标为(0,2+1).其中正确结论的序号是____________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.在平面直角坐标系中,直线y=x向上平移1个单位长度得到直线l,直线l与反比例函数y=k-1x的图象的一个交点为(a,2),求k的值.20.已知反比例函数y=kx,当x=-13时,y=-6.(1)这个函数的图象位于哪些象限?y随x的增大如何变化?(2)当12<x<4时,求y的取值范围.21.已知点A(-2,0)和B(2,0),点P在函数y=-1x的图象上,如果△PAB的面积是6,求点P的坐标.22.如图,一次函数y =kx +5(k 为常数,且k ≠0)的图象与反比例函数y =-8x 的图象交于A(-2,b),B 两点.(第22题)(1)求一次函数的表达式;(2)若将直线AB 向下平移m(m >0)个单位长度后,与反比例函数的图象有且只有一个公共点,求m 的值.23.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A ,C 分别在y 轴,x 轴上,点B 的坐标为(4,2),直线y =-12x +3交AB ,BC 分别于点M ,N ,反比例函数y =kx的图象经过点M ,N.(1)求反比例函数的表达式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.(第23题)24.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10 ℃,待加热到100 ℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20 ℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40 ℃的开水,则他需要在什么时间段内接水?(第24题)25.如图,正比例函数y=2x的图象与反比例函数y=kx的图象交于A,B两点,过点A作AC垂直x轴于点C,连接BC,若△ABC的面积为2.(1)求k的值.(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.(第25题)答案一、1.C 2.A3.B 点拨:∵点A(a ,b)在反比例函数y =2x 的图象上,∴ab =2.∴ab -4=2-4=-2. 4.C5.D 点拨:若k 1,k 2同正或同负其图象均有交点.6.D 点拨:由题意知,反比例函数图象在第二、四象限,所以3+m<0,即m<-3. 7.A 点拨:由反比例函数y =kx (k ≠0)中的比例系数k 的几何意义知矩形的面积为|k|,即为4;因为A(x 1,y 1)在第一象限,即x 1>0,y 1>0,由直线y =6-x 得x 1+y 1=6,所以矩形的周长为2(x 1+y 1)=12.8.A9.C 点拨:连接BF ,则可知S △AFB =12xy =12×4×3,故y =12x ,其自变量的取值范围是3≤x ≤5,对应的函数值的范围为125≤y ≤4,故选C .10.A 点拨:分别过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为点C ,D.易知∠AOC +∠BOD =90°,∠BOD +∠OBD =90°,∴∠OBD =∠AOC.又∠BDO =∠OCA =90°.∴△ODB ∽△ACO.∴OD AC =BD OC =OB OA =2.设点A 的坐标是(m ,n),∵点A 在反比例函数y =1x的图象上,∴mn =1. 易知AC =n ,OC =m ,∴BD =2m ,OD =2n.∴B 点的坐标是(-2n ,2m).∵点B 在反比例函数y =k x 的图象上,∴2m =k-2n,即k =-4mn =-4.二、11.y =6x12.t =24 000v (v>0)13.<14.(-1,-2) 点拨:因为反比例函数y =kx 的图象关于原点成中心对称,一次函数y=mx 的图象经过原点,且关于原点成中心对称,所以它们的交点也关于原点成中心对称.又点(1,2)关于原点成中心对称的点为(-1,-2),所以它们另一个交点的坐标为(-1,-2).15.y =12x点拨:连接OA ,则△ABP 与△ABO 的面积都等于6,所以反比例函数的表达式是y =12x.16.12 点拨:将矩形ABCD 沿x 轴向右平移后,过点M 作ME ⊥AB 于点E ,则AE =12AB =32,ME =12BC =12.设OA =m ,则OE =OA +AE =m +32,∴M ⎝⎛⎭⎫m +32,12.∵点M 在反比例函数y =1x的图象上,∴12=1m +32,解得m =12. 17.y 2=4x18.①③④三、19.解:∵直线y =x 向上平移1个单位长度得到直线l , ∴直线l 对应的函数表达式是y =x +1. ∵直线l 与反比例函数y =k -1x的图象的一个交点为(a ,2), ∴2=a +1.∴a =1. ∴这个交点坐标是(1,2). 把点(1,2)的坐标代入y =k -1x, 得2=k -11,∴k =3.20.解:(1)把x =-13,y =-6代入y =k x 中,得-6=k-13,则k =2,即反比例函数的表达式为y =2x.因为k >0,所以这个函数的图象位于第一、第三象限,在每个象限内,y 随x 的增大而减小.(2)将x =12代入表达式中得y =4,将x =4代入表达式中得y =12,所以y 的取值范围为12<y <4.21.解:∵点A(-2,0)和B(2,0), ∴AB =4.设点P 坐标为(a ,b),则点P 到x 轴的距离是|b|,又△PAB 的面积是6,∴12×4|b|=6.∴|b|=3.∴b =±3. 当b =3时,a =-13;当b =-3时,a =13.∴点P 的坐标为⎝⎛⎭⎫-13,3或⎝⎛⎭⎫13,-3. 22.解:(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得⎩⎪⎨⎪⎧b =-2k +5,b =-8-2. 解得⎩⎪⎨⎪⎧b =4,k =12.所以一次函数的表达式为y =12x +5.(2)将直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式为y =12x +5-m.由⎩⎨⎧y =-8x,y =12x +5-m 得,12x 2+(5-m)x +8=0.Δ=(5-m)2-4×12×8=0,解得m =1或9.23.解:(1)由题意易得点M 的纵坐标为2. 将y =2代入y =-12x +3,得x =2.∴M(2,2).把点M 的坐标代入y =kx ,得k =4,∴反比例函数的表达式是y =4x .(2)由题意得S △OPM =12OP·AM ,∵S 四边形BMON =S 矩形OABC -S △AOM -S △CON =4×2-2-2=4, S △OPM =S 四边形BMON , ∴12OP·AM =4. 又易知AM =2,∴OP =4. ∴点P 的坐标是(0,4)或(0,-4). 24.解:(1)当0≤x ≤8时,设y =k 1x +b ,将(0,20),(8,100)的坐标分别代入y =k 1x +b ,可求得k 1=10,b =20. ∴当0≤x ≤8时,y =10x +20. 当8<x ≤a 时,设y =k 2x ,将(8,100)的坐标代入y =k 2x ,得k 2=800.∴当8<x ≤a 时,y =800x. 综上,当0≤x ≤8时,y =10x +20;当8<x ≤a 时,y =800x. (2)将y =20代入y =800x , 解得x =40,即a =40.(3)当y =40时,x =80040=20. ∴要想喝到不低于40 ℃的开水,x 需满足8≤x ≤20,即李老师要在7:38到7:50之间接水.25.解:(1)∵正比例函数图象与反比例函数图象的两个交点关于原点对称,∴S △AOC =S △BOC =12S △ABC =1. 又∵AC 垂直于x 轴,∴k =2.(2)假设存在这样的点D ,设点D 的坐标为(m ,0).由⎩⎪⎨⎪⎧y =2x ,y =2x解得⎩⎪⎨⎪⎧x 1=1,y 1=2,⎩⎪⎨⎪⎧x 2=-1,y 2=-2. ∴A(1,2),B(-1,-2).∴AD =(1-m )2+22,BD =(m +1)2+22,AB =(1+1)2+(2+2)2=2 5.当D 为直角顶点时,∵AB =25,∴OD =12AB = 5. ∴D 的坐标为(5,0)或(-5,0).当A 为直角顶点时,由AB 2+AD 2=BD 2,得(25)2+(1-m)2+22=(m +1)2+22,解得m =5,即D(5,0).当B 为直角顶点时,由BD 2+AB 2=AD 2,得(m +1)2+22+(25)2=(1-m)2+22,解得m =-5,即D(-5,0).∴存在这样的点D ,使△ABD 为直角三角形,点D 的坐标为(5,0)或(-5,0)或(5,0)或(-5,0).。

相关文档
最新文档