小学奥数模块教程不定方程与不定方程组的解法(ABC级)
小学奥数知识点:不定方程
小学奥数知识点:不定方程
一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;
常规方法:观察法、试验法、枚举法;
多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;
多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;
涉及知识点:列方程、数的整除、大小比较;
解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;
技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数;。
小学奥数不定方程
不定方程埃及尼罗河的出海口有一个大港叫亚历山大城,它是以希腊大帝亚历山大的名字命名。
在两千年前这里曾是地中海文化的一个中心。
亚历山大大帝在公元前330年建立这城市,在公元前323年他去世之后,托勒米(Ptalamy)成为埃及的统治者。
他选择这里为他的帝国的国都,并且模仿雅典的吕克昂学院在这里建立了一个博物院(Museum),世界各国的学者被邀请到这里来研究教导。
英国科学史家法灵顿(B.Farrington 1891—1974)在他的书《希腊人的科书》这么描写:“在埃及首都形成这个科学和艺术新中人的心里,存在一种美国式的豪华。
”编写著名的《几何原本》的欧几里得(Euclid)是博物院的第一个希腊数学教授。
在公元250年前后有一位希腊数学家丢番图(Dioplantos公元214-218年)住在亚历山大城里,他作为一个数学教员编写了一部叫《算术》(Arithmetica)的教科书。
这书总共有13卷,可惜在10世纪时只剩下6卷,其余7卷遗失了。
在15世纪这书的希腊文手抄本在意大利的威尼斯发现于是广被人注意,以后又有法国数学家巴歇的希腊—拉丁文对照本,以后还有英、德、俄等国的译本,这是一本如《几何原本》般在数学上影响很大的书。
这本书基本上是代数书,有人称他为“代数学之父”,他书中采用符号,研究了一次、二次、三次方程。
他是第一个引进符号入希腊数学的人。
如第一卷第27题:“两数之和是20,乘积是96,求这两数。
”第一卷第28题:“两数之和是20,平方和是208,求这两数。
”第六卷第27题:“求直角三角形的三边,已知它的面积加上斜边是一个平方数,而周长是一个立方数。
”写成现代的式子,令a,b,c是直角三角形的三边,则有:a2+b2=c2a+ b+ c=N3这里就要考虑到三次方程了。
这书除了第一卷外,其余的问题几乎都是考虑未知数比方程数还多的问题,我们把这种问题叫不定方程。
以后人们为了纪念丢番图把这类方程叫丢番图方程(Diophantine Equations)。
六年级奥数专题培优讲义不定方程及解析全国通用
六年级奥数专题培优讲义——不定方程及解析知识点梳理:在列方程组解答应用题时,有两个未知数,就需要有两个方程。
有三个未知数,就需要有三个方程。
当未知数的个数多于方程的个数时,这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。
不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足轻重的地位。
而在小学阶段打下扎实的基础,无疑很重要。
不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。
不过,我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。
这种情况也不排除它的取值不止一种。
不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。
如果考虑到题中以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整数的分拆有很大关系)。
解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确求解。
【例1】★求方程2725=+y x 的正整数解。
【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==15,63,111y x y x y x【小试牛刀】求方程4x +10y =34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得 2x +5y =17,5y 的个位是0或5两种情况,2x 是偶数,要想和为17,5y 的个位只能是5,y 为奇数即可;2x 典型例题的个位为2,所以x 的取值为1、6、11、16……x =1时,17-2x =15,y =3,x =6时,17-2x = 5,y =1,x =11时,17-2x =17 -22,无解所以方程有两组整数解为:16,31x x y y ==⎧⎧⎨⎨==⎩⎩ 【例2】★ 设A ,B 都是正整数,并且满足3317311=+B A ,求B A +的值。
小学各年级奥数大纲--
比的应用
比和除法、分数都有实质性的联系,运用这种联系 灵活方便地解决一些实际问题。
6
按比例分配
掌握按比例分配问题的解题方法的一般步骤。
7
分数、百分数应用题
通过题中具体数量与抽象分率之间的对应关系来
(一)
分析和解决问题。
8
分数、百分数应用题
根据题目的具体情况,将不同的单位“1”转化成
(二)
统一的单位“1”,使隐蔽的数量关系明朗化。
3
和差问题
利用大小两个数的和及它们的差,求出这两个数。
4
和倍、差倍问题
利用大小两个数的和(或者差)及他们的倍数关系,求出 这两个数。
5
等差数列
学习等差数列的概念及其求和有关的知识。
6
定义新运算
学习一些不同于四则运算但又与四则运算密切联系的新 运算,并具有一定的计算法则和规律。
7
行程问题
掌握速度、时间和路程三者间的关系,并运用其解题。
利用分割、添补、平移、转化、合并等方法,将不 规则图形化为规则图形进行面积计算。
20
综合复习
对本学期所学内容整体系统的进行复习和巩固。
2013
课次
课题
课题简介
1
巧解算式谜
在掌握用竖式计算加、减、乘、除法的基础上,能给残缺 的竖式填数。
2
包含与排除
在解题时当两个计算部分有重复包含时,为了不重复计 数,应从它们的和中排除重复部分。
2013
课次
课题
课题简介
1
分数、小数的速算
运用不同的运算技巧,合理选择巧妙的方法使运算 简便。
2
定义新运算
学习一些不同于四则运算但又与四则运算密切联系的新 运算,并具有一定的计算法则和规律。
小学数学不定方程与不定方程组的解法
不定方程与不定方程组知识框架一、知识点说明历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。
二、不定方程基本定义(1)定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。
(2)不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。
(3)研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解三、不定方程的试值技巧(1)奇偶性(2)整除的特点(能被2、3、5等数字整除的特性)(3)余数性质的应用(和、差、积的性质及同余的性质)重难点(1)b利用整除及奇偶性解不定方程(2)不定方程的试值技巧(3)学会解不定方程的经典例题例题精讲一、利用整除性质解不定方程【例 1】求方程2x-3y=8的整数解【考点】不定方程【解析】方法一:由原方程,易得2x=8+3y,x=4+32y,因此,对y的任意一个值,都有一个x与之对应,并且,此时x与y的值必定满足原方程,故这样的x与y是原方程的一组解,即原方程的解可表为:342x ky k⎧=+⎪⎨⎪=⎩,其中k为任意数.说明由y取值的任意性,可知上述不定方程有无穷多组解.方法二:根据奇偶性知道2x是偶数,8为偶数,所以若想2x-3y=8成立,y必为偶数,当y=0,x=4;当y=2,x=7;当y=4,x=10……,本题有无穷多个解。
小学高级奥数第26讲-不定方程与不定方程组
课后作业
<作业1>
解不定方程:2x 3y 7z 34 的正整数解.
课后作业
<作业1> 解不定方程:
(其中x,y均为正整数)
课后作业
<作业1> 解不定方程:
(其中x,y均为正整数)
课后作业
求方程 2x-3y=8的整数解
求方程2x+6y=9的整数解
求方程4x+10y=34的正整数解
求方程3x+5y=12的整数解
求方程 7x 19y 213的整数解
求 6x 22y 90 的自然数解
求方程3x+5y=31的整数解
求方程 7x 4y 89 的整数解
求方程5x 3y 22 的所有正整数解
求方程 2x-3y=8的整数解
解不定方程组 1800a 1200b 800c 16000
解方程 a b c 15
解不定方程
5x
ห้องสมุดไป่ตู้
3y
1 3
z
100
(其中x、y、z均为正整数)
x y z 100
<作业1>
解不定方程: 2x 9y 40 (其中x,y均为正整数)
课后作业
<作业1> 求不定方程 7x 11y 1288 的正整数解有多少组?
小学奥数教程-不定方程与不定方程组 (15) (含答案)
教学目标
1.利用整除及奇偶性解不定方程 2.不定方程的试值技巧 3.学会解不定方程的经典例题
知识精讲
一、知识点说明
历史概述
不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元 3 世纪就开始研究不定方程,因此常称 不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题, 公元 5 世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的 大衍求一术将不定方程与同余理论联系起来.
当 y=0,x=4;当 y=2,x=7;当 y=4,x=10……,本题有无穷多个解。
【答案】无穷多个解
【巩固】 求方程 2x+6y=9 的整数解
【考点】不定方程
【难度】2 星
【题型】解答
【解析】因为 2x+6y=2(x+3y),所以,不论 x 和 y 取何整数,都有 2|2x+6y,但 2 Œ9,因此,不论 x 和 y
【题型】解答
【解析】方法一:利用欧拉分离法,由原方程,得 x= 31 − 5y ,即 x=10-2y+ 1 + y ,要使方程有整数解
3
3
1 + y 必须为整数. 3
取 y=2,得 x=10-2y+ 1 + y =10-4+1=7,故 x=7,y=2 3
当 y=5,得 x=10-2y+ 1 + y =10-10+2=2,故 x=2,y=5 3
考点说明
在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方 法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重 要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具 解题。
小学奥数 不定方程与不定方程组 精选练习例题 含答案解析(附知识点拨及考点)
不定方程与不定方程组教学目标1.利用整除及奇偶性解不定方程2.不定方程的试值技巧3.学会解不定方程的经典例题知识精讲一、知识点说明历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。
二、不定方程基本定义1、定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。
2、不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。
3、研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解三、不定方程的试值技巧1、奇偶性2、整除的特点(能被2、3、5等数字整除的特性)3、余数性质的应用(和、差、积的性质及同余的性质)例题精讲模块一、利用整除性质解不定方程【例 1】求方程2x-3y=8的整数解【考点】不定方程 【难度】2星 【题型】解答【解析】 方法一:由原方程,易得 2x =8+3y ,x =4+32y ,因此,对y 的任意一个值,都有一个x 与之对应,并且,此时x 与y 的值必定满足原方程,故这样的x 与y 是原方程的一组解,即原方程的解可表为:342x ky k⎧=+⎪⎨⎪=⎩,其中k 为任意数.说明 由y 取值的任意性,可知上述不定方程有无穷多组解. 方法二:根据奇偶性知道2x 是偶数,8为偶数,所以若想2x -3y =8成立,y 必为偶数,当y =0,x =4;当y =2,x =7;当y =4,x =10……,本题有无穷多个解。
小学奥数七大模块知识体系梳理
小学奥数七大模块知识体系梳理起1 计算1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程2 数论1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题3 几何(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题4 行程1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题5 应用题1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题6 计数1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数7 杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。
小学奥数七大模块详解(超详细结构图)
重点小学内部奥数复习材料七大模块详解(七大模块:计算、数论、几何、行程、应用题、计数和杂题)模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。
小学奥数的七大模块
奥数的七大模块包括:计算、数论、几何、行程、应用题、计数和杂题模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。
六年级奥数:第40讲 不定方程
第40講不定方程一、知識要點當方程的個數比方程中未知數的個數少時,我們就稱這樣的方程為不定方程。
如5x-3y=9就是不定方程。
這種方程的解是不確定的。
如果不加限制的話,它的解有無數個;如果附加一些限制條件,那麼它的解的個數就是有限的了。
如5x-3y=9的解有:x=2.4 x=2.7 x=3.06 x=3.6y=1 y=1.5 y=2.1 y=3如果限定x、y的解是小於5的整數,那麼解就只有x=3,Y=2這一組了。
因此,研究不定方程主要就是分析討論這些限制條件對解的影響。
解不定方程時一般要將原方程適當變形,把其中的一個未知數用另一個未知數來表示,然後再一定範圍內試驗求解。
解題時要注意觀察未知數的特點,儘量縮小未知數的取值範圍,減少試驗的次數。
對於有3個未知數的不定方程組,可用削去法把它轉化為二元一次不定方程再求解。
解答應用題時,要根據題中的限制條件(有時是明顯的,有時是隱蔽的)取適當的值。
二、精講精練【例題1】求3x+4y=23的自然數解。
先將原方程變形,y=23-3x4。
可列表試驗求解:所以方程3x+4y=23的自然數解為X=1 x=5Y=5 y=2 練習11、求3x+2y=25的自然數解。
2、求4x+5y=37的自然數解。
3、求5x-3y=16的最小自然數解。
【例題2】求下列方程組的正整數解。
5x+7y+3z=253x-y-6z=2這是一個三元一次不定方程組。
解答的實話,要先設法消去其中的一個未知數,將方程組簡化成例1那樣的不定方程。
5x+7y+3z=25 ①3x-y-6z=2 ②由①×2+②,得13x+13y=52X+y=4 ③把③式變形,得y=4-x。
因為x、y、z都是正整數,所以x只能取1、2、3.當x=1時,y=3當x=2時,y=2當x=3時,y=1把上面的結果再分別代入①或②,得x=1,y=3時,z無正整數解。
x=2,y=2時,z也無正整數解。
x=3時,y=1時,z=1.所以,原方程組的正整數解為x=1y=1z=1練習2求下麵方程組的自然數解。
不定方程的所有解法
不定方程的所有解法
不定方程是指含有未知数的方程,但未知数的个数多于方程的个数,因此方程无法唯一确定未知数的值。
不定方程的所有解法取决于方程的具体形式和条件。
以下是解决不定方程的常见方法:
一、列举法:对于简单的不定方程,可以通过列举所有可能的解来确定方程的解。
例如,对于一元一次方程ax = b,其中a和b为已知常数,可以通过计算x = b/a 来确定方程的解。
二、参数法:对于形如ax + by = c的不定方程,可以引入参数t,将方程转化为x = at + x0,y = bt + y0的形式,其中x0和y0为常数,然后通过选择合适的t值来确定方程的解。
三、降维法:对于高维的不定方程,可以通过将方程进行降维处理,转化为更简单的形式来求解。
例如,对于二元二次方程ax^2 + by^2 = c,可以通过代换u = x^2 和v = y^2来将方程转化为线性方程的形式,然后求解。
四、递归法:对于某些特殊形式的不定方程,可以通过递归的方式求解。
例如,对于费马大定理中的不定方程x^n + y^n = z^n,可以利用递归方法求解。
五、数学工具:对于一些复杂的不定方程,可以利用数学工具如数值方法、图形法、线性规划等来求解。
需要注意的是,不定方程的解并不总是存在或唯一的,有时候可能存在无穷多个解,有时候可能不存在解。
因此,在求解不定方程时,需要根据具体的问题和条件来选择合适的解法和策略。
山东省济宁市小学数学小学奥数系列2-2-3不定方程与不定方程组
山东省济宁市小学数学小学奥数系列2-2-3不定方程与不定方程组
姓名:________ 班级:________ 成绩:________
亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!
一、 (共10题;共50分)
1. (5分)求方程 2x-3y=8的整数解。
2. (5分)求方程2x+6y=9的整数解。
3. (5分)求方程4x+10y=34的正整数解。
4. (5分)求方程3x+5y=12的整数解。
5. (5分)解不定方程:。
(其中x,y均为正整数)
6. (5分)求不定方程的正整数解有多少组?
7. (5分)求方程3x+5y=31的整数解。
8. (5分)解方程。
(其中x、y均为正整数)
9. (5分)解方程(其中a、b、c均为正整数)
10. (5分)解不定方程(其中x、y、z均为正整数)
参考答案
一、 (共10题;共50分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、。
奥数课程不定方程教案
教学过程一、复习预习当方程中未知数的个数比方程的个数多时,我们就称这样的方程为不定方程。
比如:3x-4y=6,方程只一个,但未知数却有两个,这就是不定方程。
古希腊著名数学家丢番图曾在其著作《算术》中介绍过关于不定方程,所以不定方程又叫丢番图方程。
很明显,在不定方程3x-4y=6中,x、y的取值有无数个,不定方程的解往往有无数个。
我们这里介绍的不定方程,一般都会有条件限制,比如说上述不定方程中的x、y只能是自然数,这样我们可以根据限制的条件来求出不定方程的解。
所以,解答这类方程,一定要找出题中明显或隐含的限制条件。
同时,我们这里介绍的不定方程,最主要是介绍不定方程在解答应用题方面的作用。
二、知识讲解考点1 系数上的考虑如7x+11y=276,我们有两种解法,一是变形为:x=(276-11y)÷7;二是变形为:y=(276-7 x)÷11。
我们对照下这两种解法中的取值情况。
第一种:Y有0---25种取值可能;而第二种X有39种取值可能,很明显,第一种解法比第二种解法相对来说速度会更快些。
但我们换个角度,由于X、Y都是自然数,由上述两种变形可知,X应是7的倍数,Y 应是11的倍数,而1---276中7的倍数有39个,11的倍数有25个,那么,很明显,从倍数上考虑,第二种解法比第一种解法相对来说速度更快些。
所以,在解不定方程时,一定要注意未知数前面的系数,选择恰当的变形来解不定方程。
考点2 尾数上的考虑例如解不定方程5X+4Y=59的自然数解。
和的个位数是9,说明5X的个位数字一定是5,那么X一定取奇数;4Y的个位数字一定是4,那么Y只能是1、4、6、11、14。
这样解的过程就容易多了,速度也上来了。
考点3 奇偶性上的考虑上道例题还可以从数的奇偶性入手考虑。
59是一个奇数,4Y一定是个偶数,那么,5X 就一定是个奇数,那么X取值只能取奇数,如1、3、5、、、、等等,也能起到简便解题过程的作用。
【小学奥数教程】第六讲不定方程解应用题
【小学奥数教程】第六讲不定方程解应用题第六讲不定方程解应用题大家已经学过简单的列方程解应用题,一般都是未知数个数与方程的个数一样多,例如中国古代著名的“鸡兔同笼”问题。
如果方程(组)中未知数的个数多于方程的个数,此方程(组)称为不定方程(组)。
小学阶段主要是涉及整系数不定方程的整数解,试看一些例子。
例1 有三张扑克牌,牌的数字互不相同,并且都在10以内。
把三张牌洗好后,分别发给甲、乙、丙一人。
每人记下自己牌的数字,再重新洗牌、发牌、记数。
这样反复几次后,三人各自记录的数字和分别为13、15、23。
请问这三张牌的数字是什么,分析设三张牌为x、y、z(x,y,z)。
再设共发牌n轮(每轮发3张)。
记作x,y,z=S.n?S=13,15,23=51由于n和S都是整数,51=3×17,只有n=3,S=17。
现在转变为不定方程:x,y,z且10,x,y,z?1的条件下:x,y,z=17求整数解。
12由于x、y、z均为整数,其最大整数x,,即x?6。
,,,17533X可能值为6、7、8、9。
第一种情况,x=6,y,z,而y,z=17,6=11,而此时y,z最多为5,4,所以x?6。
第二种情况,x=7,y,z,y,z=17,7=10,只有y=6,z=4。
但是丙三次牌数字和为23,而23显然不可能表示为,7,6,4,中任意三个(可以重复的,下同)数之和。
所以,第二种情况x=7亦被排除。
第三种情况,x=8,y,z,y,z=17,8=9,(y , z)可能情况有(7,2);(6,3);(5,4)。
而13(甲三次牌数字之)不能表示为,8,7,2,中任意三个数之和,23不能表示为,8,6,3,和,8,5,4,中任意三个数之和,故x=8亦被排除。
第四种情况,x=9,y,z,y+z=17,9=8,观察知y=5, z=3.(可排除,9,7,1,和,9,6,2,)综上所述,三张牌为3、5、9。
例2 采购员用一张1万元支票去购物。
奥数讲义-不定方程-(4)
第四讲 不定方程不定方程是方程中较难的内容,因此也是考试的难点。
一、基础知识回顾不定方程(组)是指未知数的个数多于方程个数的方程(组)。
它的解往往有无穷多个,不能唯一确定,对于不定方程(组),我们一般求解两类问题:一是,未知数的组合;二是,限定只求整数解或正整数解。
定理:若整系数不定方程ax+by=c (a 、b 互质)有一组整数解为x 0,y 0,则此方程的全部整数解可表示为:⎩⎨⎧-=+=)k ( 00为任意整数这里ka y y kb x x二、典型例题A )不定方程(组)求解例1 已知:25415x y z ++=,7314x y z ++=,求42x y z ++的值。
解:待定系数法。
9。
例2(同步,P94)(1997,重庆市)若4x 3y-6z=0,x+2y-7z=0,-求2222225x 2y z 2x 3y 10z +---的值。
例3(同步,P90)(全国通讯赛)已知:2221998(x y)1999(y z)2000(z x)01998(x y)1999(y z)2000(z x)1999-+-+-=⎧⎨-+-+-=⎩求z y -的值 注:方程组求值例4(同步,P103)(2000,全国联赛)某果品商店进行组合销售,甲种搭配:2千克A 水果,4千克B 水果;乙种搭配:3千克A 水果,8千克B 水果,1千克C 水果;丙种搭配:2千克A 水果,6千克B 水果,1千克C 水果。
已知A 水果每千克2元,B 水果每千克1.2元,C 水果每千克10元。
某天该商店销售这三种水果搭配共得441.2元,其中A 水果的销售额为116元,问C 水果的销售额为多少元?注:应用题;整体求值B )设而不求例5 若求x+y+z 的值.分析 已知条件是以连比的形式出现时,往往引进一个比例参数来表示这个连比. 解 令则有x=k(a-b), y=k(b-c), z=k(c-a),所以x+y+z=k(a-b)+k(b-c)+k(c-a)=0,所以 x+y+Z=0.说明本例中所设的k,就是“设而不求”的未知数.易错题回顾:已知x y zy z x z x y==+++,则xy z+的值为________;1/2或-1例6.甲、乙、丙、丁四人,每三个人的平均年龄加上余下一人的年龄分别为29,23,21和17,这四人中最大年龄与最小年龄的差是多少?解设四个人的年龄分别记为a,b,c,d,根据题意有由上述四式可知比较⑤,⑥,⑦,⑧知,d最大,c最小,所以⑤-⑧得所以d-c=18,即这四个人中最大年龄与最小年龄的差为18.说明此题不必求出a,b,c,d的值,只须比较一下,找出最大者与最小者是谁,作差即可求解.例7.我手中的卡片上写有一个三位数,并且个位数不为零,现将个位与百位数字对调,取两数的差(大数减小数),将所得差的三位数与此差的个位、百位数字对调后的三位数相加,最后的和是多少?=a×100+b×10+c-(c×100+b×10+a)=99×a-99×c=100×a-100×c-100+90+10-a+c=100(a-c-1)+9×10+(10-a+c).因k是三位数,所以2≤a-c≤8, 1≤a-c-1≤7.所以2≤10-a+c≤8.差对调后为k'=(10-a+c)×100+9×10+(a-c-1),所以k+k'=100(a-c-1)+9×10+(10-a+c)+(10-a+c)×100+9×10+(a-c-1)=1089.故所求为1089.说明本例中a,b,c作为参数被引进,但运算最终又被消去了,而无须求出它们的值.这正是“设而不求”的未知数的典型例子.例8 从两个重量分别为12千克(kg)和8千克,且含铜的百分数不同的合金上切下重量相等的两块,把所切下的每块和另一块剩余的合金放在一起,熔炼后两个合金含铜的百分数相等.求所切下的合金的重量是多少千克?分析由于已知条件中涉及到合金中含铜的百分数,因此只有增设这两个合金含铜的百分数为参数或与合金含铜的百分数有关的其他量为参数,才能充分利用已知,为列方程创造条件.解法1设所切下的合金的重量为x千克,重12千克的合金的含铜百分数为p,重8千克的合金的含铜百分数为q(p≠q),于是有整理得5(q-p)x=24(q-p).因为p≠q,所以q-p≠0,因此x=4.8,即所切下的合金重4.8千克.解法2 设从重12千克的合金上切下的x千克中含铜m千克,从重8千克的合金上切下的x 千克中含铜n千克(m≠n),则这两个合金含整理得 5x(n-m)=24(n-m).因为m≠n,所以n-m≠0,因此x=4.8,即所切下的合金重4.8千克.说明在解含参数的方程时,一般情况下可以把参数消去,转化成只含有待求未知数的一般方程,也就是说应用题的解答与参数的数值无关.C)整数解例9求不定方程4x+y=3xy的一切整数解解:由原方程得:4341433343-+=-=-=yyyxyyx,则∵x是整数,∴3y-4=±1,±2,±4,由此得y=32138235,,,,,取整数解y=2,1,0,对应的x=1,-1,0所以方程的整数解为⎪⎩⎪⎨⎧⎩⎨⎧⎩⎨⎧===-===1121yxyxyx,,评注:本题是用数的整除性来求不定方程的整数解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定方程与不定方程组
巧求周长
知识框架
一、知识点说明
历史概述
不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.
考点说明
在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。
二、不定方程基本定义
(1)定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。
(2)不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。
(3)研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解
三、不定方程的试值技巧
(1)奇偶性
(2)整除的特点(能被2、3、5等数字整除的特性)
(3)余数性质的应用(和、差、积的性质及同余的性质)
重难点
(1)利用整除及奇偶性解不定方程
(2)不定方程的试值技巧
(3)学会解不定方程的经典例题
例题精讲
一、利用整除性质解不定方程
【例 1】求方程2x-3y=8的整数解
【巩固】求方程2x+6y=9的整数解
【例 2】求方程4x+10y=34的正整数解【巩固】求方程3x+5y=12的整数解
【例 3】求719213
x y
+=的所有正整数解.【巩固】求62290
x y
+=的自然数解
二、利用余数性质解不定方程
【例 4】求方程3x+5y=31的整数解
【巩固】解方程7489
x y
+=,(其中x、y均为正整数)【例 5】求方程5322
x y
+=的所有正整数解.
三、解不定方程组
【例 6】解方程
1800120080016000
15
a b c
a b c
++=
⎧
⎨
++=
⎩
(其中a、b、c均为正整数)
【例 7】解不定方程
1
53100
3
100
x y z
x y z
⎧
++=
⎪
⎨
⎪++=
⎩
(其中x、y、z均为正整数)
【随练1】 解不定方程:2940x y +=(其中x,y 均为正整数)
【随练2】 求不定方程7111288x y +=的正整数解有多少组?
【作业1】 求23734x y z ++=的正整数解.
【作业2】 求x+2y+5z=18的自然数解
家庭作业
课堂检测。