华师大版九年级数学上册期末复习课件
合集下载
秋九年级数学华师大版上册课件:期末总复习 二 一元二次方程 (共17张PPT)
8.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和
时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x
个队参赛,则x满足的关系式为( B )
A.12x(x+1)=28
B.21x(x-1)=28
C.x(x+1)=28
D.x(x-1)=28
9.一个两位数,十位数上的数字比个位上的数字的平方小9,如果把个位
解:因为60棵树苗售价为120元×60=7200(元)而7200<8800,∴该校购买 树苗超过60棵.设该校共购买了x棵树苗,由题意得:x[120-0.5(x-60)] =8800,解得:x1=220,x2=80,当x=220时,120-0.5×(220-60)=40 <100,∴x=220(不合题意,舍去);当x=80时,120-0.5×(80-60)=110 >100,∴x=80. 答:该校共购买了80棵树苗.
2x+2x+b+2x+2b=54 x+1+12.5xbx+x1+12.5xbx+4=36
,解得:
x=5 b=8
.∴市政府2015年年
初对三项工程的总投资为7x=35(亿元);
(3)由x=5得,2015年年初搬迁安置的投资为20亿元,设从2016年年初开 始,搬迁安置投资逐年递减的百分数y,由题意得20(1-y)2=5,解得y1= 0.5,y2=1.5(舍),∴搬迁安置投资逐年递减的百分数为50%.
11.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司 规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60 棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最 低售价不得少于100元.该校最终向园林公司支付树苗款8800元,请问该 校共购买了多少棵树苗?
华师大版数学九年级上册章末复习课件
3.同角三角函数间的关系
sin2 A cos2 A 1
4.特殊角的三角函数
α sinα cosα
30° 1
3
2
2
45° 2
2
2
2
60° 3
1
2
2
tanα
3 3 1
3
5.解直角三角形的基本类型及其解法
(1)已知两直角边a、b或一直角边a,锐角A
c a2 b2 tan A a
b
b c2 a2 sin A a
2.如图,一段河坝的断面为梯形ABCD,试 根据图中数据,求出坡角α和坝底宽AD.(结果 保留根号)
B 5m
A
4.5m C
i 1: 3
4m α
D
E
B 4.5m C
5m AF
i 1: 3
4m α
D
E
解:∵ i 1 : =3tanα
∴α=30°,ED= 4 3
过点B作BF∥CE,则Rt△AFB中,
章末复习
华东师大版九年级上册
• 复习目标: 1.通过复习,使学生系统地掌握本章知识, 熟练应用三角函数进行计算. 2.了解仰角、俯角、坡度等相关概念,掌握 直角三角形的边与边、角与角、边与角的关 系,能应用这些关系解决相关问题.
知识结构
两个锐角互余
直 角 三 角 形
斜边上的中线等于斜边的一半
解
直
E
F
解:如图
tan 42 AF tan 61 AF
CF
EF
∵EF=CF-120
E
F
∴tan42°CF=tan61°(CF-120)
解得CF=240 ∴AF=216,则AB=AF+FB=216+1.2≈217(米)
sin2 A cos2 A 1
4.特殊角的三角函数
α sinα cosα
30° 1
3
2
2
45° 2
2
2
2
60° 3
1
2
2
tanα
3 3 1
3
5.解直角三角形的基本类型及其解法
(1)已知两直角边a、b或一直角边a,锐角A
c a2 b2 tan A a
b
b c2 a2 sin A a
2.如图,一段河坝的断面为梯形ABCD,试 根据图中数据,求出坡角α和坝底宽AD.(结果 保留根号)
B 5m
A
4.5m C
i 1: 3
4m α
D
E
B 4.5m C
5m AF
i 1: 3
4m α
D
E
解:∵ i 1 : =3tanα
∴α=30°,ED= 4 3
过点B作BF∥CE,则Rt△AFB中,
章末复习
华东师大版九年级上册
• 复习目标: 1.通过复习,使学生系统地掌握本章知识, 熟练应用三角函数进行计算. 2.了解仰角、俯角、坡度等相关概念,掌握 直角三角形的边与边、角与角、边与角的关 系,能应用这些关系解决相关问题.
知识结构
两个锐角互余
直 角 三 角 形
斜边上的中线等于斜边的一半
解
直
E
F
解:如图
tan 42 AF tan 61 AF
CF
EF
∵EF=CF-120
E
F
∴tan42°CF=tan61°(CF-120)
解得CF=240 ∴AF=216,则AB=AF+FB=216+1.2≈217(米)
华师大版九级数学上册课件:241测量(共21张PPT)
A.3.85 m B.4.15 m C.4.14 m D.3.50 m
5.(4分)如图,小芳和爸爸正在散步,爸爸身高1.8 m,他在地面上的影长为2.1 m.若
小芳比爸爸矮0.3 m,则她的影长为( )
A.1.3 m B.1.65 m C.1.75 m D.1.8 m
C
6.(4分)如图是测量水塘宽度AB的示意图,AB∥CD,OA=30 m, OD=10 m,CD=12 m,则AB=____m. 36
3.(8分)如图,某人欲从A点横渡河游到B点,由于水流的影响,实际上岸地 点C偏离欲到达地点B 50 m.结果他在水中实际游的路程比河的宽度多10 m.求 :该河的宽度为多少?
解:设该河的宽度为x m.根据题意,得x2+502=(x+10)2, 解得x=120.答:该河的宽度为120 m
4.(4分)如图,AB是斜靠在墙上的长梯,测得梯脚B距离C墙1.84 m,梯上点D距离墙 1.52 m,BD长0.72 m,则梯子的长为( )
已知AC=10 cm,BD=15 cm,CD=50 cm,则点E距点C的距离是( )
A.9 m B.10 m
C.15 cm D.35 cm
运用这一性质可测量物体的高度,
11.如图,已知零件的外径为30 mm,现用一个交叉卡钳(两条尺长AC和BD相等,∶OA=1∶2,
2.(4分)如图所示,将一根长24 cm的筷子,置于底面直径为5 cm、 高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长为h cm, 则h的取值范围是___1_1_≤_h_≤_1_2____.
C.( 5+1)米 墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度
8 m,他在地面上的影长为2. 7 m,请你帮小明求出楼高AB.
5.(4分)如图,小芳和爸爸正在散步,爸爸身高1.8 m,他在地面上的影长为2.1 m.若
小芳比爸爸矮0.3 m,则她的影长为( )
A.1.3 m B.1.65 m C.1.75 m D.1.8 m
C
6.(4分)如图是测量水塘宽度AB的示意图,AB∥CD,OA=30 m, OD=10 m,CD=12 m,则AB=____m. 36
3.(8分)如图,某人欲从A点横渡河游到B点,由于水流的影响,实际上岸地 点C偏离欲到达地点B 50 m.结果他在水中实际游的路程比河的宽度多10 m.求 :该河的宽度为多少?
解:设该河的宽度为x m.根据题意,得x2+502=(x+10)2, 解得x=120.答:该河的宽度为120 m
4.(4分)如图,AB是斜靠在墙上的长梯,测得梯脚B距离C墙1.84 m,梯上点D距离墙 1.52 m,BD长0.72 m,则梯子的长为( )
已知AC=10 cm,BD=15 cm,CD=50 cm,则点E距点C的距离是( )
A.9 m B.10 m
C.15 cm D.35 cm
运用这一性质可测量物体的高度,
11.如图,已知零件的外径为30 mm,现用一个交叉卡钳(两条尺长AC和BD相等,∶OA=1∶2,
2.(4分)如图所示,将一根长24 cm的筷子,置于底面直径为5 cm、 高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长为h cm, 则h的取值范围是___1_1_≤_h_≤_1_2____.
C.( 5+1)米 墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度
8 m,他在地面上的影长为2. 7 m,请你帮小明求出楼高AB.
华师大版九年级数学上册课件全册
32 9 3, 类似地,计算:
7 5
2
=
7 5
02 0
0.52 0.5
又如 32 = 9=3= 3,再计算:
7 5
2
=
7 5
0.52 = 0.5
归纳 一般地,有
a (a≥0) -a (a<0)
知识要点 1.从运算顺序来看,
2 a 先开方,后平方
2.从取值范围来看,
2 a a≥0
3.从运算结果来看:Fra bibliotek 2 a =a
a (a≥0)
a2 =∣a∣ =
-a(a<0)
a2 先平方,后开方
a 2 a取任何实数
练一练 化简
(1) 16
(3) (7)2
解: (1) 16 42 4
(3) (7)2 7
(2) (5)2
(4) 72
问题3 平方根的性质:
正数有两个平方根且互为相反数; 0有一个平方根就是0; 负数没有平方根.
问题4 所有实数都有算术平方根吗?
正数和0都有算术平方根; 负数没有算术平方根.
S
S
圆形的下球体在平面图上的面积为S,则半径为_______π___.
讲授新课
一 二次根式的定义及有意义的条件
如图所示的值表示正方形的面积,则
两个二次根式能否进行加、减、乘、除运算?怎样运算?让我们从研 究乘法开始.
请写出两个二次根式,猜一猜,它们的积应该是多少?
2 7= ?
特殊化,从能开得尽方的二次根式乘法运算开始思考!
讲授新课
一 二次根式的乘法法则及运算
1. a 既可表示开方运算,也可表示运算的结果.
华师大版数学九年级上册用坐标确定位置课件
①福建的东南方向;②北纬25.03°;③东经121.3°; ④北纬25.03°,东经121.3°. 导引:用经纬度确定物体的位置,要用两个量:经度和纬度, 二者缺一不可.
总结
知2-讲
通常用经纬度来表示地球上某一地点的确切位置.
知2-练
• 北京时间2014年5月24日4时49分云南省德宏傣族景
颇族自治州盈江县(北纬25.0°,东经97.8°)产生
知识点 1 用坐标表示平面内点的位置
知1-导
不少问题中,物体的大小往往可以忽略,因而可以用 点来表示,从而可以用坐标确定物体所在的位置.
某中学夏令营举行野外拉练活 动,老师交给大家一 张地图,如 图23. 6. 1所示,地图上画了一个 平面直角坐 标系作为定向标记, 并给出了四座农舍的坐标: (1,2)、 (-3, 5)、(4, 5)、(0, 3).
知1-导
目的地位于连结第一座与第 三座农舍的直线和连 结 第二座与第四座农舍的直线的交点处.利用平面直角坐标 系,同学们很快就到达了目的地.请你在图中画出目的地 的位置.
(来自教材)
知1-导
利用坐标确定物体的位置时,第一应根据条件建立合 适的平面直角坐标系,然后用有序实数对来表示这个物 体的位置.一般地,我们习惯用(a,b)来表示一个物体 的位置,其中a表示横坐标,b表示纵坐标.
方向,距离此处3千米的地方;
“明天调味品厂”在他现在所在地的北偏西45°的方向,
距离此处2. 4千米的地方;
“321号水库”在他现在所在地的南偏东27°的方向,距
离此处1. 1千米的地方.
根据这些信息,试在图23. 6. 3中画出表示各处位置的
示意图.
(来自教材)
知3-导
在图23. 6. 3 中帮助小明 完成这张示
总结
知2-讲
通常用经纬度来表示地球上某一地点的确切位置.
知2-练
• 北京时间2014年5月24日4时49分云南省德宏傣族景
颇族自治州盈江县(北纬25.0°,东经97.8°)产生
知识点 1 用坐标表示平面内点的位置
知1-导
不少问题中,物体的大小往往可以忽略,因而可以用 点来表示,从而可以用坐标确定物体所在的位置.
某中学夏令营举行野外拉练活 动,老师交给大家一 张地图,如 图23. 6. 1所示,地图上画了一个 平面直角坐 标系作为定向标记, 并给出了四座农舍的坐标: (1,2)、 (-3, 5)、(4, 5)、(0, 3).
知1-导
目的地位于连结第一座与第 三座农舍的直线和连 结 第二座与第四座农舍的直线的交点处.利用平面直角坐标 系,同学们很快就到达了目的地.请你在图中画出目的地 的位置.
(来自教材)
知1-导
利用坐标确定物体的位置时,第一应根据条件建立合 适的平面直角坐标系,然后用有序实数对来表示这个物 体的位置.一般地,我们习惯用(a,b)来表示一个物体 的位置,其中a表示横坐标,b表示纵坐标.
方向,距离此处3千米的地方;
“明天调味品厂”在他现在所在地的北偏西45°的方向,
距离此处2. 4千米的地方;
“321号水库”在他现在所在地的南偏东27°的方向,距
离此处1. 1千米的地方.
根据这些信息,试在图23. 6. 3中画出表示各处位置的
示意图.
(来自教材)
知3-导
在图23. 6. 3 中帮助小明 完成这张示
华师大九年级数学上册《25章末复习》课件
古来一切有成就的人,都很严肃地 对待自己的生命,当他活着一天,总要 尽量多劳动,多工作,多学习,不肯虚 度年华,不让时间白白地浪费掉。
—— 邓拓
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
易错警示 在一些实验中,在一定条件下,事件 A 发生的频率会稳定在某 个常数附近,这个常数就是该事件发生的概率,一旦这个条件不具备 或遭到破坏,该事件发生的概率也会随之改变,一些同学不注意问题 中的条件背景,对条件的变化没有引起注意,还是按原来的条件计算 事件发生的概率而造成错误.
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
[解析] (1)用树状图分析各种等可能情况. (2)分两种情况讨论.
解:(1)两次取球的树状图如图26-1所示.
∴取球两次共有 12 次均等机会,其中 2 次都取黄色球的机会为 6 次,所以 P(两个都是黄球)=162=12.
(2)∵又放入袋中两种球的个数为一种球的个数比另一种球的个 数多 1,
与试验总次数的比,叫做这个事件出 现的 频率 ,一个事件在多次试验中发
生的可能性叫做这个事件发生 的 概率 。
(1)一般地,在大量重复试验中,如果事件A 发生的频率 会稳定在某个常数p附近, 那么,这个常数p就叫作事件A的概率。事 件A发生的频率是:在 n次试验中,事件A 发生的频数m与 n 的比。
华师大版数学九年级上册2.中位线课件
第23章 图形的类似
23.4. 中位线
复习导入
如图,在△ABC中,DE∥BC,则 △ADE∽△ABC。 1.如果D是AB的中点,那么E是AC的 中点吗?DE与BC的比是多少? 2.上述问题的逆命题是什么?
探索新知
逆命题:如果D、E分别是AB、AC边的中点, 那么DE∥BC,∴DE= 1 BC.
2
3
巩固练习
73 1033答案:.3 90°.归纳小结
1.三角形中位线与中线的区分。 2.中点四边形一定是平行四边形,判断他 是不是某一特殊平行四边形,只需要看原 四边形对角线是否垂直或相等。
数学中的一些美丽定理具有这样 的特性:它们极易从事实中归纳 出来,但证明却隐藏的极深。
——高斯
谢谢大家!
思考:此命题还有其他证法吗?
归纳
(1)我们把连结三角形两边中点 的线段叫做三角形的中位线。
(2)三角形的中位线平行于第三 边,并且等于第三边的一半。
应用
应用拓展
在例2中,作另外两条三角形的中 线,是否也有这个结论?
(学生讨论,总结如下)
三角形三边上的中线交于一点, 这个点就是三角形的重心,重心 与线一长边的中1 点?的连线的长是对应中
23.4. 中位线
复习导入
如图,在△ABC中,DE∥BC,则 △ADE∽△ABC。 1.如果D是AB的中点,那么E是AC的 中点吗?DE与BC的比是多少? 2.上述问题的逆命题是什么?
探索新知
逆命题:如果D、E分别是AB、AC边的中点, 那么DE∥BC,∴DE= 1 BC.
2
3
巩固练习
73 1033答案:.3 90°.归纳小结
1.三角形中位线与中线的区分。 2.中点四边形一定是平行四边形,判断他 是不是某一特殊平行四边形,只需要看原 四边形对角线是否垂直或相等。
数学中的一些美丽定理具有这样 的特性:它们极易从事实中归纳 出来,但证明却隐藏的极深。
——高斯
谢谢大家!
思考:此命题还有其他证法吗?
归纳
(1)我们把连结三角形两边中点 的线段叫做三角形的中位线。
(2)三角形的中位线平行于第三 边,并且等于第三边的一半。
应用
应用拓展
在例2中,作另外两条三角形的中 线,是否也有这个结论?
(学生讨论,总结如下)
三角形三边上的中线交于一点, 这个点就是三角形的重心,重心 与线一长边的中1 点?的连线的长是对应中
华师大版数学九年级上册课件23.4中位线(三角形中位线) (共20张PPT)
E C
则∠B=
60 4
度,为什么?
(2)若BC=8cm, 则DE= cm,为什么?
图1
如图2:在△ABC中,D、E、F分别 是各边中点 AB=6cm,AC=8cm,BC=10cm, 则△DEF的周长=
12
cm
E
C
A
B
M
C
解决方案
N
实际问题: A、B两点 被岛屿隔开, 如何才能知道 它们之间的距 离呢?
3、猜想DE和BC之间有什么关系?为什么?
1 猜想:DE∥BC,DE= BC 2
如图, △ABC 中,点D、E分别是AB与AC的中点。
1 求证:DE∥BC,DE= BC 2
.
三角形中位线平行于第三边,并且等于第 三边的一半。
三角形中位线定理有两个结论: (1)表示位置关系------平行于第三边; (2)表示数量关系------等于第三边的一半。
应用时要具体分析, 需要哪一个就用哪一 个.
中位线性质的常见表达形式:
1 ∴ DE∥BC,DE= BC 2
∵DE是△ABC 的中位线
∵点D、E分别是AB与AC的中点
1 ∴ DE∥BC,DE= BC 2
.
问题
D B B D A 4 5 F 3
图2
A
பைடு நூலகம்
如图1:在△ABC中,DE是中位线 (1)若∠ADE=60°,
§23.4 中 位 线
回忆
相似三角形有哪些性质?
1、相似三角形的对应边成比例,对应角相等。 2、相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比 都等于相似比。
3、相似三角形的面积比等于相似比的平方。
相似三角形有哪些判定方法?
华东师大版九年级数学上册课件:24.解直角三角形的应用(方向角、俯角、仰角)
∴ = 2MN = 2
N = 3MN = 3
∆中,∵ ∠BNM = 90°, ∠MBN = 45°
∴ BN = MN = ,
∵AN+BN=AB
BM= 2MN = 2
∴ 3 + = 300(√3 + 1)
∴ = 2 = 600
∴ = 300
∴ = 2 = 300 2
在地平面上取一点C,用测量仪测得点A的仰角为45°,
再向后退20米取一点D,使点D在BC的延长线上,此时测
得点A的仰角为30°,已知测量仪的高为1.5米,求建筑
物AB的高度.
解:∆中, =
=
tan45°
∆中, =
= 3
tan30°
∴ = −
在教室的窗台前看操场上的旗杆,心想:“站
在二楼可以利用解直角三角形测得旗杆的高度
吗?”他望着旗杆顶端和旗杆底部,可以测得
视线与水平线之间的夹角各一个,但是,这两
个角怎样命名区分呢?
【自主学习】阅读教材第113—114页,并完
成下列各题
如图,∠CAE,∠DAE在测量
中各叫什么角呢?
∠CAE叫做仰角
∠DAE叫俯角
为α,AC=7米,则树高BC为 7tan 米.
2.如图,在建筑平台CD的顶部C处,测得大
树AB的顶部A的仰角为45°,测得大树AB的
底部B的俯角为30°,已知平台CD的高度为5
m,则大树的高度为 5 3 + 5 _m(结果保留
根号).
及时反馈一
1.如图,为了测量顶部不能到达的建筑物AB的高度,先
∴ 与 之间的距离为100海里
∴ = 50
(2)已知距观测点D处50海里范围内有暗礁.
N = 3MN = 3
∆中,∵ ∠BNM = 90°, ∠MBN = 45°
∴ BN = MN = ,
∵AN+BN=AB
BM= 2MN = 2
∴ 3 + = 300(√3 + 1)
∴ = 2 = 600
∴ = 300
∴ = 2 = 300 2
在地平面上取一点C,用测量仪测得点A的仰角为45°,
再向后退20米取一点D,使点D在BC的延长线上,此时测
得点A的仰角为30°,已知测量仪的高为1.5米,求建筑
物AB的高度.
解:∆中, =
=
tan45°
∆中, =
= 3
tan30°
∴ = −
在教室的窗台前看操场上的旗杆,心想:“站
在二楼可以利用解直角三角形测得旗杆的高度
吗?”他望着旗杆顶端和旗杆底部,可以测得
视线与水平线之间的夹角各一个,但是,这两
个角怎样命名区分呢?
【自主学习】阅读教材第113—114页,并完
成下列各题
如图,∠CAE,∠DAE在测量
中各叫什么角呢?
∠CAE叫做仰角
∠DAE叫俯角
为α,AC=7米,则树高BC为 7tan 米.
2.如图,在建筑平台CD的顶部C处,测得大
树AB的顶部A的仰角为45°,测得大树AB的
底部B的俯角为30°,已知平台CD的高度为5
m,则大树的高度为 5 3 + 5 _m(结果保留
根号).
及时反馈一
1.如图,为了测量顶部不能到达的建筑物AB的高度,先
∴ 与 之间的距离为100海里
∴ = 50
(2)已知距观测点D处50海里范围内有暗礁.
华师大版九年级数学上册ppt课件-第1课时 相似三角形的判定(1)
∵ DE∥BC ,
∴ ∠ADE = ∠B .
在△ADE 与△A1B1C1 中,
∵ ∠A =∠A1,∠ADE =∠B =∠B1 ,AD =
A1B1 , ∴ △ADE ≌△A1B1C1.
全等变换
∴ △ABC ∽ △A1B1C1.
思考
如果两个三角形仅有一对角是对应相等的, 那么它t△A′B′C′ 中, ∠C 与∠C′ 都是直角,∠A =∠A′.求证:△ABC ∽△A′B′C′ .
复习导入
如何判断两个三角形是否相似? 根据定义:对应角相等,对应边成比例.
是否存在判定两个三角 形相似的简便方法?
回顾
推进新课
在判定两个三角形全等时,我们得到了SSS, SAS,ASA,AAS的简便方法.
那么,对于相似三角形的判定,是否也存在 类似的分类与判定方法呢?
直角三角尺
从直观来看,一个三角形的三个角分别 与另一个三角形的三个角对应相等时,它们 就“应该”相似了.确实是这样吗?
解 ∵ ∠C =∠C′ = 90°, ∠A =∠A′ ,
∴ △ABC ∽△A′B′C′ (两角分 别相等的两个三角形相似).
两个直角三角形,若有一对锐 角对应相等,则它们一定相似.
例3 如图,在△ABC 中,DE∥BC,
EF∥AB,求证:△ADE ∽ △EFC.
A
证明 ∵ DE∥BC ,
∴ ∠ADE = ∠B,∠AED = ∠C, D
2.相似三角形的判定
第1课时 相似三角形的判定(1)
华东师大版九年级上册
• 学习目标:
会说判定两个三角形相似的方法:两角分别相
等的两个三角形相似.会用这种方法判断两个三 角形是否相似.
• 学习重点:
华师大版数学九年级上册全册复习课件精选全文
(2)当___b_2-__4_a_c_=__0_____时,一元二次方程 ax2b+bx+c= 0(a≠0)有两个相等的实数根,即 x1=x2=_-__2_a____. (3)当___b_2-__4_a_c_<__0_____时,一元二次方程 ax2+bx+c= 0(a≠0)没有实数根.
4.一元二次方程根与系数的关系
(4) ab=____a_·___b____(a≥0,b≥0);
(5) ba=____ab____(a≥0,b>0).
3.最简二次根式 把二次根式化简后,被开方式中都不含__分__母____,并且被开 方式中不含有____能_开_得__尽_方_____的因式,这样的二次根式称为 最简二次根式.
4.二次根式的乘法、除法
华师大版九年级上册 数学
全册复习课件
第21章 二次根式复习
1.二次根式的概念 一般地,我们把形如__a__(a≥0)的式子叫做二次根式.
2.二次根式的性质
(1) a≥___0___(a≥0);(2)( a)2=__a____(a≥0);
(3) a2=|a|=
aa (a≥0), --a a (a<0);
程的方法叫做公式法.
(4)因式分解法:用因式分解法解一元二次方程的一般步骤:①
将方程右边化为__0__;②将方程左边分解为两个__一_次__因_式______
的积;③令每个因式分别等于_0___,得到两个一元一次方程;
④解这两个一元一次方程,它们的解就是原方程的解.
3.一元二次方程根的判别式
由于一元二次方程的根的个数由代数式_b_2_-__4_a_c_____的符 号决定,因此把_b_2_-__4_a_c____叫做一元二次方程根的判别式. (1)当_b_2_-__4_a_c_>__0___时,一元二次方程 ax2+bx+c=0(a≠0) 有 x2=两_个__不_-_相_b_-等__的2_ba_实2_-_数_4_a根_c_,__即__x_1_=_____.-__b_+___2_ab_2-__4_a_c________,
华师大版九年级数学上册期末复习课件全套1精选全文
B. 70 C. 99
D. 1 x
5.下列各式中那些是二次根式?那些不是?为什么?
① 15 ④ a2 b2
② 3a
a<0③ x 100
-(a2+1)<0
⑤ a2 1
⑥ 144
(a-1)2≥0
⑦ a2 2a 1
⑧ 35
6.计算:
(1) 3 12 -2 48 + 8 =-2 3 +2 2
(2)
4 45
第21章
九年级数学上(HS) 教学课件
二次根式
复习和小结
知识梳理
考点分类
复习归纳
课后演练
知识梳理
二 次 根 式
三个概念 两个性质
两个公式 四种运算
最简二次根式
同类二次根式
有理化因式
1. ab a ba 0,b 0
2.
a b
a b
(a 0,b>0)
1. a 2 aa 0
aa 0
2. a2 a a a 0
2
B. 1 x2=0
2
D. x2+ 4-5=0 x
【解析】选B.A中的二次项系数缺少不等于0的条件,C中
含有两个未知数,D中的方程不是整式方程.
二 一元二次方程的解法
解方程x2-2x-1=0. 【自主解答】移项得x2-2x=1,配方得x2-2x+1=2,即(x-1)2=2, 开方得x-1=± 2 , x=1± 2 ,所以x1=1+ 2 , x2=1- 2 .
考点分类
一 确定二次根式中被开方数所含字母的取值范围
1. 当x _≤_3___ 时, 3 x 有意义. 2. a 4 4 a有意义的条件是 a=4 .